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Abstract

Twenty-first century urban planners have identified the under-
standing of complex city traffic patterns as a major priority, leading
to a sharp increase in the amount and the diversity of traffic data
being collected. For instance, taxi companies in an increasing number
of major cities have started recording metadata for every individual
car ride, such as its origin, destination and travel time. In this pa-
per, we show that we can leverage network optimization insights to
extract accurate travel time estimations from such origin-destination
data, using information from a large number of taxi trips to recon-
struct the traffic patterns in an entire city. We develop a method
that tractably exploits origin-destination data, which, because of its
optimization framework, could also take advantage of other sources
of traffic information. Using synthetic data, we establish the robust-
ness of our algorithm to high variance data, and the interpretability
of its results. We then use hundreds of thousands of taxi travel times
observations in Manhattan to show that our algorithm can provide
insights about urban traffic patterns on different scales and accurate
travel time estimations throughout the network.

1 Introduction

In today’s increasingly dense urban landscapes, traffic congestion is an ever
more prevalent issue. As flows of goods and people increase, billions of dollars
in potential savings are at stake, making the understanding of traffic patterns
a major urban planning priority.

∗Accepted for publication in Operations Research
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A main goal of traffic studies is travel time estimation, which in the broad-
est sense consists of evaluating the time necessary to travel from any origin
O to any destination D. This goal is difficult to achieve because travel times
depend on a range of effects at different timescales, from the structure of the
network (number of lanes on each road, speed limit, etc.) over the long term,
to the state of congestion of the network over the medium term, to a host of
small random events (missed lights, etc.) over the very short term. Because
of the sheer number and diversity of these sources of uncertainty, most gen-
eral approaches to travel time estimation consist of finding parameters that
describe a distribution or set of distributions from which the travel time from
O to D is sampled.

Travel time estimation is often combined with the related goal of routing,
especially in the short to medium-term planning case. In this case, the goal
is to evaluate the time necessary to travel from O to D and find at least one
path that drivers could use to achieve this estimate, relating the travel time
estimate to interpretable network properties. In this paper, we present a
novel method to estimate typical travel times for each road in a city network
using taxi data, thus providing reasonable paths and total trip time estimates
for any origin and destination in the network.

1.1 The Need for a Generalized Approach to Travel
Time Estimation

The problem of inferring traffic patterns from diverse measurements is a
fundamental step behind the resolution of many complex questions in trans-
portation and logistics. A simple cost function on the individual arcs of the
network can often form a building block of a more complex network study,
such as recent work by Pióro et al. (2016) presenting a novel understand-
ing of resilient networks. Furthermore, many network problems specifically
require a travel time estimate for each arc: for instance, Nikolova and Stier-
Moses (2014), who develop a new model for traffic assignment that takes
into account network uncertainty, present an approach starting from a prior
estimate of the expected travel times of individual arcs in the network. Even
in examples such as the aforementioned work or that of Jaillet et al. (2016),
both of which generally consider travel time to be a stochastic quantity, a
good estimate for the network travel times is a valuable asset in order to
define a prior or an uncertainty set for this uncertain quantity, laying the
groundwork to answer more complex questions about the network.

In a real-world setting, there are different ways to obtain traffic data in
a network, each leading to different travel time estimation methods. A pop-
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ular approach uses fixed detectors that provide information about traffic at
particular points in the network, most commonly loop sensors as in Coifman
(2002), or more advanced methods as in Li and Rose (2011) that exploit
communication between sensors to identify the same vehicle at different lo-
cations. Another popular approach, as in Jenelius and Koutsopoulos (2013),
uses so-called “floating-car” data, where GPS-equipped vehicles record their
location and speed at fixed time intervals, which can range from a few sec-
onds to a few minutes. The path followed by the vehicle between “pings”
of the GPS device can be inferred in a variety of ways, from probabilistic
models in Hofleitner et al. (2012) to tensor decomposition in Wang et al.
(2014).

A third area of study involves easily gatherable “origin-destination” (OD)
data, that only records the time and location at the beginning and at the
end of a trip, as, for example, collected by taxis or cellphone towers. Log-
ging this data instead of high-density floating-car data increases the privacy
of the taxi driver and passenger because the details of the followed route
are not recorded. It also treats the network as a black box, only making
measurements when the user enters and exits. OD data can be gathered
for different purposes, and the methods we develop here in the context of
vehicle traffic can be extended to other types of networks, including rail-
ways, subways, and bicycle and pedestrian networks (see recent studies such
as Hänseler et al. (2017)), or combinations of such networks. Nevertheless,
this generality makes the travel time estimation harder: the problem of si-
multaneously determining paths and travel times based on origin-destination
data only is close to the Inverse Shortest Path Length Problem (ISPL), an
NP-hard problem which has also received some attention by Hung (2003).

In recent years, the New York City Taxi and Limousine Commission
(NYCTLC (2016)) has maintained a complete public record of yellow cab
rides within the city. The database contains relevant metadata such as the
origin, destination, fare, distance and time traveled for over 170 million rides
per year, and has been exploited for a variety of purposes, as shown in Yang
(2015). Despite the data’s size and availability, however, it has not been
used very much for travel time estimation. Wang et al. (2015) develop a
machine learning method based on k-nearest neighbors matching, while Santi
et al. (2014) describe a very simple smoothing heuristic. Meanwhile, Zhan
et al. (2013)’s more model-oriented approach develops a full probabilistic
path selection scheme.
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1.2 Our Contributions

The main contribution of this paper is a tractable methodology to solve the
travel time estimation and routing problem in a real-world setting on a large
network, which has a number of desirable properties.

First, we use very few assumptions about the data: to provide travel time
estimates, we only ask for a set of trips within a known network for which
an origin, a destination and a travel time are recorded. In particular, we
do not require information about the demand structure in the network. We
design a simple static model of traffic based on shortest path theory. This
simplicity allows us to develop a multipurpose network optimization method
that can leverage large amounts of high-variance origin-destination data to
build an estimate of city travel times that is accurate both in and out of
sample. Moreover, this method is general enough to be able to handle other
sources of data, including floating cars and loop sensors.

Furthermore, the method also recovers interpretable city traffic and rout-
ing information from this potentially noisy and incomplete data. We estimate
a single parameter for each edge, which enhances the interpretability of the
results (see Figure 1 for an example). In order to avoid overfitting, partic-
ularly in regions of the city where little data is available, we add a simple
regularization term to the model. The method provides insight on traffic
patterns at the scale of a few city blocks, as well as at the scale of the entire
network, and also allows us to quickly find viable paths associated with our
travel time estimates.

Solving this estimation problem to optimality at an impactful scale is
generally intractable. For this reason, we develop a novel iterative algorithm
that provides good solutions, by solving a sequence of large second-order
cone problems (SOCPs), which modern solvers can tractably handle. We
verify the accuracy of this algorithm in a variety of settings and show that
it provides high-quality solutions. The method is tractable, determining the
typical paths and travel times in the 4300-node Manhattan network over a
three-hour time window in under 20 minutes.

