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Abstract 

Encapsulated beta cell transplantation offers a potential cure for a subset of diabetic patients. 

Once transplanted, beta cell grafts can help to restore glycemic control, however, locating and 

retrieving cells in the event of graft failure may pose a surgical challenge.  Here, we have 

developed a dual-function nanoparticle-loaded hydrogel microcapsule which enables graft 

retrieval under an applied magnetic field.  Additionally, this system facilitates graft 

localization via magnetic resonance imaging, and graft isolation from the immune system. We 

transplanted iron oxide nanoparticles encapsulated within alginate hydrogel capsules 

containing viable islets. We compared the in vitro and in vivo retrieval of capsules containing 

nanoparticles functionalized with various ligands. Capsules containing islets co-encapsulated 

with COOH-coated nanoparticles restore normal glycaemia in immunocompetent, diabetic 

mice for at least 6 weeks, can be visualized using MRI, and are retrievable in a magnetic field. 

Application of a magnetic field for 90 seconds via a magnetically assisted retrieval device 

facilitated rapid retrieval of up to 94% (+/- 3.1%) of the transplant volume 24 hours after 

surgical implantation. This strategy aids monitoring of cell-capsule locations in vivo, 

facilitates graft removal at the end of the transplant lifetime, and may be applicable to many 

encapsulated cell transplant systems. 
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Introduction 

For patients with diabetes, islet transplantation can help to restore insulin secretion and long-

term normoglycemia,[1, 2] offering a potential alternative to daily insulin injections.  In this 

procedure islets are isolated from a donor pancreas and are typically transplanted into the liver 

via hepatic portal vein infusion.[3, 4]  This often requires patients to take systemic 

immunosuppressants to prevent graft rejection. Additionally, retrieval of these grafts from the 

liver in the event of graft failure remains surgically challenging and risks injury to the host.[5]   

In an alternative approach, cell and organoid grafts can be encapsulated within 

hydrogel materials prior to transplantation.[6-9] The hydrogels help to physically isolate the 

graft from the host immune system, reducing the need for systemic immunosuppression, and 

limit cellular rejection following transplantation.[10, 11] Recently, chemically modified 

hydrogels have been developed which can also reduce foreign body responses and associated 

material fibrosis.[8, 12] This has enabled the transplant of cell and organoid therapies to a 

wider range of accessible extra-hepatic transplant sites in small animal models and non-

human primates.[8, 9]  

As these cell and organoid transplantation systems are translated to humans, it is 

increasingly important to develop strategies to monitor the location of transplanted and 

encapsulated cell systems. There may also be a need for methods that facilitate removal of 

transplanted grafts in the event of graft failure post-transplantation. This is of particular 

interest for capsule based micro-encapsulation systems, where a curative transplant would 

require many capsules containing encapsulated islets. [13, 14] To address this challenge, we 

sought to develop methods that enable both monitoring and retrieval of encapsulated cell and 

organoid therapies.   

Transplanted islets have previously been tracked in vivo through cellular labelling with 

fluorescent dyes, nanoparticle based contrast agents, or radiolabels. [15-23]  Co-encapsulation 
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of contrast agents within hydrogels capsules has also been used to locate encapsulated islets 

via magnetic resonance imaging (MRI) in vitro [21, 24] and recently, to track the movement 

of unconstrained capsules implanted in vivo[25]. Although these strategies facilitate 

localization of implanted capsules, they do not directly facilitate the retrieval of such 

implanted grafts. We have developed a dual-function hydrogel capsule, which can facilitate 

graft retrieval under a directed magnetic field and aids graft localization via magnetic 

resonance imaging (MRI). 

Here, we show the first example of an encapsulated cell therapy which can be 

magnetically retrieved following transplantation. Our system provides a single integrated 

approach for both in vivo capsule localisation and retrieval. We demonstrate the therapeutic 

use of these materials to transplant encapsulated rat islets into immunocompetent diabetic 

mice. These technologies provide a tool for the encapsulation of a range of functional cells 

and cell organoids with dual imaging/retrieval capabilities and facilitate graft monitoring and 

graft removal at the end of the transplant lifetime.  

