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Chapter 1

Introduction

The failure of large power transformers is an area of significant cost and concern
for electric utilities. In the opening address to the 1973 Conference on Diagnostic
Testing of High Voltage Power Apparatus in Service, J.S. Forrest said:[1, p. 4]

Reliability is probably the most important single problem on the elec-
tricity supply system at the present time—not only to give uninterrupted
service but also to provide an economic supply. If, for example, a 500
MW generator transformer breaks down it may cost tens of tliousands of
[British] pounds a day to supply the demand by running a less efficient
station—and that sum of money would pay for quite a lot of diagnostic
testing to forestall the breakdown.

These words have as much significance today as they did in 1973. In addition to
these operating costs, the capital costs associated with repairing or replacing a large
power transformer that has suffered a catastrophic failure are considerable; a new
transformer may cost as much as $1,000,000[2). The annual failure rate of power
transformers in the 400-500kV range has been estimated as 2%(3]. Even with this
low failure rate, the tremendous costs associated with a transformer failure force
utilities to purchase spare transformers and install redundant equipment, tying up
capital and manpower needed elsewhere.

The ability to identify the existence of incipient failures in in-service transformers
before the failures become catastrophic is extremely attractive. In-service monitor-
ing of transformers is not new—however, monitoring has focused almost exclusively
on the information revealed through infrequent transformer oil analysis. While this
information is revealing, the reliability of this technique is inherently limited by the
long sampling intervals. In addition, these tests consume valuable resources that
could be used elsewhere. The reliability of this monitoring scheme is leveraged by
the addition of sensors to continuously monitor quantities such as oil temperature
and dissolved combustible gas content. But these measurements are only compared
to static thresholds that do not account for the changing operating conditions of the
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transformer. Improvements in modern microprocessor and integrated-circuit tech-
nology have enabled an on-line performance monitoring system that is capable of
adjusting to changing operating conditions for increased reliability and sensitivity
to incipient failure.

This thesis presents an on-line transformer monitoring system that can detect
incipient failures. It is also shown that the information revealed by this system
is sufficiently rich to enable the diagnosis of incipient failures; furthermore, this
diagnostic process can be automated so that the attention of control-room operators
can be directed elsewhere.

1.1 Background

The goals of in-service monitoring are accuracy and reliability. These goals can
only be achieved through the repeated sensing of multiple quantities in conjunction
with the recognition of long- and short-term drifts, or trends, in the condition of
the transformer. Additionally, the uniqueness of every transformer, even among a
group of the same basic design, requires a monitoring scheme which is sufficiently
sophisticated to learn and interpret the characteristics of a particular transformer—
that is, a scheme which adapts.

Under electric utility sponsorship, the Laboratory for Electromagnetic and Elec-
tronic Systems at MIT established the MIT Transformer Monitoring Project. This
work, which was led by James R. Melcher and Chathan M. Cooke, was sponsored
through the MIT Energy Laboratory Electric Utility Program. This effort concen-
trated on the development of basic sensors and on modeling the operation of various
transformer subsystems. The culmination of this work was the development of an
integrated monitoring system, consisting of hardware and software developed under
this project.

This integrated monitoring system based on adaptive models of normal behavior
was then applied to the Pilot Transformer Test Facility, a vehicle for advanced
transformer monitoring research which was developed as part of the monitoring
project. The heart of this facility is a heavily instrumented 50 kVA pole-type
transformer. The Pilot Facility can provide information about the thermal, acoustic,
electrical, and chemical behavior of this test transformer. While the data acquisition
system is flexible enough to accommodate a variety of sampling rates, the work
described in this thesis makes use of temperatures and high- and low-side currents
and voltages sampled every two minutes; all other data is sampled ai ten-minute
intervals. The Pilot Facility, from which the vast majority of the data presented in
this thesis is drawn, is described in detail in Appendix A. The monitoring system
is referred to as the MIT Pilot Transformer Monitoring System.
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1.2 Thesis Overview

The purpose of this thesis is twofold; it documents the status of the MIT Pilot
Transformer Monitoring System as a sensitive detector of incipient transformer fail-
ure, and it explores how the system could be extended to diagnose the failures it
detects. Chapter 2 reviews the traditional techniques for transformer monitoring,
and critiques their strengths and shortcomings. Chapter 3 presents ¢ conceptual
overview of the MIT approach to transformer monitoring. Chapter 4 describes
an implementation of this monitoring approach, as it is applied to the Pilot Fa-
cility, with special emphasis on the mechanism whereby the system adapts to the
particular transformer. Chapter 5 discusses how this monitoring system might be
integrated with traditional monitoring practice. Chapter 6 presents the data from
several experiments simulating one class of transformer failures. Chapter 7 develops
the diagnostic process that can be drawn from the information generated by the
adaptive transformer monitoring system, and explores how this process could be
automated. Chapter 8 summarizes the conclusions that can be drawn from these
experiments, and discusses several recommendations for future work.
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Chapter 2

Traditional Transformer
Monitoring

Device monitoring consists of three phases: detection, diagnosis and progrosts. De-
tection is the process of screening various measurements of the device for information
that may indicate that a newly developing, or incipient, failure is present. Diag-
nosis entails a detailed analysis of the measurements (possibly requiring additional
measurements beyond those used in detection) to determine the likely problem, or
to determine that there is, in fact, no problem. Prognosis is the process of ex-
trapolating the likely future course of the device’s health based on the information
revealed by the detection and diagnosis phases. Due to the underdeveloped state of
the art of transformer prognosis, and the limited scope of this thesis, this document
is mostly concerned with methods of detection and diagnosis.

Traditional transformer monitoring is based primarily on infrequent oil samples,
poorly correlated with temperature and the load history of the transformer. Both
detection and diagnosis center on information gathered from these oil samples. To
understand the significance of the information gathered from these samples, it is first
necessary to understand the degradation processes and failure-triggering stresses
present in an oil-filled transformer. The first section of this chapter consists of a brief
explanation of the major failure processes, followed by a presentation of traditional
techniques for on-line' detection and diagnosis of transformer failures. This latter
discussion includes some systems which have not, as yet, been widely accepted
by the electric utilities, but encompass some interesting advances in transformer
monitoring.

! On-line tests are tests which can be performed while the transformer is energized.
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2.1 Failures and Their Causes

The major contributing factors to the eventual failure of the transformer are poor
maintenance, incorrect operation, and overloading. S. D. Meyers, et al., state that
“transformers do not die of old age, but are killed by neglect![4, p. 119]” The gradual
degradation of the transformer is due to a number of chemical reactions that affect
the mechanical and dielectric strength of the insulating system. The effects of these
reactions on the insulating oil can often be reversed through processing of the oil,
yielding oil that can be as good as, or better than, new oils. However, the loss of
mechanical or dielectric strength of the solid insulation is often irreversible, short
of rebuilding the transformer and replacing the insulation. Thus, the life of the
transformer is determined by the life of the cellulosic insulation[4].

Some external events (such as lightning strikes, through faults, or switching
surges) can precipitate an instantaneous failure of the transformer. However, trans-
formers are designed to withstand these events to some degree. In the face of a very
poor knowledge base concerning the precursors of catastrophic transformer failure,
it is believed that these “instantaneous” failures are often preceded by a gradual
degradation of the insulating system that renders the transformer more susceptible
to failure. Therefore, it is important to understand the degradation processes of the
insulating system to monitor all types of failures, even the “instantaneous” ones.

The major field enemies of power transformers are:[4, p. 138]

e Moisture
e Oxygen
o Heat

e Solid contamination

Gas bubbles (supersaturation or oil decomposition)

e Overcurrent

Overvoltage (transient or dynamic)
e Short circuit (mechanical forces)

Of these, the primary agents of destruction are moisture, oxygen, and heat. The
role of each is presented in Section 2.1.1, Section 2.1.2, and Section 2.1.3, respec-
tively. Finally, Section 2.1.4 describes the origin of the stresses that usually are the
immediate causes of transformer failure.
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2.1.1 Moisture

Moisture is the insulating system’s archenemy. Its main target is the cellulosic
insulation, though it plays a role in the degradation of the transformer oil, other
solid insulations, and structural components of the transformer.

Water is always present in the transformer. Even with the most conscientious
drying of the transformer, a moisture content of 0.3-1.0% of the dry weight of the
paper is the best that can be expected. High temperatures are required to drive a
greater amount of moisture from the cellulose, temperatures which cause thermal
degradation of the cellulose. The moisture present in the paper represents a large
quantity of water; when considering the moisture content of the oil, the paper may
be viewed as an infinite source or sink for moisture. In addition, moisture can enter
the transformer through a leak or as a product of oxidation.

Some moisture is actually necessary to preserve the mechanical properties of
the paper; if it becomes too dry, it becomes brittle and loses mechanical strength.
This is despite the fact that the electrical properties of the paper improve as the
water is driven out of the cellulose. The increased dielectric strength is useless if
the transformer fails due to a physical rupture of the paper insulation caused by
the mechanical forces arising from vibrations, short circuits, or switching surges.

The cellulose contains the seeds of its own destruction in its glucoside chemical
structure. Cellulose is basically long chains of glucose units ([C¢H;005)*). Each
glucose unit has three hydroxyl (OH) groups: a primary hydroxyl group and two
secondary hydroxyl groups. These hydroxyl groups form weak hydrogen bonds with
the hydroxyl groups of adjacent cellulose chains to give the entire structure its me-
chanical strength. Water and other polar compounds are attracted to the hydroxyl
groups, interfering with the hydrogen bonds and thus weakening the structure. This
attraction of the hydroxyl groups contributes to cellulose’s extremely hygroscopic
(water-loving) nature.

The secondary hydroxyls also have the unfortunate property that they are lib-
erated relatively easily when the cellulose is heated. The free hydroxyls can form
water in a catalyzed reaction. This new water is retained primarily in the cellulose,
where it continues to degrade the solid insulation. Water promotes depolymeriza-
tion, whereby the long chains of glucoside units are broken up into smaller and
smaller units. As this chemical breakdown occurs, the insulation can lose mechani-
cal strength, and begin to flow and change shape.

Water is a polar compound with a high permittivity. Because of this, it is
attracted to regions of high electric field density. Cellulose’s great affinity for water
causes it to absorb the water, drying out the insulating oil. The transformer thus
stores water in the cellulose in regions of great dielectric stress—exactly where it
is most dangerous! It is obvious that keeping the transformer dry is absolutely
necessary for prolonging the life of the transformer.

Moisture also attacks the oil; water is a catalyst for the oil oxidation reaction—
one of the products of which is water itself. Water interacts with the oxidation decay
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products. Newly formed oxidation products are highly water soluble. This fact can
be taken advantage of: if water can be extracted from the oil, these contaminants
can also be removed before they damage the cellulose. Unfortunately, some of the
polar compounds align at the water/oil interface, forming a structure which then
attracts more moisture. The large particles which result from this interaction can
circulate throughout the oil until they reach the cellulose or a region of intense
electric field. Here the particles are deposited, reducing the dielectric strength at
that location. The acids which result from oil oxidation are also water-soluble. The
water transports the acid throughout the transformer, promoting corrosion even on
components that are fully immersed in the oil.

The damage done by moisture is permanent; drying the transformer after the
fact can only slow further deterioration. Therefore, keeping the transformer dry
must be a high priority. Various conventional methods for monitoring the internal
condition of the transformer are discussed later in this chapter. However, the ex-
treme peril posed by moisture makes it important to note here that one test that
has traditionally been relied on to reveal the presence of water in the transformer is
inappropriate to that purpose. The standard oil dielectric test, ASTM (American
Society for Testing and Materials) D-877, can reveal the presence of conductive
contaminants (such as rust, dirt, cellulosic fibers, free water, etc.) but not the pres-
ence of dissolved moisture in the oil. This is because of the cellulose’s high aflinity
for water: the solid insulation does an excellent job of dehydrating the oil. Thus,
while there may be a great deal of dissolved moistuze in the transformer, only a
tiny portion of that moisture will be found in the oil. The moisture content of the
insulation can be inferred from that of the oil, provided the two are in equilibrium.
But ASTM D-877 does not have the necessary sensitivity to dissolved moisture to
enable the moisture content of the system to be deduced[4, p. 316--318].

2.1.2 Oxygen

Second only to moisture in destructive potential, oxygen is a major enemy of the
insulating oil. Oxygen is derived from the atmosphere, or from the thermal degra-
dation of cellulose. But even though oxygen may be generated internally from the
cellulose, it is desirable to have a low initial oxygen content to retard the aging of
the cellulose and oil. However, even in sealed evacuated transformers, the amount
of oxygen remaining would, at standard conditions, fill at least 0.25% of the volume
of the tank[4, p. 180]. Unstable hydrocarbon impurities combine with the oxygen
under the catalytic influence of other materials in the transformer. Pure hydrocar-
bons are not easily oxidized and can generally be reclaimed from used oil that is
otherwise completely unusable.

The problemn of oxidation is worsened by the presence of cetalysts and accel-
erators. Catalysts are materials that increase the rate of reaction without being
consumed themselves. The two major catalysts for oxidation are:
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o Moisture
e Copper

Moisture is the primary catalyst for oil oxidation. Moisture is always present in the
cellulose, and can be driven out of the paper and into the oil by heat. There is such
a great quantity of water in the cellulose in comparison to the oil that additional
moisture will always be driven out with increased temperature. Moisture can enter
the transformer through a leak in the tank, and is also a product of the oxidation
reaction itself.

Accelerators are secondary factors that increase oil oxidation. These factors
include:[4, p. 182]

e Heat

Vibration

¢ Shock loading

Surge voltages

High electrical stress

As is true for most chemical reactions, heat is a major accelerator of oxida-
tion. But oxidation is just one of a family of reactions that attack the integrity
of the transformer’s insulating system. The major role that heat plays in inducing
transformer failures is discussed in the following section, Section 2.1.3.

Vibration also speeds up the rate of reaction. The transformer is constantly
vibrating in response to the 60 Hz applied power. The major frequency components
of this vibration are located at the multiples of 120 Haz.

High electrical stress can increase the amounts of hydrogen and light hydrocar-
bons produced as a result of oxidation. Electrical stress also promotes the formation
of larger particles in the resulting sludge deposits, and can influence the location
and shape of these deposits. These deposits can interfere with the heat transfer
characteristics of the transformer, they can form electrically conducting “bridges”
on surfaces (decreasing the effectiveness of the insulating system through increased
heating and increased electrical stress), and they can adversely affect the mechanical
strength of the transformer[4, pp. 183-184].

The major stages of the oil deterioration are characterized by the formation of
peroxides, acids, alcohols, ketones and sludges. Once a significant amount of perox-
ides are formed, a chain reaction begins which eventually results in the production
of sludge. Sludge is a resinous, partially conductive substance which precipitates
out of the oil onto the insulation, the tank, the surfaces of the ventilating ducte,
the cooling fins, etc. Even before the sludge has precipitated out to form a heavy,
tarry substance, its component decay products have begun to attack the cellulose,
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resulting in shrinkage. This shrinkage damages the transformer’s ability to with-
stand shock loading; an inability to withstand shock loading can result in movement
of the coils and lead to premature failure. Once the sludge has been deposited, the
transformer’s ability to dissipate heat may be decreased, also leading to damage of
the device due to excessive heating.

Natural crude oil contains compounds that interfere with the oxidation process.
These compounds are called inkibitors or antiozidants. Inhibitors are consumed
during the service life of the transformer. This means that the rate of oxidation of
the oil will increase as the oil ages, an important consideration.

2.1.3 Heat

Excessive temperatures in a transformer are destructive, both because heat is a
major accelerator of the chemical degradation due to moisture and oxidation, and
because thermal degradation of the cellulose and oil is itself a significant problem
(even in the absence of moisture or oxygen). Some incipient faults, such as local
short-circuits between laminations of the core, can generate temperatures sufficient
to char insulation or even distort the entire core[5, p. 619].

High temperatures can cause cellulosic insulation to shrink and become brittle.
This leaves the solid insulation susceptible to failure due to mechanical stress. As
mentioned above, thermal degradation of the cellulose yields free water, as well as
certain gases. Carbon monoxide (CO) and carbon dioxide (CQ,) are particularly
indicative of overheating of the cellulose. If the free water or the gases remain where
they are generated, they pose a serious threat. The effect of water on the cellulose is
discussed above, but the gases can be every bit as dangerous and, in fact, can pose
a more immediate danger to the transformer. The gases may collect in bubbles
in regions of high dielectric stress, displacing the oil and lowering the dielectric
strength of the insulation. This reduces the transformer’s ability to withstand
short circuits, impulses, and switching surges; the transformer may actually fail
under merely normal dielectric stress, if the dielectric strength of the insulation is
reduced enough. At temperatures lower than 150°C, the gases from the thermal
decomposition of the cellulose are not significant, but vaporization of the water
adsorbed by the cellulose may pose a similar threat. Because of this, the higher
the moisture levels in the cellulose, the lower the temperature at which bubble
production becomes a problem(6].

General overheating contributes greatly to the aging of the transformer. A rule
of thumb used for chemical reactions says that, all other things being equal, the
rate of a given reaction will double for each increase of 10°C. (For obvious reasons,
this is referred to as the 10°C rule.) This rule is applied to insulating oil when
its temperature exceeds 60°C. For each 10°C increment above 60°C, the expected
useful oil life would be half as long: the oil in a transformer operated continuously
with an oil temperature of 70°C would be expected to last half as long as an oil
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Table 2.1: Typical Transformer Oil Content by Design Period

| Year | Gallons/ KVA |

1915 2
1930 1

1945 1/2
1960 1/3
1975 1/6
1977 1/7
1979 1/9

kept continuously cooler than 60°C. This rule is applied to solid insulation as ihe
8°C rule—the life expectancy of the paper is halved for each 8°C rise. In fact,
the IEC (International Electrotechnical Commission) believes that in the range 80-
140°C a 6°C rule should be used. In [4], the authors state that “at 70°C even a
nitrogen blanket transformer has sufficient oxygen available through breakdown of
the cellulosic insulation to cause the oil to deteriorate as rapidly as the liquid in a
free-breathing transformer!(4, p. 583)”

2.1.4 Stress

The degradation processes discussed above greatly affect the ability of the insulating
system to withstand the stresses produced by the normal and abnormal operation
of a large power transformer. The insulating system of a transformer is sub jected
to three types of stress:

e Dielectric Stress
¢ Mechanical Stress
e Thermal Stress

Usually, one, two, or all three of these stresses are the immediate trigger of a
catastrophic failure. For example, dissolved moisture in the cellulose may lower the
dielectric strength of the solid insulation, but it may be an external event (such as a
lightning strike) that raises the dielectric stress to the point of failure. This section
briefly discusses the origins of these stresses.

These stresses become ever more significant as new designs try to minimize the
amount of material used in the transformer. Traditionally overdesigned, transform-
ers are now having their safety margins trimmed to the bare bone. Table 2.1 shows
how the amount of oil per KVA has dropped in this century[4, p. 128].
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2.1.4.1 Dielectric Stress

Dielectric stress arises from three major sources. First, there is the voltage stress
induced by the normal 60 Hz excitation of the primary winding. Second, dielectric
stress is induced by the voltage surges arising from lightning strikes to or near
the transmission lines. Switching surges are the third source. While a number
of operations can produce switching surges, line switching is the most common
cause. A lightning surge is characterized in laboratory studies as a disturbance
which reaches its peak in 1.2 psec and decays to half the peak value in 50 psec; a
switching surge typically takes about 230 usec to reach its peak and decays to half
value in 2000 psec. In contrast, the normal 60 Hz excitation takes 4167 psec just
to reach its maximum.

Dielectric stress may become concentrated in a particular area due to tracking
or coil movement, increasing the vulnerability of the insulation system.

2.1.4.2 Mechanical Stress

The 60 Hz excitation results in a mechanical vibration with harmonics at multiples
of 120 Hz. This mechanical stress is present at all times that the transformer is in
operation. When the transformer is initially installed, the effects of this vibration
on the winding and the core are negated by properly designed, properly adjusted,
clamping apparatus. As the transformer ages, this clamping apparatus may be
rendered less effective by shrinkage of the solid insulation, loosening of the clamping
mechanism, and distortion of the core and coils. The transformer is then susceptible
to damage from friction and impact between loose components. At one time, the
transformer was given little maintenance attention because it was thought to have
no moving parts. It is now known the transformer is in constant motion while
energized.

Mechanical stress on the windings and the solid insulation is produced in nor-
mal operation through the interaction of load currents flowing in the windings and
the magnetic field through which energy is transferred from the primary to the
secondary in the transformer. Through-faults are events in which excessive current
flows through the transformer, usually as a result of a short circuit. Failures due to
through-faults are due primarily to the damage produced by mechanical forces in
the windings, rather than thermal damage. The intense electromagnetic forces pro-
duced by the abnormal current can physically displace the coils, causing an internal
short circuit in the transformer. The forces induced in the winding are related to
the square of the current; thus, a current twenty times normal will result in forces
that are four hundred times normal.
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2.1.4.3 Thermal Stress

A transformer is an extremely efficient device, yet there are always some losses,
which manifest primarily as heat. Certain losses occur whether or not the trans-
former is loaded. These are called iron losses or no-load losses, and include core
magnetization losses, copper losses in the primary due to the exciting current, and
dielectric losses in the insulation. Core losses are the dominant factor, hence the
term “iron losses” from the iron (or steel) core. The core losses consist mostly of
hysteresis (the power necessary to magnetize the core alternately in one direction,
then the other) and circulating and eddy current losses (due to currents induced in
the electrically-conductive iron of the core).

Losses which occur due to load are called copper losses or load losses. Produced
by the power lost when the current flows through the resistance of the windings,
these losses are also called the I?R losses. The I2R losses become extremely signifi-
cant when the transformer is run overloaded for any great length of time. There are
also losses generated by small eddy currents in the copper conductors, and losses
due to the effect of leakage flux on the tank and other conductive components of
the transformer[4, p. 26-27].

An oil-filled transformer relies on the oil to carry damaging heat from the core
and the windings to the tank, where it is transmitted to the external environment.
The ability of the transformer to dissipate heat can fail or degrade in a number of
ways. A cooling duct may become blocked; sludge may interfere with the heat trans-
fer at the oil/surface interface. Pumps for forced convection may fail. Radiating
fins on the tank may be damaged. For any of these reasons (among others), normal
rates of heat generation will result in higher internal temperatures, increasing the
thermal stress on the device.

Other failures can cause excess heat to be generated, resulting in a local hot
spot that can damage the insulation or distort components of the transformer. One
such failure, called a transposition failure, is when the insulation fails between the
individual wires which make up a single conductor in the winding. Abnormal eddy
or circulating currents can generate excess heat. Likewise, if the insulation fails
between laminations of the core, circulating currents arise. If the insulation fails in
such a way as to form a circuit which links a significant portion of the total flux
through the core, the heat produced can distort or melt the entire core and char the
winding insulation. If a conductor in a bar breaks, the resistance of the winding will
increase and excess heat will result. As a final example, if there is a DC component
to the AC flux, the core may become saturated during half the cycle, leading to
excess heating. Under the influence of solar activity, this can be a serious problem,
threatening the entire power system.



2.2 Detection

In this section, present techniques for the detection of transformer failures are pre-
sented. The most widely used methods of detection involve the monitoring of various
oil properties|7] at intervals ranging from three months to three years. When a prob-
lem is suspected, the sampling interval is adjusted accordingly. In addition to the
physical, electrical and chemical properties of the transformer oil, other quantities
and status indicators (such as temperature or oil level indicators) are sometimes
monitored.

2.2.1 Oil Sample Analysis

Most insulating mineral oils used in transformers are complex mixtures of paraffinic
and aromatic hydrocarbons. These mixtures act as high-voltage insulation and as
a medium for convective cooling of the transformer. In an operating transformer,
analysis of the insulating oil can reveal insights into the health of the transformer.
Various analytic tools can be used to measure the state of the oil and, indirectly,
the state of the solid celiulosic insulation.

Standard D-117 of the American Society for Testing and Materials (ASTM),
Standard Method of Testing and Specifications for Electrical Insulating Oils of Pe-
troleum Origin[7, Appendix A], lists thirty-three oil properties and fifty-five test
methods. Of these, ten tests are suitable for in-service monitoring of transformer
performance. The other measures are useful only during the design phase or during
acceptance testing of the oil, or are superseded by one of the ten central tests.

The ten tests are:[4, p. 262]

¢ Dielectric Breakdown Strength (D-877/D-1816)
o Neutralization Number (D-974)

e Interfacial Tension (D-971)

e Color (D-1524)

e Moisture Content (D-1533)

e Specific Gravity (D-1298)

¢ Visual Examination (D-1524)

o Sediment (D-1698)

¢ Power Factor (D-924)

e Dissolved Gas Analysis (D-3612)
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2.2.1.1 Dielectric Breakdown Strength

The dielectric breakdown voltage of insulating oil at 60 Hz is an important measure
of the oil’s ability to withstand dielectric stress without failure. These tests measure
the voltage at which breakdowr occurs between two electrodes under prescribed test
conditions. They can reveal the presence of contaminants in the oil, such as free
water, dirt, or conducting particles. However, they can not reveal the presence of
dissolved moisture concentrations below 60% of the saturation level in the oil.

2.2.1.2 Neutralization Number

The neutralization number of an oil sample is the number of milligrams of potassium
hydroxide (KOH) that is necessary to neutralize a one gram sample of oil. This test
measures the acidity (due to oil oxidation) of the oil, and is a measure of the level
of deterioration of the oil.

2.2.1.3 Interfacia! Tension

Interfacial tension is the molecular attractive force between dissimilar molecules at
an interface. In this test, the tension at an oil/water interface is measured. Two
methods for measuring this force entail the measurement of the amount of force
necded to pull a platinum wire away from such an interface or the determination of
the largest droplet of water that can be supported by the oil.

This test is a sensitive mechanism for detecting the presence of soluble polar con-
taminants and the products of oxidation. These oil contaminants are hydrophilic;
the attraction across the interface between the oil and the water interferes with the
mutual attraction among the water molecules at the boundary. This interaction
results in a decreas= in the strength of the film at the interface between the two
materials. Thus, this reduction in strength indicates the presence of the contami-
nants.

Interfacial tension has a definite relationship to the neutralization number of
an oil sample. An increase in the neutralization number should be followed by a
decrease in the interfacial tension. This correlation makes it possible to achieve a
reliable measure of these two quantities; if the relationship fails to hold, the mea-
surements are suspect. These two quantities have been related directly to sludging.
The result is a classification system for oil quality, seen in Table 2.2[4, p. 289).

2.2.1.4 Color

The color of transformer oil is measured through comparison with a series of tinted
glass standards, calibrated from zero to eight. An increase in the color number is
an indication that the oil has deteriorated or become contaminated.
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Table 2.2: Transformer Oil Classifications

NN IFT IFT/NN | Color Diagnosis

0.00-0.10 | 30.0-45.0 | 300-1500 | Pale yellow Good oil

0.05-0.10 | 27.1-29.9 | 271-600 | Yellow Proposition A oil
0.11-0.15 | 24.0-27.0 | 160-318 | Bright yellow | Marginal oil

0.16-0.40 | 18.0-23.9 | 45-159 Amber Bad oil

0.41-0.65 | 14.0-17.9 | 22-44 Brown Very bad oil

0.66-1.50 | 9.0-13.9 | 6-21 Dark brown | Extremely bad oil

1.51+ Black Oil in disastrous condition

2.2.1.5 Moisture Content

Moisture content of the oil is measured by the Karl Fischer titration technique.
This method is based on the reduction of iodine by water and sulfur dioxide. An-
other method involves the liberation of moisture from the oil sample through heat,
vacuum, and agitation. The water is then collected in a moisture-absorbing trap
containing P,O5. The increase in weight of the trap is reveals the amount of col-
lected water.

2.2.1.8 Specific Gravity

Specific gravity is the ratio of the mass of a given volume of liquid weighed in vacuum
at 15.6°C (50°F) to an equal volume of pure water, also measured at 15.6°C. If the
specific gravity of an oil sample is greater than unity, then contamination may be
indicated.

2.2.1.7 Visual Examination

The oil may also be visually examined for increased cloudiness, particles of insu-
lation, metal corrosion products or other undesirable suspended materials in the
oil. Visual inspection is sometimes used to screen oil samples in the field. If no
deterioration is evident, then the sample is not sent to a central laboratory for com-
plete quantitative evaluation. Good oil should be clear and sparkling. Cloudiness
indicates moisture, carbon, and/or sludge. If carbon is present, arcing or partial
discharge should be suspected and a dissolved gas analysis should be conducted.
An unusual smell should also be investigated further.

2.2.1.8 Sediment

In this test, the oil sample is centrifuged to separate the oil and the sediment. The
oil is decanted and saved. The sediment is dried, weighed, burned, and weighed
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again. The difference between the two weights is organic material; the material
that remains is inorganic, such as rust.

The decanted portion of the sample contains soluble sludge. The sludge is pre-
cipitated out by diluting the sample with n-pentane, a hydrocarbon. This occurs
because the sludge is not soluble in n-pentane. The amount of sludge which precip-
itates out is an indication of the condition of the oil.

2.2.1.9 Power Factor

Power factor is defined as cos @, where ¢ is the phase angle between the applied
voltage and the resulting current. It is equivalent to the ratio of power dissipation
in watts to the product of voltage and current in volt-amperes. The power factor is
a measure of the dielectric losses in the oil, and thus the amount of heat dissipated.
This test involves applying a 60 Hz voltage to an oil sample in a three-terminal or
guarded-electrode test cell. The power factor is measured using a bridge circuit,
according to the instructions appropriate to the bridge.

The power factor is sensitive to the presence of polar compounds in the oil, but
it is not able to distinguish between different polar compounds. Because of this, the
test is primarily used as a negative test to determine if the oil has not changed. If
this test indicates the presence of polar compounds, other tests become necessary.
The power factor test may detect sludges, but some types of sludges have very
little effect on the power factor. If the power factor at 100°C is more than seven
to ten times the measure at 25°C, then a soluble contaminant other than water is
indicated.

2.2.1.10 Dissolved Gas Analysis

Gas is extracted from the oil sample using vacuum extraction. The volume of oil
is measured at atmospheric pressure. The gas sample is then analyzed using gas
chromatography. High levels of gases which result from the deterioration of the
oil or the paper are a strong indication of incipient failure. The relative levels of

gas production can be used to distinguish between different types of faults (see
Section 2.3).

2.2.1.11 Baseline Oil Properties

The following tests of transformer oil are sometimes used in the detection of failures
in large power transformers:

® Qualitative infrared absorption (D-2144)
* Refractive index and specific optical dispersion (D-1218/D-1807)
e Resistivity (D-1169)
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o Oxidation inhibitor content (D-1473)

¢ Peroxide number (D-1563)

Qualitative Infrared Abserption The infrared absorption spectrum is recorded
from 2.5 to 15 pm (4000 to 667 cm™'.) The spectrum of transformer oil indicates
the general chemical composition of the sample. Because of the complexity of the
mixture of components which form electrical insulating oil, the spectrum is not
sharply defined. Thus, it is difficult to quantitatively evaluate the composition of
the oil based on the infrared absorption. Instead, the spectrum is compared to a
baseline spectrum. This test is suitable for quickly determining whether the sample
has the same composition as previous samples.

Refractive Index and Specific Optical Dispersion The refractive indez of a
substance is the ratio of the velocity of light in air to its velocity in the substance.
The refractive index is an indication of the nature and amount of contaminants held
in solution.

Specific optical dispersion is the difference between the refractive indexes of light
of two different wave lengths, both indices measured at the same temperature. This
difference is divided by the specific gravity measured at this same temperature.

Specific optical dispersion is a quick index as to the amount of unsaturated
compounds present in the transformer oil. Since the dispersion values of paraffinic
and naphthenic compounds are nearly equal and mostly independent of molecular
weight and structural differences, values above 97 are directly related to the amount
of aromatic compounds in the oil.

Resistivity High resistivity indicates a low concentration of free ions and ion-
forming particles. This normally means the oil is free of conductive contaminants.

Oxidation Inhibitor Content During service, levels of natural or added oxida-
tion inhibitors become depleted. Thus, while this test is not an indicator of incipient
transformer failure, it can be used in estimating the remaining service life of the oil
and recognizing the increased threat of oil oxidation.

Peroxide Number The peroxide number indicates the quantity of oxidizing con-
stituents in the oil. It does this by measuring those compounds that oxidize potas-

sium iodide (KI).

2.2.2 Temperature

Traditional transformer temperature monitoring is limited to the measurement of
a single temperature, top oil temperature. From this temperature, the “hot spot”

27



temperature is estimated by adding 15°C.

Normal design criteria for transformers allow for a 65°C average rise of top oil
temperature over ambient temperature. Thus, operated in an ambient temperature
of 30°C at full rated load, the transformer will have a top oil temperature of 95°C
and an estimated hot spot temperature of 110°C.

Since the manufacturers claim that their products can be operated continuously
at 110°C hot spot temperature, many utilities choose to adopt this as their operat-
ing criteria. Emergency loading guides even allow for higher hot spot temperatures,
although only for a short period of time. But, as discussed above, elevated tem-
peratures have a severe negative effect on the longevity of the insulating system.
A proposed ANSI/IEEE Loading Guide says that a fully-loaded, 65°C winding-rise
transformer in a 30°C environment has a normal life expectancy of only 7.5 ye-rs.
Lowering the hot spot temperature by 25°C increases the estimate to more than 40
years[4, p. 587]!

The top oil temperature is monitored by many utilities to ensure that the esti-
mated hot spot temperature does not exceed their adopted guidelines. If the top
oil temperature is below the upper limit, its value is ignored.

2.2.3 Partial Discharges

A Partial discharge, also called corona, is a transient electric discharge which only
partially bridges the insulation gap between two conductors, as opposed to a break-
down, which completely bridges the gap. These discharges are important because
they are indicative of a loss of dielectric strength of the insulation or an increase in
electric stress, such as might occur if two conductors are moved closer together by
through-fault forces. Partial discharges can be detected either electromagnetically,
acoustically, or chemically (i.e., through dissolved gas analysis, see Section 2.3)[8,9].

If the partial discharges persist over a long period, or are particularly energetic,
then the dissolved gas analysis is likely to detect the incipient problem. But be-
cause of the information that partial discharges impart concerning the insulation’s
dielectric strength, it is desirable to get this data as early as possible. Continuous
discharge in the solid insulation may quickly be followed by a compiete failure of
the insulation. For this reason, electromaguctic and acoustic techuiques for the
detection of discharges have received a great deal of attention. With sufficient in-
formation, it may be possible to compute the energy of the discharge, und thus
estimate the ensuing damage(10).