In Section 2, we formulate an optimization problem that gives both ac-
curate origin-destination travel time estimates and interpretable link travel
times and routing paths. In Section 3, we introduce an iterative algorithm
that can compute solutions to this optimization in large scale settings. In
Section 4, using synthetic data we show that the solutions of this algorithm
are near-optimal and that the simplifications we made for tractability did
not impact accuracy and interpretability. In Section 5, we show that this
also extends to real-world situations and we present results on Manhattan
taxi data.
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Figure 1: Close-up of Manhattan with the arc travel times estimated by
our method between 9 and 11 AM. The color of each arc represents the
speed along that arc as a percentage of the reference velocity v0 = 13.85
kph (average velocity in Manhattan on weekdays). We can identify traffic
effects at the scale of the city (Midtown congestion) and at the scale of a
single street (the ramp onto the highway on the eastern shore of Manhattan
is congested).

2 Methodology

In this section, we define the probabilistic setting of travel time estimation,
and introduce a simple traffic model that leverages the knowledge of the
routing network to represent travel time estimates in the lower dimensional
space of network arc travel times. This allows us to create an optimization
formulation that uses origin-destination data to build an interpretable image
of the network travel times, and at the same time provide accurate travel
time estimates.

2.1 Problem Statement: Estimating Travel Times From
Data

Data. We consider a road network, represented as a directed graph G =
(V,E). On this graph, we are given a data set of origin-destination travel
time values in the network, of the form (o, d, T ) with (o, d) ∈ V × V the
origin and destination nodes and T ∈ R+ the corresponding observed travel
time. Data corresponding to this general description can be obtained in
many different ways. For example, the set of observed travel times for taxi
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trips that started between 12pm and 1pm on 2016 Wednesdays in Manhattan
would be a valid example of such a data set, as would the set of stop-to-stop
travel times for Boston school buses in the academic year 2016-17.

Some origin-destination pairs have several travel time observations in the
data set, while others have none. We can therefore define W ⊂ V ×V as the
subset of origin-destination pairs for which we have data: for each (o, d) ∈ W
we are given travel times {T i

od}
nod
i=1, realized on nod distinct trips from o to d.

Probabilistic Setting. We would like to estimate the times of trips that
are “similar” to the trips that are given in the data set, but may not have
been observed in the data. In other words, given any origin-destination pair
(o, d) ∈ V 2, we would like to provide a point estimate T̂od of the time it takes
to go from o to d. To properly define these estimates for all origin-destination
pairs, we describe a simple probabilistic setting.

Each observation of the data-set is assumed to be independently sam-
pled from the same probability distribution. This sampling process goes as
follows: the origin and destination nodes (o, d) are sampled from a discrete
distribution D in V 2. Then, conditioned on having an origin o and a des-
tination d, the observed travel times {T i

od}
nod
i=1 are assumed to be sampled

independently from the distribution Dod. Note that Dod can be different for
each (o, d). We assume that our data set was built by following this sampling
process, but that we do not know the distributions D or Dod. We will hold
these probabilistic assumptions to be true throughout this paper, including
our experiments on synthetic data in Section 4. In Section 5, we will show
that our results extend to real-world data that does not necessarily verify
our probabilistic assumptions.

We want to obtain a point estimate T̂od of the distribution Dod for every
pair (o, d) ∈ V×V . Specifically, we would like to estimate the geometric mean
of the distribution Dod : exp(ETod∼Dod

[log(Tod)]). We choose the geometric
mean instead of the standard mean because we think that the quality of travel
time estimations is perceived on a multiplicative rather than an additive scale,
as we discuss in the next paragraph.

To understand the choice of estimating the geometric mean, note that
the geometric means of all the distributions Dod are estimates that minimize
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the overall mean squared log error (MSLE) :

MSLE((T̂od)(o,d)∈V 2) = E(o,d)∼D,Tod∼Dod

[(
log(T̂od)− log(Tod)

)2]
(1)

= E(o,d)∼D,Tod∼Dod

[
(log(Tod)− ETod∼Dod

[log(Tod)])
2]

(2)

+ E(o,d)∼D

[(
log(T̂od)− ETod∼Dod

[log(Tod)]
)2]

. (3)

Note that the expectations are taken with respect to the distributions
D and Dod. The MSLE decomposes into the mean log variance of the data
(2) which is independent of our estimates, and the mean squared log bias
(MSLB) (3) which is a measure of the distance of each estimate T̂od from
the geometric mean of Dod. Using the MSLE implies that an estimate that
is twice an observed value is equally bad as an estimate that is half of it.
Additionally, a 30-second estimation error is a lot worse for a trip that last
2 minutes than for a trip that lasts 15 minutes. This is what we want and
why we chose the log scale and geometric mean estimates.

Model. In practice, we do not observe all the possible (o, d) pairs, which
makes it hard to estimate the geometric mean of Dod using only the data that
has origin o and destination d. Nonetheless, the estimates of the distributions
Dod are typically related: for example, a trip from o to d and a trip from o′ to d
where o and o′ are geographically close will have similar travel time estimates.
Therefore, we leverage the network structure by introducing parameters tij
that represent the typical travel time along any arc (i, j) ∈ E, and use them
to compute our estimates T̂od.

We define a path Pod from o to d as a series of consecutive arcs (without
cycles), starting at o and ending at d, and Pod to be the finite set of all
possible paths from o to d. For each possible path Pod ∈ Pod, we model
the point estimate of the total travel time along this path to be T̂Pod

=∑
(i,j)∈Pod

tij. Because our data set provides no information as to which path
was followed to realize a given travel time, we assume that drivers use the
fastest paths available. We thus select P̂od = argminPod∈Pod

∑
(i,j)∈Pod

tij, and

define our point estimate to be T̂od = T̂P̂od
=
∑

(i,j)∈P̂od
tij. As a consequence,

given the parameters tij, our model chooses the point estimates T̂od(t) =
minPod∈Pod

∑
(i,j)∈Pod

tij, where t is simply shorthand for the vector (tij)(i,j)∈E
(following standard boldfaced vector notation).

To use this model, we must only provide |E| parameters, which is gen-
erally much less than the |V |2 estimates we want to obtain. The model is
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also interpretable, as we expect the values tij to be representative of the
typical travel-times along arc (i, j) ∈ E. We acknowledge that the shortest-
path assumption itself can be questioned. From a behavioral standpoint,
taxi drivers may have other objectives in mind, such as maximizing revenue
or minimizing fuel consumption; in addition, Dial (1971) showed that short-
est paths can be sensitive to changes in travel time. However, we find that
despite this modeling assumption, our results on real data are interpretable
and reasonably accurate.

Parameter Estimation. We want to use the observed travel times T i
od to

estimate the model parameters tij. Following our goal to have estimates as
close as possible to the geometric mean ofDod, we want to find the values of tij
that minimize the MSLE of the estimates T̂od. Because the distributions Dod

and D are unknown, we approximate them with the empirical distribution
of our observations and we obtain the following minimization problem:

min
t

∑
(o,d)∈W

nod∑
i=1

(log T̂od(t)− log T i
od)

2, (4)

which is equivalent to

min
t

∑
(o,d)∈W

nod(log T̂od(t)− log Tod)
2, (5)

where Tod = (
∏nod

i=1 T
i
od)

1/nod , the geometric mean of all the observed travel
times from o to d.

