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Experimental investigation of performance differences
between coherent Isingmachines and a quantum annealer
Ryan Hamerly1,2*†, Takahiro Inagaki3*†, Peter L. McMahon2,4,5*†, Davide Venturelli6,7,
Alireza Marandi4,8, Tatsuhiro Onodera4, Edwin Ng4, Carsten Langrock4, Kensuke Inaba3,
Toshimori Honjo3, Koji Enbutsu9, Takeshi Umeki9, Ryoichi Kasahara9, Shoko Utsunomiya2,
Satoshi Kako2, Ken-ichi Kawarabayashi2, Robert L. Byer4, Martin M. Fejer4, Hideo Mabuchi4,
Dirk Englund1, Eleanor Rieffel6, Hiroki Takesue3, Yoshihisa Yamamoto4,10

Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here,
we benchmark two types of annealing machines—a quantum annealer built by D-Wave Systems and measurement-
feedback coherent Ising machines (CIMs) based on optical parametric oscillators—on two problem classes, the
Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on
MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum
annealer [exp(–aDWN

2)] relative to CIMs [exp(–aCIMN)] for fixed anneal times, both on the SK model and on
50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances
with over 50 vertices. An optimal–annealing time analysis is also consistent with a substantial projected
performance difference. The difference in performance between the sparsely connected D-Wave machine
and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity
of quantum annealers.

INTRODUCTION
Optimization problems are ubiquitous in science, engineering, and
business. Many important problems (especially combinatorial prob-
lems such as scheduling, resource allocation, route planning, or com-
munity detection) belong to the nondeterministic polynomial time
(NP)–hard complexity class and, even for typical instances, require a
computation time that scales exponentially with the problem size (1).
Canonical examples such as Karp’s 21 NP-complete problems (2) have
attracted much attention from researchers seeking to devise new opti-
mization methods because, by definition, any NP-complete problem
can be reduced to any other problem in NP with only polynomial
overhead. Many approximation algorithms and heuristics [e.g., relaxa-
tions to semidefinite programs (3), simulated annealing (4), and
breakout local search (BLS) (5)] have been developed to search for
good-quality approximate solutions and ground states for sufficiently
small problem sizes. However, for many NP-hard optimization problems,
even moderately sized problem instances can be time consuming to
solve exactly or even approximately. Hence, there is a strongmotivation
to find alternative approaches that can consistently beat state-of-the-art
algorithms.

Despite decades of Moore’s law scaling, large NP-hard problems
remain very costly even on modern microprocessors. Thus, there is
a growing interest in special-purpose machines that implement a
solver directly bymapping the optimization to the underlying physical
dynamics. Examples include digital complementary metal-oxide
semiconductor annealers (6, 7) and analog devices such as nanomag-
net arrays (8), electronic oscillators (9, 10), and laser networks (11).
Quantum adiabatic computation (12) and quantum annealing
(13–16) are also prominent examples and may offer the possibility
of quantum speedup (17–19) for certain NP-hard problems. How-
ever, all the nonphotonic analog optimization systems realized to
date suffer from limited connectivity so that actual problems must,
in general, first be embedded (20, 21) into the solver architecture
native graph before they can be solved. This requirement adds an
upfront computational cost (20, 22, 23) of finding the embedding
(unless previously known) and, of most relevance in this study, in
general results in the use of multiple physical pseudo-spins to encode
each logical spin variable, which can lead to a degradation of time to
solution.

Here, we perform the first direct comparison between the D-Wave
2000Q (DW2Q) quantum annealer and the coherent Ising machine
(CIM) (24, 25). As we will see later, a crucial distinction between these
systems is their intrinsic connectivity, which has a profound influence
on their performance. Both systems are designed to solve the classical
Ising problem, that is, to minimize the classical Hamiltonian

H ¼ 1
2
∑
ij
Jijsisj þ∑

i
hisi ð1Þ

where si = ±1 are the Ising spins, Jij are the entries of the spin-spin
coupling matrix, and hi are the Zeeman (bias) terms. The Ising prob-
lem is NP-hard for nonplanar couplings (26) and is one of the most
widely studied problems in this complexity class.We focus on two ca-
nonical NP-hard Ising problems: unweighted MAX-CUT (2) and
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ground-state computation of the Sherrington-Kirkpatrick (SK) spin-
glass model (27).

In the CIM, the spin network is represented by a network of
degenerate optical parametric oscillators (OPOs). Each OPO is a
nonlinear oscillator that converts pump light to its half-harmonic
(28); it can oscillate in two identical phase states, which encode the value
of the Ising spin (29, 30). Optical coherence is essential to the CIM,
where the data are encoded in the phase of the light. As Fig. 1A shows,
time multiplexing offers a straightforward way to generate many iden-
ticalOPOs in a single cavity (30). A pulsed laser with repetition timeT is
used to pump an optical cavity with round-trip timeN × T. Parametric
amplification is provided by the c(2) crystal; since this is an instanta-
neous nonlinearity, the circulating pulses in the cavity are identical
and noninteracting. The approach is scalable using high–repetition rate
lasers and long fiber cavities: OPO gain has been reported for up to
N = 106 pulses, and stable operation achieved forN = 50,000 (31). Each
circulating pulse represents an independentOPOwith a single degree of
freedom, ai. Classically, ai is a complex variable, which maps to the an-
nihilation operator âi in quantum mechanics (32). A measurement-
feedback apparatus is used to apply coupling between the pulses (24, 25).
In each round trip, a small fraction of the light (~10%) is extracted from
the cavity and homodyned against a reference pulse (the OPO pump is
created from secondharmonic generation of the reference laser, so there
is goodmatching between the reference and theOPO signal light, which
is at half the frequency of the pump). The homodyne result, in essence a
measurement of ai, is fed into an electronic circuit (consisting of an

analog-to-digital converter, a field-programmable gate array, and a
digital-to-analog converter) that, for each pulse, computes a feedback
signal that is proportional to the matrix-vector product ∑jJijaj. This sig-
nal is converted back to light using an opticalmodulator and a reference
pulse and reinjected into the cavity. The measurement-feedback CIM
has intrinsic all-to-all connectivity through its exploitation of memory
in the electronic circuit [although the same effect can be obtained with
optical delay-line memories in all-optical CIMs (29, 30)].

The OPO is a dissipative quantum system with a pitchfork bi-
furcation well adapted for modeling Ising spins: As the pump power
is increased (Fig. 1B), the OPO state transitions from a below-threshold
squeezed vacuum state (33–35) to an above-threshold coherent state
(36). Because degenerate parametric amplification is phase sensitive,
only two phase states are stable above threshold; thus, the OPO
functions as a classical “spin”with states {∣0〉, ∣p〉} that can be mapped
to the Ising states si = { + 1, − 1}. The optimization process happens in
the near-threshold regime where the dynamics are determined by a
competition between the network loss and Ising coupling (which seek
to minimize the product ∑ijJijaiaj), as well as nonlinear parametric gain
(which seeks to enforce the constraints ai ∈ ℝ, ∣ai∣ = const).