While it is possible to detect excessive partial discharges, it is very difficult to
determine their location, either their electrical location or their physical location.
In fact, one source deemed it unlikely that a system for the avtomatic location of
partial discharges will be developed[11].
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2.2.4 Other Detection Methods
2.2.4.1 Gas Relay

The Buchholz relay was introduced in 1928. This device detects the passage of gas
bubbles between the transformer and the conservator tank. A drawback is that it
can only be installed on conservator-type transformers.

The relay is an oil-tight compartment with two internal elements that are con-
nected to mercury switches. The elements are buoyant, and float in the oil. An
incipient fault may generate small bubbles that then get trapped in the housing of
the relay, displacing the oil. As the oil level falls, the top floating elemunt descends
and, when enough oil is displaced, the circuit is tripped.

A serious fault will generate gas much more violently. This will deflect the
bottow element, and again a circuit is tripped|5, p. 611]. Because of the remoteness
of the relay from the actual point of failure, it is impossible for the device to provide
early warning of a failure. Dissolved gas analysis provides a more direct way of
determining the gas production of a failure.

2.2.4.2 Hydran

All types of failures that involve gassing produce significant levels of hydrogen. For
this reason, there has been a great deal of attention directed to the continuous
monitoring of dissolved hydrogen levels.

Syprotec’s Hydran 201R® sensor is one that gives a continuous indication of the
level of hydrogen dissolved in the oil. Additionally, the Hydran is partially sensitive
to three other gases besides hydrogen (carbon monoxide, ethylene, and acetylene).
The sensor produces a reading that is a composite of the concentrations of the four
gases. The reading reflects 100% of the hydrogen concentration, 15% of the carbon
monoxide, 8% of the ethylene, and 1% of the acetylene.

2.2.4.3 Westinghouse TMS

The Westinghouse Transformer Monitoring System (TMS) is a continuous on-line
monitor of transformer performance[12,13]. TMS continuously monitors the fol-
lowing inputs: top oil teraperature, cabinet temperature, winding current, relative
corona, gas in oil, and status inputs (oil level, oil flow, pump bearings, and cooling
equipment contactors).

The system indicates a problem exists if:

e Top oil temperature exceeds 120°C.

o Hot spot temperature exceeds 150°C. Hot spot temperature is the sum of the
top oil temperature and the estimated temperature rise based on load current.

e Control cabinet temperature exceeds 70°C.
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Table 2.3: TMS Transformer Performance Classification

Top Oil Cale. Change
Temper- Hot Relative H; in of Hy
ature Spot Corona oil in oil 0il 0il Cooling Pump
Action (°C) (°C) (%) (ppm) (ppm/day) Level Flow Bank Bearing
ormal On 4+ Un

Periodic 80 + 106 + 10 + 300 + 26 + On + + Off
Reportin, 200° off 4+ Off
Increase Data
Acquisition by 90 or 106 or 10 or 300 or 25
Host Computer 200°

T00 or 140 or 20 or BO0 or B0
Contact Utility: 400°
more OR
extensive On ¥ O
analysis Un F OUn
required Un

108 or 160 or 30 or 1000 or 7%
Contact Utility: 700°
recomnmend 25 ¥ 800
reduce 600°
load 25 F 50
Contact Utility: 110 or 170 or 50 or 1500 or 100
recommend 1000*
take 30 F 750
transformer 900°*
off-line 30 F 75

(* units with gas space)

Any analog channel is outside of operator-specified bounds.

Oil level drops too low.
¢ Non-contaminating oil pump bearing wear indicator is activated.

e Cooler group contactor is energized, but no oil flow in the coolant circulation
system 1is indicated.

Analog-to-digital converter fails self-test.

Data is copied during a system reset or power restore.

While TMS does not try to perform a diagnosis of an indicated problem, it does
attempt to classify the performance of the transformer into five classes, with five
associated actions: normal operation, increased data acquisition frequency, con-
tact utility—further study required, contact utility—recommend reduced load, and
contact utility—recommend shutdown. Table 2.3 summarizes this classification pro-
cess.

2.3 Diagnosis

The primary tool for power transformer diagnosis is dissolved gas analysis. Dis-
solved gas analysis has proven to be a powerful tool for diagnosing incipient trans-
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former ftailures. The analysis is based on the fact that many important failure
types generate gases in predictable ways. The gases produced in the greatest quan-
tities are: hydrogen (H;), nitrogen (N;), carbon monoxide (CO), carbon dioxide
(CO2), oxygen (O2), methane (CHy), ethane (C,Hg), ethylene (Co1ly), and acety-
lene (C,H,).

Dissolved gas analysis can distinguish between different types of failure because
each type of failure tends to produce the various gases at different rates. Several
different methods have been proposed for interpreting the dissolved gas data:[4, p.

347]
e Detected guses
o Key gas
¢ Key components
e Dornenburg ratios
e Amount of key gases
o Total combustible gases
e Rogers ratios
e IEC ratios
o Combustible concentration limits
¢ 90% norms concentration

Each method takes advantage of the “failure fingerprint” in a slightly different way.
The two most widely used methods are the Key Gas and Rogers Ratios methods.

2.3.1 Rogers Ratios

The Rogers Ratios method is a technique for interpreting the results of a dissolved
gas analysis. The Rogers method is refinement of the Dornenburg Ratios method,
one of the earliest methods of interpreting the dissolved gas concentrations. Two
ratios of dissolved gas concentrations (methane/hydrogen and acetylene/ethylene)
were used in the Dornenburg Ratios method. The Rogers method uses four gas
concentration ratios (methane/hydrogen, ethane/methane, ethylene/ethane, and
acetylene/ethylene). The classification method for these ratios is summarized in
Table 2.4 and Table 2.5[14].

A variation on the Rogers method is presented by DiGiorgio, ef al., in {15].
Figure 2.1 shows their graphical representation of the Rogers method. This variation
is notable not only because it efficiently conveys the encoding and diagnosis table of
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Table 2.4: Rogers Ratio Code

| Ratio - | Range _ | Code |
CH,/H, <01 T 5
>01, <1v| 0
>1.0, <30 1
230 2
C,Hg/CH, [<1.0 0
>1.0 1
C:H,/C,Hg | < 1.0 0
>1.0, <30} 1
>30 D
C:H,/C,Hy | < 0.5 0
> 0.5, <3.0 1
> 3.0 2

Table 2.5: Rogers Fault Diagnosis Table

S | Gt | GF | S [ Diagnosis
0 0 0 0 | Normal deterioration
5 0 0 0 | Partial discharge
1/2] 0 0 0 | Slight overheating (< 150°C)
1/2]1 1 0 0 | Overheating (150 - 200°C)
0 1 0 0 | Overheating (200 - 300°C)
0 0 1 0 | General conductor overheating
1 0 1 0 | Winding circulating currents
1 0 2 0 Core and tank circulating currents, overheated joints
0 0 0 1 | Flashover without pewer follow through
0 0 1/2 | 1/2 | Arc with power follow through
0 0 2 2 | Continuous sparking to floating potential
5 0 0 1/2 | Partial discharge with tracking (note CO)
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Table 2.6: Key Gas Diagnostic Method

l Key Gas | Failure I
Acetylene Arcing in oil
Hydrogen Partial discharge in oil
Ethylene Overheated oil

Carbon Monoxide | Overheated cellulose

Table 2.4 and Table 2.5, but adds lower limits on the gas levels. These lower iimits
were iacking from the Rogers method, allowing the application of the method by
naive users to gas levels that were not significant. This new version also takes the
levels of carbon monoxide and carbon dioxide into consideration, solving a major
shortcoming uf the original kogers Ratios method.

2.3.2 Key Gas

The Key Gas method involves looking for a single significant gas level that is as-
sociated with a particular type of failure. Table 2.6 lists the key gases and the
associated failure[4, pp. 349-350]. This method is qualitative; the user is asked to
decide on the significance of particular distributions without hard guidelines. This
is a both a strength and a weakness: the Key Gas method is more flexible in the
face of multiple failures than the Rogers Ratios method and small changes in con-
centrations do not drastically affect the diagnosis, but it is also more difficult to
define the Key Gas method algorithmically.

2.3.3 Advanced Analysis
2.3.3.1 TOGA

The Transformer Oil Gas Analyst system (TOGA) is not intended to be used to
generate comprehensive diagnoses, but rather to screen out transformers that seem
to be in good condition[16]. In this way, the transformer expert does not need to
review their conditions. TOGA is an expert system that checks for gas concentra-
tions outside of threshold levels and looks at relative concentrations of these gases.
Apparently this is mostly an implementation of one of the standard dissolved gas
analysis codes (Rogers or IEC?). TOGA also analyzes reports of dielectric strength,
power factors at ambient and elevated temperatures, acidity, and interfacial tension
to evaluate the condition of the oil.

?The IEC Ratios method is a variation of the Rogers Ratios method which only makes use of three
of the four ratios employed by the Rogers method. This method was developed for the International
Electrotechnical Commission.
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Fault causes (arcing A, corona C, heating H) are determined
by measuring slope of connecting lines after gas extraction.

Shaded area defines diagnostic for various slopes.

Figure 2.1: Graphical Presentation of Rogers Ratios Method
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A database has been integrated into the system to give the transformer expert
access to trending data. Work is being pursued to allow the expert system access to
the database to enable reasoning about trends and additional factors, such as age
and manufacturer of the transformer[17].

2.3.3.2 Exformer

Exformer is an expert system implementation of the IEC code for dissolved gas
analysis(18]. An interesting aspect of Exformer is the application ~f fuzzy logic to
the problem of dissolved gas analysis. This produces the desirable property that
tiny changes in gas concentrations do not cause drastic changes in diagnosis.

2.4 Shortcomings of Traditional Techniques

The traditional techniques for the detection and diagnosis of transformer failures
described above are widely used, familiar to the electric utilities, and have pre-
vented numerous failures at an enormous cost savings. Unfortunately, they are also
inadequate. A typical annual failure rate for 400-500kV transformers has been es-
timated as 2%(3]. Due to the central role of the power transformer in the electric
power network, the capital costs and opportunity costs of a catastrophic failure
provide a strong economic incentive for improving this failure rate[2]. In this sec-
tion, some particular shortcomings of existing transformer monitoring techniques
are discussed.

The use of oil samples for the on-line analysis of transformer performance allows
the direct measurement of the state of the oil and indirect measurement of the state
of the paper. Because of the harsh internal environment of large power transformers,
more direct information as to the state of the cellulose is difficult and expensive to
obtain. Most utilities perform an oil analysis annually; some progressive utilities do
an analysis more frequently, semi-annually or even quarter-annually.

Compared to the time scales at which failures may occur, this sampling fre-
quency is relatively low. Each analysis, however, represents a sizable investment
of a technician’s time, to sample and perform the analysis, and a transformer en-
gineer’s time, to interpret the results of the analysis. These resources limit the
frequency at which the units can be tested. The frequency is low in that a failure
may progress from undetectability to catastrophe between samples, but it is not so
low that these tests are not a valuable and vital part of the maintenance routine.
There is certainly sufficient evidence to support the claim that these tests can avert
catastrophic failure. However, it must be remembered that much of the damage in-
curred by a transformer is permanent; tardy detection of the problem can only slow
further damage or, in the worst case, allow the graceful shutdown of a transformer
which must be completely rebuilt or discarded. These are worthy achievements
when compared to the consequences of letting a failure proceed undetected, but
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there is great deal of room for improvement. It is, therefore, extremely important
to detect failures as early in their evolution as possible, to prevent the shortening
of the transformer’s life.

Oil samples are not the only vehicle for failure detection in transformers, of
course. Many transformers are equipped with temperature sensors and combustible
gas sensors (such as the Hydran 201R) which can be sampled almost zontinuously—
at least when compared to a three-month sampling interval. These sensors can help
avert catastrophic failure, but they are not =ensitive to incipient failures. This is
not an inherent property of the sensors. but rather a consequence of the way in
which they are us.d: as raw input. to set-point threshold detectors.

Threshold detectors compare each sensor reading to a pre-determined set-point;
when this threshold is violated, a flag is raised. The result may be an operator warn-
ing, or even a trip of the transformer. Multiple thresholds may be implemented to
tailor the response to the severity of the detected fuult. But hard-and-fast thresholds
are not very sensitive to small changes in the behavior of the transformer. Con-
sider temperature monitoring: a temperature is chosen over which the transformer
is considered as running hot. Any temperature below this threshold is considered
normal. This ignores under what load the transformer is operating or what the
ambient temperature is. Thus, if the transformer runs at the same top oil temper-
ature while fully loaded in a hot environment and, later, while lightly loaded in a
cool environment, no discrepancy will be noted, no alarm will be tripped. This is
despite the fact that, in a normally operating transformer, the top oil temperature
is almost entirely driven by the load and the ambient temperature.

The detection of trends is already part of traditional transformer monitoring,
albeit on a very simple level. A gas concentration rise taking place over a number
of years may be ignored, while the same rise occurring in a single year may be a
cause for great concern. In this example, a trend (the rate of gassing) was used to
distinguish between two conditions: normal aging and potential failure. Continuous
monitoring opens the doors on a much larger statistical population from which to
draw trending information. Because of the greater statistical significance available,
smaller changes in the trends can be detected and used to increase the transformer
engineer’s understanding of the internal condition of the unit.

The discussions above may be summarized as three basic shortcomings in tra-
ditional methods of detection and diagnosis:[19,7]

¢ Dependence on infrequent oil samples.
o Reliance on hard thresholds for detection.

o Inadequate support for trend analysis.
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2.5 Summary of Traditional Methods

In this chapter, the major failure processes of oil-filled transformers were presentea.
The primary roles of moisture, oxygen, and heat in the degradation cf the insulating
system were chronicled. The stresses which drive this deterioration and, ultimately,
trigger catastrophic failure were also discussed.

The traditional methods of failure detection were discussed in the next section.
The central role of oil sample analysis for detection was made obvious.

The importance of oil sample analysis was confirmed in the section concerning
diagnosis of transformer failures. Diagnuses arc .t present mainly based on the
results of the dissolved gas analysis.

Three basic shortcomings of this body of techniques were presented: infrequent
sampling, static thresholds, and inadequate trend analysis. A novel approach to
transformer monitoring, addressing these shortcomings and allowing the incorpora-
tion of superior detection, diagnosis, and prognosis capabilities, is presented in the
following chapters.
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Chapter 3

MIT Transformer Monitoring
Approach

In Chapter 1, the prevention of catastrophic failures of large power transformers
was shown to be an important goal. The achievements and shortcomings of existing
methods for transformer performance monitoring were presented in Chapter 2. In
this chapter, a new system for transformer performance monitoring that is more
sensitive to incipient failures is described.

The MIT Transformer Monitoring Project was undertaken with the broad goal
of establishing advanced technologies to significantly improve the reliable monitor-
ing of large in-service power transformers, allowing for the detection of incipient
failure conditions[20]. A major theme of this project was the premise that trend
analysis would facilitate earlier detection of incipient failures. However, it was rec-
ognized that the identification of short- and long-term trends in the condition of
a transformer first required an understanding of what the normal conditions of a
transformer and its signatures are.

In the MIT approach, the present understanding of what is normal is captured
in mathematical models—adaptive models, which can be tuned to the observed
behavior of the transformer. The use of adaptive mathematical models and trend
analysis are the fundamental differences between the MIT approach and previous
attempts at on-line transformer performance monitoring.

The Pilot Transformer Test Facility was established as a research environment
to enable the development of an integrated system of hardware and software. The
result of this development effort is the Pilot Transformer Monitoring System. This
system is described in great detail in Chapter 5. In contrast, the chapter presented
here gives an overview of the concepts that form the basis of this new approach to
transformer monitoring, the structures with which these concepts can be realized,
and the processes by which these structures can result in the detection, diagnosis,
and prognosis of incipient transformer failures. Section 3.1 explains the philosophy
behind the use of adaptive models of normal behavior, the concepts and structures
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Table 3.1: Relationships Between Failure Modes and Observable Quantities

I Fallure Modes and Failure Indicators
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that make an improved monitoring system possible. Section 3.2 describes how
the results of these adaptive models can be used to form the basis of a system
that, through trend analysis, can prevent catastrophic failures much earlier in their
evolution, before serious damage has occurred.

3.1 Philosophy: Concept and Structure

Two issues had to be addressed before an on-line transformer monitoring system
could be designed and implemented. These were:

1. Which quantities should be measured?
2. How should a failure be defined and detected?

The determination of the quantities to be measured started with a detailed literature
review and discussions with utility representatives and transformer manufacturers.
The results of these inquiries led to the development of a set of observable quantities
whose behavior can be affected by one or more typical transformer failure modes.
A summary of the relationships between failure modes, or indicators of failures, and
observable quantities is given in Table 3.1.

Table 3.1 makes it obvious that there is a great advantage to monitoring multiple
signatures of the transformer. Not only does this increase the chance of detecting
an incipient failure but, with proper coordination, it may be possible to distinguish
between various failure modes. This is what led to the establishment of the goal of
developing an integrated monitoring system as differentia‘ed from developing only
a set of independent, new and/or improved sensors. Once the development of an
integrated transformer monitoring system was defined as a goal, the problem of
detecting and diagnosing failures could be addressed.
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Figure 3.1: Monitoring System Fundamental Operation

3.1.1 Observation vs. Expectation

At the core of MIT’s monitoring system is the concept of cont.nuously comparing
the actual behavior of the transformer to the expected behavior for the prevail-
ing operating conditions. Figure 3.1 is a graphical representation of this central
concept. The expected normal behavior of the transformer is embodied in math-
ematical models. These models attempt to account for external factors such as
load and ambient temperature in predicting the output of a particular sensor. Each
mathematical relationship models the behavior of a particular measurement. The
output of the model is called a prediction. In the figure, this is represented by rout-
ing the data inputs through the mathematical models. These are the same inputs
which determine the actual operation of the transformer; therefore, the data inputs
are routed to the transformer, too. The output of the mathematical model is then
compared to the actual behavior of the transformer, generating an error term, or a
residual. If the transformer is behaving normally, then this residual should be small.
If the transformer is failing and the observable quantity is sensitive to the particular
failure mode in effect, then the residual should become significant. Changes in the
observable behavior of the transformer can be used to infer its changing internal
condition.
Normally, computation of the residual is a simple subtraction

residual = measurement — prediction

possibly normalized against the size of the measurement. This formulation has the
advantage that a measurement that is higher than expected results in a positive
residual, while a measurement that is lower than expected results in a negative
residual. A residual which indicates close agreement between the measurement
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and the prediction is nominally a zero residual, though noise and modeling errors
make a residual which is identically zero for any great length of time a practical
impossibility. Thus, a zero residual is simply any residual which is not considered
significant.

3.1.2 Adaptive Models

One problem with the use of mathematical models is that every transformer is
different: large power transformers are individually designed to meet a utility’s
requirements. To handle this difficulty, each model is abstracted to a parameterized
model structure which can be tuned to fit the observed behavior of a particular
transformer by a suitable selection of parameters. The model structure is chosen
to be as widely applicable as possible, and is chosen so that the parameters can be
estimated from the observed data. The estimated parameters then characterize a
particular subsystem, or signature of a given transformer.

The behavior of each transformer is potentially different from other transform-
ers in small, but quantifiable, ways. The parameterized model structures solve this
problem by capturing these small differences as differences in the parameters of
the model.! There is an additional difficulty, however, in that the behavior of an
individual transformer may change over time. This occurs as a natural consequence
of the normal aging processes that are always at work inside the device (see Chap-
ter 2). As a result, an unchanging model could gradually drift into disagreement
with reality even though nothing unexpected had occurred, since aging is not un-
expected. Adaptive models can handle this problem by periodically updating their
parameters to ensure the models continue to fit the observed behavior.

Above, it was noted that parameterized model structures can only be used if
the parameters are identifiable from the observed data. Suitable model structures
for adaptive modeling must have the additional property that some subset of the
parameters must be identifiable from the observed on-line data. That is, some
parameters must be ascertainable while the transformer is energized and in service.
Other parameters can only be estimated or measured while the transformer is out
of service, or they are based on the original design specifications of the transformer;
such parameters are called fized parameters. In the following discussions, the word
“parameters” refers to the non-fixed, or on-line, parameters.

The use of adaptive models immediately begs the question of how one can iden-
tify discrepancies between the actual and expected behavior of the transformer when
the expectations are constantly being updated to agree with the actual behavior.
This question is answered in two ways. First, the parameters are updated infre-

!Some differences, such as whether the transformer is shell-type or core-type, or whether or not it
is a base-load unit, may require distinct model structures. It may be possible to define “meta-model”
structures that can relate the various model structures at a higher conceptual level. Investigations
into these possibilities are beyond the scope of this thesis.
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quently relative to the time scales of beth data acquisition and quickly-developing
failure modes. For a failure which manifests itself quickly, the parameters will usu-
ally be constant during the failure evolution and the anomaly will be evident in
the residuals. (It may also be possible to suppress parameter updates when a pos-
sible failure has been detected, so that the residual response will always directly
correspond to the detected anomalous behavior. See Chapter 4.) Second, and per-
haps more importantly, the history of the changing parameters reflects the changing
behavior of the transformer on a longer time-scale.

Above, two requirements for a suitable model structure were given: a wide ap-
plicability to various transformer designs, and parameters that could be estimated
from the observed behavior. There is a third, as yet unmentioned, requirement—the
mnocel structure must not be oversjyecified, that .s, there must be a single unam-
biguous set of parameters that fits the model structure to the observed data. This
requirement insures that parameters are repeatable and stable during normal op-
eration. If the parameters are stable during normal operation of the transformer,
then the model can not adapt to changing transformer behavior without a percep-
tible shift in the parameter values. If the changing behavior does not result in a
change in the parameter values (as, for instance, in the case where additional zero-
mean noise is introduced to the modeled signal), then the change will be reflected
in the behavior of the residual. One way or another, the changing behavior of the
transformer will be captured by the system, either in the changing behavior of the
parameters, the residual, or both.

3.1.3 The Module

The necessity of being able to adapt to a particular transformer is handled by
estimating the parameters of the model using actual data from the transformer
being monitored. Assuming that a given transformer is normal when new (havirg
passed its initial acceptance tests), the parameters of a model may be estimated
on-line. The error term, or measurement residual, then reflects the deviation of
the transformer from its own normal state in the short term. If the parameters
of a model are periodically re-estimated, long-term tracking of the condition of
that particular signature may be accomplished. These concepts of adaptability and
short- and long-term tracking are embodied in the block diagram of a module given
in Figure 3.2.

A module[19] is implemented primarily in software. A list of definitions pertain-
ing to Figure 3.2 follows.

1. Signals (data) from sensors pass to the Signal Processor where any necessary
data preparation or reduction steps are performed.

2. Processed data then moves to the Qutlier Detector where threshold checks for
bad data are made; bad data is announced to the human operator and the
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Figure 3.2: Module Block Diagram

detection/diagnosis system with a Flag.?

3. Validated data is used as the input to a Model which predicts the values
(of the Signature in question) that are expected during normal operation of
the device being monitored. Additionally, the model may accept predictions
from other modules as inputs and may output predictions for other modules.
These additional inputs and outputs are used for compensation purposes, e.g.,
temperature compensation.

4. Predicted values are compared to measured values in the Measurement Resid-
ual Anomaly Detector. This block looks for levels, rates-of-change, and pat-
terns which are abnormal. If an abnormality is detected, the human operator
and the detection/diagnosis system are alerted with a Flag.

5. Periodically, the parameters of the mathematical equation which makes up
the Model are updated, using measured values, through the operation of the
Parameter Estimator to assure that the Model remains accurate. When the
Parameter Estimator operates, it automatically checks the new parameters
for validity before installing them. (If the parameters are estimated using

? Alternately, both the Signal Processor and the Outlier Detector may be packeged as part of
a “smart” sensor. This would result in a greater interchangeability of different types of sensors,
improving the modularity of the system. However, sensor self-diagnosis has inherent limitations
that guarantee that sensor fuilures will always be an important consideration during transformer
failure diagnosis.
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information-poor data, they will not accurately characterize the Signature.)
Valid parameters are also passed to the Parameter History for use in anomaly
detection.

6. The parameters of the Model are then tracked by the Parameter Residual
Anomaly Detector to discriminate between acceptable changes, such as normal
aging, and anomalies caused by incipient failures. As with the Measurement
Residual Anomaly detector, this block checks for anomalous levels, rates-of-
change, and patterns. When an anomaly is detected, the human operator and
the detection/diagnosis system are alerted.

The horizontal dotted line in Figure 3.2 divides the module according to time scales:
the top half of the module operates on the minutes-to-hours time scale, and the
bottom half operates on the days-to-weeks time scale.

In the intervals between installations of updated parameters (newly estimated
parameters that satisfy the parameter validity criteria), the condition of the sig-
nature and the accuracy of the model are checked via the measurement residuals.
If the measurement residuals are small, the previously estimated parameters still
accurately characterize the signature, and the condition of the signature is normal.
If the measurement residuals exceed established limits (in level, rate-of change, or
pattern), an anomaly is detected even if the measurement residuals return to nor-
mal when a new set of valid parameters are installed. In this case, there has been
a change in the condition of the signature, but the structure of the model still
correctly describes the signature. If the measurement residuals exceed established
limits and newly estimated parameters are systematically failing the validity test,
the condition of the signature has changed so much that the model structure is itself
no longer valid. This is another (probably more serious), form of anomaly.

3.1.4 The Monitoring System

A module exhibits increased sensitivity to incipient failures which affect the con-
dition of a particular signature. This is due to the adaptive model, continuous
real-time operation, and the differential comparison technique. Sensitivity to incip-
ient failures can be increased even further by cross-correlating the detection outputs
of various modules. To do this, it is necessary to combine these modules in a system
which can control and schedule data acquisition, information organization, module
operation, detection, diagnosis, prognosis, communications and interfacing with the
operator.

The block diagram for such a system is given in Figure 3.3. The system is
implemented in a combination of hardware and software, performing the functions
listed above while mediating scheduling and data conflicts. The activities of the
system blocks include:

¢ Acquisition of raw data from Sensors
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Figure 3.3: System Block Diagram

Organization of raw data into a time-correlated format in the Primary Buffer,
thus making the raw data available to the remainder of the system

Processing raw data in Modules to extract information relevant to a deter-
mination of whether or not the transformer being monitored is operating
normally

Placement of relevant information from modules into the Secondary Buffer,
for use by the rest of the system

Performance of Trend Analysis on raw data and relevant information from
modules to detect anomalies in the transformer being monitored, diagnose the
condition of the transformer, and deliver a prognosis on the future operation
of the transformer

Organization and scheduling all of the above, and providing for an operator
interface, through the operation of a Controller.

In summary, the MIT-developed monitoring structure is an integrated system with
the module as its core. Conceptually, each of the functions of the system operate
independently and in parallel, sharing information when required. This functional-
ity permits the overall system to be highly flexible. Since information organization
and scheduling of operations are handled by the system, resulting in a well-defined
interface between modules and the system, modules may be added or removed eas-
ily. Trend analysis integrates the information streams from the individual modules
to provide the knowledge upon which diagnostics can be based(19,21,2].
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3.2 Trend Analysis: Detection, Diagnosis and
Prognosis

Accurate in-service performance monitoring of transformers can realized with the
achievement of three goals:

¢ Detection of anomalous (potentially hazardous) changes in the transformer’s
internal condition

® Diagnosis of the present internal condition of the transformer based on detec-
tion of anomalies

¢ Prognosis of the future condition of the transformer based on the diagnostic
results

In the MIT monitoring system, each of these tasks is supported by the ability
of the system to identify trends in the various residual and parameter streams,
either individually or in relation to each other. However, while trend analysis is a
tool employed during detection, diagnosis, and prognosis, “trend analysis” is, for
historic reasons, a collective term for these three tasks[22,23].

The remainder of this section will explain how the tasks of detection, diagnosis
and prognosis are accomplished in the framework of the MIT Transformer Monitor-
ing System. This will be a general discussion of the issues and difficulties associated
with each task. Chapter 5 will detail how this system might be integrated into a
traditional program of transformer performance monitoring.

3.2.1 Detection

The first task of trend analysis is the detection of anomalous events that may
indicate the presence of an incipient failure. Anomalies are revealed by tracking the
behavior of the various residuals and parameters that are generated by the system.
The types of anomalies that are watched for are threshold violations, abnormal
rates of change, and unusual patterns of behavior.

A threshold violation occurs when a residual or parameter goes beyond the
maximum or minimum limits that have been set for that particular data stream.
Normally, it is assumed that a residual will hover around zero. However, some model
structures lend themselves to the production of residuals with a non-zero mean. It
is not required that the normal residual variation be centered at zero; a positive
residual value and a negative one do not have to be equally likely. On the surface,
it may seem that a residual with a non-zero mean need not be tolerated—the model
could include a constant term to offset this mean. But it must be remembered that
a suitable model structure can not be over-specified. A constant term may improve
the accuracy of the prediction (and decrease the magniiude of the residual) while
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rendering the parameters unstable. And stable parameters are a major requirement
of a proposed model structure.

Stable parameters allow the monitoring of parameter values to determine when
the condition of a signature has changed significantly. As with residuals, thresholds
are set for parameter values and violations of these thresholds are considered inter-
esting events. The limits are set so that the normal variation of parameters due to
noisy or incomplete data will not generate spurious anomalies. Of course, before
the estimated parameters are compared against the limits, statistical tests are run
that can verify whether the data used to generate the parameters is an adequate
representation of the condition of the signature (see Chapter 4).

Parameters will change over time—that is the reason adaptive modeling is nec-
essary. Because of this, parameter thresholds will have to change over time. Expe-
rience suggests that parameters will change very slowly during normal operation,
in relation to their natural variation due to noise. This slow change is punctu-
ated by changes in the parameters due to events both internal and external to the
transformer, events as varied as through-faults and maintenance shutdowns. There-
fore, not much effort as been expended on how to automatically update parameter
thresholds based on established and accepted trends in the parameters. However,
it is expected that, for some signatures and modules, the magnitude of the param-
eter trends will necessitate automatic parameter threshold setting. It may also be
necessary when there is a constant low-grade failure that is too small to be repaired
economically. While not a part of normal operation, and certainly not desired, such
a failure mode may be accepted as stable and non-threatening. Once accepted as a
unecessary evil, the effect of the failure mode on the parameters has to be recognized
and discounted.

This leads directly to another class of detection events: rate-of-change anoma-
lies. Once a particular rate, or range of rates, of change in a parameter has been
established as normal, a change in this rate may indicate a change in the internal
condition of the transformer. Thus, such an event should trigger further diagnosis
that can search for more subtle indications of incipient failure.

Rate-of-change detection is not limited to parameters. Rate thresholds are also
established for residuals. Residuals often exhibit an oscillation around zero, and
so the rate of change also oscillates around zero. Depending on when, during this
oscillation, a failure occurs, the failure may be reflected in the rate change before the
actual residual threshold is violated. Regardless of any improvement in detection
response time, the knowledge of whether a residual gradually drifted out of tolerance
or rapidly diverged may be necessary to arrive at a quick initial diagnosis. Rate-
of-change monitoring may also reveal when parameter updates are having a greai
effect on model behavior; this may act as a verification of direct parameter analysis.

All other anticipated detection events are loosely grouped under the classifica-
tion of pattern detection. It is possible that both parameters and residuals may
exhibit identifiable behavior that can not be verified through either threshold or
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rate-of-change detection. One possibility is that parameters may show repeatable
seasonal variation due to unmodeled factors such as average ambient temperature or
humidity. In effect, the system would be applying the concept of models of normal
behavior at a higher level, though the model would be qualitative, not quantita-
tive. Another detectable pattern that may prove to be extremely important is the
amount of noise present in a measurement or a residual. This could be very helpful
in the detection of sensor failures.

The classification of an event as normal or anomalous is dependent on experience
with the signature being modeled. As yet, it is impossible to set system thresholds
from first principles; the system must be exercised to learn its limits. Automatic
learning of these limits, analogous to the automatic learning of model parameters,
would be a valuable addition to the system’s abilities.

Experience may also lead to the ability to specify dynamic threshold and rate-of-
change limits. In other words, the monitoring system may be able to recognize when
its sensitivity should be increased, and when it should be decreased. One example:
a model may yield very poor predictions immediately following a load change, due
to unmodeled transients, yet give accurate predictions at all other times. It would
be inappropriate to limit the strength of the model to its weakest link, but it is
undesirable to generate spurious anomalies with each load change. The solution
may be to have one threshold for load changes and another at all other times.
Another example is that many signatures become very stable when the transformer
is allowed to enter thermal steady-state. The system should be able to recognize
this situation and adjust its sensitivities accordingly.

The major aim of the detection task is to identify anomalous events and bring
them to the attention of the diagnostic process. However, every effort should be
taken to suppress those events which are due to previously identified conditions
or are numeric artifacts. This makes the job easier for the diagnostic process, the
subject of the next section.

3.2.2 Diagnosis

Diagnosis is the act of identifying a failure from the observable effects it has on the
behavior of the transformer. Diagnosis is necessary because the mere detection of
an anomalous event can not form the basis for effective action. There must be an
assessment of the type and magnitude of the problem, or even if any problem truly
exists. Only with this sort of conclusion can a transformer operator make an in-
formed decision as to whether to shut down the trancformer, schedule maintenance,
or ignore the situation. Without a diagnostic analysis, the detected events would
form a flood of relatively useless information.

The initial impetus for diagnosis comes from the detected anomalies described
in the previous section. However, diagnosis is not limited to these occurrences.
The diagnostic process should have access to some amount of past data, for data
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can take on a new significance when it is reviewed to support or deny a particular
hypothesis. For instance, the moment that a residual threshold was violated may
be far removed in time from the moment that the residual began the trend. But
it may be that the correlation of the start of the trend to other events may yield
critical information that would resolve a diagnostic ambiguity.

3.2.2.1 Data Correlation

There are several ways in which diagnostic analysis of module outputs can pro-
ceed. The simplest method is the auto-correlation of an individual module response.
Auto-correlation merely means that the output of a single module is interpreted in
isolation from the rest of system. A particular residual or parameter is classified
according to its pattern of behavior. The data may evince a step response, exponen-
tial rise or decay, etc. There will be some situations in which such a classification
will serve to indicate an unambiguous diagnosis.