 

Results and Discussion 

Design of nanoparticle loaded hydrogels 

Alginate hydrogels can be used for cell encapsulation and transplant. Hydrogel capsules can 

be formed through electrostatic droplet generation, followed by divalent cation crosslinking of 

guluronic acid residues on the alginate polymer backbone, shown schematically in Figure 

1A.[26] To develop hydrogel capsules which can be magnetically retrieved, we incorporated 

iron oxide nanoparticles coated with different functional groups into the hydrogel aqueous 

phase before droplet generation (detailed in materials and methods). We hypothesized that 

interactions between functional groups on the surface of the nanoparticles, carboxylic acid 

groups in the guluronate block within alginate, and divalent cations used during alginate 

crosslinking may stabilize nanoparticle-hydrogel interactions.[27] This could enable 
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production of hydrogel capsules which respond to magnetic fields and are suitable for co-

encapsulation with viable cells for long-term implantation and retrieval in vivo.  

Three iron oxide nanoparticle systems were tested; unfunctionalized nanoparticles 

(NP), nanoparticles functionalized with poly-ethylene glycol (NP-PEG), or nanoparticles 

functionalized with carboxylic acid groups (NP-COOH).  Functionalized nanoparticles were 

well dispersed, spherical, and roughly 30nm in diameter (Figure 1B, NP-COOH: diameter 

29.6nm +- 1.4nm SD , NP-PEG: diameter 28.8nm +- 2.3nm SD) whilst unfunctionalized 

nanoparticles (NP) had a wider distribution of aggregated spherical, ovoid and cuboid shapes 

apparent by TEM (diameter 15.4nm +- 7.2nm SD). We next tested the electrostatic properties 

of these systems. Zeta potential measurements for NP, NP-COOH and NP-PEG nanoparticles 

were -37.5mV (0.7mV SD), -37.3 (1.7mV SD) and -18.5 (1.4mV SD) respectively (Figure 

1D,E).  

 

Magnetic mobility of nanoparticle loaded hydrogels 

Hydrogel capsules with iron oxide concentrations between 0-5mg/ml were made at two 

clinically relevant capsule sizes (0.5mm and 1.5mm)[9, 14]  and the mobility of these 

capsules in a magnetic field was tested.  To explore capsule response to magnetic fields, we 

measured the distance at which capsules containing nanoparticles were able to move through 

saline (against gravity) towards a magnet at a fixed distance (Figure 1E-H, Supporting 

Information Video 1).  Briefly, capsules were placed in the bottom of a syringe filled with 

saline, allowed to settle, and then a magnetic plunger was slowly lowered in the syringe. The 

distance from the magnet at which 1x 1.5mm capsule, or 2x 0.5mm capsules moved towards 

the magnet was recorded. All three nanoparticle loaded systems were magnetically 

responsive. As expected, the distance which capsules could cross towards a magnet increased 

as nanoparticle concentration increased, demonstrating that the retrieval distance is 

proportional to nanoparticle concentration at loadings between 0.1-5mg/ml, with 
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responsiveness ranked as NP-COOH > NP-PEG > unfunctionalized-NP nanoparticles. In all 

cases, at loading densities above 1mg/ml, capsules could be collected on magnets positioned 

1-2 cm away in vitro, which suggested a dynamic retrieval range suitable for magnetically 

assisted retrieval of capsules surgically implanted in mice. At this concentration, the NP-

COOH capsules are significantly more responsive (can be retrieved at greater distances) than 

the NP or NP-PEG systems. There was no statistical difference in retrieval distance between 

large and small capsules (Figure1H, Supporting Information (SI) Figure 1).  

We investigated the stability and mechanical properties of hydrogels containing 

various nanoparticles to determine suitability for cell encapsulation and potential 

transplantation. We compared the hydrogel morphology (Figure 1B), electrostatic interactions 

(Figure 1C,D),  mechanical properties (SI Figure 2) and long-term nanoparticle retention (SI 

Figure 3). In general, nanoparticle loaded alginate capsules can be formed up to a nanoparticle 

loading density of 1-2.5mg/ml. Above this threshold, there is some disruption to the spherical 

morphology of the capsules, inducing “tail“ formation (Figure 1B, indicated by the white 

circles), particularly in NP-PEG systems (SI Figure 5-7). We evaluated storage (G’) and loss 

modulus (G”) of different gels in response to strain using a rheometer across the frequency 

range 0.2 rad/s to 150 rad/s. This allows us to evaluate if inclusion of nanoparticles 

significantly alters the mechanical properties of the hydrogels. In all systems, viscoelastic 

hydrogels were formed, with G’ an order of magnitude greater than G” (SI Figure 2).  

We used a spectroscopic approach to assess nanoparticle leaching and the long-term 

stability of these nanoparticle loaded hydrogel systems.  Iron oxide nanoparticles strongly 

absorb in the 300-400nm wavelength range; we assessed UV-Vis absorbance of supernatants 

taken from gels incubated in calcium supplemented saline for up to 6 months (SI Figure 3). 

