PRACTICAL TRANSLATORS FOR LR(k) LANGUAGILS

!

by

FRANXKLIN LEWIS DeREMER

S.B Massachusetts Institute of Technology

(1965)

*

S. M., Massachusetts Institute of Technology
(1966)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September, 1969

~—

Signature of Author

ya el bl - V4 - S SRR T lda P

Department of Electmcal Enginegring, August 25, 1969

Certified by _ _ _.._

-

Thesisfupervisor
Accepted by

.

Chairman, - Departmental Commiftee on Graduate Studies

A’rchiVes

NOV 12 1969

PRACTICAL TRANSLATORS FOR LR(k) LANGUAGES

! by

FRANKLIN LEWIS DeREMER
Submitted to the Department of Electrica! Engineering on
August 25, 1969 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science.

ABSTRACT

A context-free syntactical translator (CFST) is a machine which defines
a translation from one context-free language to another. A transduction
grammar is a formal systeran based on a context-free grammar and it
specifies a context-free syntactical translation. A simple suffix trans-
duction grammar based on a context-free grammar which is L R(k)
specifies a translation which can be defined by a deterministic push-down
automation (DPDA4).

A method is presented for automatically constructing CFSTs (DPDAs)

from those simple suffix transduction grammars which are based on the
LR(k) grammars. The method is developed by first considering grammatical
analysis from the string-manipulation viewpoint, then converting the
resulting string-manipulation algorithms to DPDAs, and finally considering
translation from the automata-theoretic viewpoint. '

The results are relevant to the automatic construction of compilers from
formal specifications of programming languages. If the specifications
are, at least in part, based on LR(k) grammars, then corresponding
compilers can be constructed which are, in part, based on CFSTs.

Thesis Supervisor: Arthur Evans, Jr.
Title: Assistant Professor of Computer Science

ACKNOWLEDGEMENTS

!

For their contributions to the successful completion of this
dissertation I express my gratitude to my thesis advisor, Professor
Arthur Evans, Jr., and to my readers, Professors Thomas .
Cheatham, Jr. (of Harvard University), Chung L. Liu, and John M.
Wozencraft. 1 especially thank Professors Wozencraft and Cheatham
for their special interests in and contributions to the research.

Thanks go to my wife, Sherry, for suffering through both the
typing of the preliminary versions of the thesis and the rather restricted
social life of the last three months.

Finally, I thank Miss Andrea Bickell for the cheerful and excellent
typing service rendered with regard to the final copy.

Work reported herein was supported in part by Project MAC, an M. L T.
research project sponsored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract
Nonr-4102(01). Reproduction of this report, in whole or in part, is
permitted for any purpose ci the United States Government.

..4..

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
TABLLI OF CONTENTS
PAGE REFERENCHES
Chapter 1 - INTRODUCTION

Subject

Languages, Translations

Viewpoint: TW:3s, Modular Compilers
The Role of CF Grammars

Thesis

Approach

Efficiency, Conplexity, Recognizers

Chapter 2 - PRELIMINARIES
4

Notation, Preliminary Definitions
Characteristic Strings

A Canonical Parser

LR(k) Grammars

The Meaning of the LR(k) Condition
Terminology in Automata Theory

Chapter 3 - PARSERS FOR LR(0) GRAMMARS

Perspective

Foundation

CFSMs: Characteristic FSMs
Parsers for LR(0) Grammars
Conversion of the Parsers to DPDAs
Optimizing the DPDAs

Conclusion

Chapter 4 - PARSERS FOR SIMPLE LR(k) GRAMMARS

Inadequacy, Look-ahead

Simple LR(k) Grammars

SLRkFSMs

Minimizing Look-ahead

The Conversion of SLRkFSMs to DPDAsS
Time-Efficiency

Error Detection

On the Kxtent of the SLR(k) Grammars

e T el T " G SIFEN
NSO N WN -

[AVEE V)

DN NS DN
DO WD

N

.

W W W W W W W
N oUW

N
N U W

Page

s

ol

6

18
29

24
27
32
33

39
41
44
47
51
60
64

65
70
74
79
81
86
89
o1

Page
Chapter 5 - PARSERS FOR GENERAL LR(k) GRAMMARS
5.1 Objective ' : N4
5.2 "Bounded-Context'' l'xamples : 97
5.3 L{m)R(k) Graminars 105
5.4 LmRkFSMs 10"
5.5 Parsers for General LR(k) Grammars 1Ly
5.6 Comments ' 129
Chapter 6 - TRANSLATORS
. 1 Philosophy 131
6.2 Objective 132
.3 Syntax-Directed Compilers 133
6.4 Abstract Syntax Trees 1356
6.5 Transduction Grammars, Translations 139
6.6 Translators ' 141
6.7 A Compiler Model ' 147
6.8 Specifying Langusges, Translations, Compilers 155
Chapter 7 - IMPLEMENTA"ION ISSUES
7.1 Constructing CI'SMs 164
7.2 An Efficient Translator-Construction Procedure 167
7.3 Tabular Translators, an Interpreter 172
7.4 A Practical Example 179
7.5 Comparison with a Precedence Scheme = 189
7.6 Variations, Extentions 194
Chapter 8 - CONCLUSIONS
8.1 Future Development ' _ 200
8. 2 Conclusions 203
8.3 Future Research, Extentions 204
Appendix - WEAK PRECEDENCE GRAMMARS 209
REFERENCES '- 213
BIOGRAPHICAL NOTE ' 216

_G..

PAGE REFIIR UNCIES

Delinition ' subject e
2.1 characteristic strings 02
2.0 LR{K) grammars 2
3.1 characteristic grammars 4
3.2 characteristic FSMs (CEFSMs) 4
3.3 read sta es A7
3.1 reduce states -7
3.0 inadequare states A7
3.6 adequate CHFSMs 47
- string-m anipulation parsing -algorithm 50
- stack algorithm 5
- ILALLR(k) grammars G
4.1 ‘.}"E}(A)' 71
4.2 simpie k-look-ahead sets 72
4.3 “imple LR(k) grammars (SLR(k)) 73
4.4 SLLRkF'SMs 74
- modified stack algorithm 76
5.1 Mok) 101

m p
5.2 L(N) 105
5.3 (m, k)-bounded-context pairs: mBCk(T) 107
5.4 L(m)R(k) grammars 109
5.5 LmRkI'SMs 109
--- LRkFSMs 123
--- transduction grammars, SSTGs 139
--- translators (CFSTs) 141

- weak precedence grammars (Appendix)

-6'-

Theorem Page Figure Page_
2.1 123 3.1 46
2.2 27 3.2 55
3.1 , 41 3.3 517
3.2 45 4.1 68
3.3 47 4.2 82
3.4 49 4.3 85
3.5 50 5.1 99
4.1 78 5.2 103
4.2 79 5.3 106
5.1 110 5. 4 111
5. 2 113 5.5. 119
5. 3 114 89 143
Al \ 209 6. 2 140
A. 2 210 6.3 152
A.3 210 7.1 174
A4 211 7.2 178
A.5 211 7.3 185

7.4 190

Grammars Page Table Page
G, 29 3-1 59
G, 19 4-1 87
G, 98 7-1 181
G, 102 7-2 183
G, 117
Gy 140

PAL 181, 183

7

Chapter 1

INTRODUCTION

1.1 Subject

The general subject of interest in this dissertation is "programming
linguistics', which we consider to be a science concerning the design and
specification of programming languages and the translation and subsequent
evaluation and execution of programs. In particuiar, we‘are primarily
interested in the problem of automatically generating translators from

formal specifications of translations based on context-free (Cl') grammars.

1.2 Languages, "Translations

In the sequel we use the two words, language and translation (also
translator), in both the fqrmal .'and informal sense. The proper sense in
each case is always clear from context. A language is defined formally in
Chapter 2 to be a set of strings. However, when we say ''programming
language' or 'language designer', we have in mind a more intuitive notion.
For instance, when we refer to the ''language" ALGOL 60, we mean the
syntax and semantics, the set of strings and their meanings, the lexicon
~and the gfammar, operator prec_edences and associativities, scopes of
variables, etc. Similarly, our formal definition in Chapter 5 of translations
limits them to mappings frorﬁ one set of strings to another, but we also use
the term to mean a mapping from one set of things, of any sort, to another,

of any sort.

...8...

?
1.3 Viewpoint: TWSs, Modular Compilers

I'or purposes of discussion we pictuore oarsclves throughout the
cissertation as a subcontractor to a language designer. The designer has
a contract to design and implement a practical algorithmic programming
language, and he has subconfracted to us the task of implementing a com-
piler for 1is language.

We desire to automate our implementation procedures for three
reasons: (1) the designer is likely to want to experiment to some extent
t» determine the effect of various design decisions, and he would like fairly
short response time., (2) we >xpect to receive niore sucth-contr-acts in the
fature, and (3) implementing a compiler usually requires many man-hours
of expensivé programmer time. The embodiment of such an automation is
called a translator writing system (TWS) (see the survey (¥&G 68)). It is
a system which takes as input the specification of the syntax and translation
of a language and which produces as output a compiler for that language.

The questions, then, which confront us are: how do we specify
programming languages and their translations, and how can we map these
specifications into compilers? We choose a modular approach which is
a combination of some of the notions of Cheatham (Che 67) and Landin

(Lan 66). We find it convenient, even natural, to section our specifications

into components. - For instance, we might specify separately the lexicon, the

context-free syntax, and the context-sensitive syntax. (We discuss brieily
in Section 1.4 and extensively in Chapter 5 our reasons for sectioning the
¢ pecifications in certaiﬁ ways.) Further, we find it convenient to base
some aspects of our translation specification or these different components. It
is reasonable, then, to view a compiler, conceptually at least, as a con-
catenation of several corresponding subtranslators; i.e., as modularized.
The adoption of this viewpoint results in three significant advantages
relative to a less modular approach. First, the otherwise complex task of
compiling is viewed as broken into several relatively simple components,
cach of which may Qe analyzed virtually independently of the others. Second,
the task of a TWS is viewed as the separate generation of several subtrans-
latérs, followed by their optimal combination to form a compiler. Third,
because the specifications of some of the subtranslations can be naturally
and conveniently based on formal grammars, the abundant results of both
formal-grammar theory and automata theory are relevant to the corres-
ponding translators and their automatic generation. We consider the
theoretical underpinnings which accrue from the latter to be important
because (1) they allow us to make provable statements rega'rding the efficiency.
execution time, size, etc., of our translators, (2) they allow us to modify
our translators in a rational way to get an optimal compromi:se between
tmé and space,' (3_) they help us avoid ad hoc, ill-understood modifications
which make the sﬁbsequent combination of translators difficult, if not

impossible or incorrect, and (4) they add a certain degree of ''cleanliniss"

Ve |

10
?

A possible criticism ¢f our approach is ‘hat the separate analyses of
tt ¢ components may result in translation methods or devices which, whor
combined, will form a compiier with gross redundancies, such as repeated
building and scanning of data structures, which cannot be eliminated by any
reasonably simple procedure. We do nct believe that this will be the casc,
but we shall not go so far as fo make this belief a thesis to be proved herc.
The results of ourselves and others are, however, steps in that direction

One existing result in this vein is presented in (Joh 68). It is a
method of automatically generating practical ''lexical analyzers', really

. .
"lexical translators”, from a specification based on regular expressions.
Tne technique is based directly on some rudimentary notions of finite‘stgte

machine theory. It is our desire to get similar results for "CI® syntax

analyzers', really 'CF syntactical translators (CFSTs)".

1.4 The Role of C¥F Gramnars

Another belief which is funda.rhental to our work is that CF grammars
can be uéed in a natural and convenient way as bases for the specifications
of significant portions of the syntax and translation of programming languages,

and we believe that this includes useful languages in which highly readable

programs can be written. Furthermore, we find that a well designed CI
grammer makes a concise, readable, and useful syntactical reference for a

language, a reference from which operator precedences and associativities,

11

scopes of definitions, and otker such "structursal pro.perties”, can be quickly
and easily determined.

Having stated our view in positive terme, we now add some disclaimers.
(1) We do not contend that it is obvious how to design CF grammars so that
they exhibit the above stated properties. -For instance, we do not think that
the (probably) best known CF grammar, that of ALGOL 60 (Nau 63), is an
example of a good syntactical reference; it seems more complex than it
needs to be. However, we illustrate in Chapter 7 a grammar which partially
specifies a language.comparablg to ALGOL in many respccts, and which, we
think, is a reference with the desired properties. Unfortunately, the value
of our results is somewhat lirnited until this grammar design problem is
better understood. We have pursued our research, then, on the hope that
some results r‘elating to this problem are forthcoming. (2) We do not contend
that programming languages should be CF. We merely believe that much of
their syntax can be easily deﬁped via CF grammars and that the remaining
svntax, e.g., ' context-sensitive features', can then be defined in other ways,
probably related to the CF gra.m'ma_.rs. See for example(Knu 66). (3) Neither
do we contend that CF grammars are a pahecea with respect to language
specification. Indeed, they are woefully inadequate for indicating nonasso-
ciative operators, for instance; and there are certainly other ways (see Chapter

8) in which their usefulness would be enhanced if they could be extended. We

—12_

merely believe that they are the most useful devices currently available for
specifying many of the "structural properties' o' languages.

LR(k) grammars. Actually, we do not intend to cover all of the Cl1¢

grammars here. Our expérie nce is that, if a designer sets out to design
an unambiguous CF grammar to specify the "structural properties' of a
language, his result will be an LR(k) grammar (Knu 65);i.e., a grammar
whose sentences can be analyzed ([:\)arsed) during a single, deterministic scan
from left to right. Intuitively, we feel that this situation obtains because the
language is presumably designed to be written and read by humans, and humans,
atl least those who are used to 'reading natural la.nguaées from left to right,
would probably find programs quite unreadable if thefy‘ could not be syntactically
analyzed during a. single scan from left to right.

Thus, to the extent that unambiguity is a desirable characteristic of
a syntactical reference, anyway, our results should be as useful as if they
covered all CF grammars. We' do not find the restriction to unambiguity
bothersome.

The reason we choose the LR(k) grammars, in particﬁlar, is that they
form the largest set of CF grammars whose sentences can be analyzed quickly
by a deterministic, left-to-right automaton, as we show. We can therefore

automatically generate at least part of a compiler for any language whose

specification is, in part, based on an LR(k) grammar, and we can expect that

part of the compiler to be fast.

13

Translators. I'inally, we emphasize thai we are really interested in

; :
translators rather than just parsers, for reasons which we discuss extens

s:vely in Chapter 6. As a method for specifying C¥ syntactical translations
we have chosen the "transduction grammars' of Lewis and Stearns (1&5 638).
In fact, we use only the "simple suffix" transduction grammars (SS871Gs)
(see Chapter 6). Again our choice was based on the fact the method seems
both natural and convenient for our purposes and on the fact it has strong

ties with automata theory.

1.5 . Thesis

1t is our thesis that by applying some ruiimentary notions of
. .
automata theory we can develop a practical method of automatically generating

"~ FSTs from those SSTGs which are based on the LR(k) grammars. lurther-
more, if the SSTGs in question are used to specify the CF syntactical
translations of useful, readable progrémming languages, . the resulting
CFSTs will be of practical éize and spéed.

By ;i "practical'’ method or CFST we mean one which is competitive

with the methods or "'recognizers'' of section II. B of (F&G 68); i.e., ones

which have actually been used in the construction of compiiers. Our aim is

not so much to improve on the size and speed of CFSTs as it is to provide the
B . ' i

language designer with flexibility. With existing methods the designer usually
has to modify his grammar s’ub'stayntially before it is acceptable to the method.

By covering all the LR(k) grammars we, hopefully, get a method which will accept

—14_.

g ~ammars as they are design:d as syntactical references for languages, with
.
no modifications. If the grammars are unambiguous and if all their sentences

can be parsed deterministica'ly, durin$ a single scan from lelt to right, the

latter will be true.

1.6 Approach

Our approach to this problem is basically inspired by and quite
similar to Knuth's. However, we draw even more heavily on automatic
theory than he did, at least with respect to getting practical results, and we
treat trans'ation rather than just parsing. We treat parsers {irst because
they provide a convenient bacis from which we can develop translators. This

s
follows from the fact that the specifications of our translations are based on
CF grammars.

We begin in Chapter 2 by discussing parsing from the string-manipulation
viewpoint, as is typical when working vjvith formal grammars. We present
a particular parser, described as a stfing-manipulation algorithm, and
motivate our own definition of the LR(k) grammars.

In Chapter 3 we develop a foundation by treating only the 1.R(0)
grammars. We draw on finite-state machine (FSM) theory to develop a
machine for making basic string-manipulation (parsing) decisions. "Then we
shift entirely to automata theory by dei'iving from our string-manipulation ‘

algorithm, plus FSM, a deterministic push-down automaton (DPDA). That

is, we get DPDAS as parsers for LR(0) grammars.

-15-
In Chapter 4 we find tﬁat a large and useful subset of the LR(k)

grammars, which we call the "Simple LR(k)" grammars, can be covered

by first constructing an l;‘SM as in the case of an LR(0) grammar, then

adding to the machine some 'look-ahead' inforriation computed in a simple

way, and finally converting the string-manipulation algorithm and I'SM

to a DPDA with "look-ahead".

We generalize to cover all LR(k) grammars in Chapter 5. We find.
that parsers for some of these grammars can be constructed justas are
those for Simple LR(k) grammars, if more complex methods for comput:ng
"Jook-ahead'' information are employed. In general, however, we tind
that some state-splitting operations must be applied to the FSMs along with
the more complex cdmputations of "look-ahead". Our development in
Chapter 5 is in two phases. We first cover a set of grammars of the
"pounded context' variety and then we generalize to cover all LR(k) grammars.

Our result going into Chapter 6, then, is a parser-constructing
technique which grows in complexity as it discovers the complexity of the
gfammar at hand.

In Chapter 6 we motivate the abstraction of a string-to-string
translation from the compilation process. Then we define transduction grammars-
for use in speéifying these translations and show howv to convert our parseArs’

" to translators. Finally, we show how we envision our franslators fitting into |
cqmpilers, via an expiicit model, and we discuss the relevance of our results

to the design and specification of languages, translations and compilers.

16

We illustrate in Chapter 7 the practicability of our scheme. We
first summarize our translator constrhcting technique as a whole. Then
we propose a method of implementing the translators, apply the method
to a particular, practical traisduction grammar, and show that our scheme
compares favorably with an existing, practical technique.

We end the dissertation with Chapter 8 in which we note some
developments which are desirable before our scheme is incorporated in a
TWS, state some conclusions, and pose some question for future research.

1.7 Efficiency, Complexity, Recognizers

Several more informal definitions are ir order before we proceed.

In the sequel we frequently refer to the "efficiency'' of our translators.
By "time-efficiency" we mean the ability to effect a translation using a
minimum number of "'machine operations", and therefore time. 1n Chapter
4 we give a specific definition in terms of an ideal machine. By ''space-
efficiency' we mean the ratio of the amount of space necessary to store
the specification of a translation to that necessary to store the corresponding
translator. We define this more precisely in Chapter 7. |

The "size'" of a grammar is the number of symbols required to write
down all the left and right parts of the productions. By "grammatical
complexity'' we mean a measure of the time required to construct a parser

for a grammar when using our technique. Although this definition may seem

_13-

to reflect some egotism, we use it for lack of a better choice. It does,
however, seem }to" correspond to the intuitive notion fairly well. Our
measure depends both o,n the size of the grammar and on the "complexity'
of the functions which must be employed to compute "look-ahead' and

state-splitting.

Finally, we use the word''recognizer' in a more technical sense

than it was used in (F&G 68). We adopt the automata-theoreticnotion-that
a recognizer is a machine which reads a string and either accepts or rejects
it, as far as its being in a given language is concerned. Our parsers and
translators output considerably more information than is contained in a

smnple "yes' or "no" from a recognizer.

[}

———— -

——

=

J

18

Chapter 2

' PRELIMINARIES

.1 Notation, Preliminary Definitions

(AN}

We begin by defining *erms and notation. We assume Lthe reader

is familiar with the properties of symbols, strings of symbols, regular

expressions, and languages, finite state machines (FSMs), formal grammars,

and both deterministic and nondeterministic pushdown automata (DPDAs and

NPDASs).

A context-free (CF) grammar is a quadruple (VT, VN’ S, P) where

V.. is a finite set of symbols called terminals, V. is a finite set of symbols

T
[

distinct from those in V

N

called nonterminals, S is a distinguished member of

T

VN called the starting symbol, and P is a finite set of pairs called productions.

Fach production is written A~w and has a left part A in VN and right part

3 ¢
win V where V=V VvV, _. V denotes the set of all strings composed of

N T
symbols in V, including the empty string.

Without loss of generality we conventionalize that (i) the productions
are arbitrarily numbered from 0 to s, and (ii) the zeroth production is of
the form $~}S'4, where S' is sort of a subordinate starting symbol and §
and the terr.ninal "pad" symbols | and q appear in none of the other productions.

We use Latin capitals to denote nonterminals, lower case Latin letters,

digits and special symbols (e. g., +, *, :, etc.) to denote terminals, and

-19-

lower case Greekletters to denote strings. An exception is that we reserve
¢ to denote the empty string. We use |B| to denote the length of (number
ot symbols in) the string B, and k:8 to denote the first' k symbols of B if
|6|>k and B otherwise. If @ =@B is a string, then o is a prefix and 8

ie a suffix of o, and @ is the concatenation of ¢ and B.

In the sequel, we oftern use for examples the grammar

G, = ()5 £+ F {}.(S,E T, PLS. P)

where P1 consists of the following productions:

© s- FEd 4) T-P
(1) E~E+T (5) P-i
(2) E~T 6) P~ (E)

(3) TPt T

If A~ w is a production, an jmmediate derivation of one string

a = pup from another a' = PAR is written a'~a. We say « is immediately

derivable from @' via application of the production A-w to a particular

occurrence of A in a'. The transitive completion of this relation is a

P
derivation and is written &'= ¢, which means there exist strings Ly Oy s - . o
such that a' = =0, = ... G for n>0. A right derivation, written '

o
a'~ . &, is one in which for i=1,2,...,n each o6, is immediately derivablefrom
R i y

—20_

01 via application of a procuction to the rightnost nonterminal in oy

!
\/e choose the right derivaticn as our canonical derivation.

A terminal stringis cne consisting entirely of terminals. A

centential fornr is any strin derivable from S. A sentence is an terminal
£ sentence Yy

centential form. The language L(G) generated by G is the set of sentences;

b Sk
ie., L(G) = n €VT! S-n}. Aright sentential form , which we choose as

our canonical form, is any string canonically derivable from .

An example of a canonical derivation of a string n . in]"(Gl) follows,
where in each canonical form weunderline the rightmost nonterminal and

indicate the production used to derive the next form.

®

Canonical Form Production
S

L 4 (0) s-}FE-

kE+;4 (1) E~E+T
FE+ ;] (4) T-P
e+ () P~
b ey me T

kaT+i{ (3) _T~P9T
Fpt P+i 4) . T~P
FP4i+id (5) P-1
(5) P-i

Fi ti+i-l=mn,

..21_

Note that a canonical derivation is a strictly right-to-left process since we
:

a ways replace the rightmost nonterminal.

We assume that gram:nar G has no useless productions; i.e., we
assume that for each product:on A — w there exists a derivation
S - o068 where g, 6, and 8 are terminal strings. Presumably our language
designer has made an error if there are useles: productions in the grammar,
Fortunately, well known methods exist for detecting such errors (see(Gin 66),
section 1. 4).

Loosely speaking, a parse of a string is some indication of how that

string was derived. In particular, a canonical parse of a sentential form

L)
a is the reverse of the sequence of productions (or equivalently, the numbers

thereof) used in a canonical derivation of 'oa. We refer to the action of

determining a parse as parsing, the determination constitutes a grammatical
analysis , and a parsing algorithm is called a parser.

Being interested for the present in grammatical analysis, we view a
grammar G as serving two purposes: (i) it is a set of rules for generating
the sentences in L(G), and (ii) it defines the input/output relations of any
corresponding canonical parser; i. e., if the input to the parser is a string
n in L(G), the output should Be a canonical parse of . However, because
the latter is ill defined in the case tha.t‘n has several canonical parses and
because we desire ultimately to generate a unique translation of n from a

unique canonical parse, we are led to the following definition. A grammar

G is unambiguous if and’only if each canonical form, and therefore each

sentence, has a uﬁ\ique canonical parse. It follocws immediately that each

c:nonical form of an unambiguous grammar has a unique canonical derivation.

2.2 Characteristic Strings

We would like to describe a particular canonical parser, but first
we define some sirings which together provide a useful characterization

of the decisions which must be made while parsing.

Definition 2.1. Let G be a CF grammar with s +1 productions.

Let {#0, £.,..., #S} be a set of special symbols not in V, called

1’
+
#-symbols, such that #0 is associated with production 0, #1
with 1,..., and #s with s. Let the p-th production be A = w,

“and let a' = pAB and a = pwB be canonical forms such that there

exists a canonical derivation S - £{ o'~ R Then pw #p is a

characteristic string of . We call pw the stack string of

pw#p and a stack string of a, and we call 8 an input string

of «a.

A characteristic string of o is, in essence, a summary of information about
o useful for canonical parsing. It indicates that there exists a canonicai "
derivation of a in which it is irnmediatély preceded by another form o'
which can be formed as follows: remove from the end of ‘the stack string

pw the substring w which matches the right part of production p,

.-.23_

replace w with the left part A, and concatenate the result with the input
ctring B. We describe this procedure as "making a reduction'' via
application of the "applicable production” to the end of tae stack string.
In concert with this terminology we often refer -o productions as
reduciions, visualizing them written w— A.

As examples we give several canonical forms of grammar G1

with corresponding characteristic strings:

n1=|-iTi+i-| Fitg
FPYi+id }-Pfi#s
FPeP+id b tP#,

Theorem 2.1: A CF grammar G is unambiguous if and

only if each canonical form a of G, except S, has a
unique characteristic string.
Proof: We exclude a = S because we defined no
characteristic string for it. Clearly S has a unique
canonical derivation so the exclusion does not effect
- the following.
if part: To prove G is unambiguous we must show that
every canonical form has a unique canonical parse. We
proceed by induction, letting Pn be’ the proposition that

every canonical form derived in n steps has a unique

24

!

canonical parse. P1 is true, because there is only

one derivation consisting of one step, namely

S- F s 4. For some n> 0 we assume that Pn

is true and prove Pn——l' Consider a form ¢ derived

in n+1 steps and having a unique characleristic string.
LEvery canonical derivation of a must end in the same
step o' = a, for some &' derivable in n steps, by
definition of characteristic strings. Thus, any canonical
parse of o must be the production applied in o'~ «,
followed by ;ome cancnical parse of o'. But ' has
only one such parse, by the inductive hypothesis, so

o . sonly one canonical parse. Thus, G is unambiguous
by definition.

only if part: If G is unambiguous, each such o has a

unique canonical parse and derivation. Therefore by

definition it can have only one characteristic string. Q. E. D.

2.3 A Canonical Parser

Our canonical parser is described simply as follows. Commencing
with string 1 in L(G), iteratively (i) determine a characteristic string of

the current canonical form, (ii) output the production indicated by the last

—25_

symbol of that characteristic string, (iii) make the correspon-ding reduction,
and (iv) stop when the ne\'zv cano'nical. form is a = S.

Several corﬂments are in order with regard to this algorithm. lirst,
it is incomplete since we have not stated how to determine characteristic
strings. We investigate this problem thoroughly in Chapters 3, 4, and 0,
but we solve it there only for a restricted class of CF grammars which we
are about to define. Second, since these special grammars arc all unambigu-
ous, we can change part (i) to read "determine the characteristic string ... '
Thus, the algorithm is well defined, and deterministic, for the grammars
of interest. Third, since each iteration is the reverse of a s{op in a
canonical derivation, it is clear that the process as a whole is just the reverse
of a canonical derivation. Thus, the parser proceeds strictly from left to
right, except perhaps for the computation required to determine characteristic
strings. This is, of course, precisely why we are interested in this particular
parser.

A determination of the canonical parse (5,5, 4, 3, 2, 5, 4,1, 0) of the
string uh derived above is exemplified below, where we underline the

reducible substring in each canonical form and characteristic string.

Canonical Form , Characteristic String Qutpul
Fiti+id Fi#, 5
FPti+id FP4i #e 5
FPtP+1id FPte #, 4
FPAT+ i FRAT £, 3
FL+iA FT#, 2
N FeL s ;
FE+PA FE+P t, 4
FE+TA FE+T *, 1
FEA FE4 4, 0

S

We now infopmally prove that our canonical parser operates as
desired for the purposes of corﬁpilmg; i. e., that when it is applied to a siring
n in L(G) it outputs the canonical parse of n and stops, and that when it is
applied to a string ' not in L(G) it aborts somehow after a finite time. 'The
former follows from the fact the parser executes the reverse of a canonical
derivation. The latter depends on the fact no canonical derivation exists for
any such string 7', and on the following two assumpt'ions. First, we assume
that there is an auxiliary mechanism, a "loader' program, say, which ehecks
ali strings presented to the parser and ensures that the first and last symbols
are | and 4, respectively. Secohd, we assume that whatever device is used
to determine characteristic strings never looks to the left of | or to the right
of 4. The way the parser must abort, then, is by determining that there is

no characteristic string for the string from |~ to 4, inclusive. It is a finite

27

‘ask to determine that n' df length n has no cheracteristic string becaus=, if
nothing else, we could simply generate all strings of length n using G and
determine that n' is not one of these strings. Of course, the exact way in
which our parser aborts will not become clear until we develop a device for

determining characteristic strings.