Multiple auto-correlation is the next level of complexity in analysis. When auto-
correlation of an individual module does not reveal an unambiguous diagnosis, sev-
eral modules can be used to generate competing diagnoses. A voting process is then
employed to combine the diagnoses into a single diagnosis or set of possible diag-
noses that enjoy a higher degree of confidence than any individual module miy be
able to generate. This voting process is non-trivial, for a particular module iniay be
unable to confirm or deny an hypothesis simply due to the nature of the relationship
between the failure mode and the modeled signature. Thus, negative support and
neutral support for a candidate hypothesis have to be distinguished. It would be
desirable to allow a full spectrum of support for a hypothesis, from almost certainly
true to almost certainly false. {If the hypotheses were certain, no voting would be
necessary. )

Multiple auto-correlation allows for the interaction of different modules at a
very high level of abstraction. This has a beneficial effect on the modularity and
complexity of the monitoring system. Unfortunately, some information may be lost
if the changing behavior of the various transformer signatures are only considered
in relation to one another at this high level. Cross-correlation of the behavior of
two or more parameters or residuals from different modules may reveal events that
are not readily apparent when analyzing the data streams in isolation. These events
(or lack of events) may support or refute competing diagnoses, and thus improve
the diagnostic resolution of the monitoring system.

Consider the situation where there are two failure modes and two residuals.
Assume both failure modes can be unambiguously detected by the first residual but,
because both failure modes affect the residual in a similar manner, they can not
be unambiguously diagnosed using that residual in isolation. If one failure mode
demands an immediate (and costly) shutdown of the transformer while the other
failure mode can be tolerated, this is an important distinction. Now assume that
the second residual displays an observable event at random times during normal
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operation, but that a similar event will always be correlated in time with the onset
of one failure mode and not the other. No diagnosis (or, rather, only a diagnosis
of healthy operation) could be reached analyzing the second residual in isolation.
Only by cross-correlating the time-series behavior of the two residuals could both
failure modes be detected and diagnosed. An example of such a situation will be
more fully presented in Chapter 5.

3.2.2.2 Interpretation of Parameters

Models can generally be sorted into two classes: black-box models and physically-
based models. Physically-based models are constructed from first principles, possi-
bly using simplifying assumptions. The parameters of such models are well-defined
composites of physical parameters of the transformer (including physical parame-
ters of the sensors). Black-box models, on the other hand, are constructed through
system identification techniques, with little or no consideration given to the physical
principles at work. While the parameters of a black-box model are determined by
the physical parameters of the transformer, there is no clear relationship between
any physical parameter and a particular parameter of the model.

Even for a physically-based model, however, it may be difficult to interpret the
behavior of an individual estimated parameter as a change in a particular physical
parameter or set of parameters. This is because a failure mode need not be cor-
related with a change in any particular physical parameter upon which the model
structure is based, but in fact could take the form of the introduction or intensifica-
tion of an effect that was not previously modeled. Fortunately, it is not necessary
to interpret an estimated parameter in isolation.

There are many iools for interpreting parameters. The tools described in the
previous section (auto-correlation, multiple auto-correlation, and cross-correlation)
do not depend on reasoning from first principles, but can make use of empirical rela-
tionships between the behavior of parameters and the presence of incipient failures.
Experience is the key. Only with a great deal of experience observing the quantities
that the monitoring system generates can come the knowledge to establish these
empirical relationships.

This is not to say that diagnosis can not proceed until this store of experience
has been fully developed. A great deal of experience already exists and can be
taken advantage of. The quantities that are modeled by the monitoring system
were chosen because experts recognized that their behavior can reflect the presence
of incipient failures. For this same reason, experts have themselves been watching
most of these quantities, although not as closely as the monitoring system is able to.
Estimated parameters, taken in the context of the model structure from which they
were generated, give an excellent handle for reasoning about the overall behavior of
the modeled quantity.
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3.2.2.3 Human Intervention

Most of the information that is necessary to reach a diagnosis is continuously avail-
able to the monitoring system. Most, but not all. At times, it will be necessary to
acquire information that is not immediately available. The system must be able to
recognize when such external information is warranted, and must be able to use the
information effectively.

This adds a significant degree of complexity to the task of diagnosis. It has
been assumed that all continuous data is generated at no incremental cost to the
system. That is, any piece of data that would improve the accuracy or precision of
the eventual diagnosis could, and would, be generated. Any information requiring
human intervention, however, can only be requested after assessing the cost of the
procedure and the utility of the possible responses. Such assessments are a normal
part of many diagnostic programs; medical expert systems often have to weigh
the dangers of invasive tests (such as exploratory surgery) versus the value of any
possible information[24].

3.2.2.4 Interaction with Parameter Estimation

In addition to the information embodied in residuals and parameters, there is in-
formation to be gained from the parameter estimation process. It is not always
possible to generate adequate parameters from the data that is available. The ac-
ceptance or rejection of generated parameters is an algorithmic procedure, tuned
to the application at hand. It may be possible to uncover paiterns of acceptance
that can reveal an underlying problem. Also, a distinction must be made between
parameters that are adequate for the generation of predictions and residuals and
those that are adequate for the task of diagnosis. The issue of the interaction be-
tween diagnosis and parameter estimation (and parameter estimation in general) is
discussed more fully in Chapter 4.

3.2.3 Prognosis

The prognosis of large power transformers is not a subject which is very well un-
derstood. However, it is widely accepted that a transformer is created with a
life expectancy that may be conserved or wasted, depending on how the device is
operated|[4].

The rate at which this life expectancy is reduced is closely associated with the
operational temperature of the iransformer, integrated over time (see Chapter 2).
With the continuous thermal monitoring available to the MIT monitoring system,
it may be possible to track this integral and provide a quantitative indication of the
rate at which the transformer is depreciating.

A novel way to perform this forecasting could use the parameters that are already
so useful for detection and diagnosis. If slow trends can be identified at the beginning
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of the transformer’s useful life, these trends can be extrapolated to the end of the
transformer’s life expectancy. The results of the extrapolation could form a set of
thresholds; the rate at which these thresholds are approached could possibly form
the basis for a crude prognosis[25, p. 328]. As more experience is gained as to
the trajectory of the parameters during the normal lifetime of a transformer, these
thresholds could be improved.

The previous discussion concerns the prognosis of an otherwise healthy trans-
former. More valuable, perhaps, is a prognosis for a transformer which has been
diagnosed with a specific failure. For the present, there are no plans to automate
the process of prognosis. It may be sufficient to provide a transformer engineer with
a diagnosis (or a set of weighted diagnoses), the rationale behind the diagnosis, and
access to the raw data upon which the diagnosis was based. Prognosis would pro-
ceed with a more structured, usable set of information. And this is a step in the
right direction.

3.3 Summary

This chapter has provided a general description of the concepts and issues that make
the proposed monitoring system so interesting. The first section presented the phi-
losophy behind the system. Primarily, this is the continuous reconciliation between
the observed and expected behavior of the transformer. This continuous compar-
ison resulted in dynamic thresholds that take into consideration such exogenous
factors as ambient temperature and load history. Dynamic thresholds improve the
sensitivity of detection by, for instance, recognizing the distinction between normal
temperature distributions at half load, full load, and overload. A sensor reading
that is well within the full range of sensor variation may not be reasonable for
the prevailing operating conditions; a transformer performance monitoring system
should be able to identify this discrepancy.

Continuous monitoring of multiple inputs enables another valuable tool for per-
formance review: trend analysis. Expert transformer diagnosticians perform some
crude trend analysis in interpreting the results of dissolved gas analyses. They often
use the results of past analyses to place the current analysis in its proper context—
they identify simple trends. Continuous monitoring generates an enormously larger
statistical population from which to identify subtle trends that could not possibly
be identified via infrequent oil samples. There is also an advantage in that gross
trends can be determined with greater accuracy and confidence. These trends, both
subtle and gross, have the potential of revealing a great deal about the changing
health of the transformer.

Both dynamic thresholds and trend analysis are implemented through the vehicle
of adaptive models of normal behavior. Adaptive models are used to highlight
long- and short-term changes in transformer response; changes evolving over days
or months and changes arising in minutes can be illuminated through the these
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models. In the first section, the concept and structure underlying the monitoring
system were explained. How the information can, in general, be applied to the three
problems of detection of anomalous behavior, diagnosis of incipient failure, and
prognosis of transformer condition was discussed in the second section. Presented
here were only the general concepts which a successful system should implement.
The actual implementation of a monitoring system for large power transformers is
presented in more detail in Chapter 5.
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Chapter 4

Implementation of the MIT
Approach

The basic underpinnings of the MIT approach have been implemented and applied
to the Pilot Transformer Test Facility at MIT’s High Voltage Research Laboratory|[20).
Suitable models have been developed and verified for the test transformer. The Pi-
lot Monitoring System has successfully generated predictions and residuals based
on parameters that are automatically estimated from on-line data. The modules
currently operational are a vibration module|[26,27,28], a thermal module based on
the IEEE loading guide(29,30], a thermal module based on the MIT constrained
flow model{29], and a combustible gas module. A moisture module exists, but a
continuous sensor of moisture content in oil has not been available. However, the
module has been verified with off-line measurements.

This chapter gives a detailed presentation of the implementation of the MIT
approach to transformer monitoring as it is applied to the Pilot Facility. The
first section sketches the system of software that makes use of the data acquisition
capabilities of the Pilot Facility to realize the monitoring system. FEach of the
implemented modules receives special attention; the embedded models that are
used to generate predictions and residuals as well as the relations from which the
estimated parameters are derived (which are sometimes subtly different from the
corresponding models) are presented.

The second section focuses on one portion of the existing monitoring system
prototype: parameter estimation. Two versions of the parameter estimation mech-
anism are presented. In Section 4.2.1, the initial version of parameter estimation,
called the type A implementation, is discussed in detail, with examples from the
modules which use this implementation. Section 4.2.2 discusses a subsequent ver-
sion, the type B implementation, that uses a different approach to gathering data for
the estimation process, and discusses why the first version was inadequate for one
of the modules. Finally, Section 4.2.3 discusses some suggestions for improvements
that may bear investigation.
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Figure 4.1: Pilot Monitoring System Block Diagram

4.1 Pilot Transformer Monitoring System

This section describes the implementation of a Pilot Transformer Monitoring Sys-
tem using the structure and concepts discussed in the previous chapters. The Pilot
Monitoring System developed by MIT is installed in the Pilot Transformer Test Fa-
cility in MIT’s Building N10. It is a combination of computer hardware and software
designed to fulfill the dual functions of data acquisition for model and module de-
velopment and implementation of an on-line transformer monitoring system. The
discussion will first introduce the Pilot Transformer Test Facility, then present a
more detailed system block diagram, and finally will proceed into a description of
the actual hardware and software.

4.1.1 Pilot Monitoring System Structure

An implementation of the monitoring system discussed in Chapter 3 involves more
detail than presented in the structural diagram of Figure 3.3. This added detail
is depicted in the block diagram of Figure 4.1. The blocks in this system diagram
are chosen to represent functional pieces of the Pilot Monitoring System; as such,
some of the blocks represent hardware, some represent software, and some represent
combinations of hardware and software.

Figure 4.1 sees the addition of controllers and sensor drivers to the system block
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diagram of Figure 3.3. This is a more accurate depiction of the interface between
the sensors and the rest of the monitoring system. The scheduler interacts with the
controllers on the time scale of minutes, triggering data acquisition. The controllers,
in turn, govern the operation of the sensor drivers on the time scale of microseconds.
The controllers are dedicated devices with sufficient resources to guarantee precise
and timely data acquisition. The controllers then communicate the results to the
primary buffer under the control of the scheduler.

The interaction between the transformer operator and the monitoring system is
also presented in Figure 4.1. First, the operator can modify the schedule that is
maintained by the scheduler. Judging from the present body of experience, it seems
likely that this would be a very infrequent procedure. Other infrequent operator
procedurss may include sensor adjustments, modification of fixed parameters, etc.
(not represented in Figure 4.1). The operator will interact much more frequently
with the trend analysis processes (detection, diagnosis, and prognosis). This inter-
action will take the form of operator review of generated information and operator
notification of incipient and catastrophic failures.

The last detail added to Figure 4.1 is the peripherals block. Peripherals are
devices that, while not being essential to the operation of the monitoring system,
make it more reliable, more convenient, and generally more useful. These include
archive storage devices (floppy disks and nine-track tapes), plotting devices, and
external communications.

4.1.2 Master Machine Software

The specifications for the monitoring system call for a coordinating element to syn-
chronize the activities of the individual modules. The operation of this coordinating
element is required to be independent of the particular actions a module performs
and, in fact, independent of the number of modules being coordinated. The spec-
ification also calls for the establishment of a mechanism for passing data between
various modules, while limiting the constraints on the number and types of mod-
ules running. This mechanism will perform the duties of the primary and secondary
buffers in the system block diagram.

Together these two requirements necessitate a standardized interface for the
modules. It was decided that a module would only be required to perform a given
set of actions at a predefined interval. The module would then respond to some
trigger from the coordinating element by performing this set of actions, secure in
the assumption that the module is synchronized with the system.

For flexibility, each module may also have its own initialization and/or termi-
nation code. The initialization code is triggered simply by starting the module. If
the initialization fails, the normal trigger is taken as an initialization trigger until it
succeeds. There is a separate termination trigger that causes termination code to
be executed. The termination code will be executed after the normal set of module
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actions until it succeeds, at which time the module exits.
Inter-module coramunication of data is handled through the file system of the
host computer. A limited buffer is provided for efficient retrieval of recent data.

4.1.3 Dispatch Software

The coordinating element consists of a single process that coordinates an arbitrary
number of individually compiled programs. The resulting process is alternately
referred to as DISPATCH, the scheduler or the synchronization process.

The programs which are coordinated by the synchronization process are referred
to as modules. These modules are implemented specifically to fit into this scheme.
(The structure of a module is discussed in Section 3.1.3.) Each module is a sepa-
rately compiled program. Because of this, the set of presently executing modules
can be modified with ease, and the addition of new modules has little or no impact
on existing modules. The set of modules which is to be run is established through
the use of an input file, also referred to as the jobs file. The modules run continu-
ously in the background and are triggered to execute various portions of their code
by the synchronization process. DISPATCH can determine the execution status of
each module and, if a module is not ready to be triggered at the appropriate time,
a count of missed intervals would be incremented. When the module is ready to be
triggered, it may perform some processing based on this value. In this way, each
module is kept synchronized with the entire system.

4.1.4 Module Software

From a software point of view, a module consists of four parts: an initialization
routine, a normal iteration routine, a synchronization error recovery routine and a
termination routine. Though a module is a separately-executable program, it must
be run by a synchronization program to operate correctly. A set of module utilities
have been provided to interface the module with the dispatch process.

MIT chose to develop modules for the following signatures:

o Thermal (IEEE Loading Guide Model)
Thermal (Constrained Flow Model)

Winding Vibration (Black-Box Model)

Dissolved Gas In Oil (Thermal Based Model)

Dissolved Moisture In Qil (Thermal Based Model)

Partial Discharges (Electrically Based Model)
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Unfortunately, not enough progress was made on the development of an electrically-
based sensing-scheme for partial discharge detection to warrant development of a
module; therefore, partial discharges will not receive further consideration in this
chapter.

4.1.4.1 Module and System Summary

The dispatch process and the module interface have proven to be a flexible mecha-
nism for implementing the various modules. The dispatch process is independent of
the functions of the modules under its control. As such, bringing a new or updated
module on line is simply a matter of editing an input file to reflect the new set of
modules (and their schedules) and re-invoking the dispatch process. Communica-
tion between the dispatch process and an individual module follows the same lines
regardless of the particular module being driven, modified only by the schedule
provided in the input file.

Using the module interface reduces the problem of implementing a new module
to implementing just those routines that distinguish one module from another. In
effect, one just implements the mathematical model at the heart of the module. All
problems of scheduling and communication have been abstracted away.

Each individual module is designed to capture the function of some subsystem of
the transformer. THIE3MOD and THMOD handle the thermal system, VIBMOD deals
with the windings, and GASMOD and WTHMOD handle the oil and insulation systems.
In describing the function of a transformer subsystem, each module embodies a
mathematical model of how that system works. The mathematical model may be
intended to describe a physical model, such as THMODs constrained flow model, or
may describe an observed functional relationship, such as in the moisture module
(WTHMOD). In either case, the mathematical model contains parameters that adapt
to observed conditions, to tune the module to the actual behavior of the transformer.
The design of the module system is intended to simplify the process of inserting
a particular model into the system and allow for the maintenance of the adaptive
parameters.

4.1.4.2 Thie3mod

One purpose of this module is to detect changes in the thermal system of the trans-
former, particularly excess heating. A second purpose is to predict unmeasurable
temperatures to be used in compensating the models in other modules (e.g., the
dissolved gas module). A third, as-yet-unrealized purpose is to enhance loadability
by running the model faster than real time to allow the operator to foresee the
consequences of operational decisions (e.g., overloading during peak periods).

This module is based on the IEEE/ANSI Loading Guide Models for prediction
of top oil temperature and hot spot temperature using ambient temperature and
load current as inputs[30]. The standard models have been modified to allow the
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top oil model to adapt to the transformer on-line[29]; the hot spot model is not
adaptive, relying on parameters measured during initial heat runs.
The model is given in Equation (4.1)!.

Tropoit[1] k=1
01 X (nop).l[k - 1] - Tambient[k - 1])+

02 X I[ow[k]le‘{"

Tambicnt [k] if k >1

Tropoitlk] = (4.1)

The measured ambient temperature (Tamsient) and load current (Liow) are used to
predict the top oil temperature (Tiopoit) in this dynamic model. In the Pilot Fa-
cility, data acquisition and temperature prediction occur at two minute intervals.
Embedded in the parameter 8; of Equation (4.1) is a time constant that accounts
for this sampling interval; DISPATCH ensures that this sampling rate is maintained.

The reader will note that the model is recursive: the predicted temperature,
Tiopoit[k], is based on the previous prediction, Tiopoit[k — 1]. Because of this, the
cquation contains an initialization clause that (optimistically) sets the first predic-
tion identically equal to the first measured value. The transients introduced by this
simplistic initialization are quickly damped out in accordance with the thermal time
constant of the transformer.

Every two minutes, as each prediction of the top oil temperature is generated, it
is compared to the corresponding measured value. The top oil temperature residual
is computed by subtracting off the prediction from the measured value:

Tiopoitlk] = Tiopoitl k] — Teopoit[K] (4.2)

Note that the residual’ becomes more positive if the measured value rises with
respect to ithe expected value, and more negative if the measurement falls below
expectations. Thus, Ttopo,-; [k] will be positive if the top oil is “too hot”, and negative
if the oil is “too cold”. -

The residual is compared to level and rate-of-change thresholds. That is, if
the residual is too high (or low) or it has changed too fast, an incipient failure
has possibly been detected. Once detection has occurred, the responsibility for
determining if a failure has, in fact, developed and for categorizing the failure falls
to the diagnostic process. It should be stressed that the thresholds mentioned above
are residual thresholds, not measurement thresholds. Residual thresholds grant the
monitoring system a dynamic sensitivity that measurement thresholds can not.
However, for completeness, measurement thresholds are supported by the system.

Figure 4.2 shows how the various thresholds may be set. This file is continually
interpreted by the monitoring system; the operator of the pilot facility adjusts

'In [29], temperatures and temperature rises are indicated by T and 6. In this document, 8 is
reserved to indicate parameters and all thermal quantities are indicated by T.
3The notation Z indicates a residual based on the measured and predicted values of .
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Entrios are of the form
WAME: RAEGE_A ; RANGE._B ; ... (MAX_CHAEGE)
A range is of the form

HINIMUN, MAXINUM
or
MAX_ABSOLUTE_VALUE

The maximum change is either en abaolute changs, reprosentod
by just a number, or a percentage change, roprouontod by a
number followed by %’

Modification History:

6-19-89 rgtoil: 20.0 -> 20.0; (2.0)
brgtoil: 20.0 -> 50.0

gtoil: 16.0, 135.0
gembient: 10.0, 60.0
ilow: 0.0, 260.0
rgtoil: 20.0; (2.0)
brgtoil: 60.0

Figure 4.2: thie3mod.chk

the thresholds by modifying the file with a text editor. In the file, everything
up to the first ‘$’ is ignored by the system. The operator can make note of any
useful information at the top of the file. Shown in Figure 4.2 is a reminder of the
format of threshold entries and a modification history of the included thresholds.
In a commercial monitoring system, a user-friendly interface would insure that only
well-formed entries would be accepted and would automatically generate an audit
trail of threshold modifications. The mechanism shown is entirely adequate in a
research environment.

Each threshold entry begins with a string that indicates to which quantity the
thresholds are to be applied. In Figure 4.2, “gtoil” is one such string. The monitor-
ing system uses this string as an index to search this file. The string “gtoil” denotes
the top oil temperature (generic top oil), “gambient” is the ambient temperature
(generic ambient), and “ilow” is the load current (low-voltage-side current). Thus,
the associated thresholds are measurement thresholds: the top oil temperature can
range from 15.0 to 135.0°C without generating any detection events, ambient can
range from 10.0 to 60.0°C, and the load can range from 0.0 to 250.0 amps.

The string “rgtoil” indicates the top oil temperature residual. The single value
of 20.0 is the threshold for the absolute value of the residual; the residual may
vary from —20.0 to 20.0°C. The value in parentheses, 2.0, sets the threshold for the
change in the residual from one iteration to the next. If the residual changes by
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more than 2°C in either direction in a single step, a flag will be raised. Eventuslly,
a flag will act as a trigger to the diagnostic process, but at present the event is only
logged in a file that can be reviewed later by researchers.

The string “brgtoil” refers to what is known as a baseline residual. A baseline
model is one for which the parameters are not automatically updated as for the
adaptive models. This is used as a research tool to highlight the effects of changing
parameters, and would not be included in a commercial system.

An operating power transformer is subject to large temperature gradients. Since
many processes that occur inside a transformer are dependent on the temperature
of their local environments, it is necessary to model unattainable measurements
based on available measurements. Use of a suitable thermal model can allow other
models to be thermally compensated, increasing their accuracy and, therefore, their
usefulness. The ANSI/IEEE loading guide contains a model of the internal winding
temperature, a temperature that plays a key role in the processes of the winding.
This “hot spot” temperature model is based on the measured top oil temperature
and the load current. It is a static model that is used to predict the internal
winding temperature for each sampling interval. This predicted temperature is
used for thermal compensation of the vibration module (VIBMOD), the combustible
gas module (GASMOD), and the moisture module (WTHMOD). The model is given
in Equation (4.3): R

Twtine[k] = Cy % Ilou:["?]l'6 + Tiopoit[k] (4.3)
The parameter C, is fixed: it is based on values given in the loading guide.
The top oil temperature predictor parameters are estimated daily using load

current, ambient temperature and top oil temperature measurements, from Equa-
tion (4.4):

Tltapml[k] - Tambient[k] = 01 X (nopml[k - 1] - Tambient[k - 1]) + (44)
02 X oK)

Equation (4.4) shows that the predicted top oil temperature rise over ambient is
based on the previous prediction of rise and the present load. As discussed in
Chapter 4, 6, and 6, in Equation (4.4) are estimated using a two-day-wide window
of data. The (over-specified) set of equations is then solved using the principle of
least squares.

In Figure 4.3, there are two sets of thresholds. One set is concerned with the
parameter estimation validity measures described in Chapter 4, the other with the
parameters themselves. The strings “vkl1” and “vk2” label the validity measure
thresholds for 6, and 6, respectively. If either of these thresholds are violated, both
parameters are rejected to be conservative. If the set of parameters is accepted,
each parameter is compared to its thresholds. A flag is raised if any threshold is
violated (for the Pilot Facility, an entry is made in the system log).

The validity measure thresholds and the parameter thresholds are determined
empirically. Originally, the validity measure thresholds were set at a very high
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vki: 1.20-7
vk2: 2.6e-7

k1: 0.9950, 0.9963
k2: 4.30-5, 5.2¢-5

Figure 4.3: thie3prm.chk

level in order to accept nearly all candidate parameters. The thresholds were then
lowered to screen out parameters that yielded inaccurate predictors. These param-
eters were, in general, those that were estimated from information-poor data. The
thresholds that were settled on accept parameters that, with few exceptions, are
stable, generate accurate predictions, and are estimated from information-rich data.
Once a reasonable number of sets of appropriate parameters had been accepted, the
parameter thresholds were set to bracket the ranges of these parameters.

4.1.4.3 Thmod

This module shares all of the goals of THIE3MOD: detection of change in the thermal
system of the transformer, the prediction of unmeasurable temperatures to be used
to compensate the models in other modules, and to enhance loadability. However,
this module uses more accurate models than the IEEE module; physically-based
equations have been developed to predict temperatures in and near regions of con-
strained oil flow, such as cooling ducts in windings, and at locations in the winding
bulk[29]. More dynamics are included than in the IEEE models. Three ducts have
been instrumented in the test transformer: one specifically constructed for the pur-
poses of experimentation called the artificial duct, and two normal ducts in the high
voltage section of the winding, arbitrarily designated the thermocouple-side duct
and the accelerometer-side duct. The disadvantage of this module is that it requires
oil temperature measurements to be made in regions near the winding, although
not actually inside the winding. The models which predict oil temperatures are
adaptive, the models which predict winding surface and internal temperatures are
partially adaptive.

For THMOD, the measured duci bottom (inlet) oil temperature (Tsotduct) and
load current are used to predict duct top (outlet) oil temperature (Tiopguct). Like
the embedded model of THIE3MOD, this is 2 dynamic model which is is triggered
every two minutes. The model is given in Equation (4.5).

Ttopduct[1] ifk=1
a X Tbotdtict[k]‘*"

ﬂ X (T‘topduct[k - l] + Tbotduct[k - 1])+

¥ X Tiow|k)? ifk>1

Ttopduct[k] = (45)
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wboil: 16.0, 135.0

wtoil: 16.0, 136.0
wtaccoil: 16.0, 136.0
wbaccoil: 16.0, 135.0
wtthoil: 16.0, 135.0
wbthoal: 16.0, 135.0

ilow: 0.0, 260.0

rutoil: 6.0; 10.0; (2.0)
brwtoil: -16.0, 16.00
rutaccoil: 8.0; 12.0; (2.0)
brwtaccoil: -15.0, 156.00
rwtthoil: 8.0; 12.0; (2.0)
brutthoil: -17.0, 17.00

Figure 4.4: thmod.chk

The parameters a, 3, and v are adaptive.

Since there are three instrumented ducts, there are three individual sets of pa-
rameters used to generate three separate predictions. In each case, the inputs Tyoiquc:
and Tiopguc: refer to the inlet and outlet temperatures of the specific duct. In al-
most all respects, the three models are completely distinct and can be thought of
as three separate modules. The exception is that all of the parameters are accepted
or rejected as a set during parameter estimation.

The duct top oil temperature residual is computed each interval. There are, of
course, three residuals—one for each prediction.

Tiopauct[k] = Teopauct[¥] — Tiopduct [k] (4.6)

Figure 4.4 gives the measurement and residual threshold for THMOD. The string
“whboil” and “wtoil” label the inlet and outlet oil temperature, respectively, for the
artificial duct. The embedded strings “th” and “acc” denote the thermocouple-side
duct and the accelerometer-side duct. As with THIE3MOD, a baseline residual is
computed for each adaptive model in THMOD.

Also like THIE3MOD, THMOD predicts the internal winding temperature at each
interval. The constrained flow model of the “hot spot” temperature is more compli-
cated than the model based on the ANSI/IEEE loading guide, and more accurate.
Actually, THMOD’s winding interior temperature model is a group of inter-related
models, presented in Equations (4.7)-(4.12). The measured duct top and bottom
oil temperatures are used to predict the oil temperature at a location within the
duct (Equation (4.7)). The height within the duct is clhosen to be level with the
spot where experience says the winding gets the hottest. This is a static model with
a fixed parameter (C) indicating the desired height.

Twmtoil[k] = Cz X frtox:nim:t[k] + (1 - Cz) X Tbotduct[k] (4'7)
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This predicted duct internal oil temperature (Twmto,-;) and the load current are
used to predict the winding surface temperature adjacent to the location in the duct
for which the oil temperature was predicted. This is a dynamic model with fixed
parameters.

The predicted winding surface temperature (T,.s) and load current are used to
predict the internal winding temperature. This dynamic model is partially adaptive;
the parameters estimated for the artificial duct’s top duct oil temperature predictor
(a, B, and ) are used to improve the internal winding temperature predictor’s
response.

The internal winding temperature prediction of this module could potentially
be used in any of the other modules that need to be compensated for the winding
temperature. However, at this time THIE3MOD’s prediction is used. This is because
the measurements that THMOD uses as inputs require sensors that are generally
considered intrusive by utilities. THIE3MOD has the advantage that the sensors
it needs are, for many transformers, either already present or readily retrofitted.
Experimentation and experience are necessary before it can be seen whether the
improved prediction accuracy of the constrained flow model is worth the cost of the
more intrusive sensors.

Tours (k] = Ca X Trunglk = 1] + C4 X (o [K]? + Cs X Fromeoit[¥]) (4.8)
T piuctlk] = @ X Thorauar k] +

B X (Ttopauct[k — 1] + Thorauet[k — 1]) + (4.9)
v X CS X (Tcurf [k] - Twmtoil[k])
Twrf[k] = Qg x Tmrf[k - 1] + (1 - CO) X (Ttopduct[k] - n'opducc[k]) (4-10)
Tourslk] = Trurslk] + Cr X Tourg[K] (4.11)
Tu:;tine[k] = Csx Tt:)tint[k — 1]+ Co x Twrf[k] + Cro X Do [k]? (4.12)

The parameters for the constrained flow thermal module are estimated daily.
The equation from which the parameters are estimated is given in Equation (4.13).
Duct top oil temperature predictor parameters are estimated using load current and
measured duct top oil temperatures (every 24 hours).

(Ttopduct [k] + Thotauet[k]) — (Ttopduct [k — 1] + Thotauce[k — 1]) =
01 X (T'topduct[k] - Tbotduc!(k]) + (413)
02 X Ilow[klz

The reader will note that the parameters that are estimated do not map directly
to the parameters that are used in the predictor (Equation (4.5)). The form of the
equation given above is a direct interpretation of the physical basis of the model:
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¥z1: 8.4e-5
vzZ2: 9.0e-9
vzthi: 6.0e-b
vzth2: 2.6e-8
vzaccl: 8.7e-b
vzacc2: 3.8e-8

zi: -0.1, -0.07

z2: T7.65e-6, 1.2¢-6
zthi: -0.032, -0.023
zth2: 1.240-5, 1.56e-5
zaccl: -0.032, -0.023
zacc2: 1.10-65, 1.5e-5

Figure 4.5: thprm.chk

the change in the average temperature of the duct is linearly related to the duct
temperature rise and the winding losses (I;,,,°). Isolating the predicted quantity
(Ttopduct|k]) on one side of the equation yields:

a éé 01 4‘ 1
T8 -1
A 1

B = 1-6
a _b

T F 17,

Figure 4.5 displays the validity measure thresholds and parameter thresholds for
both parameters of each of the three ducts’ model.

4.1.4.4 Gasmod

The purpose of this module is to detect anomalous changes in the dissolved gas
content of the oil. The model is partially black-box, partially physically-based, and
is intended for use with the Syprotec H-201R Hydran Dissolved Gas Monitor. The
Hydran is sensitive to hydrogen, carbon monoxide, acetylene, and ethylene. The
module actually runs two models, both predicting the dissolved gas reading of the
Hydran. One model uses the measured top oil temperature as its input, the other
model uses the predicted internal winding temperature as its input. The models
are static and adaptive.

The measured top oil temperature and predicted internal winding temperature
are used to make two separate predictions of the Hydran dissolved gas reading.
The models are static. In the Pilot Facility the predictions are generated every ten
minutes. The embedded model is:

hydran(k] = & + B X Tepoitlk] + 7 % Tiopoi[k]? (4.14)
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gas: 0.0, 500.0; 0.0, 1000.0; 0.0, 2000.0
gtoil: 15.0, 135.0

pwtint: 16.0, 136.0

rgasgtoil: 18.0; 50.0; 100.0; (9.0)
rgaspwtint: 18.0; 60.0; 100.0; (9.0)
brgasgtoil: 100.0

brgaspwtint: 100.0

Figure 4.6: gasmod.chk

The structure is the same for the predicted internal winding temperature; Tiopoi is

~

replaced by T\ine-

A residual is computed for each prediction (i.e., every ten minutes). A separate
residual is maintained for both models. Figure 4.6 shows the measurement and
residual thresholds that are used for the Pilot Facility. Note that the residual
thresholds have three levels of reporting; one threshold is crossed at 18 ppm,
the next at +50 ppm, and the most serious threshold at +100 ppm. At present,
the Pilot Facility merely notes which threshold has been violated. Eventually, a
different action could be specified for each. For instance, at the lowest threshold
the violation could merely be logged, while the second threshold could sound an
alarm, and the third could trip the transformer. The residual checking also specifies
a rate-of-change threshold: +9 ppm/interval.

hydran[k] = hydran[k] — hydran|k] (4.15)

Model parameters are estimated daily using the measured top oil temperatures
and Hydran readings for one model and the predicted internal winding temperature
and Hydran readings for the other. The form of the equation used for the estimation
is given in Equation (4.16). While the embedded model, Equation (4.14), would
seem to indicate that any third-order polynomial would be appropriate, the estima-
tion equation limits the model to a parabola with a minimum at 0°K. The model
is lirnited in this way in order to generate stable parameters; a general third-order
polynomial is greatly over-specified.

v hydran(k] = 0, + 62 X Tiopoi| k] (4.16)

o é 012
B 2 2x6,x6,
v 2 6,
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s

vxgtoil: 0.02
vygtoil: 2.6e~56
xgtoil: -16, -6
ygtoil: 0.04, 0.07

vputint: 0.02
vyputint: 2.5e-6
xputint: -12, -6
ypwtint: 0.04, 0.08

Figure 4.7: gasprm.chk

Again, the estimation validity measure thresholds and the parameter thresholds
can be set by the operator. Figure 4.7 shows the thresholds currently in force for
the Pilot Facility.

4.1.4.5 Vibmod

The purpose of this module is to detect potentially dangerous changes in the physical
structure of the winding (e.g., loose wedges) caused by events such as through-faults.

This module uses as its inputs: a core vibration time series signal acquired from
an accelerometer mounted on the core, a winding current time series signal taken
from a current transformer on the low voltage side which is squared in software,
the RMS terminal voltage, and the predicted winding internal temperature. The
module performs a Fourier transform on the time series core vibration and load
current squared data. The complex Fourier coefficients for the first three harmonics
of these signals are input to a black-box model. Based on these inputs the model
predicts the Fourier coefficients of the first three harmonics of the winding vibration.
The model contains no dynamics but is completely adaptive. The predicted winding
vibration Fourier coefficients are compared to measured winding vibration Fourier
coefficients (calculated using a time series signal acquired from an accelerometer
mounted on the winding) and a measurement residual is computed|28,27,31,26].
Predictions and residuals are generated every ten minutes.