As an example, consider the Ising problem on the N = 16 Möbius
ladder graph with antiferromagnetic couplings (37). Figure 1C shows a
typical run of the CIM, resulting in a solution that minimizes the Ising
energy [data from (24)]. Themost obvious interpretation of the process
is spontaneous symmetry breaking of a pitchfork bifurcation: Prepared
in a squeezed vacuum state and driven by shot noise, the OPO state

A C

B	
D

Fig. 1. Schematic and operation principle of the CIM. (A) CIM design consisting of time-multiplexed OPO and measurement-feedback apparatus. See (24, 25) for details.
SHG, second harmonic generation; FPGA, field-programmable gate array; PPLN, periodically poled lithium niobate; IM, intensity modulator; PM, phase modulator. (B) OPO state
during transition from below-threshold squeezed state to (bistable) above-threshold coherent state. (C) Solution of antiferromagnetic Ising problem on the Möbius ladder with
the CIM, giving measured OPO amplitudes ai and Ising energy H as a function of time in round trips. (D) Illustration of search-from-below principle of CIM operation.
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bifurcates, duringwhich its amplitudes ai grow either in positive or neg-
ative value, and subsequently the system settles into the Ising ground
state (or a low-lying excited state) (24, 38) [this is related to theGaussian
state model in (39)]. Another view derives from ground-state “search
from below” (Fig. 1D). Here, the Ising energy is visualized as a compli-
cated landscape of potential oscillation thresholds, each with its own
spin configuration. If the OPO pump is far below theminimum thresh-
old, all spin configurations will be excited with near-equal probability,
but once the ground-state threshold is exceeded, its probability will
grow exponentially at the expense of other configurations (30, 40). This
ground-state selection process corresponds to the 40≤ t≤ 60 region in
Fig. 1C.

The DW2Q quantum annealer used in this work is installed at
NASA Ames Research Center in Mountain View, CA. The DW2Q
has 2048 qubits, but its “Chimera” coupling graph (i.e., the graphwhose
edges define the nonzero Jij terms in Eq. 1) is very sparse. Since most
Ising problems are not defined on subgraphs of the Chimera, minor
embedding is used to find a Chimera subgraph on which the
corresponding Ising model has a ground state that corresponds to the
classical ground state of the Isingmodel defined on the desired problem
graph (20, 21). Native clique embeddings (Fig. 2A) (41) are precom-
puted embeddings that can be used for fully connected problems or prob-
lems on dense graphs. Each logical qubit is associated with an L-shaped
ferromagnetic chain of ⌈N/k⌉ + 1 physical qubits, where 2k is the num-
ber of qubits in each unit cell of the Chimera graph (k = 4 in the
DW2Q). Clique embeddings are desirable because all chain lengths
are equal: This architecture simplifies the parameter setting procedure
due to symmetry, and it is thought to prevent desynchronized freeze-
out of chains during the calculation (42). However, the embedding in-
troduces considerable overhead relative to the fully connected model:
forN logical qubits, N(⌈N/k⌉ + 1)≈ N2/k physical qubits are used. Be-
cause of the triad structure (22) of the embeddings (Fig. 2A), only ap-
proximately half of the annealer’s physical qubits are used, limiting the
DW2Q to problems withN≤ 64 (the actual limit isN≤ 61 due to un-
usable qubits on the particular machine at NASA Ames).

RESULTS
SK spin-glass
As a first benchmarking problem, we consider the SK spin-glassmodel
on a fully connected (i.e., maximally dense) graph, where the cou-
plings Jij = ±1 are randomly chosen with equal probability (27).
Ground-state computation of the SK model is directly related to the
graph partitioning problem, which is also NP-hard (43). For each prob-
lem size 2 ≤ N ≤ 61, 20 randomly chosen instances were solved on
the DW2Q. We consider as a performance metric the success prob-
ability P, defined as the fraction of runs on the same instance that re-
turn the ground-state energy (we will discuss the time to solution,
which requires a more thorough analysis involving optimal annealing
time, in a subsequent section).

To properly benchmark theDW2Q’s performance, it is important to
optimize the embedding parameter Jc, which sets the ratio of constraint
couplings to logical couplings. The optimal Jc depends on the problem
type and size and is found empirically. TheDW2Qsuccess probability is
plotted as a function of Jc in Fig. 2B, fromwhichwe find that the optimal
Jc scales roughly as N

1/2 (see Materials and Methods for details). This
scaling is consistent with results published on the same class of prob-
lems with the earlier D-Wave Two quantum annealer, and it is believed
to be connected to the spin-glass nature of the SK Ising problem (42).
Using the optimal value of Jc, Fig. 2C shows that the performance on
the D-Wave depends strongly on the single-run annealing time, with
the valuesTann = (1,10,100,1000) ms plotted here. TheD-Wave annealing
time is restricted to the range [1,2000] ms.We observe that longer anneal-
ing times give higher success probabilities, in accordance with the expec-
tations from the adiabatic quantum optimization approach that inspired
the design of the D-Wave machine. The data fit well to a square expo-
nential, P ¼ expð�ðN=NDW

0 Þ2Þ, where the parameter NDW
0 increases

slowly, roughly logarithmically, with Tann. For problem sizes N < 30,
the results in Fig. 2C agree with an extrapolation of the benchmark data
for Tann = 20 ms reported in (42), which used an earlier processor [the
512-qubit D-Wave despite the engineering improvements that have
been made in the last two generation chips (2X and 2000Q)].

A B C

p

c

Fig. 2. CIM and D-Wave performance on SK problems. (A) Illustration of clique embedding: An arbitrary N = 16 graph is embedded into the D-Wave chimera, each
spin mapped to a ferromagnetically coupled line of physical qubits (each color is a logical qubit). (B) D-Wave ground-state probability for SK model as a function of
problem size N and embedding parameter Jc (annealing time Tann = 20 ms). Shading indicates interquartile range (IQR; 25th, 75th percentile range of instances). (C) Scaling
of ground-state probability for DW2Q (with optimal Jc) and Stanford CIM. D-Wave and CIM ran 20 and 10 instances per problem size, respectively.
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The same SK instances for N = 10,20, … ,60 were solved on the
CIMs hosted at Stanford University in Stanford, CA and Nippon
Telegraph and Telephone Corporation (NTT) Basic Research
Laboratories in Atsugi, Japan (24, 25). Additional problems with
N ≥ 60 were also solved on the CIM but were too large to be
programmed on the DW2Q. The two Ising machines have similar
performance (see section S2 for more details). Figure 2C shows a
plot of the success probability as a function of problem size: The
exponential scaling for the CIM is shallower than the one given
by the DW2Q performance. We note that the success probability
P for the CIM scales approximately as expð�N=NCIM

0 Þ, whereNCIM
0

is a constant. The fact that, for the DW2Q, success probability P
scales with an N2 dependence in the exponential rather than N
(as is the case for the CIM) leads to a marked difference in success
probability between the quantum annealer and the CIM for prob-
lem sizes N ≥ 60.