2.4 LR(k) Grammars

In hopes of being able to develop practical parsers for them, we now
restrict our attention to those CF grammars whose sentences can be parsed
deterministically during a single scan from left to right.

Definition 2. 2. Let k be a non-negative integer. A CI

grammar G is LR(k) if and only if every canonical form

& =¢B of G, except a = S, has a unique characteristic
string tp#p which can be determined by investigating

only p and k:B.

The original definition of LR(k) grammars appeared in (Knu 65). A definition

very like our own can be found in (H&U 69).

Theorem 2.2. An LR(k) grammar is unambiguous.

Proof: The uniqueness of characteristic strings in conjunction

with Theorem 2.1 proves this. 1 : Q. E.D.

We have already seen that our canonical parser proceeds strictly

from left to right as far as the making of reductions is concerned. The

28

implication of our definition is that for LLR(k) grammars the process for
d:termining characteristic strings need never get more than k symbols
anead of the reduction process. Further, if sufvicient information can -

be remembered about the string already processed, no rescanning of that

string is necessary and the parser as a whole may proceed from left to
right, except when the process for determining characteristic strings
peeks ahead as many as k symbols. We show in Chapters 3, 4, and 5, that
sufficient information can be remembered via a finite number of machine
states and a pushdown stack, and in fact, that our pa.rser is equivalent to a
DPDA. d

We emphasize that the LR(k) definition allows parsing decisions to
depend on arbitrarily large left context () but only on finite right context
(k:8). Thus it defines the largest possible set of grammars consistent with
our deterministic,left-to=right bent. This because no additional information
about the parsing decisions which were made to reduce the left part of the
original string to ¢ would be of any use in making new decisions, since we

are concerned only with context-free grammars. In other words, none of

the "substructure'" associated with ¢ is relevant to any future parsing

decisions.

As an example of an LR(0) grammar, consider GO whose productions

foliow.

-

(0) s~ FEA (4) E-b1B

(1) BE- a A (5) BR—-c1B
(2) A—- cA (6) B—-d
(3) A— d

Because G. is small and simple it is easy to confirm that it is, indeed, 1.R(0).

0

The canonical forms of GO are indicated in the following two derivations.

where n> 0:

S-'}—E‘l"]-aA'{—'...-'l-aan{"|~acnd-{

s+ }FE{~FbBRAd=..~Fbc"B{~FbcdaA

Since these represent all possible derivations, it is easy to see from

definition 2.1 that the corresponding characteristic strings are unique, and

as follows:

FE 1 4, Faat, ...,]-aan#z, }-ac:ncl#3
FEd#, FoBE,..., Fbc"B#,, Facdt,

Further, it can easily be determined by exhaustive testing that the charac-
teristic string ¢ #p of each canonical form o =¢@f can be determined without
regard to any right context (8). Thus, G0 is LR(0). We shall prove this in

a more satisfying way in Chapter 3.

30

Now, because G, _i_s_' LR(0), we can generate a parser for it via
the simplest version of our technique, as we shall see. However, of all
the parser-generating techniqués discussed in (¥&G 68), Knuth's is the
only one which covers GO' This is because the most general of the other
techniques covers only the ''tounded right context" grammars (Flo 64);
i e., grammars whose sentences can be parsed from left to right with
no decisions depending on more than a bounded amount of left or right
context.

To see that GO is not bounded right context, consider the string
Ny~ Fa c"d 4. To parse Mo the reduction which must be made first is

T

d - A. But that decision depends on the fact there is an 'a’ arbitrarily

far to the left. Had the "'a" been "b' instead, the applicable reduction would
have been d —» B.

————

We illustrate that our previous example grammar G1 is not
LR(0) by exhibiting two similar canonical forms of G, which have distinct

characteristic strings:

Canonical Forms Characteristic Strings Reductions

FP+id FE#, (4) P-T

FP*riA }-Pf_i_#s (5) i = P

_31—

?
(iven the canonical form a = F P+i-, we could not conclude on the basis

o7 the prefix '"FP'" alone that the characteristic string of o is "FP #4".

We should have to look one symbol ahead to be sure « is not "FPtiq"

or the like. Because elimination of such uncertainties as these can always
be effected by a look-ahead of one symbol, G1 iz an LR(1l) grammar. We

prove this in Chapter 4.

Of course, our parser nesd not look ahead in unambiguous situations.
For inst'ance,- there is never any uncertainty about whether "i'" should be
reduced to "P" for grammar G,, no matter what the context. This fact
illustrates that the s;nalleét k for which a grammar is LR(k) is limited by
the worst case of necessary look-ahead.

As examples of grammars which are not LR(k) for any k > 0, we
could choose any ambiguous grammar. The violation of Theorem 2. 2 is
immediate. Neither is the mirror image of grammar GO LR(k). This is
because the "d'" weuld now appear on the left end of each sentence, and we
would need arbitrary right context to choose between the reductions d~ A
and d - B.

This latter case suggests the concept of RL(k) grammars, whose

sentences can be parsed deterministically from right to left. We do not

pursue this concept further since the geneéralization is obvious.

32

.5 The Meaning of the LR(k) Condition

We emphasize the fact that the LR(k) condition is one on the gran'mar,
rot the language. Ior instance, the grammar S~ b4, L~ alka k-
is not LR(k) for any k, but the language it generates }a {aa} { is regular,

and therefore recognizable by an FSM. The gré.mmar not being 1.R(k)

corresponds to the fact the strings cannot be pacsed by a DPDA. There
does, however, exist an LR(k) grammar which generates the same language.
In fact, Knuth has shown that there exists an LR(k) grammar for every

deterministic language; i.e., every language which can be recognized by a

DPDA has a grammarssuch that the sentences can be parsed by a DPDA.

The latter fact is only of somewhat academic interest from our point
of view because we are ultimately interested in using grammars to specify
translations from strings into structures, so we are as interested in the
structural properties of grammars as we are in the languages they generate.
The case just given is one where no LR(k) grammar exists which has the
symmetrical structural property of the original grammar. This corresponds
to the fact that no DPDA could determine the center of an arbitrarily long
string without looking arbitrarily far ahead to find the end of the string.

It is also of some academic iaterest that any "LR(k) language', i. e.

one generated by an LR(k) grammar, can also be generated by an 1,1(0) gmmma}-.

fln(!' pu GL) the resull i thet there s an L) grammar for cach 1 (L) languape,
but this is because Kouth does not assume the left und right "pad” symbols to be .

built into the grammayr. One-symbol look-ahead is therefore necessary to detect
the ¢nd of the string. ’

—33-
~his fact is another which {s not very interesting from our viewpoint because
i: has not been shown, and indeed, we suspect that it is not true, that an [LR(0)
erammar exists which is "structurally equivaleat" to the original grammar.
(See (Che 87) for a precise definition of the "structural equivalence' of

grammars.)

2.6 Terminology in Automata Theory

The following is intended only as a review of terminology, since we
ascume that the reader is aiready familiar with the concepts. However, the
reader should pay special attention to the discussion of DPDAs, because our

[}

representations of them are unusual. We first discuss a link between formal

grammars and automata theory.

A production is said to be right linear (Gin 66) if it is of the form

b
A - wB or A-w, where A and B are in VN and w is in VT . A CF grammar

is called right linear if all of its productions are right linear. A right linear

grammar GR is said to generate a regular language, and it is well known

that the latter can be recognized by an FSM which can be derived from GR

(1% U 69).

FSMs. Formally, an FSM (Hen 68) is an abstract model consisting

of a finite set of input symbols, a finite set of'output symbols, a finite set

of states, a next-state function, and an output function. For our purposes

an FSM need only-be a recognizer, so the output symbols need include only

- "™" and "0", or "yes'" and "no'. We consider an FSM to be synonymous

-34-

?

with one of its representations,. namely a "transition graph', and we discuss
I'SMs in terms of the latter rather than in terms of the above five components.

A transition graph consists of a set of nodes with various arrows

drawn between them. Each node represents a state and is indicated thus

[N}, where N is the name of the state (we use integers for state-names).

Each arrow is labeled with an input symbol s; it is said to be a transition

under s, or simply an s-transition, and it represents an element of the next -

state function. A starting state is indicated by a short incoming arrow which

originates on no node of the graph. A terminal state is indicated thus 1
+

An example of an FSM (transition graph) is as follows.

Jz

D_'lfi-.-a-_»‘*

A series of transitions leading through an FSM from state N, to

state Nz. .. to state Nk

spells out a unique string of input symbols (i. e., an input string) in the

is called a path from N1 to Nk’ Every such path

obvious way. An FSM accegts a given string 7 if and only if there exists
at least one path that begins at a starting state, spells out 1, and ends at

a terminal state. The set of all strings accepted by an FSM is referred to

as the set that-is Fecognized by that FSM.

—~—

35
4

A state M is said to be accessible from state N if and only if there is

a path from N to M; the input string spelled out by such a path is said to
access M from N. When the initial state is not specified, it is understood
to be a starting state.

If we associate the output symbol ''1" with each terminal state and
"0" with each of the others, each path also spells out a unique string of

output symbols (i. e., an output string). States M and N are said to be

equivalent if and only if for each input stringn spelled out by some path

from M (N), such that the path also spells out the output string n', there
existe a path from N (M) which spells out the same two strings n and 7',
respectively.

An FSM is said to be deterministic if and only if it has a single

starting state and from each state there is at most one transition under each

distinct input symbol; otherwise, it is said to be nondeterministic. A deter-

ministic FSM is said to be reduced if and only if every state is accessible
from the starting state, some terminal state is accessible from every state,
and no two states are equivalent. A reduced machine is unique within the
names of its states, and, since it is a homomorphic iinage of other machines
which recognize the same set, it can in a real sense be thought of as minimal.
We often think of a deterministic FSM as a physical machine, rather
than as an abstract model, and this leads to the following terminology. To

determine if a given FSM accepts a given string 9, we say that we initialize

-36-

the machine (i. e., start it in its starting state), applyit to n, and determ ine

it n takes the machine through a sequence of states to a terminal state, The

m.achine is said to read the symbols in n from an input tape, to enter first one

state and then the next, and to output symbols onto an output tape. Ifafter reading
the last symbol of n the machine outputs a "1", then it accepts n. However,
if at that time it outputs a "0" or if it stops reading before it reaches the
end of , it does not accept . The machine stops reading whenever it enters
a state with no transition under the next symbol. to be ;'ead.

DPDAs. Ouritreatment of DPDAs is less formal than that of FSMs.
For our purposes a DPDA is a machine consisting of an input tape, an

output tape , a finite control, and a pushdown stack.

The finite control can be thought'of as a program consisting of
instructions pertaining to the reading of symbols from thelinput tape and
the outputting of symbols onto the output tape, the storage, interrogation,
and removal of items on the stack, and jumps from one point in the program
to another. The control can he represented by a transition graph whose

nodes (we use circular nodes for DPDASs) are called states and whose labeled

arrows are called transitions.
Each state represents a point in the program which can be jumped to, .

and it has a name wh1ch is given inside the node. There is a unique starting

_ state, indicated thus) and a unique terminal state , indicated thus @ .

_37—

’

Each transition implies one of four kinds of instructions, the

ixxterprietations of which are indicated next. 'If the machine enters state

N having a transition to state M, then, if the lakel of the transition is

(1) a symbol s, the machine reads the next symbol and, if the symbol

read is s, it then enters state M, (2) ''push i", the machine pushes the

" item i on the stack and then enters state M, (3) "pop n, out p'", the machine
pops the top n items off the stack, outputs p, and then enters state M, or
(4) "top i", the machine compares item i with the top i.t.em on the stack,

and, if they are the same, it then enters state M.

The following two conditions are sufficient to guarantee determinism:
(1) any state having a transition under either "push i'" or "pop n, out p'' may
have no other transitions, and (2) any other state must have either every
transition under a symbol, or every one under "top i' for some item i.

The initial configuration of a DPDA is as follows. It is started in

its starting state with the input string (the string to be parsed, in our case)

on its input tape, with its input head (reading device) over the leftmost

symbol (}) of the input string, and with its stack empty. The final configuration -~ |

TOur special application of DPDAs has prompted us to depart from the usual
restrictions (D&D 69) of allowing ''pops'' of only one symbol at a time from the
stack, and investigations of items on the stack only when popping them off.
Also, outputs are usually asgociated with states, as in the case of FSMs. We
believe it is obvious how to modify our DPDAs to abide by these restrictions.
We have deviated from the norm for the sake of simplicity and practicality.

L

-

—38-

!

is: the input head one place to the right of the rightmost symbol () of the
input string, the stack empty, and the machine in its terminal state.

The similarity of DPDAs and FSMs is ernphasized if we note that
a2 DPDA which never uses its stack is equivalent to some FSM. This leads
us to think of a DPDA, then, as being based on some FSM. We think of this
FSM as reading symbols, as usual, but interspersed between some of the
reads are some "hoékkeeping"operations involving the stack, and these
operations effect some of the state changes of the FSM. This viewpoint proves

to be quite useful in Cha}pters 3, 4, and 5.

—39_

Chapter 3

’

PARSERS FOR LR(0) GRAMMARS

3.1 Perspective

Chapters 3, 4, and 5 are difficult ones to read becausc they contain
many detailed definitions, lernmas, theorems and corollaries, and intricate
proofs. But alas, the difficulties cannot be circumvented entirely because
the material covered is fundamental to the dissertation and must be precise
and prove’n, and because it is distinctly nontrivial. We can, however,
minimize problems by providing perspective via an informal preview of
the resulté to come. '

The objective of the present chapter is merély to show how to construct
parsers for LR(0) grammars, but in the process we lay a foundation upon
which we ultimately build to cover all LR(k) grammars. |

We begin by showing that the set of characteristic strings of a
given CF grammar G is a regular language. Thus, the set can be recognized
by an FSM. We next show that if G is LR(0) the reduced, deterministic F¥SM
which does this recognition is adequate, without modification, for use in
parsing. In particular, the FSM can be used to determine characteristic
strings of canonical forms, as is necessitated by our parsing algorithm.

It follows rather directly that the parsing algorithm as a whole can be

converted to a DPDA, the finite control of which can be derived directly

from the FSM.

.-40..

In Chapter 4 we define the "Simple LR(k)" grammars; i. e., those
grammars for wh}ch the special FSMs can be used to determine charac-
teristic strings if they are extended by the addition of certain "look-ahead"
information which can be computed in a simple way. The conversion of the
modified FSM to a DPDA is straightforward, simply resulting in a DPDA
with "look-ahead"..

In Chapter 5 we address the problem of constructing parsers for
general LR(k) grammars. We find that in some of these cases the modification
needed for the FSM is the same as above, but that the ''look-ahead" information
is more difficult to compute than for the "Simple LR(k)" grammars. In
the general LR(k) case, however, some of the slates of the FSM must be
split into several copies because of complex correspondences between left
and right contexts. The state splitting process is explained simply as
"building into the machine" the capability to remember more left context
so that the corresponding right contexts can be checked to make parsing
decisions. Thus, the construction of the parser in the general case can
become computationally complex.

In conclusion, what we develop in the next three chapters is a
method for constructing parsers which growé in complexity as it discovers
the complexity of the grammar it is working on. That is, we first assume
the grammar is L_R(O) and sgt out to generate a parser for it. In the |

process of constructing the parser we are able to determine if the grammar

-41_

'

i3, indeed, LR(0). If it is, we complete our construction and are finished.
However, if the grammar is not LR(0), we assume it is ""Simple LR(k)"
and compute the "look-ahead' information in a simple way. If certain
conditions do not hold regarding this "look-ahezd', we use more complex
methods and perhaps discover that some state spolitting is necessary.
Ultimately, we are able to determine if a given grammar is LR(k) for

any finite value of k given a priorif, and if it is, we can construct a
parser for it.

3.2 Foundation -

1)

To complete the specification of our canonical parser we develop
an automaton which is capable of determining characteristic strings. We
first concentrate on LR(0) gramnmars and then gradually generalize to
include all LR(k) grammars. The following theorem, regarding both

amgibuous and unambiguous grammars, is fundamental to our development.

Theorem 3.1. The set of characteristic strings of a

given CF grammar G = (VT, VN,‘ S, P) is a regular
language.
Proof: Consider a canonical derivation of some

canonical form a:

1. .
Knuth (Knu 65) has shown that it is undecidable, in general, whether a grammar
is LR(k) if k is not given a priori.

-42_

S -
— !
(S wOAOwO)
wOAOwO
: s sk
1o " 1"
. (wo R %0 wof VT)
1
wOAOwO

(Ag=w Ay w))

R T
Wowy Ay @y

b b3
1 1" "
(a.:1 R % Jw € VT)

1" 1" _._.
wowlA%wl wo

w A wll wllw" ;
10 LI) e 9o 0
m m m 170 ((p)Am-*w)

o a0 w "coo @ -
I R 0 @«

where m > 0, Am-' w is the p-th production in P, and

x* B3
for 0<i < m each w’; is in V., eachw, and w! isinV

Vv VN), and each Ai-'w. A w! is

(recall that V = V i1 +1% 51

T

a production in P. Then a characteristic string of o is

Wy - -+ » wmw#p.

This string can be generated by a grammar containing

the right linear productions:

' —. t

S wOAO

1 - !
A " @Ay

Al - w#
m P

_43—

!

where S' and the A{ ace the nonterminals in this grammar.
Generalizing, we see that the following right linear grammar
generates all possible characteristic strings of G:

1 = ! 1 1]
F (VT, VN’ s, P')
where

Vi = V u {#0,#1,...,#8} and

v . -
i { A \AlsmVN}and

S'

S priamed and

Pl

{A- w#p |A~w is the p-th production in P}

1 1 - 3 3 1 3
u{A-wB |A-w Bw, is in P and B is in VN}

Further, because there are no useless productions in
G there corresponds to each derivation of a string
%) #p using grammar F' derivations using grammar
G of one or more canonical forms, each of which
has qo#p as a charactefistic string. Thus, the grammar
F' generates all and only the characteristic strings of
G. |

Finally, F' generates a regular language because

it is a right linear grammar. Q. E. D.

44

?

Definition 3. 1. The grammar F' of the proof of Theorem

3.11is _called the characteristic grammar of G.
As an example we present the productions of the

characteristic grammar of our example grammar G0 (see page 29):

(0) s'-|FES *o (6) A'~d #3
(1) s'=}E! (7) E'-'bB#4
(2) E-aAf, (8) E-bB'
(3) E-aA' (9) B~ c B#,
(4) A= ¢ A#2 (10) B'= ¢ B!
(5) A= c A’ (11) B d #6

3.3 CESMs: Characteristic FSMs
We now concentrate on a particular FSM which can be derived from

a characteristic grammar.

Definition 3.2. A CFSM (characteristic FSM) of a CF

grammar G is a reduced, deterministic FSM which

recognizes the set of characteristic strings of G.
Since any éuch FSM is unique within the names of it:s states we refer to the
CFSM of G. The CFSM can be derived from' the characteristic .grammar
of G via well known techniques (see for example, (H&U 69) page 33) or it

can be derived directly grom G, as we discuss in detail in Section 7. 1.

—45-

We illustrate in Figure 3.1 the CFSM of our LR(0) grammar GO‘
It is the CFSM which is capable of determining the characteristic strings
of canonical forms for an LR(0) grammar ard an extension of it which is
so capable for an LR(k) grammar. However, the proofs of these state-
ments require several preliminary results.

In the sequel we use #-transition to me=an a transition under a

#-symbol.

Lemma 3.2. Several properties of the CFSM of a CF

grammar G areq as follows: (1) it has a single starting
state, (ii) every state is accessible from the starting
state, (iii) every #-transition is to a unique terminal

state T, such that there are none other than #-transitions
to T and such that there are no transitions from T, and
(iv) the terminal state is accessible from every other
state.

Proof: (i) the machine is deterministic, (ii) the machine
is reduced, (iii) every string accepted by the machine has
exactly one #-symbol and it is the last symbol in the

string; thus, any terminal state must have none other than

#-transitions to it,and it must not have any transitions from
it; there is a unique terminal state because the machine

is reduced, and (iv) the machine is reduced. Q. E. D.

.

l&#
=]

%

—d : 13 #‘[Er]

Figure 3.1, The characteristic FSM of our example grammar
GO: (O)S""E'4u (1)E"3Aa (Z)A"OAO (B)A"’dv
(4) E~b B, (5) B+ ¢ B, (6) B~ d. Although [[#]| appears

at several locations above, it 1s to be taken as the unique

terminal étate.

47

Now we give convenient and, as we shall see presently, meaningful
-1ames to all the states of such an FSM, except for the terminal state.

Definition 3.3 Any state having no #-transitions is called

a read state

Definition 3.4 Any state whose only transition is a

#-transition is called a reduce state.

Definition 3. 5 Any state having two or more transitions

at least one of which is a #-transition, is called an

inadequate state. In the case of a state with more

than one #-transition, we sometimes refer to it

as multiply inadequate.

The lattermost definition motivates the following one.

Definition 3.6 A CFSM with no inadequate states is

said to be adequate, otherwise it is said to inadequate.

i

3.4 Parsers for LR(0) Grammars

Preliminaries. The following lemma is a concise and useful statement

of the LR(k) condition specialized to the case k = 0. It provides a way to
decide if a grammar G is LR(0) by checking properties of its characteristic
strings, rather than of its canonical forms. This is a decided advantage. .

Inforxﬁally, the lemma means that, if the stack string of one characteristic strihg
i

is a prefix of another characteristic string, then G is not LR(0).

e cmand A

B Lemma 3.3 ',j"li.'.ett G be a CF grammar, Lety l#b and

<p2#c'l be any two characteristic strings of G such thatcp1=<p2=<o.

Then G is LR(0) if and only if § = ¢ and q = p.

-48—

Proof: Our proof depends on the fact that by definition of
characteristic strings there correspond o w#p and
goe#q cax_).omcal forms al =qo.B1 and az ==<p032,

3¢
respectively, for some Bl and Bz in VT .

if part: If 6 =€, and q = p, then o, and o, have the

same characteristic string qo#p. Consider the case

o, = o, =a. This implies every canonical form «a

has a unique cha‘.racteristic string. Consider the case

@, f a,. If we were given o alleged to be either a, or a

1 2’
we could determine the characteristic string tp#p of & by
investigating only¢. Since o, and a,can be any canonical forms

as given abéve, we. hévé éhéwn that G is LR(0) by definition.

only if part: If G is LR(0) then, if o, =a, =a, we

must have 6 = ¢ and q = p,since each canonical form
a has a unique characteristic string. If oy #az and

and &, have distinct

if 8 = € and/or q # p, then o, 9

characteristic strings, and given o alleged to be

either a, or ¢, we could not determine the charac-

1 2’

teristic string of o on the basis of ¢ alone. Since this

is a contradiction of the LR(k) definition for k = 0,

we agaih have 0 =¢ and q = p. Q. E. D.

-49-

!
We use this lemma immediately to verify another and still more
useful method for deciding if a grammar is L.3(0).

Theorem 3.4. A CF grammar G is LR'0) if and only

if its CFSM is adequate.

Proof: if part: If the CFSM is adequate and if it
~accepts the string tp#p, then it cannot accept the string
<p6#q for 6 = ¢ and/or q = p. For if it did, the state
acceésed by ¢ would be inadequate, having distinct
transitions under #p and I:O#q. G is therefore LR(0)
by the "if part" of Lemma 3. 3.

only if part: By Lemma 3.2, part (ii), cach state N

of G's CFSM is accessible by some string ¢. Assume
that N has a #p-transition; i.e., that the CFSM accepts
(o#p. If N had another distinct transition, it would be
either to the terminal state or to a state from which the
terminal state is accessible, by Lemma 3. 2; part (iv).
Thus, the machine would also accept (pe#q for some

6 # € and/or q # p. But by the "only if part" of Lemma
3.3, go#p and (pe#q cannot both be characteristic strings,
i.e. the CFSM camiot accept both, unless 6 = ¢ and

q = p. Thus, any such N must have only the #p-transition,

and the CFSM is adequate by definition. Q. E. D.

-50..
?

Thus, we have proved that our example grammar G, is LR(0) by

0
exhibiting its CFSM (Figure 3. 1), which is adequate by inspection.
Parsers. We now prove that for the special case of an 1.R(0)

grammar, the corresponding CFSM is capable of determining the charac-

teristic strings of canonical forms.

Theorem 3. 5. Lef G be an LR(0) grammar and a = o8
be a canonical form of G with characteristic string cp#p.

The stack string ¢ accesses a reduced state of G's

CFSM whose only transition is under #p'
| Proof: The CFS]\;I accepts the string cp#p. Thus,
¢ accesses a state N with a transition under #p.
But since G is LR(0), Theorem 3. 4 implies N is

not an adequate state. Therefore, N must be a

reduce state whose only transition is under #p. Q. E. D.
Parsing algorithm . Thus for an LR(0) grammar G our parsing

algorithm can be restated as follows. Commencihg with a =7, where
n is a string in 1(G), and with the CFSM of G:

(i) Initialize the CFSM and apply it to the current canonical form a.
When the machine enters a reduce state R, it will have read the stack
string¢ of a and will have left tovx;ead the input string 8 of c.

(i) The only transition from R must be under #p for some production

P, so output p.

..51-

(iii) Apply reduction p to the end of ¢ and concatenate the result and

B to form the next canonica! form a.

(v) If the new form is a = £ then stop; otherwisc start at step (i) again.
Note that in this algorithm characteristic strings are determined

without checking the entire string. Thus, in general, when it is applied

to a string n' not in L(G), it goes through several iterations, making
reductions on the left part of 7', but it ultimately aborts when the CI'SM
is applied to a string a' =¢'8' such that¢' accesses a state with no
transition under 1:8'; i.‘e. » When the CFSM stops reading. This must
be the case because there is ho other way for the algorithm to fail, and
because if it were successful, that would imp!y there exists a canonical
parse of n'. (Recall the discussion at the end of Section 2. 3..)
Obviously this parser is neither efficient nor strictly left-to-right
since it starts back at the beginning of the st;ack string at each iteration.

We now solve these two problems by converting our strixlg-nwanipulatioxx

algorithm to a DPDA.

3.5 Conversion of the Parsers to DPDAsg

Our conversion technique is most easily understood if it is presented
in two steps. We first convert our parser to a "stack algorithm"; i. e.,
an algorithm incorporating a pushdown stack. The use of the stack eliminates’

the need for i‘escanning the stack string at each iteration. Then we give a

—52_

?

~echnique forAconverting the CFSM to the finite control of.a l.iPDA, such that
| the DIPDA simulates the stack algorithm.

Cansider an iteration of our parsing algorithm. We begin with sorae
canonical form o' ='p(‘q/S whose character_istic string is pw#p. We apply
the CI'SM to a'. The string pw is read, the CFSM enters a reduce state,
and the characteristic striny is determined. If production p ’is A—~w, we
replace w with A to form @ = pAB8 and start anew.

Now, on the next iteration the first action of the C¥'SM is to read
p again., But the CFSM ‘is deterministic and will therefore go through the
same sequence of states wh:le reading o this time as it did on the previous
step. Thus, had we remembered in the previous step the state N of the
CEFSM immediately after reading p, we could in this step merely start the
CEFSM in N and apply it to £B to get the desired result.

The stack algorithm: To eliminate the rescanning of the stack string

at each iteration we use a pushdown stack. As the CFSM reads a canonical
form we push onto the stack the names of the states entered by the CI°Siul.
Upon determining the characteristic string, say pw#p where production p
is A—-w, we pop the top lwl state-names off the stack and output p. We
then return the CFSM to the state whose name is at the top of the stack

(determining the top name is called looking back) and continue the process

by reading AB. The process ends when the string to be read is simply 8.

53

It should ’be clear, in ljght of the two paragraphs preceding, the
algorithm, that the stack alzorithm is equivalcnt in effect to our previous
algorithm. However, it is inore efficient thuar. the previous one,

We emphasize, for reasons which will become apparent shortly, that
the sequence ot statecnames stored in the stach at a particular time U
represents a path through the CI'SM. The path is the one which would be
taken by the C1'SM were il to be applied to the prefix which is implicitly
the left context at time T. This property is the basis ol several obscervations
which we make below.

Note that at this §tage we have substantially departed from tl_w string-
manipulation notions with which we.began. Our stack algorithm has no
further interactions with symbols after ithas read them. Instead, il interacts
with the state-names of the CFSM. We now move another step away from our
original parsing notions by coverting the stack algorithm plus CI'SM to a
DPDA.

The conversion technique. We consider the CI'SM to be the bLasis from

_ which we construct the finite control of our DFPDA. Since both I'SMs and
finite controls can be represented by transition graphs, the technique can
be described as a piecewise conversion of one'graph into aﬁother.

We think of the CFSM-graph as a skeletal program which we must
convert to a detailed program (finite control) by filling in more instructions.

The basic structure and the read instructions are already in the program,

- 54_

and we must add the stack-rianipulation instructions. Our guide 1o this
programming task is, of course, the stack algorithm.

For each state N of the CFSM there is a state named N in the DPDA,
such that the actions of the DPDA immediatély subsequent to entering state
N are similar to the actions of the stack algor:thm when the CFSM is in
state N. The CI'SM can be converted to the appropriate finite control by
applying to it the three transformations indicated in Figure 3. 2.