Regularization. In order to generalize well out of sample, we need to add
a regularization term to the empirical MSLE. This is important because we
may not have sampled enough data from D and Dod, and the empirical MSLE
(4) may not be a good approximation of the MSLE (1). Leveraging our
knowledge of the city network, we hypothesize that two similar intersecting
or consecutive roads should have similar traffic speeds by default. Two arcs
(i, j) and (k, l) are called neighboring when they represent consecutive or
intersecting roads with the same “type”. These types are defined through our
knowledge of the routing network, and differentiate highways, major arteries
and smaller roads. The neighboring relationship is written as (i, j)↔ (k, l).
This regularization is somewhat unusual in traffic studies, but it is effective in
practice and will only influence our estimation when we do not have enough
data. Adding the regularization term to our objective yields:∑

(o,d)∈W

nod

(
log T̂od − log Tod

)2
+ λ

∑
(i,j)↔(k,l)

∣∣∣∣ tijdij − tkl
dkl

∣∣∣∣ 2

dij + dkl
, (6)
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where dij corresponds to the length in meters of the arc (i, j) in the routing
network,

∑
(i,j)↔(k,l) represent the sum over all pairs of neighboring arcs (i, j)

and (k, l) and the parameter λ represents the strength of the regularization.
In other words, we minimize the difference in speed of neighboring roads, with
the weighting factor 2/(dij+dkl) ensuring that continuity is more important in
shorter neighboring roads (where constant velocity is a better approximation)
than in longer ones.

2.2 MIO Formulation

We can now estimate the parameters tij from the data by solving the following
mixed-integer formulation with linear constraints and a non-linear objective:

min
T̂, t,z

∑
(o,d)∈W

nod

(
log T̂od − log Tod

)2
+ λ

∑
(i,j)↔(k,l)

∣∣∣∣ tijdij − tkl
dkl

∣∣∣∣ 2

dij + dkl

(7a)

s.t. T̂od ≤
∑

(i,j)∈P `
od

tij ∀(o, d) ∈ W, P `
od ∈ Kod (7b)

T̂od ≥
∑

(i,j)∈P `
od

tij −M(1− z`od) ∀(o, d) ∈ W, P `
od ∈ Kod (7c)

∑
`

z`od = 1 ∀(o, d) ∈ W (7d)

z`od ∈ {0, 1} ∀(o, d) ∈ W, ` ∈ {1, . . . , |Kod|}
(7e)

tij ≥ aij ∀(i, j) ∈ E. (7f)

The objective (7a) is the parameter estimation cost introduced in (6). For
each (o, d) ∈ W , the constraints enforce that T̂od = minPod∈Kod

∑
(i,j)∈Pod

tij,

i.e. T̂od is the time of the shortest path from o to d out of all the paths in Kod.
This non-linear shortest path constraint is enforced using the binary variables
zlod that represent which path P `

od ∈ Kod is the shortest path, together with
the constraints (7b), (7d) and the big-M constraints (7c). Typically, Kod =
Pod is the set of all paths from o to d, but the formulation generalizes to any
other subset Kod ⊂ Pod. Finally, the constraints (7f) introduce the bounds
aij to enforce a speed limit on the arc travel times tij.
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2.3 Iterative Path Generation

For each (o, d) ∈ W , formulation (7) requires one binary variable for each
path going from o to d. The number of paths is typically exponential in the
size of the graph, so we need to reduce the number of paths to consider if we
want to be able to solve (7). It turns out the formulation is naturally suited
for an iterative approach. Assume we start with a small set of paths P0

od for
every origin-destination pair in the dataset. We can solve the problem in (7)
by considering the set of paths Kod = P0

od instead of the much larger Kod =
Pod. This yields values of tij, for which we can recompute new shortest paths
in the network using any shortest-path algorithm. If for a given (o, d), the new
shortest path has length less than T̂od, then we know that the minimum path
length computed over P0

od is not equal to the minimum path length over Pod.
In this case, we add the new shortest path P 1

od to our set of paths, obtaining
the set P1

od = P0
od∪{P 1

od}. We can then re-solve (7) using P1
od instead of P0

od,
and iterate this process. If instead the new shortest path for each (o, d) has
length equal to T̂od, then we know we have already found reasonable paths,
reaching a stopping point for the algorithm. The algorithm thus generates
an increasing list of path candidates Pk

od for each iteration k and (o, d) ∈ W ,
so that the shortest paths P k

od are added to the path candidates of the next
iteration, e.g. Pk+1

od = Pk
od ∪ {P k

od}.
This iterative approach is inspired by cutting plane algorithms in linear

optimization. In practice, most paths between o and d are not remotely close
to being the shortest and would never even be considered by drivers looking
to travel from o to d. Although this iterative method does not necessarily con-
verge to the global optimum of (7) with Kod = Pod, we will show empirically
that it yields good results for large problems, does not exhibit pathological
local optima when used with appropriate regularization and typically con-
verges in a few steps. Additionally the algorithm is always interpretable: the
solution at any iteration k corresponds to the optimal solution of the problem
if the drivers only consider the paths in Pk

od.

3 Solving Large-Scale Problems

Even with the iterative path generation presented in 2.3, the optimization
problem (7) cannot be tractably solved for most problems of interest. The
main reasons are that the objective is non-convex, and that there are at
least O(|W |) binary variables, which makes it impossible for state-of-the-art
solvers to give interesting solutions in a reasonable time for problems with
more than 1000 data-points and routing networks that represent real cities.
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Actually, solving this problem to optimality relates to the problem of path
reconstruction in a graph (sometimes called the Inverse Shortest Path Length
problem), an NP-hard problem, as discussed in Hung (2003). We present
a tractable approach that produces good solutions, allowing us to handle
hundreds of thousands of data points in networks with tens of thousands of
arcs.

3.1 Adapting the shortest path constraint

In order to handle a large number of data points, we need to discard the
binary variables z`od introduced in (7e). One way to do this is to modify
the constraint T̂od = minPod∈Kod

∑
(i,j)∈Pod

tij. An interesting solution can be
built by fixing the values of the binary variable, i.e., choosing which path
should be the shortest for each (o, d) ∈ W . Indeed, if the shortest path in
Kod is chosen to be P ∗od, then the shortest path constraints (7b)-(7e) trivially
become:

T̂od =
∑

(i,j)∈P ∗
od

tij ∀(o, d) ∈ W, (8a)

T̂od ≥
∑

(i,j)∈Pod

tij ∀(o, d) ∈ W, Pod ∈ Kod. (8b)

For this formulation to become useful, we need a clever way to choose P ∗od
for each (o, d) ∈ W . Our iterative path generation algorithm introduced
in Section 2.3 provides a good candidate. At iteration k, the algorithm
computes the shortest path P k

od for each (o, d) ∈ W . This path can be
viewed as our “best estimate” of the true path at iteration k, and is one of
the paths we consider at iteration k + 1. For this reason, we choose to use
this path as the chosen shortest path for the next iteration k + 1, setting
P ∗od = P k

od.
In the end, the results on synthetic data in Section 4 and on real data

in Section 5 show that this method, appropriately regularized, yields inter-
pretable high-quality solutions and empirically converges. Our intuition is
the following: this path estimation may not seem perfect, but the tractabil-
ity gains allow us to use orders of magnitude more data, which will improve
the accuracy of the tij parameters and the T̂od estimates, thus allowing us to
compute better paths at each iteration.

3.2 Towards a Convex Objective

The left term in the minimization objective (7a) is nonconvex and not easily
optimized by traditional optimization solvers. We want to find a surrogate
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that is convex, tractable, and a good approximation of the original squared
log cost. More specifically, we want to find a convex loss function ` such that
`(T̂od, Tod) = (log(T̂od)− log(Tod))

2 + o((T̂od − Tod)2), and such that ` is also
unbiased in the multiplicative space, i.e. `(aTod, Tod) = `(Tod

a
, Tod) for any

scalar a > 0.

