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A Buckling Flexure-Based
Force-Limiting Mechanism
A force-limiting buckling flexure has been created which can be used in a wide range of
applications where excessive force from an implement can cause harm or damage. The
buckling flexure is monolithic, contains no electronics, and can be manufactured using a
single shot in an injection molding machine, making it cost effective. In this paper, the
design of the flexure is applied to a force-limiting toothbrush as a design study to show
its application in a real-world technology. An overview of the buckling flexure is presented,
and a structural model is presented to predict when the flexure will elastically buckle. Flex-
ures of different geometries were tested and buckled. The data show that the model can
predict buckling of the flexure with an error of 20.84%. A finite element model was also per-
formed which predicts buckling of the flexure within an error of 25.35%. Furthermore, a
preliminary model is presented which enables the design of the buckling beam’s displace-
ment, such that the total breakaway deformation can be maximized, making sensing the
sudden deformation easier to detect. As part of the application of the buckling flexure, an
ergonomic, injection moldable toothbrush was created with the flexure built into the neck
of the brush. When the user applies too much force while brushing, the flexure gives way
and alerts the user when they have applied too much force; when the user lets off the
force, the brush snaps back to its original shape. This design methodology is generalized
and can be utilized in other force limited applications where an injection-moldable, pre-
set force, and purely mechanical breakaway device is desired. [DOI: 10.1115/1.4043317]

1 Introduction
Force-feedback and force-limitation are essential in sensitive

operations such as surgery, handling of foods or produce, processes
where people are interacting with robotics, and even dental hygiene
[1–4]. In machinery, it is difficult to replicate this force feedback in
a reliable and cheap manner without the need to sacrifice speed,
simplicity, or productivity. For humans, this force feedback
comes naturally and is developed through experience, however in
the case of dental hygiene or cosmetics, excessive force can cause
irreparable damage to sensitive tissues.
There exist many devices designed to provide this force-limitation

or force feedback through sensors, breakaway couplings, or compli-
ant mechanisms. However, these methods either contain several
moving parts or require the use of electronics to achieve force limi-
tation [5–21]. This increases both cost and complexity which makes
their application in disposable or low-cost devices limited.
In the case of robotic sensing and in MEMs devices, some work

has been done on the use of flexures and compliant mechanisms to
assist with force-sensing or force-limiting in different applications.
The design of a flexural-based tridimensional accelerometer is
shown by Gao and Zhang in which they use compliant monolithic
flexural hinges in three axes to provide high sensitivity and high res-
olution [22]. Other force-sensing flexure work done by Wei and Xu
present a 1-D force sensor withmN resolution usingmultiple parallel
anti-parasitic motion flexure blades in order to inject cells with high
enough accuracy [23]. Zhang et al. present a design of a compound
constant-forcemechanism inwhich a parallel double-beam flexure is
positioned such that it has zero stiffness over a relatively large stroke
[24]. A similar design which helped inspire the design presented in
this paper was done by Brenner et al. and Li et al. in which they
demonstrate a bistable switch that driven by double and single
beam flexures driven by an electrostatic actuator [25,26].
Buckling is also employed for some force-sensing applications.

An et al. developed a non-linear buckling sensor which uses a
tapered and cantilevered buckling beam for mechanical sensing in

seismometers for instance. The cantilevered beam is preloaded to
just to buckling and is then slid on a plate. As the beam is preloaded
to just around the bifurcation point, it is highly sensitive to changes
in motion, thus when the plate moves, the beam will change shape,
providing data for sensor output [27]. Buckled shapes are visually
used to determine force applied on a nanoscale in work by Dobro-
khotov et al. in which a 15.6 µm wire or “needle” is grown and then
used to probe nano-fibers and other like-sized structures. Critical
buckling loads are used then to determine force applied to these
nano-structures [28].
Here, we show a monolithic force-limiting flexure that buckles