MAX-CUT
We next study the DW2Q performance on MAX-CUT for both
dense and sparse unweighted graphs. Unweighted MAX-CUT is
the problem of finding a partition (called a cut) of the vertices V
of a graph G = (V, E), where the partition is defined by two disjoint
sets V1 and V2 with V1 ∪ V2 = V, and for which the number of
edges between the two sets ∣{(v1 ∈ V1, v2 ∈ V2) ∈ E}∣ is maximized.
Unweighted MAX-CUT is NP-hard for general graphs (2) and can
be expressed as an Ising problem by setting the antiferromagnetic
couplings Jij = +1 along graph edges: H = ∑(ij)∈Esisj. Thus, the pro-
blem in Fig. 1C is the same as MAX-CUT on the Möbius ladder
graph. Previous CIM studies have solved MAX-CUT on problems
up to size N = 2000 in experiment (24, 25, 30, 37) and N = 20,000 in
simulation (29, 44).

Random unweighted MAX-CUT graphs at the phase transition
(45), with an edge density of 0.5 [i.e., Erdös-Rényi graphs G N; 12

� �
]

were tested on DW2Q for problems up to N = 61 and on the CIM
for N ≤ 150. For these graphs, clique embeddings were used, but in
practice, the performance did not differ from the embedding
heuristic provided by the D-Wave API (21). In Fig. 3A, we show
that the optimal value of the embedding coupling parameter Jc
appears to be correlated with the appearance of defects in the per-
fect polarization state expected in logical qubits at the end of the
anneal. With Jc optimized, the success probability follows the same
square exponential (e−O(N

2)) trend with N as in the SK model, but
the drop-off is even steeper. The CIM success probabilities are also
lower than for the SK model but are now orders of magnitude high-
er than the DW2Q for N ≥ 40.

To test the effect of sparseness, we plot in Fig. 3C the performance on
unweighted regular graphs of degree d = 3,4,5,7,9, where the degree of a
graph is the number of edges per vertex. Despite their sparseness,MAX-
CUT on these restricted graph classes is also NP-hard (46). The CIM
shows no performance difference between d = 3 (cubic) and dense
graphs. For DW2Q, the sparse graphs are embedded using the graph
minor heuristic, which allows problems of up to sizeN = 200 to be em-
bedded in the DW2Q (21). In addition, the found embeddings require
significantly fewer qubits (for the sparse graphs) than the clique embed-
dings (compare Figs. 3D and 2A and see also fig. S3B). For cubic graphs,
theDW2Qachieves slightly better performance than theCIM,while the
CIM’s advantage is noticeable for d ≥ 5.

The CIM achieves similar success probabilities for cubic and
dense graphs, suggesting that dense problems are not intrinsically

harder than sparse ones for this class of annealer. D-Wave’s strong
dependence on edge density is most likely a consequence of embed-
ding compactness: It is known that more compact embeddings
(fewer physical qubits per chain) tend to give better annealing
performance after all optimization and parameter settings are
considered (21). Since qubits on the D-Wave chimera graph have at
most six connections, the minimum chain length is ℓ = ⌈(d − 2)/4⌉,
so embeddings grow less compact with increasing graph degree (see
section S3). Since degree-1 and degree-2 vertices can be pruned
from a graph in polynomial time [a variant of cut-set conditioning
(47)], d = 3 is the minimum degree required for NP hardness. Of
NP-hard MAX-CUT instances, Fig. 3C suggests that there is only a
very narrow region (d = 3,4) where D-Wave matches or outperforms
the CIM in success probability; for the remainder of the graphs, the
CIM dominates.

Time to solution and optimal annealing time
Although success probability is a helpful metric to understand scaling
for fixed Tann, the key computational figure of merit is the time to so-
lution Tsoln = Tann⌈ log (0.01)/ log (1 − P)⌉. This figure multiplies the
expected number of independent runs to solve a problem with 99%
probability with the time of a single run,Tann.When evaluating the time
to solution of a physical annealer, it is important to optimize, asmuch as
possible, the run parameters, in particular considering the machine’s
Tsoln at the optimal annealing time. This avoids a common pitfall of
fixed–anneal time analysis, where if the chosen anneal time is too large,
near-flat Tsoln scaling for small problem sizes gives the illusion of
speedup (18, 48).

In the CIM, the anneal time is set by the pump turn-on schedule and
is an integer number of round trips. The experiments in this paper were
conducted with Tann = 1000 round trips, but shorter or longer times are
also possible. To assess the effect of the anneal time on CIM
performance, we simulate the CIM with c-number stochastic differen-
tial equations (c-SDEs) using the truncatedWigner representation (36).
The algorithm, which is based on (38), is described in section S3. Figure
4A compares the performance of the experimental CIMs to the c-SDE
model for dense MAX-CUT instances, indicating that the model rea-
sonably reproduces the behavior of the experimental CIMs (similar
agreement is found for SK and cubic MAX-CUT instances; see fig. S9).

Figure 4B plots the (c-SDE) CIM success probability and time to so-
lution (in round trips) as a function of anneal time. Consistent with the
experimental results, we see an exponential scalingwithN in the large-N
limit [the curves are fit toP(N) = (a+ (1− a)ebN)−1, which becomes expo-
nential for largeN]. The time-to-solution plot is a series of (nearly) linear
intersecting curves, where curves with shorter anneal time have a lower
intercept but a larger slope. Optimizing Tsoln reveals a tradeoff between
the annealing time of a single run and success probability: Short anneals
are preferred for small problems where the success probability is always
close to unity and insensitive to the annealing time, and long anneals are
preferred for large problems where the success probability dominates.
Thus, the optimal anneal time depends on problem size and increases
withN. Figure 4C shows the analogousD-Wavedata for the sameproblem
class (denseMAX-CUT).Here, the fixed-Tann curves scale quadratically
withN rather than linearly. The same scaling is observed in SK problems
(see figs. S10 and S11).

It has been observed empirically on D-Wave quantum annealers
that, for Chimera graph spin glasses, optimal time to solution scales
as Tsoln º exp (O(N1/2)) (18, 19, 49), while Tsoln at fixed anneal times
increases more steeply (18). The lower envelope of the curves in Fig. 4B

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Hamerly et al., Sci. Adv. 2019;5 : eaau0823 24 May 2019 4 of 10

 on June 14, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


can be reasonably fit to this form, suggesting a similar scaling for the
CIM, although the CIM is based on an entirely different computational
principle.Moreover, when solving embedded problems in quantum an-
nealers, the optimal embedding parameters are believed to be associated
with the emergence of a spin-glass phase of the embedded problem (42).
Since for dense graphs the embedded problem has Nph º N2 qubits,
this would suggest a scaling Tsoln º exp(O((N2)1/2)) = exp(O(N)), as
shown in Fig. 4C. Both the CIM scaling Tsoln º exp(O(N1/2)) (dashed
curves in Fig. 4, B and C) and the DW2Q scaling Tsoln º exp(O(N))
(solid curve in Fig. 4C) are consistent with the hypothesis that a physical
annealer’s time to solution (at optimal annealing time) should scale ex-
ponentially with N1=2

ph , where Nph is the number of physical qubits (or
bits) required to encode the Ising problem.