Figure 3. 2a indicates a transformation for replacing #-transitions
with ''reduction procedures'. Consider a reduce state R éorr-esponding
to production p, A - w. We replace the #p-traflsition from R with a

transition under "pop |w|, cut p" to a new look-back state R'. There i

one transition from R! unde)'top N''to state M for each pair (N, M) in
the set Q, where Q = {(N, N)| there exists an A-transition from N to M
and a path from N to R which spells out w}.

Note that there is an optimization implicit in this transformation., The
reduction procedure executed by the stack algorithm can be described via the
following sequence: "pop |w|, out p"; look back and see'N; return to the C¥SM
to state N; read A (which causes the CF'SM to enter state M). However, the
reduction procedure foi" thé DPDAis 8imply: ‘'voplw|, out p''; look back and
see N; enter state M. That i.s, the DPDA doeg not manipulaté:rfonterminal

A. The optimization might be described as precomputing part of the reduction

procedure and "wiring the results into the machine',

[

-55=-

w out P
N——— . . vy
top Ng J
, on i top Y1
(exception: 17 p=0 then |[R I)
sut O

RUR 11 G G- 0SS e

(c) -—A---1> = . poof'!
(1.e., delete all transitions under nonterminals.)

Figure 3.2, Transformatlions for converting the CFSM of
an LR(0) grammar G to a DPDA-parser for G.

- 56_

There is one exception’to our first transformation. If p = 0 then we
replace the #0~transit'ion from R with one under '"pop 4, ou‘t 0" to the
terminal state. This follows because the associated production is known
to be of the form S~ } S' 4; i.e., because we know that I} is associaled
with the final reduction. If we analyze first the parsing algorithm at the
end of Section 3.4 and then the stack algorithm, we see that when our DPDA
enters state R, the implicit left context must be } S 1. and therefore,
that there must be four state-names in the stack. Thus, ''pop 4" empties
the stack so that the final configuration of the machine will be correci.

Figure 3. 2b indicates a transformation which causes the DPDA to
push the same state-names on its stack as the stack algorithm does on its,
and at the same time. That is, when the DPDA enters state N, it first
pushes the name N on its stack and then it enters a new state N' where it
continues doing whatever the stack algorighm would do with the CI'SM in
state N.

Figure 3. 2c indicates the deletion of all transitions under nonterminals.
This is possible because of the optimization implicit in Figure 3. 2a and
bec‘é.use the DPDA is assumed to be parsing only trrminal strings. f

In Figure 3.3 we present the result of applying the first and third of

our transformations to the graph of Figure 3.1. We did not apply the second

+ . . .
However, we believe that, if the transitions under nonterminals were
retained, the DPDA could parse any sentential form.

..57..

/ N\
b é] — pop 4
O =1 2 >0 : rt)®
ou J
a op 2 top 4 A
N~ 5 Z;f@} : R
, B
_,...C.—ue 7 FO:—; [|
i ovt L ¢/
% f’g '
\ c K \\f.‘.’_f...:_m
d o &
‘R d \—““:Bi%%J
—— DL
op 2 +top 1

Figure 3.}.

example grammar Goz

pop)

out 6

(3) A~d, (4) E~Db B, (5)B>c B, (6)B~=d.

was derived from Figure 3.1.

The finite control of the DPDA-parser for our
(0) S+ FE4, (1) E~a A, (2) A »c A,

This figure

m

58

4
transformation for two reasons: (1) the figure would have gotten too large
and unreadable, and (2) in our implementation in Chépt‘.er 7 we find it
efficient to implement ''states which push their names on the stack when

: : ' 2 .
they are entered'; i. e., we implement @-EQ—D@ as a single

state. Thus, [N | can be thcught of as an abbreviation for such a state.

2

To illustrate the operation of our machines, we indicate in Table 3-1
the history which results when the DPDA impl.ed by IMigure 3.3 is applied
to the string_- Facd- in L(GO). Note that for perspecuity we indicate at
each step the symbols of what is implicitly the left context. Of course,
those symbols are nof: stored in the stack by the DPDA.

Comments: A read state of a DP.DA is cne all of whose transitians

are ynder symbols. When a DPDA for an LR(O) grammar G is applied to
a string ' not in L(G), it raust abort in a way similar to the way the stack
algorithm aborts. This follows because the DPDA simulates the stack
algorithm. In particular, the machine will ultimately enter a read state N
having no transition under the next symbol to be read. I‘urther, the
corresponding state N of the CFSM is the one in which the CFSM would abort
if the stack algorithm were applied to n'.

The only other seemingly possible time that the DPDA could
abort is when it is in a look-back state, But this possibility is
ruled out, again because the DPDA;__ §@1:1ates the stack algorithm,

The stack algorithm looks back only to decide in which state to

-59_
!

Table 371. The history of grammar G_'s DPDA-parser applied to the

0
string | acd q in L(G-O).

State Stack Iaput String Output
none | -acdA
0 0 FacdA
1 11 acd-
F
4 Or' 1a4 ¢ d A
6 ol_lan;_cs 14
8 0,1 4 ¢ .8 q
Fra “c 7d 3
16 0 l_1al 4,6 1
7 0,1 4 5 7 9
Fra'c A)
. . 1
16 o‘_.-a4 9
[
5 0]'18.4A5 q 1
15 | 0.1 1 »'
F 3
2 o}‘1E2 1 ;
3 0,1 R
He 24 '
0
14

60

restart the CFSM after a reduction. It does not look back to check the

validity of the information ir. the stack since, as noted above, that information

always represents a path through the CI'SM. 'Thus, looks back cannot fail.
We do not formally prove that our DPDA for a given 1.R(0) grammar

G is a correct parser for the sentences of G. Instead, we informally argue

that the D.Plj)/\ is equivalent in effect to the stack algorithm, which in turn

is equivalent to the algorithon at the end of Section 3.4, which in turn

is equivaiant td our canonicil parser that was informally proved to be

correct in Section 2. 3. We implicitly rely on a similar line of reasoning

with respect to our pargers throughout the rernainder of the dissertatior.

3.6 Optimizing the DPDAs

As noted above our DPDAs have already been optimized with respect

to the stack algorithm. By precomputing part of the reduction procedures,
we increase both the time- and space-efficiency of our machines. Less
time is used because the reductions are executed with fewer machine
operations, and less space is used because transitions under nonterminals
are unnecessary. There are three more ways in which the DPDAs can be
optimized and ail three are related to look-back in one respect or another.

(1) TW;VO' look-back states Ri and R'2 are said to be equivalent if and |

only if for each transition from R'I(Ré) under "top N" to state M there is

a similar transition from R:?. (Rl'). Clearly, equivalent look-back states

-61-

may be eliminated in favor of a single state, in the obvious w ay. Note hat
’

the machine of Figure 3.3 has already been optimized in this way: e. g,

7 and 8 huve transitions to the same look-hack state. Clearly, the effec

of this optimization is only to increase space-efliciency.

(2) Another optimiza‘ion arises from the lact that we look-back only
to determine which state to enter after a4 reduction. Thus, il all the
transitions from a given lock-back state R' are to the same state M,
then R' is unnecessary. States 15 and 17 of Figure 3.3 cuan be eliminated
due to this property, increasing both the time- and space-elficiency of the
DPDA. That is, the transitions from states 5 and 10 may by-pass states

: . \
15 and 17, respectively, and go directly to staie 2.

(3) Finally, note that reduce states need not push their names on the

stack since the names are Immediately popped off again without ever being

interrogated (via a "top R"). Thus, the node R| in the lower part of

Figure 3. 2a can be changed to ® , and "pop |w|" must then be changed

!

to "pop lwl - 1",
In fact, in almost all cases only those states in the set X = {N|
there is a transition under "top N" in the machine } need push their names
on the stack; i.e., be represented by square nodes. Of course the
"pop |wl" instructions must be changed accordingly, and thence arise

the only exceptions to the previous statement. If we follow the path from

Nl to R in Figure 3. 2a, starting with a counter set to zero as we leave N1

b

;62;

and increment the counter ty one each time we encounter a statce in the et XN,
we can reduce ''pop |w]" to :'pop n', where n is the value of the counter
after reaching R. However, the same stalement applies to the path from
N2 toR,.. , and Nk to R. Clearly, each pati must imply the same n,
or if this is not the case, some extra states not in N must push their names
so that the paths are 'balanced', in the obvious sense.
In the case of our DFDA of Figure 3. 3, only states 1, 4, 6, 9, and
11 (the ones in the corresponding set X) need push their names. The effcct
of this optimization is, of course, to increase both time- and space-efficiency,
but it also reduces the depth of the stack during execution.

’ L)
Comments. To indicate the significance of these optimizations in a

practical case, we give some statistics relating to our DPDA which is
presented in Chapter 7. The DPDA corresponds to the grammar of a pro-
gramming language which is quite practical, syntactically. The optimized
machine has 172 states. The first optimization reduced the potential number
of look-back states from 82 to 32. The second optimmization further reduced
the number to 22. The third optimization reduced the number of states
pushing their names on the stack from 157 to 61 (again only those states
in the correspoﬁding set X); i. e., it reduced the depth of t'he stack during
execution to about 3/8 of what it would otherwise have been.

We delay any specific estimates of the time-efficiencies of our

machines until we have discussed parsers for '"Simple LR(k)" grammars,

_63—

the subject of Chapter 4. The LR(0) grammars are not very intercsting

for our purposes, so the ef’iciencies of their parsers are also unintere: ting.
However, we find the "Simple LR(1)" grammars, and therefore their
parsers, quite interesting, as we shall see.

We delay discussion of specific space-efficiencices uniil Chapter 7,
where we are concerned with implementation .ssues. Spacc-efficiency
is most easily discussed in terms of an actual implementation.

Regarding implementation issues, the fact that look-back is not for
validation of information on the stack, also implies two possible optimizations
when implementing these parsers. (1) If the implementation is sequential
in nature (as is the one presented below), then, if in all but a few cases
the transitions from a look-back state R' go to a single state M, the ''odd
balls' may be checked first and, if the top of the stack is not one of them,

a default transition to M may be made. (2) If the implementation is para-
llel in nature (e. g., array or matrix look-ups), then 'compatible' look-
back states may profitably be merged into a single state. lor instance,

in Figure 3.3 the four look-back states are ''compatible' and can be merged
to form a single state having transitions under "top 1" to state 2, '"top 4"

to 5, "top 6' to 7, "top 9" to 10, and "top 11" to 12. (The fact that the

first number in each case is one less than the second is a ''red herring'".)
We do not pursue the parallel possibilities in the present dissertation, even

though they have significant potential.

-.64..

Finally, we emphasize that, since all of these ovtimizations concern
H
look-back, they have no effect on error detection. That is, the optimized
DPDA will detect that its input string is not in 1.(Q), ii indeed that is the

case, at the same time relative to the reading of n' as would the unoptimnmized

NPDA.

3.7 Conclusion

2

At this point it is advisable that the reader should reread Section 3. 1
to place the foregoing results into perspective.

We have now developed much "machinery" for converting CFSMs to
optimized DPDA parsers. Of course, our results thus far are useful only
for LR(0) grammars, b:.lt we shall see inChapters 4 and 5 that with the
addition of one more transformation rule, namely one relating to ''look-
ahead", we shall have the "machinery' necessary for covering all 1.R(k)
grammars. The problem of generating parsers for ''Simple LR(k)"
grammars, then, reduces to that of appropriately adding "look-ahead"
information to CFSMs, and that for general LR(k) grammars reduces to

appropriately splitting some states of the CFSMs and then adding "look-

ahead' information.

-6‘5-.-

Chapter 4

PARSERS FOR'SIMPLE LR(k) GRAMMARS

We now investigate a class of grammars which is of substantial
interest from the viewpoint of programming-language design and speci-
fication. The class is a subset of the LR(k) grammars for which parsers
are only slightly more difficult to construct than are parsers for 1.R(0)
grammars. The class includes the LR(0) grammars, and the accompanyving
parser-constructing technique is based on our LR(0) technique.

We begin by discussing the nature of the "inadequacy" of CFSMs for

non-LR(0) grammars and a solution for that 'inadequacy'.
®

4.1 Inadequacy, Look-ahead

In the case of a grammar G which is not LR(0), Lemma 3. 3 implies
that G haé at least one pair of characteristic strings of the form (p#p and
:oe#q such that p # q and/or 6 f €. By definition of characteristic strings,
then, there exist canonical forms o, =<pBl and a, = (pﬁz which have the
characteristic strings (p#p and tpe#q, réspectively.

Assume that we attempt to use G's CFSM to determine the charac-
teristic string of a form a alleged to be either @, or dz. If we applf the
CFSM to o, it reads ¢ é.hd enteré a state having distinct transitions under
#_ and I:G#q (recall the proof of Theorem 3. 4); i.e., the machine enters

an inadequate state. What do we do then?

-66_

1 then we should stop and apply ceduction p to the end of ¢.
!

However, if o = a2 then, il 6 # ¢, we should allow the CIF'SM to continue

reading, whereas if 0 = ¢, we should stop and apply reduction q to the ¢nd

Fa=a

of ¢. The problem is that there is not a unique parsing decision assoc.iated
with an inadequate state, as is the case with a read or reduce state.

Stated another way, the state, and therefore the CFSM, are indeed
"inadequate' for use in determining characteristic strings. However, the
LR(k) definition itself hints at a solution to this inadequacy. By using the
CI'SM we have, in effect, investigated and remembered some pertinent |
features of the left context¢. However, we have not investigated the right

L}
context at all; i. e., we have not looked ahead of the decision point.

I.et us consider an example. There follow ihe productions t of

the characteristic grammar of our example grammar G1 (page 19).

*Note that the production E' -+ E' makes the grammar "infinitely ambiguous'’;
i.e., each sentence has infinitely many canonical parses. This is of no
concern to us here because we are not interested in the ''structural properties'
of the grammar. We are only interested in the strings which the grammar
generates and the CFSM which accepts them,

-67-

(0) ' - }FE4 s , ()T~ Pt
(1) s* - }E' (3) T = Pt
(2) E -°E+T#1 | (9)T' = P

(3) E' =E+ T . (1) T ~ P#,
(4) E' - E! (11) P —-1#5
(5) E' ~T#, (12) P' = (E)#,
(6) E' - T (13) P' = (E'

The corresponding CFSM.,ié illustrated in Figure 4.1. For our purposes
here the only state of interest is the inadequat'e‘ one, state 7

Consider the two canonical forms of G, &, = FP+id and a, = FPtid.
The unique characteristic strings of @, and a, are FP# 4 2nd FPti te,
_respectively, as the reader may easily confirm by canonically deriving the
forms. Clearly, the prefix P, which is common to al and a2 , accesses
state 7 of Gl's CFSM.

Now, if we were given a alleged to be either @, orc,, we could
determine a's characteristic string as follows. First. we apply Gl's CFSM
to a. Then, when the CFSM enters state 7, we look ahead at, but do not let
the CFSM try to read, the next symbol to be read. If the symbol is +, then
the characteristic string is the prefix read by the CFSM thus far (}P)

concatenated with # 4 However, if the symbol. is ¢, we must allow the

CFSM to - ontinue readihg to determine the characteristic string. " (In this

*9183S 9TPUTS ® s9j0usy |[W]i T°€ *anITd 1

UT sB easE (F) ed (9) ‘Twd (§) d~I (4) ‘T 4+dI(€) ‘T+al(2)

-2 (1) ‘v .*f S (0) : 1o JeuwBIZ a7dwexad Ino Jo HSJID YL *‘T*H aAnITd

-~

— v l.ll// 4/

a— ..i./, \
—d I

<4 Jﬁll.r&ll/ . J

.m.ﬁ\ - 2 a—

¢ m$)T

-69_

case the machine would read i and enter state 10, thus determining that

the characteristic string is FPti #5.)
In fact, we show below that no matter what canonical form a of (.}]
we are given, if a prefix ¢ of o accesses state 7, then we can determine

via one symbol look-ahead whether a's characteristic string is w#'i or

vt ... Inparticular, if we look one symbol ahead and see a symbol in

the set {4, +,) }, the characteristic string is (p#4, but if we see one in
the set {11}, itiso?t...

LALR(k) Grammars. The above discussion and example might lead

one to think that perhaps every LR(k) grammar has the property that its
.

sentences can be parsed, in a manner similar to that just illustrated, by
usin'g its CFSM and some look-ahead sets associated with the transitions
from inadequate states. Unfortunately, this is not the case. However, for
purposes of diséussion let us informally define a CF grammar to be LALR(k)
(for look-ahead LR(k)) if and only if it has the above stated property.

Clearly every LALR(k) grammar is LR(k), since the determination
of characteristic strings for such a grammar is baseq on some knowledge
of left c.onteXt and at most k symbols of right context. In fact, the deter-

mination concerns only the equivalence clags of the left context. Further, '

a minimum number of equivalence classes is involved, since we use an FSM i
with a minimum number of states to remember relevant information about

left context.

7 0

We illustrate in Chapter 5 that the LALR(k) grarimars are a subseot
of the LR(k) grammars by giving a grammar for which adding look-ahead
alone is not a sufficient mocdification to the CI'SM; it must have some ol
its states split to make it remember more abcut left context: 1. ¢., to
increase the number of equ:valence classes of lett context.

Unfortunately, again as we shall see in Chapter 5, even the [LALR(K)
grammars cannot be described as a ''simple’ subset, since the computation
of the look-ahead sets for some of those grammars is distinctly nontrivi:l.
Thus, if we are to have a parser-constructing technique which grows in
complexity as it discoyers the complexity of the grammar at hand, we
should not jump from a procedure covering the LR(0) grammars toonc
covering the LALR(k) grammars.

Instead, we consider next a smaller subset of the LR(k) grammars
which are distinguished both by the fact that adding look-ahead to the
corresponding CFSMs is sufficient to render them useful for determining
characteristic strings and that the computation of look-ahead sets is
simple. It turns out, as we shall see in Section 4. 8, that even this

smaller subset is a large and useful set of grammars.

4,2 Simple LR(k) Grammars

Expediency dictates that we define this subset of the LR(k) grammars

in terms of our parser-constructing technique, as we did in the case of

-71..

the LALR(k) grammars. ‘ This is not unreasonable since there seems to be
no good, intuitive definition in terms of canonical forms and parsing decisions,
anyway.

The "simple' function which is central to our definition and which is
useful for computing look-ahead sets is as follows.

Definition 4.1. Let k oe a positive integer and let

G-= (VT, VN, S, P) be a CF grammar, one of whose
nonterminals is A. Then

P‘rif(é) = {(k:B) € V:'; | S="pAB for some 0.8)."

Thus, F?(A) is the set of all terminal strings of length k which may follow A
in a canonical form of G. We are interested in look-ahead sets containing
only terminal strings because our ultimate DPDAs will operate in a strictly
left-to-right marnner and will be applied to nothing but sentences.

As an example we compute F,II,(P) for grammar GI: P appears in the
right parts of two productions. The production T = P ¢ T implies that ¢ is
in F,II,(P). Thé production T~ P implies that all the strings in F1 (T) are
also in F1 (P). E~E+ Tand E- T each imply that the members of F (L)

are also in F> (T) S= FE4 implies that { is in FT(E); E~ E + T adds +:

1bOur set notation is an abbreviation of the usual mathematical notation:
{o€ V'I‘ |S-0AB for some p, B and ¢ = k:8}.

_72—

and P~ (E) adds "')!". Thus, we have determined that 1",11,,(]:’) -t 1,0,
'
and in the process that F,II,-(T) = F,ll,(E) ={4, +)}.
Warshall (War 62) has a fast ''bit-matris technique' which can be
used (Che 67) for computing these sets for k = 1. This is particularly

important since we expect the large majority of the grammuars of interest

to be ""Simple LR(1)", as we indicate in Section 4. 8. ‘!urther, for thosc
few grammars which are not "Simple LR(i)" we expect to have to resor!

to k = 2 or 3, say,with respect to only one or two inadequatc states. Thus,
we have a reasonable step up in complexity from the LR(0) grammars.

We now define the lookk~-ahead sets in terms of which we later defince

4
the ""'Simple LR(k)" grammars.

Definition 4.2 (Recursive on the value of k.) Let G be a CF
grammar and k be a positive integer. There is associated
with each terminal- and #-transition of G's CFSM a simple

k-look-ahead set which is as follows. Ior a #p-transition,

where production p is A - w, the set is FI;,(A). For a
transitior. under the terminal t the set is {t} if k = 1 and
otherwise {tB'e V;‘ the t-transition is to a state N and

B' is in the simple (k-1)-look-ahead set associated with

some transition from N}.

Comments: (1) We do not define look-ahead sets for transitions

under nonterminals because our ultimate DPDAs will have no such transitions,

—73..

and (2) although for ease of jefinition sets are associated with every
terminal- and #-transition of Athe CFSM, we are interested only in the
sets for transitions from inadequate states. |

For the value as an example we illustrate the computation of the
simple 3-look-ahead set for the t-transition in Figure 4.1. The
computation is actually unnecessary for grammar Gl’ since Gl is
"Simple LR(1)".

First, we follow all paths leading from state 7, never taking
transitions under nonterminals, until either a string of length three is
spelled out or until the Eerminal state is reached. The strings spelled out
by all such paths are fi#s, $(i, and t((. Next, the desired set of strings
can be derived from these strings as follows. First, each string which
contains no #-symbol is in the desired set. Secoﬂd, for each string of the
form o'll'p, where production p is A -wand |[o| = n, every string which can
be formed by concatenating ¢ with a member of Fl,;,-n(A) is in the desired
set. In ;aur special cé.se the latter means ti concatenated with the members
of F,;,(P). Thus, the simple 3-look-ahead set for the t-transition is
{ K, ®(tit, tid, ti+ $i)).

Finally we come to our main-definition.

Definition 4. 3. Let k be a positive integer. A CF grammar

G is Simple LR(k), abbreviated SLR(k) if and only if for each

-74—

inadequate state N (if any) of G's CFSM the simple k-look-
ahead sets associated with the (terminal- and #-) transitions
from N are mutually disjoint. G is SLR(0) if and only it it

is LR(0).

Our example grammar G1 is SLR(1). Proof: The simple 1-look-
ahead set associated with the #-transition of its CFSM is {t* } and that
of the #4-transition is F,i,(T) ={4, +,)}, as we have seen. Obviously,
these sets are disjoint.

4.3 SLRKFSMs

We now turn to the question of how to explicitly encode look-ahead
sets into CFSMs. We desire an expiicit encocing for two reasons: (1)
it facilitates proofs that ""C}*SMs-plus-look-ahead sets' can be used to
determine characteristic strings, and (2) it facilitates our discussion of a
technique for conveiting those machines to DPDAs.

The encoding is accomplished by adding to each CFSM transitions
under ''generalized symbols'. if R is a look-ahead set associated with

a given X-transition (X not a nonterminal) of the CFSM, then xR is a

generalized symbol associated with the X-transition and the set R.

 Definition 4.4. Let G be an SLR(k) grammar. We construct

G's SLRKFSM from its CFSM as follows. For each inadequate

state N (if any) of the CFSM and for each X-transition (X not a

S

—75-

nonterminal) from N having associated with it the simple k-
look-ahead set R, we add a transition from N, under the

generalized symbol XR, to the terminal state.

Clearly an SLRKFSM :8 a reduced, deterministic FSM. It accepts
the characteristic strings of G plus the strings in the set {q)XR | ¢ accesses
an inadequate state N of G's CFSM and N has an X-transition (X not a
nonterminal) with which is associated the simple k-look-ahead set R},

As in the case of CFSMs we use the terms "read", "rgduce", and
"inadequate' with regard to states of SLRKFSMs, in the obvious way.
However, fof emphasisswe somefi:ﬁes refer to the'inadequate states as
"modified-inadequate states'.'.

In the case of grammar Gl’ its SLR1FSM is the graph in Figure 4.1

with state 7 replaced by the following:

|

-76_

In the sequel we somelimes use an abbreviated notation for moditied-

inadequate states. For instance, the above can be abbreviated:

{'{J+:)}
#4

~r—o

{43

4 7

We emphasize that this is only an abbreviation. Our theorems below are

easier to prove in terms of the former notation than the latter.

The modified stack-algorithmf In a manner similar to the way in
which we developed DP;‘.)A-parsers for LR(0) grammars, we first state a
stack-algorithm which uses an SLRkFSM to determine characteristic strings,
and then we convert the SLRkFSM to a DPDA which simulates the stack-
algorithm. Ou.r stack-algorithm here is simply our previous one modified
to "look ahead' at the appropriate times. We present the algorithm nexi
and prove that it works correctly afterward.

Commencing with a string @ =7, where 7 is in 1(G), with an empty
stack, and with G's SLRkFSM in its starting state:

(i) - Apply th,evS'oLRkFSM to a; store on the stack the names of the states
enteréd by the machine as it reads.

(ii) If, after reading some prefix ¢ of @ such that o =g, the machine

efiters a reduce or inadequate state N, then

77

(a) if N is a reduce state whose only transition is under #p,
where production p is A = w, then output‘p, pop the top |w|
names off the stack', return the SLRKFSM to the state whose
nz=.fne is at the top of the stack, set a = AB, and go to step (iii).

(b) if N is an inadequite state with (among others) transitions

Rl R2 Rn
under the generalized symbols X1 . X2) e e Xn , compare

the strings in the sets Rl' R , Rn with k:8. Exactly one

R
match will occur, say with a string in Rj.
(1) 1f Xi is a #-symbol, execute step (ii), part (a),
as if N were a.: reduce state whose oaly transition is
under Xi'
(2) However if Xi is a terminal §ymbol, treat N as if
it were aread state (i. e., as if it had only its
transitions under symbols). continue the reading
apd name-storing processes, and rgturn to step (ii).
(iii) If a = S then stop; otherwise, return to step (i).
Proof .. | V‘Since the present stack-algorithm is like our previous one
except for the addjtio_n of a procedure relatéd to inadeqﬁate statgs, we need
only prove that it operates correctly when @he SLRkFSM enters such é state.
Infdrmally, ‘we prove in Ti:gorem:4. 1 that, if the SLRkFSM reads to the‘ end
of a canonical form's stack string; the algbrithm ﬁ'ill correctly determine the
charac;tefistié stripgi Tho;;ji. in Theorem 4. 2 we prove that in reading the |

stack string the algq/x:;thm wﬂl not make an incorrect choice before reaching

o

theend =2 = =

_78-

. . ,
Theorem 4.1 Let G be an SLR(k) grammar and « =B be a

canonical form of G with characteristic string ¢p#p. Then the
stack string ¢ of a accesses a state of G's SLRkFSM which is
either (1) a reduce state whose only transition is under #p, or

(2) a (modified-inadequate) state with traasitions under the
R R R

1 X 2 ,Xnn for some n > 2,

1 * Rg e

such that k:8 is in R, but not in Rj for 1<i# j<n, and such

generalized symbols, X

that X, = #p.

Proof: Our proof depends upon the similarity of the CFSM and
the SLRKFSM of G. * There are only two cases since ¢ must
access either a reducec state or an inadequate state of the CFSM.
(1) Clearly, from the trivial nature of the modification required
to form the SLRkFSM from the CFSM, if ¢ accesses a reduce
state of the CFSM, then it also accesses a reduce state of the
SLRkFSM. (2) Similarly, if ¢ accesses an inadequate state N
of the CFSM, it mﬁ"st access a state of the SLRKkFSM which is
similar to N except' for the extra transitions under generalized
symbols. F‘urthezémore, k:8 may appear in at most one of the

1
they are mutually disjoint sets. k:8 must appear in Ri such

-sets R ,'Rz; --+» R, since by definition of an SLR(k) grammar

that X # because, if production p is A -w,

R, = FX (A) = {k.ﬁlS-’ pAB] by definition, and the latter

includes {k,B l s~ pwh}. . . ' Q.E.D.

o ,"

_79-

Theorem 4.2. Let G be' an SLR(k) grammar and a =¢@68 be a

canonical form of G with characteristic string qae#p such that

% .
0 is in VT but 6 # €. Then, if ¢ accesses an inadequate state
N of G's SLRkFSM having transitions uncer the generalized

R R R

L X2 2, e ,'Xnn for some n> 2, the string

k:68 is in R, but not in Rj for 1< i # j< n, such that X, = 1:8.

symbols, X

Proof: k:08 may appear in ‘at most one of the sets Rl’ R2, cee Rn’
since the sets are mutually disjoint. k:08 must appear in Ri
suchvthat Xi = 1:6 for the following reasons. Since both G's
SLRkFSM and its CFSM accept(pe#p. there is a path leading .
from N (of both) which spells out 6#p. Il is easy to see from

the definition of a simple k-look-ahead set R for a terminal
transition (in particular, one under 1:6) that if 16! > k then

k:@ is in R, whereas if 18] = n < k then every string formed

by concatenating 8 with a member of Fl,;,-n(A) is in R, where
production p is A ~ w." The latter includes k:88 by definition

i

of Fl,;,(A). Q. E. D.

4.4 Minimizing Look-ahead

We noted in Chapter 2 (page 31) that the smallest value of k for which
a grammar is LR(k) is limitéd by the worst case of necessary look-ahead.

A similar statement is true regarding the SLR(k) condition. In fact, we

-80_

:
could have defined SLR(k) grammars in the foilowing alternate way, We
could have first defined a grammar G to be ""SLR(k) with respect to'' a
given inadequate state of its CFSM, in the obvious way. Then we could
have defined G to be SLR(k) if and only if it is "'SLR(k) with respect to'"
each of its CFSM's inadequate states.