NP and NP-COOH capsules were stable, with no detectable nanoparticle leaching over a 6 

month timeframe. In contrast, leaching of NP-PEG nanoparticles from the NP-PEG hydrogel 

capsules occurred over a 6 month timeframe (<0.2mg/ml, SI Figure 3). This data suggests that 
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the NP-PEG alginate hydrogel system is not stable, and that NP-PEG nanoparticles are able to 

move within and out of the hydrogel matrix over time.   

As capsule formation occurs via an electrostatic droplet generation system, it is 

possible that changes in the electrostatic interactions of the alginate/nanoparticle mixture may 

affect capsule integrity. Zeta potential of nanoparticles in alginate solutions (Figure 1D) and 

conductivity studies (Figure 1C) indicated that NP and NP-PEG nanoparticles in alginate 

significantly altered the electrostatic properties of alginate solutions, in contrast to NP-COOH 

systems which did not alter alginate conductivity. COOH functionalized nanoparticles may 

also interact electrostatically via complexation between the divalent cation and COOH groups 

on the nanoparticle and alginate backbone to form a more stable hydrogel system better suited 

for cell encapsulation (Figure 1A schematic).  
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Figure 1: Properties of iron oxide nanoparticle and nanoparticle loaded hydrogels (A1,2) 

Schematic of nanoparticle loaded hydrogel capsules (A1) formation and (A2) application in diabetes 

transplants with MRI imaging and magnetic retrieval capabilities. (B) TEM images of the different 

nanoparticle systems used and microscopy images of alginate hydrogel capsules containing 

nanoparticles at loading densities from 0.25mg/ml to 5mg/ml. (C) Conductivity and (D) zeta potential 

of nanoparticles in saline or a saline-alginate aqueous phase. Statistical analysis performed using one 

way ANOVA with multiple comparisons, statistics represent comparison to nanoparticles suspended 

in alginate. (E-H) Magnetic retrieval of nanoparticle loaded hydrogels in saline against gravity (E) 

Video stills of the magnetic retrieval process (stills time = zero, time= 16 seconds, and time= 22 

seconds) (F) comparison between retrieval distances (the distance at which the first capsule moves 

against gravity towards the magnet) for NP, NP-COOH and NP-PEG 1.5mm alginate hydrogel 

capsules at concentrations between 0.25mg/ml and 5mg/ml (G,H)  average retrieval distance for 

1.5mm capsules at 1mg/ml iron oxide loading, and a comparison between capsules of different sizes. 

Statistical analysis performed using one way ANOVA with multiple comparisons, statistics represent 

comparison to nanoparticles suspended in alginate. All graphs show mean values +/- SEM with 

p<0.05*, p<0.01**, p<0.001***, p<0.0001****.  
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Cellular behavior in nanoparticle loaded hydrogels 

We evaluated the effect of various iron oxide nanoparticles on primary rat islets in vitro. Islets 

were co-cultured with various nanoparticle systems (no nanoparticle or unfunctionalized NPs, 

NP-COOH, or NP-PEG nanoparticles) for 48 hours. Islet viability was then evaluated using 

Calcein AM staining and metabolic activity using a luciferase ATP assay. We found that the 

percentage of viable cells per islet remains consistent across these conditions (Figure 2B; 

median 94.0% in untreated cells, and 92.0, 94.5 and 95.5% for NP, NP-COOH and NP-PEG 

respectively) compared to islets treated with ethanol for 1.5 hours (28.0% viable). We also 

compared the metabolic activity of islets following treatment with nanoparticles, using a 

luciferase assay to quantify ATP activity within cells. Figure 2C illustrates that there is a 

slight (non-significant) decrease in mean ATP activity within islets (19.5, 25.1, 24.0% 

decrease in ATP activity for NP, NP-COOH and NP-PEG respectively) following incubation 

with nanoparticles.   

 Next, islets were encapsulated in alginate systems containing the three different iron 

oxide nanoparticles at 1mg/mL, and the secretion of insulin in response to glucose stimulation 

was monitored. Encapsulated islets were exposed to basal low (2mM) and high glucose 

(20mM) solutions and the stimulation index was calculated at 24 hours post-encapsulation.  In 

the absence of nanoparticles, islets demonstrated a 5.5-fold increase in insulin secretion 

following exposure to low and high glucose conditions post encapsulation. Islets co-

encapsulated with NP (unfunctionalized) and NP-COOH (COOH functionalized) 

nanoparticles showed a similar trend (5.1 and 5.2 fold increase respectively). Islets co-

encapsulated with NP-PEG (PEG functionalized) nanoparticles showed a decreased 

stimulation index at 24 hours (stimulation index 2.6), suggesting impaired cellular function. 