suddenly when excessive force is applied, but restores to its original
shape when the force is relieved. At the point of buckling, there is a
sudden change in shape of the flexure and an audible “click” is pro-
duced when the buckling beam strikes an anvil, both signals can be
used to detect when excessive force is applied. The buckling flexure
ismonolithic and employs a twin-beam structure with an upper beam
that includes a nesting arch on its underside, and a lower buckling
beam member which buckles when excessive force is applied to
the tip; however, the buckling member (buckling beam) engages
the stiffening anvil to form a stiff structure for the user or machine
to operate if desired without risk of damaging the flexure or the
machine. As the buckling flexure is a single piece, it can bemanufac-
tured at a very low cost, making it ideal for applications where
devices need force-limitation but are thrown out after a single use.
This buckling flexure could also be used in a robotic hand such as
one shown by She et al. to provide an upper force-limit sensor to
the fingers to if such a feature was desirable [29]. In this paper, the
buckling flexure is analyzed and designed into the neck of a tooth-
brush since excessive force while brushing has been shown to
harm dental tissue [4,30,31]. The presented analysis of the flexure
is generalized even though it is employed in the neck of a toothbrush,
thus it can be applied to design flexures for devices that need cheap
and reliable force-limitation.

2 Buckling Flexure Design in a Toothbrush
For this paper, the buckling flexure is designed into the neck of a

toothbrush to limit the amount of force a user can exert while brush-
ing. The force-limiting buckling flexure is shown in the neck of a
toothbrush in Fig. 1(a). The flexure will change state when a critical
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force (in this case from brushing teeth) is exceeded. There are three
main elements of the flexure: the upper beam, the buckling beam
(which allows the structure to elastically buckle when too much
force is applied), and the stiffening anvil. The stiffening anvil is
struck by the buckling beam to produce an audible click and
prevent plastic deformation after buckling if the user continues to
press harder. When the buckling beam and stiffening anvil
contact, the structure forms a tighter structural loop than before
and stiffens the structure in its post-buckling state. The user
brushes their teeth as they normally would and the flexure only
buckles as soon as too much force is applied while brushing.
Until this point, the brush exhibits normal stiffness.
The buckled shape of the flexure is shown in Fig. 2(b)—the stif-

fening anvil is shaped to fit the shape of the buckling beam after
excessive force is applied to the head. The stiffening anvil prevents
further travel after buckling, thus maintaining the stiffness of the
structure. There is area-contact between the flexure and the anvil
in order to reduce the unsupported length of the buckling beam,
thus preventing second-order buckling modes from occurring
even if further excessive force is applied. During the design

process and as models were tested, the area contact was observed
to damp the “click” as air and/or fluid was pushed out of the
contact; hence the stiffening anvil surface was segmented with a
ripple structure and a louder, more discernable click was then
obtained when the buckling beam struck the anvil. The inspiration
for this design came from the use of helper springs on a trucks and
from previous work of anvils used to limit the stroke of a flexible
beam in the design of a bistable relay [25,26]. The ridges of the
anvil prevent damping of the buckling beam and create a more dis-
tinct “snap,” which is important in the case of a toothbrush.
However, for other systems some firm damping may be desired to
reduce impact stresses.

3 Analysis
3.1 Analytical Buckling Model. For modeling simplicity, the

stiffness of the upper member is considered very large in compari-
son to the connecting nodes. Figure 2(a) shows a simplified struc-
ture of the structure imprinted onto the neck of the toothbrush.
Figure 2(b) is the free body diagram of the structure with labeled
dimensions and angles that are relevant to the development of an
analytical model. For clarification, the segment La+L is a continu-
ous and treated as rigid as well. The handle is treated as a rigid struc-
ture, for the force analysis only to determine the critical buckling
load. The top beam is a single entity, which includes the upper
beam (La). The buckling beam (Lb) is treated as a two force
member for simplicity, thus the structure acts as a quasi-truss for
the buckling load analysis.
To analyze how this structure will fail, the upper beam (La) and