This alternate definition emphasizes the fact that the look-ahead
sets for the transitions from a given state N may be computed for the
smallest value of k such that the sets are mutually disjoint; In effect,
we recognized this fact to a limited extent in Theorem 4.1; i.e., we
recognized that every grammar is ""SLR(0) with respect to' each reduce
state of its CFSM. Only notational and expositional difficulties prevented
us from incorporating this fact into our definition of SLRkFSMs and
Theorems 4.1 and 4. 2, rather than belatedly bringing it ﬁp now,

~ Fine tuning. In some cases not only may the amount of look-ahead
required be different for distinct states, but even a single state may have
strings of various lengths in its look-ahead sets. Consider, for instance,
a state N having only the two look-ahead sets, {ab, cd}, and {ae}. Clearly,
if the SLRKFSM is in N and the next symbol to be read is ¢, we need not
investigate the second symbol to make the associate parsing décision.
That is, the first set above may Se changed to {ab, c}.

In general, look-ahead sets may have the lengths of their strings

minimized as follows. Consider a state N with look-ahead sets R , R,,...R

PO
-

|

-81-

H

for some n> 2. We change each set Ri by renxoving from the right end
of each string in Ri the maximum number of synibols such that the result
is not a prefix of a string in Rj' for1<it j<n. Clearly, the sets remain
mutually disjoint after these changevs.

Note that this optimization is not appliciible to simple 1-look-ahead

sets, since ¢ is a prefix of every string.

4.5 T"e Conversion of SLRkFSMs to DPDAs

It should be clear from the modified stack-algorithm that the
transformations implied l:y Figure 3. 2 remain valid ones, as regards the
read and reduce states of our SLRkFSMs. Furthermore, the; com pﬁtation
of look-back states implied by Figure 3. 2a is also valid for the #-transitions
from inadequate states. Thus, all we need now is one more transformation

rule; i. e., one for mapping modified-inadequate states, whose associated

look-back states have already beén computed, info look-ahead statesf of
a DPDA. The appropriate transfgrmation is implied by Figure 4.2, and
the conversion technique goes as follows.

First, we ap.piy the transformation implied by Figure 3. 2a to each

reduce state of the SLRKFSM. Also, for each inadequate state 1 of the

1~Again we are abusing strict automata theory by allowing our DPDAs to
"look ahead'. We do so for the sake of simplicity and practicality. It is
well known (Knu 65) that DPDAs without "'look ahead' can perform the same
computatzons as ours.

\ P°P lwp | C. : \ RP,., i pop lwﬁ‘l ;
out P : k @ ou}—_P:D@::‘

M
\ P c[[j
E #an
k Pn n@'
\ tf‘i a]
. t:Eh :

Figure 4,2, The transformation for converting modified-

inadequate states to 1ook-ahead states, This transformation

Plus those implied by Figure 3.2 are‘ail that are needed for
‘_convortlngf@gﬁuiﬁﬁgé}iatc ?SM to a DPDA-parse; for any LA(k) |,

STammar ., ' ! ‘

-83_

!

machine and for.eé.’ch #-tranéition T from I, we apply the former transformation
0 I, as if it were a reduce state whose only transition is T. The result
after this first step is, of course, a machine with "inadequate states' of
the form indicated in t.he left part of Figure 4. %, where if n = 1 then
m>1, butifn>1 thenm > 0.
In the ase of the il;xadequate state 7 of Gl's SLRkFSM (illustrated

in Section 4. 3), the result is as follows:

A 1 :
y 7. o:t:4 15\\&
. N gl
' {——D[_—-\\&
$#,{1.+%
k——?_.___qu
{4}
__f__b['_]

Next; we apply to each inadequate state I resulting from the first step
the transformation implicit in Figure 4. 2. The latter indicates a conversion
to a look-aimea‘d state I of the DPDA. The intent, of course, is that when
the DPDA is in state I it should simulate the modified stack-algorithm when
the SLRKFSM is in state I.(recall step (ii) of the algorithm).

The result of applyin?g' this second step to state 7 illustrated above is

as follows.

_84-

: t4, +) pop 1 :iz
',/77 1>®out 4 .

Finally, we apply the ransformations implied by Figures 3.2b and
3.9¢ to the machine, and we have the desired "DPDA with look-ahead",
except for optimizations.

Optimizations. Since the optimizations discussed in Section 3. 6

gpplied only to look-ba'ck, which is independent of look-ahead, each of
those optimizations is also applicable to "DPDAs with look-ahead". Only
one more optimization presents itself, and it is applicabie only to (the very
important case of) 1-symbol look-ahead states. We illustrate this final
optimization in conjunction with the presentation in Figure 4.3 of the fully
optimized DPDA-parser for grammar Gl'

For present purposes consider only state 7. The intent is that, when
the DPDA enters state 7, it should look-ahead as usual and, if the next symbol
is }, +, or), it should enter state 16 next, as usual;however if the symbol is
% , it should move its read head to the right one place and then enter state 8.
That is, the state is sort of a combination "look-ahead read-state', and it
eliminates the inefficiency of investigating the # twice. We allow such states

because it is easy to implement them, as we show in Chapter 7.

Figure 4.3, The fully optimized DPDA-parser for grammar G

This figure was derived from Figure 4.1, The dashed arrows afe K

1.

not intended as part of the machine. Recall that when the DPDA

enters a state represented by a square, it pushes the name of

that stat§;9n5i€; staok,

-

-86_

'

The dashed arrows in Figure 4.3 indicate the transitions under
uonterminals which were removed from Gl's ¢ ,R1FSM in forming the
‘JPDA. That is, they are not to be taken as part of tﬁe DPDA. We include
-hem to facilitate future discussions and to aid the thoroughly interested
reader in reviéwing the transformation rules as they apply to this example.

Recall that when the DPDA enters a state represented by a square,

it pushes the name of the state on the stack.

4.6 Time-Efficiency

From the automatd-theoretic viewpoint a parser is simply a translator;
it is a machine which translﬁtes strings into purses; i. e., strings of symbols
into strings of production numbers. We adopt this viewpoint for the purpose
of discussing the time-efficiency of our parsers.

We informally define time-efficiency in terms of an "ideal machine'’.
The latter is assumed to be able to translate a string of n symbols into a
string of m symbols with only 2(n+m) "machine operations'’ of approximately
equal complexity (execution time); i. e., it takes n reads, m outpuis, and
n+m accompanying state-changes. By the "time-efficiency' of a DPDA,
then,we mean'the number of machine operations required by the ideal machine
to perform a givén translatiqn divided by the number required by the DPDA
to perform the same translation.

In Table 4-1 we illustrate the history which results when the DPDA

of Figure 4.3 is applied to the string 7, = Fiti+id in L(G,). Counting

3 -

-87_

?

Table 4-1. The history which results when the DPDA of Figure 4.3 is
applied to the string 7, = Fidi+id.

Machine Operations

o)
@ A
2%
@ Q. L,
t { =}
T O Y
State Stack Input Strin Output 8568853
State Stack g Qutput = &L 338
0 Fiti+idq x
1 1 iti+id X X
10 1 pi+i A 5 ' X
7 1 ti+i 4 X
8 18 i+id X X
10 18 vo+id 5 X
7 18 +i4 | X
16 18 +i4 4 X
15 18 +id , X x
9 1 +id 3 X
15 1 +ij X
6 1 +1i : 2 X
17 1 +id _ x
2 1 +i4 ' - . X
4 14 id X X
10 14 -1 5 X
7 14 4 X
16 14 q 4 X
15 14 1 X
5 1 q 1 X X
17 1 1 X
2 1 9 X
3 1 0 X X
14
23 state changes Totals 73 3259
. . - 2(7+9) ‘ = 32
Time eff1c1ency " 23+7+43+3+2+5+9 - 82 = 62%

..88..

'
all the pushes, pops, reads, outputs, and state-changes executed by the
machine, it requires 52 machine operations to map 4 into its canonical
parse. Since lnI! = 7 and since there are nine symbols (production
numbers) in the parse, the ideal machine could have performed the trans-
lation in 2(7 +9) = 32 machine operation. Thus, the time-efficiency of
the DPDA is 32/52 or about 62% for Ui

if a similar table is constructed for the unoptimized version of Gl's
DPDA parser, we find that it takes 79 machine operatiohs; i.e., for 171
its time-efficiency is 3%/79 or about 41%. Thus, the optimized DPDA is

1.5 times as fast as the uncptimized one.

A general case. Let 1s consider the time-efficiency for a more

general case. In particular, let us compute the worst-case time-efficiency
for the DPDA-parser of some SLR(1) gra.nimar, when it is applied to a
string of n symbols having a canonical parse ofm symbols. We merely
analyze the behavior of thg- DPDA (assumed to be similar to the one of
Figure 4. 3) and determine the maximum number of machine operations
which can be associated with each of the n+m symbols.

At wqrst we may need a push, a read, and a state-change tor each
of the n input symbols, since we may need to push the name of each read
and look -ahead state. For each of the m output symbols (i. e., for each
reduction), we may need a push, a look-ahead gnd a state-change, then a
pop, an output and a .é_tate-change, and finally a look;back and a state-

change.

-89..

Thus, the DPLA could take as many as %n + 7Tm machine operations
to perform the translation. The time-efficien:y in the worst case, therefore,

is 2(n+m)/(3n+7m), which is a minimum of £9% when m >> n.

4.7 Error Detection

In the present sectior. we have three points to maké regarding the
actions of a DPDA-parser for an SLR(k) grammar G when the DPDA is
applied to a string 7' not in L(G):

(1) The machine must ultimately detect the "error'.

(2) It may detect the er;'or either while reading or while looking ahead.

(3) It may not detect the error as soon as it would have had its look-ahead
sets been computed by using functions complex enough to cover the ILALR(k)
or general LR(k) grammars,

(1) The first point follows from the facts that th’e‘ DPDA ultimately
simulates our canonical parser of Chapter 2 and that there exists no
canonical parse for n'. (Recall the argument at the end of Section 3. 6.)

(2) Our DPDAs without look-ahead had only one way in which to
abort, namely by entering a read state with no transition under the next
symbol to be regd.' Clearly, by adding look-ahead states we add another
possibility. The machine may enter a look-ahead state N such that néme |
of the strings in the look-ahead sets of the transitidns from N match the

beginning of the string remaining to be read.

? "90'

(3) We illustrate our third point by example. Consider an SLRKIFSM
with two inadequate states Ny and N,,, each having a #p-transition, where
production p is A~w. Fori=1,2 let RC, = {B e V; lpB is a canonical
form with characteristic string (,o#p such that ¢ accesses state Ni}' Assume
that RC1 and RC2 are disjoint sets. Then if ¢, accesses N1 and ﬁg is in
RC2, <p182 is not a canonical form. And yet, if our DPDA is in state N1
with implicit left context @, and right context 32’ it will not detect the
error immediatelyv via look-ahead. This follows because the simple
k-look-ahead set corresi:onding to the #p"transition contains k:Bz, by
definition.

Clearly, if the look-ahead sets of the #p-transitions from N, and N,
are reduced to Ri = {kPB IBG RCi} for i = 1,2, respectively, then the DPDA
continues to correctly parse sentences in L(G). However, after this change,
it will detect the above error via look-ahead when it is in state Nl’ since
k:ﬁ2 is not in Rl'
What we haved :csz:’vered ig that, . if the look-ahead sets for a state N
are computed independently of the left contexts which access N, as is the
case when we use F};, the sets sometimes contain strings which cannot
begin a legitimate right context when the machine is in state N. Thus, in
a sense, Fl,;, is not always "'restrictive' enough. Note, however, that this

situation may obtain only if there is more than one transition in the machine

_91-

under some #-symbol. (In our practical example in Chapter 7 only 2 of

82 productions have more than one corresponding #-transition in the CI'SM.)
Our example also illuminates the difference between LALR(k) grammars

and SLR(k) grammars. If a grammar G is LALR(k) but not SLR(k) for a

particular value of k, then some state of G's CFSM must have overlapping

simple k-look-ahead sets. And yet, if those sets are reduced by considering

corresponding left contexts, they become mutually disjoint. 1ln Chapter 5

our first example illustrates such a grammar, and we find that in general

the functions necessary fér computing look-ahead sets for LALR(k) grammars

are the same complex functions whick are necessary for general 1.R(k)

grammars.

4.8 On the Extent of the SLR(k) Grammars

We should like to give the reader some intuitive feel for the usefulness
and the extent of the SLR(k) 'gra!nmars; that is, a feel for which grammars
are SLR(k) and which are not. But alas, given our conceptual framework
there seems to be no good intuitive explanation, so we resort to discussing
some inclusion relations between SLR(k) and other well-known grammars.

In the Appendix'we show that the "weak precedence' grammars of
Ichbiah and Morse {(I&#M 69) are included in the SLR(1) grammars. Since
those authors have shown that the ''simple precedence" gfa.mmars of
Wirth and Weber (W&W 66) are a subset of the "'weak precedence'' ones,

it follows that the "simple precedence' grammars are SLR(1). lurther,

_92..

t is casy to see fi‘gm' the proofs in the Appendix that, il the "precedence
relations' were extended to include k symbols of right context, the
resulting "right;extended weak-precedence' grammars would also be
SLR(k). This leads us to suspect that the "(1,) precedence' grammars
of Wirth and Weber (W&W 6¢), the '(0, k) bounded contextf” grammars
of (F&G 68), and the "ICOR (0, k)'' grammars of Lyﬁch (Lyn 68) are all
SLR(k).

But these inclusions really undersell the SLR(k) grammars, for
the latter include many graramars which are in none of the above classes
or their generalizations. The_y include all LFE(0) grammars and many
other LR(k) grammars for which arbitrary left context is necessary to
make parsing decisions. Our example grammar G0 is a case in point,
as we noted in Section 2. 4.

The ability of the CFSM for a given grammar to remember some
left context which may be arbitrarily far to the left seems to arise because
the confusion between contexts, which may obtain wfxen two productions may
be applicable to the same part of a string, is minimized in the CIF'SM in
the following sense. If there exists an inadequate state N in the CI'SM,
then no matter how much left context we .investigate we will not be able

to make the parsing decision associated with N. The former statement

Y rhese grammérs should really have been called "(0, k) bounded right
context" (Flo 64).

93

!
8 implied by Lemma 3. 3: if ¢ accesses N, then there exist characteristic

strings tp#p and ws#q and corresponding canonical forms.

-94-

Chapter 5

PARSERS FOR GENERAL LR(k) GRAMMARS

5.1 Objective

In the present chapt:er we contirue the development of our parser-
constructing technique. Howeirer, belore we proceed we (1) place the
foregoing results into perspective by reviewing them from the viewpoint
of a TWS attempting to construct a parser for a given grammar, (2) preview
the results of the present chapter, and (3) disclaim any' interest in these
results from the practjcal viewpoint.

Review. Assume that we are given a C¥ grammar G and that we are
to construct a parser for it. We first assume that G is I.LR(0) and construct
its CFSM. If .the CFSM is adequate, G is LR(C) so we convert its CFSM to
a DPDA.and are finished. If, however, the CFSM is inadequate, we deter-
mine if G is SLR(1) by computing the simple 1-look-ahead sets for the
transitions from the inadequate states. If the sets for each inadequate state
are mutually disjoint, G is SLR(1) so we convert the CFSM to an SI R1IFSM
and then convert the latter to a DPDA with one-symbol look-ahead. As noted
above, we expect ﬁone of the grammars of interest to be LR(0), but most of
them to be SLR(1). |

Of course, it may be that there are one or more inadeqﬁate states
which have overlapping, sjmp’le 1-look-ahead sets, in which case our work

is not done. For tbe'transvitions from each such state we com pute the simple

-
-

-94—

!

Chapter 5

PARSERS FOR GENERAL LR(k) GRAMMARS

5.1 Objective

In the present chapfer we continue the development of our parser-
constructing techhiqué. Howe?er, before we proceed we (1) place the
foregoing results into perspective by reviewing them from the viewpoint
of a TWS attempting to construct a parser for a given grammar, (2)preview
the results of the present chapter, and (3) disclaim a.nyl interest in these
results from the practjcal viewpoint.

Review. Assume that we are given a C¥ grammar G and that we are
to construct a parser for it. We first assume that G is I.LR(0) and construct
its CFSM. If the CFSM is adequate, G is LR(0) so we convert its CFSM (o
a DPDA'and are finished, If, however, the CFSM is inadequate, we deter-
mine if G is SLR(1) by computing the simple 1-look-ahead sets for the
transitions from the inadequate states. If the sets for each inadequate state
are mutually disjoint, G is SLR(1) so we convert the CFSM to an SI.RI I'SM
and then convert the latter to a DPDA with one-symbol look-ahead. As noted
above, we expect nbne of the grammars of interest to be LR(0), but most of
them to be SLR(1). |

Of course, it may be that there are one or more inadequate states
which have overlapping, imp'le l-lool'(-ahead sets, in which case our work

is not done. For the transitions from each such state we compute the simple

-

.-95..

k-look-ahead sets for séme'values of k> 1. S:nce the time-efficiency o
our ultimate parser will go down as k goes up (because look-ahead means
multiple interrogation of some symbols), we shall undoubtedly be interested
in only a restricte& range o. values of k, probably k < 3 or so. If it turns
out that the simple k-look-ahead sets are mutually disjoint, i.e. thatG
is SLR(k) for an acceptable value of k, then we can construct a DPDA-
parser which has perhaps some one-symbol, and one or more k-symbol,
look-ahead states.

In some cases, of course, we shall find that G is not SL.R (k) for
an acceptable k. However, there remains the possibility that G is LR(k)
for such a k. For instance, our first example below is a grammar which is
not SLR(k) for any k, but whiéh_ig_ LR(1). In such a case we need more
complex methods,first for determining if a grammar is LLR(k) for a given
k and second for constructing a corresponding parser if the former is the
case.

Preview. These more complex methods are the subjects of the
present chapter. In soﬁe cases (more of the LALR(k) grammars) we
find that our modification of the CFSM is the same as for an SLR(k)
grammar, but that the look-ahead sets are more difficult to compute then
for the latter. In other cases, however, we find that some states must
be split into several copies so the CFSM will remember more left context

and so we can check corresponding right contexts to determine characteristic

-96-

. '
strings. The determination of the appropriate state-splitting and

corresponding look-ahead requires techniques vhich are substantially
more complex, computationally, .than'bur previous methods.

We intrdduce these notions by defining «# set of grammars via
some ''sets of bounded-context pairs' and by showing how to extend our
techniques to cover those of the latter grammars which are not S1.R(k).
The reasons for state-splitting corne out rather naturally in the discussion,

which leads eventually to a method for covering all LR(k) grammars.

Impracticality, ‘The reader should keep in mind throughout this
chapter that we expect ‘to have to resort to these techniques only rarely, '
if at all. Tﬁis expectation stems primarily from two sources. First,
the grammars which were shown in Section 4. 8 to be included in the SLR(k)
grammars have been found to be quite useful for describing much of the
syntax of many prograrnming languages (F&G 62). The prime example
is, of course EULER (W&W 66). Second, our own experience with languages,
particularly with the language whose grammar and translator are presented
in Chapter 7, has been especially encouraging in this respect. The latter
grammar generates an extrerﬁely powerful, useful, apd readable language
with many'construc.ts in common with lang‘dages‘ like FORTRAN, ALGOL,

EULER, PL/I, etc. The grammar was designed to be unambiguous, small,

concise, and useful as a syntactical reference for programmers (i.e., for

-97-

1
the determination of operator precedences, as:ociativities, etc.), but

it was not designed with our parser-constructing techniques in mind.
Indeed, the techniques did not exist when the grammar was designed.
And yet, the gra.mnllar turns out to be SLR(1).

Thus, the material in this chapter is here more because of a desire
for completeness and for a fuller understanding of the ILR(k) grammars than
for its expected usefulness in practice. Consequently, we do not in this
chapter concern ourselves particularly with the efficiencies of the techniques

discussed. We are primarily interested in getting across the ideas.

5. 2 "Bounded-Context" Examples

In this sectioﬁ we analyze two grammars which are not SLR(k). The
first is an LALR(k) grammar for which the look-ahead sets can be determined
by using a function which computes 'bounded-context pairs'. The second
grammar ié not LALR(k), but it is LR(k); i. e., its CFSM needs both state-
splitting and look-ahead. The above mentioned function is found to be
useful in tﬁe second case, also.

The two examples motivate the definition of a set grammars which
we call "L(m)R(k)", and a parser-constructing technique to cover them.
These grammars include, and their definition has similarities with the
. definition of, the "bounded right context' grammars (Flo 64); i. e., those

grammars whose sentences can be parsed during a deterministic, left-to-

-98-

i
H ?

right scan with each parsing decision being made on the basis of the knowvledge
of a bounded amount of context surrounding the decision point.

Example 1. Consider the CFSM shown in Figure 5.1. It corresponds to

grammar G, which contains the following productions

2
(0) s - }FEH (3) E-bAc
(1) E—~aAd (4) '-bed
(2) E-aec (5) A-e

There are two inadequate states in the CIFSM, states 7 and 12, both invclving
production 5 whose left part is A. Since G2 generates only four strings, namely
Faedd, Faecd, Fbecd, and Fbed, it is trivial to compute the appropriate
simple k-look-ahead sets. In particular, for any k> 1, Fk(A) = {cd,dd},

is the set for the #s-tra.n»sitions; that for the c-transition from state 7 is

{cqd}; i.e., c followed by the only member of Fk-l(E) = {4} and that for

the d-transition from state 12 is {d4}; i.e., d followed by the only member
of'Fk-l(E). We reprééent this information, as we did in Chapter 4, using
generalized symbols: |

fe4) | Sad)

. c ‘)
. 7 _—————ﬂ. * o o “ e e 12 — 13

4 Lot adl and g Lediad)
5 ‘ 5
& NI

/"—“\D
n

i

!
*

V

Figure 5.1. The CFSM for grammar Gz'

-100-

9 is not SLR(k) for any k since the si:nple k-look-ahecad sets

have strings in common for both the inadequate stales regardless of the

Clearly, G

value of k.
However, because the grammar generates only four strings, we
can easily determine by exhaustive tests that the look-ahead sets can be

reduced to those indicated as follows; i.e., that G, is LALR(1).

)
~

Clc} gtd
17— § PR . .. 12,___.._-—--————1:-41.

Clearly, a parser constructed using these look-ahead sets is a correct
one for this grammar. But how do we compute these look-ahead sets in
general?
For G2 and many other grammars we can use the function ka which
is defined below and whose value is a set of ordered pairs of left and right
contexts. The definition requires the following two preliminary definitions:
(1) if ¢ is a string, thenp:m denotes the last m symbols of ¢ if lo! > m and
¢ otherwise, and (2) [‘(V*, V;)} denotes the set of pairs whose first components[

% b5
are in V and whose seconds are in»VT.

-101-

Definition 5.1 Let G = (V'r’ V' 5 PlbeacCr

grammar and m and k be positive integers. Then
m k' s B % -
C gtp)= {pw:m,k:B) € {(V',V,)}]S~"R pA8 and

procduction p is A - w}.
Each pair in this set consisis of the last m syribols of a stack string
© and the first k symbols of a corresponding input string 8, respectively,
such that the canonical form o =¢B has a characteristic string go#p. In
other words, we have the ordered pairs of left and right contexts which
may surround a point in*a canonical form where, during a deterministic,
left-ro-right parsing, we should decide to make a reduction using production
p‘

m_k . Voes " "

The ~ C. (#p) sets play a part in the definition of "L{(m)R(k)
grammars similar to that played by the Fk(A) sets in the definition of
SLR(k). The former sets can be computed in a way resembling the manner

in which the Fk(A) sets are computed (recall the example on page 71), except

that, of course, corresponding left and right contexts must be tallied.

The former sets are certainly more difficult to compute than the latter,
but their computation is a reasonable next-step in our parser-generating
procedure.

In the case of grammar G2 we have

201(#5) = {(ae, d), (be, ¢)}

-102-

and we can observe that any s’t'ring ending in ae will not access state 12,
therefore the look-ahead set for the # 5-transition need not contain the
string vd-l . Similarly, the look-ahead set for the #s'transition from state
7 need not contain cq. ' 1t we minimize the lengths of the strings in the

look-ahead sets which result after these deletions, we arrive at the same

sets deduced above.

Example 2. Our second grammar G3 is rather similar to Gz.

GS's productions follow, and its CFSM is illustrated in Figure 5. 2.

(0) s - FES (4) E~bBd
(1) E~aAd (5) A~e
(2) E-aBc (6) B~ e

(3) E~-bAc

Again we have a grammar which is not SLR(k), since
Fk(A) ={cq, di} = Fk(B) for any k> 1. In this case, however, the
conflict is hot as easily removed as was that of the previous case. If we
compute the context pairs, we get

2Cl(#5) . {(ae, d), (be, c)} and

2cliby) = [(ae, A, (ve,).

TThis example illustrates that the simple k-look-ahead sets may contain some
strings which cannot appear as the prefix of the input string 8 of a canonical
form a = @B such thaty accesses the state in question; i. e., that the set F{A)
is not sufficiently restrictive. In the current case this ''causes'' the grammar
not to be SLR(k). In other cases it may only cause the parser to be slower
(because it checks too many poasibilities for look-ahead) and to detect some ev rors
somewhat later than it otherwise would. Recall the discussion in Section 4. 7.

-103-

Figure 9.2, The CFSM for grammar 63.

¥——¢>B 13 —fl——-w 14—
_i)

1 P23 4
NI s B I B B - O
\ ,__Bf_..,_D L .JI8] il [@

. _C__D) -—-fi&v

[_#69
\;bzqﬁ.A T~ o Fo i
o

-104-

L4
Analyzing this case as before we see that these context pairs imply no

restrictions on the look-ahead sets, so we are left with the overlap:

{C'|; d‘”
.. ETT’E“'_DE
—
6

NULR

There is, however; a simple solution in this case, too. Note
“hat we could make the garsing decision associated with state 9 by looking
at both our left and right contexts after arriving there. If w-e look to our
teft and see "ae" then, if we look to our right and see d, #5 is the correct

‘ransition, but if we see ¢, #_ is correct. On the other hand, if we see "be"

6
"0 our left then the correspondences are d with #6 and c with #5.

Although we could build a parser for G3 which decides whether to
reduce using production 5 or 6 by looking at both left and right context, we
nrefer to eliminate the special look-to-the-left for two reasons: (') it
would be less time-efficient and also possibly less space-efficient than an
alternate approach which we give below, and (2) we can easily generalize
our other approach to cover all LR(k) grammars, but we cannot easily
generalize this one.

What we chose to do is to "build into the machine' some extra memory

for the extra left context. Note that in the case of grammar (i, the machine

-~

-105-

?

implicitly remembers the appropriate left context; i.e., we know that if the
machine is in state 7, the two-symbol, left context is "ae", whercas il
the machine is in state 12, the context is "be'. Unfortunately the Cl'SM

of G3 forgets this context; i. e., when the machine is in state 9 the left

context may be either "ae' or 'be'.

We solve the problem for G, by splitting state 9 into two copies,

3
91 and 92, as shown in Figure 5.3. Note that the look-ahead sets are
indicated and that there is no overlap. The sets may be determined (in

this case) just és they were for the CFSM of G,), after the state splitting
. - : -
has been performed.

5.3 L(m)R(k) Grammars

The preceding examples motivate the definition of a set of grammars
which can be described informally as those whose sentences can be parsed
by using (1) corresponding CFSMs to determine potential characteristic
strings and (2) sets of context pairs computed using ka to make parsing
decisions associated with inadequate states. Our method of defining these
grammars is similar to our method of defining the SLR(k) grammars, and
we point out-the similarities as we proceed. |

We first need two preliminary definitions.

Definition 5. 2. Let G be a CF grammar, m be a positive

integer, and N be a state of G's CFSM. Then the set - L(N)

_p 5"~} Tl

| __€ . 91 #—{.DJ
_ b 10 A 11 ¢ (=172 ...#..:..3.-[_’;-

NI~ ,__f;‘:{,‘{@'

_wftqut,lg

fcf
\ s =

id3
RO

Flgure 5,3. The CFSM of grammar 03 after state-splitting

anl with look-ahead sets indicated via generalized symbols.

+ The machine is later called the L2R1FSM of Gj.

-107-
'

ig the set of left cortexts of length m which end strings

which accessN; i. e, ,
m ¢
L(N) = {¢:m) € V | ¢ accesses NJ.

This set can be computed by following all possible pathes backwards
through the CFSM, from N, for m steps or until the starting state is
reached. Since the connectivity of the CFSM (graph) can be represented
by a bit-matrix, the computation involves some [ast bit-matrix manipulations
(Pro 59).

Now we define some ''sets of bounded-context pairs'' associated with
the transitions of CFSMs. The definition is tc¢ our "L{m)R(k)'" definition
what the definition (4. 1) of simple k-look-ahead sets is to the SI.R(k)
definition.

Definition 5.3. (Recursive on the value of k.)

Let G be a CF grammar and m and k be positive
integers. There is associated with each transition T

of G's CFSM a set of (m, k)-bounded-context pairs,

mBCk(T), as follows:

If T is a #p-transition from state N then

ek = {o,) € ka(#p)l o ¢ TL(N).

-

-108-

]

Or if T is a transitior under the ferminal | from state N
to state M then
mpcker) =

K m
if k = 1 then {(0,t) € {(V ,VT)} lo e 1{N)}

ES b
otherwise {(o, tu') ¢ {(V ,V,)} |0 ML(N) and

m+1 k

(ot, u') € BC -l(somc transition from N)}.