We note that our claims are only suggestive, but not conclusive, of
expðOðN1=2

ph ÞÞ scaling at the optimal annealing time. Only for a limited
range of problem sizes (25 ≤ N ≤ 50) is the optimal annealing time
accessible with the DW2Q, and the data are noisy enough that other
curves would also fit the lower envelope. Thus, we caution against na-
ïvely extrapolating these curves to large problem sizes. However, a
scaling advantage for the CIM does exist at measured problem sizes,
a conclusion also observed (figs. S10 and S11) for SK and cubic (i.e.,
d = 3) MAX-CUT instances (although the DW2Q nonetheless outper-

forms the CIM in absolute terms for all measured cubic MAX-CUT
problems).

While the optimal–annealing time analysis is important theoreti-
cally, in realistic machines, Tann is limited by parameter misspecifica-
tion, finite temperature, and various noise sources and cannot be
increased arbitrarily. Therefore, it is relevant to consider the achievable
performance for practically realizable choices of Tann. Table 1 shows the
experimental times to solution for the NTT CIM (fixed Tann = 1000
round trips) and the DW2Q (for range, Tann ∈ [1,1000] ms). This allows
a comparison of the optimal time to solution in experimentally acces-
sible parameters, whichmay bemore a useful benchmark for near-term
annealingmachines. TheDW2Qoutperforms the CIMby a factor of 10
to 100× at cubicMAX-CUTproblems, although this factor shrinkswith
increasing problem size. For the SK anddenseMAX-CUTproblems, on
the other hand, theCIMoutperformsD-Wave by several orders ofmag-
nitude when N≥ 40. For MAX-CUT, by N = 55, the factor is 107, and
when extrapolated to N = 100, it exceeds 1020.

Graph density and performance
Earlier in Fig. 3, we compared MAX-CUT on dense graphs and sparse
regular graphs to show that theDW2Q’s performance depends strongly
on graph sparseness. Fixing the problem size and varying the edge

A

D E

B Cc

Fig. 3. Successprobability forMAX-CUTondenseandsparsegraphs. (A) D-WaveperformanceondenseMAX-CUTproblemswith (edgedensity of 0.5), showing that optimal
performance occurs when the Jc coupling is strong enough to make it unlikely that logical qubits (chains) become “broken” (see also figs. S1 and S2). (B) D-Wave and NTT CIM
success probability for dense MAX-CUT as a function of problem size (for Tsoln, see fig. S6). (C) D-Wave (annealing time Tann = 1000 ms) and NTT CIM success probability for sparse
graphs of degree d = 3,4,5,7,9 and dense graphs. (D) Example of a cubic graph embedding found with the heuristic. (E) Success probability scatterplots comparing D-Wave
(Tann = 1000 ms) and CIM.
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density, we see the same effect and can fill in the gap between sparse
graphs and dense graphs. We constructed random unweighted graphs
of degree d= 1,2,… , (N− 2) for each graph sizeN= 20,30,40,50,60. The
success probabilities for DW2Q and the CIM are shown in Fig. 5A (for
clarity only, N = 40 CIM data are shown). In this case, we used clique
embeddings for all problems, so for a givenN, all the embeddings are the
same. Evenwith the embeddings fixed, theDW2Q finds sparse problems

easier to solve than dense ones. The reason is that, consistent with (42),
the optimal constraint coupling is weaker for sparse problems than for
dense problems (Fig. 5B). In general, we find that Jc º d for fixed N.
Having a large constraint coupling could be problematic because the
physical quantum annealer scales the largest coupling coefficient to the
maximum coupling strength on the chip; the constraints max out this
coupling and cause the logical couplings to be downscaled proportionally

A B C

s

×

s

Fig. 4. Time to solution for D-Wave and CIM at optimal annealing time dense MAX-CUT instances. (A) CIM experimental performance versus c-SDE simulations.
(B) CIM success probability and time to solution (given in terms of the number of round trips) as a function of problem size N. The effective round-trip time for the NTT
CIM [(2.5N) ns; see section S2] is used to convert this figure to seconds. (C) D-Wave time to solution as a function of annealing time Tann and problem size N. Dashed
curve shows optimal CIM Tsoln from (B) for comparison.

Table 1. Time to solution Tsolnfor SK, denseMAX-CUT, and d = 3MAX-CUT problems on D-Wave and NTT CIM (see section S2). The annealing time for D-Wave
runs was chosen (in the range [1, 1000]ms) to optimize Tsoln (see section S4). All CIM data are for fixed anneal times (1000 round trips). “Factor” refers to the ratio of
solution times T ðDWÞ

soln =T ðCIMÞ
soln .

SK MAX-CUT (dense) MAX-CUT (d = 3)

N DW2Q CIM Factor N DW2Q CIM Factor N DW2Q CIM Factor

10 6.0 ms 25 ms 0.2 10 6.0 ms 25 ms 0.2 10 1.0 ms 50 ms 0.02

20 35 ms 100 ms 0.3 20 0.4 ms 100 ms 4 20 3.0 ms 100 ms 0.03

40 6.1 ms 0.4 ms 15 40 6.1 s 0.4 ms 104 50 12 ms 0.4 ms 0.03

60 1.4 s 0.6 ms 2000 55 104 s 1.2 ms 107 100 100 ms 3.3 ms 0.03

80* (400 s) 1.8 ms (105) 80* (1011 s) 1.8 ms (1013) 150 2.8 ms 22 ms 0.1

100* (105 s) 3.0 ms (107) 100* (1019 s) 2.3 ms (1021) 200 11 ms 51 ms 0.2

*D-Wave solution times extrapolated using P = e(N/N0)2 fits in Figs. 2C and 3B. Note that dense problems with N > 61 are not embeddable in the DW2Q.
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as J�1
c . Thus, dense graphs have weaker logical couplings in the em-

bedded problem, hindering the annealer’s ability to find the ground state
because of parametermisspecificationor “intrinsic control errors” (42,50).

TheCIMhasonlyweakdependence on the edgedensity x=d/(N− 1).
Earlier work on N = 100 graphs (24), as well as the CIM data plotted
in Fig. 3C, is consistent with this result. This suggests that the CIM has
promise as a general-purpose Ising solver, achieving good performance
on a large class of problems, irrespective of connectivity.