buckling beam (Lb) are connected with pin joints. It is assumed that
the force (Fin) is applied in the middle of the bristles as a point load,
which is at a small angle to the buckling beam. The goal of this
model is to resolve the axial forces inside the buckling beam (Fb)
and upper beam (Fa) as a function of the applied force and the
geometry of the structure. From this the buckling beam can be
sized to buckle under a given compressive load, driven by the
applied force.
An input normal force Fin from brushing creates two resultant

force components F1 and F2 at the head of the brush where the bris-
tles are. Resultant forces act at points a and b on the geometry
shown in Fig. 2(c); equilibrium equations were generated (Eqs.
(1)–(3)) resulting in three equations and four unknowns (Fax, Fbx,
Faz, Fbz). It is important to note that the boundary conditions for
the beams are assumed pinned and the internal moments thus neg-
ligible. In reality the molded plastic brush would have moment con-
nections, not pin joints, but because of slender beams and
connections, this simplification proves justified in order to
develop a first-order design analysis tool:

∑
Fx = 0 = F2 + Fax + Fbx (1)

∑
Fz = 0 = F1 + Faz + Fbz (2)

∑
Mya = 0 = −F1(La + L) + Fbxc (3)

The force in Lb is axial, so it can be related to vector components
using nodal analysis (Eq. (4)). Thus, Fbx can be expressed as a func-
tion of the angle θ of the buckling beam and the axial force in
Lb (Fb). A new sum of moments is expressed in terms of the internal
axial force (Fb) of the buckling beam Lb in Eq. (5).

Fb =
Fbx

cos θ
(4)

∑
Mya = 0 = Fbc · cos (θ) − F1(La + L) (5)

Fig. 1 (a) Toothbrush with buckling beam and stiffening anvil to
alert users when they are exerting too much force while brush-
ing. (b) A close-up of the buckling flexure where the buckled
beam is pressing against the stiffening anvil. The anvil serves
three purposes: to provide an audible click when the buckling
beam strikes, to limit travel (and stress) of the buckled beam,
and couple the two beams together to stiffen the structure
post-buckling to ensure the device will not plastically deform
or break. This protects both the user and the device from harm.

Fig. 2 (a) The simplified structure imprinted on the original
brush and (b) the structure with labeled dimensions and angles
used in the following analysis as well as a free-body diagram
of the structure with resultant forces. Note that Fin has been
broken into its x–y vector components F1 and F2.
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Using Eq. (5), the axial force Fb in the buckling beam (Lb) can be
expressed as a function of the input force and the structure geometry
(Eq. (6))

Fb =
Fin(La + L) cos α

c · cos (θ) (6)

Equation (6) yields an expression for the axial force in the buck-
ling beam as a function of the known input forces F1 and F2, and
the known geometry. The goal is to determine what input force Fin

(which is a function of F1 and F2) will cause the structure to
buckle; to do this Fb is defined to be equal to the critical buckling
load of the buckling. Recall from Fig. 1(b) that the shape of the
collapsed buckling beam is a cosine function. Since this beam is
long and slender (slenderness ratio for all beam variations λ>
270), an Euler buckling model can be used. In order to create a
cosine-shape of the buckling beam using the Euler model,
clamped–clamped boundary conditions must be assumed. In our
model this provides the lower bound of the buckling force, and
the condition for buckling in the flexure can be expressed as Fb

being greater than or equal to the calculated buckling load as pre-
dicted by the Euler model (Eq. (7))

Fb−buckle ≥ π2EIb
4L2

(7)

The known minimum value of Fb from Eq. (7) enables calculation
of a maximum input force Fin−max by relating F1 and F2 (Eq. (8a)),
and using only geometric parameters of the beam. These parame-
ters can now be adjusted to reach the critical brushing force
desired. For the sake of a sensitivity analysis, the cosine term in
Eq. (8a) is expressed as a function physical dimensions of the
flexure La and c, respectively, shown in Eq. (8b)

Fin−max =

π2EIb
4L2

(c cos θ)

cos α(L + La)
(8a)

Fin−max =
π2EIb
4 cos α

c
La��������

L2a + c2
√

( )

L2(L + La)
(8b)