A good candidate is the maximum ratio loss: `(T̂od, Tod) =
(

max
(

Tod

T̂od
, T̂od

Tod

)
− 1
)2

.

It is a convex function of the variable T̂od that has all the desired properties.
Our objective thus becomes:

∑
(o,d)∈W

nod

(
max

(
Tod

T̂od
,
T̂od
Tod

)
− 1

)2

+ λ
∑

(i,j)↔(k,l)

∣∣∣∣ tijdij − tkl
dkl

∣∣∣∣ 2

dij + dkl
(9)

We want to be able to solve the corresponding optimization with hundreds
of thousands of data-points. To the best of our knowledge, only state-of-the-
art LP and SOCP solvers are able to handle formulations with hundreds of
thousands of variables and constraints. As a consequence, we would like to
slightly modify our formulation to be able to formulate it as an SOCP. All
we need to do is replace the squared losses by absolute values, yielding the
modified objective:

∑
(o,d)∈W

nod max

(
Tod

T̂od
,
T̂od
Tod

)
+ λ

∑
(i,j)↔(k,l)

∣∣∣∣ tijdij − tkl
dkl

∣∣∣∣ 2

dij + dkl
(10)

This new objective allows us to reformulate each iteration as an SOCP:

min
T̂, t,x

∑
(o,d)∈W

nodxod + λ
∑

(i,j)↔(k,l)

∣∣∣∣ tijdij − tkl
dkl

∣∣∣∣ 2

dij + dkl
(11a)

s.t. T̂od =
∑

(i,j)∈P ∗
od

tij ∀(o, d) ∈ W, (11b)

T̂od ≥
∑

(i,j)∈Pod

tij ∀(o, d) ∈ W, Pod ∈ Kod,

(11c)

xod ≥
T̂od
Tod

∀(o, d) ∈ W, (11d)

xod ≥
Tod

T̂od
∀(o, d) ∈ W, (11e)

tij ≥ aij ∀(i, j) ∈ E. (11f)
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where xod = max
(

Tod

T̂od
, T̂od

Tod

)
. The objective can be formulated as linear, and

all the constraints are linear except (11e), which can be reformulated as the
following second-order cone constraint:(

xod + T̂od

)
≥
∥∥∥∥(T̂od − xod2

√
Tod

)∥∥∥∥ . (12)

Replacing the squared losses by absolute values makes our new formulation
more robust to outliers and more tractable, but weakens the case for replacing
the observations T i

od that share the same (o, d) with their geometric mean Tod.
Once more, we trade some modeling rigor for the ability to use more data,
and we will show that this choice is empirically justified.

3.3 A Tractable Algorithm

We now summarize our tractable algorithm for large-scale static travel time
estimation.

1. Choose a regularization parameter λ and an initial set of arc travel-
times: (t0ij)(i,j)∈E. We will show in the next sections that our results
are not sensitive to these choices. For each (o, d) ∈ K, start with an
empty set of paths Pod = ∅. Then start Step 2 with iteration k = 1.

2. For each iteration k, do the following:

3. Use an efficient, parallelized shortest-path algorithm to compute all the
shortest paths (P k

od)(o,d)∈W , using the arc travel-times (tk−1ij )(i,j)∈E. Add

these paths to the previous set of paths Pk
od = Pk−1

od ∪{P k
od}. If there is a

limit Π on the number of paths we can store (for memory or tractability
reasons), remove the path of Pk

od with the longest travel-time to make
sure that |Pk

od| ≤ Π.

4. Solve the optimization problem (11), using the newly computed short-
est paths P ∗od = P k

od, to obtain the new arc travel-times (tkij)(i,j)∈E.

5. If a convergence criterion is met, stop the algorithm and return the
times (tkij)(i,j)∈E. Else, start iteration k + 1 and go to Step 2.

In the end, our algorithm returns a set of arc travel-times, that can be used
to compute shortest paths and travel time estimations T̂od for any origin-
destination pair in the network. We propose a convergence criterion based
on path differences.
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Definition 1 (Path difference). Given a node pair (o, d) and two paths PA
od

and PB
od, the path difference d(PA

od, P
B
od) is defined as the average of the number

of arcs in PA
od that are not in PB

od and the number of arcs in PB
od that are not

in PA
od.

At each iteration k, we can compute the path difference between the new
path P k

od and the path of the previous iteration P k−1
od for each (o, d) ∈ W .

We stop our algorithm when the mean path difference across all (o, d) ∈ W
is less than a threshold δ, i.e. 1

|W |
∑

(o,d)∈W d(P k
od, P

k−1
od ) < δ. In this paper,

we fix δ to a small value: δ = 0.5. We chose this value because we noticed
that our estimates T̂od were not improving in subsequent iterations, for the
specific applications of this paper. In this situation, the algorithm tends to
converge in less than 10 iterations.

3.4 A General Model

The ability to solve the travel time estimation and routing problem using
only origin-destination data is useful because it makes minimal assumptions
on the format of the data. However, in some cases more data is available, for
instance from loop sensors or floating car probes (see Section 1.1). Due to
its optimization-based framework, our method is flexible enough to handle
many additional forms of data.

The method presented in the previous section is designed under the as-
sumption that for every (o, d) in the set of input node pairs W ⊂ V × V ,
we are only given a finite number of sample travel times, from which we
compute a geometric mean Tod, with no information about the path taken
by the drivers. Constraint (11b) reflects the algorithm’s attempt to guess
the correct path, assuming that the drivers are trying to minimize driving
times. If we assume now that for some (o, d) ∈ W , we are given not only a
travel time T obs

od , but also the used path P obs
od , then we can add a term in the

objective penalizing the distance between the observation T obs
od and the sum∑

(i,j)∈P obs
od
tij of link travel times along the path P obs

od .

Another form of traffic data that is commonly available comes from loop
sensors/traffic cameras, which can sometimes measure traffic velocity on a
given set of arcs L ⊆ E. For example, Wang and Nihan (2000) shows that
a single loop detector on a highway is enough to provide accurate speed
estimates. A velocity measurement on arc (i, j) is easily integrated into our
model, by adding a term in the objective that penalizes the distance of tij
from its measurement.

Thus, though our method is designed with minimal data in mind, it can
easily incorporate additional information about the network. In a world
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where more and more data is available, but formats may differ greatly from
source to source, an optimization-based approach allows for the easy integra-
tion of complementary information, yielding a multipurpose method to solve
the problem of travel time estimation and routing.

4 Performance on Synthetic Data

When developing a tractable algorithm in Section 2 and 3, we made sev-
eral simplifying assumptions about driver behavior and network properties,
and the complexity of our optimization formulation led to several heuris-
tic simplifications. It is hard to verify if the tractable iterative algorithm
presented in Section 3 provides good solutions to our original problem pre-
sented in Section 2.2 using real-world travel time data. Indeed, real data
does not always follow our model’s assumptions. This is why we first use
synthetic data verifying our model’s assumptions to study the convergence
of our tractable algorithm as an approximation of the original formulation
presented in Section 2, and then show in Section 5 that our model generalizes
well to real-world data in terms of interpretability and accuracy.