Earlier, we found that NP-PEG functionalized nanoparticles leached from capsules (SI Figure 

2). PEG ligands are often included in nanoparticle delivery systems due to their ability to 

improve nanoparticle circulation times and facilitate penetration of specific biological 
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barriers.[28-32] It is possible that the disruption to beta cell function may be related to NP-

PEG leaching or cellular penetration however further studies on the interaction between islets 

and nanoparticles would be required to understand the precise biological mechanism driving 

this effect. In all cases, islets encapsulated with nanoparticles demonstrated suppressed insulin 

secretion and ATP activity compared to islets alone, although this was not significant.  
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Figure 2: Islet function in encapsulated nanoparticle systems (A) Schematic; islets were cultured 

for 48 hours with 1- media,2-  0.1mg/ml unfunctionalised nanoparticles, 3- 0.1mg/ml NP-COOH, 4- 

0.1mg/ml NP-PEG for 48 hours or 5- 70% ethanol for 1.5hours. (A1-A5) Microscopy of whole islets 

(not encapsulated) stained with calcein AM (green) and ethidium homodimer 1 (red), scale bar of 

200µm. (B) Quantification of viable cells per islet, and (C) cellular ATP activity. (D,E) Islets were 

encapsulated in nanoparticle loaded alginate hydrogels and exposed to low (2mM), then high (20mM) 

glucose. (D) Insulin secretion 24 hours post encapsulation was measured and (E) the resulting 

stimulation index was analysed to determine the fold change in insulin secretion on exposure to low 

and high glucose concentrations. Statistical analysis performed using one way ANOVA with multiple 

comparisons, statistics in (B,C) represent comparison to untreated islets using paired t tests (GSIS)   

(D,E) represent comparisons between low and high insulin, compared to islets encapsulated in alginate 

alone. All graphs show mean values +/- SEM with p<0.05*, p<0.01**, p<0.001***, p<0.0001**** 

and represent mean values from 3-5 independent experiments.  
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MRI imaging of iron oxide nanoparticle loaded alginate capsules  

The inclusion of iron oxide nanoparticles within the alginate capsule renders the capsules 

responsive to magnetic fields. We therefore evaluated whether hydrogel capsules containing 

iron oxide nanoparticles could also be visualized post-implantation using MRI, allowing for 

localization of transplanted capsules (Figure 3A, schematic). First, we fabricated 0.5mm 

alginate capsules containing iron oxide nanoparticles with nanoparticle concentrations 

between 0.05-1.00mg/ml (Figure 3B) and embedded these capsules in agarose gels, to 

stabilize capsule location, before MRI imaging. Capsules were visible via MRI at all 

concentrations tested.  

Next, we tested if capsules loaded with 1.00mg/ml iron oxide in two capsule diameters 

(0.5mm and 1.5mm) were visible once implanted into the IP space of mice. Figure 3B 

illustrates example MRI images, with several 0.5mm and 1.5mm capsules highlighted using 

insets; capsules of both sizes were visible using MRI as hypointense regions. We also 

compared visibility of large capsules containing iron oxide at lower concentrations of 

0.25mg/ml, 0.50mg/ml, and 1.00mg/ml (Figure 3C). Results show that in contrast to capsules 

embedded in agarose gel systems, capsules implanted in vivo in the IP space are not easily 

identifiable at lower iron oxide concentrations of 0.25mg/ml. In contrast, 1.5mm capsules 

containing iron oxide nanoparticles at concentrations above 0.50mg/ml can be located in vivo 

using this method.  The stronger magnetic susceptibility artefacts present at higher iron oxide 

concentrations make the capsules appear larger in size, thus further facilitating their 

identification.[25] The identification of these capsules using MRI requires radiographic 

expertise, and we expect iron oxide concentrations may need to be carefully selected to 

optimize imaging with other MRI machines with different magnet strengths.   
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Figure 3: MRI aided localization of nanoparticle loaded capsules (A) Schematic of in vitro and in 

vivo imaging of nanoparticle loaded capsules. (B) MRI images of iron oxide nanoparticles 

encapsulated in 1.5mm alginate hydrogel capsules, and embedded in agarose. (C,D) MRI images of 

0.5mm and 1.5mm alginate capsules containing iron oxide nanoparticles implanted into the IP space of 