In order to determine which variables have the largest effect on
buckling force, a sensitivity analysis of Eq. (8b) is done by
taking the Jacobian with respect to physical measured dimensions
c, L, and La. Physical parameters from test flexures shown later in
the paper were used with the partial derivatives to reveal the most
sensitive parameters

∂Fin−max

∂L
=

π2EIb
4 cos α

cLa(2La + 3L)

L3
��������
c2 + L2a

√
(La + L)2

= 0.14 (9a)

∂Fin−max

∂La
=

π2EIb
4 cos α

c(c2L − L3a)

L2(c2 + L2a)
3/2(La + L)2

= −0.02 (9b)

∂Fin−max

∂c
=

π2EIb
4 cos α

L3a
L2(c2 + L2a)

3/2(La + L)
= 0.20 (9c)

Results of the Jacobian show that the critical buckling load (Eq.
(8a) or Eq. (8b)) is most sensitive to c, which is the distance
between the two nodes a and b (the distance between the upper
beam and the buckling beam).

3.2 Analytical Buckling Model. Shown so far is a predictive
model when the structure will fail. The next step is to calculate

when the structure will yield, or rather calculate the maximum
lateral displacement of the buckling beam so as to maximize the dis-
turbance caused when too much force is applied. Though the model
used to estimate the buckling force assumes a pinned–pinned
boundary condition for the buckling beam, the actual shape resem-
bles a sinusoid, which is indicative of clamped–clamped boundary
conditions. To start, the stress at buckling can be calculated for any
clamped–clamped slender beam using Eq. (10) where r is the radius
of gyration of the structure

σcr = π2E
2r
lef

( )2

(10)

Solving for lateral displacement of buckled columns is well docu-
mented in Timoshenko’s “Theory of Elastic Stability” [32], where
the primary example is a clamped beam with a free, unsupported
end subjected to a point load (Fig. 3). This column represents a
quarter of a buckled column that has clamped–clamped boundary
conditions, thus the total length of the column here has been
adjusted to a quarter of the buckling beam length.
Since the buckling beam deforms in the shape of a cosine func-

tion (Fig. 4)—the goal is to determine the magnitude of this func-
tion, as the shape is already assumed. From this, we can
approximate the internal moment using the basic beam theory.
The shape of the function in Fig. 4 is shown in Eq. (11). Timo-

shenko derives effectively half the magnitude k of this deflection
numerically by using the given geometry of the beam and
solving for the deformed lengths using elliptical integrals. These
integrals have already solved numerical solutions which Timo-
shenko displays values for the deformed magnitudes (Table 1).

u(x) = k(1 − cos
2πx
L

( )
(11)

Thus, if the buckling beam was buckled to 20 deg at its inflection
point, using Table 1 and the length of the buckling beam Lb the
peak deflection would be 18.3 mm. It is important to note that
this is significantly larger than any neck for any toothbrush.
Thus, this serves as an upper limit to what the flexure would
ever need to be deformed to. This value is the magnitude k of
the deformed shape of the deflection so the internal moment can

Fig. 3 Large deflection of a slender buckled column with
clamped and free end boundary conditions, respectively. This
represents one-fourth of the total length of the buckling beam
shape.

Fig. 4 Deformed shape of the buckling beam—note that it is the
shape of a cosine function
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be approximated by differentiating the deflection (Eq. (12))

M(x) = −
4π2k

L2b
cos

2πx
Lb

( )
(12)

From this function, the maximum moment occurs at the clamped
ends and in the middle of the beam. Thus, the maximum bending
stress (Eq. (13)) can be solved using Eq. (12), where tbeam is the
thickness of the buckling beam and Ib is the area moment
inertia of the buckling beam

σmax−buckle =
Mmaxtbeam

2Ib
(13)

The total stress inside the beam does not increase by more than
0.5 MPa for the thinnest structure, which is shown in Table 1 as
a very small load increase will result in a large increase in deflec-
tion of the buckled shape. To compare, the stress in the upper
beam can be compared to the stress in the buckling beam. The
stress in the upper beam can be approximated using deflection
at the point where Fin is applied. Thus, a cantilevered beam
model can be employed since the stress in the upper beam is
only dependent on the deflection it has undergone. The force
can be found as a function of the deflection and geometry (Eq.
(14)), where δtip is the maximum deflection in the beam