As in the case of simple k-look-uzhead sets:
(1) we do not define these sets of pairs for transitions under nonterminals because
cur ultimate DPDAs will have no such transitions, and (2) although lor the ease
. . v

of definition sets are associated with every terminal-and #-transition of ‘he

CFSM, we are interested only in the sets for transitions from inadequate states.

The ccmputation of these sets of pairs for a #p-transition primarily
. . .m_k m s
consists of computing = C (#p) and L(N), as can be seen from the definition.
For a transition under a terminal and for k> 1, the compulation procecds
in a manner similar to that illustrated above (page 73) for the computation
of a simple k-look-ahead set, except that, of course, corresponding left
and right contexts must be tallied.
In the case of G3's CFSM and form = 2 and k = 1, we have for
inadequate state 9:
2.1 - 2.1 Y
BC (the #S-transltlon) = “C (#5) = {(ae, d), (be, c)} and
2....1,, 2.1
1BC (the #G-transition) = "C (#6) = {{ac,), (be, d)}.

Of courde, thid agroees with our resulls above.

-109-

We now come to the main definition of this section.

Definition 5.4. Let G be a CF grammar and m and k

be positive intégers.‘ Let N be an inadcquate state
(if any) of the CFSM of G. Then G is L(m)R(k) il
and only if the sets cf (m, k)-bounded-context pairs
associated with the tran;lsitions from N are mutually

disjoint. Also, G is L(0)R(k), L(m)R(0), and L.(0)R(0),

if and only if it is SLLR(k), LR(0), and 1.R(0),respectively.
We include the three spacial cases solely for completeness; we do not discuss

them further.

Note that grammar (}3 is L(2)R(1) by definition, as can be seen

from the disjoint sets 2C‘l(#s) and 2Cl(#6) above.

5.4 LmRkFSMs

We now define an FSM which can be used by our modified stack-
algorithm of Section 4.3 to determine characteristic strings for an 1.(m)R(K)
grammar. This new machine is the CFSM meodified to accept some extra
strings in which correspondence between (bounded) left and right contexts
is explicit. -

Definition 5.5. Let G be an L(m)R(k) grammar. We construct

G's LmRKFSM from its CFSM as follows. For each inadequate
state N (if any) of the CFSM and for each string 0 in TLN), we

follow each path backward through the CFSM under the reversc

-110-

:
of g, say to state M; irom M we add a new path (of

new transitions and new st_atcs) under ¢ to 4 new

state N'; from N" there is a transition t¢ the

accepting state under the generalized symbol }(R

for each X-transition (X not a nonterminal) trom N

such that Ro ={ue Vi:,l (o, u) is in the set of (m, k)-
bounded-context pairy associated with the X-transition }.
This results in a non-deterministic FSM. We change
the latter to an eqpivalent, deterministic FSM (via

well known techniques (H&U 69) and reduce the

result to form the LmRkFSM.

In the case of our example gramrmar G3 the nondeterministic
I'SM is shown in Figure 5.4. The reduced, deterministic version, i.e.
the L2R1FSM, is exactly the machine shown in Wigure 5.3. Thus, the
state splitting and look-ahead sets which we deduced were necessary
above have 'fallen out" of our procedure.

Proof. We need thé following preliminary result to prove that the
LmRkFSM can, in fact, be used to determine characteristic strings.

Lemma 5.1. Let G be an L(m)R(k) grammar and N be

an inadequate state (if any) of G's CFSM. Every string
o which accesses N also accesses a state N' of G's LmRkFSM
such that for every X-trangition from N there is an X-transition

and, if X is not a nonterminal, an XR-transition from N' such

10F——{11 212

__B__Dig)__d__b14__#_f_{ 5]
N

N S e #54;

le— |7 — 5]}
b € [e
NS pyy S-S —-*é-—i L=
NLR 7 I ,]

Figure 5.4. The nondeterministic FSM which is an intermedlate

result in the process of computing the L2R1FSM for grammar G3.

-112-

that R = Rw:m ={ue V::\Ho:m,u) ig in the set of (an, k)-
bounded-context pairs associated with N's X-transition}.
Furthermore, there are no ofhez' transitions from N'.
Proof: By construction the LmRkF¥SM is a reduced,
deterministic FSM which recognizes the characteristic
strings of G plus some extra strings for each inadequale
state N of G's CKFSM. The extra string are as follows.

If the string¢ accesses N, the LmRkI'SM accepts the
string chR where*X and R are as given above. Now,
because the machine is deterministic,any string, in
particular ¢, must access a unique state, say N

of the LmRkFSM; because both the CFSM and the_Lm RkFSM
accept the charaéteristic strings, in particular those with
prefix ¢, there must be an X-transition from N' for each
such transition from N; and because the LmRkIFSM accepts
the extra strings with prefix¢g, state N' must have the
extra transitions given above. Furthermore, we¢ have
accounted for all strings with prefix¢ which are accepted
by the reduced machine, so there can be no other transitions

from N'. Q. E. D.

The following two theorems serve the same purpose with respect to an

LmRkFSM as do Theorems 4.1 and 4. 2 with respéct to an SIL.LRkFSM.

d -113-

Theorem 5.2. Let (i be an L(m)R{k) grammar and

a = @B be a canonical form of G with characteristic
string go#p. Then the stack string of 0 accesses
a state of G's LmRkI'SM which is either (1) a
reduce state whose only transition is urder #p or
(2) a state (like N' of Lernma 5. 1) with transitions

under the generalized symbols,
R R R

X 1, X 2, ey X n, for some n> 2, such that
1 2 n -
k:B is in R, but not in Rj for 1 <i # j< n, and such
that X, = # .

1 p
Proof: Our proof deoends upon the sirmnilarity of the
CFSM and the LmRkFSM of G. There are only two
cases since @ must access either a reduce state or
an inadequate state of the CFSM. (1) If it accesses
a reduce state of the CFSM, it must also access a
reduce state of the LmRkFSM, because they both are
deterministic and, although the LmRKkFSM accepts more
strings than does the CFSM, the extra ones are formed
by adding symbols to the end of prefixes which access
inadequate states but not reduce states of the CFSM.

Further, the only transition from the reduce statc

accessed by ¢ must be under #p’ since the machine

H “1'14‘

accepts qp#p. (2) If@ accesses an inndequute state N
of the CI'SM, it must access a state N° of the Tan ik I'SM
with transitions under generalized synibols, by L.emma

5.1. Consider the siets Rl’ R .o Rn which are

9
associated with the generalized symbols labeling
transi_tions from N'. These sets must be mutually
disjoint because they were derived from the mutually
disjoint sets of context pairs associated with the
transitions from N es follows: each set is the set of
right contexts which are paired with a <;ommoﬁ left
context, in particular@:m, in the set of context pairs
associated with some transition from N. Thus, k:f
can be in at most one of the sets. Furthermore, by
Lemma 5.1 one of the generalizéd symbols XiRi has

X, = #p’ and R, must contain k:8 because it is computed

from ka(#p) which by definition (5. 1) contains

@:m, k:B). Q. . D.

Theorem 5.3. Let G be an L(m)R(k) grammar and

a = 6B be a canonical form of G with characteristic

%*
T

¢ accesses a state (like N' of Lemma 5. 1) of G's

stringcpe#p such that 8 is in V__ but 6 # ¢. Then, if

L.mRkI'SM having transitions under the gencralized

~115-

R R R

1 1, 9 2,...,Xn n for some n> 2, the

symbols, X
string k:QB is in 'Ri kut not in RJ. for 1 <i# j<n, such
that Xi = 1:6.

Proof: k:08 may appear in at most one of the sets

Rl’ R2, ooy Rn’ sinc e the sets are mutually disjoint,
as was shown in the previous proof. k:08 must appear
in Ri such that Xi = |:0 for the following reasons. (i's
CFSM accepts qoe’lfp; thus, 1f¢ accesses state N of the

CFSM, then there is a path leading from N which spells

out 6#p. It is easy to see from the definition of the set

k

mBC of (m, k)-bounded-context pairs jor a terminal-

transition (in particular, one under 1:6) that if | 6| > k

then @ :m, k:0) is in mBCk, whereas if |6] = n< k then
. ... m__k o
every pair ¢p:m, 6u') is in "~ BC such that u' is in the
%

set {u' ¢ VTlth accesses state M of the CFSM and

(p0:(m+n), u') is in the set of (m+n, k-n)-bounded-

context pairs of some transition from M}. Furthermore,

0:(m+n), (k~n):8) must be in the latter set of pairs because
+ —

there must be a #p-transition from M and an n(#p)

includes the former pair by definition. Finally, since

we have shown that the set of bounded-context pairs

associated with the (1:0)-trangition from N of the CI'SM

' -116-

.
contains @:m, k:68), Lemma 5.1 implies that the (1:0) L

transition from N' of the L. mRkI'SM is such that l{i

contains k:68. W. k..

Summary. In review, our technique for constructing an LmRkF-M
for a C¥ grammar G which is L(m)R(k) is as “ollows. Compute the
context pairs associated with the transitions from the inadequate states
of G's CFSM. Form a nondeterministic ¥'SM by adding to the CI'SM certain
new transitions and state‘s. The resull is a nondeterministic machine which
recognizes some extra strings in which correspondences between left and
right contexts are explicit. Change the machine to an equivalent, deter-
ministic FSM and and reduce it. Viola! Of course, we can minimize the
lengths of the strings in the look-ahead sets here just as we did for SLLRkEFSMS.

It should be clear from Theorems 5.2 and 5.3 that LmRklI'SMs can
be used by our modified stack-algorithm just as are SLRkI'SMs. It
therefore follows that we can replace "SLRkFSM" with "T.mRkI*'SM"
throughout the description of our technique for converting SLRKI'SMs to
DPDAs to get the appropriate procedure for LmRkI'SMs.

It shéuld also be clear that for a given L(m)R(k) grammar, we
need to resort to the L{m)R(k) techniques only for inadequate states with

overlapping simple k-look-ahead sets. To formalize this we would have

to prove theorems similar to Theorems 5.2 and 5. 3 stated for a machine

having reduce states, inadequate states with simple k-look-ahead sets,

-117-

and states like N' of Lemma 5. 1. "That is, the new thecorems would be
.. combination of Theorems 4.1 and 4. 2, and 5.2 and 5.3, respectively.
We do not state and prove these theorems since: the notation would get

out of hand and since the exercise would be of ‘ittle intellectual valuce.

3.5 Parsers for General LR(k) Grammars

We now turn to the problem of constructing a parser for a general
LR(k) grammar. That is, we want a method for covering grammars which
are LR(k) but which are ot SLR(k) or even L(n)R(k). Again we choose to
illustrate the solution first by example and then to give the general
solution. We do not formalize the results of this section because they
are similar to those of the previous section, however, we do include an
informal proof regarding the only significantly different feature.

Example. Consider the grammar G4 (also similar to (}2) whose

productions follow.

(0) s - FEA | (5) A~eA

(1) E~aAud (6) A~ e

(2) E~aBec (7) B~ eB
~ (3) E-~bAc (8) B~ e

(4) E~-bBd

-118-

The corresponding CFSM is shown in Iigure 5.5. [l bas one inadequate
state, state 9.

The grammar is not SLR(k) because l.«‘k(#“) = l-‘k(# 8) {ed,ad}
for any k> 1. Since these cets overlap for all k, we need not bother
to compute the simple k-look-ahead set Llé for the e-transition; however,

we do so for the value as an example:

¢
L}; = {eB € VTI B is in a simple (k-1)-look-ahead sct
Associated with a transition from state 9}

(e | B isin{ci,af} v LS}

1

{ec],edd} v eLI:1

4

= {ecd, edd, eec, ee ,...,e-c ,e-‘“)d-\,
(ect, ead, eecd, eedt, ..., e Ped. e

for k> 2. Obviously, this adds no new overlaps. Thus, the parsing
decision associated with state 9 about whether to read or reduce can be
méde on the basis of one-symbol look-ahead ({e} and {c, d} are the
respective look-ahead sets); but the decision as to which reduction to make
cannot be determined via look-ahead alone, even if we look all the way to
the end of the string. Having discovered this, we need not discuss the

e-transition further below, although we do so,again for exemplary value.

Figure 5.5, The CFSM for grammar G.

By B 3% ofi]
N O L O -
N I T = B O
_€ 1A s,
. 7
BT
e, I
N
\K 'e
b Allm S m 2. 5
LB—1>+1S d‘—'»ﬂlﬁ #ﬁv‘@
e/

-120-

Neither is the grammar L(m)R(k). Because it is small it is casy
to compute by hand the context pairs for the transitions for state 9 which

are as follows form > 2 ani k> 2:

(lae ,dd),
(laee , d),

(Fbe ,cd),
(Fbee , cq),
(!—aem-z: dd), (!—bem_2: c),
(ae™ L, d:’), (Fbe™ ;: cd),
), (e, cd),}

¢ transition {

(Fbe, di),

(} ae, cq),
' (Fbee, d4),

(Faee,cq),

g transition {

(¢ acm-z, cq), (l-be%n-z, dd),
(@™ ey, (b7 ad),

€% cl), (&M ,ai))

e-transition__

1 | Fae, edd, (Fbe,) ecH,

Faee, eedd, Fbee, eec

{03 - b)3 o{(; BE W]

}_aem-z, k-2d_' ’ '_bem-z’ f ok-gd-l .

aem;rll, eiz-ld, bem;rll, e::wld,
L e s J e . e , e)

where the notation {({]). ({ })} is to be understood as was {(V*, Vf;.)}

above. Because the context pairs (em, cd) and (em ; d4) appear in both the

-121-

sets associated with the #6 and #B-transitions, the grammar is not
L(m)R(k), and our informal solution of looking at a finite amount of
both left and right context to make the parsing decision associated witl
state 9 will not work here, The problem is, of course, that the left
context in which we are interested.(the a or b) may be arbitrarily far
to our leftT.

The essential reason that we shall be able to solve this problem
is that, although the context of interest can appear arbitrarily far to the
left at the time we need it, the states and transitions of the CI'SM which
are involved in reading, that context are only a finite distance from the
inadequate state (since the CFSM is a finite machine!). Our solution
again invoives state-splitting, but this time to get the machine to remember
extra context which may be arbitrarily far to the left,

For instance,' the CFSM of Figure 5. 6 must have state 9 split into
two copies so it will remember whether an a or b ig to its left. The
appropriate ¥'SM is shown in Figure 5.6. Note that because of space
limitations we have drawn the FSM in the abbreviated form. Because grammar

C 4 is small the reader should easily be able to convince himself that this ig

TIn the case of Grammar G. the CFSM is obliging enough to remember the a
or b for us. The difference seems to be that for G_ the a or b has no
implication about the symbols in the right context, but only about how they
should be parsed, whereas with G, there is a torrespondence between left
and right symbols. We see no general way of discovering such complexities
in a grammar except by trying to generate a parser for it.

/
o

)
L
>
{

6,1
=]
o] |
"
N

/3
k € { > 91 A__(\ 10 *_L:QA, f[:]

4
\--8—4.;~< 11 t’«u.]

o

—t12 413 14

BV

a

Ry
B

15 +~116 —4"

= 92

)
e

Nid=
elel

\
N —
Figure 5.,6. The CFSM of grammar G, after state-splitting and

With look-ahead sets indiocmted via generalized symhbols; 1.e.,

\the (aLbreviated) LHIFSM for Gy.

-

-

-123-

’ N
the appropriate FSM. Note that no more than once-symbol look-ahead is

necessary, thcrel’orc the grammar is LR(1).

LRkFSMs: Now, for the general case we have lwo questions
confronting us: (1) how do we compute the necessary state-splilting, and
(2) how do we compute the look-ahead sets? The answers to these two
questions are rather similar to those for L{m)R(k) grammars. We answer
these questions next, continuing to use G4 as an example, and we justify
our answers afterwards.

In the general case the left context which must be remembered may
be anywhere to our left: thus we must search for it all the way back to the
beginning of the string. In terms of the CFSM this means all the way back
to the starting state. The procedure for a general LR(k) grammar G whose
CFSM has an inadequate state N goes as follows.

We first find the set of strings kLL(N) = {p € V* lo accesses N via
a path through the CFSM which contains no more than k instances of any
given cycle of states}. Because our CFSM can be represented via a
directed graph some of the results of graph theory are appropriate for
use in computing such paths and the corresponding strings. In fact, well
known, even fast, techniques exist for doing just that (Pro 59) (War 62).

In the case of our LR(1) grammar G 4 the strings are

Fae, Faee, }be, and }bee, and they correspond to paths which can be

-124-

H

~epresented by the sequences of state names: 0, 1, 4, 9 (no cycles);
0, 1, 4, 9, 9, (one cycle, 9to9); 0, 1, 12, 9:and 0, 1, 12, 9, 9,
respectively, none of which contain more than < = 1 instance of the only

cycle in G4's CFSM.
}{ 4 .
Next we compute the set kLo = fox © ‘\|<p is in “L1.(N) and

R
x ¢ X is a generalized symbol such that there is an X-transition (\ not

a nonterminal) from N and R ={(k:68) € V,;. Iqo 68 is a canonical form

0, X
with characteristic string<p0#p, anlg X = I:G#p)} .

Each generalized symbol X . X represents the set of terminal
strings of length k whic.h may follow ¢ in a canonical form a = @8 such that
the characteristic .string of o accesses state N and then takes the N-transition;
i.e., it is the look-ahead set corresponding to ¢ and the parsing decision
associated with the X-transi;;ion; We reference a method for computing
these sets below.

R
For G4 the set of such X ¢, X for k = 1 is:

(bactg @, Facer (¥, boen (o, Fheet),

Fae#8£0}, l-aee#BIC}, |'be#8{d}, |‘beef8{d},

‘!-aee{e} , {-aeee{e} , I—bee{e} , l-beee{e} }

as the reader may compute for himself.

125-

We now form a nonde’tcm\iniativ I'SM i@ manner gimdlar to that
for an L(m)R(k) grammar. L'or each string cp.\'h‘p'x in ki.Lf(N) we add Lo
the starting state of the CFSM a new path (of new transitions and new
states) under <pXR(p’ X leading to the accepting state. We convert the
mahine to a deterministic device, reduce it, minimize the strings in the
look-ahead sets, and presto - -- the appropriate FSM with look-ahead
sets built in; i. e., the "LRkFSM''.

To specify the procedure fully we must provide two things: (1)
a procedure for computing the look-ahead sets implicit in the generalized
symbols XR(p’ X, and (2) the reason why we necd to consider only such
left contexts (the ¢'s) as take paths through the CFSM which contain no more
than k occurrences of a given cycle.

Regarding the first point, we use the simple expedient of a reference.
Knuth (Knu 65,see especially page 617) has already solved this problem.
His parsing algorithm in a sense computes the states of our CI'SM dynamically,
as it is parsing a string. However, it also computes much more information,
all of which is bundled neatly into what are called '"'state sets'. If we
simply apply his algorithm to each stringy, we can deduce the look-ahead
sets from the ''state set' computed just after the élgorithm has read the
last symbol of ¢, as he describes in "'Step 2" of the algorithin. (His set

"Z" is the look-ahead set for all transitions under terminals, and the

set "Zp" is the look-ahead set for a #p-transition.)

-126-

?

Regarding the seconc point, we provide an informal proof. Recall
the canonical derivation of a form a of CI' grammuar (i illustrated on page
42 . Leta =¢B where ¢ = Wy -+ - WY and B - }"'wm w'l'wb' for some
y and ¥" such that yy' =wand y' =¥ y'" € V:I‘ liote the correspondence between
left and right contexts: each wi(or v) has a matching Ldi' (or y"). In the
next two paragraphs we investigate the implications 91‘ this correspondence
with regard to the computation of look-ahead strings corresponding to a
particular ¢ which accesses an inadequate state N of G's CI'SM.

We consider first a string¢ spelled out by a path through the CI'SM
which accesses a given. cycle only once. That is, ¢ first accesses a state

in the cycle, then goes around the cycle several, say r, times, and then

accesses state N. In this case ¢ can be written

W, . w(w ce oW,)rw v.

0“1 i1 Ppn’ Ppnrt T %m
The subexpression (...)r cannot include only a part of an ;- Since r can
have any nonnegative integral value and since there are only a finite number
of productions, the canonical derivation must also have a cycle in it; i. e.,

we can write the numbers of the productions used in the derivation
r e
plpz. .o pi(pi+1. +Piyn) Pisn it Pn p. But each application of a

production in this sequence adds a whole w, to the left context, never a

part of one. Thus, the first k symbols of the right context can be written

r
)w”ooow w

i+n 10

., = leeast! " n "
kB = k:y gom . i+nr+1(w ...le

-127-

?

k

‘3ut if r > k, this is equivalent to k:...{...) ..., since in the worst casc

1, 1 1" = 1 PR LR v have kB -
wherely w! eewl r+1‘ 0 and ‘wi+n"'wi+1' 1 we have k8
)k. The point is that the look-ahead strings for any ¢

r, 1 "
w. o o ow,
Wi+n i+l

-which accesses a cycle r times in succession, where r 2 k, are exactly

the same as those for a similar¢ which accestes the cycle only k times

in succession.

We must now consider the case where ¢ accesses a cycle once,
goes around it several, say T times, wanders around the machine
elsewhere, returns, goes around the cycle several more, say Ly times,
etc. Because the notation gets out of hand otherwise, we shall argue the
case for only two separate accesses of the cycle and let the reader

generalize for himself. In this case B can be written

r
2 14 1
y'w' ... (w'" ew! L) S LW
+ + + +
m 12 .nzr2 1 12 n2 12 1 12 gy

r

1 . .
) w'{ oowlw!'fori >i +n r.. Inthe worse

1t 1"
(w 7 1 %o 9 1 17y

i +
11-f-n1 11 1 1

 case where |y'w"_...w'" | =0and |« ... | = 0 and
+ + tn, r +
m i, n,r, 1 i, i 4n,ry 1

' ... | =land|w" , ... |=1,
11+n1 11+1),2-¥-n2 12+1

i > B = (' " " " r!
we see thatlfrl_kthenk.ﬁ (wi tn ... %5 +1) (wi tn 95 +1)

where r' = 2 2 2 11 1

maximum of k - ry and zero. Thus, if r, > k the look-ahead strings for

¢ are the same as for a similar but with r, = k and r = 0. Howcver,

2 1

-128-

!

- k, they are the same as the ones for a similar¢ but with

In conclusion (and generalizing), the look-ahcard strings for a given
© whose path through the CISM goes around a given cycle a total of r >k
simes are the same as those for a similar ¢ <with only k such .loopsT.
Therefore, our procedure above which computes look-ahead sets by considering
only the@'s with no more than k such loops computes all possible look-ahead
strings.

Conclusion. Here, as above, it seems clear that these more

L]
complex techniques need be applied only to inadequate states for which our

simpler techniques will not work. It is also clear that the procedure for
cenverting an LRKFSM to a DPDA is the same as that for an LmRkFSM.
What we have not provided thus far, however, is a method which
s convenient to use in the above procedure for deciding if a given grammar
is LR(k). 1t should be clear from our informal proof above and the definition
(2. 2) of LR(k) grammars that a CF grammar G is LR(k) if and only if, for
cach inadequate state N of G's CFSM and each string ¢ in kLL(N), the set
{Rw’ x| where is an X-transition (X not a nonterminal) from N} is a set

of mutually disjoint sets. This, of course, means that the look-ahead sets

1‘chually we could do better than this. If all the cycles were ''separate"

from each other in the CFSM, we could consider only ¢'s with a total of

k loops around any cycle. Unfortunately our proof would get excessively
complicated to cover the case where one cycle is a part of another. We are
satisfied with the above simple, sufficient condition because our purpose here
is to show that the task of computing the look-ahead sets is a finite one, not

to develop a method for computing the sets which requires a minimum of time.,

-129-

for each inadequate state of the LEYF=M are mutually disjoint.
5.6 Comments

We noted above that Knuth's LR(k) parsing algorithm in a sense
computes the states of our CFSM dynamically, as it parses a string.
Actually, we believe this to be accurate only in the case k = 0. 1f k> 1,
Knuth's algorithm computes the states of a machine much larger than our
CFSM. In effect, the processes of splitting states and computing look-
ahead sets are bound together in his algorithm. Consequently, for k = 1
the number of states comiputed is the number of states of the CISM times
some number having to do with the number of symbols which appear in
the look-ahead sets. In practical cases this multiplicative factor is
iznpractically large (Kor 69). Further, the size of the machine increases
rapidly with increasing k.

Korenjak (Kor 69) noticed that the multiplicative factor depends upon
the size of the look-ahead sets, and he proposes a parser-construction
techniqﬁe to reduce the effect. He proposes that the grammar be partitioned
into several sub-grammars, that a sub-parser be generated for each
sub-graminar by using Knuth's algorithm for each, and that the desired
parserv be coustructed by ;:ombining the éub-parsers appropriately. Since
the look-ahead'sets fbi"each'subLgrammar are much smaller than those
for the entire grammar, the multiplicative factor for each sub-parser is

much smaller than that for a parser constructed directly for the entive

~130-

yrammar. LIurther, a relatively small number of .ext.ru dtates are requived
fo combine the aub-ba;scx's.

In a sense, we have taken Korenjak's approach to the extreme by
analyzing the grammar production-by-productibn; or more precisely, we
analyze the CFSM inadéquatez-state-by-in_adequate‘state. ()uf method
seems to cause nearly a minimum of state-splitt.ing and look-ahead. We
leave as questions for future research, however, whether or not it does

cause such minimums, and if not, how it could be modified to do so.

-131-
:

Chapter 6

TRANSLATORS

6.1 Philosoghx

Thus far we have followed the lead of Knuth, concerning ourselves
solely with grammatical analysis. However, our interest is ultimately
in translators rather than parsers. We have addressgd the parsing
problem first because it gives us a convenient basis from which to address
translation, a fact which will become abundantly clear below when we sec
that our method of specifying translations is based direc tly on CI* grammars.
It will follow that our translators can be based directly on our parsers.

We now, therefore, abandon the grammatical analysis approach
and adopt the philosophy of Lewis and Stearns (L&S 68), namely that

"Implementing a translation should be regarded as an

automata theory problem of machine capability and

efficiency rather than as a problem of grammatical

analysis. "
We deal oply with the capabilities of DPDAs here, so our main concern is in
improv.ing efficiency by making transformations on our machines which
preserve their ihp;lt/output relations. Of course our yen to perform
transformations must be tempered by the implications of our desire to

implement the translators ultimately on a modern digital computer.

-132-

Actually, we have already been abiding by part of this philosophy.
in preparation for the material in this chapter. In effect, we have
regarded parsers as translators which translate sentences into parses,

i. e., into strings of productions or production numbers. Although we
found it convenient to discuss grammatical analysis at first from the
string-manipulation viewpdint, we certainly made it a point to convert

to the automata-theory viewpoint when we converted our string-manipula-

tion parsers to DPDAs.

6.2 Objective

It is the objective of this chapter to show how our results are
relevant to (a) the specification of translations of programming languages,
and (b) the construction ef compilers from those specifications.

In Section 6.3 we motivate an interest in string;to-string translators
similar to our DPDA-parsers. We do by discussing some well-known
approaches to compiler construction.

In Section 6.4 we show why we are not interested in parses, per
se. We motivate an interest in string-to-tree translators, each of which
can be regarded as a concatenation of two subtranslators: the first being
a string-to-string translator which maps input strings into strings (sequences)
of tree-building directives, and the second being a string-to-tree translator

which maps strings of directives into trees (by obeying the directives).

-133-

?

In Section 6.5 we present a formalism based on Cl' grammars for
specifying string-to-string ‘ranslations, and in 6. 6 we show how to
convert our DPDA-parsers to corresponding translators. 'T'he latier
feat is trivial, but some nortrivial optimizations ensue. We formalize
only string-to-string translators because our (linear) automata-theoretic
approach seems inappropriate when discussing trees.

Finally, in Section 6.7 we present a compiler modgal,and in 6. 8
we show the relevance of our results to the specification of languages,
translations, and compilérs; i.e., to TWSs.

We emphasize that the only formal results in the present chapter
are those of Sections 6.5 and 6.6. The remainder of the chapter is

intended as motivation for those two sections and discussion of their

relevance to TWSs.

6.3 Syntax Directed Compilers

Many éompilers in existence today, whether written by hand or
partially or wholly written by a TWS, are termed "'syntax directed"
compilers. The approach of Cheatham (Che 67) is fairly representative
for our purposes here. He advocates the use of "'augments'' to productions
to enhance the descriptive power of CF grammars so they can be used to.

specify programming languages fullyﬁ. These "'augments'' are in the

.r
In the sense we have in mind here the term should perhaps be ' svntax—
analyzer d1rected" .

tt
What amounts to a generalizatmn and a formalization of this approaoh can
be found in (Knu 66). ’ .

! -134-

form of "actions", "conditions", and "interpretations' associnted with

the productions. He envisions a parser as an "engine' operating in un
"en\;ironmcnt". As the parser parseé a string it drives other mechanisms
which (a) execute "actions', thus causing the 'environment' to change, (b)
check '"'conditions" in the "environment', thus providing context-sensitivity,
and (c) compute "interpretations" (''values", "meanings', or "semantics'").
The auxiliary mechanisms are activated each time the parser makes a
reduction,and they then ;c:ompute the "augments' associated with the
corresponding production. When the parser has finished parsing the input
string, intermediate object code has been output via "actions' and any
relevant tables are available via "interpretations' associated with the
entire program,

A basically similar approach is one due to Feldman (Iel 64) in
which "EXEC n" routines are associated with ''Floyd-Evans productions"
(Eva 65) comprising a parsing program. Roughly speaking, the '"'EXEC
n" routines are the analogues to Cheatham's "augments''.