C57BL6 mice. Inset panels show zoomed in regions (yellow squares). Inset images are shown twice- 

with and without asterisks used to mark visible capsules to aid visualization. (C) MRI images of 

0.5mm and 1.5mm iron oxide nanoparticle loaded capsules.  (D) MRI images of 1.5mm capsules 

containing concentrations between 0.25-1mg/ml iron oxide implanted into C57BL6 mice. Scale bar 

5mm for all images. 
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A diabetic mouse model of encapsulated islet transplantation 

Our previous results indicated alginate capsules loaded with iron oxide nanoparticles at 

1mg/ml could be retrieved on a magnet placed 1-2cm away (Figure 1F), located in vivo using 

MRI (Figure 3C) and were generally well tolerated by islets in vitro (Figure 2B-D). To 

evaluate the clinical utility of this system, we encapsulated rat islets in these nanoparticle 

alginate systems followed by transplantation into an immune competent diabetic transplant 

model (Figure 4A, schematic). We then monitored graft function and animal glycemic 

control, before determining graft location using MRI and subsequent in vivo retrieval of 

encapsulated rat islets (Figure 4B-G). 

 

Localisation and retrieval of encapsulated cell transplants  

500 rat islets were encapsulated in nanoparticle loaded alginate hydrogel capsules containing 

1mg/ml of NP-PEG or NP-COOH (Figure 4B). These capsules were spherical and 

nanoparticles appeared well distributed inside (SI Figure 5). We transplanted these capsules 

into the IP space in STZ induced diabetic mice and show these can be easily identified via 

MRI (Figure 4B). As expected, capsules containing no nanoparticles, and therefore no 

contrast agent, have limited visibility using MRI. However capsules containing islets with 

both the NP-PEG and NP-COOH systems can be visualized as hypointense regions using 

MRI, allowing us to monitor the anatomical distribution of capsules following transplant. 

Although individual capsules can be located within the abdominal cavity, their distinction 

from other hypointense structures, and indeed clusters of capsules in the peritoneal cavity, is 

nevertheless challenging and requires radiographic expertise.  

 Once capsules had been localized to within the intraperitoneal cavity, we sought to 

retrieve them through a magnetically assisted surgery. Briefly, we developed a new device for 

magnetically assisted capsule retrieval in vivo, consisting of a peristaltic flushing system 
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surrounded by an annular magnet to produce a combined mechanical and magnetic retrieval 

system (Figure 4C). We surgically implanted 200 nanoparticle loaded alginate capsules (NP) 

into the intraperitoneal space of mice, closed this incision, and in a second surgery (performed 

within 24 hours of initial implantation) used our device to flush and retrieve capsules, which 

were then counted. Application of the device for as little as 90 seconds facilitated retrieval of 

94% (+/- 3.1% SD) of the iron oxide loaded magnetic capsules (Figure 4C).   

In a separate experiment, we transplanted capsules containing islets in alginate 

capsules loaded with unfunctionalized NP, NP-COOH or NP-PEG into diabetic animals 

(Figure 4D-G) and successfully surgically retrieved these capsules (Figure 4D,E) following 

application of a magnetic field for up to 90 seconds. The inclusion of magnetic nanoparticles 

and the use of our device aids magnetic surgical retrieval; capsules containing magnetic 

nanoparticles (NP or NP-COOH functionalized) were retrieved at significantly higher yields 

compared to plain alginate capsules (Figure 4D).  Capsules remain intact post-retrieval (SI 

Figure 5). To evaluate whether these systems could be magnetically retrieved following 

longer term implantation, we also compared the retrieval of capsules at the 6-8 week 

timepoint and at 4 months (Figure 4E). We find that capsules can be recovered from the 

abdominal cavity at later timepoints, and that the capsule volume recovered is not 

significantly different between 6-8 weeks and 4 months using application of a magnetic field 

for 90 seconds.  

In general, capsules containing iron oxide nanoparticles could be retrieved in greater 

yields than capsules empty capsules containing no iron oxide nanoparticles (increase in 

retrieval yield over plain alginate NP: 18.7%, NP-COOH: 44.2%, NP-PEG: 50.6% across all 

conditions, all timepoints). Surgical retrieval of implanted microcapsules may be influenced 

by the microcapsule material and any foreign body responses, the location and duration of 

implantation, and the surgical approach and expertise of the surgeon performing the retrieval. 
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With further optimization and surgical training, it may be possible to retrieve an even greater 

proportion of transplanted capsules in this short time frame, reducing the time required for 

surgical retrieval of encapsulated cell systems.  
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Figure 4: Application of magnetically retrievable encapsulation systems in a diabetic mouse 

model  (A) Schematic of iron oxide loaded capsules for islet encapsulation and the diabetic mouse 

model used (B) MRI images of islets co-encapsulated in 1.5mm alginate capsules loaded with iron 

oxide nanoparticle (either PEGylated (NP-PEG) or carboxylated (NP-COOH))  implanted into 

C57BL6 mice. Capsules are indicated with red lines- only nanoparticle loaded capsules were visible. 