Fcantilever =
3δtipEIa
(L + La)3

(14)

The maximum moment for a cantilever occurs at the base of
the beam, thus the maximum stress experience by the upper beam
can be calculated (Eq. (15)). The stress shown here will be used to
compare to the buckling stress computed in the results section

σmax−a =
Fcantilever(La + L)ta

2Ia
(15)

4 Methods
4.1 Analytical Buckling Model. Test flexures were cut with

an abrasive water jet2 from 6.25 mm thick scratch-resistant polycar-
bonate (Fig. 5); polycarbonate exhibits good elastic properties, min-
imizing hysteresis effects when the structure recovers from the
buckled state. It is also similar in modulus to styrene-acrylonitrile,
which is commonly used in manufacturing manual toothbrushes.
Styrene-acrylonitrile is not readily available for manufacture of pro-
totypes; thus it was more practical to use polycarbonate as a substi-
tute. Six total samples were cut with buckling beam thicknesses
varying from 0.9 mm to 1.35 mm to assess the validity and accuracy
of the analytical model. These were the only thicknesses tested as
the force required to buckle the flexures was within the reasonable
range for a potential force-limiting toothbrush, which is less than 6–

7 N of force. Samples were also cut using representative dimensions
for a standard toothbrush. Iterative testing was performed to deter-
mine brush geometries that yielded buckling forces due to brushing
between 1 and 5 N of force.
Test flexures with different buckling beam thicknesses were

mounted in a fixed testing mount shown in Fig. 6, and then
deformed with an actuated load cell until the buckling beam
completely conformed to the stiffening anvil. Samples were tested
in an Admet Universal Testing Machine using a 2.2lbf 600 Series
Overload-Protected S-Bend Load cell. The Admet Testing
Machine has a positional accuracy of ±0.01 mm and the load cell
was calibrated to ±0.001 N. The testing machine pushed perpendic-
ular to the notch of each beam of the flexure until the buckling beam
conformed to the arch structure. This is the moment at which a user
would likely stop brushing—all brush samples were pushed with at
least 5 N of force before the load cell was retracted. Pushing harder
than the buckling force verified the design intent to have the
buckled beam effectively connect with the upper beam by contact
with the anvil.

4.2 Finite Element Model. Finite element model (FEM) of the
testedflexureswas also generated for comparison of critical buckling
loads. Solid models of each test flexure were generated for each test
flexure. SolidWorks buckling simulation was used to find critical
loads of each of the test flexures (Fig. 7). To determine the critical
buckling load in SolidWorks simulation, the model was given
clamped fixtures at the bolt holes meant for the real test flexures.
The finest mesh size was selected in the program as the simulation

Fig. 6 Test setup to deform the polycarbonate testing flexures.
Three main components allow the force–displacement of the
buckling flexure to be measured: the testing flexure itself, a
fixed testing mount, and an actuated load cell.

Table 1 Values of the deformed shape for a given angle at the
inflection point of the cosine function. This table has been
adjusted from Timoshenko’s original work to fit the current
buckling beam. Note that Fb−crit is the minimum force required
to buckle the buckling beam.

ε 20 deg 40 deg 60 deg

Fin

Fb−crit
1.015 1.063 1.152

xa
(Lb/2)

1.94 1.762 1.482

ya
(Lb/2)

0.440 0.844 1.186
Fig. 5 A test buckling flexure cut from polycarbonate. Mounting
holes allow the flexure to be clamped securely for force displace-
ment testing. A notch was created at a known distance from the
flexure to ensure samples were repeatedly tested in the same
position.