Therefore, the goal of this section is twofold: first, we show that despite its
heuristic steps, our approach to solving the optimization problem in Section 3
converges to a good estimate T̂od of Dod in the log space, while recovering
interpretable parameters tij that represent the local congestion states in the
city. Second, we show that even with high variance travel time distributions
Dod and very incomplete observations (|W | << |V |2), we are still able to
generalize well and recover good estimates T̂od for all (o, d) ∈ V 2, when the
synthetic data is generated following our modeling assumptions.

4.1 Synthetic Networks and Virtual Data

In order to test our method on synthetic data, we create simple model net-
works in which we attempt to reconstruct traffic patterns. One model repro-
duces some features of a city, with a central “downtown” area (8× 8 square
grid), surrounded by suburbs (4 × 4 square grids) and circled by highways
(with higher speed limits) that connect each suburb to the central area and
to the two closest neighboring suburbs. This network is shown in Figure 2b.
For more advanced testing, we use a larger 20 × 20 square grid, with which
we investigate a range of traffic patterns.

Once we have constructed the routing graphs, we create the synthetic
travel time distributions D and Dod. Each observation (o, d, T ) is generated
as follows: first, the distribution D is chosen to be uniform over all origin-
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(a) Simple square network, with
400 nodes and 1520 arcs. There
are two arcs between any adjacent
nodes (one in each direction). All
arcs are of the same type, and con-
sequently they all have the same
maximum speed.

(b) Toy model of a city, with 192 nodes
and 640 arcs. The green roads are high-
ways, with much higher speed limits
(and consequently lower travel times
proportional to their length).

Figure 2: Model networks used to test our travel time estimation and routing
algorithm.
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destination pairs in V 2. In practice, taxi trips are not uniformly distributed
over the city network; however, we will see in the Section 5 that our model
performs well with real-world observations that are far from being uniformly
distributed. Then, Dod is chosen to be lognormal with log-mean parameter
µ = log(T real

od ) and a second parameter σ that controls the randomness of
travel times from o to d. For context, Dod has geometric mean T real

od , and
a value of σ = log 2 ≈ 0.7 means that a sampled time T i

od is within one
geometric standard deviation of the T real

od if it is between 0.5T real
od and 2T real

od .
The values T real

od are chosen to follow our shortest-path model. Therefore,
we set a deterministic value of the parameter trealij for each arc (i, j), and
define T real

od = minPod∈Pod

∑
(i,j)∈Pod

trealij . As a consequence, T real
od are the best

estimates of the distributions Dod given our shortest path model and the
estimation loss introduced in Section 2.1.

We then use this process to sample N observations of origin-destination
travel-times. For each (o, d) independently, we would need several samples
to be able to estimate T real

od (because of the randomness σ), but the routing
network model of our algorithm allows us to be able to use much less samples
to provide accurate point estimates for Dod (i.e. close to T real

od ), even when
(o, d) 6∈ W .

4.2 Results

We evaluate the quality of our estimation using the Root Mean Squared
Log Error (RMSLE) of our estimates T̂od, defined as the square root of the
MSLE (1). Interestingly, the formulation simplifies when using the lognormal
distributions:

RMSLE(T̂od) =

√
σ2 + E(o,d)∼D

[(
log(T̂od)− log(T real

od )
)2]

. (13)

To make it easier to compare our estimations across different values of σ, we
focus on the square root of the MSLB (RMSLB), removing the contribution
of the log variance σ2 of the data ( see (3)).

RMSLB(T̂od) =

√ ∑
(o,d)∈V 2

(
log(T̂od)− log(T real

od )
)2
, (14)

where we used that D is uniform over V 2. Note that RMSLB = 0 means
that we recover the geometric expectation of the travel times exactly.

We present the effects of our method when run on the city models de-
scribed in the previous section, with a few different travel time functions and
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Available amount of data
N = 100 N = 500 N = 1, 000 N = 10, 000

Randomness of input data RMSLB of estimation

σ = 0.0 0.08 0.03 0.01 0.01
σ = 0.1 0.09 0.06 0.03 0.02
σ = 0.5 0.23 0.12 0.15 0.05
σ = 1.0 0.48 0.22 0.20 0.07
σ = 2.0 0.62 0.43 0.30 0.15

Table 1: RMSLB (Root Mean Squared Log Bias) of estimation for a varying
amount of data and randomness σ. RMSLB of estimation for a varying
amount of data N and a varying amount of travel time randomness on the toy
city model (see Fig. 2b). The toy city used has just under 37,000 node pairs
(192 nodes), but notice that we need very little data to create an estimate
with small bias.

data generated as described above. We begin by studying the toy model of
a city introduced in Figure 2b. The values trealij are chosen by road type,
with one speed for regular streets and another for the highways. We sample
N travel time observations as described in Section 4.1, and we start with
random arc travel times to define the initial path P 0

od for each (o, d) in W .
In Table 1 we present results of our method for different values of N and σ.

For all values of σ, when setting δ = 0.5 we find that the method tends
to converge in under 10 iterations. Each iteration on this small network (192
nodes, 640 arcs) takes less than 10 seconds for a total run-time of less than
two minutes. We noticed that the regularization term in the objective greatly
speeds up convergence by reducing the relevance of tiny path differences.
In addition, Table 1 confirms the rather obvious fact that results are more
accurate with more data and less randomness in the data (top left corner).
However, it also reveals that when the input has a high log variance σ2 it is
possible to obtain an estimate with comparatively small bias with very little
data. For example, when σ = 2, it is possible to obtain an estimation bias
that is smaller by more than a factor of two with only 100 observations, i.e.,
less than 2% of the total origin-destination pairs.

The results in Table 1 should be taken with a grain of salt, however, as
the toy model in Fig. 2b is intentionally suited to the assumptions with which
we developed our model (especially the velocity continuity assumption of our
regularization). The goal of this experiment is simply to confirm that the
method converges as intended and produces sensible results. The next step
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(a) True congestion. (b) Reconstruction.

Figure 3: Results of our algorithm on a square network for a congestion
gradient. Green arcs have a higher velocity and thus a lower travel time,
while red arcs are more congested and thus have a lower velocity and a
higher travel time. All arcs are of the same type, with a maximum velocity
of 50 kph. The estimates T̂od are computed using N = 5, 000 observations.
The Root mean squared log bias (RMSLB) of the estimates is 0.041, which
is over eight times smaller than the input log standard deviation σ = 0.35.
The algorithm effectively reconstructs high-level traffic patterns and provides
accurate travel time estimates despite extremely noisy data. For arcs in each
of the four quarters from the top, the true velocity is respectively 60%, 30%,
20%, and 15% of the maximum velocity. The gradient from Figure 3a is
clearly visible despite some noise.
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(a) True congestions (b) Reconstruction

Figure 4: Results of our algorithm on a square network with two congested
neighborhoods. Green arcs have a higher velocity and thus a lower travel
time, while red arcs are more congested and thus have a lower velocity and a
higher travel time. All arcs are of the same type, with a maximum velocity
of 50 kph. The true velocity is 30% of the maximum velocity for arcs in the
upper-left neighborhood, 15% for arcs in the lower-right neighborhood, and
60% for arcs outside these neighborhoods. The estimates T̂od are computed
using N = 5, 000 observations. The RMSLB of the estimates is 0.069, which
is over eight times smaller than the input log standard deviation σ = 0.35.
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is to consider a model that does not follow our traffic assumptions as closely.
We therefore focus on the square network (400 nodes), which we associate
with two traffic configurations, presented in Figures 3 and 4, corresponding to
semi-realistic scenarios, including a gradual north-to-south increase in travel
time (Fig. 3a), and two congested neighborhoods where arc travel times are
doubled and quadrupled (Fig. 4a) as compared to the rest of the city. Readers
will note that these scenarios break our road velocity continuity assumption
in different ways: the first because the velocities of neighboring vertical arcs
are never equal, and the second because the borders between congested and
uncongested areas are strongly discontinuous in terms of velocity.