ﬁw.‘mﬁng[k] = (a + ﬂ X Twﬁnt[k]) X u[k] + 9 X vco,,[k] (417)

In Equation (4.17), the winding vibration harmonics (Ywinding ), the core vibration
harmonics (veor), and the load current harmonics (u) are complex vectors with
length 3, and «, 3, and v are complex 3 x 3 matrices. The Pilot Facility monitoring
system is only concerned with the first three harmonics (fundamental, second, and
third).

The prediction of the winding vibration harmonics, then, can actually be broken
down into three models, predicting each of the first three harmonics. When ana-
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lyzing the residual response of this module, the prediction is, in fact, dealt with as
three separate predictions and three separate residuals. Equation (4.18) indicates
how each of the residuals is computed (the index i can be one of fundamental,
second, or third). Because the winding vibration can go through huge changes in
magnitude in response to changing operating conditions, it was felt that behavior
of the residual could be more readily understood if it were normalized against the
magnitude of the measured harmonic.

|| Pwinding,i (k]| — ||Bwinding,i[k] I
[[Vwinding,: (k]|

Because of difficulties with triggering the data acquisition, the phase information
inherent in the vibration measurements was suspect. The effect of this can be seen
in the equation above: the winding vibration residuals only track the errors in the
amplitude of the prediction. The prediction could be 1806° out of phase without
affecting the size of the residual. To take this phase information into consideration,
an alternate equation for computing the residual could be:

1.’winding.i [k] = (4.18)

- |Vwinding,ilk] — Dwinding.i[k]|l
Dwinding,i k] = : : 4.19
g T (4.19)

The equations used to generate parameters for VIBMOD are giver below. The
vibration module is different from the modules discussed above in that the paramie-
ters are not estimated from a window of data spanning two days. Data is collected
for an arbiirary amount of time until a set of data that is sufficiently rich in infor-
mation is achieved. At that time, the parameters are estimated and automatically
accepted. This discussion is presented in great detail in Chapter 4.

Vwinding, fundamental [K] = 01 X Ugundamentat[k] +
02 X Useconalk] +
03 X weniralk] +
0, x thint[k] X U fundamentat| k] +
Os X Tiosine (k] X %yeconalk] + (4.20)
O X Tutine[k] X wsniralk] +
07 X Veore, fundamentat (K] +
03 X Veore,seconalk] +
05 X Veore thira|k]

Vwinding,second [k] = 010 X U fundamental [k] +
011 X uaccmtd[k] +
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612 X ueniralk] +

013 X thint[k] X U fundamentat| k] +

014 X Topting (k] X wsecond|k] + (4.21)
015 X Twu'nt[k] X Uehird[K] +

016 X Veore,fundamentat (K] +

017 X Veore second k] +

018 X Veore,thira(K]

Vwinding,third[k] = 019 X Ufundamentat[k] +
020 X Usecond[k] +
02 % uthird[k] +
922 % thint[k] X U fundamental [k] +
623 X Tutine[k] X Usecconalk] + (4.22)
024 % ng;ne[k] X uchird[k] +
025 X vcorc,fundamcntal[k] +
026 X Veore,second (k] +
027 X Veore,third|k]

( 6, 6, 6;]
010 611 06,
| 619 020 9 |

[ 0, 05 6 ]
613 614 635
022 023 634 |

[ 0: 65 6 ]
bie 617 68
| 025 026 027

It was found that a single set of parameters did not yield accurate predictions
throughout the operating space of the transformer. In particular, it was found that
the parameters that worked well for full load and above did not work as well for a
lightly loaded transformer. The operating space of transformer was partitioned so
that one set of parameters was concerned with loads below 175 amps, and one set
of parameters dealt with loads of 175 amps and above. This is not two separate
models, though the parameters are estimated and stored separately. Instead it is one
model that utilizes two sets of parameters depending on the load on the transforiner.
Perhaps this is an unnecessary complication and two completely separate models
should be maintained. Only further experience can answer this question.

e
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4.1.4.6 Wthmed

The purpose of this module is to detect anomalous changes in the dissclved moisture
content of the oil. Such changes (usually an increase) indicate deterioration of the
paper insulation due excessive heating and/or acid attack.

This module computes an approximation of oil moisture content based on a
temperature reading. Like the combustible gas module, twe models are maintained,
one based on tcp oil temperature, and one based on the predicted internal winding
temperature(32]. Presently, no residual is calculated on-line, due to the lack of
availability of a solid state moisture sensor. Moisture readings are therefore made
by hand, as is the measurement residual calculation. The models are static and
adaptive, though without on-line moisture measurements parameters can not be
estimated automatically.

In the Pilot Facility, the moisture predictions are generated every ten minutes.
The model is shown in Equation (4.23). (For the other model, replace Tiopoit With

thint . )

— T () Oil[ll
moisturelk] = a x e “ (4.23)
The predicted dissolved moisture-in-oil concentrations are compared weekly by
hand with actual moisture measurements (measured using the Karl-Fischer method)
to compute dissolved moisture measurement residuals.
motisture[k] = moisture[k] — moisture[k] (4.24)

Model parameters are estimated infrequently using the following equation:

In(moisturelk]) = 6; + 0; X Tiopou|k] (4.25)
a & ¢
a 1
T

4.2 Parameter Estimation

There are three distinct activities involved with parameter estimation: data selec-
tion, candidate parameter generation, and candidate parameter validation. Data
selection consists of choosing the set of data from which to generate parameters.
Candidate parameter generation entails algorithmically processing the chosen data
to produce parameters. The final step, candidate parameter validation, is needed
to verify that the parameters generated for the given model structure do indeed ac-
curately describe the selected data. Two mechanisms for implementing parameter
estimation are presented below.
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4.2.1 Type A Implementation

The type A implementation has proven to be quite useful for estimating parameters
in situations in which the input space of the module is normally adequately sampled
in a moderate time interval. When this is true, a set of data rich in information
can be provided to the estimation process. Accurate parameters can then be pro-
duced without critically stressing the storage and computing resources of the Pilot
Transformer Monitoring System.

4.2.1.1 Data Selection

The initial approach to data selection was to take all of the most recent data over
a span that could be determined by the system administrator. In other words, if
the administrator were to decide to use a single day’s worth of data to perform
parameter estimation, then the most recent 24 hours of data would be used. All
data from this period would be used, and each piece of data in this period would
receive equal weight.

At present, the cperator-specified time span can be set to multiples of one day.
For the Pilot Facility, one day’s worth of data is 720 sets of thermal and electrical
data (taken every two minutes) and 144 sets of vibration and dissolved gas data
(taken every ten minutes). The schedule of parameter estimation currently be-
ing followed for the IEEE thermal module (THIE3MOD), t .e MIT constrained flow
thermal module (THMOD), and the combustible gas modu.e (GASMOD) is that the
estimation is done daily, using two days’ worth of data. This schedule was arrived
at as a compromise between accuracy and responsiveness. All three modules are
dependent on thermal variation for accurate parameter estimation. The load profile
that is considered “normal” for the Pilot Facility generates a reasonably wide range
of thermal variation each day (Figure 4.8 shows three days of this discrete daily
load cycling).

While one day of load cycling data is sufficient to generate good parameters, it
was deemed unwise to sample for parameter estimation at the same rate at which
the load was being cycled. Thus, two days was chosen as an appropriate interval:
responsive to change, yet not subject to sampling problems. Daily estimation was
selected for two reasons. First, the overlapping data sets prevent the oversight of
trends that may occur at the edge of an interval. Second, the schedule accommo-
dates itself to a daily routine of human review of parameters, during the initial
development stage.

The reader will note that the choice of schedule is, to some extent, arbitrary.
The only requirements are that sufficiently varied data be collected to identify the
parameters (i.e., that an adequate portion of the operating space has been visited
so that the resulting parameters are representative of the device over the expected
operating range), that old data (corresponding to old parameters) not be used so
much that changes in parameters are masked, and that parameter estimation be
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Deta from 12/12/89 for 3 day(s)

Figure 4.8: Discrete Daily Load Cycle

performed often enough that parameter trends can be detected before failures be-
come serious. The schedule described above meets these requirements for the Pilot
Facility. Two days’ worth of data usually contains enough information to generate
useful parameters. Only the most recent da‘a is used. And, lacking contradictory
experience, it is believed that many of the incipient failures that are of concern can
be seen to evolve on the time scale of days. Future experience or a different load
profile may favor the choice of a new schedule of parameter estimation.

The reader should also note that the choice of estimation schedule is intrinsi-
cally related to the model being implemented. Different models (even of the saine
signature) may require different types or amounts of information in order to identify
the parameters. An example may be two models, one with dynamics, one without.
It is easy to see that without sufficient dynamic information the transient response
can not be estimated, while the same data may be sufficient for the estimation of
the steady-state response.

4.2.1.2 Candidate Parameter Generation

To generate parameters, the selected data is passed as input to a multivariate least-
squares algorithm[33]. As an example, consider the embedded model of the IEEE
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thermal module (THIE3MOD), original presented in Equation (4.5):

Teopoir[1] if k=1
- 01 % (Tropoit[k — 1 Tombient|k — 1
Tpalh] = O Tl 3~ Tominl = 1)+
Tumbicnt [k] ifk>1

(4.26)

where f}opo,; is the predicted mixed top oil temperature, Tiopoit 18 the mixed top oil
temperature, Tympicne is the ambient temperature, Ij,,, is the load current, and 6,

and 0, are estimaied parameters. The equation used to estimate 8, and 0,, however,
is:

T'toposl[k] ambtent[k] = 01 X (T‘topml[k - 1] amb:cnt[k - 1]) +
0y X Liow k] (4.27)

The reader will notice that Equation (4.27) consists of a linear combination of

terms which are functions of measured values equated to a term which is also a
function of measured values. The general form of this equation is:

ylk] = 6141[k] + 0205(k] + - - - + 0,0;[k] (4.28)

ylk] is called an observation, each ¢;[k] is called a regressor, and each 6; is an

unknown parameter. y and each ¢; must consist of measurable quantities.
For Equation (4.27):3

Ylk] £ Tiopoitlk] — Tampient[]

¢1 [k] 9': 2—'tv.»pml[k - 1] ambtent[k - 1]

balk] 2 Loulk]"®
Equation (4.28) can be written even more simply as:

ylk] = ¢7[k]6 (4.29)
where:
$TIk] S [ dulk] galk] -+ 5[] ]
8 2 (6,6, -6,

The manipulations necessary to transform Equation (4.26) into Equation (4.27)
are stra.lghtforward Tambient|k] is subtracted from both sides, and Tiopou is used
in place of T,o,,ml The first operation arises from the fact that the temperature

3The notation a is used tc mean “is defined as”
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differential between the ambient temperature and the mixed top oil temperature
is the actual quantity being modeled. Equation (4.26) is simply a form of the
relationship that is suitable for residual generation, because it predicts a measurable
quantity (Tiopoit)—parameters can only be predicted for equations based solely on
measurable quantities. In addition, Tjoui is an appropriate quantity to predict
because it is familiar; this temperature is one that has traditionally been monitored
to govern the operation of the transformer. The substitution of the measured value
Tiopoit for the corresponding predicted value ’j‘top,,,-l is the mechanism by which the
model is made to conform to the actual behavior of the transformer being monitored.

The parameters are then estimated by finding the least-squares solution (#; and
6) to the matrix equation:

q-ltopol'l[2] - Tambient [2]
Tiopoit(3] — Tambient(3]

I'topoil [k] - Tambient [k]

Tropoit[1] — Tambient[1] fi0[2]'°
Teopoit[2) _:Tambient[2] Izow[:3]1.e ) [ z: ] (430)
Trapoitlk = 1] = Tampientlk — 1] L[k}
In general form, the equation is:
Y[k] = ®[k]6 (4.31)
where:
Y[k] 2 [ylm]ylm+1] - ylk) )T
o[k = [ ¢7lm] ¢Tfm +1] --- ¢T(k] |

and m is the number of states in the underlying model. For example, a model with
no dynamics would have m = 1, while the thermal model given in Equation (4.27)
would have m = 2 (the two states & and k — 1). Y is called the observation vector,
® is called the regressor matriz, and 8 is called the parameter vector.

Candidate parameters are generated by solving Equation (4.31) for 6, given
Y and ®. Since the system of equations represented by Equation (4.31) is over-
specified, @ is estimated through the application of the principle of least squares;
that is, 6 is chosen to minimize the criterion (Y[k] - ®[k]6)7T(Y[k] — ®[k]6). Ap-
pendix B goes into detail on how this estimation is accomplished. For a particular
model, there may be more than one possible equation to use for estimation, and
there are certainly other estimation methods (e.g., maximum likelihood[34]). But
in general, an appropriate estimation equation is suggested by the model structure
itself, and least-squares has proven to be an accurate, computationally tractable
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algorithm(33,35,36] in this case. Least-squares is appropriate for zero-mean vucor-
related white noise and is suitable for the model structures that have been chosen;
however, it would be inappropriate for some model structures. For a type A imple-
mentation, k in Equation (4.30) and the interval of estimation are determined by
the system operator. k is the number of samples taken in the specified time span
and the most recent time span is used.

4.2.1.3 Candidate Parameter Validation

After candidate parameters have been generated, the procedure must check whether
the parameters accurately fit the input data (whether the underlying model struc-
ture has changed) and whether the data has enough variation to enable good pa-
rameters to be estimated. The latter check must be done to prevent the system from
estimating the parameters with too little data. Otherwise, the situation would be
analogous to estimating a line from a single point; while a line can be chosen that
fits that one point perfectly, the resulting line is completely useless for modeling the
output at any other point. Thus, the generated parameters could model the input
data perfectly and yet be completely meaningless.

A single measure that would reflect both accuracy of parameters and variation
of input was desired. The measure chosen for the type A implementation is as
follows:

E = Y- &6
. ETE ) T\ -1 .

As in Equation (4.31), ® is the regressor matrix, and Y is the observation vector.
0 is the vector of candidate parameters (& indicates a prediction or estimation of a
quantity z). E is then the vector of differences between the actual and predicted
values of the observation vector, using the candidate parameters; it is called the
error vector. k+1—m is the number of samples used to estimate the parameters (k is
the number of samples taken and m is the number of states of the model in question,
thus the first m —1 samples out of k cannot be used while the model initializes); that
is, k+1—m is the length of E, Y or ®. Thus the term ETE/(k + 1 — m) reduces to
the average squared error, a value which was minimized by the estimation process.
This term, then, is a scalar that reflects how accurately the candidate parameters
model the data given.

Diag() is merely a function which returns the main diagonal of a matrix as
a vector. The matrix passed to this function, (#T®)~?, is called the covariance
matrix. The elements on the main diagonal of this matrix are the variances of
the corresponding element of the parameter vector (i.e., (#7®);! is the variance
of 6;). These variances have the property that they tend to increase greatly when
there is only a small amount of variation in the input, and they stay small when
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there is wide variation. So, the error term discussed above measures how well the
candidate parameters fit the past data, while the variances measure the likelihood
that the parameters will be appropriate for a random set of future data. When
multiplied together, these terms form composite values that tend to blow up when
the parameters are inaccurate or the input is information-poor. Therefore, a simple
threshold for each of these elements may be set to determine acceptable values[33].

In practice, it was found that each element of valid could not be interpreted in
isolation from the corresponding element of 6. Reviewing the definition of valid, it
becomes apparent why. If a standard deviation (the square root of the variance)
is much larger than the corresponding parameter, regardless of the absolute size of
the standard deviation, then this represents a great deal of uncertainty as to the
most significant digits of the parameter. For this reason, a slightly different validity
criterion was introduced:

valid; = valid;/6; (4.33)

That is, each element of the validity vector was scaled against the corresponding
candidate parameter. This essentially boils down to using the relative variance,
rather than the absolute variance. Perhaps this was ill-considered, as the variance
is not linearly related to the magnitude of the parameter. Another possible validity

measure is:
valid; = \/valid; /6; (4.34)

making use of the relative standard deviation. However, Equation (4.33) has proven
sufficient to the task of screening out inappropriate parameters.

Determination of effective thresholds proceeded by trial and error. Thresholds
were initially set at very high levels to accept all parameters. These thresholds
were then lowered to screen out inaccurate parameters or parameters based on
information-poor data.

4.2.2 Type B Implementation

The type A implementation of parameter estimation was installed in the Pilot Facil-
ity and exercised fully. Apart from some small difficulties in determining appropri-
ate parameter validation thresholds, the system required no operator intervention
for effective operation. Parameter estimators using this scheme were established
for THIE3MOD, THMOD, and GASMOD (called, respectively, THIE3PRM, THPRM, and
GASPRM). Unfortunately, this scheme could not work for the vibration module,
VIBMOD.

A type A implementation is only applicable to a particular parameter estima-
tion task when the memory capacity of the monitoring system can maintain an
information-rich set of data (under a normal load profile) without selective data
storage, beyond a first-in-first-out data buffer. The type B implementation was
developed to address the problem of insufficient memory capacity, spurred on by
the requirements of the vibration module.

76



4.2.2.1 Need for Extensions

The basic difficulty with estimating vibration parameters for the Pilot Facility was
lack of resources— there was not enough memory available to store the amount of
data necessary to estimate parameters. This was because the operating point of the
transformer, with respect to the inputs to the vibration module, varied so slowly.
Data must be taken from a significant percentage of the operating envelope or the
generated parameters will unduly reflect the operating point of the transformer at
the time of estimation.

Increasing the amount of memory available to store vibration data was not the
solution. For one reason, the amount of data in question would make the task of
parameter candidate generation computationally unmanageable. But more impor-
tantly, there can be no guarantee that, for any given time interval, enough of the
operating envelope will be explored during such an interval to estimate parameters
that are valid for the entire operating envelope. The solution, it was decided, was
to select input to the estimation process more intelligently, picking and retaining
data until a more complete picture could be gathered.

4.2.2.2 Data Selection (Bins)

Intelligent data selection was implemented by subdividing the operating envelope
into discrete regions. Each region was then assigned a bin, a structure for retaining
the most recent data from the corresponding region. When the system determines
that enough of the operating envelope is represented, the data is used to generate
parameters.

Axes In order to subdivide the operating envelope, one must first identify its
dimensions, or azes. In general, the dimensions of the envelope are the inputs to
the module. In practice, it is desirable to choose quantities that are not closely
correlated. For example, consider the vibration module. The embedded model of
the module is:

Vy = cu + aTy,u + av, (4.35)

where u is a complex vector of load current harmonics, T, is the transformer winding
internal temperature (corresponding to the winding hot-spot temperature), v, is a
complex vector of core vibration harmonics, é,, is a prediction of the complex vector
of winding vibration harmonics, and ¢, a, and @ are matrices of complex parameters.

A brief examination would suggest that the operating envelope of the trans-
former is best described (for this module) by having a dimension for each of the
current harmonics, for each of the core vibration harmonics, and for the hot-spot
temperature. With more insight, it becomes clear that the load current harmonics
are heavily dependent on the magnitude of the load current, and the core vibration
harmonics are mainly determined by the load voltage. Therefore, the operating en-
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velope can be described adequately with respect to the vibration module in terms
of load current, load voltage and hot-spot temperature.

Using these quantities has many advantages. One advantage is that a smaller
number of dimensions is more manageable. Another is that the three quantities
chosen— load current, load voltage, and hot-spot temperature— are more nearly
orthogonal than the individual harmonics. They are not completely orthogonal
since the hot-spot temperature is determined in part by the load current and load
voltage, but the hot-spot temperature does have an orthogonal component: ambient
temperature. Also, while a high temperature generally corresponds to a high load
current, the load current can change much more rapidly than the hot-spot temper-
ature. This means that some portions of the operating envelope will be explored
during the transient response to a load change. Perhaps this is not appropriate,
since the vibration model is a static one; future experience will reveal if data gath-
ered during large transients should be screened out from the parameter estimation
process.

Perhaps the most important advantage to the dimensions chosen is that the
quantities are ones with which transformer experts are very familiar. The load
ratings and the maximum hot-spot temperature can be read directly off the trans-
former’s nameplate. This means that the normal ranges for these quantities can be
immediately determined; the transformer does not have to be run through a lengthy
learning period in order to delineate the edges of the operating envelope.

A good choice of axes for describing the operating envelope, then, should be a
small number of familiar, orthogonal quantities that correlate well with inputs to
the module’s embedded model. It is no accident that the chosen quantities fulfill
these specifications. Load current, load voltage, and hot-spot temperature have
long been sampled or predicted because of the understanding that these values play
an important role in determining the operation of the transformer. The modeling
effort, in further quantifying their effects, merely reflects this understanding.

Bins Having chosen the appropriate axes, the next step was to sub-divide the op-
erating space with respect to these axes. This was done simply by setting maximum
and minimum values for each axis, as well as the number of intervals the resulting
range would be divided into. In this manner, the operating space was divided into
regions of equal “volume”. Due to the one-to-one correspondence between these
regions and the structures used to hold the most recent data in each region, both
are referred to as bins.

Each bin has a number of slots, each of which can hold a distinct set of time-
correlated data. When data is to be stored into a bin, an empty slot is selected.
If no empty slot is available, the slot containing the oldest data in that bin is
used instead. Thus, only the most recent data is retained. Multiple slots are used
to decrease the influence of noisy data, and provide more data to the candidate
generator for greater statistical validity.
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4.2.2.3 Candidate Generation Triggering Criterion

Selecting data intelligently raises the question of when there is enough data available
to perform parameter estimation. One approach would be to continue triggering
parameter estimation using a schedule similar to the one discussed above, in Sec-
tion 4.2.1.1. A measure of the validity of the resulting parameters would again be
used to determine if they should be installed.

Upon consideration, however, it was realized that the degree to which the various
bins are filled is a measure of how well the data describes the operation of the
transformer throughout the operating space. That is, the more bins or slots that
are filled, the greater the information content of the data. It was therefore decided
that the number of filled slots would be used directly as the measure of information
content on which to trigger parameter estimation.

A consequence of this decision is that it is not necessary to perform the compu-
tations described in the section on parameter validation, Section 4.2.1.3. At least,
it is not necessary to compute the term that measures the information content of
the input. As for the term related to the average size of the squared error, it was
decided that, without referring to the magnitude of the signals being modeled, this
quantity had little relevance. This is because the size of the vibration signal can
change by multiple orders of magnitude depending on what portion of the operat-
ing space is being sampled. Thus, the measure of the estimation error can not be
directly compared from one estimation to the next, since there is no guarantee that
a particular portion of the operating space will be sampled for every estimation.
Presently, the residual is normalized against the size of the measured signal for
measurement residual analysis. Perhaps a similar measure would be appropriate
for determining the suitability of generated parameters.

Thus, the parameters for the vibration module are not currently subject to vali-
dation before being installed. The fact that parameters are estimated at all indicates
that an information-rich set of data was available as input; essentially, the candidate
parameters are pre-approved. Experience has shown that the resulting parameters
are reasonably accurate and consistent. One issue to be addressed is that a change
in the physical structure of the transformer may invalidate the model structure,
rendering it impossible to estimate valid parameters regardless of the information
content of the input data. But such a change should be detectable through analysis
of the measurement residual, which should be at least as informative as a measure
of the error in the estimation.

4.2.2.4 Partitioning the Operating Space

After operating the vibration module for a while, it was determined that a single set
of parameters did not seem to adequately describe the vibration behavior over the
entire operating space. The accuracy of 4,, decreased markedly near the rated load
of the transformer and above. It was decided to divide the operating space of the
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transformer into two subspaces and independently track the parameters associated
with each.

In effect, this achieves the replacement of a single vibration model with two
models. The two models have the same structure (though this would not necessar-
ily have to be true) but are applied to distinct regions of the operating space. The
parameters of the models are tracked separately. In tracking the vibration residual,
however, no distinction is made concerning which model gave rise to a particular
residual value. For this reason, the two models are embedded in a single module,
which chooses between the two as appropriate. If a distinction should prove impor-
tant to the diagnostic process, then the two models may need to be embedded in
separate modules. For example, it may be desirable to set different residual anomaly
detection thresholds for the two models.

4.2.2.5 Data Retention

As a final note on this implementation, the entire bin structure is emptied when
parameters are estimated successfully. This increases the amount of time required
between parameter estimations, but it is a simple way of guaranteeing that any
estimated parameters represent current conditions, i.e., that old data will not persist
through many estimation iterations.

4.2.3 Suggested Improvements

The two types of implementation of parameter estimation work reasonably well. The
type A implementation is appropriate when there are no constraints on the storage
capacity and computational speed of the monitoring sysiem in relation to the size
and time scale of the estimation problem. That is, it is appropriate when there is a
relatively small, well-defined period of time during which sufficient information to
perform parameter estimation is usually generated. The type B implementation is
needed when this does not hold true, when there is insufficient storage capacity or
number-crunching power. In a commercial implementation, the need to keep costs
at a minimum (and perhaps the need to support only a single parameter estimation
mechanism) may make a bin implementation appropriate for every module.

Both of the implementations discussed above have been installed in the MIT
Transformer Monitoring Project Pilot Facility. Several months of experience op-
erating and reviewing the performance of the parameter estimators has revealed
some areas where they might be improved with further development. What follows
is a discussion of some suggested improvements that may prove worthwhile. These
suggestions generally fall into four categories:

data screening — the suppression of data that may adversely affect the estima-
tion process.
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expiration of data — the retention and expiration of old data, particularly from
infrequently traversed portions of the operating space.

consistent estimation — the suppression of transitions in the estimated param-
eters that are merely artifacts of the data acquisition process.

interaction with the diagnostic process — the use of diagnostic information
for control of the estimation process and the use of information generated by
the estimation process for diagnosis.

It should be stressed that the implementations discussed above work adequately
for the Pilot Facility (in the absence of failure conditions). The following suggestions
are made in anticipation of possible difficulties that may arise in the course of
applying the system to full-scale large power transformers and to transformers that
are experiencing incipient failures. Only experience will reveal the most promising
avenues of investigation.

4.2.3.1 Data Screening

In a nutshell, parameter estimation should not attempt to adapt a model to fit
data it was never intended to predict. Examples of such data are measurements
from faulty sensors, measurements outside the normal operating envelope of the
transformer, or measurements made during large transients for a model that is not
structured to handle such transients.

The type A implementation does not perform any data screening. All data
collected during the specified time period is used. The type B implementation
does screen data that falls cutside of a specified operating space. As discussed
above, to increase the accuracy of the vibration module, the operating space of the
transformer was divided into two sub-regions. Each region has its own bin structure
for data selection, and a separate set of parameters is maintained for each. Each
sub-region is screening out data from the other sub-region as well as data outside
the operating space of the transformer. This results in parameters that are more
accurate for both regions.

The vibration module also screens data that is deemed bad. But, since bad
data detection is presently a simple comparison of measurements against acceptable
ranges of values, this amounts to screening data outside the operating space. No
effort is made at this time to screen out data during large thermal transients, despite
the fact that the embedded model of the vibration module assumes steady-state
thermal conditions.

4.2.3.2 Expiration of Data

Another potentially rich avenue of investigation is to determine the best way of
using old data to improve the performance of the parameter estimator. A naive
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approach (embodied in the type A implementation) is that no old data should be
used, since one goal of estimation is to achieve the most up-to-date value possible.
This ignores the fact that the parameters generated should also be as accurate, as
statistically valid as possible. The estimated parameters should be “accurate” in
the sense that they should remain constant when the physical parameters do so,
and change as the physical parameters change (to enable the use of the estimated
parameters to track the changing internal condition of the transformer.) There is a
trade-off, then, between this definition of accuracy and the definition in which the
parameters result in minimal average squared residuals.

This trade-off is thoroughly exercised because of an additional assumption: that
there is a single set of parameters for each module that are valid over the entire
operating space of the transformer. This assumption is enforced in part during the
modeling effort. A model is only accepted if a single set of parameters proves to
be adequate. In practice, however, parameters estimated from data taken from one
portion of the operating space may not be in strict agreement with those tuned to
another portion. Taken to an extreme, this may require that the operating space
be partitioned into distinct subspaces with individual sets of parameters. VIBMOD
is an example of such a situation (see Section 4.2.2.4.)

If the parameters should happen to be tuned first t> one operating region and
then another, the estimated parameters may appear to undergo a significant tran-
sition while, in fact, the physical parameters of the transformer remain constant. A
goal of the estimation process, then, is to achieve parameters that are representative
of the behavior of the transformer over the expected operating range. This implies
that the parameters must be based on data taken throughout the expected range.
The type B implementation, of course, was developed as a solution to this problem.

However, the type B implementation makes no guarantees about how long it
will take to sufficiently fill the bin structure to enable parameter generation. By
the time the bins are full, some of the stored information may be quite old, and
perhaps inappropriate. A common method of dealing with old data is to use it, but
to forget or discount the data over time. An ezponential forgetting factor can be
used to exponentially decrease the weight assigned to a set of data as the set ages.
Thus, with a (constant) exponential forgetting factor A (0 < A < 1), the weight
given a set of data n intervals old would be A" (see Appendix B.) A can be chosen
to tailor the estimation process to the physical time constants of the transformer.

Chosing A is not trivial; data must not be forgotten faster than the transformer’s
operating spaceis traversed, and yet not remembered so long that reasonable rates of
change in parameters can not be tracked in real time. It may not even be desirable
to forget data from all portions of the operating space at the same rate. Some
portions of the space may be visited very infrequently. Data from such regions may
have to be retained for a longer time period, i.e., forgotten at a slower rate. This
would allow successive iterations of parameter estimation to trigger at an acceptable
frequency and yet allow each iteration to see a consistent coverage of the operating
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space.

Such an action is only necessary if the information gathered from the remote
region increases the amount of diagnostic information embodied in the parameters,
or if accurate predictions in that region are critical. A prediction may be critical
because of a large a priori probability of failure while the transformer is operating
in the region in question. This may be the case, for example, when the transformer
is very hot or overloaded.

If the remote information is not important to the estimation process, it may be
preferable to screen the data from that region even when it is available. This may
impair the accuracy of the model in that region. But it is not true that the estimated
model has to be equally valid over the entire operating range of the transformer. If
the diagnostic process can recognize when a large residual is not significant (based
on knowledge of the estimation process or experience with the model), this should
not have a noticeable effect on the diagnostic accuracy of the monitoring system.

Is it better to have old data from remote regions of the operating space than
none? How old is “old”? These are questions that can only be answered through
experience, the experience of operating a system such as the one described in Chap-
ter 3 for many hours on inany transformers.

4.2.3.3 Consistent Estimation

There is a great deal of information generated as input to the estimation process.
It would be advantageous to use as much of this data as possible to decrease the
susceptibility of the estimation process to noise in the data. Unfortunately, this
data can not be used in its entirety without recognition of how evenly the operation
space is represented. A consistent view of the modeled data is important to the
diagnostic information content of the resulting parameters. Parameters should not
be arbitrarily tuned to a small range of operating conditions.

The type A implementation uses all the data from the specified period with
uniform weighting of all data points. Thus, the resulting parameters are heavily
influenced by the prevailing conditions during that period. As the prevailing con-
ditions (e.g., ambient temperature) change, artificial transitions are introduced in
the parameters. This decreases the monitoring system’s sensitivity to changes in
the physical parameters that the estimations represent.

The type B implementation deals with this issue by having a limited number of
slots available in each bin, and forcing a significant number of bins to be filled before
estimation is triggered. Therefore, there is a maximum level of influence any one
region can have on the estiination of parameters. But this has the unfortunatc effect
of discarding information that could be used to improve the monitoring system’s
performance. An improvement on this implementation may be to use all the data
collected, yet ensure that no bin unduly influences the estimation.

The total weight given to a bin is the sum of the weights given to the data points
found in that bin. That is, for a bin b; the weight of that bin at time k, wy, [k], is
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defined as: .
wy; k] 2 Y wli] : ¢li] € b,
i=1

where w(i] is the weight given the data taken at interval i. (“@[i] € b;” indicates
that the operating point of the transformer at time 7 lies the operating subregion
defined by b;.) Assuming the use of a constant exponential forgetting factor A, this
would be: .
wy, (k] £ 3004 gli] € b;

i=1
If no forgetting factor is used (i.e., uniform unity weighting), the total weight of a
bin is simply the number of data points stored in that bin.

In order to ensure that no small set of bins dominate the estimation process, one
must prevent any w;, from becoming too large. The bin implementation described
above enforces a strict upper bound on w;,;: the number of slots available in each
bin. Since there is no forgetting factor, the weight of a bin is just the number of
filled slots in that bin.

It is possible to use all the data collected and yet ensure that any wy, will saturate
at a given limit. This can be done by normalizing the weights of individual data
samples (in bins with a total weight exceeding the limit) to result in a total bin
weight that is below the limit. This procedure can be performed independent of any
other weighting scheme, such as the exponential forgetting described above. Each
individual sample will still contribute the same relative weight in characterizing
the model in that one bin. But each bin will be limited in its contribution to the
complete model.

Each sample weight, w(i], would be rescaled by wmazb;/Wb;- Wmazp; Would not
have to be constant for all bins b;, in recognition of the difference in importance of
various operation regions. Perhaps wmaz; need not be a constant for 2n individual
bin as well, but a function of the current (unnormalized) weight of the . .. This
function could approach a saturation value exponentially. This would allow more
frequently visited bins a marginally greater weight in the estimation process. This,
in turn, would allow parameters to be optimized somewhat to changing prevailing
conditions while still suppressing day-to-day parameter transitions. The saturation
value for an individual bin could be computed based on a long-term frequency count
of bin visits.

If there were a problem with storage space for the amount of data generated
during the arbitrary length data acquisition interval, the recursive least squares
algorithm could be adapted to the purpose. To perform the weighted least squares
calculation, two matrices can be used: ®T[k]W[k]®[k] and &7 (k)W [k]V [k] (W[k] is

a diagonal matrix of w(1]..w[k]). The following relationships are true:

k
e (k|Wkl@(k] = 3 glilwlilé” ] (4.36)

1=1
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K
STRWIRIY(E] = 3 glilulilyli (4.37)
~
These matrices can be defined recursively:

TW o[k
STWY [k]

STW o[k — 1] + ¢[k]w[k! AT (k]
STWY [k — 1] + ¢[k]w[k]y(k]

e

But the following relationships are also true (assuming each valid ¢[i] falls into
some bin b;):

(k)W (k]®[k] = [tlw[t](ﬁr[t] $li] € b; (4.38)

o
-~

i l\/]a- il Mx—

T [k|Wk]Y[k] = ¢[t]w[lly[1] ¢li) € b; (4.39)

o
.