2OMAX MICROMAX Precision Jet Machining Center: https://www.omax.com/
omax-waterjet/micromax
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did not take longer than a minute to run. A test load of 1 N was
applied to the tip of the test flexures. Once the simulation was per-
formed, it provided a load factor to relate to 1 N of load. The critical
buckling load, according to the simulation, is the applied load (1 N in
this case) multiplied by the load factor. The Appendix has the FEM
simulation results that were conducted using SolidWorks.

5 Results
Since the moduli of polymers can vary depending on the batch of

material that is used, the modulus of elasticity was measured by
buckling against a scale a long, slender column (slenderness of
360) of material cut from the same stock as was used for the test
flexures. A pinned–pinned Euler buckling model was used (Eq.
(16)). The average modulus for the polycarbonate from which
the prototypes were cut was measured to be 2.58± 0.03 GPa.
A single beam was tested and 13 different measurements were taken

E =
FmeasureL2

π2I
(16)

Force–displacement data were collected using the setup shown in
Fig. 6. Buckling flexures with different buckling beam thicknesses
were mounted and deformed past buckling. The distance between
the stiffening anvil and the buckling beam was also kept constant
so that the buckling beams across all variations would have the
same travel as they were deformed and buckled. Since the waterjet
cutter produces a small taper when it cuts, the buckling beam thick-
nesses on test flexures were measured along five positions on both
sides of the thickness approximately evenly spaced.Measured thick-
ness values were used to generate an average thickness of the buck-
ling beam which is presented in Fig. 8. These data were plotted
against one another to show how the critical load of the flexure
increases as the buckling beam thickness increases (Fig. 8). The
error of data in Fig. 8 is limited to the resolution of the testing
stage and load cell used. The Admet machine has repeatability to
±0.01 mm and the load cell was calibrated to ±0.001 N. For these

data, error bars of the points in Fig. 8 were left out as they cluttered
the image and obscured valuable information about the structure.
For all six different test flexures, as the force applied increases,

they undergo a linear elastic regime for approximately 1–3 mm of
displacement depending on the thickness of the buckling beam.
Once the critical load has been reached, the stiffness rapidly
changes as the buckling beam buckles and starts to snap through
toward contact with the stiffening anvil. After buckling, the structure
goes through a period of near zero or negative stiffness for about 1–
2 mm of stroke until the stiffening anvil is contacted. Once the stif-
fening anvil is contacted, positive stiffness is then restored to the
structure. As the buckling beam fully conforms to the stiffening
anvil, there is a sudden increase in stiffness as the structural loop
is completed and the test flexure acts as a homogenous structure.
The first peak is when the buckling beam buckles—this is the

critical buckling load, shown as the measured input force in
Table 2. After buckling, the buckling beam strikes and mates
with the stiffening arch of the upper beam. This measured critical
load was compared to the predicted critical loads calculated using
the previously derived model—these values are shown in Table 2.
The finite element model is also shown for comparison to the mea-
sured values. The total average error across all beam thicknesses
between the measured input force and the predicted input force
that was calculated using Eq. (8) is 20.84%. The FEM model pre-
dicted higher than average critical buckling loads than the measured
amounts by an average of 25.35% (see the Appendix for the FEM
model simulation results). Thus, the measured values are bounded
between the analytical model and the FEM model predicted critical
buckling loads.
The stress at buckling in the buckling beam for the flexures tested

was calculated assuming an approximate yield of 60 MPa for poly-
carbonate (Table 3) using equation. With respect to the upper beam
—the maximum stress sustained from 6 mm of deflection (approx-
imately the largest deflection all test samples underwent) is 34 MPa
using Eq. (15).
To determine the feasibility of the force-limiting structure in a

real toothbrush, a buckling flexure was designed and printed to fit
with a replaceable brush head and a compact travel toothbrush

Fig. 7 Solid model of one of the test flexures showing the con-
straints and loads used for the finite element analysis and the
mesh used for the buckling simulation. The test flexures were
clamped at the bolt holes and the force was applied at the
same notch that was used for the real measurements of the
test flexures.