Comparing Figs. 5A and 3C, we can glean some insight regarding
the effect of embedding overhead on the D-Wave quantum annealer’s
performance. The heuristic embeddings in Fig. 3C are designed tomin-
imize the overhead factor (ratio of physical qubits to logical qubits). This
ratio is much larger for the native-clique embeddings, growing linearly,
i.e., as O(N) (see section S1). Figure 5C compares these two D-Wave
settings against the CIM at N = 50; while the CIM outperforms on all
graphs with d≥ 5, the difference between the success probabilities using
clique and heuristic embeddings suggests that performance is heavily
dependent on embedding overhead and the difference grows with edge
density (and graph size). This illustrates an additional tradeoff in quan-
tum annealing: poor-performing but easy-to-find embeddings versus
well-performing embeddings that require substantial precomputation.
This tradeoff is expected to favor the well-performing embeddings
when the number of qubits (or connections) becomes large.

DISCUSSION
In conclusion, we have benchmarked the DW2Q system hosted at
NASA Ames and measurement-feedback CIMs hosted at Stanford

University and NTT Basic Research Laboratories, focusing on
MAX-CUT problems on random graphs and SK spin-glass models,
and found that the merits of each machine are highly problem
dependent. Connectivity appears to be a key factor in performance
differences between these machines. Problems with sparse
connectivity, such as one-dimensional chains [compare (51) and
(52)] and MAX-CUT on cubic graphs (Fig. 3), can be embedded into
the DW2Qwith little or no overhead, resulting in similar performance
between the quantum annealer and the CIMs. However, the embed-
ding overhead for dense problems such as SK is very steep, requiring
O(N2) physical qubits to represent a size-N graph and resulting in large
embedded problems that decrease the performance of the quantum
annealer. The ability to avoid an embedding overhead likely contributes
to the CIM’s performance advantage on SK models that grows expo-
nentially with the square of the problem size. For problems of
intermediate sparseness, such as MAX-CUT on regular graphs of small
degree d ≥ 5, the CIM is still faster by a large factor.

Ultimately, it is overall quantities such as wall clock time or energy
usage that are of practical interest. Read-in and read-out times, classical
pre- and postprocessing, and energy usage must be included in a com-
prehensive evaluation. BothCIMs and superconducting qubit quantum
annealers are in early stages of development, with these quantities cur-
rently in flux. Moreover, to beat state-of-the-art classical techniques
(section S5) on the problems studied in this paper, advances will be re-
quired. D-Wave has recently implemented features allowing un-
conventional control of the annealing process that can significantly
improve results, and as mentioned above, efforts to improve the
connectivity are under way. A key question will be the extent to which

A B

C

Fig. 5. Relation betweenedgedensity and annealer performance. (A) Success probability as a function of edge density. Native clique embeddings used for D-Wave. Optimal
embeddingparameter [see subgraph (B)] is used, with Tann = 1000 ms. (B) D-Wave success probability as a function of graphdegree, showing that the optimal Jc scales as Jcº d for
fixedN. For fixed edge density, theN dependencewas determined previously to be Jcº N3/2; see Fig. 3A. (C) Comparison of D-Wave and NTT CIM success probabilities forN = 50
using both clique embeddings and heuristically determined embeddings (Tann = 1000 ms; dense D-Wave bars are extrapolation from e−(N/N0)2 fit in Fig. 3B).
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these technologies can harness quantum effects for computational
purposes. Signatures of entanglement have been seen in D-Wave quan-
tum annealers, although it remains open the extent to which the
computation makes use of entanglement-related effects. CIMs, already
interesting as semiclassical computational devices, can, in principle, also
have entanglement (53) by either building scalable all-optical couplings
(30, 54) (albeit with low losses being required) or by creating entangle-
ment in themeasurement-feedback architecture, e.g., by performing en-
tanglement swapping.

While the path forward for designing improved CIMs and
quantum annealers involves many different aspects, this paper
has primarily observed results that can be interpreted as being related
to connectivity differences between the machines that were bench-
marked. It has been conjectured often that increased internal connectivity
in quantum annealers can improve performance (55, 56), and there are
large projects under way to realize higher-connectivity quantum annea-
lers [including efforts by D-Wave and the IARPA Quantum Enhanced
Optimization (QEO) program (57) andGoogle (58)]. Our results provide
strong experimental justification for this line of development.

MATERIALS AND METHODS
Sample problems
For fully connected SK and MAX-CUT on dense graphs, 20 random
instances were created of each size N = 2,3, … ,61 for the D-Wave.
Of these, the N = 2,10,20, … ,60 instances were also used for the
CIM. An additional set of random instances were created for N =
70,80,… ,150 for the CIM using the same algorithm.

For the sparse-graph analysis, we computed regular graphs of sizeN=
2,4,… ,300 and degree d = 3,4,… 20, with 20 instances for each pair
(N, d). The algorithm randomly assigns edges to eligible vertices until
all reach the required degree (and backtracks if it gets stuck). The same
algorithm was also used for the variable-density graphs: d = 1,2,… ,
(N − 2) for N = 20,30,40,50,60, creating 20 instances per pair (N, d).

Exact SK ground states were found with the Spin Glass Server (59),
which uses BiqMac (60), an exact branch-and-bound algorithm. For SK
instances of sizeN≤ 100, the algorithm obtained proven ground states.
For N > 100, the solver timed out before exhausting all branches (run-
timeT= 3000 s), so the result is not a guaranteed ground state; however,
we believe that it reaches the ground state with high probability forN≤
150 because multiple runs of the algorithm give the same state energy
and none of the CIM runs found an Ising energy lower than the Spin
Glass Server result. MAX-CUT ground states forN≤ 30 were found by
brute-force search on a personal computer; for 20 ≤ N ≤ 150, a BLS
algorithm was used (5). Although BLS is a heuristic solver, for N ≤ 150,
it finds the ground state with nearly 100% probability, giving us high con-
fidence that the BLS solutions are ground states. While the brute-force
solver, D-Wave, and the CIM found states of equal energy to the BLS so-
lution (if run long enough), they never found states of lower energy.

D-wave annealers
Initial D-Wave experiments were performed on the D-Wave 2X at
NASA Ames Research Center and the D-Wave 2X online system at
D-Wave Systems Inc. Later runs were made on the DW2Q at NASA
Ames, once that machine came online. The 2X and 2000Q systems
use a C12 (12 cells × 12 cells × 4 qubits) and C16 (16 × 16 × 4) Chi-
mera, respectively. For all-to-all graphs, D-Wave 2X supports N ≤ 48
and 2000Q supports N≤ 64 (the number is slightly smaller because of
broken qubits). All N ≤ 48 runs were consistent across the three ma-

chines and with extrapolation of data in (42) from runs performed on a
different set of instances on the earlier-generation machine D-Wave
Two. All data reported in this paper came from the DW2Q.