Thus, a pair of matrices can be defined for each bin as follows:

SWan (k] 2 {4>TW¢a,lk—1]+¢[k1w[kl¢"lkl if ¢lk] € b;

TW,, [k — 1] otherwise
T a [ ®TWY,, [k — 1] + glklw(kly(k] if $[k] € b;
T WY, k] = { STWY, [k — 1] otherwise
with the intention that:
STWEk] 2 Y wnans, [k]/1ws,[k] x STW &, [k]
b
STWY (k] = 3 wnaws,[k]/ws,[k] x @TWY, [K]
bJ

4.2.3.4 Interaction with the Diagnostic Process

Possibly the most fruitful avenue of reseurch into parameter estimation will be along
the lines of developing a method of interaction between the parameter estimator
and the diagnostic process. This would be two-way communication; the parameter
estimator generates information which is useful for diagnosis, and the status of the
diagnostic process may affect the estimation.

Obviously, the estimated parameters themselves are the key pieces of informa-
tion that the diagnostic process will need from the estimator. Not as obvious,
however, is that other information about the estimation process may be important
as well. One example is the history of failed estimation attempts; a failure to es-
timate accurate parameters may distinguish one type of failure from another. The
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information content of the input data is another quantity which may be of interest.
It is possible that anomalies in the information content, given that the load profile
of the transformer is stable, may be used as evidence of sensor malfunction, for
example.

In the other direction, the diagnostic process may be able to provide input to the
estimation process. For example, if an internal change in the transformer is detected
and diagnosed as non-threatening, it may be necessary, as a normal operation, to
change the validity thresholds used to accept parameters. This could represent the
recognition that a larger excursion from zero in a measurement residual must then
be acceptable. This is because the average squared error is a contributing factor in
determining the validity thresholds. Another example is that the diagnostic process
may deduce that a serious change in parameters has occurred. If this were the case,
it would be necessary to forget all old data in order to accurately estimate the new
parameters.

4.3 Summary

In this chapter, the Pilot Transformer Monitoring System was described. The first
section reviewed the structure that was used to implement the new approach to
transformer monitoring and outlined the software that was developed. Each of the
modules which are currently operating were fully discussed.

In the second section, two fully impleinented parameter estimation schemes were
presented. The type A implementation was found to be acceptable for models whose
input space was sufficiently explored in a moderate time interval. For such models,
the storage and computing resources of the monitoring system were not strenuously
taxed.

One module, however, did not fit this template. The type B implementation
was developed to allow the estimation of accurate, diagnostically-useful parameters
for the vibration module, vIBMOD. The input space of the vibration model was
explored very slowly, but the bin structure enabled accurate, consistent parameters
to be achieved.

‘L'he presentation of the two implementations was followed by a discussion of
some areas where further investigation or empirical demonstration may be needed.
It should be noted, though, that the suggestions above are based on a relatively short
span of experience, compared to the hours of experience that would be necessary
to explore and verify them. It can not be overstressed that experience is the key
to continued improvement to the monitoring system. Experience will show which
suggestions are most worth exploring and, in fact, whether any of them are truly
needed.
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Chapter 5

Integration of MIT Approach with
Traditional Approach

In Chapter 3, the basic concept underlying the MIT approach to transformer mon-
itoring was presented. A structure for an integrated monitoring system applying
this concept was then described. Chapter 4 detailed how this monitoring structure
is implemented. This chapter will discuss how the new monitoring approach can be
used immediately to improve the reliability of large power transformers while the
diagnostic capabilities of the system are still being explored.

The first section will review the tasks of detection and diagnosis. This review
will provide the framework for the discussions that follow. In the next section, the
sensitivity of the MIT transformer monitoring system to incipient failures is used
to leverage the known diagnostic power of traditional techniques. Early experience
with the test facility yielded some initial insight into how the diagnostic capabilities
of the monitoring system might be improved. The third section chronicies these
events and their preliminary interpretations.

It became obvious that further work into the diagnosis of incipient transformer
failures could not proceed effectively without solid data. The rationale and the
broad goals of the ensuing experiments are presented in the final section. This
discussion will lay the groundwork for the presentation of the experimental setup
and results in Chapter 6.

5.1 Review: Detection and Diagnosis

In the discussion that follows, it is important to maintain the distinction between the
detection and diagnosis of incipient failures. Detection of incipient failures entails
monitoring the various sensors and recognizing when some sensed quantity is not
behaving normally. Diagnosis is a decision process by which the abnormal behavior
will, if possible, be explained with some degree of certainty. Some diagnoses will be
able to be reached solely on the weight of the detected anomalies; others will require
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additional infermation—either in the form of additional tests, modified sampling
schedules, adjusted detection thresholds, or simply more time to see if the condition
persists.

A mechanism for the detection of incipient failures has been fully implemented
and integrated into the Pilot Transformer Test Facility. The Pilot Monitoring Sys-
tem, including this detection method, is described in great detail in Section 4.1.
However, lacking from this description is any mention of an implemented diagnostic
system. The purpose of the remainder of this thesis is to determine how such a
system might be developed.

Before diagnosis can be considered, a complete understanding of the detection
mechanism must be achieved. Anomaly detection is realized through the use of an
array of thresholds: measurement thresholds, residual thresholds, and parameter
thresholds. Each of these types of thresholds, which monitor absolute levels, are
complemented by rate-of-change thresholds that determine if any of these quantities
are changing faster than normal.

Measurement thresholds and measurement rate-of-change thresholds are very
traditional. Many of these thresholds could be read directly from the transformer’s
nameplate, or from the ANSI operating guidelines. But static measurement thresh-
olds do not take full advantage of the range of data and experience available to the
transformer expert. This is the primary consideration behind the development of
the system described in this thesis.

Residual thresholds and parameter thresholds are the simplest method for im-
plementing a detection scheme using adaptive models and knowledge specific to a
particular transformer. The transformer signatures that have been modeled were
chosen because their behaviors change in the presence of failures (see the matrix of
relationships between failure modes and observable quantities, Table 3.1). There-
fore, at some point in the evolution of the failure, the residuals and/or the parame-
ters will diverge from past behavior. In a perfect world, healthy transformers would
yield residuals consisting of white noise and parameters that were perfectly stable.
Threshold anomaly detection would not only be sufficient, it would be optimal. Of
course, in the real world residuals are often correlated with module inputs, and
parameters are subject to noise and drift.

Each residual and parameter is compared to its corresponding thresholds on a
continual basis. Tunable residual and parameter thresholds allow the monitoring
system to be further customized to the individual transformer being monitored. For
instance, a base-load unit would show a very different set of residual behaviors than
a transformer subject to extensive load cycling. Therefore, the residual thresholds
for a base-load unit might be much tighter than for other transformers. If a trans-
former is consistently highly-loaded, then a higher parameter rate of change may
be expected and the thresholds would reflect this.

It should be noted that threshold anomaly detection is not the only method for
incipient failure detection. One common method involves modeling each possible
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type of failure separately and choosing the model that fits the observed behavior
most closely as the most likely candidate[25, pp. 263-293]. This approach integrates
the detection and diagnostic tasks. Unfortunately, there is not nearly enough ex-
perience available to create detailed models of every failure mode. In addition, the
diagnostic (and prognostic) information available through parameter estimation are
not fully exploited in this approach.

5.2 Integration of Adaptive Models into Present-
Day Monitoring

It was shown in Chapter 4 that several diverse modules have been fully imple-
mented and are presently generating predictions, residuals, and parameters for the
Pilot Facility. A simple and effective method of anomaly detection has also been
implemented: residual and parameter threshold detection. Lacking an effective way
of performing a diagnosis using only the information available to the detection sys-
tem, the modules described in this thesis are relegated to the role of incipient failure
detectors—albeit sensitive ones.

It would be hasty to recommend that scheduled oil samples and inspections
be replaced by the system described in the previous chapter, but it is reasonable
to expect that such a system could eventually handle the task of incipient fail-
ure detection. Using the adaptive r-ndules as triggers for the traditional diagnostic
techniques presented in Chapter 2 would improve the reliability of large power trans-
formers. Unfortunately, anomalies (as defined by residual and parameter threshold
detection) will not correspond directly to dangerous incipient failures; false alarms
might be common.

One way of limiting the number of false alarms would be to decrease the sen-
sitivity of the detection system, so that only the most severe anomalies trigger
diagnosis. This is unacceptable, however, in that it undermines one of the major
strengths of the proposed system: its sensitivity to changes in the condition of the
transformer. The alternative is to automate some portion of the diagnostic process
to screen out as many of the faise alarms as possible before involving the human
operators. Of course, one difficulty with this approach is that traditional diagnosis
techniques have not made use of many of the quantities that are generated by the
modules. Automating the diagnostic process requires that the process itself first
be fully understood. The following section makes a rough cut at cutlining the pro-
cess and isolating those factors that must be considered before automation can be
achieved.
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Figure 5.1: Steady-State Operation

5.3 Initial Proposed Advancements to Diagnosis

First, it is necessary to determine how detected anomalies and the raw module
outputs (predictions, residuals and parameters) can be used for diagnosis. To un-
derstand how the information generated by the MIT monitoring system can best
be used to support diagnosis, an example is illuminating. Consider a preliminary
experiment that was run early in the history of the Pilot Monitoring System. In this
experiment, a heating tape was wrapped around the combustible gas sensor. Power
was dissipated in the tape, disrupting the sensor’s temperature compensation and
introducing a small anomalous heat cource into the transformer.

Figure 5.1 shows that the transformer was operating in steady-state at 75% of
full load.! The heating tape was used to inject approximately 30 W of heat at the
tank wall. This is equivalent to about 10% of the losses of the transformer.

Figure 5.2 shows the behavior of the combustible gas residual during this exper-
iment. A large step change in the residual occurred when the heating was started;
another step change occurred when the heating was reduced. From later experience,
it was learned that, while gas can be generated rapidly enough to produce the pos-
itive step change seen here, the gas residual will not maintain that level and then

!The arrows (— or —) preceding the curve labels indicate which vertical axis is being used. In
Figuze 5.1, both curves are plotted against the left-hand axis (although the units differ) so they are
marked with a left arrow (). The units are indicated in parentheses after the curve label.
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Figure 5.2: Anomalous Combustible Gas Residual

experience a negative step change. Instead, in a gas-space transformer such as was
used here, upon reaching a maximum the gas residual will drop exponentially as the
oil and gas space try to reach equilibrium. Thus, the residual behavior seen during
this experiment is more likely indicative of a sensor failure than a gas-generating
transformer failure. The fact that the residual returns to a level ten parts per
million lower than where it started makes it even more likely that a sensor failure
was involved. A single failure that both generates and consumes combustible gas is
extremely unlikely.

Figure 5.3 shows the behavior of a thermal residual for the same time period
as Figure 5.2. Seen in isolation, this residual would not represent an anomaly, for
the entire range of the residual is well within normal bounds. In fact, the residual
is generally getting smaller during the period in question (this is normal behavior
in response to a change in load that occurred carlier). Looking more closely at the
times of the step changes in the gas residual, one may see that the residual rises
approximately 0.5°C at the time of the first step change, and falls again at the time
of the second.

Again, it must be emphasized that a half a degree rise is not usually significant.
The rise only returned the residual to the level it had been at half a day earlier.
The rise in temperature is significant only because of the absence of any change in
load at that time and because of the coincidence of the gas residual anomaly.

The presence of an unexplained temperature rise in conjunction with the anoma-
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Figure 5.3: Anomalous Thermal Residual

lous gas residual yields a more accurate diagnosis. The gas residuval alone indicates
only that the problem is likely associated with the sersor rather than the i.ans-
former itself. The detection of an unexplained temperature rise, though slight,
further indicates that there is most likely a problem with the sensor itself rather
than the data acquisition system. It is much easier to hypothesize a coupling be-
tween the two events in the physical media of the transformer than in the almost
completely distinct data paths of the data acquisition system. There is always a
possibility that the temperature rise is completely unrelated. But the close corre-
lation in time of the two events and the principle that the simplest explanation is
usually true argue against this possibility.

The missing piece of knowledge necessary to arrive at a relatively precise diagno-
sis is that the temperature compensation of the combustible gas sensor is imperfect.
The conclusion is that a new heat source has been introduced that is interfering
with that compensation. Following more operating experience with the thermal
module, the size of the thermal residual may be used to reason about the location
of the heat source. The embedded model in the thermal module is tuned to detect
heat sources in the transformer winding. The small magnitude of the thermal rise
may indicate that there is either a small heat source in the winding or a large heat
source external to the winding. As a small heat source in the winding is unlikely
to disrupt the temperature compensation in the gas sensor, a likely conclusion may
be that a large heat source can be found near the gas sensor. Which in this case
proves to be true.
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As a final note, referring back to Figure 5.1, one notes two “blips” where the
current and voltage briefly go to zero. These two events roughly correlate in time
with the end points of the gas and thermal residual anomalies. Experience with the
operating profile of the Pilot Facility allows one to recognize these blips as mainte-
nance shutdowns. Similar events on other transformers may not lead to the same
conclusion if, for example, those transformers are never re-energized that quickly.
On a transformer with a different operating profile, then, this same electrical event
muy be seen as data acquisition error.

However, diagnosis need not rely completely on deductive reasoning in this situ-
ation. When it is a question of whether the transformer was de-energized or not, the
human operator should have the definitive answer. If the monitoring system were
fully integrated into the control room operations, the system would be forewarned
about a shutdown. But if diagnosis depends on this fact and it is unknown, the
most direct route is to query the operator. In the scenario described above, the
correlation between the maintenance shutdowns and the duration of the anoma-
lies would lead one to suspect human intervention. It would not be unreasonable
for an automated diagnostic system to seek further information on what activities
occurred during the shutdown.

This experiment illustrates some important issues in reasoning about trans-
former failures.

e The ability to reason about the coincidence of two events in different signatures
is vital. It was necessary to locate a correlated event in a second signature to
improve the initial diagnosis of sensor failure. The improvement in diagnosis
may mean the difference between performing an expensive operation (such
as replacing a sensor) or an inexpensive one (such as applying some thermal
insulation).

o The system must be able to re-examine recent raw signatures with new sen-
sitivity thresholds to identify events that may have been insignificant at an
earlier time. The thermal residual in isolation was uninformative. If the sys-
tem were set up to flag all such data as interesting, it would be swamped with
these “events”.

¢ The system should be able to reason about the relative magnitude of data
signals, such as the rise identified in the thermal residual. This is one area in
which simulation and actual operational experience are critical. It is possible,
though unlikely, that a 0.5°C rise in a thermal residual in so short a time (with
no correlated change in load) is always indicative of extraneous heating. Or it
is possible that a 50 parts per million change in a gas residual can not manifest
itself so quickly, so that it is absolutely certain that the exhibited behavior
has to be due to a sensor failure, regardless of the residual’s subsequent decay.
But these possibilities can not be properly assessed without many hours of
operational experience.
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e The system should be able to reason about the type of transformer under
scrutiny. A piece of knowledge applicable tn a transformer with a gas space
may not be applicable to one without; it may also be crucial to know whether
the transformer is core-type or shell-type.

e The type of sensor being used may be important to the diagnostic process. In
the example above, the knowledge of the particular type of sensor’s tempera-
ture compensation proved to be an important piece of knowledge.

e Module-specific knowledge can play a key role during diagnosis. The thermal
residual discussed above is based on a model of the temperature distribution
in transformer windings. Knowledge of this model can be used to reason about
the sort of events that this module should be more or less sensitive to. This
knowledge led to a conclusion about the location of the extraneous heating.

® A transformer-specific database is needed to recognize events that may be
unique to the particular transformer. In the example above, it is possible that
the duration of the two shutdowns would be unlikely for most transformers.
If a utility goes to the expense of de-energizing the transformer, then a more
complete maintenance review would be initiated, requiring more time.

e Diagnosis should not be limited to the information which is automatically
available to the system. Some diagnoses can be reached quickly, efficiently,
or unambiguously if a small amount of external information is supplied. An
automated diagnostic system must be able to request this data, and must be
able to analyze the relative costs and benefits to determine if the data should
be requested.

In Table 5.1, the matrix of relationships between failure modes and observable
quantities is updated to reflect the status of the Pilot Monitoring System. The table
shows that the implemented modules have the capability to detect many important
failure modes and, working in parallel, distinguish one failure mode from another.
What the table does not reflect, but is reflected in the discussion above, is the great
promise that these modules hold out for diagnosis through working together, and
not merely in parallel.

5.4 Need for Experimentation

The utility of the MIT monitoring system is blunted by a lack of experience, by a
lack of detailed knowledge as to how the evolution of failures affects the monitored
signatures. In creating a polished system for device diagnosis, there is no true
substitute for experience. Only thousands of operating hours on many transformers
can yield a population of failures large enough to act as a basis for reasoning about
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Table 5.1: Relationships Between Failure Modes and Modules

Il Fallure Modes
Bent Core Cracked | Electri- | Hot Arcing | Gas Contaminated

Modules II Winding | Damage | Bushing | fication | Spot | Short Bubbles | Oil
Thie3mod ® [ ) ® [ ® B
Thmod [ LI ® ®
Gasmod ® @ ® ® ® K:)
Vibmod L [
Wthmod 1 ® ® 2

their diagnoses. But, using a small number of incipient failures, one can identify
the paths of reasoning that are used to arrive at a diagnosis from the data that is
generated by the monitoring system. That is, one can identify the structure of the
knowledge base that will be used by the diagnostic system. As incipient failures are
investigated, important mechanisms of the diagnostic process are highlighted. If it
is found, for instance, that the ability to reason about past behavior of a residual is
critical in many different instances, regardless of the particular residual or failure in
question, then efforts should be made to support the effective use of that knowledge.

Due to limitations of scope and time on this thesis, there can be little thought
of generating a data base sufficient to the task of yielding a complete diagnostic
system. The focus of this thesis is instead on the identification of the structure of
the knowledge base on which such a system could be built. This will be done by
simulating a selected set of failure modes and generalizing from this constrained
sample. Thus when the experience of many thousands of hours is digested, t:=
structures and mechanisms necessary to implement that expertise will already be
present.

In automating the diagnostic process, the goal is to take full advantage of the
automatic anomaly detection. In pursuing this goal, several considerations are im-
portant. First, the system should not be inextricably tied to a particular set of
modules. It should degrade gracefully when modules are removed, and be easily
extended to include new or improved modules. Second, the information necessary
to adapt the system to a different transformer design should be automatically gen-
erated where possible (in the case of adaptive parameters), and explicitly stated
and localized where it is not. The third consideration is that the system should be
able to take advantage of redundant information, such as the underlying module
structure common to all the modules. Fourth, the system must be able to han-
dle ill-specified knowledge and incomplete data in reaching a diagnosis. Finally,
the system must be able to incorporate the knowledge of transformer experts and
conventional diagnosis methods.

To address these considerations, the choice was made to use an ezpert system.
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This technology offers a way to provide modularity, extensibility, and maintainabil-
ity while capturing the expertise of the transformer engineer(37,38].

Unfortunately, there is not yet enough experience with the types of quantities
that are generated by the MIT monitoring system to develop a knowledge base
that would support the diagnosis of real-world failures. However, the analysis of
the preliminary experiment described above shows that significant insight into the
diagnostic problem can be gained through case studies of individual failures. To this
end, incipient failures were simulated in the Pilot Facility to reveal the knowledge
that was used to perform diagnosis, and how that knowledge was used. From this
constrained set, the framework for an automated diagnosis system can be projected.
The experimental setup and results are presented in Chapter 6. Careful analysis of
these results have revealed effective mechanisms for transformer diagnosis.

5.5 Summary

This chapter has explored how to make the best use of the existing MIT Transformer
Monitoring System. In the first section, the completed status of incipient failure
detection was contrasted to the undeveloped state of automated diagnosis. A brief
discussion on the manner in which failure detection using adaptive models of normal
behavior could be integrated with traditional diagnosis followed. Early experience
with the diagnostic capabilities of the system was presented. This early experience
shaped the goals of this thesis towards gathering experimental data that could be
used as a template for advanced automated diagnosis.

96



Chapter 6

Experimental Results

A reliable diagnostic system must be based on a solid body of experience. The body
of knowledge concerning large power transformers is rich and useful, yet the type
of information needed for an adaptive-model-based approach is lacking. Little is
known of the short-term behavior of transformers in the face of incipient failures,
and there is almost no experience available concerning the particular parameters
that the MIT system estimates and monitors.

There is a statistical component involved in diagnosis; diagnostic methods em-
ploy the concepts “usually”, “often”, and “probably”. There is a basic uncertainty
involved that can only be addressed through statistics, based on experience. De-
spite this fact, case studies can illuminate the problems of diagnosis and reveal how
diagnosis should proceed, even if a priori likelihoods can not be evaluated.

This chapter presents the experimental results of this research. First, there
is a brief discussion of the philosophy behind the chosen approach to broadening
the understanding of the diagnostic capabilities of the monitoring system. Next,
the strategy behind the selection of the specific experiments conducted is revealed.
The physical setup is described in the following section. Finally, the results are
presented, including some analysis of what these results signify.

6.1 Philosophy

There can be no substitute for experience to prove out the concepts and structures
that have been described in the preceding chapters. Unfortunately, a sufficient
body of experience does not yet exist to fully evaluate the diagnostic capabilities
of the proposed system. These techniques, however, hold such promise for the
advancement of incipient failure diagnosis of large power transformers that research
into model-based diagnosis is desirable. To this end, the experiments described
below were chosen to explore the diagnostic information revealed by the monitoring
system.

It was not intended that this thesis would yield a definitive diagnostic system.
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The experiments were intended as a case study of how a system of adaptive models
of normal behavior could be applied to the task of transformer diagnosic. The pre-
liminary experiment described in Chapter 5 showed how this approach to diagnostic
research can yield deep insights. Additional case studies will highlight the shared
structure of the diagnostic process, as well as reveal the range of analytic tools that
are required for diagnosis. Identifying the shared structure is the first step towards
implementing a diagnostic system that is flexible and maintainable.

By actually performing the diagnosis, and carefully considering each step of the
process, the underlying strategy of transformer diagnosis can be revealed. Under-
standing this strategy is critical to the generation of a system whose results will
have meaning for a transformer engineer or operator. But the adaptive model-
based trend analysis tools described in the previous chapters have not been fully
integrated into the state of the art. Chapter 5 described how the residuals and
parameters would be used for detection and hinted how tiey might be used for
diagnosis and prognosis. But only by applying these methods to actual data can
the worth of a set of residuals and parameters be evaluated.

Efforts have been made during this research to clearly define the relationships
between the numerical data collected and the physical parameters of the Pilot Fa-
cility. This has been done to ensure that the analysis and reasoning brought to bear
here can be applied in an analogous manner to a full-size power transformer.

6.2 Strategy of Selection

Having determined the importance of gaining experience with the transformer mon-
itoring system’s response to failures, the problem was reduced to choosing an appro-
priate set of failure modes to simulate. There were a number of criteria to consider
in making this selection. These criteria included constraints on time and money, the
relative importance with which the utilities viewed each failure mode, the extent to
which the pilot monitoring system was suited to detecting a particular failure mode,
the risk of physical damage to the Pilot Facility, repeatability, ease of simulation,
and non-disruptive (on-line) control of the simulation.

The time constraint was governed by the author’s goals and the sponsors needs.
It was determined that each of the tasks of hardware implementation, experimen-
tation, and data analysis should be accomplished in a matter of months. The in-
cremental cost of this research program (beyond the operating budget of the Pilot
Facility) was dominated by the cost of maintaining a graduate student.

Communication with the sponsoring utilities focused the search onto gassing
failures and through faults. Gassing failures include arcing, partial discharges, and
general or local overheating. Arcing was chosen because a straight-forward imple-
mentation mechanism was available (a spark gap with an external power supply),
the arcing could be controlled externally without altering the operating profile of the
transformer, and the arcing could be closely reproduced (after making allowances
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for a rise in the total gas content of the transformer). However, to minimize the
potential risk to the transformer, the experiment was limited to arcing in the oil.
rather than near the cellulose.

One result of through faults that the Pilot Facility is particularly suited to detect
is winding deformation due to the huge electromechanical forces generated by the
events. A method of applying a force to the winding that would change the winding
in an impermanent way was needed. This would change the stress patterns in the
winding in much the same way that a loosening clamp would.

The next section describes the apparatus that were designed to simulate the
chosen failure modes. The issues of physical risk to the test transformer, repeata-
bility, and on-line control are closely related to the choices made during the design
phase. These issues are touched on in the discussion of the setup.

6.3 Setup

First, a description of a proposed experiment to investigate the monitoring system’s
response to changing mechanical stresses on the winding is presented. Due to time
and cost constraints, this experiinent had to be abandoned. The proposal is included
in the hopes that it may be carried out in the future, and so that the reader can
have another example of an appropriate experiment for the investigation of the
diagnostic capabilities of the MIT’s Transformer Monitoring System.

The implemented experiment on the diagnosis of gas generation in transform-
ers is presented next. Results are given in the subsequent section. Included are
numerical analyses of the data to verify the physical processes at work.

6.3.1 Winding Deformation

An additional consideration in designing an apparatus that would change the trans-
former’s vibration response was that no new mechanical coupling between the wind-
ing and the core or the winding and the tank could be introduced. This would
change the vibration response of the winding in a way that would be difficult to
relate to an actual failure mode. This eliminated any device that was braced against
the core or tank in order to apply a force to the winding. 1t also seemed to elim-
inate a direct mechanical connection between the apparatus and its external con-
trols. However, it was decided that a hydraulic control system would not transmit
a significant amount of vibration to the tank, and thus was acceptable.

Unable to push on the winding, it was decided that the solution was to squeeze
the winding. The forces exerted by the winding clamps have already been shown to
affect the vibration response in definite, detectable ways[28,27]. Variable control of
the squeczing would allow emulation of slow changes due to the normal loosening
of winding clamps, as well as sudden changes due to through faults.
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One suggested method for squeezing the winding was to gird the winding with
a cinch strap. The cinch might be tightened by pulling on the two ends of the
strap with a motor or a hydraulic piston. However, making this control small
enough to fit in the transformer tank and attaching the ends of the strap securely
would pose some difficulties. In addition, the forces applied to the transformer
would be symmetric about the circumference of the winding. This may lead to an
unnatural, and potentially misleading, simulation of the failure modes seen under
normal circumstances. A proposed solution is to use the cinch strap as a brace for
a device that would apply a localized pressure to the winding.

As described above, a strap would be used to encircle the winding. But in-
stead of adjusting the tension on the strap by lengthening or shortening the strap,
a hydraulic piston would be inserted between the strap and the winding. This
proposed device is shown in Figure 6.1. This method has the advantages that no
new mechanical couplings are introduced between the winding and the rest of the
transformer, and that the resulting forces are asymmetric. Hydraulic jacks with
very short maximum extensions but with significant lift are commercially available.
Transformer oil could be used as hydraulic fluid in order to eliminate the danger of
contamination of the transformer from the hydraulic system.

In order for the winding deformation test apparatus to be truly successful, it
is desirable that the deformation of the winding be repeatable. Any stretching
of the strap must be elastic, as must any deflection of the winding. The harsh
conditions inside the transformer (with the presence of high temperatures, oil, and
strong electric fields) require that the materials be known to be stable in such an
environment. Organic materials are relatively stable undcr these conditions. A
cotton luggage strap was tested on a spare pole-type distribution transformer. The
results were inconclusive. It was detected that the tension on the strap decreased
over time, suggesting plastic stretching of the strap. Permanent deformation of the
winding would also lead to reduced strap tension when the hydraulic piston was
fully retracted, but this was ruled out by separate measurements of the deflection
of the winding surface.

Plastic stretching was suggested, but that did not take into account that the
cotton strap had become saturated with oil from contact with the winding. The
clamping structure had been deemed adequate for the dry strap, but there may
have been some gradual slippage after the strap was lubricated by the oil. Whether
the reduced tension was due to plastic stretching or clamp slippage, the effect was
avoided if the extension of the piston (and thus the tension on the strap) was limited.

Unfortunately, it was decided that the simulation apparatus described above
could not be installed in an acceptable amount of time. Installing the cinch strap
would necessitate de-tanking the transformer. Once the winding had been exposed
to air, the lengthy process of drying out the winding would be required. In addi-
tion, the long down time for the Pilot Facility would have disrupted other parallel
research projects. And finally, if the transformer were to be de-tanked, access to the
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Figure 6.1: Proposed Winding Deformation Test Apparatus
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Figure 6.2: Arcing Simulation Circuit

transformer would have to have been coordinated with other researchers to make
their own modifications.

This approach to vibration module verification has been incorporated into a con-
tinuing research project at MIT. This research is entitled “Transformer Monitoring
Using Vibration Analysis”.

6.3.2 Arcing

An arcing failure was simulated in the Pilot Facility by inserting an automotive
spark plug into the test transformer. To avoid permanent damage to the trans-
former, the spark plug was located away from the winding and the high voltage
leads. A schematic of the circuit used is given in Figure 6.2. A 120 VAC variable
supply was connected to a neon-sign transformer, rated at 15 kV/30 mA. An induc-
tive ammeter was used to measure the input current to the neon-sign transformer,
which is center grounded. High-voltage ceramic resistors were used to limit the
current to the transformer’s rated amperage. 5 M of resistance (two (2) 10 M)
ceramic resistors in parallel) was attached to each bushing of the neon-sign trans-
former. The balanced resistance on a center-grounded transformer ensured that,
when the device was actually arcing, the voltage of the electrodes was near the sys-
tem’s ground. This was done to minimize the chance of an arc from the simulation
apparatus to some other portion of the test transformer. The spark gap distance
was set to 21 mils. This gap distance was found, through trial and error, to be
small enough to yield a spark reliably at the attainable voltages, yet large enough
to avoid fouling by the carbonization of the oil.

The spark plug was positioned in the transformer by screwing it into a piece of
Lexan, which was suspended from a fiberglass scaffold at the top of the transformer
tank. Lexan was chosen because it was non-conducting, easily machinable, and

102



/_/\

h
ol 0 L AR
- o1
g - ”
Spark -V Grounded
gap 6 braid

/ \Farada,y cage

T—

Figure 6.3: Shielded Spark Plug for Arcing Simulation

would not become pliant in the temperature range to which the transformer was
exposed. The spark plug was shielded and the shielding was grounded in order to
protect the other instrumentation.

The shielded spark plug is shown in Figure 6.3. The shielding, or Faraday cage,
was built from copper mesh. The cage was constructed from two pieces, one piece
forming a cap over the spark plug’s electrodes, the other shielding the spark plug’s
body. The two pieces were fixed in place and connected electrically with screws
that passed through the Lexan. Copper sheet was added where the two mesh forms
met to provide extra shielding. The copper sheet was held in place, and all sharp
edges covered, by a framework of copper and brass tubing. The tubing was soldered
together with silver solder to withstand the temperatures of the transformer.

Power was supplied to the spark plug through two RG-59/U coaxial cables. The
copper braid of each cable was grounded externally. One of the braids was then
connected to the Faraday cage to ground the unit. The other braid was insulated
from the cage to prevent circulating currents in the shielding, though the braid
extended well into the shielded region. Thus, the entire sparking apparatus was
shielded from well outside the transformer tank all the way to the spark plug. This
decreased the chance that electromagnetic interference would damage or otherwise
disturb the other monitoring instrumentation.
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While the transformer tank was open for the installation of the arcing simulation
apparatus, the integrity of the tank and lid were improved. A few small leaks were
identified and sealed. When the installation of the device described above was
completed, it was found that a significant amount of gas was escaping down the
length of the coaxial cable between the braid and the outer insulation. The cables
were subsequently sealed where the braid was exposed for the grounding connection.
After these leaks were dealt with, the tank was able to maintain a positive pressure.
This indicated that any detected changes in gas concentrations were due to activity
inside the transformer, and not atmospheric contamination.

6.4 Results

In this section, some of the results collected from the MIT Pilot Transformer Test
Facility are presented. In Section 6.4.1, the initial condition of the transformer
following the installation of the simulation hardware is documented. Following
this presentation, three arcing experiments are reported. The first experiment was
designed to investigate the response of the combustible gas module residual during
a gas-producing event under steady-state operation of the transformer. The next
experiment explored GASMOD’s residual behavior during normal load cycling, and
explored the subsequent model adaptation. The final experiment presented here
focused on the behavior of the combustible gas module’s parameters in the presence
of low rates of gas generation.

For this discussion, the reader should be familiar with some details of the dis-
solved combustible gas module (GASMOD) presented in Chapter 5. The equation
used to estimate the parameters of this module was given in Equation (4.16). Squar-
ing both sides of the equation, the result is:

hydran[k] = (8, + 02 x fl’t,,,,mq[k])2 (6.1)

GASMOD also supports a model that uses the predicted winding interior temperature
(th,-,,t) instead of the mixed top oil temperature (Ttopoit). To simplify the discussion,
only the model presented in Equation (6.1) will be considered. Little effort has
been expended on evaluating the relative advantages and disadvantages of the two
models.

For the Pilot Facility, parameters are automatically generated daily using two
days’ worth of data. The parameters are generated shortly after midnight; param-
eters accepted on a Friday, for example, represent a measure of the condition of the
transformer for Wednesday and Thursday of that week.

6.4.1 De-gas and Equilibration

After the spark plug was installed in the test transformer, the transformer oil was
subjected to a high vacuum to lower the dissolved gas concentrations as much as
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Figure 6.4: Load and Excitation after De-gas

possible. The transformer was set at a moderate load to establish a convective flow
in the oil. This process also verified the gas integrity of the transformer tank and
lid. This is important to discount the possibility that changing gas concentration
levels in later experiments were due to contamination with the atmosphere.

The test transformer was brought back on line in early November, 1989. Load
cycling was begun immediately, with the intention of generating parameters (Fig-
ure 6.4). During the de-gas operation, the Hydran was disabled to avoid exposing
the device to the high vacuum used. Flow to the Hydran was cut off, which resulted
in a reading of 0 ppm. (The sensor consumes the gases to which it is sensitive.
When fresh oil is prevented from reaching it, the combustible gases are depleted
and the device “starves”.) Flow was restored to the Hydran on November 4, 1989.
It was immediately apparent that the concentrations of combustible gases in the
transformer oil were successfully reduced. This can be seen in Figure 6.5.

However, Figure 6.5 also shows that the combustible gas content of the trauns-
former rose significantly in the following days, reaching levels about 60% of those
before the de-gas. Some combustible gas may have been trapped in the winding in
much the same way that moisture is held. But the majority of the gas finding its
way into the oil of the transformer tank probably came from the expansion taunk
connected to the gas space. The oil and the gas space in the expansion tank had
not been exposed to the atmosphere during the installation procedure, and thus
did not pose the same danger of moisture and oxygen contamination that the oil
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Figure 6.5: Hydran Response after De-gas (Predicted and Actual)

in the transformer tank did. So, the expansion tank was not subject to the de-gas
operation.