(C) Schematic of devices used to test magnetic properties of capsules and retrieval results; 200 NP-

capsules were implanted into the IP space of C57B6 mice. In a separate surgery performed within 24 

hours, our magnetic device was applied for up to 90 seconds and retrieval assessed (3-4 experiments). 

Graph represents the proportion of iron oxide loaded capsules that could be collected within 90 

seconds. (D) Average volume of capsules retrieved after 6-8 weeks in unfunctionalised, NP, NP-

COOH and NP-PEG systems using magnetic retrieval (E) Aggregated data comparing average 

retrieval volume of magnetic systems (NP, NP-PEG and NP-COOH) after implantation for 6-8 weeks, 

or 4 months, with application of the magnetic retrieval device limited to 90 seconds. (D,E) All graphs 

show mean values +/- SEM with p<0.05*, p<0.01**, p<0.001***, p<0.0001**** and represent mean 

values from 4-10 mice per group. Statistics show a one-way ANOVA with multiple comparisons 

between individual conditions, compared to unmodified alginate capsules. (F,G) 500 rat islets were 

encapsulated in alginate, alginate NP, alginate NP-COOH or alginate NP-PEG systems and 

transplanted into the IP space of STZ-induced diabetic C57B6 mice. (F) Percentage cure rate in 

various encapsulation systems. A curative euglycemia threshold of 200mg/dL was applied,[12] with 

failure defined as three consecutive blood glucose measurements above 250mg/ml.[33, 34] (G) 

Average blood glucose levels of following transplantation of rat islets  encapsulated in alginate, or 

alginate containing nanoparticles. (F,G) Experiments were grouped and conducted 2-3 times and 

graphs represent average of between 8-12 animals.  Statistical analysis was performed using a Mantel-

Cox survival curve analysis.  
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Clinical utility of retrievable microcapsules in islet transplantation in a diabetic mouse 

model 

We evaluated the effect of nanoparticle loaded alginate capsules on a curative dose of rat 

islets (500/mouse) used to treat C57-B6 diabetic mice. Blood glucose levels were evaluated 

for 6-8 weeks to determine if these transplants could restore insulin secretion and 

normoglycemia in vivo in mice (Figure 4F, G). Figure 4G represents the relative maintenance 

of normal glycemia below 200mg/dL following transplant surgery in animals who received a 

transplant of 500 encapsulated rat islets in alginate or nanoparticle alginate capsules (cure 

rate). Three consecutive measurements above 250mg/dL post-transplant surgery was 

considered “transplant failure”[33, 34]; the cure rate therefore describes how long animals 

retained normal glycemia (remained cured) until transplant failure.  

For NP- and NP-COOH systems, islets encapsulated in nanoparticle loaded alginate 

hydrogels were able to restore normal glycaemia in immunocompetent, diabetic mice without 

immunosuppression for up to 6-8 weeks, with over 80% of mice remaining normoglycemic at 

day 42. However, the islets co-encapsulated with NP-PEG functionalized nanoparticles 

demonstrated significantly impaired function compared to the other systems. NP-PEG 

systems were able to reduce blood glucose levels to approximately 200mg/dL for the first 4-5 

weeks, before blood glucose levels begin to rise. After 6 weeks, the capsules were retrieved as 

described earlier and blood glucose levels monitored for an additional 3-5 days before 

termination of the experiment. Blood glucose levels increased immediately after removal of 

the capsules containing islets, confirming that the encapsulated islets were maintaining 

normoglycemia in the diabetic mice.   

 

. 
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Conclusions 

For a subset of type I diabetic patients, islet microencapsulation has the potential to enable 

transplantation of cells and organoids to extra-hepatic transplantation sites, and reduce the 

need for systemic immune suppression. However, monitoring and retrieving grafts from these 

sites may prove challenging. Here, we develop a dual-function nanoparticle loaded hydrogel 

capsule which facilitates magnetically assisted surgical retrieval at the end of transplant 

lifetimes and enables graft localization via MRI.  