For each of the two scenarios thus described, we sample N = 5, 000
observations as described in Section 4.1, for σ = 0.35 (we choose this value
because it is approximately our estimate of the log standard deviation of
Manhattan taxi travel time data).

The arc travel times found by our algorithm are shown in Figures 3b and
4b. The algorithm does a remarkable job reconstructing the travel times in
the network given limited data. As noted above, the data provided was noisy
(σ = 0.35), yet the RMSLB for the estimated travel times Tod over all (o, d)
in W is 0.07 in one case and 0.04 in the other. Therefore, the algorithm not
only produces accurate travel times estimates for the origin-destination pairs
for which no data was available, it does so with minimal bias when compared
to the high randomness and sparsity of the travel time data. Notice that the
regularization term in the objective, though based on a questionable traffic
assumption, does not preclude us from reconstructing the arc travel times
as desired in both cases, though it does make it difficult to find the exact
border of the congested neighborhoods in one case, and the precise velocity
gradient in the other.

All in all, the method developed in this paper is able to extract useful
information from high-variance inputs, and produces a network cost function,
in the form of arc travel times, that is interpretable and can in turn be used for
other applications in the network. In the following section, we show that all
the algorithm properties displayed in this section, namely low estimation bias
despite inputs with high randomness, and the production of an interpretable
final solution, also hold in a real-world setting at much larger scales.

5 Performance on Real-World Data

So far, we have described, implemented and tested a methodology to solve the
travel time estimation and routing problem. We use a network formulation
because we assume the only allowed origins and destinations are nodes in the
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graph. However, real origin-destination data records vehicles’ starting and
ending points using GPS coordinates, which are continuous variables.

In this section, we first provide a bridge between the continuous and
discrete problems in order to apply our method to real-world OD data, and
present the results on data from New York City taxis. We then display the
results of our method for varying amounts of available data, showing that
our method provides both accurate travel time estimations throughout the
network and sensible routing information, for an interpretable understanding
of traffic in the city.

5.1 A Large-Scale Data Framework

A major contribution of this paper is the ability to exploit a large dataset
to solve the travel time estimation and routing problem for the real-world
network of a large city. Providing a tractable method at this scale requires the
construction of a substantial framework to handle large amounts of network
information and origin-destination data, allowing us to leverage big data
insights in solving a complex problem.

In order to solve the travel time estimation and routing problem in a
real-world setting, it is necessary to overcome two major challenges. The first
difficulty is to extract a network structure from a complex urban landscape,
and specifically to identify a graph that is elaborate enough to capture most of
the details of the city under study, but simple enough to tractably support
our network optimization methods. For this purpose, we use open-source
geographical data from the OpenStreetMap project. Its database provides
a highly-detailed map of New York City, which we simplify by excluding
walkways and service roads, and removing nodes that do not represent the
intersection of two or more roads. For the island of Manhattan, to which
we restrict our problem, we obtain a strongly connected graph with 4324
nodes and 9518 arcs. This network is quite large, and the tractability of our
method on a map of this size is itself a significant contribution of this paper:
readers will realize that an algorithm seeking to estimate travel times in this
network must consider over 18 million origin-destination pairs of nodes and
at least that many shortest paths.

The second challenge is obtaining and cleaning real OD data. Data from
the New York City Taxi and Limousine Commission for the years 2009-2016
is freely available from NYCTLC (2016). A month’s worth of data (ap-
proximately 2GB) contains information for over 12 million taxi trips (over
400,000 a day). We perform all computations, network and data handling
using the Julia programming language. Our method’s tractability is en-
hanced by the use of the cutting-edge Julia for Mathematical Programming
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(JuMP) interface by Lubin and Dunning (2015), which enables us to take
advantage of top-of-the-line linear and second-order programming methods,
as implemented by the commercial solvers Gurobi and Mosek. Therefore, our
framework can handle problem instances considering hundreds of thousands
of data points in the entirety of Manhattan.

The results presented in Sections 5.3 and 5.4 use taxi data from weekdays
in May 2016, in the time windows 9-11AM (morning), 6-8PM (evening), and
3-6AM (night). We restrict the data to a single month to reduce the taxi
trip variance. Smaller time windows also guarantee less noisy data, but at
the cost of fewer data points, and so we opt for a medium-sized window of a
few hours. Our method therefore seeks to capture network patterns that are
averaged over the considered time window.

In order to eliminate extreme outliers, we ignore trips shorter than 30s
and longer than 3 hours, trips connecting points that are less than 250m
or more than 200km away, and trips which would require an average speed
greater than 110 kph or less than 2 kph to make sense. The existence of such
unrealistic trips is a consequence of the imperfection of the GPS sensors inside
the taxi meters. After this filtering step, we split the data into a training set
containing about 415,000 trips and a testing set containing about 275,000
trips. In the next section, we explain how we adapt this taxi data to our
discrete network-based framework.

5.2 Applying a Discrete Model to Real-World Data

The model described in Section 2 is discrete in space and static in time:
it considers fixed traffic patterns during a given time window in a network
where the only possible start and end locations are intersections. In contrast,
real-world data is continuous in time and space: a given taxi trip is associated
with a start time and an end time recorded by a clock within the taxi meter,
and with start and end locations that are recorded using often noisy GPS
sensors. We therefore need to process the data a bit further for it to work
with our model.

In the database, each taxi trip is represented as a 6-tuple (xO, yO, xD, yD, tstart, ttOD),
where xO and yO are the GPS coordinates of the origin, xD and yD are the
GPS coordinates of the destination, tstart is the date and time of the begin-
ning of the ride, and ttOD is the travel time of the taxi from its origin to
its destination. We use tstart to assign taxi trips to time intervals of length
τ , and consider only this time window, discarding all taxi trips that do not
start inside this interval. For taxi trips that do start within the interval, we
do not differentiate between different tstart values, so each trip is reduced to
the 5-tuple (xO, yO, xD, yD, ttOD).
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The length τ of the time interval should be chosen based on the scope of
the application. If the goal is static planning, we can select a large value of
τ (from a few hours to a few months), which will allow us to consider a large
amount of data, and estimate fixed travel time parameters over the interval
as accurately as possible. If the goal is short-term dynamic planning, we can
pick a small value of τ , say 5 minutes, and use the small amount of data in
this interval to quickly estimate the travel time parameters, which we will
only assume to be valid for the next time interval.

In the discrete formulation presented in the previous sections, the input
of the method is a set of node pairs W , with a known (but possibly noisy)
travel time Tod for each (o, d) in the set W . In the continuous problem, the
inputs are position vectors (xO, yO, xD, yD) and associated travel times ttOD.
We therefore need to project the continuous origin (xO, yO) and destination
(xD, yD) onto the network to be able to use our discrete methods in this
real-world setting.

There exist many methods of projecting continuous data onto a discrete
network model (see recent work by Quddus and Washington (2015), Chen
et al. (2014)); all our results were obtained by projecting each continuous
origin-destination pair (xO, yO, xD, yD) to the nearest node pair (o, d) using
the Euclidean metric in R4. We can now apply our algorithm to real taxi
data in Manhattan.