Also shown in Figure 6.5 is the predicted combustible gas content. The predic-
tions were initially much higher than measured values, indicating that the dissclved
gas content of the oil had been reduced. The parameters had not had a chance to
adapt to the new condition of the transformer. The parameters were not updated
during the de-gas operation because the Hydran yielded a constant zero reading
while the oil flow to the sensor was shut off. During the de-gas operation, the tem-
peratures inside the transformer were relatively constant. This situation yielded
data that was very poor in information content, resulting in the rejection of the
candidate parameters.

Once the flow was restored to the Hydran and load cycling resumed, however,
it still took several days for the parameters to be updated. The parameter update
can be seen quite clearly from the data of November 10, since the condition of
the transformer had changed markedly since the last parameter update. Both the
actual and predicted response of the Hydran show that there was significant daily
variation due to temperature. Why, then, was parameter acceptance delayed until
November 107

The upward trend in the Hydran readings was not due to general heating of
the transformer. The thermal data shows this, but it can also be seen in the pre-
dicted response of the gas sensor, in Figure 6.5. It was because of this uncorrelated
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trend in the gas levels that the model could not properly adapt to the condition
of the transformer. The module assumes that there is a time-invariant relationship
between gas content and temperature during the period of parameter estimation.

In Chapter 4, the criteria used to accept or reject candidate parameters was
shown to be based on a measure of the information content of the data used for
estimation, and a measure of how well the resulting model fit this data. The data
collected between November 4 and November 9 was sufficiently rich, under normal
circumstances, to generate acceptable parameters. But because of the uncorrelated
trend in the dissolved gas level, the model could not adequately fit the data. This
points up one shortcoming of the mechanism used to accept parameters: the lack of
distinction between rejected parameters based on information-poor data and those
that failed to fit the data. For, while the estimated parameters could not fit the
data as closely as is normal, they may have yielded valuable diagnostic information
about the changing condition of the transformer.

This is an example of a conflict between the two uses to which parameters are
put. Parameters are used to generate predictions for residual analysis, and are used
directly in parameter trend analysis. Accepting parameters that are based on data
that violates the model structure of the module may greatly complicate the residual
analysis, yet thosc same candidate parameters may reveal a dangerous trend. The
conflict only arises if one assumes that the parameters used for residual analysis
and those used for parameter analysis must be identical. This assumption should
receive further scrutiny.

Figure 6.6 shows the behavior of GASMOD’s residual during the same period.
Note that the residual is displayed at the same magnification that was used to
display the measured and predicted behavior of the sensor. Normally, the residual
is examined at much higher magnification to identify small features of the signal. In
the situation here, however, the larger trend dominates the behavior of the residual;
smaller features are relatively insignificant in the face of this trend.

The residual is negative because the actual measured gas content is lower than
the predicted amount. Subtracting the prediction from the measured value almost
completely accounts for the daily variation of the reading. The residual clearly
and cleanly shows the trend in the gas content of the oil. When the module fi-
nally succeeds in adapting the model to the observed data, the residual returns to
approximately zero.

The residual can be closely modeled as an exponential with a time constant of 40
hours. The first hypothesis was that this time constant was the result of the diffusion
rate of hydrogen from the expansion tank into the gas blanket of the transformer,
and that this was obscuring the time constant of the diffusion of hydrogen from
the gas blanket into the oil. To determine the validity of this hypothesis, the time
constant of the diffusion between the two tanks was computed using Fick’s equation
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Figure 6.6: GASMOD Residual Response After De-gas

of diffusion,[39, p. 6]
w Oc

(6.2)

A oz’
where % is the molar mass flux in the hose connecting the two tanks (mole/sec m?),
¢ is the concentration of hydrogen in the hose as a function of position and time
(mole/m?), and D is the coefficient of diffusion (m?/sec).

As a simplification, the concentration gradient in the hose is assumed to be

linear. Thus,

Oc ¢c2—¢

oz L’
where ¢, is the concentration of hydrogen in the expansion tank and c¢; is the
concentration of hydrogen in the gas blanket of the transformer, as a function of
time, and L is the length of the hose. Next, note that the change in concentration
is equal to the change in mass divided by the volume

(6.3)

dCl 1 -
P (6.4)
or dey  AD
C1 Ay _
a vl (6:5)

where A is the cross-sectional area of the hose, and V), is the volume of the gas
blanket.
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Since the transformer is a closed system, mass is conserved. Thus,

c1 + ¢

aVi+ Vo + 5

AL =N (6.6)

where N is a constant. The third term is negligible since AL, the volume of the
hose, is small, so the equation can be reduced to

clVl + Cng =N (67)

Solving for c,,

N — W
Vs
Substituting Equation (6.8) into Equation (6.5) yields

Co =

(6.8)

de;,  AD(Vi+V3) ADN

—(—i—t‘— A c + VIV:E (69)
Therefore, c¢; is an exponential with a time constant 7 such that
ALY
-2 (6.10)

TTAD(V, + V)

Evaluating 7 for the Pilot Facility yields 7 equal to 1.9 x 108 sec, or approximately
6 years. Obviously, the observed transient in the dissolved gas content of the oil
was not due to diffusion of hydrogen through the hose.

Having eliminated diffusion from the expansion tank, the question became one of
discovering from whence the gas entering the oil came, and what physical properties
determined the time constant. At this point there was not enough information to
decide, but the transient was ascribed to the equilibration of the convectively mixed
oil and the gas blanket, as a working hypothesis. This still leaves unanswered the
question of where the combustible gas in the gas blanket came from, since the
blanket was supposedly pure nitrogen. A tentative explanation is that when the
valve between the transformer and the expansion tank was opened, the expansion
tank was at a slightly higher pressure. This would have forced hydrogen-laden gas
down the hose to equalize the pressure, providing a source for combustible gas in
the oil.

The residual succeeded in tracking the changing state of the transformer over
the course of a few days. Looking at the parameters spanning this time period
reveals the effect of the de-gas, and shows the parameters start to return to their
original values, even though the parameters were not successfully estimated for most
of this period. Figure 6.7 shows the behavior of one of the gas module’s parameters
(parameter 6, of Equation (6.1)) in context with estimates of the paraineter from
before the de-gas.
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Figure 6.7: GASMOD Parameter Response After De-gas

The three “spikes” in the parameter on September 18, September 25, and Oc-
tober 9 in Figure 6.7 represent information-poor parameters that were accepted
erroneously. Each of these dates is a Monday, meaning that the parameters were
generated using data from Saturday and Sunday. The load cycling of the trans-
former is not automated, thus little or no information is generated over the weekend
when no one is present to adjust the load. This points out another shortcoming
of the parameter acceptance scheme: the multiplicative nature of the acceptance
criteria means that, with a degenerate set of data, the data fit can be so close as to
disable the measure of information content. That is, if the data can be fit almost
perfectly, the curve fit error will be approximately zero. The product of the two
terms may then approach zero, even though the measure of information content
may be relatively high (signifying information-poor data). Following this period,
the acceptance criteria were tightened, so that such parameters would have a much
smaller chance of being accepted.

The plot in Figure 6.7 shows that the parameters were sensitive to the de-gas
operation and the subsequent equilibration. The following experiments were then
conducted to verify the monitoring system’s sensitivity to high- and low-energy
arcing.
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6.4.2 Residual Response Experiment

The arcing equipment described above granted very little control over the intensity
of the arc produced. The spark gap distance and the values of the current-limiting
resistors could not be changed. The voltage supplied to the neon-sign transformer
was variable, but it was found that, because of the high dielectric strength of the
transformer oil, arcing could only be reliably initiated near the neon-sign trans-
former’s output voltage rating.

However, at this point, it was not the ratios of combustible gases produced that
were of concern, but total quantity and rate of production. These variables could
be controlled through the duration and scheduling of the arcing events. Thus, a
high-intensity arcing event was simulated through a single long (tens to hundreds
of seconds) spark; an incipient arcing failure was simulated with brief three-second
arcs distributed over several days.

The first experiment described here consisted of a short twelve-second arc, fol-
lowed a half an hour later by a sixty-second arc. Two hours later, a seventy-two-
second arc was produced. These arcs were generated while the transformer was
in thermal steady-state. The load and excitation for the week beginning at this
time are shown in Figure 6.8. The load was held essentially constant for several
days following the arcs. Though the transformer was shut down several times for
maintenance and to draw oil samples for gas chromatography for comparison, the
load was restored to its previous level each time. This introduced some thermal
transients into the transformer, but the temperature was re-established at the same
steady-state value.

The results of these arcing events are shown in Figure 6.9. The initial twelve-
second arc was generated at 11:30 on November 14. A close examination of the
residual data shows a rise in the residual of approximately 1.5 ppm, correlated in
time with the arc. This correlation in time includes a twenty-minute time lag due
to mixing and mass transport effects. While encouraging, such a small rise would
be lost in the noise.

The sixty-second arc was generated at noon. Ten minutes later, the Hydran’s
reading was virtually unchanged. At fifteen minutes after the event, the measurcd
dissolved gas content had risen by approximately 5 ppm. At twenty minutes, the
reading had stabilized with a rise of approximately 10 ppm. Under normal utility
procedures, an absolute rise of 10 ppm would be ignored. Such a change is well
within the normal daily variation of the Hydran reading. Some progressive utilities
have alarms that react to abnormal rates of change, but this event would likely go
unnoticed.

Simply by sampling the Hydran output every two minutes and presenting the
results graphically, one can detect and analyze an event that would be missed com-
pletely using traditional monitoring techniques. That is not to say that this event
represents a threat to the transformer. As an isolated event, it would simply be
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Figure 6.8: Load and Excitation During Steady-State
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Figure 6.9: Hydran Response to Arc During Steady-State
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Figure 6.10: GASMOD Residual Response to Arc During Steady-State

noted and the operation of the transformer would most likely continue unchanged.
Since such data from large power transformers is scarce, it is quite possible that such
events happen many times each year. But they are only detected as an aggregate
rise in the total combustible gas content of the oil. However unlikely it is that this
one event represents a dangerous situation, it is true that for a brief time conditions
existed in the transformer to support the generation of an arc. Detecting such an
event could focus attention on an incipient failure before it can progress very far.

In this situation, the raw Hydran data was sufficient to detect an anomaly, as the
rapid 10-ppm rise ran contrary to experience. Turning attention to the associated
res.dual confirms that the anomalous behavior of the Hydran was not caused by
thermal effects. Figure 6.10 displays the residual in question. The rise of 1.5 ppm
that was overlooked before now gains significance. Instead of having a single isolated
gassing event, there is a possibility that there were two events—the second being
more intense or of longer duration.

After reaching a maximum value twenty minutes after the spark plug was op-
erated, the Hydran reading began to slowly decay. This is expected behavior for
a transformer with a gas blanket. Initially, the gas produced by the arc dissolves
in the volume of oil in that area. If this slug of gas-rich oil circulates to the gas
sensor before mixing thoroughly, then an artificially high reading may result that
does not represent the gas content of the entire transformer. Quickly this gas-rich
oil will mix with the rest of the oil. The gas in the oil, however, can not equilibrate
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with the gas blanket as quickly. The decay of the Hydran reading may reflect the
movement of combustible gas into the gas space.

At 2 P.M., the arcing device was run for seventy-two seconds. The twenty-
minute time lag was confirmed. The “overshoot” due to incomplete mixing can be
seen more clearly in this event. The maximum rise was approximately 13 ppm.
Again, the absolute gas quantities that are being produced would not attract the
attention of a transformer operator. No alarms would be triggered and the events
would not even be noted. But, with the MIT monitoring scheme (and, to this point
in the discussion, only measurement and residual analysis have been considered),
three gassing events were detected, each more severe than the last.

It is still unclear whether such a scenario represents a significant threat to
the health of a power transformer. More experience is necessary to evaluate the
danger—experience with full-scale power transformers, experience with transform-
ers that fail catastrophically. But it is certainly clear that this scenario would war-
rant close attention by the transformer operator, with load reduction as a possible
result.

The data appears to indicate that a great deal of gassing occurred just before
midnight the same day, with other events on November 15. However, as was pointed
out in the discussion of the preliminary anomalous heating experiment in Chapter 5,
a negative step change in the Hydran reading is indicative of a sensor failure. The
fact that the magnitudes of the negative step changes are correlated with those
of the positive steps strengthens this interpretation. This problem was eventually
traced to a grounding problem in the monitoring instrumentation.

This sensor failure illustrates the strength of a continuous, on-line monitoring
system. By considering these events in contcxt, and applying knewledge about
the equipment being monitored and the equipment doing the monitoring, one can
differentiate between two events that would be considered identical using static
thresholds. The fact that one event represents a repairable sensor malfunction and
the other a potentially dangerous incipient failure makes the example all the more
telling.

6.4.3 Model Adaptation Experiment

The next arcing experiment was also conducted during thermal steady state. How-
ever, in this experiment, after the gassing was detected and the steady-state be-
havior observed in the previous experiment confirmed, load cycling was resumed.

The load and excitation of the test transformer for this experiment is presented in
Figure 6.11.

The duration of the arc on November 27 was 360 seconds. This arc caused an ini-
tial rise in the gas content reading of approximately 50 ppm, as seen in Figure 6.12.
This is consistent with the amount of gas generation seen in the first experiment.
In the previous experiment, the first two arcs totaled seventy-two seconds in length,
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Figure 6.11: Load and Excitation Model Adaptation

which was the duration of the third arc. Each seventy-two seconds of arcing caused
a rise of about 10 ppm. At six minutes in length, the arc on November 27 was five
times as long, and generated roughly five times as much gas.

The effect of load cycling can be seen in the Hydran response. Even though the
general trend of the gas content is downwards after the arcing, there are periods of
time where the gas content is actually rising. The residual confirms that these rises
are due entirely to thermal cycling of the transformer and do not mask additional
gas generation. Figure 6.13 shows the residual.

After two days of load cycling, the module was able to adapt to the new condition
of the gas content signature despite the fact that there was an uncorrelsted trend
in the input data. However, Figure 6.13 indicates that the parameters accepted on
December 1 were aiready out of date when they were installed. Thus, the prediction
was too high until parameters based on more stable conditions could be estimated
on December 3.

Examining only the Hydran data of Figure 6.12, it is difficult to determine when
the gas content of the oil achieved equilibrium. By December 3 and 4, it seemed as
though the gas content has stabilized. The measurements and predictions converge
due to the parameter update of December 3, and the residual seems stable at zero.
Looking at a longer time span, however, it can be seen that the residual continues to
diverge, albeit at a slower rate than that immediately following the gas generation.
By December 10, the residual had fallen to a value less than —8 ppm with no
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Figure 6.12: Hydran Response to Arc (Steady-State and Load Cycling)
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Figure 6.13: GASMOD Residual Response to Arc (Steady-State and Load Cycling)
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intervening parameter update.

The gas chromatograph provides a check on the results generated by the Hydran.
Figure 6.14 shows twenty-two weeks of GC hydrogen readings, taken weekly. Fitted
to this data is shown an exponential with a time constant of 400 hours. This agrees
with neither the observed time constant of 40 hours for the equilibration following
the re-energization of the transformer, nor with the calculated time constant of
6 years for diffusion through the hose between the gas blanket and the expansion
tank. Interestingly, if one examines the Hydran data for this same period, one
can note the 400-hour time constant but there is a faster transient that is left
unaccounted for. Subtracting off the slow trend, an faster exponential remains—one
with a time constant of approximately 40 hours, in agreement with the previously
observed behavior.

The Hydran is sensitive to more than one gas. Thus, the presence of two time
constants suggested that two or more gases were equilibrating at different rates
simultaneously. This explanation was rejected for two reasons: the GC showed
that only hydrogen was produced in sufficient quantities to effect the magnitude of
changes seen, and hydrogen—having the lowest molecular weight—should have the
fastest time constant for diffusion.

Casting about for an explanation of the 400-hour time constant, it was deter-
mined that it could be explained very well by the daily cycle of thermal expansion
of the gas blanket into the expansion tank. As the transformer gets warm each
day, the hydrogen-rich gas in the gas blanket expands into the expansion tank.
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The expansion tank maintains a relatively stable temperature. The hydrogen-rich
gas mixes with the gas in the expansion tank, raising the concentration of hydro-
gen there. When the transformer cools, the pressure in the transformer falls and
the gas from the expansion tank is drawn into the transformer. This lowers the
concentration of hydrogen in the gas space.

To simulate this situation, one first makes use of the ideal gas law:

PV =nRT (6.11)

Each volume obeys this law. Thus,
Pl‘/l = anTl (6.12)
Pg‘fg = TLzRTz (6.13)

The subscript 1 refers to the gas blanket of the transformer, 2 refers to the gas
space of the expansion tank. But, since the two are connected, P, = P,, so

n, Ty nyT>

= 6.14
V. V. (6.14)
Mass is conserved, so
ny+ny; =N (6.15)
ignoring the contents of the hose.
Using Equation (6.14) and Equation (6.15) yields
NTXW»
= —— 6.16
"IV + LV (6.16)

which is a function of T}, the temperature of the gas blanket, since T} is essentially
constant.

When the gas in the gas blanket expands, a some number of moles of gas are
forced into the expansion tank. At the minimum temperature of the transformer,
T,min, there is some number of moles of gas in the gas blanket, denoted by 14(7} min)-
At the maximum temperature, there is some smaller number of moles present,
71(T1,maz). At the maximum temperature, the ratio of gases in the gas blanket
remains unchanged from the when the transformer was last cool. As seen above,
there is essentially no diffusion along the hose, and the assumption is made that
the temperature of the transformer is monotonically increasing for part of the day
and monotonically decreasing for the rest of the day. Thus, while the transformer
is heating, no gas will enter the gas blanket from the expansion tank.

So, the ratio of gases in the gas blanket remains unchanged, but the absolute con-
centration of hydrogen has dropped by the ratic of number of total moles remaining
to the initial number of moles. This is modeled with the following equation:

ny (Tl ,mazc )

tmas (k] = 71(T1,min)

c1,mink — 1] (6.17)
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where ¢ mqzlk] is the concentration of hydrogen in the gas blanket at its maximum
temperature. Conservation of mass requires that

NH; - I’lcl,mam[k]
V2
where Ny, is the number of moles of hydrogen in the system.

A similar argument applies to the cooling phase of the daily cycle, yielding the
equations

(6.18)

cz,mam[k] =

Nu, — Vaca minlk]

Cl,min[k] = .Vl (6.19)
N - nl(Tl min)
min k] = : mazx k— 2
crmnll] = o T [k~ 1] (6.20)
Combining these equations and simplifying results in
Tmin Tmaz - Tmin T.
ci[k] = alk—1] + ( )T Ny, (6.21)

Tma:z: Tmaz ( I/2 Tmin + Izl T2 )

with a sampling interval of a day. The time constant, 7, of the process can be
calculated from this equation with the following relation:

24 hours

deﬂ

T =

(6.22)

Choosing T equal to 330°K and T,,;, equal to 350°K yields a time constant of
408 hours. This agrees very well with the observed behavior. This calculated time
constant is relatively insensitive to the absolute magnitudes of T,;, and T}, in the
normal temperature range achieved by the transformer, but it is sensitive to the
difference Ty,in — Tinaz- A change in this difference of 5°K can lead to a change in
the time constant of nearly 20%.

Having explained the 400-hour time constant, the faster 40-hour time constant
ren ains to verified as the time constant of diffusion between the oil and the gas
space. The convective flow of the oil provides a turbulent mixing of the oil; the
gas space is also well mixed. Under these conditions, diffusion occurs in a small
boundary layer in the oil and a much smaller boundary layer in the gas. The
diffusion of gas through this boundary layer can be modeled as an infinite series of
exponentials if the thickness of the layer is known. The precise conditions internal
to the transformer need to be known in order to determine the thickness of the oil
boundary layer. At this time, the details of the oil flow are not known, rendering
a direct calculation impossible. But the diffusion, though consisting of an infinite
number of exponential time constants, is dominated by a single time constant, 7,
that satisfies the relation I
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Figure 6.15: GASMOD Parameter Response to Arc

where L is the thickness of the layer, and D is the coefficient of diffusion of hydrogen
in transformer oil. Given an observed 7 and the value of D, then, one can estimate
L and decide if the proposed process makes physical sense. Using an extremely
rough estimate of D as 5 x 107! m?/sec, the boundary layer thickness is estimated
as 8.5 mm, a reasonable value.

Modeling the transport of hydrogen from the oil to the gas space with a time
constant of 40 hours, and from the gas space to the expansion tank with a time
constant of 400 hours, the Hydran response following the arcing can be accounted
for quite closely. The agreement is improved if it is assumed that some amount of
gas went directly into the gas space in the form of bubbles. Preliminary experiments
showed that a significant amount of bubbles were created by the arcing apparatus.

The gas module parameters follow the decay, shown in Figure 6.15. Only param-
eter 0, of Equation (6.1) is shown here. Parameter 6, of the same equation is closely
correlated with this parameter, though the two are inversely related. Surprisingly,
the estimate of 6; generated on December 3 is larger than that of December 1, de-
spite the fact that the dissolved gas content of the oil was higher on the first of the
month. This can be explained by the fact that the trend in the gas content which
was uncorrelated with temperature was more significant on December 1. The final
experiment described here demonstrated how to improve the correlation between
the behavior of the parameters and the actual gas content of the oil.
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Figure 6.16: Load and Excitation During Low-Intensity Arcing

' 6.4.4 Parameter Trend Analysis Experiment

This last experiment was designed to investigate the behavior of the gas module
parameters in the face of low-intensity arcing. Brief three-second arcs were gener-
ated over a period of five days from December 14 to December 18. Ten of these
arcs were produced the first day, five arcs the second day, three arcs the next day,
four arcs on the fourth day, and six three-second arcs on the last day.

The load and excitation for this period are shown in Figure 6.16. A reasonably
consistent load cycle was maintained throughout this experiment. Rough guidelines
as to the timing and magnitude of the load changes insured that the loading approx-
imated a large daily load cycle. Random variation was introduced through arbitrary
selection of loads from pre-determined load ranges and from flexibility in the sched-
ule of load changes. For this experiment, this load profile was uninterrupted on the
weekend.

The response of the Hydran is shown in Figure 6.17. The range of the sensor’s
output has been magnified to more clearly display the slight overall rise in measured
combustible gas content of the oil. However, using only this data, it would be
impossible to prove that the actual gas content of the oil has changed. This small
rise could, in fact, be due to an increase in the temperature of the transformer—
perhaps due to abnormal loading or a rise in ambient temperature. Even on those
days when the average reading of the sensor is significantly raised, most of the day’s
readings are lower than the maximum reached on “normal” days.
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Figure 6.17: Hydran Response During Low-Intensity Arcing

Looking at the thermal data for this same period, in Figure 6.18, the possibility
that the rise in the Hydran response is due solely to temperature is not ruled
out. The top oil temperature on December 16-17 reaches a higher maximum and
minimum than usual. (This was due to slightly abnormal loading.) Without a
mathematical model, it is impossible for a transformer operator to recognize this
gas content as anomalous with any degree of certainty.

Even armed with an adaptive model of the gas sensor’s response, the arcing
does not become immediately obvious. In this experiment, the gassing rate was
so small that the uncorrelated trend due to arcing did not necessarily disrupt the
estimation and acceptance of new parameters. Thus, new parameters were installed
the morning of December 17 that caused the residual to once again return to near
zero. Figure 6.19 is a plot of the residual.

Figure 6.19 shows that if the rate of gas generation is too slow then the resid-
ual will not necessarily reveal the changing condition of the transformer—residual
analysis is targeted at faster processes. This is the very reason that parameter
trend analysis is so important for transformer diagnosis. The changing values of
the parameters capture the changing behavior of the transformer.

In order to evaluate how the parameters could best be evaluated, the parameters
were estimated on a continuous basis from this experiment’s data. This was done
using a moving two-day-wide window of data that was updated for each new piece
of data. The results for one of these parametars is given in Figure 6.20. The rise
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Figure 6.18: Thermal Cycling During Low-Intensity Arcing
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Figure 6.19: Gas Residual During Low-Intensity Arcing
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Figure 6.20: Adaptive Gas Content Model Continuous Parameter Response

in parameter value is on the same order of magnitude as the daily variation of the
parameter. It is still difficuit to see from this data how the gas content of the oil
changed, and thus it is difficult to interpret what has occurred.

The next step was to investigate the behavior of the model in the model in-
put/output space. Because the dissolved combustible gas model has a single in-
put and a single output, the model space can be represented in a straightforward
fashion in two-dimensions. Each model determined by the continuously estimated
parameters of Figure 6.20 was mapped into the model space formed by the top oil
temperature and the Hydran output. Displayed in quick succession, this images
formed a motion picture that clearly demonstrated the changing behavior of the
estimated model.

Figure 6.21 summarizes the changing behavior exhibited by this sequence. Each
line spanning the displayed input (temperature) range represents a model estimated
from a different two-day window, though most likely overlapping with the input
window of another displayed model. The models are displayed as straight lines
rather than the more accurate parabolic sections. For the sensor currently installed
in the Pilot Facility and for the temperature range shown, a straight line is adequate
for purposes of discussion.

The small black arrows denote how one estimated model transformed into the
next. The large white arrow indicates the overall behavior of the model with pass-
ing time. Generally the model was rising, estimating higher Hydran readings for
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Figure 6.21: Gas Content Model Response in Model Space

the same temperature at a later time. But the model was being updated based on
data taken at different times, seemingly changing the temperature dependence of
the sensor. That is, when the most recent data was taken at a low temperature, the
discrepancy between the readings at lower and higher temperatures was minimized.
This is because, though a given gas content would yield a lower reading at a lower
temperature, the actual gas content had risen while the temperature was falling.
On the other hand, when the most recent data was taken at a higher temperature,
the temperature dependence of the sensor seemed more severe, since both the tem-
perature and the actual gas content had risen. While the temperature dependence
of the sensor appeared to oscillate, the estimated parameters oscillated as well.

At the extremes of the temperature range, the estimated Hydran reading os-
cillated widely. But at the middle of the range of inputs, the model response was
much more stable. Figure 6.22 shows the output of the estimated models simu-
lated at 65°C. The behavior of the gas content of the oil can be seen very clearly.
While the gassing continued, the gas content increased. When the arcing ceased,
the equilibration of gas with the gas space began to dominate the behavior of the
gas content. Using this thermally-normalized response, the estimated parameters
can be more easily related to the actual gas content of the oil.

The technique of thermal normalization was tested on the parameters that had
been accepted by the Pilot Transformer Monitoring System. This produced the
data shown in Figure 6.23. For comparison, a composite of gas chromatography
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Figure 6.22: Thermally-Normalized Response to Low-Intensity Arc

results is also plotted. The composite value equals
H, +0.15CO +0.08 C,H, + 0.01 C,H,

. It should be noted that each data point from the gas chromatograph represents
several hours of technician time. In actual practice, such data is expensive and,
thus, very infrequent. The normalized parameters, on the other hand, are esti-
mated automatically from data which is continuously monitored; there is virtually
no marginal cost associated with each data point.

Comparing the two sets of data, it can be seen that they agree reasonably well.
The offset between the two sets had been previously recognized and accepted. Both
data streams reveal the effect of the de-gas and the first tw~ arcs. However, o=ly
the estimated parameters reveal the presence of a slow gassing event.

Figure 6.23 shows that the normalized parameters are much more robust in
the face of inappropriately accepted parameters. The three sets of parameters ac-
cepted on Mondays before the criteria was tightened cause much smaller extraneous
anomalies. This can be explained by considering that if the transformer is thermally
stable at, for example, 70°C, then the parameters that result will not match the
behavior of the sensor over the full temperature range, but will yield a reasonable
estimate of the response at 65°C. This points up the danger of considering only the
normalized parameters—doing so assumes that the temperature dependence of the
sensor will not change.
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Figure 6.23: Trends in Thermally-Normalized Model and GC Readings

6.5 Summary

This chapter presented the results of several experiments designed to explore the
capabilities of the proposed monitoring system. Included was a discussion of why
this approach was necessary, as well as how the experiments were chosen. The ex-
perimental setup was then described. Finaliy, the results themselves were presented,
along with numerical analyses to justify their physical interpretation.
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Chapter 7

Proposed MIT Transformer
Monitoring System: Advanced
Diagnosis

In this chapter, a structure for an automated transformer diagnostic system will be
developed from the results of the previous chapters. Section 7.1 itemizes the cate-
gories of knowledge which have been identified as important from both traditional
monitoring techniques and the application of adaptive models of normal behavior.
In Section 7.2, a detailed analysis of three of the experiments described previously
will be presented. This analysis stresses how the diagnosis attained from an indi-
vidual anomalous event would evolve under the influence of continuously arriving
data. The next section, Section 7.3, discusses the common structure of much of the
knowledge that is used in diagnosis and how this knowledge might be represented.

7.1 Categories of Knowledge
The transformer expert applies several different types of knowledge to the problem of
incipient failure diagnosis. This knowledge can be divided into three broad classes:

¢ General transformer knowledge
o Site-specific knowledge about the particular transformer being monitored

e “Common sense” knowledge.

Common sense knowledge can not be used effectively by an automated system.
For instance, a human expert may know, from knowledge of the location of the
transformer, about the environmental conditions to which the transformer has likely
been exposed during its lifetime. Soot, acid rain, local wildlife and even vandalism
might be inferred from the site of the transformer. Including all of these factors in
an automated diagnostic system would not be cost-effective.
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Each of the first two classes, gencral and site-specific knowledge, can be di-
vided into several categories. In this section, these categories will be itemized, with
examples from the case studies.

Additional categories of knowledge are introduced that derive from the adaptive
models of normal behavior that have been promoted during this research. These
new types of knowledge can also be classified in terms of general and site-specific
information.

7.1.1 General Knowledge about Transformers

Some categories of knowledge can be applied to transformer diagnosis indepen-
dently of any detailed knowledge of the design of the particular transformer under
consideration. Such categories include:

o Physical properties of materials

Failure statistics

Traditional mounitoring

Sensor behavior

e Costs

7.1.1.1 Physical Properties of Materials

Two physical properties which have been used in analyzing the experimental results
of the last chapter were the coefficient of diffusion of hydrogen in nitrogen, and
Oommen’s distribution coefficient for hydrogen in equilibrium with transformer oil.
These are basic properties of the materials in question.

7.1.1.2 Failure Statistics

Failure statistics are necessary if the transformer expert is to be able to evaluate
the a priori likelihoods of various failures. Relative probabilities allow the expert
to assess the likelihood of a given diagnosis. Some of the classic diagnostic methods
have these failure statistics built in. The Rogers Ratio Method, for example, divides
a four-dimensional ratio space into discrete subspaces, some of which correspond to
particular diagnoses. But the process of determining how to partition the space is
based on the statistical study of a large number of dissolved gas analyses.
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7.1.1.3 Traditional Monitoring

The monitoring techniques discussed in Chapter 2 are not expected to be replaced
by the new methods described in this thesis. Rather, the different methods can
be used together to form a monitoring protocol that will greatly improve incipient
failure detection and diagnosis in large power transformers, hence improving their
reliability, while still remaining cost-effective.

7.1.1.4 Sensor Behavior/Limitations

Though seldom included in discussions of transformer diagnosis, the limitations of a
particular type of sensor are an important consideration. For example, dissolved gas
analysis is a key component of many utilities’ monitoring efforts, but an abnormal
gas chromatograph result is always suspect. In practice, an abnormal analysis must
be confirmed with a second analysis before any action is undertaken(40,41]. This
is not necessarily a vote of no confidence for the sensor itself, but for the entire
sampling and analysis process. In fact, most false abnormal results can be traced
to the sampling process.

7.1.1.5 Costs

The costs associated with any possible action affect the decisions made by the
expert. However, like failure statistics, costs are seldom considered directly. Instead,
they have been compiled into the normal response to a given situation. Only during
a major decision, such as whether or not to shut down a transformer, would costs
receive explicit attention. Specific costs might be site-specific—it would cost more
to send a technician to a remote location to examine a transformer—but in general
the cost structure will not change drastically from transformer to transformer.

7.1.2 Site-Specific Knowledge about a Particular Transformer

In addition to general knowledge about transformers, an expert requires specific
information about the transformer being monitored. Some site-specific categories
are:

o Design parameters
¢ Operational profile

e Maintenance history

7.1.2.1 Design Parameters

Design parameters include a wide range of characteristics that are chosen to meet
the specifications of the utility. These characteristics include such factors as the use
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of convective or forced flow for cooling, the presence or absence of a gas space, or full
load rating. These characteristics are not always chosen explicitly, but may arise
as a consequence of a number of related design decisions. For instance, the thermal
time constant of the transformer is not the result of a single deliberate choice, but
is derived from the design considerations that ensure a maximum temperature rise
with the given cooling mechanism.

7.1.2.2 Operational Profile

The operational profile of a transformer is an important piece of information for
diagnosis. It has been shown here that a detailed schedule of loading levels can
be used to improve the engineer’s understanding of the internal conditions of the
transformer. Such detail is not always necessary. Correlations have been discovered
between gassing events and the use of the tertiary winding, without reference to
precise loading information. Knowledge that a transformer is being used with an
arc furnace can modify which failure modes receive the most attention.

7.1.2.3 Maintenance History

The maintenance history of a transformer can help identify the types of failures to
which the given transformer is most prone. The maintenance history of transformers
with similar designs by the same manufacturer may be useful in the same way. In
addition, this record may include known problems that either were not repaired or
may not have been repaired properly.

7.1.3 Knowledge Derived from Adaptive Models of Normal
Response

Applying adaptive models of normal transformer behavior to the task of trans-
former performance monitoring introduces new categories of knowledge that the
traditional transformer expert does not use. These categories can also be grouped
as general (applicable to many transformers) or site-specific (applicable only to the
monitored transformer). Two important categories of general knowledge associated
with adaptive models are:

e Parameter interpretation
o Residual interpretation
An important category of site-specific knowledge is:

¢ Estimation requirements
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7.1.3.1 Residual Interpretation

Residual interpretation is a critical component for diagnosis. This is intimately re-
lated to the model structure associated with the residual. Consider the two thermal
models presently implemented: the IEEE loading guide model and the MIT con-
strained flow model. Both predict essentially the same quantity—the temperature
of the oil at the top of the transformer. Both recognize that this temperature is gov-
erned, at least in part, by the amount of heat being generated by the transformer,
a quantity that may change during an incipient failure. However, the IEEE model
is based on global measurements of the transformer, such as the temperature of the
mixed top oil, while the MIT model is based on local measurements, such as the
temperature of the oil leaving a particular duct.