We have explored capsules loaded with iron oxide nanoparticles functionalized with 

various ligands (NP-unfunctionalized, NP-COOH or NP-PEG) and compared the properties of 

these three systems, focusing on islet functionality, capsule tracking via MRI, and 

retrievability.  The inclusion of iron oxide nanoparticles within alginate capsules enables 

magnetic retrieval of capsules in vitro and in vivo, with the NP-COOH system the most easily 

retrieved in vitro. When coupled with application of a magnetic field for 90 seconds using a 

magnetically assisted retrieval device, nanoparticle loaded hydrogels facilitate rapid retrieval 

of up to 94% (+/- 3.1%) of the transplant volume 24 hours post-implantation.   

Following transplantation, the inclusion of the iron oxide nanoparticles in the capsule 

structure at concentrations above 1mg/ml facilitated tracking of encapsulated islets in vivo as 

identifiable, distinct hypointense structures in the IP space using MRI imaging. Islets 

encapsulated within nanoparticle loaded alginate hydrogels using NP and NP-COOH systems 

were also able to restore normal glycaemia in immunocompetent, diabetic mice without 

immunosuppression for up to 6-8 weeks in vivo. These capsules remained stable for up to 6 

months in vitro, with no detectable nanoparticle leaching. In contrast, although PEG 

functionalized nanoparticle loaded gels were also retrievable, nanoparticle leaching was 

observed from these hydrogels after a 6 month timeframe, and islet function was impaired in 

vitro and in vivo, making them unsuitable for translation. We have therefore identified islets 
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encapsulated in alginate hydrogels loaded with 1mg/mL of carboxylated iron oxide 

nanoparticles (NP-COOH) as an optimal system for magnetic retrieval of microencapsulated 

islets. 
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Materials and methods 

Reagents were sourced from the following suppliers; MgCl2, MgSO4, and KCl (Mallinckrodt 

Baker (Paris, KY, USA)), NaCl, mannitol, CaCl2, K2HPO4, bovine serum albumin (Sigma-

Aldrich (St. Louis, MO, USA)), HEPES buffer, RPMI, FBS, and pen/strep (Gibco (Grand 

Island, NY)), alginate (SLG20, VLVG and SLG100 (NovaMatrix, Sandvika, Norway), Iron 

oxide (Fe3O4 MTI Corporation, Richmond, CA) or iron nickel oxide nanopowder NP 

(Fe2NiO4, Sigma Aldrich), PEG-NPs (Sigma-Aldrich or OceanTech Nano, (Ocean Nanotech, 

SMG-20-05)) or COOH-NPs (Sigma-Aldrich or OceanTech Nano).   Statistical analysis  was 

performed in GraphPad Prism as described; with **** p<0.0001, *** p<0.001, ** p<0.01, * 

p<0.05. 

Nanoparticle characterisation 

NP, NP-COOH and NP-PEG nanoparticles were imaged by TEM. Briefly, nanoparticles were 

loaded onto carbon stubs and imaged in a JEOL 2100 FEG TEM at 120kV. Dynamic light 

scattering and zeta potential were measured in on a Malvern Zetasizer. Briefly, NP, NP-PEG 

or NP-COOH were suspended in saline or a 0.1% alginate in saline mixture and loaded into 

capillary cuvettes before analytical measurements of zeta potential, conductivity and particle 

size were analysed.  

Microcapsule fabrication and testing 

Alginate capsules were formed as previously described.[8, 35] In brief, electrostatic droplet 

generation at 0.1-0.2mL/min under a voltage of 5-10 kV was used to form capsules using a  

PicoPump syringe pump.  Capsules were crosslinked in a 20mM BaCl2 solution and washed 

in HEPES or in Krebs buffer, and were stored in 0.9% saline containing 2 mM CaCl2 (Ca2+-

supplemented saline). To generate iron oxide loaded capsules, iron oxide nanoparticles coated 

with different functional groups were incorporated into the hydrogel aqueous phase before 

droplet generation. Nanoparticle leaching was determined by incubating capsules containing 

NP, NP-PEG or NP-COOH iron oxide nanoparticles in 2mM calcium supplemented saline at 
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37°C for up to 6 months. Supernatants were taken at regular intervals and absorbance 

assessed against a nanoparticle standard curve using a TECAN plate reader (300-400nm). 

Mechanical properties were assessed in bulk hydrogels formed using the nanoparticle loaded 

aqueous phase for NP, NP-PEG and NP-COOH systems. Briefly, hydrogel disks were 

crosslinked as described, and parallel plate rheometry was performed at 0.1% strain across the 

frequency range 0.2 rad/s to 150 rad/s. 