Embeddings were precomputed for all problems (heuristic embed-
dings for sparseMAX-CUTandnative clique embeddings for SK, dense
MAX-CUT, and variable-density MAX-CUT) so that runs in different
conditions (e.g., annealing times and constraint couplings) would use
the same embeddings. For each problem type, the optimal annealing
parameter Jc is found as a function of problem size N by sweeping Jc
(section S1). The optimal Jcwas found to be independent of the anneal-
ing time. The standard annealing schedule was used in all experiments,
but the annealing time was tuned. Most instances were run 104 to 105

times in total depending on the observed success rate (the especially
hard N≥ 50 MAX-CUT instances were run up to 4 × 106 times). Five
to 10 different embeddings were used per instance, and the success
probability was averaged. Spin-reversal transformations were used to
avoid spurious effects. After an anneal, each logical qubit value was
determined by taking the majority vote of all qubits in the chain.

In all figures, the shaded regions give the [25th, 75th] percentile
range [interquartile range (IQR)] for the data. Figures 2B, 3A, and 5A
show individual instances as dots and the solid line gives the median.
Figures 2C, 3 (B and C), and 5B are too crowded to show D-Wave in-
stances; the dots give medians and the smooth lines give analytic fits.
For CIM data, medians and IQR are shown in Figs. 2C and 3B, while
Fig. 3C only shows medians and IQR due to crowding.

Coherent Ising machine
CIM experiments were performed on the 100 OPO CIM at Ginzton
Laboratory of Stanford University and the 2048 OPO CIM at NTT Ba-
sic Research Laboratories. The Stanford and NTT devices are described
in (24, 25), respectively. Computation time of the Stanford CIM is 1.6
ms, which is the time for 1000 round trips of the 320-m fiber ring cavity.
Since the NTT CIM processes a 2000-node problem in 5.0 ms, which is
the time for 1000 round trips of the 1-km fiber ring cavity, we can solve
up to ⌊2000/N⌋ problems in parallel per computation time.

TheCIM’s reliable operation depends on relative phases between the
OPO pulses, injection pulses, and measurement local oscillator pulses
being kept stable and well calibrated. Such phase stabilization is im-
perfect in the experimental setups used in this study, and consequently,
post-selection procedures have been applied to both the Stanford and
NTT CIM experimental data. This is described in detail in section S2.
Computation times have been reported in terms of annealing times; as
with the DW2Q, these times exclude the time required to transfer data
to and from the CIM.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/5/eaau0823/DC1
Section S1. D-Wave embeddings and Jc optimization
Section S2. CIM data and post-selection
Section S3. C-SDE simulations of CIM
Section S4. Optimal–annealing time analysis
Section S5. Performance of parallel tempering
Fig. S1. D-Wave success probability for SK problems and MAX-CUT problems of edge density
0.5 as a function of problem size N and embedding parameter Jc.
Fig. S2. MAX-CUT on graphs with an edge density of 0.5.
Fig. S3. Properties of heuristic embeddings for fixed-degree graphs.
Fig. S4. Choice of optimal coupling for sparse graphs using the heuristic embedding.
Fig. S5. Data filtering and post-selection in NTT CIM.
Fig. S6. Comparison of Stanford and NTT CIM performance for SK and dense MAX-CUT problems.
Fig. S7. Abstract schematic of measurement-feedback CIM.
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Fig. S8. Simulated CIM success probability as a function of Fmax for the SK, dense MAXCUT, and
cubic MAX-CUT problems in this paper.
Fig. S9. Comparison of c-SDE simulations with experimental CIM data.
Fig. S10. Simulated CIM success probability and time to solution (in round trips) for SK and
MAX-CUT problems.
Fig. S11. Time-to-solution analysis for D-Wave at optimal annealing time.
Fig. S12. CIM time to solution compared against the parallel tempering algorithm
implemented in the Unified Framework for Optimization.
Table S1. Seven steps in a single round trip for the measurement-feedback CIM and the
appropriate truncated Wigner description.
Table S2. Problem-dependent constants a and b used in the relation N0 = a + b log10(T/ms) for
the success probability exponential P = e−(N/N0)2.
References (61–64)

REFERENCES AND NOTES
1. S. Rudich, A. Wigderson, Computational Complexity Theory (American Mathematical

Society, 2004), vol. 10.
2. R. M. Karp, Complexity of Computer Computations (Springer, 1972), pp. 85–103.
3. M. X. Goemans, D. P. Williamson, Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. JACM 42, 1115–1145
(1995).

4. S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Optimization by simulated annealing. Science
220, 671–680 (1983).

5. U. Benlic, J.-K. Hao, Breakout local search for the Max-Cutproblem. Eng. Appl. Artif. Intell.
26, 1162–1173 (2013).

6. C. Yoshimura, M. Yamaoka, M. Hayashi, T. Okuyama, H. Aoki, K.-i. Kawarabayashi,
H. Mizuno, Uncertain behaviours of integrated circuits improve computational
performance. Sci. Rep. 5, 16213 (2015).

7. S. Tsukamoto, M. Takatsu, S. Matsubara, H. Tamura, An accelerator architecture for
combinatorial optimization problems. FUJITSU Sci. Tech. J. 53, 8–13 (2017).

8. B. Sutton, K. Y. Camsari, B. Behin-Aein, S. Datta, Intrinsic optimization using stochastic
nanomagnets. Sci. Rep. 7, 44370 (2017).

9. A. Parihar, N. Shukla, M. Jerry, S. Datta, A. Raychowdhury, Vertex coloring of graphs via
phase dynamics of coupled oscillatory networks. Sci. Rep. 7, 911 (2017).

10. X. Yin, B. Sedighi, M. Varga, M. Ercsey-Ravasz, Z. Toroczkai, X. S. Hu, Efficient analog
circuits for boolean satisfiability. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26,
155–167 (2018).

11. A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, P. R. Prucnal,
Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7,
7430 (2017).

12. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A quantum adiabatic
evolution algorithm applied to random instances of an NP-complete problem. Science
292, 472–475 (2001).

13. T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Phys. Rev. E
58, 5355–5363 (1998).

14. G. E. Santoro, E. Tosatti, Optimization using quantum mechanics: quantum annealing
through adiabatic evolution. J. Phys. A Math. Gen. 39, R393–R431 (2006).

15. S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, M. Troyer,
Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10,
218–224 (2014).

16. G. E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of quantum annealing of an Ising spin
glass. Science 295, 2427–2430 (2002).

17. R. D. Somma, D. Nagaj, M. Kieferová, Quantum speedup by quantum annealing.
Phys. Rev. Lett. 109, 050501 (2012).

18. T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar,
M. Troyer, Defining and detecting quantum speedup. Science 345, 420–424 (2014).

19. T. Albash, D. A. Lidar, Demonstration of a scaling advantage for a quantum annealer over
simulated annealing. Phys. Rev. X 8, 031016 (2018).