Fig. 8 Force–displacement data for test flexures with different
buckling beam thicknesses. Only one set of flexures with each
thickness was measured. As beam thickness increases, the crit-
ical buckling load (first peak in the plots) of the structure also
increases. Once the buckling beam conforms to the anvil, the
structure stiffens again, as shown by the change of slope after
approximately 3 mm of displacement.

Table 2 Buckling beam thicknesses and the corresponding
measured input force and predicted force values. As the beam
gets thicker, the total amount of the model error decreases.
The average analytical model error is 20.84% and the average
FEM model error is 25.35%.

Buckling
beam
thickness
(mm)

Measured
input force

(N)

Analytical
model

predicted
force (N)

FEM
predicted
force (N)

Analytical
model error

(%)

0.91 2.83 2.07 3.19 26.74%
1.04 3.52 3.15 4.70 13.30%
1.10 4.69 3.67 5.40 35.75%
1.22 5.54 5.08 7.26 16.03%
1.24 5.91 5.27 7.50 22.43%
1.34 7.04 6.73 9.35 10.78%

Table 3 Approximate stress inside the flexure beams at
buckling. All the columns are considered slender columns.

Buckling beam
thickness (mm)

Slenderness
ratio

Buckling stress
(MPa)

% of yield
stress

0.905 80 4.00 5.00
1.04 69 5.28 6.60
1.095 66 5.85 7.32
1.22 59 7.27 9.08
1.235 58 7.44 9.31
1.34 54 8.76 10.96
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handle (Fig. 9). The buckling beam was tapered under than the anvil
to help prevent pinching of any tissue inside the mouth when the
flexure buckles. As the buckling beam is tapered, the force to
buckle it decreases linearly with the width. As the buckling force
goes with the cube of the thickness, only a small increase in thick-
ness is needed to accommodate of a moderate change in width of the
buckling beam.

6 Discussion
The analytical model presented can predict the measured buck-

ling load of the structure with an average 20.84% error across all
beam thicknesses tested. For comparison, the FEM model can
predict the critical buckling load of the structure with an average
error of 25.35%. The FEM model predicted higher critical loads
as the stiffness of the upper beam may be playing a more significant
role in the model than it should, or it assumes the bending moments
at the end of the buckling beam are not as significant relative to the
moment needed to deform the upper beam. Both models bound the
measured data, where the FEMmodel is above the measured critical
load, and analytical model is below it. Thus, both methods can be
used to predict the critical load of the flexure to within reasonable
accuracy, however averaging the two results may give an even
more accurate result as the average will often be closer to the mea-
sured critical load.
The analytical model assumes the structure is comprised of two-

force members, which do not include any resistive bending
moments of the actual flexure elements. In actuality, the flexure
deforms slightly and the upper beam does experience some
bending that acts as an additional spring. This perhaps explains
why the predicted input force for buckling the structure is lower
than the actual measured amount. Indeed, what is not included in
the model is the presence of an internal moment in the buckling
beam, which would make it behave like an imperfect column.
Since the beam has clamped–clamped boundary conditions and
the input force creates an applied moment on the structure, the
column will require less force to buckle than if a single compressive
force were applied. Both assumptions are potentially offsetting in the
calculation; the top beam acts as a resistive spring that increases the
buckling load of the buckling beam as it must also be deformed in
order for buckling to occur. The resulting internal moment of the
buckling beam due to the boundary conditions would lower the crit-
ical buckling load, thus the effects of the upper beam stiffness and the
lower beam internal moments act against one another. The simplified
model presented here appears to be accurate enough to design the
system and study how changes in various parameters buckling
forces. In addition, the polymer itself is inherently a viscoelastic
material, so thinner beams likely have increased variance in terms
of their mechanical properties across the thickness of the beam.
In order to further validate the flexure, material and longevity

testing will need to be done. If the flexure is to be used in a tooth-
brush where repeated buckling may be observed, fatigue and even-
tual failure of the flexure must be analyzed and accounted for so that
it will not fail during use and potentially hurt someone. Polycarbon-
ate was selected as the test flexure material as it is readily available
and has desirable elastic properties for a plastic. However, if this
flexure is to be used in a food-safe product such as a toothbrush
other plastics much be used. Styrene acrylonitrile is one potential
suitor as it is a relatively elastic polymer and commonly used to