Because of these differences, identical residual anomalies arising from these two
modules would result in very different interpretations. The IEEE model is based on
a number of different physical processes. Heat transfer between the winding and the
oil, heat transfer between the oil and the tank, and heat transfer between the tank
and the environment all play a role. An anomaly could represent a disturbance in
any one of these processes. The MIT model focuses on the heat transfer between
the oil and the winding, in a specific physical location. Thus, the set of failures
to which one module is sensitive is not identical to that of the other. In addition,
for the failures to which both are sensitive, identical magnitudes of anomaly may
represent very different magnitudes of fault severity.

7.1.3.2 Parameter Interpretation

Identifying parameter trends is not sufficient for performing diagnosis. It is nec-
essary to be able to interpret the parameters and their trends. For some models,
estimated parameters can be equated to familiar physical quantities. For others,
interpreting parameter trends may be dependent on developing empirical relation-
ships between different types or magnitude of trends and particular failure modes.

Physical Parameters The thermal module based on the IEEE loading guide
models, THIE3MOD, is one module whose parameters are amenable to physical in-
terpretation. Equation (4.4) presented the equation for estimating these parameters
as:

Ttopoil[k] - Tambient[k] = 01 X (ﬂopml[k - 1] - Tambient[k - 1]) = (7.1)
02 X Ilow[k]l'e

A half of a year’s worth of THIE3MOD parameters are presented in Figure 7.1. Note
that curve A, labeled “IEEE thermal parameter #1” (8, of Equation (7.1)), is
plotted against the left-hand axis, as indicated by the left arrow (+), while curve
B (8;) is plotted against the right-hand axis (—). Also, curve A is dimensionless,
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Figure 7.1: THIE3MOD Parameters

so no units are indicated, while curve B has dimensions of °C/amps'®, indicated in
parentheses following the curve label.

It is difficult to interpret the parameters as presented in Figure 7.1. Both curves
exhibit some noise—in fact, this noise appears to be highly correlated. As displayed,
the signal-to-noise ratio of the two curve appears to be similar. Displaying curve A
on a scale that includes the origin, however, shows the noise in the estimation of 6,
to be almost non-existent; 6, is almost identical to unity. Which view is correct? (It
will be shown below that it is the difference between 8, and unity that is the critical
quantity.) Learning to interpret these parameters from experience would take a
significant amount of time, and it is unclear how difficult it would be to apply the
resulting interpretation to different transformer designs. Knowing the relationship
of these quantities to physical parameters speeds the learning process and makes
the end result more robust.

For purposes of parameter estimation, Equation (7.1) is used. However, the
actual temperature rise equation is:[29]

to

Tiopoit[k] — Tambient|k] = (1- : ) X (Tiopoitlk — 1] — Tambpient[k — 1]) + (7.2)

]

T Ty 118
(("' + to) Irl.;?ed) X Dioul ]
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Figure 7.2: THIE3MOD Parameters in “Physical” Form

where t, is the oil time constant!, 7 is the sampling interval, T} is the full-load
top oil temperature rise above ambient temperature, and I,4.4 is the transformer’s
rated load. The parameters 7 and I 4.4 are fixed parameters; for the Pilot Facility,
7 is two minutes and I,q4q is 208 amps. Solving for t, and T}, yields:

6, T

to = 1 i 01 (7-3)
9, ILS

Ty —1’—_—5:‘- (7.4)

The estimated parameters of Figure 7.1 were manipulated according to these rela-
tions and the estimates of these physical parameters are shown in Figure 7.2. Note
that the full-load top oil temperature rise over ambient temperature, Ty, is plotted
against the right-hand dependent axis.

The data shown in Figure 7.2 indicates that the estimates of 6; and 6, that are
being generated by the Pilot Facility’s monitoring system correspond to relatively
stable estimates of t, and Tj. Experience is still necessary to tell if the small
changes in these estimates represent significant trends, or if they can be linked to
changes in the load profile. (Beware of parameters accepted on a Monday!) But

1This notation conflicts with that of [29], where t, is written T, and Ty is written 0. In this
thesis, @ is reserved for parameters and T is reserved for temperatures and temperature rises.
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this experience may already exist, and it is reasonable to suppose that it would
apply across a broad range of transformer designs.

Composite Physical Parameters Even when a model is physically-based, it
is not always possible to isolate a particular physical parameter from the models
parameters. Equation (4.13), the equation used to estimate THMOD’s parameters,
is:

(T'topduct [k] + Tbotduct [k]) - (11topduct[k - 1] + Tbotduct[k —_ 1]) =
01 X (T'topduct[k] - Tbotduct[k]) + (75)
02 X Ilow[k]2

Archer’s explanation of the physical basis for this model[29] reveals that

—2Qd7'
6, = .
1 v, (7.6)
2gT
6, = .
2 e,V (7.7)

where Q4 is the volume rate of flow through the duct, 7 is the sampling interval, V;
is the duct volume, g is a proportionality constant that reflects the fraction of the
total winding losses which is associated with the duct, p is the density of the oil,
and ¢, is the specific heat of oil.

Focusing on 6,, it can be seen that it would be difficult to isolate any particular
physical parameter. The parameter  is known, and c, probably would not change
significantly, even in response to fouling of the transformer oil by the byproducts
of oil and cellulose degradation. The oil density, p, is temperature-dependent, but
the oil temperatures around the duct are known, and perhaps p could be approx-
imated. This leaves g and V; as two unknown quantities. V; might be measured
when the transformer is commissioned, but it could change significantly over time—
particularly in response to a through-fault.

So, assuming that c, will remain constant and p can be approximated, one is
left with the relation

8, o % (7.8)
It does not seem possible at this time to isolate g or V;. However, that is not
required to support physical interpretation of the parameter behavior. For instance,
an increase in 6, could represent either an increase in g or a decrease in V;. Evidence
from other sources may be used to further refine this analysis. If V; changed enough
to be detected by a change in 8, of THMOD, this event should also be detected by
the vibration module.
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Black-Box Parameters Black-box parameters are not related to any set of phys-
ical parameters in a known way. Interpretation of these parameters will rely heavily
on future experience. However, this is not to say that these parameters will not be
immediately useful for diagnosis. The situation described above is a good example.
VIBMOD’s model of the vibration response of the winding is a black-box model, but
the model’s parameters are stable. If the parameters do not change much then this
is strong evidence that there has been no coil movement. In the future, it may be
possible to interpret what a change in parameters actually means. But for now,
whether or not the parameters change is important diagnostic information.

7.1.3.3 Estimation Requirements

Recognizing the estimation requirements of a module is necessary for determin-
ing when a failure to estimate acceptable parameters is indicative of an incipient
transformer failure and when it is not. A transformer will not always exercise its
full range of behavior during each estimation interval. This is why the bin-storage
implementation of parameter estimation of Chapter 4 was developed. Most of the
existing models are driven by temperature, which is in turn driven by load. Thus,
when the transformer goes through its normal daily load cycle, it is expected that
the transformer will exhibit its normal range of behavior, leading to good parame-
ters.

Failure to estimate acceptable parameters, then, may represent a significant
piece of diagnostic information. It could even be used for detection, acting as a
trigger for diagnosis. A failure to estimate parameters can usually be traced to a
underlying cause: an increase in noise in one of the measured signals or a trend in
the targeted output that is uncorrelated to the model’s inputs, for instance. These
underlying anomalies might be identified more quickly through residual analysis,
but if not, reacting to unexpected failures in estimation may improve the response
time of the monitoring system to incipient failures.

7.1.4 Summary of Categories of Knowledge

By limiting the domain of the diagnostic system to the types of knowledge discussed
above, the complication of having to model common sense is eliminated. In the
resultant limited domain, the categories of knowledge can be grouped as general or
site-specific. In applying this monitoring system to a particular transformer, the
general knowledge that has been compiled over time can be applied unchanged.
The site-specific knowledge, on the other hand, has to be either supplied during
the installation procedure or learned by the system. Fortunately, most of this
information would be available at the time of installation.
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7.2 Diagnosis Process

In this section, the results of the experiments described previously will be reviewed,
with a focus on how a diagnosis would be developed. Three experiments will be
considered: the thermally-induced sensor malfunction (the preliminary experiment),
the residual response experiment (the 12-, 60-, and 72-second ar~s), and the param-
eter trend analysis experiment (the intermittent 3-second arcs).

7.2.1 Thermally-Induced Sensor Malfunction

In this experiment, a heating tape was piaced around the combustible gas sensor to
disrupt its thermal compensation. The reader will remember, from: Chapter 5, that
the resulting anomaly in the gas residual was correlated in time with a small rise
in the constrained flow thermal residual, which was uncorrelated in time with any
change in load. In a system of automated diagnosis based on the MIT approach to
transformer monitoring, the sequence of events and decisions might have occurred
as follows:

0:00 A combustible gas anomaly is detected. Both the level and rate-of-
change thresholds for the gas residual are violated. Figure 5.2, showing the
residual, is reprinted in Figure 7.3. At this point, the whole range of gas-
generating failure modes become viable diagnoses. Sensor malfunction is in-
cluded in the list of possible diagnoses.

When an anomaly occurs in one measurement, residual, or parameter stream,
the diagnostic system should check for correlated events in other streams. The
presence or absence of correlated events can be used to refine the diagnosis.
Because of the time lags introduced by the physical constants of the trans-
former, these correlated events may include events that occurred before the
anomaly was detected.

Load information is one stream that is always of interest. Large increases in
load can drastically change the dielectric stress throughout the transformer,
possibly acting as a trigger for any one of a number of failure modes. Large
changes in load also set up thermal transients in the transformer; this might
increase mechanical stress as components expand or contract, or might disturb
oil circulation patterns enough to change the immediate source of oil reaching
the various sensors.

Looking back at recent load data reveals that the load had risen to its present
level from no load only 25 minutes previously. Looking back a little further
reveals a correlated drop in load just a few minutes before that. While there
is perhaps a small chance (when examining the load data in isolation) that
these correlated changes in load could be due to an intermittent sensor mal-
function, any such chance becomes vanishingly small when the excitation data
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Figure 7.3: Thermally-Induced Gas Residual Anomaly

is considered. A brief drop to no excitation is exactly correlated in time with
the brief drop to no load. This is the signature of a maintenance shutdown for
the Pilot Facility. Whenever a researcher enters the transformer bay, whether
to take an oil sample or adjust a sensor, the high voltage is turned off. It is
reasonable to expect that a commercial transformer monitoring system would
receive independent confirmation that a scheduled shutdown had occurred.

The fact that a shutdown occurred is relatively neutral evidence, neither
strongly supporting nor discrediting any particular diagnosis. On the one
hand, there may be some slight support for sensor failure, as some mainte-
nance operations can disturb the leads between the data acquisition system
and the sensors themselves. Usually associated with this type of disturbance
is an increase in the noise content of the sampled signal. A measure of noise
content is not immediately available, but will require further measurements.
On the other hand, the fact that the load was only returned to the load level
that existed before the shutdown does not mean that the load increase could
not have been a contributing factor to a gassing failure. The thermal, me-
chanical, and dielectric transients induced by the shutdown may have pushed
a degraded insulation system over the edge. These two considerations pretty
much cancel each other out, with sensor malfunction perhaps having a slight
advantage.
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Figure 7.4: Thermal Residual for Thermally-Induced Gas Anomaly

It might be helpful to differentiate between different maintenance operations.
Some operations, such as oil sampling, are commonplace; mistakes that affect
the performance of the transformer or any of its sensors are unlikely. Other
operations, such as adjusting a sensor, are less common; mistakes may be more
likely—and these mistakes would probably affect the operation of the given
sensor. Knowing what operation was performed may help in determining if
a sensor malfunction is a good diagnosis. Querying the transformer operator
when this information could be helpful is one option; specifying the main-
tenance operation as part of the shutdown procedure is another. The latter
solution would be preferred in order to limit the amount of human interaction
needed during an anomaly.

There are no anomalous residuals besides the gas residual at this time. The
thermal residuals showed small “blips” correlated with the the maintenance
shutdown. However, this is not unusual, given the large change in load associ-
ated with a shutdown. One of the constrained-flow-model top oil temperature
residuals is seen in Figure 7.4 (originally shown in Figure 5.3).

The fact that the thermal residuals and thermal parameters were normal
before this gas content anomaly occurred would tend to rule out general over-
heating. Given more experience, it is possible that localized overheating could
also be eliminated from consideration; it is not yet possible to say whether
localized overheating (due to circulating currents, for example) could cause
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such significant gassing without first affecting the thermal residuals.

A continuous moisture residual is not being generated at this time, but its
response to this experiment might have been very informative. Of course, the
extraneous external heating that actually caused the anomaly would not affect
the moisture ccntent of the oil, but this lack of response would Lave indicated
that the failure did not include degradation of the cellulose. In a true gas-
generating failure that involves cellulose, gases and moisture would be evolved
at related rates. Immediately following the failure, the status of the oil should
be an accurate iudicator of the amounts of moisture and combustible gases
produced.

The gas residual is the only anomalous data stream. Since the other residuals
do not exhibit anomalous behavior at this time, it is possible to eliminate some
classes of sensor malfunction. This is because there are shared elements in the
data acquisition system that would affect more than one measurement were
one of them to fail. For example, if an analog-to-digital converter were to fail,
any measurement making use of that converter would be affected, possibly in
a highly correlated—and thus very revealing—way.

The initial diagnosis is arcing, partial discharge, or sensor malfunction. There
is little initial evidence to distinguish between these possibilities. In fact,
localized overheating and even general overheating are not eliminated as can-
didates, merely evaluated as less likely.

At this point, there does not seem to be any immediate danger. If the gas
content residual continues to rise at the same rate, there is some time before
a dangerous amount of gas will be accumulated. The recommended course of
action is to wait and see how the situation develops. Depending on the location
of the transformer and the availability of technicians, among other factors, a
dissolved gas analysis might be ordered. Failure statistics may enter into the
decision; how often does such a situation as this evolve into a catastrophic
failure?

The gas residual continues to grow. The thermal residual grows
as well. During the first three hours following the detected anomaly, the
gas residual continues to grow at the same rate. From limited experience,
this seems to rule out one type of sensor malfunction associated with a faulty
connection between the sensor and the data acquisition system. This failure
does manifest as a drift in the measured output, but it is unlikely that this
rate of drift would stay constant over such an extended period. This type of
sensor failure is usually accompanied by an increase in the amount of noise in
the measurement.

The thermal residual also increases. This increase was not considered signif-
icant for the first half hour or so, as the residual may still be responding to

140




3:00

disturbances in the convective flow due to the maintenance shutdown. How-
ever, it soon became apparent that this was an actual rise in the residual,
especially in contrast to the decay of the residual that preceded the observed
gas anomaly. (This decay was in response to a load change on the previous
day; it is an accepted modeling error associated with this particular model
structure.) It should be stressed that this thermal residual is not violating
any level or rate-of-change detection thresholds. Its behavior is only identi-
fied as anomalous because of its correlation in time with an anomaly that was
detected—the gas anomaly.

Looking back on the beginnings of the thermal anomaly and correlating with
the gas anomaly, it can be seen that the two began at essentially the same time.
It is possible that this thermal anomaiy and the gas anomaly are unrelated,
but logic suggests that this is extremely unlikely. Chances are that the two
anomalies have the same root cause and, considering the close coincidence of
the onset of each, they most likely have tne same immediate cause.

Assuming that the gas and thermal anomalies have the same immediate cause
and assuming that gas anomaly is not due to a sensor malfunction, it may
be possible to triangulate the position of the failure. An observed rate of gas
generation implies an approximate rate of energy dissipation, and thus fault
temperature. Knowing the fault temperature, one might get a rough estimate
of how far from the sensor the fault must be to produce the observed anomaly.
The Pilot Facility has three instrumented ducts; a monitoring system for a full-
sized power transformer might have many more. As more sensors are added,
the additional information may narrow the possible location of a detected
failure to a very small area. This might require a relatively detailed knowledge
of the temperature distribution in the transformer.

If, on the other hand, a thermally-induced sensor malfunciion is assumed,
then triangulation may still be possible. Given the response of the Hydran
sensor, a hypothesized failure location implies a particular fault temperature
and thus a temperature distribution. This distribution must agree with the
observed thermal residuals. If there is no location that is consistent with the
observed behavior, then a diagnosis of two unrelated failure modes, or of some
type of sensor malfunction that is not thermally-induced, may gain credence.

The gas and thermal residuals peak. It becomes possible (after a few
sensor readings) to evaluate the noise component of the gas residual which, it
turns out, has not changed appreciably. This, along with the fact that there
is a definite correlated event in the thermal residual, make a diagnosis of a
loose-connection sensor malfunction extremely improbable.

Reviewing the load data reveals that the load has remained constant through-
out the observed anomaly. The fact that the gas residual reached a maximum
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independent of any change in load might be used to argue against a diagno-
sis of overheating. True, some causes of overheating could be come and go
independent of load; solar magnetic disturbances and the loss and later re-
pair of forced cooling pumps are two examples. However, overheating is often
caused by the degradation of the solid insulation and movement of the coils,
two situations that can not spontaneously repair themselves. At the risk of
being repetitious, only experience can reveal the relative probabilities of the
two sets of events.

The gas residual begins to decay abnormally. Examining Figure 7.3,
it can be seen that the gas vesidual decays from a value near 50 ppm to less
than 40 ppm. The residual does not exhibit the “overshoot” seen in the other
50 ppm rise (after the 360-sec arc). In addition, the transition between a rising
residual and a decaying one is not as abrupt as seen in the other experiments.
Neither of this points is very telling, as the observed residual response when
the gas generation stops is most likely dependent on the nature and location
of the fault. What is telling, however, is the time constant of the decay, which
does not match those observed in the other experiments.

The gas residual drops sharply. There is no known transformer failure
mode that could account for such a rapid drop in the measured dissolved gas
content of the oil, apart from a sensor malfunction. Even exposed to a hard
vacuum, the oil could not release its dissolved gas so quickly.

It is a virtual certainty that the drop in the gas residual is due to a sensor
malfunction. There are two possibilities: the previously observed anomaly
was a manifestation of the same sensor malfunction, or the two events were
unrelated. Since there is an explanation that can account for all the observed
effects, this becomes the primary diagnosis. This diagnosis is, of course, ex-
traneous heating near the Hydran.

This final diagnosis had an extremely small a prior: probability. How often
will a Hydran be exposed to such a large external heat source? It is not unrea-
sonable to believe that this diagnosis might not even be included in the set of
possible diagnoses for an automated diagnostic system. Because of the sharp
drop in the residual, sensor malfunction would probably still be the prime
candidate. But, the presence of a confirmed, correlated thermal anomaly
would likely lower the certainty with which the diagnosis is put forward. So
much so, in fact, that a diagnosis of a gassing failure with an unrelated sensor
malfunction may become the leading candidate.

Gas residual remains stable and the thermal residual drops. The
amount that the thermal residual has dropped during this period is approxi-
mately equal to the amount that it had risen previously. The rate at which it
is falling is also comparable to the the rate of rise.
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The stability of the gas residual following its rapid-fall supports the hypothesis
that no gassing has actually occurred. Also, the start of the thermal anomaly
was correlated with the start of the gas anomaly, and the end of the thermal
anomaly is correlated with an almost cértain dissolved gas sensor malfunction.
This tends to confirm that a single sensc malfunction was responsible for
the entire sequence of events. If the possibility of a thermally-induced sensor
malfunction were considered, it would be accepted as the most likely diagnosis.

7.2.2 Residual Response Experiment

Three arcs were generated in this experiment. The first arc was 12 sec in duration,
the second was 60 sec, and the third was 72 sec. Gas generation only became appar-
ent after the second arc, with a rise in the gas residual of about 10 ppm. The effects
of the third arc were also readily apparent, with a rise of another 10 ppm. Later,
there was a sensor malfunction which exhibited behavior that was superficially sim-
ilar to the effects of an arc. During this sequence of events, diagnosis might have
proceeded past the following milestones:

0:00 A combustible gas residual anomaly is detected. As in the last exam-
ple, an anomaly is detected in the gas residual using level and rate-of-change
thresholds. Figure 6.10, showing this residual, is displayed again in Figure 7.5.
(From knowledge unavailable to the diagnostic process, it is known that the
anomaly was detected approximately 20 min after the second arc was gener-
ated.) Arcing, partial discharges, localized overheating, and sensor malfunc-
tion again topped the list of candidate diagnoses.

A maintenance shutdown occurred shortly before the anomaly. This might be
interpreted as slight support for sensor malfunction for the reasons discussed
in the previous example. Load information from this period is displayed in
Figure 7.6, as originally displayed in Figure 6.8.

No other residual is exhibiting anomalous behavior. None of the thermal or
vibration residuals is behaving in an obviously anomalous way. Again, some
types of sensor malfunction can be eliminated from consideration, as explained
in the previous example.

The recent history of the gas residual reveals a possible precursor to the ob-
served anomaly. In Chapter 6, it was mentioned that the first arc in this seriec
was followed by a very small rise in the gas residual. Even knowing when in
the residual stream to look for this event, it is unclear whether this slight rise
is significant. Without outside knowledge as to when the first arc occurred,
this tiny anomaly might not even be detected.

Nonetheless, this example illustrates that there may be events that, in the
normal course of detection, are overlooked but may loom very large during di-
agnosis. It may be possible to compare characteristics of the original observed
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Figure 7.5: Low-Intensity Arcing GASMOD Residual
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Figure 7.6: Low-Intensity Arcing GASMOD Residual

144




2:00

2:30

anomaly and its precursor to reveai the evolution of the incipient failure. In
this example, the difference in magnitudes of the step rises may be signifi-
cant. Or perhaps the interval between the two events could be important.
Of course, little meaning can be read into this particular example because
both the magnitude and interval were chosen by humans, unconstrained to
simulating a physically realizable failure evolution.

Another gassing event is detected. The rate-of-change threshold for the
gas residual is again violated a couple of hours after the first observed anomaly.
The result is another 10 ppm rise beyond the first rise. The measurement level
threshold is, of course, violated as well, but it has been so since the initial
detected anomaly.

Comparisons between the two 10-ppm anomalies reveal that both occurred
abruptly, making the transition from one level to the other in two sampling
intervals (20 minutes). The second arc had a greater “overshoot”; the differ-
ence between the peak value and the next sample is significant, but a slower
rate of decay is then established. It is surmised that this overshoot is due to
incomplete mixing of the gas in the oil. If this is the case, the overshoot of the
previous anomaly may not have been as evident because the sensor output
may have been sampled farther from the peak value. A faster sampling rate
during a failure might help locate the fault; the longer the oil circulation path
between the fault and the sensor, the less severe the overshoot. Additional
combustible gas sensors and a detailed knowledge of the circulation paths in
the transformer might be used to triangulate the location of the failure. At
this point, this is merely supposition and would need to be confirmed through
experimentation. The marginal value of this information would also have to
be considered.

The other residuals remained normal. By this time in the previous exam-
ple, the existence of a thermal anomaly had been revealed. While this is
strong cvidence against a thermally-induced sensor malfunction, it is does
not unequivocally eliminate that diagnosis. The smaller size of the observed
gas residual anomalies (compared to the previous example) means that a less
significant heat source would be needed to disrupt the sensor. The smaller
heat source might not be enough to generate a thermal anomaly. The reader
is reminded that the model which generates the thermal residual is crafted
to reveal the thermal characteristics of the winding; its ability to highlight
thermal anomalies away from the winding is limited.

The combustible gas residual begins to decay normally. As discussed
in Chapter 6, the idea of a “normal” decay is based on the fact that the
Pilot Facility’s test transformer has a gas space and that the gas space is
connected to an expansion tank. In many modern transformers, the oil is not
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in contact with a gas space and thus no equilibration will take place.? In those
transformers, no decay of the residual would be expected.

Still another gas residual anomaly is detected. (This anomaly is not
the result of an arc simulation. Thus, this is a true test of the diagnostic capa-
bilities of the transformer monitoring system.) The rate-of-change threshold
has again revealed the event. This event has the same basic characteristics as
the previous two anomalies: it is nearly a step change, and the magnitude is
approximately the same. There is no overshoot, but the initial event showed
that this is not necessary. In contrast to the previous events, the onset of this
anomaly is not as abrupt; this would most likely be considered insignificant
in light of the basic similarities among the three major anomalies.

The diagnosis at this point would have been three gas-generating events of
roughly equal severity. With more experience, the gas-generating events could
perhaps be identified as arcs.

The gas residual again begins to decay. As this is expected, it did not
change the previous diagnosis.

There is a sharp drop in the gas residual. This throws doubt on all
previous anomalous gas data. There is almost certainly a sensor malfunction
involved. On the other hand, the expected decay in the gas residual was
observed following the anomalies. So, either the transformer and the sensor
are malfunctioning—an unlikely event®—or the sensor is malfunctioning in
a manner that simulates a gas generating event in a transformer with a gas
space—also an unlikely event. Based on limited experience, the former seems
less unlikely.

Thus, a diagnosis of two unrelated failures becames the prime candidate by
default. Assuming this to be true, when did the sensor begin to malfunction?
Experience with the Pilot Facility’s data acquisition system suggests that
a sensor can acquire an incorrect offset. The relative behavior of the sensor
remains essentially correct but the absolute readings are off. The negative step
change in the gas content measurement was either this offset being established
or corrected. The magnitude of this change exactly corresponds to the positive
step change of the latest anomaly. This, in conjunction with the slightly
different character of that anomaly, makes it most likely that there were only
two gas-generating events—though there is a significant chance that the drop
in the gas measurement is the first manifestation of the sensor malfunction.

?There may be some adsorption of the gas by the solid insulation, though this does not seem to
have been a major effect with the Pilot Facility.

30r not so unlikely. A lightning strike could damage both the transformer and the sensor, but
the damage would likely manifest more closely in time. The possible behavior of a sensor subject to
such abuse is not known at this time.
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The gas residual returns to its previous level. This does not greatly
change the previous analysis, but merely confirms that the sensor is switching
between two states. From past experience, it can be assumed that one of
those states represents cotrect operation. The exact correspondence of the
magnitude of this gas residual transition with the two previous transitions
make them all suspect. The diagnosis: two gas-generating failures (arcs) and
a sensor malfunction.

The gas residual again drops rapidly. The magnitude of this drop again
corresponds to the latest transitions. This makes the previous analysis all the
more certain.

7.2.3 Parameter Trend Analysis Experiment

This experiment was designed to simulate a small incipient failure, generating com-
bustible gases at a very slow rate. While this experiment exercised the gas module,
GASMOD, it is illustrative of how adaptive parameters from any of the proposed
model structures might be useful. An automated diagnosis process might conform
to the following scenario:

0:00

A gas parameter anomaly is detected. The thermally-normalized pa-
rameters that were developed in Chapter 6 are shown in Figure 7.7 (originally
displayed in Figure 6.23). (The vertical lines indicate days on which arcing
was simulated.)

On the morning of December 17, parameters were estimated that did not fit
with the developing trend. At this time, the transformer was still reacting to
the major disturbance injected into the gas/oil system on November 27—the
360-sec arc. The normalized parameter was falling and seemed to be ap-
proaching equilibrium. The normalized parameter of December 17 represents
a significant deviation from this trend. Perhaps equally significant is the fact
that parameters had not been successfully estimated for several days previous
to this, despite sufficient thermal cycling.

Recent gas residual data indicates that gas generation had likely started three
days previously. Figure 7.8 shows the residual from the period in question
(from Figure 6.19). The residual rose fairly sharply on December 14, though
not so sharply or so long as to be detected as an abnormality. This rise
appeared to cease late that day. The residual did not appreciably rise nor
decay for the next two days, but merely went through its normal daily cycle
(due to normal small modeling errors).

The rise on December 14, uncorrelated as it was to temperature, explains why
parameters were not successfully estimated on December 15 and 16. But at
this point in the sequence, it was unclear whether this rise represented an

147




« A. Q29 contant (normelized to 65°C) (ppm)
100 « B. GC composito (ppm)

I I I I | I L LUk (1
10/2 10/23 1113 12/4 12/25
Time
Data from ©/11/89 for 17 woek(s)

Figure 7.7: Thermally-Normalized Gas Parameters

« A. Gas content residual (ppm)

P4 [ T T Y T N O N
1212 1214 12/16 12/18 12/20 12/22

Time

Data from 12/12/88 for 11 day(s)

Figure 7.8: Gas Residual During Low-Intensity Arcing

148




actual gas- genemtinb event or it was another sensor malfunction. On the one
hand, the rise was not as quickly achieved as previous sensor malfunctlons
but, on the other hand, the expected decay did not manifest.

The diagnosis based on data gathered up to this point almost equally supports
a sensor malfunction or a slight slow gas generation event. Even if the previous
sensor malfunction (identified in Section 7.2.2) were included as a piece of data,
the results would still be inconclusive. True, the sensor now has a history of
malfunction, but some basic characteristics of the alleged malfunction are
different—namely, the rate of drift and the eventual magnitude of the offset.

In either case, the situation is not serious. The total amount of gas generated is
minimal, if in fact gas has been generated. And if the sensor is malfunctioning,
it is not far off and is still tracking the behavior of the gas content of the oil
in the normal manner.

1:00:00 New parameters confirm the anomaly. The GASMOD parameters of De-
cember 18 confirm the presence of the anomaly detected the previous day. The
thermally-normalized parameter reveals that these new parameters represent
a slightly higher gas content than before. This implies that gassing continued
beyond that noted from December 14. Apparently, gas generation continued,
but at a slower rate.

These inferences were by no means certain; the increase in the thermally-
normalized parameter is extremely small. It is possible that the increase can
be ascribed to noise in the estimation process, or to incompletely modeled
effects such as changes in ambient temperature. Further experience should
reveal at what level such increases become significant.

4:00:00-18:00:00 Additional parameters describe a response to gas generation. As
can be seen in Figure 7.7, the parameters from December 21 on trace out the
expected response of a gas-space transformer to a gas-generating fault. This
confirms that diagnosis.

But the fact that the gassing stopped and that the equilibration process then
could be discerred was not required for diagnosis. If the gassing had not
stopped, the parameters would have continued to rise to reflect the increasing
gas content. This is not dependent on the rate of gas generation. The rate of
parameter change would then reflect the rate of gas generation and thus the
severity of the fault. This experiment exercised this process in the span of a

few days, but incipient failures taking weeks or months to develop could be
handled equally well.

In this experiment, it was possible to identify changing rates of gas generation
from one day to the next. If the gas generation is slower, it may be necessary to
watch trends for many days before concluding that the rate of generation has
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changed. But by monitoring these changing rates it may be possible to gauge
the changing severity of the fault, or even to identify operating conditions
which aggravate the fault.

7.3 Knowledge Representation

The examples of the previous section illustrate the thought processes that take place
in the mind of a transformer expert. The next geal is to represent the knowledge em-
bedded in the decisions described above in a way that an automated system can use.
Over the last decade, a number of computer programs, called expert systems, have
been developed that are designed to solve knowledge-based problems—problems
that are knowledge-intensive, rather than data-intensive.

Many of these expert systems accomplish their goals by maintaining a distinction
between the knowledge necessary to solve the problem and the way in which that
knowledge is used. Such programs can be thought of as consisting of two pieces:
the knowledge base and the inference engine. The knowledge base might record,
for example, that A and B together imply C; the infercnce engine would then be
capable of deducing that C is true, given that A and B are both true. Commercial
expert system shells exist wherein working inference engines are made available with
an empty knowledge base. The user then employs his knowledge of the problem
domain to construct a suitable knowledge base.

There are many different expert system shells with many different features. But
there are two major types of expert systems: rule-based and frame-based. For
this discussion, a rule-based system will be assumed. In a rule-based system, the
knowledge base is encoded as a series of if-then, or production, rules; the example
above would be encoded as

IF A AND
B
THEN C

Expert systems almost always have some way of handling uncertain information.
In the previous example, A is not always known for certain and A and B being true
might not always mean that C is true. Some systems handle this by allowing
assertions to be accompanied with a certainty factor. The situation becomes more
complicated when two or more certainty factors must be combined, particularly
when the assertions conflict. Qualitatively, if D implies F is “likely”, and E implies
F is “likely”, then if D and E are both true, F' should be more than just “likely”—
perhaps “very likely”. On the other hand, if G implies that F' is “unlikely” and G
is also true, just how certain is F'? As one may imagine, tailoring a system such as
this to mimic the behavior of an expert is more an art than a science.

In the following discussion, the issue of uncertain knowledge will be glossed over
to some extent. The focus of the discussion will be on how tc represent the type
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of knowledge employed in Section 7.2. The nontrivial problem of how to effectively
combine the separate bits of expertise will be left to others. Certainty factors are
not the only mechanism for dealing with uncertainty; one method that is gathering
a following is the use of fuzzy sets to model uncertainty. Even certainty factors
come in different flavors; some are combined as if they were probabilities, using
Bayes’ Theorem, others measure positive and negative support separately. Below,
qualitative terms such as “likely” and “almost certain” will be employed.

If a clause in the “if” portion of a rule is followed by a certainty factor, then the
clause must be asserted with that level of certainty before the rule will be triggered.
If a clause in the “then” portion of a rule has a certainty factor, then the clause will
be asserted with the given certainty factor. In this discussion, the effect of asserting
a clause to be true more than once will be left undefined, except to note that the
resulting certainty will be at least as great as the more certain assertion. If the
certainty of a clause is not specified, it will be assumed to be definite.

The time lags between related events are accommodated by the structure

X WITHIN Y MINUTES

meaning that the assertion X was true within the last ¥ minutes. If this assertion
is true, then

X WITHIN Z MINUTES

is true as well, for any value of Z greater than Y.

In this section, the residual response experiment of Section 7.2.2 will be examined
further. The focus here is on how the knowledge used in this experiment would be
represented. The diagnosis is examined at two points during the evolution of the
failure: immediately following the detection of the gas anomaly, and immediately
following the last rapid drop of the gas residual.

7.3.1 Initial Diagnosis

When the detection process discovers an anomaly, it must trigger the diagnostic
process to determine if the anomaly represents a serious threat to the transformer.
When the expert system is initiated, it will first apply its primitives to the various
data streams to classify their behaviors. The result is a list of assertions. For the
residual response experiment, a partial listing of these assertions might be:
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ANOMALY

GAS_RESIDUAL is HIGH

MAGNITUDE of GAS_RESIDUAL_STEP{ s 10.1
GAS_ RESIDUAL_STEP2 wiTHIN 30 MINUTES
MAGNITUDE of GAS_RESIDUAL_STEP? is 1.5
MAINTENANCE WITHIN 1 HOUR

LOAD_STEP! WITHIN 1 HOUR

LOAD_STEP2 WITHIN 1.5 HOURS
THERMAL_RESIDUAL is ZERO
VIBRATION_RESIDUAL is ZERO |

Each of these assertions is the result of a straightforward analysis of a single data

stream, with the exception of MAINTENANCE. A MAINTENANCE assertion

would probably be supported by either an on-line maintenance log or an algorithmic

primitive that explicit looks for instances of correlated no load and no excitation.
The assertions listed above can be interpreted as follows:

e An anomaly was detected.

o The gas residual has exceeded its maximum threshold.

e The gas residual just experienced a step change of 10.1 ppm.
e The gas residual experienced a step change 30 minutes ago.

e The gas residual step change 30 minutes ago was 1.5 ppm.