20. V. Choi, Minor-embedding in adiabatic quantum computation: I. The parameter setting
problem. Quantum Inf. Process 7, 193–209 (2008).

21. J. Cai, W. G. Macready, A. Roy, A practical heuristic for finding graph minors.
arXiv:1406.2741 [quant-ph] (10 June 2014).

22. V. Choi, Minor-embedding in adiabatic quantum computation: II. minor-universal graph
design. Quantum Inf. Process 10, 343–353 (2011).

23. C. Klymko, B. D. Sullivan, T. S. Humble, Adiabatic quantum programming: Minor
embedding with hard faults. Quantum Inf. Process 13, 709–729 (2014).

24. P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki,
H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, Y. Yamamoto,
A fully programmable 100-spin coherent Ising machine with all-to-all connections.
Science 354, 614–617 (2016).

25. T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi,
P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara,
K.-i. Kawarabayashi, K. Inoue, S. Utsunomiya, H. Takesue, A coherent Ising machine for
2000-node optimization problems. Science 354, 603–606 (2016).

26. F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen.
15, 3241–3253 (1982).

27. S. Kirkpatrick, D. Sherrington, Solvable model of a spin-glass. Phys. Rev. Lett. 35,
1792–1796 (1975).

28. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
29. Z. Wang, A. Marandi, K. Wen, R. L. Byer, Y. Yamamoto, Coherent Ising machine based on

degenerate optical parametric oscillators. Phys. Rev. A 88, 063853 (2013).
30. A. Marandi, Z. Wang, K. Takata, R. L. Byer, Y. Yamamoto, Network of time-multiplexed

optical parametric oscillators as a coherent Isingmachine.Nat. Photonics 8, 937–942 (2014).
31. H. Takesue, T. Inagaki, 10 GHz clock time-multiplexed degenerate optical parametric

oscillators for a photonic Ising spin network. Opt. Lett. 41, 4273–4276 (2016).
32. D. F. Walls, G. J. Milburn, Quantum Optics (Springer Science & Business Media, 2007).
33. G. Milburn, D. Walls, Production of squeezed states in a degenerate parametric amplifier.

Opt. Commun. 39, 401–404 (1981).
34. P. Drummond, K. McNeil, D. Walls, Non-equilibrium transitions in sub/second harmonic

generation. J. Mod. Opt. 28, 211–225 (1981).
35. L.-A. Wu, H. J. Kimble, J. L. Hall, H. Wu, Generation of squeezed states by parametric down

conversion. Phys. Rev. Lett. 57, 2520–2523 (1986).
36. P. Kinsler, P. D. Drummond, Quantum dynamics of the parametric oscillator. Phys. Rev. A

43, 6194–6208 (1991).
37. K. Takata, A. Marandi, R. Hamerly, Y. Haribara, D. Maruo, S. Tamate, H. Sakaguchi,

S. Utsunomiya, Y. Yamamoto, A 16-bit coherent Ising machine for one-dimensional ring
and cubic graph problems. Sci. Rep. 6, 34089 (2016).

38. R. Hamerly, K. Inaba, T. Inagaki, H. Takesue, Y. Yamamoto, H. Mabuchi, Topological defect
formation in 1D and 2D spin chains realized by network of optical parametric oscillators.
Int. J. Mod. Phys. B 30, 1630014 (2016).

39. W. R. Clements, J. J. Renema, Y. H. Wen, H. M. Chrzanowski, W. S. Kolthammer,
I. A. Walmsley, Gaussian optical Ising machines. Phys. Rev. A 96, 043850 (2017).

40. Y. Yamamoto, K. Aihara, T. Leleu, K.-i. Kawarabayashi, S. Kako, M. Fejer, K. Inoue,
H. Takesue, Coherent Ising machines—Optical neural networks operating at the
quantum limit. npj Quantum Inf. 3, 49 (2017).

41. T. Boothby, A. D. King, A. Roy, Fast clique minor generation in chimera qubit connectivity
graphs. Quantum Inf. Process 15, 495–508 (2016).

42. D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, V. Smelyanskiy,
Quantum optimization of fully connected spin glasses. Phys. Rev. X 5, 031040 (2015).

43. Y. Fu, P. W. Anderson, Application of statistical mechanics to NP-complete problems in
combinatorial optimisation. J. Phys. A Math. Gen. 19, 1605–1620 (1986).

44. Y. Haribara, S. Utsunomiya, Y. Yamamoto, Computational principle and performance
evaluation of coherent Ising machine based on degenerate optical parametric oscillator
network. Entropy 18, 151 (2016).

45. D. Coppersmith, D. Gamarnik, M. Hajiaghayi, G. B. Sorkin, Random max sat, random max
cut, and their phase transitions. Random Struct. Algoritms 24, 502–545 (2004).

46. P. Alimonti, V. Kann, Hardness of approximating problems on cubic graphs, in
Proceedings of the Third Italian Conference on Algorithms and Complexity (CIAC), Berlin,
Heidelberg, 12 to 14 March 1997, pp. 288–298.

47. R. Dechter, J. Pearl, The Cycle-Cutset Method for Improving Search Performance in AI
Applications (University of California, Computer Science Department, 1986).

48. C. C. McGeoch, W. Bernoudy, J. King, Comment on “Scaling advantages of all-to-all
connectivity in physical annealers: The Coherent Ising Machine vs D-Wave 2000Q”.
arXiv:1807.00089 [quant-ph] (29 June 2018).

49. S. Mandra, H. G. Katzgraber, A deceptive step towards quantum speedup detection.
Quantum Sci. Technol. 3, 04LT01 (2018).

50. D-Wave Systems Inc., Technical description of the D-Wave quantum processing unit,
Part of D-Wave API documentation (2016).

51. B. Gardas, J. Dziarmaga, W. H. Zurek, M. Zwolak, Defects in quantum computers. Sci. Rep.
8, 4539 (2018).

52. T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, H. Takesue, Large-scale Ising spin
network based on degenerate optical parametric oscillators. Nat. Photonics 10, 415–419
(2016).

53. D. Maruo, S. Utsunomiya, Y. Yamamoto, Truncated Wigner theory of coherent Ising
machines based on degenerate optical parametric oscillator network. Phys. Scr. 91,
083010 (2016).

54. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao,
H. Larochelle, D. Englund, M. Soljačić, Deep learning with coherent nanophotonic circuits.
Nat. Photonics 11, 441–446 (2017).

55. H. G. Katzgraber, F. Hamze, R. S. Andrist, Glassy chimeras could be blind to quantum
speedup: Designing better benchmarks for quantum annealing machines. Phys. Rev. X 4,
021008 (2014).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Hamerly et al., Sci. Adv. 2019;5 : eaau0823 24 May 2019 9 of 10

 on June 14, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

https://arxiv.org/abs/1406.2741
https://arxiv.org/abs/1807.00089
http://advances.sciencemag.org/


56. E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, V. N. Smelyanskiy, A case
study in programming a quantum annealer for hard operational planning problems.
Quantum Inf. Process 14, 1–36 (2015).