An approach similar to one or the other of thesé two, or similar
to our own approach (desc;ibéd below) where an "abstract syntax tree'
or "parse tree' ig built, is used in every compiler or TWS effort
described in (F&G 68). Implicit in and fundamental to the compilers of
all these schemes is a string-to-string translation: a translatidn from

-

the input string to a string'(sequence) of commands to mechanisms to

! -135-

compute "augments', or of calls to "EXEC n'" routines, or "semantic
routines', or 'generators', etc. Thus, if the ccader is partial to one
of these schemes in particular, he may think of the "output symbols"
bélow as the appropriate commands or calls to routines, and he may
think of our ""CFS1s8'" as the corresponding string-to-string translators.
J'or our purposes we think of the "output symbols' as tree-building

directives, as we discuss next.

6.4 Abstract Syntax Trees

L)

In previous chapters we devoted much time to the development of

DPDA-parsers; i. e., string-to-string translators which map input strings
into parses. In the present section‘we discuss the reasons why parses,

as such, are not as appropriate for purposes of compiling as are the strings
of tree-building directives referred to above.

Inefficient coding. There are two problems with parses, per se:

(1) they contain some information in which we are not interested, and (2)
the information which we do desire is not explicit.

For instance, for grammar G, the string } i +i 4 can be reduced

1
to FE+T4 >} E{~S. Butfor purposes of compiling we do not care
that the reductions for the first i were i~ P~ T - E and the second were

i- P- T, nor do we care which reductions were made first or which

particular nonterminals were used. The only information which is both

implicit in the parse and of interest to us is that one i is the left operand

't -136-

of the operator + and that the other is the right operand. If we were
mathematically inclined, we might represent this information via a
functional form; e. g., + (i, 1) or PLUS (i, i). However, for purposes of
discussing compiling activities and for an explicit representation of the
"structure" which is implicit in parses, we find it more convenient to

represent the above information via the following graph (tree):

()
D) (D

Such a graph, representing the "structural" int‘ormatioﬁ or relationships
which are implicit in a parse, has been called by some an "abstract
syntax tree'' (W&E 69, Lan 66, McC 66). We elaborate on the reasons
for this name in Section 6. 7.

Now, (a) if we are not interested in all the information implicit
in a parse, it would be inefficient for our compiler to generate it. IFurther,
(b) if an abstract syntax tree represents all and only the information
implicit in the parse which is of interest for further compiling activities
" and (c) if the tree can be represented in some convenient and useful way
in a cpmputer, then our results would be more useful if we could show
(1) how to specify a translation from strings to trees in a manner based

on CF grammars-and (2) how to convert our parsers to efficient translators

.

which affecf the éorres_ponding,‘ string-to-tree translations.

-137-

Conceptual modularity. Although if-clauses (a) and (b) of the

preceding paragraph probably represent good assumptions, (¢) is
subject to some question, partly because it is not clear that the

abstract syntax tree, per se, eQer needs to be built during the compiling
process. But we do not let this stop us for the following reason: even

if our compiler does not actually construct an abstract syntax tree, we

can regard the process conceptually as building it.

We argue that even the string-to-string translator which we

.

develop below can be regarded as the concatenation of two subtranslators,
the first being a parser and the second affecting a translation {ram parsers
to the desired strings. However, after we have thoroughly investigated
the two subtranslators, we see that they can easily be combined so as to save
us actually having to generate the parse.

Similarly, we can regard preliminary éompiling activities as
performing a translation fro?n input string to abstract syntax tree and
subsequent activities as performing a translation, again conceptually
composed of several subtranslations, from abstract syntax tree to object

codet The advantage of this approach relative to a less modular one is,

of course, that the otherwise complex task of compiling is broken into several

relatively simple subtranslations. Hopefully, when we are finished analyzing
. . [

*Thls approach was largely inspired by (W&E 69) which'in turn was based
on (L.an G68); See Section 6.7, '

-138-

the subtranslators separately, we will be able to see how to put them
together in such a way as to minimize redundancies. This may mean
that the abstract syntax tree, per se, need never actually be constructed.

Example. As an example of what we mean by "tree-building
directives'', consider the following. If our string-to-string translator
maps the example string Fi+1i 4 of above into the string i i =, we can
regard the latter as the following sequence of directives: build a terminal
node with name i; build ‘another terminal node with name i; build a non-
terminal node with name +, with right (qr second) son the last node
built, and with left (or first) son the next-to-the-last node built.

In general, if oﬁr tree builder is always to construct nonterminal
nodes whose sons are the last few nodes constructed, and in the same
order, the sequence of directives must be a linear representation of the
tree which is commonly called a "suffix form". (See(Che 67) for a
thorough discussion of the correspondences between trees and their
linear.representations.) Further, the device can keep track of the nodes
it haé built by maintaining a push-down stack of pointers to them, and
the pushing and popping of this stack will occur in a sequence closely
corresponding to that of the stack of our DPDA-translator which issues

the directives. Our compiler model and another example below should shed

more light on this subject.

-139-

6.5 'I‘ransductionA Grammars, Translations

We now get down to husiness, As our method of specitying atring-
to-string translations we choose a technique which is based on Cl° grammars
and which fits naturally and conveniently with our notions about both grammars
and automata. The first and fourth paragraphs below are taken almost

directly from (1L&S 68).

A transduction grammar Gt based on a CF grammar G is a triple

(G, V,i,, g), where V,i, ?s a set of output terminalgs and g is a mapping

defined on G which associates a string w' in (V,i, v VN)* with each

production A - w in G and which specifies a one-to-one correspondence

that pairs each instance of a nonterminal in w with an instance of the same

nonterminal in «'. We refer to the string ' as the transduction element*

for production A - w.

We are interested, for the present at least, only in simple suffix
transduction grammars (SSTGs), since they are trivially adaptable to our
results thus far. ''Simple'" means the corresponding nonterminals are

in the same order in w and w'. "Suffix"” implies the additional stipulation

fA similar definition in which "translation rules' were associated with the |
alternatives of Backus Naur Form definitions appeared in (Eva 65).

1.TWe use "'suffix' where ""Polish' was used in (L&S 68) because it is more
specific. Also, for those readers who like to reference "semantic routines''
via output symbols in-the middle of the right parts of productions, it is shown
in (L&S 68) that for many simple transduction grammars based on LR(k)
grammars there are "structurally equivalent" SSTGs which define the same
translation and which are based on LR(k') grammars for some finite k' > k.

-140-

that the nonterminals in w' must all be to the left of any output terminalsn.

An example SS'1T'G G

based on our oxample grannmare «:l Ir

t1

as lollows, where the transduction element for each production is in

hrackets to the right of the production.

0 s-FEH ({E} (4) TP (P}
(1) E-E+T {ET+} (5) P-i {i}
(2) E-T {E} (6) P-(E) (E}

3) T-Pt+T {PTH]

The transduction elements may be thought of as defining an

output grammzar G', where production A~ w' is in G' if and only if W'

is the tré‘.nsduction element for production A~ win G. Each derivation
from S using G has a corresponding derivation using G' which is obtained
by applying corresponding productions to corresponding nonterminals.
Thus, for each derivation of a sentence 7 in L(G) there is a corres-
ponding derivation leading to a string n' in (V,:'[,)*. The string n' is

called a translation of n induced by Gt'

Our.example SSTG G':1 above induces translations of strings in
L(G,) which are commonly called "suffix forms' (Che 67). For example,

the translation of n, = Fiti+id induced by G, isn, = iiti+.

~141- 'f

6.6 Translators

We now show that the translations induzed by an 551G Gt - (G, V,'l..)
are in one-to-one correspondence to the parses of the sentences in 1.(G).

Consider a canonical derivation 5 = a, e ey = n of a sentence n using

grammar G. If step i (1 < i< n) is the application of production Py whose

*
trans -ction element is W' =7y _ 6 wherey is inV,_. and 6 is in
P; Py By Pi N Py

(VL)*, then the translation of # induced by G, is n' = 6 6 e 6
. T t p P p
n n-1 1
. ’ .
Thus, if we were given the reverse of the sequence of productions used in
a canonical derivation of 7, i.e., if we were given the canonical parse of
n, we could generate its translation n' directly in a left-to-right manner

by ou_tpﬁtting first 6 , then § ,..., thend . That is, we can
Pn Pp-1 Py '

generate the translation 7' of the sentence 7 simultaneously with the parsing
of n. .
A machine is called a translatorf for a transduction grammar
G, = (G, V!, g) if and only if (1) it is a recognizer for I.(G) and (2) it
maps each string in L(G) into its translation induced by Gt' Clearly, our

DPDA parser for G becomes a translator for an SSTG Gt based on G if

fThis, of course, is our formal, automata-theoretic definition of a
translator. Below we distinguish these from other translators (in the
informal sense) by calling them '"context-free syntactical translators
(c¥sTe)'. |

-142-

for each production p with tranaduction elemen’. w' - 98, where y is in
]

Vi, and & is in (VI)%, each "out p" is changed to "out 8"

Optimizations. The txjanslator which results from this trivial

transformation may have points where optimizations are applicable We
consider first a "local" optimization and then 2"global"one.

Consider the conversion of the parser of Figure 4.3 (page 85)
to a translator for the SSTG th above. | The transitions from states 6 and
16 become under "pop 0, Out ¢", or equivalently, under "do nothing'.
Thus, the two states and the transitions are unnecessary, and they may
be eliminated as follows. In the case of state 16 the look-ahead transition
from state 7 may be redirected to go directly to state 15. In the case of
state 6 the transition under "top 1" from state 15 may be redirected to go
directly to state 17. But the latter results in a look-back transition to a
state which is itself a look-back state. Clearly, if the "top 1" transition
from 15 to 17 is taken, then the "top 1" transition from 17 to 2 will =
also be taken. Thus, we may redirect the 'top 1'" transition from 15
again, this time to go directly to state 2. The result of applying these
changes to the DPDA of Figure 4.3 is depicted in Figure 6.‘ 1.

We do not give an exhaustive list of all possible types of "local"
optimizations \;vhich may be appliqable after a parser is changed} to a

translator. Sufficgf-itfett.)‘"sa‘.y that (1) all such optimizations arise when a

1o reumwess 4O oyg uo pessq V1o

DISS ¥Y3 J0J (ISJD) I03BTSUEIZ-VCJId DPezTwWizdo YL °*1°G 9InITd

A

ot re e e soeemam—e

-143-

¢ 3ne . LK 2
7 ded A/ TR WHE 0 40 T T

-144-

cransition is found to be um'mcessary due to its being under "pop 0, out €',
and (2) wﬁenever a transition is redirected to a new state, an analysis ol
the device is in o_rder to detect any redundancies, as in the case above,

in its actions immediately after taking that transition.

ﬁnformnately, the efficiency of our DPDA as a translator is likely
t0 be lower than it was as a parser, notwithstanding the above 'local"
optimizations. The problem is that our DPDA still goes through the
motions of parsing bﬁt does not output 'anything along with manyof its
actions. This is not immediately obvious from: our running example, but
by analyzing it somewhat and generalizing we can illuminate the problem.

Consider the actions of the translator of Figure 6.1 associated
with states 7 and 15. The decisions which are made there can be described
in terms of operator précedenceé and associativities as follows.

Encoded in étate 7 is the information that ¢ is a right associative
operator and it has more binding power than any other operator of the
subexpression which is implicitly stored in the stack when the machine
is in state 7. Thus, when the machine is in state 7, if an ¢ is the next
symbol in the input-string, it should be read. The look-ahead set {4, +,)}
is just the set of other operators which may be the naxt symbol and which
have lgss binding power than *. In case the next syinbol is one of |
these, the dév‘ice should not read but enter state 15, where it makes

decisions regarding the past rather than the future. I‘or instance, if it

Eed

-1456-

!

has recenily read ... i41i, it makes a reduction and outputs #, again because
¢ is more binding than the operators in the look-ahead set. Similarly,

if it has recently read ... i +i, it makes a reduction and outputs I,

because + is left associative and more binding than 4 or).

Now, if in our programming language there are many operators
and many levels of precedence, it will happen that our translator, in
translating a simple string like }F i 4, will have to proceed through a
cascade of pairs of states like 7 and 15. In effect, each pair of states
will be associated with a precedence level. The 'first state will look ahead
to check the preceden;e of the next operator to be read, and the second
will look back to see if it should make a reduction and output. Of course,
the decisions will be made relative to the precedence level associated with
the pair.

The point of our generalizatidn'is that for a simple string like
} i 4, many state transitions, look-aheads, and look-backs may have to
be performed before reaching the accepting state, all fqr an output of
the single symbol i. Of ‘course, the problem can be equally bad with
parenthetical expressions such as ... (i) ... and the inefficiency also
creeps into a lesser extent with all subexpreésions; e.g., once a
subexpreésion with one operator has been translated, the translator

will have to proceed through the cascade from the level of precedence of

that operator to the top.

-146-

!
To eliminate such inefficiencies we could, as in previous cases,

precompute all possible results and "wire them into the machine'. 1In
this case this would mean niodifying each look-ahead and look-back
state so that the machine would, in effect, jump as far up any such
cascade as it should given the next symbol(s) in the input string and the
top state-name on the stack: i. e., given the relevant information about
left and right context. Unfortunately, if we do this for a grammar of
practical size and usefulness, the state diagram representation of our
translator is lj.kely to get disturbingly large. We suspect, however, that
some clever coding tr.icks can be employed to implement these 'jumps
over c;.scades" in a reasonable amount of space.. We do not pursue
the subject here, since our objective is not to develop a "fine-tuned"
implementation technique. Rather, we leave the problem as one for
future development.

The reader should notice that in the case of our example grammar
.Gi this ""global" optimizatioﬁ amounts to noticing that the string } i 4
can be reduced directly to | E { without going through } P 4 and
FTA. 4However, he should also notice that this depends on the fact there
are no output terminals in the transduction elements of the two productions
T- P and E - T. Since in general such productions could have output

terminals, i.e., since transduction grammars give us that flexibility,

-147_

. ?
it is clear that we must wait unti] the Lranslator ix consgtructed, or al

least until the SS'I'G is investigated, belore attempting to make such an
optimization.

6.7 A Compiler Model

Our compiler madel is an incomplete one. Indeed, we detail only
the '"front end'’; i. e., the first three subtranslators and their interconn-
ections and interactions. The model is similar to Cheatham's (Che 67),
but much of our viewpoint and terminology are inspired by the apprcach
of Landin (Lan 66) to programming language design. Landin's method

.
goes something as follows.

A programming language is first designed on an abs.tract level,
That is, the designer firsf decides what are to be the primitives of the
langua'gé, what abstract objects -.are to be in the universerf discourse of
the language, how thi.ngs. are to be defined in terms of other things, i.e.,
what s;:.rt of definitional facilities are £o be available, what sort of
"structure of expressions" or "linguistic constructs'' are to be available
and how they are to be interconnected for the manipulation of abstract
objects, etc. At this "abét;‘act syntax" level programs in the language
are represented bj abstract syntax trees. Then the designer pro.vides.
two functions: (a) one to define the mapping 6r "ﬂattening" of abstract |
syntax trees into a convenient representation for use .by programmers,

i.e., "source code", and (b) the other to define the flattening of the trees

B3

-148-

into representaticns conVeni‘ent for use by a computer, i.e., "object
code". | |

Of course, we do not believe that any language has ever been
designed in a singlé iteration of the above procedure, but the procedurce
seems to us a good model o: the process which designers go through
repeatedly before finally settling on a particular design. At the least,
it provides a model of how the language might ideally have been designed
and it suggests an intuitively reasonable method of formalizing progranming
language specifications (W& E 69).

In view of the above procédure, then, compiling can be regarded
as first performing the reverée of mapping (a). above and then performing
mappiné (b). The two tasks correspond exactly to the "front end" and
the "rear end" of our compiler model, respectively.

Landin subdivides the first of these mappings into two mappings,
and we further subdivide one of them into two, so that the "front'end"
of our compiler consists of th'ree subtranslators. We illustrate the
corresponding mappings with the aid of Figure 6.2, in which are presented
four repfesentations of a program in a programming language based on
grammar Gl' From the Yiewpoint of compiling, the mappings are as
follows.

The first is from what Landin calls the "physical'' level to what

he calls the "logical" level, The "physical" level is the level at which

R
e

r o -149-

(a) Abc ¥ 123 + 4.5 4

(®) 1 t1+14
P2 O N
2 N .
d - 2
©c fH M
;) a
0w o
D) (¥
S EL) e
s
Z
() A1ti+
88 0
< 4 X g
©ohn o
g 0 o
© A
S O N~
>
2
(da) TREE STOHAGE TABLE (TST)
- 0 identifier
1 name
| 2 reference to an entry in
i g identifier NAMELIST
—~ integer
wn . 5 123
(1) (1) = ré6 ¢
= ~ - 7 0 -
) N~ L 8 3)
'3: i 8 i 9 identifier
- - B 10 real .
(] - ..11 405
g) top node + "12 +
0 , 113 6)
S S) | e
s 14 9 Jo

- pointers to other nodes

Figg;‘ e 6.2, A program at four different levels: (a) the
"physical” level, (b) the "logical” level, (¢c) the "tree-
building directive" level, and (d) a graphical then a tabular

' representaﬁ_t;.,onritfthe "abstract syntax” level, 4

-150-

:

the programmer uses the language (Figure 6.2a). The "logical'' level is
the level at i.)vhichAcerta.in strings of character: have been recognized
as"textuai elements" denating single entities. The strings :migh't'. denote
constants, names, operators, key words, or the like (Figure 6.2b). 'This
mapping is often called "lexical analysis'. We call the corresponding

translator a lexical translator. It maps strings of characlers, provided

by a programmer via some input device, say,into strings of lexical
tokens. The latter are the terminal symbols of a corresponding CV
grammar, some with c.erfain "semantics' (values, types, etc.) associated
with them. | |

The second mapping is from the "logical" level to what we call
the "tree-building dire_ctive" level. This mapping is performed by our

translator of section 6. 6, which we call here a context-free syntactical

tranglator (CFST) to distipguish it from other translators (in the informal
sense). | The mapping results in a string of tree-building directives, some
of which have "semantics' associated with them as do some of the terminal
symbols (Figure 6. 2c),

| The third mapping is'from the "tree-building directive'' level

to the "abstract syntax' level. It is performed by an abstract-syntax

tree builder (ASTB) and it results in an abatract syntax tree having

"semantics" associated with some of its nodes (Figure 6. 2d). (For present

purposes ignore the tabular representation of the tree; we discuss it below.)

-151-

H

Our compil‘er mod;el. with emphasis on the "l‘ront end", is
illustrated in Figure 6.3. Note that the "rear end” consists of the
sevérél subtranslators which are in the box labeled EVERY'THING ELSH
and which affect the mapping from abstract syntax tree to "object code'.
The box labeled ERROR is intended to bé a general error recovery
device; it is called when any other device in the compiler discovers
that the program being compiled is not in the given language.

The boxes labéled LEX and DICTIONARY and the two queues
together form our lexica.l translator. LEX is basically an FSM which
can be automatically cpnstructed via the technique of Johnson, et al
(Joh 68), also see (L& P 68) if the method of specifying the "lexicon" of
the language is based on regular expressions. When LEX is activated
it reads from the source code the next string of characters which repre-
sents a single entity, i.e., the next textual element, and it outputs one or
two things: (1) to our CFST, via the "syntactic queue" Q1 which is
necessary for look-ahead, it sends the terminal symbol t which is the
"name' of the element just found, e.g., i for the identifier Abc or 123,
(2) if the string must have some ''semantic' information derived from it,
LEX sends both the "name" t and the string of characters to DICTIONARY.
The latter then derives the appropriate information from the string, stores

the information in the TREE STORAGE TABLE (TST) as a terminal node,

e.g., lines 0, 1, and 2 of the TST of Figure 6. 2d, and sends a reference

It

-152-

‘.DU? juo0I],

9172 uo syseydus Y3isu TSpow IITTdwoo Vv ‘(°g InITJ ;
» PU® JTIBIJ, «PU® quoxy,
| (sepou o3 (soweu
S90UIIRJOT) 93¥38)
¢ 3oegs) ¢ }o8]s|
& —) (vada)
] dd SV L 840
t .
B
M “r udondaxooﬁ AMuaoh.
ﬁm w o JI1dVL it
© (31| T OV r.nlrL ® _
[pNIRLARIAL oz8 1K ;] %0
o L] . e
o L) JTEL
B ﬁ ﬁ
o .
4 e i |
N ISITANVN) (Wsd)
OIXDIa . X317
enenb otpjquswmes szt
onendb oT3083uUks tI®
odey aundut

(F *(9p0o eoxnos) peridwoo eq o3 aduwonm] MN

T

=152~

.PU? juox], 971 uo syseuydws Yaim [spom JITTdwoo V¥V °(°*g sanzsld
» vcv cHdo.Ho. - (941 D.HHO-HH..
: A N A 2
(sepou o3 (seweu
SI0UIIVJIX) 93%3S)
; yoe3s ¢ X084 5|
. T 1 ;
3 (vada)
3 g8V LedDd .
m .
M H\ _peeus-300T Huaon o
.M w T 11 v 0000 - memmmmm-
o ' : 1
o IS99,
s L T i A :
.uv LS - JIEL q ﬁ
13 | . "
o
Y —= ‘ . .
| ISTTINVN) (Hsd) -
~ NOILOIA X331 ,
snandb opquemes 1z¢ —
snanb o0y73983uUks T
ode] andutg n\

m + °(9poo @0anos) partdwods 3q 03 EthOhm ¢

-153-

:

+0 the node (TST line number) to the "semantic queue' Q2. 'Thus, it is
‘actually’I)ICTIONARY rather than the ASTB which constructs terminal
nodes with associated "'sementics'’.

Within DICTIONARY there is a NAMELIST in which names, c¢.g.,
Abc, are stored, and references to the appropriate entries in NAMELIST
are stored in the TST rather than the names themselves. This is for
the sake of fast name comparisons and other reasons regarding "attributes’
of names which are irrelevant for our purposes.

Our CFST uses Q1 as its input tape, and LEX is activated to
refill Q1 whenever it has insufficient symbols for a read or look-ahead
by the CFST. That is, in effect, when the CEST desires to rcad or look
ahead it makes the appropriate request of Q1. 1f Ql has insufficient
symbols to fill the request, it in turn requests the number it needs from
LEX. As indicated in.the figure, LEX deposits symbols into the top of
Q1 and they are removed from the bottom via reads by the CFST. As
noted in Section 2.3 we assume that the program which loads the source
code onto the input tape assures that the last symbol is a {, so that the
compiler will not read past the end of the source code, and therefore,
Will stop after some fmite time.

The dashed line in Figure 6.3 indicates that the two queues are

"ganged", in an important sense. We have already seen that, when

1 =154-

LEX processcs a textual element with "semantics', both Q1 and Q2
receive a new item. Likew‘lse. as we shall seq in the next paragraph,
these pairs are removed from the queues simultaneously also. 'T'hus,
although at a given time thecre may not be as many references in Q2
as there are symbols in Q1 v(because sdme symbols have no "semantics'),
the order of the references in Q2 is the same s the order of their
corresponding symbols in Ql. This correspondence is seen to be
important below.

Let us refer to te‘rminal symbols with associated "semantics"
as "pseudo-terminals". We require that pseudo-terminals be distinguishable
from ferminals without "semantics', a not unreasonable restriction for
our purposes. ‘Whenever a pseudo-terminal is read from the bottom of
Ql, the latter sends a signal to the ASTB which causes it to remove the
bottom reference from Q2 and to push that reference on its stack, the
"node-reference stack'. It is this stack which the ASTB uses to hold
references ko the top nodes of pieces of a partially constructed abstract
syntax tree. Thus, immediately after the CF3T reads a pseudo-terminal,
the top refe:;ence,on the ASTB's stack is to a terminal node which corres~
ponds to-that pseudo;terminal.

Summary. In summary, the lexical translator (LEX plus
DICTIONARY, Ql, and Q2) reads the "source code' and translates it

into a string of syn‘ibbls, gome of which have associated "semantics'.

-155-

Each time the CFST reads a pseudo-terminal 1 reference to a corresponding
terminal node with ""semantics' is pushed on the ASTB's stack. l‘-lac.h‘t.iz‘nc
the CFST outputs a symbol (i.e., a directive to the ASTB to build a
nonterminal node), the ASTB pops the appropriate number of node-references
off its stack, builds the appropriate nonterminal node whose sons arve the
nodes whose references were just popped, and pushed a reference to the
new node on its stack.

In a sense, then, the language designer's problem is, in part
(1) to design a transduction grammar such that the corresponding CFS'T
issues the appropriate directives at the appropriate times, and (2) to
specify an ASTB which cons‘tructs the appropriate trees, given that as
the CFST reads pseudo-terminals the ASTB will be directed to build
corresponding terminal nodes with "gsemantics''. Of course, stated that
way the design problem sounds like a fairly "low level" task. Our next
order of business, then, is to transliterate this task of specifying CI"3'T's
and ASTBs into one which can be performed at a "high level'. This
requires that we return to our approach to language design and work
from there down to the level of tree-building directives.

6.8 Specifying Languages, Translations, Compilers

We have chosen to employ CF grammars as aids to that part of
language specifications which we describe, after Landin, as specifying
the mappmg of abstract syntax trees into strings of lexical tokens. In

more cornmon parlance: we use a CF grammar both to define a set of

g -156-

potentinlly'legal programs, some of which muy be H«ﬁu‘»mnvd oul hy context

senaitiyo checks, _@_l_l_g_l to define certain operator precedences, asMoctativites,

etc., by building into the grammar certain "structural properties”,

Unfortunately, due to the nature of CF grammurs we usually get too much

"structure' (at least from the viewpoint explained below). We therefore

propose the use of something very like an SSTG for specifying only the

amount of "'structure' we desire. We elaborate on this subject by first

considering just what "structural" information is implicit in a parse.
Consider a vax:iation. of our compiler model. Let us assume for

the moment that every textual element is sent to the DICTIONARY to

have a corresponding terminal node built from it. If the element has no

"semantics", then the node will just be a simple terminal node with no

"semantics'' and with the same name as that of the element. l'urther,

let us assume that every read by the CFST causes a corresponding

terminal node reference to be pushcd on the ASTB's stack. Iinally,

let us assume that the CFST is replaced by the parser for the grammar

at hand, and that the ASTB is simply a collection of subroutines associated

with the productionsl suqh that when the parser ou.tputé production

p, A- w, a corresponding subroutine is activated whiih pops le

references from the node reference stack, buj.lds a nonterminal node named |

A with |wl sons which are the nodes corresponding to the references just

-157-

popped, the first popped being the |w]-th son, and then pushes a refereace
to the new node on the node reference stack.

If this device is applied to some legal program, then after the
parser has made the final reduction, namely to S, there will be a single
reference on the ASTB's stack and it will be tc the top node of what is
commonly called a "parsevtree". The parse tree contains the same
information as the parse but the "structural properties" are cxplicit rather
than implicit. As an exgmple the parse tree corresponding to our string

Fi+id generated by G, is as follows.

Now, if our language designer has been careful to design into his
CF grammar all the "structural properties' he desires, then the abstract

syntax trees can be derived from the parse trees by removing any spurious

structure which may have crept in and perhaps also "recoding' the informa-

tion slightly, e. g., by renaming nodes. This follows by definition of what

we mean by the above phrase ''design into ... desires. " That is, we view
, A . _ |

-158-

this design problem ag one of constructing a grammar which generates
strings having parse trees from which the desired abstract syntax trees
can be easily derived as jus: described.

Thus we must provice the language designer with a way to specily
what information to keep, what to discard, and how to '"recode' any of the
information in the parse trees. One way he could do this would be on
node-by-node basis with respect to parse trees, and therefore, on a
production-by-productiog basis with respect to his CF grammar. In
effect, he could specify replacements for the subroutines which comprise
the ASTB so nodes would be constructed differently. For instance, for a
production like E -~ T he might replace the corresponding subroutine with
one which does nothing, so that a node named E with only one son named
T would never appear in the resulting tree. Similarly, he might change
the subroutine tor E~ E + T to one which creates a node named + with
two sons.

We place only two restrictions on the designer with respect to his
new subroutines. The first is really just a matter of the efficiency of
our compiler. 1t is inefficient _fbr us to build terminal nodes for textual
elements with no ""semantics'' and to carry references to them on the
node reference stack, because the des1gner may have no need for them
in his tree; and eveg if he does, he can easily build them himself. Thus,

he should be-aware that only references to nodes corresponding to

: -159-

pseudo-terminals and nonterminals in the right part of a given production
wi}l be at the top of the stack when the corresponding subrouiine is called.
The second restriction is more severe than is necessary, but it is simple
and it still allows adequé.te power for the purpose at hand. 'To be sure
that references in the ASTB's stack are always kept in the appropriate
correspondence with pseudo-terminals and nonterminals in the right parts
of productions, we require that any new subroutine have the same effect
relative to the node reference stack as does the one ii replaces; i.e.,

if the original subrout_in‘e, or real.y the originaj modified to abide by the
first restriction, pops n references and pushes one, then the new sub-
routine must pop n references and push oneT, unless n = 1, in which case
it may do nothing. Again we have a not unreasonable restriction, given
the application.