make toothbrushes today. Further work must also be done on
aging of the plastic and how it affects the critical buckling load.
With respect to temperature, for dental applications, the mouth is
not much warmer than room temperature. However, if the applica-
tion of this flexure needs higher temperatures, further testing must
be done of plastic flexures at higher temperatures to see how it influ-
ences critical buckling load or other materials must be used to
achieve the desired effect.
Protecting the buckling beam and flexure structure during opera-

tion is an important feature—Fig. 8 shows that the buckling beam
strikes the stiffening anvil after buckling, which re-stiffens the
structure. Thus, if a user has buckled the structure and continues
to press with increasing force, the mechanism is able to protect
the user from causing failure of the structure as well as injury to
the user. The stiffening anvil also exists as an actual anvil for the
buckling beam to strike, creating an audible signal that the structure
has deformed and the peak brushing force has been reached.
In the case of a toothbrush the data show that this structure will

give way when less than 3 N of force is applied, which is within
the 1–4 N threshold found to effectively remove plaque from
teeth. What is not quantified in this study is how abruptly the struc-
ture buckles (buckling velocity) or any lateral displacement of the
buckling beam. It also does not account for the dynamic movements
associated with brushing and how the structure will respond while
being used. For instance, lateral forces could also have an effect on
buckling the flexure, if a compressive lateral force is applied to the
structure as well a vertical brushing force (accounted for in the
model) are applied, the flexure will likely buckle at a lower brushing
force than is demonstrated in this paper. Further testing is warranted
to evaluate these buckling modes.

7 Conclusion
A design for a buckling flexure for limiting applied forces has

been presented where the flexure uses the principle of self-help to
stiffen and strengthen after buckling to prevent damage. Design
equations were developed into a predictive model to allow for
sizing of members and studying effects of tolerances on perfor-
mance. The buckling flexure design is demonstrated in a toothbrush
handle as a force-limiter to improve a person’s ability to properly
care for their teeth and gums. Exemplar flexure designs were
tested and buckled with critical loads ranging from 2.83 N to
7.04 N achieved by changing only the thickness of the lower buck-
ling beam. The predictive model, with an error of 20.84% below the
measured critical load and the finite element model with an error of
25.35% above the measured critical load, can be used to tune the
mechanism to the desired stiffness and deterministically set toler-
ances for manufacture for applications outside the realm of dental
hygiene. This design is monolithic, meaning that it can be injection
molded in a single shot with no side pulls required. The use of the
buckling flexure as a force-limiting device has use in other applica-
tions outside of toothbrushes, where excessive force can be damag-
ing such as surgical tools, food-product handling robots, and
human-interactive robots. The low-cost and simplicity of the
design make it ideal for applications where the product is single
use or needs to be low-cost in order to be competitive.

Nomenclature
a = upper beam node
b = buckling beam node
c = distance between node a and b
k = constant derived from elliptical integral
E = modulus of elasticity
L = distance from brush head to flexure

tbeam = thickness of buckling beam
lb−eff = effective length of buckled beam

za = lateral displacement of buckled beam
Fax = x-direction reaction force at a

Fig. 9 Sample buckling flexure designed to mate with a remov-
able handle and toothbrush head. This flexure can be used for
brushing and can be compactly stored.
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Faz = z-direction reaction force at a
Fbx = x-direction reaction force at b
Fbz = z-direction reaction force at b
Fin = input force from user
Ia = moment of Inertia of upper beam
Ib = moment of inertia of buckling beam
La = upper beam length
Lb = buckling (lower) beam length

Pa = load on buckled shape (Fb is used)
α = angle of input force on structure

δtip = maximum deflection of cantilever beam approximation
ɛ = slope at inflection point of buckled shape
θ = angle between La and Lb
λ = slenderness ratio

σmax = max bending stress beam

Appendix: Finite Element Models and Testing Setup
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