Magnetic distance testing 

A cylindrical, 1/4″ by 3/4″-diameter rare-earth metal magnet (K&J Magnetics, 

Plumsteadville, PA) was glued to a syringe plunger with plugged nozzle. Alginate capsules, in 

~10-15mL of storage buffer, were layered inside the syringe body. The plunger was 

submerged in the liquid without disturbing the capsules or trapping air bubbles and gradually 

lowered until one capsule (for 1.5mm capsules) or two capsules (for 0.5mm capsules) rose 

toward the magnet. The distance from the bottom of the magnet to the top of the capsules was 

recorded as the “>0%” magnetic response distance. The plunger was then lowered 

incrementally until all the capsules had risen to the magnet (“100%” distance).  

Islet encapsulation and functional tests 

For islet encapsulation, rat islets were isolated as previously described.[35] Briefly, islets 

were washed in calcium-free Krebs (4.7 mM KCl, 0.58mM MgSO4, 1.2 mM KH2PO4, 25 mM 

HEPES, 135mM NaCl), and encapsulated within 12 hours post-isolation. Capsules containing 

islets were stored in media in an incubator overnight, and islet function assessed using GSIS 

(glucose stimulated insulin secretion). Briefly, capsules were washed, and exposed to low 

KR2 (KR0 + 2mM glucose) for 30 minutes, washed, and then high KR20 (KR0 + 20mM 

glucose) for 30 minutes. Insulin production was measured by ELISA. Cell viability of islets 

was assessed post isolation, post encapsulation and post retrieval by dual fluorescence 

staining with the inclusion/exclusion dyes fluorescein diacetate (FDA) (Sigma) for live cells 

and propidium iodide (PI) (Sigma) for dead cells. Briefly, naked or encapsulated islets were 
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rinsed twice with 10ml HBSS (Mediatech) and then mixed with FDA and PI in HBSS. For 

immunohistological analysis, capsules were fixed in formalin post-retrieval and stained with 

Newport Green dye (a zinc/insulin dye) and imaged. A fluorescence microscope with bright 

field view, plus filters for FDA or Newport Green (excitation wavelength 488nm, emission 

wavelength 520nm) and PI (excitation wavelength 534nm, emission wavelength 617nm) was 

used to assess the viability of the islets, and to image encapsulated islets and capsules. 

Percentages of total viable cells within 25–50 whole islets were estimated by a single operator 

trained in islet isolation protocols.  

Microcapsule transplantation and retrieval 

Animal procedures were approved by the MIT Committee on Animal Care. STZ-induced 

diabetic C57BL/6 mice were purchased from Jackson Labs. Surgery was performed under 

isoflurane anesthesia and post-operative buprenorphine.   . Briefly, capsules were infused into 

the abdominal cavity through an abdominal incision, closed with surgical sutures, tissue glue, 

and wound clips. Mice were monitored post-surgery, and blood glucose measurements were 

recorded using a tail prick and AlphaTrak commercial glucose meter (Zoetis, Kalamazoo, 

MI). A euglycemia threshold of 200mg/dL was applied,[12] with failure defined as three 

consecutive blood glucose measurements above 250mg/ml.[33, 34] Both survival and 

euthanized retrieval surgeries were performed. The incision site was opened and IP space was 

flushed with Krebs solution to enable capsule collection. For non-terminal retrievals, mice 

were anaesthetized as described above. A surgical flushing instrument aided mechanical and 

magnetic retrieval of capsules. An annular magnet (i.e. 1/8 in, o.d. ¼ in x ¼ in) was fixed to a 

pipette hose and peristaltic pump (VWR, Radnor, PA). Sterile saline was used to flush and 

retrieve capsules. Magnetic capsules loosely attached to the magnet, and could be flushed off 

into a collection chamber.  

MRI imaging 
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Capsules were embedded into agarose gels prior to in vitro imaging, or were transplanted into 

the IP cavity of mice as described. Mice were anaesthetized and placed in the supine position 

within a volume coil of a 7T preclinical MRI system (Varian 7T/310/ASR, Agilent). Vital 

signs and temperature were continuously monitored. Respiratory gating was performed for 

motion artifact correction. Images were collected using 1mm thick coronal slices of 

50mmx50mm field of view. A fast spin echo pulse sequence (TR=2000 ms, TE=12.7 ms, 

Data matrix: 256 x 256, 2 averages) was used. Data was stored in DICOM format and was 

visualized using MATLAB.  
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