A proposal. 'Now, we hope the reader has not taken the above

discussion too literally. It was intended to illuminate the specification
problem associated with our CFST and ASTB. We do not, however, propose
that the designer should actually think of himself as modifying our compiler,
or necessarily, writing any subroutines, per se. Having gone through

this discussion though, it should be easy to see that the following proposal

?We might have allowed simply pop n - 1, but pop n - 1 implies that some
information is being discarded. We assume that, if n> 1 references are
popped, then a reference to a new node will be pushed such that the new
node has at’least the n corresponding nodes as sons.

* -160-

will serve as the desired "high level" specification of CL'5''s and
ASTBs.

We propose that the language designer specify a correspondence
between strings generated by his CF grammar and abstract syntax
trees merely by associating tree nodes with his productions. For

example, for the + operator we might have

E-E+T

4 rP

and for a production with no corresponding node we might have

E
E-T . |
T
Our second restriction above merely implies that for each instance of
2 nonterminal or pseudo-terminal in the production there must be a
corresponding instance in the corresponding node. Thus, we have a method
of specification rather similar to a transduction grammar. In fact, if we
settle on some conventions about diagrams like the above, i.e., if we

develop a graphical languageT for this purpose, a set of node building

Yo specify the language BASEL Jorrand (Jor 69) uses the AMBIT/G
graphical language (Chr 67) to specify the "augments' to productions. His
approach is an adaptation of Cheatham's and is similavr to but more extensive
than our proposal. '

-161-

subroutines and a corresponding SSTG can be derived from a set of such
"broduction-node pairs", such that the corresponding CI'5T and ANTR

are the appropriate ones for a corresponding compiler. Ior instance,
corresponding to the above two examples w_oﬁld be the following components

of an SSTG:

E-E4+T (ET+}

E-T . {T]
)
and a subroutine called PLUS, say, which would be activated when the

CFST cutputs + to the ASTB. PLUS would pop two references off the
node-reference stack, use them to build a node named + with two sons,
and push a reference to that node back on the stack. Of course, we have,
in effect, made an optimization with regard to the second production:
rather than have our CFST output a call to a nugatory subroutine, we have
it not output anything when the reduction T ~ E is applied.

TWSs. Ideally, then, the portion of our TWS which builds the
"front ends" of compilers would consist primarily of (1) a device which
translates a specification based on regular expressions into a LEX and a
DICTIONARY, (2) a compiler which translates a set of production-node
pairs into a set of node-building subroutines, i.e., the ASTB, and an
SSTG, and (3) a manifestation of our procedui'e (summarized in Chapter

7) for constructing a CFST from an SSTG.

-162-

Of course the latter component is useful only if language designers
find it possible, natural, and conyenient, to speéify a signi(ficant portion
of the translations of their languages via techniques similar to those we
have proposed. More specifically, the value of our results depends on
designers being able, once they have a set of abstract syntax trees in
mind, to construct an LR(k) grammar which implies parse trees from
which the abstract syntax trees can be easily derived. Of coursc, it would
be even better if the grammar were SLR(1).

Unfortunately, we know of no significant formal results in this
area. Currently, designers seem to build operator precedences, etc.,
into grammars purely on the basis of past experience and trial-and-error
methods. We have pursued the research, then, only because of empirical
evidence that some related results may be forthcoming. We hope because
so many authors (F&G 68) have found LR(k) grammars useful in this way
that there are some underlying principles which will some day come to the

fore.

Conclusion. We conclude by further illustrating the similarity of
our model to those of other aut_hors. "To do so we consider the absorption
by the ASTB of soine of the tasks conceptually performed by the ''rear
end' of our model.
As we have already seen,' the ASTB can be regarded, even implemented

as a collection of subroutines. Consider for example our subroutine PLUS

-163-

of above. It could be a nmiuch more sophisticated routine than we have
indicated thus far. For instance, it might check the two sons ot the
node it would build to deterraine if they are both constants, or of one is
zero, and if so, perform the addition, i.e., prune the tree; it might
reorder the sons in some way so that ultimately more efficient "object
code' would be generated; it might do "type-checking' ;... ; it might
even be able to perform the entife function of the ''rear end' with
respect to the node in quéstion and actually output object code.

It should be clear, then, how similar our approach is, basically,

to the approaches of Cheathamm and Feldman

-164-

Chapter 7

IMPLEMENTATION ISSUES

We seek in this chapter to illustrate the practicability of our
scheme. To do so we choose‘a particular method of implementing
our translators and present the results when tke method is applied to
a particular, practical transduction grammar. Our implementation
should be regarded only as 2 first approximation to an optimal one.
We have not labored at getting an optimal solution, but only at getting
one which would illustrate the potential of our methods. Undoubtedly,
some empirical results would be invaluable aids in "tuning up" our
implementation.

Before presenting our practical example we discuss further the
construction of C¥SMs and then we summarize our translator constructing

technique as a whole.

7.1 Constructing CFSMs
| The CFSM of a CF grammar G can be constructed from the productions
of G in a manner similar to the well known technique for constructing an
FSM from the productions of a right linear grammar. (See for example
(D&D 69) for a thorough discussion of the latter technique.) We review the
technique here because our technique is derived from it.
The productionsof a right linear grammar G, are either of the

" S amB where n and m are > 0, the a,

form A-a.,a....a OrA-a
n . 12

172

: -165-

are terminals, and A and B are nonterminalg. Wo constiruet an (B

which recognizes the strings gencerated by (5, Ly forming a Amall piece

R

of the machine for each production and then putting the piecces together,

- For the production A - a8, a the corresponding piece is

A 2 _.__DE 2 o0

that is, a path which‘ spell out alaz. .. an and leads from a state namecd

A, the left part of the production, to the terminal state. lor a production

of the form A -~ alaz. . amB the corresponding piece is

a

A 1' {}[::‘ 2 e 1 n{*>!B

that is, a path which spells out the sti‘ing of terminals in the right part
and leads from a state named A to a state named B. If we simply put all
the pieces together by identifying all states with the same name as the
same state, we get the desired FSM, althéugh it may be nondeterministic.

Now, to build our CFSM we could just apply the above procedure
to G's characteristic grammar. However, since that grammar is so

closely related to G, we can transliterate the procedure to one which will

d -166-

work directly on G. We illustate the procedure using our example Gi'
Consider the production (1) E—~ E + T. There are threc corresponding

productions in Gl's characteristic grammar, I''= E + T #1, EY = o4,

and E' = E'. The corresponding FSM pieces are as follows.

E + T #1
E'— . { >
E + T
Bt L | T!
€

In the latter case we visualize the production written E' = ¢ E' so it fits
the second-fule above. If we now combine all the pieces corresponding
to the single production of GI’ just as we would do if they were all of

the pieces, and change the result to a deterministic (piece of) FSM, we

get the following.

It is easy to see that., in general, the piece corresponding to a production

(p) A~ w consists of a path which spells out w/ﬁp and leads from a statle

N -167-

named A to the tvrminal:sta'::e, such that from éach state in the path
having a trangition under a nonterminal BB there is also an € “transition

to a sfate named B'. If all the pieces corresponding to the productions

of G are put together by identifying all states with the samc¢ name as the
same state, an FSM with ¢ -transitions results which recognizes the set of
characteristic strings. The € -transitions can be removed by well-known
techniques (again see (D&D 69)) and the machine can be made deterministic

and reduced. The result is the desired CFSM.

L

7.2 An Efficient Translator Ccnstructing Procedure

We now review our procedure for the construction of a translator
from an SSTG Gt based on a CF grammar G. The review is rather terse,
being presented as an imperative ""English program'' with simple, forward
jumps. Our purpose is to summarize the procedure as a whole and to p.int
out the general order in which things might be done in a TWS. The order
‘suggested here is largely a result of our experience with our single example
presented below and should therefore be to some extent ''taken with a grain
of salt'. Also, since the most useful TWS is undoubtedly an interactive
one, some of the decisions built-in below should probably be made variable.
Certainly, more empirical results are necessary for the devélopment of

an optimum strategy.

: '168‘

The translator constiucting procedure :s as follows. Note that

we have referericed pertinent definitions, theorems, secctions, and page

numbers.

START:

LR(0):

SLR(1):

SLR(k):

Generate G's CFSM (Section 7. 1). In the process do
the followiny for future purposes: (1) for cach non-
terminal A record in a ''nonterminal-transition
table' all pairs of states such that there is an
A-transition from the first to the second, (2) note

.
whether there are any inadequitte states and if so
which, and (3) associate with each production p a
"set of p-states', those states which have #p-transitions.
If the CFSM has no inadequate states then G is 1.R(0)
(Theorem 3.4), so go to COMPUTE LOOK-BACK (below).
For each inadequate state N compute the simple 1-look-
ahead sets (Definition 4. 2) for the transitions trom N.
If these sets are mutually disjoint for each such state,
then G is SLR(1) (Definition 4. 3) so éonvert the CI°'SM
to the SLR1FSM (Definition 4. 4) and go to COMPUTL:
LQOK"BACK.
For each inadequate state N with overlapping simple

1-look-ahead sets compute the simple k-look-ahead

sets (Definition 4. 2) for the transitions from N for the

] -169-

largest value of k for which we are willing to implement
a translator with k-symbol lcok-ahead, ('I'his value of
k is probably dependent upon the number of such states,
the implementation, and perhips the language designer,
if the TWS is interactive. Empirical results are needed
here.)

If these sets are mutually disjoint, G is SI.R(k)
(Definition 4. 3) so minimize look-ahead (Section 4. 4),
convert the CFSM to the SLRKI'SM (Definition 4. 4) and
go to COMFUTE LOOK-BACK.

-~ SLR(k): Report to the language designer that his grammar is not
SLR(k) for an acceptable k. Provide him with some
information regarding what kinds of strings need more
than k-symhol look-ahead and/or state-splitting to determine
their characteristic strings. (Empirical results are necded
regarding what information is useful to the desigﬁer.)

Then, if the designer so desires, continue with the more

complex techniques which follow.

LmRk: | For each inadequate state N which has overlapping simple
k-look-ahead sets, .choose the above value of k and a
similarly maximal value of m and compute the sets of
(m, k)-bounded-context pairs (Definition 5. 3) for the

transitions from N.

LR(k):

-LR(k):

! -170-

If these sets are mutually disjoint, G is 1.n)R(K)
(Definition 5. 4) so convert the CFSM lo the Tan Rk I'SM
(Definition 3. 5) with minimum -look-ahead (scction 4. 4),
change the "nonterminal-transition table" and the "sets
of p-states'' (see START above) appropriately so that
they reflect the new states and transitions, and go to
COMPUTE LOOK-BACK.
For each inadequate state N with overlapping context

.
pairs and for k-gs above, compute the strings © (page 123)
which access N via paths with no more than k instances
of a given cycle, then compute the look- ahead sets
corresponding to each such¢ (page 124)and each
transition from N.
If these look-ahead sets are mutually disjoint for each
such N, G is LR(k) (page Lzé)so convert the CI'SM to
the LRKFSM (page125) with minimal look-ahead
(section 4. 4), change the "nonterminal-transition table’

and the "'sets of p-states'' appropriately, and go to
\ g

COMPUTE LOOK-BACK.

Otherwise, G is not LR(k) for an acceptable k so reject

G and provide the language designer with some information
regarding what kinds of strings need more than k symbols of

look-ahead to determ:ne their characteristic sirings.

COMPUTE
LLOOK-
BACK:

XLATOR:

ADD
LOOK-
BACK:

ADD
LOOK-
AHEAD:

OPT:

-171-

Associate with each #-transition in the 1'SM a "l ook-back
set'' of statc pairs (th2 set Q on page 54), for the compu-
tation of look-baék transitions below. Ifor a #p-tmnsitiou
from state R, where production p is A ~ w, the set is as
follow's. If there is but one #p-transition in the machine,
the set is the set of pa.irs associated with A in the ''non-
terminal transition table'. Otherwise, the set is the
subset Q of A's set such that for each pair (N, M) in Q
there is a path from N to R which spells out w.

If productioa p has transducticn element ' such that

w' =¥ and y = V* and 6 = (V,i,)*, replace the #p-transition
with one under ''pop |w|, output 6" (psge 142) to a new state
R'. |

R' (page 54) has a transition under '"top N' to state M for
each pair (N, M) in the 'look-back set' associated above
with the # -transitioﬁ. Eliminate equivalent look-back

states (page 60).

Convert each inadequate state (if any) to a look-ahead state

~ (Figure 4. 2).

Optimize the DPDA by (a) deleting transitions under

nonterminals (page 56) and "pop 0, out ¢ (page 142)

-172-

:

(b) eliminating redundancies via precomputation
(page 144), by minimizing look-back, pushing,

and popping, (page 61), and (¢) precomputing junips
over cascades of look-ahead and look-back states
(page 146).

END: All done.

We emphasize that we expect most of the grammars of interest
to be SLR(1), the remainder to be SLR(k) for k = 2 or 3 (caused by only
one or two inadequate states, at that), and none to require the more
complex L(m)R(k) or general LR(k) techniques. Thus, the poor state of
our strategy regarding those complex techniques is not likely to bé a problem,
at least with respect to programming languages. However, if our TWS is
to be employed in some other application where more complex grammars are
to be expected, that strategy will require development. Otherwise, a con-
gsiderable amount of computation time is likely to be expended in deciding

whether a grammar is, indeed, LR(k) for an acceptable k.

7.3 Tabular Translators, an Interpreter

In this section we present a method of representing our translators
by means of tables, and we present via a flowchart an interpreter for those
tables, We first illustrate our storage method by using our trivial SSTG thz

then we present the interpreter. (However, the reader may find it helpful

-173-

to reference the interpre;er (Figure 7. 2 below) as he follows the description
of the storage method.) This implementation works only for 1.R(1) grammars
whose CFSMs have no multiply inadequate states. Nonetheless, it covers
our practical example which is presented in Section 7.4. We discuss in
Section 7. 6 the modifications necessary to cover the general case.

Shown in Figure 7.1 is a tabular representation of the translator
of Figure 6.1 (page 143). Note that we have stored the information regarding
states, transitions, and look-ahead sets in a STATE TABLL (ST), a
TRANSITION TABLE (TT), and a LOOK-AHEAD TABLE (LA'l'), respectively.
Each entry in the S'I“ corresponds} to a state and it has three components.
The first, TYPE, indicates the type of state and it can have one of the seven
values: READ, LA (look-ahead), POP (pop and output), LB (look-back),
EXIT (the terminal state), GREAD, and +LA, the last two of which indicate
states which push (4) their names (ST line numbers) on the stack. This
covers all types of states which can appear in our translators. In the
case of a POP, state, the second component, NUM, is the number of state
names to pop from the stack. However, in all other cases NUM is the
number of transitions from the state. The transitions are represented by
contiguous entries in the TT é.nd the third component, TTRIF, is a reference
to the topmost of these entries; i. e. , it is a TT line number.

Each entry in the TT consists of two components, SYM and STATE.

In the case of the entries for a READ or ¢4READ state and all but the last

-17! -

H

STATE TABLE (ST) TRANSITION TABLE (™)
TYPE NUM__TREF SYM _STATE

0 READ 1 0 o 1

1 4READ 2 1 1 1 10

2 READ 2 3 2 (11

3 poP 1 6 304 3

L ¢READ 2 1 4L+ L

5 POP 1 7 5) 13

6 —mm - - 6 € 14

7 LA 2 8 7+ 17

8 $READ 2 1 8 4+ 8

9 POP 1 10 9 1 15
10 POP 0 11 10 *+ 15
11 $READ 2 11 1 7
12 READ 2 4 12 € ?
13 POP 1 12 13 1 2
14 EXIT - - 1% 11 12
15 LB b4 13 15 8 9
16 === - - 16 4 5
17 LB 2 13

LOOK~AHEAD TABLE (LAT)

P4+ 1 ()
1 11 1

Figure 7,1, The DPDA~-translator for the example SST:

Gyq represented by tables; i.e., a tabular version of

Figure 6.1,

(3)

-176-

In such cades our interpreter will actually oulput komething, e ly
€, therelore our AN1H will have to have u nugatory subroutine which
will be called when this happens. Our practical translator below
has so few such POF states that we thought it not worth the cost

of eliminating the inefficiency.

From line seven of the ST we see that state 7 is a look-ahead state
with two transitions. One is actually a read transition under ?}

to state 8 and the other is a look-ahead transition to state 15. The
SYM componertt of line nine of the TT indicates that the look-ahead
set {4, +,)} is implied by line one of the LAT. Note that the LAT
is included purely for the sake of earlier error detection since, if
only strings in L(Gl) were being translated, we could be sure upon
arriving in state 7 that the next symbol would be ¢, q, +, or).
However, since our st;‘i.ng may not be in L(Gl)’ we take the |
attitude that once a symbol has affected any decision it must be

validated.

After two more comments we present the interpreter. Iirst, the

"holes' in the ST, lines 6 and 16, could obviously have been filled by

renumbering the states; however, we choose not to so that the one-to-one

correspondence with Figure 6.1 would be preserved. Second, it should be

noted that some of the lines of the TT are referenced by more than one

state. l'or example lines one and two are referenced by states 1, 4, 8,

y

=177~

:
and 11. This is an important optimization of thg use of space in the U
which we use extensively in our practical example. We have com puted
the optimization by hén.d here; however, there exists a graph-theorectic
method for doing it automatically (I&M 69).

The interpreter. Since the reader presumably already knows what

the actions of our DPDA are supposed to be and what the meanings of the
tables are, we will not elaborate extensively on the operation of the
interpreter. However several comments are in order. (1) 'The interpreter
is presented via a flowychart in Figure 7.2 ahd it is describéd as if it were
part of our compiler model of Chapter 6. (2) The variable, Stack, denotes
a large vector which we use 'as our pushdown stack. The variable, S, is
used as the stack index. The top name on the stack is always Stack (S-1).
(3) We do not have to initialize any input string or pointer to one, since

that initialization is affected 'when the lexical translator is initialized,
before the interpreter is activated. Input and look-ahead symbols are
acquired from the syntactic queue Q1 as described in Chapter 6. When Q1
is called with argument LA, the symbol in the cueue is returned as the value,
but the symbol ié not removed fro_xﬁ the queue. When Q1 is called with
argument READ it both returns the symbol as its value and removes the
symbol f;'om the queue. (4) The variables, READ, LA, POP, LB, EXIT,
VREAD, and dLA, may be thought of as denoting some distinct constant

values. (5) The va;iableq. ST, TT, and LAT, denote two dimensional

"SI03BTSUBLY IEINQE] In0 JOJ I939xdI9juUl YL 57 INTTq

Y0¥I3 0

4 4 13 3 .
==L syo(mas 4L
Rl (o1 (wastays)s)1y
S3A

—,Asa 1L >
Y 1< P31 p

.\I,QA«.: 2Ll Do

Am.::n 1 mzu

l+fatebyiy

s3A\ | |
{CAwas i)l = wepdey >

Jon

I = (won “gag)Ls+ il = =7
(1-5) 75+ wasdey

Am.::.m 1xaN)

B

((whs Ty 11) LIVBLSY %
(WoN T3) 1S-S» S

(s o) iz o
.r,.“ﬁuu«w a«u__ 14 Foyil - e A&ﬁ.m ».xwzv 1+F311 > uiL
mu»/ \oz mwrr/ \oz
Aﬁz»mn?mwtt. = Yﬂtnmfv Acimﬁ?m...t L1 = S v
S o
o~
= (woN STs) LS + Ll > 1 1= (wnN C2™as) LS + ol » Yo7
(v1) 7O » b5y (Qv33) 1O + pqth
| 1+s=+S [+s =S
T3S +(S)H%8 w3S +(5) y™38
vt Vi avayt avay 81
. i)| L 1 1
¥3 7y pe—1ixi < 3= (3dALC s) LS
(42311 “2p35) Ls » PuLL -ﬂx o»fuiL
s O + 73§

Ji¥lS LX3IN T.v
h (FLvssChyis) 1L - ?xe$

1YV1S

=179~

: , :
arrays which represent tables such as the ones in Figure 7. 1. The

variable, State, denotes the current state, which is represented by an S'I
line numbér. The current reference is kept in ‘TTRef. We can view

TYPE =1, NUM = 2, TTREF = 3, SYM'= 1, and STATY = 2, so that, e, g,
if State = 10, ST(Sta_te, NUM) has the value stored in the tenth row, second
column of the ST, (6) ASTB j.s, of course, the ubstract-syntax-tree builder

of Chapter 6.

7.4 A Practical Example

The programming language PAL (Pedagogic Algorithmic Language)
.

(Eva 68, Eva 69, W&E 69) i3 used as a vehicle to teach some of the
fundamentals of programming linguistics to unclergradugtes interested in
computer science at the Massachusetts Institute of Technology. It is one
of the more progressive languages in existence today, being a decenden.
of ISWIM (Lan 66). In a sense PAL ié a generalization of ALGOL 60 (Nau 63);
it has the general functional capabilities of LISP (McC 65), generalized
structures, and generalized jumps.

PAL's Grammar. Of course most of this is irrelevant for our

purposes here. It is the .syntéx of PAL in which we are interested. Since
the formal definition of PAL'specifies the set of legal programs as a CF
language, we do not have to remove any ''context-sensitive features' from

the syntax. The syntax is similar to that of AL GOL 60, but it is considerably

-180-

!

"cleaner' and it is unambiguous. It is specified via modified Rackun
Naur Form (BNI) which, for our purposes, ir just a shorvthand way of
writing C I productions.

As we noted above; ?he PAL grammar was designed, for the sake
of pedagogy, to be unambiguous, small, concise, and useful as a syn-
tactical reference. Except for the fact it was designed to be unambiguous,
it can truly be said that the grammar was not designed to be within the
domain of our parser constiructing technique. And yet, the grarnmar turns
out to be SLR(1).

A slightl.y modified version of the PAL grammar is presented in
Table 7-1 where nonterminals are denoted by one or two capital letters,
pseudo-terminals by three or more capitals, and other terminals by strings
of small letters and/or special characters. The grammar differs from
real PAL in several respects, which, for our purposes, are minor: (1)
it includes new constructs which the author has proposed be added to PAL,
(2) the original uses "regular expressions' in some alternatives to indicate

nonassociative operator4s, e.g., DA ::= DR {and DR} c:;,‘ and we have changed
these in an obvious way to get a strict CF grammar which generates the
same strings,' (3) the original grammar has the definitions of CONST and
RLN built-in, whereas Qe have moved them into the lexical domain, and

(4) the operator $ here has different precedence relative to other operators

than it has in real PAL.

-181~

(0) S 1:= pF P4
(1) P :3= PL | E
(3) PI, ::= def DPL | def D
(5) BE iz let DinE t fnVB . E | LW
(8) EW := EV where DR | EV
(10) EV = valof C | C l
(12) ¢C :e= CL 3 ¢) CL
(14) CcL ::= NAME : CL | CC
(16) cCc ::= test B 1fso CL ifnot CL { test B ifso CL ifnot CL

i iIf Bdo oL | unless Bdo CL t while k do CL

t{ until Bde CL t CB
(23) CB 1= T =T ! gotoR | res T t T
27) 7T s:= TA, T 1 TA ,
(29) TA 1:= TA aug TC § TC r comment: “bar” really
(31) TC ::= B => TC bar TC | TE should be 1" but if it
(33) TE ::= $ R t 3B , wers the BNF would

L read .incorrectly.

(35) B 11=* B or BT 1 BT '
(37) BT ::= BT &BS t BS
(39) B3 ::= not BP t BP
(k1) BP ::= ARLNA I A
(43) A = A+ AT ! A=-AT ¢ + AT & -~ AT § AT
(48) AT ::= AT * AF | AT / AF | AF
(51) AF 1:= AP ¥* AF | AP
(53) AP ::= AP % NAME R | R
(55) R s:= RAN | RN
(57) BN ::= NAME ¢ CONST 1 (E) t [E]
(61) D ::= DI within'D | DI
(63) DI t:= DI inwhich DA | DA
(65) DA s:= DR and DA | DR
(67) DR ::= rec DB 1 DB
(69) DB ::= VL=E 1 NAMEV=E 1 (D) t [D]
(73) V s:= VBV) VB
(75) VB -:1:= NAME ¢ (vL) ()
(78) VL ::= NAME , VL | NAME

Table 7-1, The PAL grammar. It has 48 terminals, 3 of i
which are pseudo-terminals (NAME, CONST, and RLN), 32
nonterminals, and 80 productions. The grammar 1is SLR(1).

-182-

Some statistics pertinent to the PAL grammar are as follows. I
has 48 terminals, 3 of which arc pseudo-terminals, 32 nonterminals,
and 80 productions. The corresponding CFSM has 157 states, 26 of
which are inadequate, bu.t none of which are multiply inadequate, and 61
of which must push their narnes on the stack during parsing.

Since our interest here is primarily in PAL's CFST, we concentrate
on its transduction grammar rather than the production-node pairs. The
SSTG is implied by PAL's output grammar which is presented in Table 7 -2.
The output grammar is our own concoction; heretofore, the correspondence
between PAL programs and abstract syntax trces has been specified
informally by PAL designers.

When the SSTG is viewed as a specification of the CI'ST, the
pseudo-terminals should be regarded as nonterminals; however, if the
outputs from the CFST and the lexical translator together, as seen by the
ASTB, are being specified, the pseudo-terminals should be regarded as
terminals. (Recall the restriction discussed on page160 and the summary
of the interactions of the components of our compiler model on page 154).

In most cases the abstract-syntax-tree node corresponding to a
given production can be determined from its transduction element w' as
follows: if w' consists only of a nonterminal, there is no node, or if only
a pseudo-terminal, then a terminal node with ''semantics', of if w' = ¥

where ¥ is a string of nonterminals and pseudo-terminals and 6 is a

: - =183~

(0) S ::= P

(1) P 1:= PL § E

(3) PL ::= D PL def | D lastdef

(5 E ::= DElet | VBEAX | EW

(8) EW ::= LEV DR where | EV

(10) EV 1= C valof | C

(12) ¢ i:= CLC3:; | CL

(14) cCL = NAME CL : § CC

(16) ccC = B CL CL test-t | B CL L test-f ! B CL if
! B CLunless ! B CL while ! B CL until t (B

(23) ¢CB 3= T T = | Rgoto | T res |

(27) T t= TAT, | TA

(29) TA ::= TA TCaug t TC

{31) TC ::= B TC TC test-t | TE

(33) TE ::= R$ 1 E

(35) B = 8 BT or | BT

(37) BT ::= BT BS & | BS

{39) B3 ::= BS not | BP

(b1) BP :t= ARLNATINn | A

(#3) A 1:= AAT + | AAT - |} AT pos ! AT neg t AT

‘48) AT ::= AT AF *# | AT AF/ | AF

(51) AF s:= AP AF ** i AP

{(53) AP ::= AP NAMER % 1| R

(55) R 3= R AN ¥ | BN

(57) BN 1:= NAME 1 CONST { E | E

(61) D s3= DI D within 1t DI

(63) DI 3= DI DA inwhich | DA

(65) DA ::= DR DA and | DR

{(67) DR ::= DB rec | DB

(69) DB ::= VLE= | NAMEVECSff | D | D

(73) Vv 1= VBV br | VB

(?75) VB = NAME | VL t ()

(78) VL :3= NAME VL vl | NAME

Table 7-2, The output grammar for PAL.

-184-

rerminal, the node hus name 6 and [w' =1 5ons which are the nodes
corresponding to the symbols in ¥ and in the sime order. Pxceptional
cases are trivially different and of no importance here, since they concern
the node-building subroutines of PAL's ASTB, but not its CI'ST.

PAL's CFST is presented in Figure 7.3 where the ST spans the
first two pages, the TT spans the first three, and the LAT is shown in the
fourth page. In the latter case only the numbered lines are to be considered
in the LAT; we have included the extra lines to indicate for each nonterminal
A the set F,II,(A) sfor the thoroughly interested reader.

Space-efficiency:. For lack of a better choice, we define the space-

efficiency of a translator T corresponding to an SSTG Gt to be the ratio of
the space necessary for storing Gt to that for storing T.

Let us compute a rc'Sugh estimate of the space-efficiency of PAL's
CFST. The ST contains 172 entries. There are seven possible values for
the TYPE component, requiriﬁg three bits, values as high as 18 in the
NUM component, requiring five bits, and values as high as 254 in the TTRIW
component, requiring eight bits. Thus, the ST x;equires 172%(3+5+8) - 2752
bits. The TT‘conta’ins 255 entries. The largest values in the SYM and
STATE components are 154 and 171, respectively, requiring eight bits each.
Thus, the TT requires 255 *(8+8) = 4080 bits. 'The LAT requires 16 rows,
each with 48 binary entries, oz; 768 bits. In total the translator requires

7600 bits, ,or-'238 words at 32 bits per word, of memory space.