A maintenance shutdown occurred an hour ago.

A load change occurred an hour ago.

A load change occurred an hour and a half ago.

The thermal residual is not anomalous.

The vibration residual is not anomalous.

The assertions GAS_RESIDU/AL_STEP! and GAS_RESIDUAL_STEP2 simply dif-
ferentiate between two events, the step change that forced the residual over the de-
tection threshold and the earlier, relatively insignificant step change. LOAD_STEP1
and LOAD_STEP2 refer to the two load changes that, when taken together and cor-
related with the excitation data, were interpreted as a maintenance shutdown.
Generating the assertions listed above does not consist of merely applying the
level and rate-of-change thresholds used by the detection process. As seen in the
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thermally-induced sensor malfunction experiment, anomalous behavior that would
be ignored by the detection mechanism can be useful to the diagnosis process. The
primitives that generate these basic assertions have to be sophisticated enough to
recognize patterns of behavior and not just thresholds. This lowest-level primitives
might only identify simple features such as local maxima and minima and inflection
points; there might be another layer of interpretation not represented here that
transforms these features into the assertions listed above. For instance, the “step
changes” referred to previously might actually consist of a short series of data points
that have been grouped together as a single event. This discussion should not imply
that each event must be re-identified each time diagnosis is triggered; this would
represent inefficient access of old data. Instead, some bookkeeping mechanism would
be necessary to prevent the same analyses from being conducted repeatedly during
the evolution of a failure. Once an event has been identified, it could be stored
in some ready-to-use format that could be referenced as basic facts. Assume, for
now, that the individual data streams can be classified so as to generate the list of
assertions shown.

The rules that make up the knowledge base of the diagnostic expert system can
now be used to combine these assertions to support other assertions. An expert
system may employ different strategies to select the appropriate rules to trigger
to progress toward the eventual conclusions. (Beackward and forward chaining are
two examples.) The mechanism of rule selection will be ignored in this discussion,
except to note that if two rules that are presented here appear to conflict, then the
more “specific” rule would be used. For example, consider a rule that encodes the
knowledge that maintenance increases the chance that the data acquisition system
has been damaged:

IF ANOMALY AND
MAINTENANCE WITHIN 2 DAYS
THEN DIAGNOSIS is SENSOR_MALFUNCTION (possible)

The sooner the anomaly occurs following a maintenance procedure, the more likely
it is that the maintenance procedure caused a senscr malfunction. One might encode
this with two more rules:

IF ANOMALY AND
MAINTENANCE WITHIN 2 HOURS
THEN DIAGNOSIS is SENSOR_MALFUNCTION (likely)

and

IF ANOMALY AND
MAINTENANCE WITHIN 2 MINUTES
THEN DIAGNOSIS is SENSOR_MALFUNCTION (almost certain)

If the anomaly occurs 30 minutes after a maintenance shutdown then the most
gpecific rule that applies out of these three is the second: sensor malfunction is
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“likely”. The third rule does not apply because the anomaly did not occur within
two minutes; the first rule does not apply because it is less specific then the second.
One other rule that might be triggered is:

IF GAS_RESIDUAL is HIGH AND
LOAD_CHANGE WITHIN 1 HOUR AND
LOAD_CHANGE s LARGE

THEN DIAGNOSIS is ARC (likely) AND

DIAGNOSIS is PARTIAL_DISCHARGE (likely) AND
DIAGNOSIS is OVERHEATING (possible)

At this stage of the knowledge engineering process, no other rules seem to apply
to the situation that arises immediately after the gas anomaly is first detected.
However, it is interesting to note that one rule that is not triggered is:

IF GAS_RESIDUAL is HIGH AND
THERMAL_RESIDUAL is HIGH
THEN DIAGNOSIS is OVERHEATING (likely)

In other words, since the thermal residual is not behaving abnormally, overheating
can not be considered likely, though it is possible (from the previous rule).

Thus the initial diagnosis is that arcing, partial discharge, and sensor malfunc-
tion are all likely, and overheating is possible. If the certainties associated with the
first three diagnoses could be further differentiated, it would be necessary to adopt
a system with greater flexibility for expressing certainties.

7.3.2 Final Diagnosis

A partial list of the assertions produced by applying algerithmic analyses to the
individual data streams would include the following:

ANOMALY

GAS_RESIDUAL is HIGH

MAGNITUDE of GAS_RESIDUAL_STEP! is —16.3
GAS_RESIDUAL_STEP2 WITHIN 3.2 HOURS
MAGNITUDE of GAS_RESIDUAL_STEP?2 is 15.2
GAS_RESIDUAL_STEPS WITHIN 4.3 HOURS
MAGNITUDE of GAS.RESIDUAL_STEPS is —15.4
THERMAL_RESIDUAL is ZERO
VIBRATION_RESIDUAL is ZERO

which would be interpreted as:

e An anomaly was detected.
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e The gas residual has exceeded its maximum threshold.

® The gas residual just experienced a step change of —16.3 ppm.
o The gas residual experienced a step change 3.2 hours ago.

® The gas residual step change 3.2 hours ago was 15.2 ppm.

e The gas residual experienced a step change 4.3 hours ago.

8 The gas residual step change 4.3 hours ago was —15.4 ppm.

e The thermal residual is not anomalous.

e The vibration residual is not anomalous.

A critical piece of knowledge is encoded as:

IF MAGNITUDE of GAS_RESIDUAL_STEP is NEGATIVE
THEN DIAGNOSIS is GAS_SENSOR_MALFUNCTION (almost certain)

That is, if there is a negative step change in the gas residual, then there is almost
certainly something wrong with the gas sensor.

The next bit of expertise that might be applied is the fact that if two step
changes in a single data stream and close in time are equal in absolute magnitude
but opposite in sign, and one step change is diagnosed as being due to sensor
malfunction, then the other step change is likely due to a sensor malfunction. In
rule form:

IF DATA1 STEPI AND
DIAGNOSIS of DATA1_STEP1 is SENSOR_MALFUNCTION AND
DATA1_STEP2 WITHIN 2 DAYS AND

MAGNITUDE of DATA1_STEP1 is near
—(MAGNITUDE of DATA1.STEP2)
THEN DIAGNOSIS of DATA1.STEP2 is
SENSOR_MALFUNCTION (very likely)

The reader should note that this rule does not directly reference the gas residual.
Instead, the data stream is referred to as DATA 1. The inference engine of the expert
system would be responsible for resolving DATA ! as GAS_RESIDUAL in this exam-
ple. Likewise, STEP1 and STEP2 are place savers that must be resolved to reference
different events. So, if this rule were applied to the events GAS_RESIDUAL_STEP2
(diagnosed as being caused by a sensor malfunction) and GAS_RESIDUAL_STEPS,
then DATAI_STEPI would map to GAS_RESIDUAL_STEP2 and DATA1_STEP?
would map to GAS_RESIDUAL_STEPS. In this way, a single general rule can
replace many specific rules that reference particular data streams.
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Referring back to Figure 7.5, the reader should note that if this new rule were
applied indiscriminately it would result in all the large gas residual step changes
being diagnosed as sensor failures. Entirely by coincidence, the step changes result-
ing from the real gas generating events have approximately the same magnitude as
those arise from the sensor malfunction. The “real” step changes were 10.1 and
13.1 ppm (2.1 ppm of which was “overshoot”); the others were 15.2, 15.4, 15.2, and
16.3 ppm. There is a significant difference between these two sets of magnitudes,
but this difference is not so large that the first two events should be diagnosed as
true gassing failures based solely on their magnitudes.

There must be some restriction on the application of this last rule. A negative
step change should only correlate to one positive step change. When the data
acquisition system fails in the manner seen here it tends to bounce between two
states; the offset may drift until a stable erroneous offset is established, but after
this the transition between a zero offset and a error offset is very abrupt. Thus,
erroneous step changes in a data signal alternate in sign. The specificity requirement
would cause the first negative step change to be correlated with the immediately
previous positive step change because their absolute magnitudes are “nearest” to
each other.

Of course, while the rule above might be used to characterize a particular type of
sensor malfunction, the human expert probably applies a more general rule as well:
if one event has been diagnosed as a sensor maifunction, then sensor malfunction
gains some credence as an explanation for all other anomalous events.

IF ANOMALY1 AND
ANOMALY? AND
DIAGNOSIS of ANOMALY1 is SENSOR_MALFUNCTION

THEN DIAGNOSIS of ANOMALY? is SENSOR_MALFUNCTION (possible)

In this situation, ANOMALY?2 applies to each of the other observed anomalies. The
last rule should only be applied once for each negative step change; this rule should
be applied as many times as needed. The knowledge representation needs some way
of denoting this—perhaps with a keyword such as EVERY, as in

IF ANOMALY! AND
EVERY ANOMALY2 AND

Finally, there should be some rule that encodes the fact that if the decay fol-
lowing a gas residual positive step change behaves normally, then the step change
is probably due to an actual gas-generating event.
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IF RATE_OF_.CHANGE of GAS_RESIDUAL is NORMAL AND
GAS_RESIDUAL_STEP WITHIN 30 MINUTES

THEN DIAGNOSIS is ARC (likely) AND
DIAGNOSIS is PARTIAL DISCHARGE (likely) AND
DIAGNOSIS is OVERHEATING (likely)

7.3.3 Prognosis and Recommended Treatment

The discussion thus far has focused on diagnosis. This is completely appropriate,
as an automated monitoring system can not generate truly useful prognoses and
recommended courses of treatment until diagnosis can be performed accurately and
reliably. At this time, rules for governing the recommendation of treatments must
necessarily be crude. An example:

IF DIAGNOSIS is ARC (almost_certain) AND
GAS_.CONTENT is CRITICAL
THEN NOTIFY.OPERATOR_TRIP.RECOMMENDATION

If the dissolved gas content measurement has reached critical values, and it is almost
certainly due to an arc, the operator should be notified that the transformer should
be taken off line.

If the gas content has not yet reached the critical range, the recommendation to
the operator might take the form of a warning that a serious condition exists and a
request to run further tests:

IF DIAGNOSIS is ARC (likely) AND
GAS_CONTENT ¢is HIGH
THEN NOTIFY_OPERATOR_WARNING AND

REQUEST_DISSOLVED_GAS_ANALYSIS

The operator is made aware of the situation, and can then make his own evaluation
of the status of the transformer and his own estimate of the remaining life of the
transformer. In addition, a dissolved gas analysis is requested. If the operator is
uncertain as to whether to continue running the transformer, the results of the
oil analysis could decide the matter. This rule makes no explicit mention of the
cost of conducting a dissolved gas analysis; the cost has been “compiled” into the
rule. If this rule were implemented as presented, it would be because experience
has shown that when a severe arc is likely a dissolved gas analysis is worthwhile.
If this rule were to be applied to many different transformers with widely varying
cost structures, or perhaps to a single transformer with a variable cost structure,
this information would have to be made explicit.
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7.4 Summary

This chapter represents the first step towards an implementation of an automated
transformer diagnosis system based on adaptive models of normal behavior. First,
those categeries of knowledge that have proven useful for the diagnostic task were
identified. They were divided into two broad classes: general transformer knowledge
and site-specific knowledge. These categories were drawn from beth the traditional
methods of monitoring transformers as well as the new techniques derived from the
MIT approach to transformer anomaly detection. To explore how these bits and
pieces of transformer knowledge could be applied to the problem of diagnosis, a
number of case studies were analyzed in great detail. Three of the experiments
were dissected: the thermally induced gas sensor malfunction, the residual response
experiment (with actual sensor malfunction), and the parameter trend analysis
experiment. Finally, the issue of how to represent this knowledge was addressed.
The diagnosis process associated with the residual response experiment was broken
into its component decisions at two different points of the evolution of the failure.
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Chapter 8

Conclusions, Recommendations,
and Other Applications

8.1 Conclusions

The experiments and analyses described in this thesis confirm three crucial points:

o Continuous monitoring of transformer performance in conjunction with mod-
els of normal behavior can form the basis of a responsive and sensitive detec-
tion mechanism for incipient transformer failures.

® These tools also provide sufficient information to distinguish between com-
peting diagnoses—most importantly, between sensor malfunctions and “real”
transformer failures.

e The categories of knowledge necessary to perform this diagnosis and the pro-
cesses by which this knowledge is applied are amenable to automation.

That the MIT transformer monitoring system is quick to respond to developing
failures is enabled by its ability to continuously monitor transformer performance.
But continuous monitoring does not in itself guarantee responsiveness. Instead,
responsiveness is keyed to the sensitivity of the detection mechanism described
herein wkhich is enabled by the use of models of normal behavior.

The Hydran 201R dissolved combustible gas sensor is one example. The Hy-
dran continuously monitors the dissolved gas content of the transformer oil. But,
traditionally, the sensor is tied to a static threshold detector and the continuous
data is discarded. This system is responsive to large faults but, due to its lack of
sensitivity to small anomalies, it is not responsive to incipient failures. The experi-
ments presented in the previous chapters show that integrating this sensor into the
MIT transformer monitoring system greatly increases the sensitivity to anomalies
in the sensor’s output. Failures can be detected in the early stages of development,
buying valuable time in which to plan for replacement or repair.
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With increased sensitivity comes an increased chance for extraneous detected
anomalies—anomalies that do not map to actual failures. For this reason, accurate
diagnosis is essential if the system is to be effective. The most critical distinction
that must be made is between mere sensor malfunctions and situations that pose
an actual threat to the continued health of the transformer. Human intervention
can be justified in helping to gauge the severity of an actual failure. But if the
system sounds too many false alarms, then the detection sensitivity would have to
be decreased, crippling the effectiveness of the system.

As was shown in this thesis, the data generated through the use of adaptive
models of normal bekavior is sufficiently informative to diagnose sensor malfunc-
tions and incipient transformer failures. A great deal more experience is necessary
to determine how well this system would distinguish between specific transformer
failure modes. But it must be stressed that it is as least as difficult to diagnose
a sensor malfunction as any other failure mode, and this—perhaps most crucial—
diagnosis can be supported by residual and parameter analysis.

The manner in which diagnostic knowledge is analyzed suggests that it is pos-
sible to automate the diagnosis process. Some of the correlation tests that were
assumed to be primitives of the expert system laid out in Chapter 7—accessing
past anomalies, or identifying lags between anomalies manifesting in two different
signatures, for instance—raise some nontrivial implementation issues, but these dif-
ficulties are not insurmountable. With these primitives in hand, a rule-based expert
system would be able to diagnosis incipient transformer failures.

8.2 Recommendations for Future Work

There are four major directions in which this research could continue:

o Development of the body of experience from which a diagnostic knowledge
base can be drawn

» Implementation of the diagnostic process which has been outlined in this thesis

e Model development and improvement of the techniques used to render them
adaptive

e Application of other forms of artificial intelligence to the device monitoring
problem.

8.2.1 Experience

Both the breadth and depth of the knowledge base sketched out in this thesis
should be addressed in future research. The gassing failures that were focused on
here are ounly a portion of the entire range of possible failure modes. Broadening the
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knowledge base to include failures such as through-faults, that influence a different
set of modules than were affected in these experiments, perhaps in unforeseen ways,
may reveal general diagnostic rules compared to which the rules discussed here are
merely special cases. At the very least, broadening the knowledge base will allow
the implementation of a diagnostic system that can handle a wider range of failures.

It is also needed to deepen the knowledge base in the limited domain of gassing
failures that have been explored in the performed experiments. While the arcing
simulation experiments introduced some variation in the observed failure behavier,
there were some fundamental similarities that could not be escaped: the gas was
produced by an arc, in a single location, involving a single material (the oil), and not
interacting with any other failure mode. For instance, the behavior of the Hydran
201R in response to the arcing experiments was, each time, dominated by the mass
transport characteristics of hydrogen in the oil or the gas space. Perhaps if the
gassing fault produced sufficient carbon monoxide to influence the behavior of the
sensor, it would be possible to conclude that paper was involved.

The most effective way to flesh out the knowledge base might be to establish
a clearinghouse for data from the electric utilities. A system for the detection of
incipient transformer failures based on the system described herein has been devel-
oped by J.W. Harley, Inc. As these products proliferate, there is the potential for a
great deal of data to become available for analysis. This data will represent several
different transformer designs and (eventually) several different failure modes. There
is also the advantage that the data which is desired greatly, that which concerns
the most common failure modes, will tend to become available first. Settling issues
such as confidentiality and incentives now may make this a possibility later.

8.2.2 Implementation

“The best laid plans...” The process of implementing a diagnostic expert system
based on adaptive models will certainly reveal traps and pitfalls that have not been
foreseen. The actual implementation of a system that can duplicate the reasoning
set forth in Section 7.2 and Section 7.3 would likely reveal most of the difficulties
inherent in a system designed to handle the entire range of transformer failures.

8.2.3 Model Development and Model Adaptation

A great deal of knowledge and effort by members of the MIT Transformer Monitor-
ing Project is embodied in each of the models that were presented here. There are
other models, other modules, which had to be put aside to focus on the selected set.
These others models describe electrification, partial discharges, and non-destructive
breakdown, among other phenomena. Each of these models could be developed into
a module that would increase the robustness of the monitoring system and increase
the chance that an incipient failure would be detected before serious damage could
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occur.

Model development does not have to limited to new models. Existing models
might be further refined. This refinement could involve, for instance, adding dy-
namics to static models. But an exciting alternative is the development of adaptive
model structures, to complement the use of adaptive models. As an example, con-
sider a signature that is in steady-state for long periods of times divided by periods
of dynamic behavior. A steady-state model would not be sufficient for monitoring
the dynamic behavior of the transformer, while it would be impossible to get good
estimates of the parameters of a dynamic model during periods of steady-state op-
eration. The solution is to have an adaptive model structure; the model structure
contains both steady-state and dynamic terms, but the parameters of the dynamic
portion of the model are assumed to be fixed during pericds of stable operation.

Other suggestions for the improvement of the parameter estimation mechanism
are given in Section 4.2.3. During the experiments conducted in the course of this
thesis, an additional improvement was discovered. This improvement concerns the
acceptance of candidate parameters. In accepting a set of parameters, a single
statistical test is applied which uses a composite measure of the average squared
error associated with the candidate parameters and a measure of the information
content of the data used in performing the estimation. Unfortunately, this blurs
the distinction between parameters that are rejected because of low information
content and those that are rejected due to some anomaly invalidating the model
structure. Parameters estimated from little or no information have no place in the
system presented in this document, but, as has been shown, parameters derived from
anomalous data may be informative during diagnosis. Thus, it would be desirable
to allow the diagnostic process to access this latter type of rejected parameter.

Finally, the application of neural nets to transformer diagnosis is an interesting
topic for future investigation. Given sufficient learning examples, neural nets can be
trained to associate input patterns with target patterns. If the input patterns con-
sisted of residual and parameter information, and the output pattern represented a
diagnosis selection, the neural net can learn to diagnosis transformers using residual
and parameter behavior. With a sufficient database of failure information, it would
seem that diagnostic system development costs could be cut to zero. However, this
is not likely. Large power transformers are designed to a utility’s specific needs;
many design decisions are made on per-unit basis or as part of a very limited run of
transformers. In addition, transformer technology continues to evolve—not rapidly,
by some industries’ standards, but rapidly enough when compared to the lifetime
of a transformer. Thus, there is probably not enough information on the failure
behavior of a particular transformer to reliably apply the naive approach presented
above.
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8.2.4 Further Artificial Intelligence Techniques

A more judicious application of neural nets to the problem of diagnosis might be to
use them to recognize specific patterns in particular residual or parameter streams.
Thus, neural nets could be an implementation technique for realizing the correlation
primitives that would support the diagnostic process.

Neural nets might also play a role in detection, performing some of the same
functions that are fulfilled by the linear models upon which the monitoring sys-
tem is based. Linear models have the advantage that stable parameters can be
estimated—parameters which, in some instances, correlate to physical parameters
of the transformer. Knowledge of the behavior of these estimated parameters has
been shown to reflect the transformer’s internal condition. But the linear models
are usually approximations of the behavior of the associated signal; the associated
residuals are not pure noise, but exhibit correlated behavior of their own. Neural
nets are not limited to simulating linear models but can, with a reasonable amount
of computation, fit higher-order systems. This may result in more sensitive resid-
uals. Paiameters that can be interpreted physically are a valuable resource for
diagnosis, but perhaps those signatures which are monitored using black-box linear
models would be better served through the use of neural nets. In these cases it is
difficult to determine when a parameter change is significant, so perhaps the focus
should be on improved residual analysis.

8.3 Other Applications

While this thesis has dealt exclusively with the monitoring of large power trans-
formers, many of the issues and techniques considered herein can be applied to the
broader domain of general device monitoring. Power transformers were an ideal
application for the proposed approach to device monitoring for many reasons:

o the economics of power generation and distribution warranted the research
and development costs

e traditional transformer monitoring techniques do not take advantage of the
power and low cost of modern computers—real, immediate benefits can be
achieved with the introduction of an on-line incipient failure detection system

o transformers were sufficiently well-understood to support the development of
adaptive mathematical models of their behavior

¢ transformer behavior could be reproduced in a laboratory environment, to
some degree of accuracy

o transformer expertise was available
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This last point is perhaps the most critical, for each of the reasons which precede it
could be used to support other device monitoring tasks equally well. The monitoring
techniques described here could be applied to other power apparatus such as rotating

machines and circuit breakers, as well as gas turbines, chemical plants, and nuclear
power plants.
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Appendix A

Pilot Transformer Test Facility

The center of the Pilot Facility is a 50 kVA, 240/8000 volt, single-phase, oil-filled,
pole-type transformer. This transformer is known as the test transformer. The
tank and transformer have been modified with the installation of numerous sensors;
the tank does, however, retain its original gas space (sealed to the atmosphere and
filled with dry nitrogen). The transformer has also been provided with a forced-
oil circulation system to allow external control of heating and cooling. Excitation
voltage and load current can be set independently. The test transformer is connected
in parallel with a second, identical pnle-type transformer. Variable loading to 150%
of rated current at full voltage is achieved by using a third, smaller transformer to
inductively drive circulating current through the two pole-type transformers. By
controlling the phase of the circulating current, the test transformer may be made
to look as if it is supplying real and reactive power to a load.

The 50 kVA size units were chosen to be large enough to have space for the
needed sensors and to generate substantial core and winding losses during load
cycles; yet small enough to allow easily-made changes to the monitoring structure,
as well as to fit inside the laboratory building.

A.1 Hardware Overview

The original goal was to implement a monitoring system on a personal computer. It
became clear, however, as a data acquisition system was designed, that some sort of
multi-tasking, multi-processing computer environment was necessary. The tasks to
be executed, from data acquisition on microsecond time scales to data analysis on a
daily time scale required more computational power and flexibility than one personal
computer was capable of delivering. Consequently, a basic hardware structure of
two IBM AT compatible personal computers was settled on.

One of the AT clones was designated the Master Machine. It runs at 8 mHz
under the IBM Xenix (Version 2.0) operating system. (Xenix is a version of UNIX.)
This machine provides a multi-user, multi-tasking environment for the coordination
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and control of a data acquisition subsystem as well as processing the resulting data.
The Master Machine has a number of peripherals attached to it including a printer,
a modem, a color monitor, dual 20-megabyte fixed disk drives, a 9-track open reel
tape drive, dual floppy drives, an additional user terminal (with provisions for other
serial devices), as well as a data acquisition subsystem.

The data acquisition subsystem is another IBM AT compatible machine, running
at 6 mHz under MS-DOS 3.10 and coupled to a Keithley Data Acquisition and
Control - Series 500 Measurement and Control System. The AT compaitible, called
the Acquisition Machine has a 20-megabyte fixed disk drive, dual floppy drives, an
EGA video card, and monochrome video display. The system board has its memory
split into two 512k blocks. The first block is used as DOS base memory. The second
block is addressed above the system ROMs as extended memory and is used for a
RAM disk. Other than a drive controller and a video display adapter, the only
additional board in the expansion bus is the interface to the Keithley System 500
modular data acquisition system. This combination is responsible for obtaining
temperatures from twenty-three (23) thermocouples, vibration signals from two
(2) accelerometers, high- and low-side current and voltage wave forms and root-
mean-square (RMS) values, and the dissolved combustible gas concentration from
a Syprotec H-201R Hydran monitor. This subsystem is controlled by the Master
Machine using an RS232 serial line. Data is transmitted in batch every few minutes
from the Acquisition Machine to the Master Machine over a second RS5232 line.

While the data acquisition system is flexible enough to accommodate a variety
of sampling rates, the work described in this thesis makes use of temperatures and
RMS values of the high- and low-side currents and voltages sampled every two
minutes; all other data is sampled at ten-minute intervals.

All of the analog data being acquired from the Pilot Facility’s test transformer is
handled by the above-mentioned Keithley Series 500 System operating in conjunc-
tion with the Acquisition Machine. The Keithley System consists of a self-contained
chassis and motherboard with slots to accommodate ten (10) plug-in circuit boards.
The slots accept a variety of boards designed to perform various data input and
output, or control functions. The data acquisition chassis interfaces with the Ac-
quisition Machine through a cable (or an MIT-developed optic link) which connects
to the interface card plugged into one of the Acquisition Machine’s expansion slots.

This particular data acquisition system was chosen because of its extreme ver-
satility, large number of available channels, and superior temperature measurement
circuitry.

The combination of the Master Machine, Acquisition Machine, and Keithley
System forms a loosely-coupled multi-tasking, multi-pr«.cessor computer system.
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A.2 Acquisition Machine Software

Operation of the Keithley System 500 is governed by software running on the Acqui-
sition Machine. This software is a combination of commercial and custom-written
code. Fundamental operation of the System 500 is performed by a software pack-
age supplied by Keithley. This package is called SOFT500, and it operates as a
superset of commands in the interpretive BASIC language environment. The data
acquisition routines, or drivers, are therefore, custom-written BASIC programs with
embedded SOFT500 commands.

Data acquired by the System 500/Acquisition Machine combination is prepro-
cessed in the Acquisition Machine to cut down on the data transfer requirements of
the overall monitoring system. Preprocessing involves computation of RMS values,
averaging, scaling, .nd other data reduction operations. Preprocessing is done with
compiled routines written in C to increase computation speed and aid portabil-
ity. After preprocessing, the reduced data is transferred to the Master Machine for
further processing and analysis.

A.3 Master Machine Operating System

The operating system chosen for the Master Machine is UNIX. UNIX is a well-
established multi-tasking operating system developed by AT&T Bell Laboratories.
The current version is UNIX System V. It is available on many different computers
and provides good support for the C programming language. The wide availability
of UNIX System V and C means that software written in C or embedded with
UNIX system commands is not restricted to one computer. If written properly, the
software is quite portable. Furthermore, UNIX contains many system commands
useful to the Pilot Monitoring System, and is based on a file system structure
which easily lends itself to the buffering and shared information demanded by the
monitoring system.

The version of UNIX chosen for the Pilot Monitoring System is IBM Xenix
(Version 2.0). IBM Xenix was picked because, among several UNIX operating
systems available for AT’s and compatibles at the time of selection (1987), it was
the only system with proven reliability.
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Appendix B

Parameter Estimation Theory

B.1 Problem Formulation

This appendix discusses the background of parameter estimation in greater detail
than is developed in the body of the thesis. Particularly, models of the form:

y[k] = ¢l [k]01 + ¢2[k]02 +---+ ¢n[k]0n (B-l)
are discussed, where y, ¢, @2, ..., and ¢, are discrete-time functions of observable
quantities and 6y, 6,, ..., and 4, are unknown parameters. y[k] is called an obser-

vation and the various ¢,’s are regressors. This can be written in a simpler notation
as:

ylk] = ¢7 (k)8 (B.2)
where:
$T(k] = [ alk) galk] - ¢ulk] ]
0 2 (6,6, -6,

Pairs { (y(i], ¢[é]): ¢ =1, 2, ..., k } are collected. By defining:

Y (k]
(k)

[yl1] y(2] --- ylk] )"
[#7[1) ¢7[2] --- ¢7[k] )T

e e

one can write:

Y[k] = ®{k|6 (B.3)

Estimating the parameters of the model, then, is reduced to solving Equation (B.3)
for 8, given Y[k] and ®[k].
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B.2 Least Squares

Since the system of equations in Equation (B.3) is over-specified, § can be approxi-
mated by applying the principle of least squares. The least-squares estimate of 0 is
achieved by finding some set of parameters O[k] that minimize the quantity

(YTk] - 2[kIBR)) " (YIR] - 2(K]6[K])

In [33], Astrom and Wittenmark prove that parameters 6(k] minimize the least-
squares criterion when:

8[k] = (2T [k]@[k]) " @Tk]Y (K] = P[k]®" [k]Y (k] (B.4)

provided that the matrix ®7T[k]®{k| is nonsingular. The condition that this matrix
be invertible is called an ezcitation condition. The inverse matrix, P(k], is called the
covariance matriz. Written in terms of the individual sample pair, Equation (B.4)
is:

k k
6lk] = (3_ olkl6T k)™ 3 ¢lklylk] (B.5)
i=1 i=1
Equation (B.5) can be written recursively as:

6lk] = [k —1] + K[k]e[k] K
elk] = ylk] - ¢7[k]6[k — 1)
K[k] = Plk)p[k] = P[k — 1)g[k](I + ¢ [k]P[k — 1]$[k])’
Pk] = (I - K[k]¢T[k])P[k - 1]

(B.6)

This formulation, called Recursive Least Squares (RLS), is developed in detail in
[33]. The reader will note that the new parameters §(k] are generated from the old
parameters (G[k —1]) by applying a correction factor that is proportional to the
size of the error in the model at time k, e[k]. The computation of K[k] requires an
inversion of (I + ¢ [k]|P[k — 1)¢[k]), but this matrix has rank equal to the number
of outputs of the system. In other words, for a system with but a single output the
matrix to be inverted reduces to a scalar.

B.3 Time-varying Parameters

The foregoing discussion assumes that the physical parameters, 6, are constant. If,
in fact, the parameters change over time, the algorithm presented above will be
inadequate. As the algorithm converges on an estimate and the covariance matrix
P[k] becomes small, it becomes increasingly unresponsive to new (and possibly
conflicting) information. If the parameters change abruptly, yet infrequently, a
simple solution is to periodically reset the covariance matrix to al, where a is some
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large number(33]|. The algorithm will then converge to the current set of parameters,
which may have changed since the previous estimation.

If the parameters vary slowly over time, a common solution is to apply an
ezponential forgetting factor, A, such that current data is given unit weight while
older data is weighted by A" (where n is the age of the data in discrete time). This
leads to the algorithm:{33,36]

Blk) = B[k 1]+ K[klelk]

elk] = ylk] - ¢T[k]O[k — 1]
K[k] = Plk|g[k] = P[k —1]8[k](A] + ¢"[k] P[k — 1]¢[k])~*
Plk] = (I - K[k]¢"[k])P[k —1]/A

(B.7)

Fortescue, et al. [35] note that the RLS algorithm with constant forgetting
factor runs into problems during periods when there is very little new dynamic
information. During these periods, the covariance matrix may become very large,
causing the system to become very sensitive to small perturbations or numerical
errors. The authors introduce a variable forgetting factor, A|k], such that:

Ak] = 1-1/N[k]
Nlk] = Edﬂ—¢M—IFPM—Hﬂk—nww]} (B.8)

This modification is intended to ensure that a constant amount of information is
used to estimate the parameters. As the information content of the data goes
down, N[k] grows larger and A approaches 1. Therefore, information is forgotten
more slowly, preserving the amount of information embodied in the estimate.

3o is a constant that controls the speed of adaptation of the algorithm. A
suggested guideline for chosing this constant is:

a
20 = UgNo
where 07 is the expected measurement noise variance (based on kncwledge of the

physical process) and Ny is the nominal asymptotic memory length (which would
be the number of data points used to estimate parameters for a stationary process).

B.4 Weighted Least Squares

The RLS algorithm with forgetting factors discussed in Section B.3 is one example
of a weighted least squares algorithm. In that algorithm, the exponential weighting
is used to weight the more recent data more heavily, in order to force the esti-
mated parameters to reflect the current state of the modeled system. Non-uniform
weighting can, in general, be used to indicate which data should be modeled more
accurately. Data is often chosen to receive heavier weighting because it is felt to
represent the “actual” state of the modeled process. This may be because the data
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is more recent, as in the example above, or because of some external knowledge of
the amount of error in the data acquisition procedure at different sampling times.

Weighting can also be used to tune the model’s performance for specific input
conditions. This may be done in recognition of the differing frequencies at which
various portions of the model’s input space are visited in practice. Or it may be
because certain sets of input conditions correspond to critical output ranges of the
physical system.

For weighted least squares, the quantity to be minimized is:

k
Z w,-ez[i]
i=1
As presented in [34], the solution to the weighted least squares equation is:
Olk] = (27 [k]W [k] @[k]) ' &7 [k]W (k] Y k] (B.9)
where W k] is a diagonal weighting matriz such that:
w,
w
Wik] = . (B.10)
Wi

In this notation, RLS with (constant) exponential forgetting factor would have
a recursively defined weighting matrix of:

Wik = [ AWk — 1] ) ] (B.11)

Note that the weighting of a particular set of data is not constant over time, but an
exponentially decreasing function w;[k]. Therefore, w;[k] can be defined recursively
as:

wilk] = Aw;[k — 1]

Therefore the weight of a particular set of data is A", where n is the age of that set.

B.5 Robustness

In [33], Astrom and Wittenmark point out that the least squares method is funda-
mentally susceptible to a single large error in the acquired data. This is because the
Gaussian assumptions upon which the method is based assign very low probabilities
to large errors. The authors suggest replacing the estimator of Equation (B.7) with
a relation such as:

8[k] = Olk — 1] + K [k] f(e[k]) (B.12)
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where f(€) is a function that varies linearly with small €, but varies more slowly
with large e. An example of such an equation is:

fle) =

€

— B.1
1+ alef (B.13)

With the use of such an estimator, large errors in the input to the estimation routine
will not have as drastic a consequence to the estimates. The estimation algorithm
is then called robust in the presence of outliers.
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