5.3 Evaluating Results at the Scale of the City

Accuracy. We have explained in this paper that real-world OD data has
significant variance, originating from several main sources: the imprecision
of the data-gathering protocol, including potent “urban canyoning” effects in
GPS data, as well as the inherent variance of traffic patterns (see Section 2.1).
The latter source is especially important when the time window is long, as a
consequence of our static traffic modeling assumption.

As seen in Section 2, the mean squared log error (MSLE) decomposes into
the sum of the mean log variance of the data and the mean squared log bias
of our estimate. On empirical data, we can only evaluate the MSLE using
(4). In order to be able to evaluate the performance of our estimation, we
need to estimate the log variance of the travel time observations (2). Indeed,
it is a lower bound on the MSLE of our estimate, and a low-bias estimate
must have an MSLE as close as possible to this lower bound.

For this purpose, we simply compare each taxi trip in the data to the
average of the k trips closest to it, and compute the empirical log variance
between the two values. This gives us an upper bound on the log variance
term of the MSLE of our estimate. Because the dataset is quite large, this
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bound is indicative, especially when we choose the value of k that minimizes
it. For instance, this approach yields an input log variance of 0.312 = 0.10
for the time window 9-11 AM. To understand the magnitude of this variance,
consider a mean time of 20 minutes. A trip within one standard deviation
of the mean could last any amount of time between 20e−0.31 = 14.7 minutes
and 20e0.31 = 27.3 minutes.

We will measure the accuracy of our method by how close the MSLE
of our estimate is to the log variance (2) of the data. This is a proxy for
minimizing the mean squared log bias (3), which is what we did in Section 4
when we new the distributions Dod. If the difference between the MSLE of
our estimations and the input log variance of the data is small, it means that
our estimations are very close to the geometric mean of the network travel
times, and most of our error comes from the inherent variability of the taxi
trips.

For tractability reasons, we restrict the size of the input node pairs set
W to 100,000 (o, d) pairs. With |W | = 100, 000, the total computation at
the scale of Manhattan takes less than 2 hours. We choose the regularization
parameter λ = 1000, which is the value that minimized the MSLE in cross-
validation. We note that the algorithm converges in 10 iterations without
showing noticeable cycling (the out-of-sample improves at each iteration).

It turns out that between 9 and 11 AM, the out-of-sample RMSLE of
our estimations is just over 0.36. This result means that our travel time
estimation error is barely worse than the inherent noise in the data, and
our estimated travel times must therefore be very close to the geometric
expectation of the travel times throughout the network.

Interpretability. In addition to its accuracy, we argue that our method
provides global insights about traffic patterns in New York. To show this, we
compare our results in Manhattan in the morning (9-11AM), in the evening
(6-8PM) and at night (3-6AM). We show the edge travel times for these time
windows in Figures 5 and 6. The overall traffic patterns are easily identifiable
in Figure 5, in particular the effect of the morning (and to a lesser extent,
evening) commute in Midtown, as well as the congestion in the northern part
of the island near the bridges connecting it to the mainland.

The results of our algorithm provide insights at a variety of scales: in
addition to displaying citywide effects such as the daily commute, they also
reveal more subtle realities about traffic in New York: For example, when
looking at Figures 6a and 6b, it is clear that crosstown (east-west) travelers
are much more exposed to congestion than uptown-downtown (north-south)
travelers, and that the highways on Manhattan’s eastern and western shores
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(a) Morning (9-
11AM)

(b) Evening (6-8PM) (c) Night (3-6AM)

Figure 5: Edge travel times in Manhattan estimated by our algorithm on
weekdays in May 2016 in the morning, evening and at night. The color of
each edge represents the speed along that edge as a percentage of the reference
velocity v0 = 13.85 kph (average velocity in Manhattan on weekdays). At the
scale of the city, the algorithm clearly identifies morning commute congestion
in Midtown and the Financial District, while at the scale of individual city
blocks, it confirms the empirically known fact that crosstown (east-west)
traffic in Manhattan is much more congested than uptown-downtown (north-
south) traffic.
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(a) 9-11AM (close-up) (b) 6-8PM (close-up) (c) 3-6AM (close-up)

Figure 6: Zoom on edge travel times in Manhattan estimated by our algo-
rithm on weekdays in May 2016 for 9-11AM and 3-6AM. Detail of Figure 5.
The color of each edge represents the speed along that edge as a percentage
of the reference velocity v0 = 13.85 kph (average velocity in Manhattan on
weekdays). The gap in congestion between crosstown traffic and uptown-
downtown traffic is also visible at this much smaller scale.

Time of the day Training trips Mean trip time Out-of-sample RMSLE

09-11 AM 415,106 13m54s 0.31
06-08 PM 545,965 11m54s 0.30
03-06 AM 75,339 07m38s 0.28

Table 2: Effect of the time of the day on the taxi-trip dataset and the estima-
tion power of our method. Note that the number of trips available and the
root mean squared log error (RMSLE) depends on the time of the day. As
a consequence, the time-window choice plays an important role in the qual-
ity of our estimation. Figures 5 and 6 represents the corresponding network
travel times.

(FDR Drive and Riverside Drive) are much faster routes than Manhattan’s
inner streets.

More detailed error results regarding the morning, evening and night time
windows are available in Table 2.

A Robust and Sensible Path Estimation. At each iteration of the
algorithm, the total path difference decreases, which means the algorithm
finds a stable solution to the travel time estimation and routing problem.
Moreover, we also note that the algorithm always converges to a similar
choice of path, independently of the choice of initial paths and arc travel
times. To support this claim, we show in Figures 7 and 8 the evolution of
a path between a given origin and destination over random restarts of the
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algorithm. Specifically, we initiate the algorithm with random times: each
edge has a velocity drawn randomly between 1 and 130 kph. This results in
the random initial paths shown in panes 7a, 7b, and 7c. After 5 iterations,
we consider the paths obtained by our method, in panes 8a, 8b, and 8c.

We see that in all three cases, the algorithm made the justifiable decision
of using the freeway on the western edge of Manhattan. In addition, despite
stark differences in the starting point, the final paths found by the method
are eerily similar. One can quibble about the exact level of similarity between
these final paths, but it is wise to remember that our method does not seek
to obtain the “optimal” path between an origin o and a destination d (and
indeed Dial (1971) questions the existence of such an optimal path in a
noisy environment), but simply a reasonable path that achieves the estimated
travel time. Figure 8 is an example of our method accomplishing this stated
purpose.

To provide intuition for why our routes seem sensible, note that we have
empirically established that the travel time estimation accuracy in Manhat-
tan has low bias, as we showed that the MSLE was close to our estimate of
the mean log variance of the data. Additionally, the regularization allows
us to generalize well to parts of the city with few observations. Further-
more, the obtained arc travel time parameters tij are good estimations on
synthetic data and seem reasonable in NYC. All these observations lead us
to hypothesize that the obtained paths are sensible.

This result means that in a network with almost ten thousand nodes,
with only a few OD pairs relative to the possible 18 million pairs, using
high variance data, we are able to reconstruct the all-pairs shortest paths
that minimize the error between the shortest path lengths and the input
data. Our optimization-based algorithm thus exhibits a certain number of
important properties: it is tractable at the scale of a large and complex city,
produces accurate travel time estimations and sensible routing information
despite high variance data, and produces an overall traffic map of the city
that can be used for numerous other applications. These results are obtained
with a large number of data points, and in fact we operate at the limit of
what our solvers can handle. In the following section, we explore the effect
of reducing available data on our method’s accuracy.