57. S. Weber, G. Samach, D. Rosenberg, J. Yoder, D. Kim, A. Kerman, W. Oliver, Hardware
considerations for high-connectivity quantum annealers. Bull. Am. Phys. Soc. (2018).

58. Y. Chen, C. Quintana, D. Kafri, A. Shabani, B. Chiaro, B. Foxen, Z. Chen, A. Dunsworth,
C. Neill, J. Wenner, H. Neven, J. Martinis; Google Quantum Hardware Team,
Progress towards a small-scale quantum annealer I: Architecture. Bull. Am. Phys. Soc.
(2017).

59. F. Liers, M. Jünger, Spin glass server; http://informatik.uni-koeln.de/spinglass/.
60. F. Rendl, G. Rinaldi, A. Wiegele, Solving Max-Cut to optimality by intersecting semidefinite

and polyhedral relaxations. Math. Program. 121, 307–335 (2010).
61. D-Wave Systems Inc., Chimera embedding (2016); https://github.com/dwavesystems/

chimera-embedding.

62. A. D. King, W. Bernoudy, J. King, A. J. Berkley, T. Lanting, Emulating the coherent Ising
machine with a mean-field algorithm. arXiv:1806.08422 [quant-ph] (21 Jun 2018).

63. S. Mandrà, H. G. Katzgraber, C. Thomas, The pitfalls of planar spin-glass benchmarks:
raising the bar for quantum annealers (again). Quantum Sci. Technol. 2, 038501 (2017).

64. S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, H. G. Katzgraber, Strengths and
weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art
classical heuristics versus quantum approaches. Phys. Rev. A 94, 022337 (2016).

Acknowledgments: We acknowledge S. Mandrà for useful discussions and parallel-tempering
simulation results and D. Lidar, A. King, and C. McGeoch for helpful correspondence.
Funding: This research was funded by the Impulsing Paradigm Change through Disruptive
Technologies (ImPACT) Program of the Council of Science, Technology and Innovation
(Cabinet Office, Government of Japan). R.H. is supported by an IC Postdoctoral Research
Fellowship at MIT, administered by ORISE through U.S. DOE and ODNI. P.L.M. was partially
supported by a Stanford Nano- and Quantum Science and Engineering Postdoctoral
Fellowship. D.V. acknowledges funding from NASA Academic Mission Services contract no.
NNA16BD14C. H.M., E.N., and T.O. acknowledge funding from NSF award no. PHY-1648807.
D.E. acknowledges support from the U.S. ARO through the ISN at MIT (no. W911NF-18-2-0048) and

the SRC-NSF E2CDA program. Author contributions: Y.Y., P.L.M., and E.R. proposed the project.
R.H. performed D-Wave experiments and data analysis and prepared the figures. R.H., P.L.M., D.V.,
and T.I. wrote the manuscript. T.I. and P.L.M. performed NTT and Stanford CIM experiments,
respectively. D.V. helped with D-Wave experiments and data analysis. A.M., C.L., R.L.B., M.M.F., and
H.M. contributed to building the Stanford CIM. K.I., T.H., K.E., T.U., R.K., and H.T. contributed to
building the NTT CIM. R.H. performed simulations of the CIM, adapting code from P.L.M., E.N., and
T.O. E.R., Y.Y., and A.M. assisted with preparation of the manuscript. S.U., S.K., K.-i.K., and D.E.
assisted with interpretation of the results. Competing interests: T.I., H.T., T.H., S.U., Y.Y. are
inventors on patent JP6429346 awarded in November 2018 to National Institute of Informatics
(NII), NTT, and Osaka University that covers an OPO pulse sequence for calculation and
stabilization of CIM. A.M., Y.Y., R.L.B., and S.U. are inventors on patent US9830555 awarded in
November 2017 to Stanford University that covers a CIM based on a network of OPOs. S.U., Y.Y.,
and H.T. are inventors on patent US10140580 awarded in November 2018 to NII and NTT that
covers a CIM using measurement feedback. T.I., K.I., H.T., and T.H. are inventors on patent
application PCT/JP2018/038994 submitted by NTT that covers a phase checking scheme for
the CIM. T.U. and K.E. are inventors on patent JP5856083 awarded in February 2016 to NTT that
covers phase-sensitive amplifiers based on periodically poled lithium niobate waveguides.
P.L.M. is an advisor to QC Ware Corp. The authors declare no other competing interests. Data and
materials availability: All data needed to evaluate the conclusions in the paper are present
in the paper and/or the Supplementary Materials. Additional data related to this paper may be
requested from the authors.

Submitted 4 May 2018
Accepted 17 April 2019
Published 24 May 2019
10.1126/sciadv.aau0823

Citation: R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng,
C. Langrock, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, S. Utsunomiya, S. Kako,
K.- i. Kawarabayashi, R. L. Byer, M. M. Fejer, H. Mabuchi, D. Englund, E. Rieffel, H. Takesue,
Y. Yamamoto, Experimental investigation of performance differences between coherent Ising
machines and a quantum annealer. Sci. Adv. 5, eaau0823 (2019).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Hamerly et al., Sci. Adv. 2019;5 : eaau0823 24 May 2019 10 of 10

 on June 14, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://informatik.uni-koeln.de/spinglass/
https://github.com/dwavesystems/chimera-embedding
https://github.com/dwavesystems/chimera-embedding
https://arxiv.org/abs/1806.08422
http://advances.sciencemag.org/


a quantum annealer
Experimental investigation of performance differences between coherent Ising machines and

Takesue and Yoshihisa Yamamoto
Satoshi Kako, Ken-ichi Kawarabayashi, Robert L. Byer, Martin M. Fejer, Hideo Mabuchi, Dirk Englund, Eleanor Rieffel, Hiroki
Carsten Langrock, Kensuke Inaba, Toshimori Honjo, Koji Enbutsu, Takeshi Umeki, Ryoichi Kasahara, Shoko Utsunomiya, 
Ryan Hamerly, Takahiro Inagaki, Peter L. McMahon, Davide Venturelli, Alireza Marandi, Tatsuhiro Onodera, Edwin Ng,

DOI: 10.1126/sciadv.aau0823
 (5), eaau0823.5Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/5/5/eaau0823

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2019/05/20/5.5.eaau0823.DC1

REFERENCES

http://advances.sciencemag.org/content/5/5/eaau0823#BIBL
This article cites 50 articles, 6 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

registered trademark of AAAS.
is aScience Advances Association for the Advancement of Science. No claim to original U.S. Government Works. The title 

York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

 on June 14, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/content/5/5/eaau0823
http://advances.sciencemag.org/content/suppl/2019/05/20/5.5.eaau0823.DC1
http://advances.sciencemag.org/content/5/5/eaau0823#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