5.4 Impact of Data Density and Comparison with Data-
Driven Methods

The results presented in Section 5.3 show that, when run with a large number
of data points, our method tractably estimates travel times in Manhattan.
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(a) Random initial path
1.

(b) Random initial path
2.

(c) Random initial path
3.

Figure 7: Evolution of paths studied by our algorithm : original paths. Three
random starting point paths are presented. See Figure 8 for the results of
the algorithm.

Given this performance with a wealth of data, it is natural to wonder how
our algorithm fares when the data is much more sparse. Good performance
in data-poor environments is important for two reasons: first, few cities have
as much demand for taxis as New York, so extending the method to other
networks would necessitate good behavior with only minimal amounts of
data. Second, taxis do not necessarily explore networks in a uniform manner:
even in cities such as New York where they represent a significant fraction of
traffic, taxis only seldom visit certain neighborhoods, creating data-rich and
data-poor settings within a single network.

Nearest Neighbor Travel Time Estimation. In this section, we choose
to compare the performance of our method to simple purely data-driven
schemes, which are expected to work very well in a data-rich setting and
comparatively less well in a data-poor setting. Indeed, the formulation of
the real-world travel time estimation problem as the estimation of ttOD as
a function of the four variables xO, yO, xD, and yD suggests simple solution
approaches based solely on the data. With no knowledge of the network or
the underlying behavior of taxi drivers, it is possible to use machine learning
to infer travel times.

For instance, a simple k-nearest neighbors scheme would match an input
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(a) Path 1 after 5 itera-
tions.

(b) Path 2 after 5 itera-
tions.

(c) Path 3 after 5 itera-
tions.

Figure 8: Evolution of paths studied by our algorithm : path convergence.
Shows the resulting path to which the algorithm converges after 5 iterations,
starting from the initial paths and times presented in Figure 7. The reader
will notice that despite strong differences in the starting paths, the algorithm
eventually converges to a very reasonable solution, a path that makes use of
the freeway on the western shore of Manhattan.
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origin and destination (xO, yO, xD, yD) ∈ R4 to the k taxi trips in the database
closest to it (for some choice of metric) and compute the geometric average
of their travel times to produce an estimate for the travel time between the
provided origin and destination.

This scheme has the advantage of being extremely simple and allowing
for quick travel time estimations. In addition, it is easy to see that the bias of
this travel time estimate would converge to zero as the number of observation
increase (if k is scaled appropriately). Indeed, this approach is not limited
by the low-dimensional model assumption of our algorithm. However, in
practice it has several drawbacks: first, it is not particularly well suited to
travel time estimation for origins and destinations for which little data is
available. This is a particularly damaging flaw because, as stated before,
origin-destination data is not very complete and is concentrated in regions
with more taxi traffic.

Second, this pure data-driven approach does not address the routing as-
pect of the problem: with no knowledge of the network it cannot possibly
provide information as to which path should be used. These two drawbacks
justify the use of our more complicated network optimization approach, but
the k-nearest neighbors scheme remains a useful benchmark of our perfor-
mance. Of course, we do not expect to produce more accurate estimates
than a k-nearest neighbors scheme when a wealth of taxi trips is available.
With a good method, however, we should be able to obtain more accurate
travel times than k-nearest neighbors in zones without much data, and only
slightly less accurate in zones where data is plentiful.

High Accuracy in Data-Poor Environments. To evaluate the impact
of the dataset size on our method, we compute travel times and paths for
varying amounts of training data and compare the obtained RMSLE values
on the testing set with those produced by the k-nearest neighbors approach.
We also compare our results to those produced by the travel time estima-
tion method in Zhan et al. (2013) (for the small amounts of data where it
is tractable). The results are presented in Table 3: though, as expected,
the k-nearest neighbors scheme outperforms the optimization method for
high amounts of data, it is significantly less accurate in a data-poor setting.
Meanwhile, Zhan et al. (2013)’s method is less accurate and also untractable
for more than a small number of trips, as the runtime was 10-20 times longer
than ours (due to the much larger size of the network as compared to the one
used by the authors). Looking at the results, it seems that with our method,
simply recording the origin, destination and travel time of 100 taxi trips is
enough to accurately estimate the traffic patterns in an entire city.
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(a) N = 102 (b) N = 103 (c) N = 104 (d) N = 105

100%

> 250%

< 40%

Figure 9: Edge travel times in Manhattan (9-11AM) estimated by our algo-
rithm for an increasing number of input taxi trips N . The color of each edge
represents the speed along that edge as a percentage of the reference velocity
v0 = 13.85 kph (average velocity in Manhattan on weekdays). With just
100 taxi trips, the algorithm is able to identify that Midtown is generally
congested, especially in the area around Times Square and Penn Station,
and that the shoreline highways are very fast. As N increases, congestion
patterns become more precise, and smaller congested areas become apparent,
for example around freeway ramps. For N = 100, 000 (the largest size that
allows our algorithm to converge in less than 2 hours), we obtain a detailed,
edge-by-edge description of Manhattan traffic, without losing sight of global
congestion patterns.
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k-NN Optimization Zhan et al. (2013)
Training trips Best k RMSLE Best λ RMSLE RMSLE

100,000 16 0.3243 1e3 0.3595 -
10,000 11 0.3636 1e3 0.3775 -
1,000 7 0.4296 1e3 0.4019 0.8228

100 6 0.5556 1e3 0.4495 0.8822

Table 3: Effect of data density on k-nearest neighbors (k-NN), our optimiza-
tion method, and Zhan et al. (2013)’s method on the out-of-sample RMSLE.
The best values of k and the continuity parameter λ are chosen. As be-
fore, the convergence threshold δ is set to 0.5. For large amounts of data,
k-nearest neighbors is unsurprisingly more accurate than our optimization-
based method (although not by much), but it performs much worse in a
low-data environment. Zhan et al. (2013)’s method is 10-20 times slower
than ours (untractable for 10,000 trips or more), and is less accurate.

The accuracy gap between our method and k-nearest neighbors is notice-
able, especially when you consider that our method also provides a path for
any (o, d) pair in the network, which a simple k-nearest neighbors scheme
can never provide since it has no knowledge of the network. Therefore, in a
data-poor environment, our scheme is superior to a purely data-driven one in
terms of accuracy and routing, and both methods have a running time that
is appropriate for the application (a few seconds for k-nearest neighbors, a
few minutes for our method). In a higher-data environment we pay for the
added routing information with a decrease in accuracy of just fractions of a
minute and an increase in computational time.

6 Conclusions

The method proposed in this paper leverages a simple approach to tractably
yield accurate solutions to the travel time estimation and routing problem in
a real-world setting. Given trip times for any number of origin-destination
pairs, from a few hundred to a few hundred thousand, we can estimate the
travel time from any origin to any destination, as well as provide a sensible
path associated with this travel time. Furthermore, our algorithm is robust
to a high degree of input uncertainty, successfully exploiting very noisy data
to provide results characterized by their accuracy.

Providing travel times for each arc in the city effectively augments the
network with a cost function based on real traffic information, which can be
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of use both for city planners and for further network-based research. Using
our optimization-based framework, we can estimate traffic patterns in a real-
world network, providing insight at every scale, from a few blocks to the
entire city, and extracting global meaning from the observed data.
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