VOO FLWNE=O

STATE TABLE
TYPE NUM TTREF

READ 1 O
¢READ 19 1
READ 1 22
POP 1 254
LB 2 252
{READ &4 23
YREAD 4 23
READ 2 27
1B 7 29
LA 2 35
VREAD 15 5
PCP 1 251
LA 2 37
LA 2 39
LB 10 L1
VREAD 7 14
READ 7 ., 14
VREAD 7 14
JREAD 7 14
$READ 7 ik
POP 1 250
LA 2 51
VEEAD 4 17
{READ 8 13
LA 3 33
POP 1 249
LA 3 56
LB L 59
{READ &4 17
LA 2 63
LB 2 65
YREAD 6 15
LB 2 67
LA L 69
JREAD 4 17
\READ &4 17
LA 3 73
LB 5 76
LA 3 81
VLA g 17
1B 84
LB 5 88
+READ 18 2

" Figure 7.3, PAL's CFST (through

-185-

TRANSITION
TABLE
__SYM_ STATE
F 1
def 5
let 6
n 7
valof 10
NAME 13
test 15
if 16
unless 17
while 18
until 19
goto 22
res 23
3 28
not 31
+ 34
- 35
CONST 41
(L2
L 43
NAME = 41
10 167
{ b
rec L9
NAME 52
(53
C Sk
NAME 99
(- 58
1 L
42 89
96 136
104 142
105 143
138 155
where 59
1 8
$ 61
2 161
: . 62
11 L1
62 111
1112 146
113 147

STATE TABLE TRANSITION

TABLE
TYPE NUM TTREF _SYM ST4TE
POP 1 93 |115 149
‘LA 2 94 116 150
LA 3 96 " |117 151
POP 1 248 {118 152
LA 2 99 156 159
JREAD 3 24 {157 160
LB 2 101 |--- 12
READ 1 103 |:= 69
Lo L 104 |3 14
{READ 4 23 |, 72
VREAD &4 23 |aug 73
READ 1 108 |4 162
READ 1 109 |=> 70
LB 3 245 jor 75
¢READ 2 110 |5 27
$READ 4 23 73 121
POP 1 112 |74 122
$READ 15 5 153 158
YREAD 15 5 |~-=- 24
YVREAD 3 113 |& 77
LB 2 243 |6 163
RELD 2 115 |75 114
READ 2 117 |-=-=- 29
READ 2 118 |77 123
READ 2 120 |~--- 30
yREAD 8 13 |RLN 79
$LA 5 122 |+ 80
POP 1 127 |- 81
VREAD 8 13 |7 164
YREAD 8 13 |* 84
VREAD &8 13 |/ 85
VREAD 7 14 |8 165
VLA 5 128 |34 82
VREAD 7 14 |35 83
POP 1 133 |80 125
JREAD 6 15 |81 126
VREAD 4 17 {=-- 36
AREAD &4 17 ju# 86
LA 3 134 |Z 87
LA 3 137 |9 166
VREAD 4 17 |22 70
YREAD 4 17 |28 76
YREAD 4 17 [130 154
READ 1 140 |=--~- 39

page 188).

T 7 -186~ 1
STATE TABLE ~ TRAN3IITION STATE TANLE THANG PP TON
TABLE ' TANLL
TYPE NUM TIREF SYM STATE YOl NUM CPLHEE G YM syl
88 V'EP’OP -1 1 39 88 134 |pPOP 1 180 |« B
89 |READ 1 142 |70 88 135 |POF 1 1381 |/ 85
90 |READ 1 143 |76 88 136 |pOP 1 182 |8 132
91 |POP 2 1b4 jish 88 137 |PoP 2 183 |« 84
92 [VREAD 4 23 |--- 40 138 |VREAD 18 2 1/ 85
93 WREAD 4 23 |e 171 139 |POF 1 184 |8 101
94 [4READ 4 23 |def 5 140 |POE 1 185 |NAME 130
95 |POP 1 145 }o 168 141 |por 1 238 |¥» Lo
96 |{READ 18 2 Jwithin 92 142 |pPOP 2 186 |) 131
97 WREAD 2 110 {inwhich 93 143 |POP 2 187 1 131
98 READ 1 146 |12 169 144 {POP 1 188 |der 100
- 99 LA 3 147 land 94 ' 145 |POP 1 237 |rec 50
100 |LB 2 241 113 170 146|READ 1 189 |= 138
=01 |POP 1 240 |59 109 147 |READ 1 190 |NAME 99
102 READ 1 150 f=-- 48 148 |LB 3 234 |(58
S03[READ 1+ 151 |= 96 149 |POFP 2 191 |a4 64
104 [4READ 18 2 1, - 97 150|POF 2 192 |) 140
105 §READ 18 2 |NAME 99 151 {POF 2 193 (] 140
106 [READ 1 152 {(38 152 | POF 2 194 |) 144
107 |LA 2 153 l1is 148 153|yREAD 7 13 |, 97
108 |pPOP 1 155 |in 104 1shk|LAa - 5 195 |13 57
109 |POP 1 156 |, 105 155|POP 2 200 () 99
110 |POP 1 157 |[NAME 107 156|VREAD 15 5 |where 8
111 |POP 1 158 |) 108 157|VREAD 15 5 13 9
112 |JREAD 15 5 }jvalof 9 158|POP 2 201 |: 12
113 |§READ 15 5 |ifso 112 159|PoP L 202 |& 77
114 |1A 2 159 |ifnot 113 160|POP L 203 |6 L7
115 [§READ 15 5 lor 75 161]LB 3 204 |:= 14
116 WREAD 15 5 |do 115 162|1B 3 207 |, 21
117 |VREAD 15 5 |do 116 163|LB 6 210 |ang 24
118 |§READ 15 5 Jor 75 164|LB 2 216 |var 153
119 |POP 1 161 |do 117 165|LB 2 218 |& 29
120 |POP 1 162 |do 118 166|LB L 220 |+ 80
121 |POP 1 122 or 75 167} POP 1 224 |- 81
122 |READ 1 164 |CONST 41 168]|Por 2 225 |7 2
123 |POP 1 165 |(42 169]LB 5 226 |* 8
124 LA 3 166 ¢ 43 170|LB 3 231 |/ 85
125 |LA 3 169 |NAME b1 171{EXIT - - |8 20
126 |LA 3 172 |3 1k5 172 * 84
127 |POP 1 175 |res 114 173 / 85
128 |POP 1 176 |CONST . 41 174 8 11
129 |POP 1 177 K T 42 175 * 811 |
132{92240 & 174 - B3 17% y/ 28
O 1 172 |sAME L 177 " ¥
i3z |pOP 1 239 |5 141 178 ¢ 1
133jrOP . -1 179 Inot 30 179 wilhin 6

- | Pigure 7,3, Continued, ,

Y "'187" 1

TRANSITION TABLE TRANSITION TABLE
. _SYM STATE SYM _STATE
180 [Tnwhich L& 218179 120
181 jand 170 219 j-=- 33
182 |= L 22084 127
163 vl 148 22185 128
184 tbv 57 222 |8¢ 129
185 |¢€ L 223 ===~ 37
186 |let 8 224 {e 38
187 M 8 225 |lastdef 100
188 |¢ 99 22615 bs
189 |ifnot 156 22716 55
190 jifso 157 228 |52 102
161 jif 1L 229 |54 103
192 junless 14 230}92 133
193 jwhile 14 231193 134
194 juntil 14 232 {94 135
195 |CONST L3 233 |==- L6
196 |(L2 234 |5€ 106
197 |C 43 235197 137
198 |NAME L5 236 |=== 51
199 |10 3 237 |goto 14
200 |ff b 238 |3 27
201 |testT 24 239 l¢ 33
202 |testT’ 14 240 [neg 33
203 [testF 14 241 11 2
204 |10 60 242 |b5 91
205 |61 110 243 |52 98
206 |=== 9 244 |99 139
207 123 71 245158 106
208 |69 119 246 197 137
209 |72 120 247 |--- 51
210115 63 248 lor 26
211 (16 65 249 |r1 32
212 17 66 250 |+ -~ 33
213 |18 67 251 |- © 33
21k |19 68 252 Jug 95
mE % B i

c <l 25 38
217 |w== 32 QE_

FAEWre 7,3, Continued.

'S g

Tw

[0 NV, }

-188-

LOOK=AILIEEAD 'PANLER

o + () ..*;.’
~ 2 0 (o] 23] £
Ssf BEoTy 884y, 13 5%
T g B e P T @ O!:.‘+*l*"vu3tﬂll
) o if"‘i'g~
Y o 070 i s g
R IEEICER: < - L E
xgﬁ.gnﬁzézﬁo-uﬁaml\mOAnMn
1
1. ' oo
11 1 11111
111 . . 1 1111
111 1 o 11111
111 1 s - 11111
111 1 1 11 ; 111111
111 11 11 : 11111
111 11 11 . 11 1111
111 11 11 1 | 111111
111 11 11 1 11 | E i1 1111
111 1.1 11 i o111 | 1 1111
111 11 11 L1111 11111
111 11 111 1 1111 1§ - 1 1111
111 11 111 1 1111 11 ; | 1 1111
111 11 111 11111 11 ‘(. 11111
111 11 111 1 1111 11 :.|; S 101111
111 11 111 1 1111 11 112} - "1.1111
111 .11 111 1 1111 11 11111 , 11111
111 11 111 1 1111 11 11111 © "1i1111
1171 11 111 1 1111 11 1111111, 1171111
111 ‘11 111 1. 1111 11 1111111111111111
111 11 111 1 1111 11 1111211111111111
11 1 11
11 1 1 111
12 1 1 111
11 1 1 1111
11 1 11111
| . 1
1 11 1
1

P re

’ Continued.

PL
E

EW
EV

CL
cC
CB

TA
TC
TE

BT
BS
BP
AT
AP
RN
DI
DA
DR
DB

VB
VL

.I. -189-

Now there are 80 distinct symbols necessary to store the SS'T'G,
thus requiring seven bits each. If for each production p, A~ w, we
agsume we need store only |w]|+2 symbols, one for the left part,
|w| ior the right part, and one for an output terminal, then it takes 342*7 =
2394 bits = 75 words to store PAL's SSTG. Thus the space-efficiency of
the PAL translator is a respeciabie 75/238 = 31%. It seems clear that
this figure could be increased somewhat by bringing to bear some coding
tricks; however, it is not our purpose here to develop an optimal imple-

[)
mentation as regards either space or time. In fact, our scheme is already

competitive with existing schemes, as we show next by comparing it with

one which is well known to be fast and efficient (F&G 68).

7.5 Comparison with a Precedence Scheme

For thef sake of simplicity we compare parsers rather than !
translators, and we use the PAL grammar wh'en we need pertinent statistics.
Ih Figure 7.4 we present a flowchart describing a variation of a "Simple ;
Precedence" parser (W&W 66) which is compatible with our terminology |
and compiler model. We do not detail the actions of the parser but only
note that it makes read-reduce decisions and locates reducible substrings
by looking up "precedence rel;.tions" in a precedence matrix (PM), and it
determines which produéti_.on, with left part A and output symbol OutSym,

is applicable by searching (via Search) the set of productions to find one

with a t‘ig};t part that matches the reducible substiring.

«190-

(START)

S-,mlut’ <+ Q1 (ReaD)

Rin <+ PM (Stack (5), Symiet)

S= 0
Stack.(S) « Q1L(READ)
E SeS+1
S'L‘odz(s)4‘5rn/~(

PG ey C I s

L =i

YES

-‘.M<PM(S&J¢({), Stack () =€ >

YES No/ \ YES
L +G-1 . ERROR| { Symdel = 4>
J+S ys's/

A, 0utSywm * Ssarch (Proda, Sto.okg)...St.tk(sE]—’c‘"—}"‘“-—‘ Coll ERROR

S«
Stack (s) ~ A

Call ASTB (OwtSym)

Figure 7.4. The interpreter for a "Simple

R

_Precedence” parser,

-191-

Space., Iach entry in the PM can have one of four values, -+, °
>, or ""none", so two bits are required for each. 'T'he rows and colunmins
of the PM correspond to thé symbols in the grummar, I'or I’Al there
are 80 symbols so the size of the corresponding PM would be
80*80*2 = 12, 800 bits = 400 words. The size ¢f the production table with
output symbols would probably be greater than what we calculated above:
75 words. Thus, the whole parser would require greater than 475 words,
or twice as much as our translator above. Of course our parser might
he somewhat larger than the CFST above because of the extra output
symbols, but probably no more than 15% larger. A more significant
difference would be that our interpreter would be larger than that for the
precedence scheme, perhaps by an extra 50 words or so (an ''educated
guess''). . On the otﬁer hand, the amount of space-necessary for the stack
during execution for our scheme would be less than that for the PM scheme
(see page 62). In conclusion, then, the two schemes are roughly com-
parable in space usage.

Time. Letus now coxhpare the speeds of the schemes. I'ollowing
this parggréph are four lists of statements which must be executed in the
performance of readé and reductions by thé two schemés. To the left 61‘
the statements we indicate very rough estimates of the time required to
execute each sté.tefnent 'individually (éenerally one time unit per statement)

and cach group of statements. The groups comprise stutements which

.

-192-

:
are executed variable numbers of timeé dépending on the production or
state involved. We weight these groups according to statistics derived
from PAL's grammar, CFSM, or translator, as appropriato,‘ and we

indicate the pertinent statistics to the right of the statements.

Precedence Matrix (PM) read:

Symbol <« Q1(READ) we count only the store; no lexical
R1ln <« PM(Stack(S),Symbol) analysis
Rln = > ? :

Rln = = ?

Symbol = 4 ?

S « S +1

Stack(S) <« Symbol

QO N

time units total

CFST read:
1 ST(State,TYPE) = (V).. AD or (¥)LA ?

1.5 {1 Stack(S) « State }* 61 4READ and (LA states
1 S « S +1 - 2 (V)READ and (V)LA states
1 Symbol « QL(READ)
1 Last « TTRef + ST(State,NUM) - 1
6.8 1 Symbol = TT(TTRef,SYM) ? wl,7
* 1 TTRef « TTRef + 1
1 TTRef > Last ?
(# (1inear search) # avg. no, of read translitions
from (4)LA and ({)READ states)
1 State « TT(TTRef,STATE)
1 TTRef « ST(State,TTRef)

12.3 time units total --- about 1.5 times as long
as & PM read

r -193- o]
PM reduce: " '
0 Symbol <« QL(READ) happens infrequently
2 Rln-e PM(Stack(S),Symbol)
1 Rln = >2?
l1 14535 -1
1 j= S
. K =& ?

9,2 i ?isf“’“” Stack(1}) = < » 2,3 Symbols

1 141 -1 r1ght part
6.6 A, OutSym - Search(Prods,Stack(j)...Stack(i))

(1 time unit per store + 2 rer each symbol in right part)
1 S=e
] Stack(S)-= A

1 ASTB(OutSym) ,
23, time units total

CFST reduce: |
[1 ST(State,TYPE) = LA ? ‘[

.{1 Sta.ck(s) <« Statel, g% states
1 S<'s +1 y)LA "
LASymbol = Ql(LA) '
Last «+ TTRef + ST(State,NUM) - 1{ 26 (J)LA states

LASymbol = TT(TTRef,SYM) ? g% " *80 productions
»*

3.61
TTRef q- TTRef + 1

TTRef 2 Last ?

(avg. no. read transitions_/
from (¢)LA states) &

. 2 LAT(TT(TTRef,SYM),LASymbol) =1 ?

0.6 {1 ST(State,TYPE) POP ? ¢ #48/80 POP states/productions

1 S« S - ST(State,NUM),

1 cCall ASTB(TT(TTRef SYM))

1 ST(State, TIPE) = ?

1 TopState = Staok(s-l)

1 Last« TTRef + ST(State,NUM) -~ 1

1.84 (1 TopState = TT(TTRef, SYM) ?

1 TTRef-+ TTRef + 1 *zg

1 TTRef 2 Last

(avs. no. transitions from LB

- staft

8,0 time un]

P

«22 LB states
0 productions

In conclusion, we see from the above that on the average the PM

scheme reads symbols about 1. 5 times as fast as does ours, but our scheme

makes reductions about three. times as fastas the PM scheme.

|

2 -194-

Of course, our estimates are very rough, but we believe it is clear frora

this that the two schemes are also roughly comparable as far as speed

goes.

7.6 Variations, Extensions

There are, of course, many ways in which our scheme could be
speeded up. We mention two here because they seem particularly
appropriate. First, the re:d states with many transitions could be
implemented as ''transition matrix (TM)" look-ups; i. e., such that, if

s
the next symbol is Symbol and the current "TMREAD" state is State,
then TM(State, Symbol) would be the next state. This would substantially
increase the average read speed at some storage cost. Since for PAL
there are 18 read states with 10 or more transitions, the cost would be
about 18%48% = 6912 bits = 216 words extra to implement those 18 as
"TMREAD'" states. Second, whether or not the first method is used, the
ST and TT could be compiled rather than interpreted. In the nature of these
things we might expect a factor of ten increase in speed for a factor of
four increase in spé.ce, say. Since this would still leave us with a
reasonable amount of space usage, it would represent a reasonable space-
time‘ trade-off for our purposes. The main point here is that our implement-
ation method is flexible. |

Extentions. We next discuss the modifications to our implementation

methods necessary to cover multiply inadequate stales and k-symbol look-ahead. -

3

o -195-

Our intent is merely to indic ate the cage with cur method can be edtomded
to cover these "exceptional cupon, "

Multiply inadequate states. In general, the multiply inadequate

state may have several read transitions and several look-ahead transitions.

For example, we might have the following:

One way to implement such a state would be first to implement it as we did
above but with pnly one of the look-ahead transitions and then to store the
extra look-ahead transitions in the TT immediately below the other transi-
tions as follows. For each transition add two entries to the TT: (1) the
first having an irrelevant STATE component' and a special symbol, *MORE*,
in the SYM component which has a representation distinct from all other
items which can appear in the SYM component, and (2) the second having

a regular (SYM, STATE) pair corresponding to the transition in question.

For the above state the table entries would be as follows.

~196-

STATE TABLE TRANSITION TABLE

TYPE NUM TTREF _SYM STATE

a . N

M (3)LA 3 o= t 0

rl 4

MORE# -———

r2 Q

rl, r2, and r3 #*MORE* -——

are references r3 R
to the LAT

It should be clear that we can irnplement any multiply inadequate state in
this way. Of course our interpreter will have to be modified to be ready
.O

for such states. The modification is trivial. It concerns only the bottom~-

most decision box in F.igﬁre 7.2. The NO exit must be changed as indicated

next.

NOC LAT (TT(TTRef, SYM), LAS ydel)=L>

1

Gt £RROR [+ N0 r(Trraget 5 SYM)anmoreYE S rreugeTrRYe2

Look-ahead for k> 1. To cover look-ahead of more than one
symbol, we could add a new ?ype of state, namely LAk for "look-ahead
at the k-th syrhbol. " This would require an additional exit point from the
topmost decision box in Figure 7.2. We illustrate our proposed modification

via e;_@mpré. ‘Suppose we want to implement the following statc.

-
!

K -197-

v {abc, ¢}
‘M)—-~———-D(:)

{abd, f}

What we propose can be represented diagrammatically as follows.

{e}

{1}

{a}

We intend to imply by this diagram that M is a look-ahead state with

three look-ahead transitions of the normal type, that Q has one look-ahead
transition but it indicates a comparison with the second symbol ahead rather
than the first, and that R has two look-ahead transitions which investigate
th.e third symbol ahead. State M could be implemented as we have just

discussed. States Q and R would be LAk states with tabular representations

as follows.

STATE TABLE | TRANSITION TABLE
 TYPE__NUM TTREP o SYM _ STATE
Q LAk 1 °/z’—-— b R
LA3 -

! P

! -198-

The corresponding section of the interpreter would be as lollows, where
we assume that, when Q1 is called with argument LLAn tor some apecilic
n=23,..., it returns as value the n-th symbol in the queue, counting

from the bottom, but it does not change the queue.

{ ST(Stala,TYPE)=? >
L;Ak

LAS rJ.C - QU(TT(TTRf-1,5YM)
Ladt = TTRaf+ST(Stake, NUM) - 1

L LASymbel = TIT(TT&-l,s"'M))
Noy \YES

TTRefTTRf+1 Q&Ex‘f s'rATE)

!

N YES
e Trred> Lot >+ Gl EFROR

Note that if we use the variable Symbol rather than LASymbol above, the
flowchart from the line beginning Last... down is exactly the same as the
counterpart in the READ s_ec.tion. Thus, the modification requires only
one new exit from the TYPE-test box, one extra statement, and a transfer
into the READ portion of the interpreter.’ The only Ques‘tion remaining, then,
is how do we deduce the new states and their interconnections ? W,e believe
the answer to this questibn is obvious so we do not treat it here.

Thus, we have shown that "exceptions'' like multiply inadequate states

and k-symbol look-ahead states can be implemented with little change to our f

-199-

interpreter and with changes which do not affec:t the speed of the interpreter

for "normal" states. We have, then, a very flexible method.

! -200-

Chaptér 8 ’

CONCLUSIONS

8.1 Future Development

Before our results will be ready for actual incorporation in a
TWS several variations should be investigated as possible improvements.
These variations concern computational methods, strategy, diagnostics,
and trarislawr-im_plementa.tion methods.

Comsutational Methods. We believe, for instance, that Knuth's

parser-generating technique (Knu 65) could be adapted for use in the
generation of CFSMs. Specifically, we believe that the set of all possible
"state sets' generated by his algorithm for grammar G and k - 0 is
isomorphic to the set of states of G's CFSM. Furthermore, if the latter
is true, the "bit matrix" techniques of Lynck (Lyn 68) can probably be
used for the very fast géneration of CFSMs. We suspect that the resulting
method would be faster than our piecemeal method in Section 7. L.

Another possible area of improvement regards the computation of
look-ahead sets and context pairs and the attendant strategy. We do not
think this will be a critical issue for programming languages because we
expect most of the related _grammars to be either SLR(I) or very nearly
SLR(I) However, for the sake of generahty, exceptional cases, and
the poss:.ble use of our TWS to build systems for more general ''syntax-
dlrected" computations, it w,ould be reasonable to research further in this

area.

-201-

St}'ategy: Of course, the obvious thing lo dgi' in complex cases
is to make the 'T'WS interactive so the language d‘uaignm'. who presumably
knows the grammar best; can assist in determining strategy. Il may
be reasonable, however, to provide more (or other) than the three
methods for computing }ook-,ahead sets that were provided above. Con-
veniently, our technique as a whole is amenable to other such methods;
i.e., we do not care how look-ahead sets and state splitting are computed
as long as they result in a correct parser.

Computation of look-ahead, state-splitting. With regard to this

area of possible improvement we briefly list three methods which should
be investigated.

(1) Especially if Knuth's algorithm is adapted for the generation of CFSMs,
it should also be investigated for possible adaptation for computing simple
i-look-ahead sets. This Would require the separation in his technique of
the computations of look-ahead sets and state-splitting, \;vhich we believe
to be easy to do. Actually, we believe the resulting technique would cover
slightly more than the SLR(I) grammars, perhaps with little or no more
complexity (computation time) than our SLR(1) technique. We do not
believe, ixowever, thé.t .the téchnique woulci be nearly as fast as our

SLR(k) technique for k> 1 because we see no simple way of using it to

compute look-ahead for a single state.

{

-202-

¢

(2) Lynch (Lyn 68) has a fast technique for computing left and right
context in which each symbol is8 computed independently of all others.
This technique should be investigated as a possible prelude to or

replacement for the computation of corresponding context pairs.

(3) Finally, for the general LR(k) case the look-ahead sets might be

most easily computed by sirnulation of the parser in a nondeterministic
manner; i. e., for each left context ¢ see if @By is a canonical form, where
By € V; and |Bl| <k, by deten;'nining if there is any sequence of actions

by the sta..ck algorithm wixich will cause pf to be read. Of course it must
be proven that this method wouid result in the appropriate look-ahead sets.

Diagnostics. A related area which needs investigation concerns

diagnoistic messages to the language designer. What information would

be useful to the designer when his grammar is found not to be SLLR(k) or
LR(k)? Presumably, in such cases the designer has inadvertently submitted
an ambiguous grammar, since we expect all of his unambiguous grammars to
be SLR(k) or at least LR(k). The diagnostics‘ should, of course, lead the
designer to:find the reason why the grammar is ambiguous.

Implementation methods. Finally, there are several possible ways

in which our translator implementé.tion could be improved. First, a way
of implementing in a reasonable amount of space states which jump over
long cascades of look-ahead and look-back states is desirable. We suspect

that these can be implemented by using bit matrices in a manner similar to

-203-

precedence techniques. Second, similar bit-mratrix techniques may also
be useful for speeding up read states with many transitions, rather than
using transition rﬂatrices. Third, we believe that the obvious way (for
most applications) to implement the state and transition tables which

remain after the above modifications is to compile them into machine code.

8.2 Conclusions

We believe that we have demonstrated the validity of our thesis.
We have a practical translator-constructing technique which grows in
complexit‘y as it discovers the complexity of the grammar at hand, and it
generates practical translators for SSTGs which are based on LR(k)
grammé.rs and which partically specify useful, readable programming

languages. Thus we havé a basis for a TWS in which the key feature is

l
flexibility.

First and foremost, we have given the language designer flexibility
in the design of his grammar; From the beginning it has been our desire
to get a method which would accept a CF grammar as it was designed as
a syntactical reference for a language, with no modifications. That is,
we waﬁted a method that would accept a "humanized' version of the syntax.
To the extent that unambiguity is considered a desirable trait of such a
reference, we believe we have such a method. This belief is founded on

the intuitive grounds that, when a designer sets out to define part of the

=204~

syntax of a programming language via a CI' grammar, he will just nalurally
come up with an LLR(k) grammar, and in fact, probably an S1,R(1) grammuar.
Second, we have given the implementor of the TWS [lexibility.

| He has the flexibility to build-in whatever strategy is appropriate for the
purposes at hand for deciding whether grammars are LR(k), and he can

! leave some of that strategy to be decided by the language designer. lle

! also has the flexibility not only to implement each translator as a whole

' in a variety of ways, but also to implemeht particular states in special

ways. In fact, see (DeR 68) for a proposal concerning the use of different

kinds of parsing techniques on different parts of a grammar.

8.3 Future Research, Extensions

The area of future reséarch most important to our results is that
of language design and specification itself. The value of our results is
someyvhat limited until there is developed a useful, unified methodology
for specifying programmming ianguages fully, which incorporates something
similar to SSTGs and/or production-node pairs. We have proceeded on the
assumption that such a methodology is forthcoming, and we have faith

' ‘t.hat one is (see for example (Knu 66) and (Tho 69)).

A more specific design problem, wt;ich is bart of the above area

and important to our results, is the one discussed in detail in Section 6. 8.

Once the designer has in mind a set of abstract syntax trees, operator

-

-205-

precedences and associativities, scopes of vairiables, cte., how can he
zlgorithmically generate an appropriate CI' grioumar which has {he
corresponding "structural properties’ and which is guaranteed to be
LR(k), or even better SLR(1)? Currently, the generation of such grammars
is definitely an art,. being performed on the basig of past experience and
trial-and-error methods.

Another related problem is that of extending the usefulness of
CF grammars, and therefore, BNF. There are three ways in particular
in which we would like to see their powers extended. It goes without saying
that we would also like to see our techniques extended to cover these
extensions. |
(1) We often like to indicate via regular expressions in right parts
of productions that certain operators are nonassociative. For instance, for
PAL the following production-'node pair specifies the correspondence between

]

an abstract-syntax-tree node and strings involving the nonassociative

(syntactic) operator "and":

(DA :=DR{ and DR}*

oo

/
DR DR DR

There seems to be no natural way of indicating this correspondence using

pure BNF. Can we construct a CFSM from a grammar including the above

i

-206-

production in a manner similar to that given in Section 7.1? Presumably,

the piece of FSM corresponding to that production is as follows:

But what should be the ''reduction procedure" executed by the corresponding
DPDA for the #p-transition? How ‘should that procedure interact with the
ASTB?
(2) One can often indicate a reduction in the need for parentheses in certain
special contexts via special cpntext-sensitive productions. For instance,

: !

to use a trivial example, the meaning of the following subexpression seems

clear:

...(1 +if B then 2 else 3}...

And yet the ALGOL 60 syntax disallows it, requiring the programmer to

write:

<..(1 + (if B then 2 else 3))...

Often the set of legal programs can be extended to include subexpressions
such as the former one above by adding either a large number of CF pro-

ductions or only one or two context-sensitive productions to the grammar.

4 -207-

If in the latter case the resulting language is CI%, our reaults ghould, in
theory, still he applicable, Can we gol gulticiont conditions on the
allowable contexts such thal we still have a Cl' language ?‘ Can we modily
our DPDA in a simple way so that it checks these contexts at the appro-
priate times and therefore recognizes the intended language
(3) Finally, since we are really interested in translations rather than
parses, can we change our notions of unambiguity to correspond to the
former xfather than the latter in such a way that we can extend our techniques
. to cover a.ll "unambiguous" SSTG's? See (Eva 65) for some results in this
area.

More in regard to compilers, we note that it is probably true that
if we retain transitions under nonterminals, we would have an "incremental
compiler'’; i. e., one which would accept a string which is already partially ‘ .
parsed. (A proof is needed.) If these transitions were stored in some
special place, rather than directly in the CFST, and if the reads and look-
aheads concerning nonterminals were treated as special cases, our

compiling speed for terminal strings would not be reduced. Perhaps a

compiler wonld be constructed using this technique which would have good

recompilation characteristics, and therefore, good overall "efficiency''.
Finally, our autbmatg-theoretic fendencies lead us to ask if we are

on the verge of a result regarding the minimality of DPDAs, at least with

,nesﬁ’eéﬂt to parsers for CF grammars. Our DPDA-parsers are based on

-208-

CFSMs which are reduced, and thercfore minimat. Is the DIPDA which wo
get by stavting with a minimal I'SM in some meaninglful sense nomintmal
version of any other DPDA which affects the sime parsings? We know

of no existing results in this area.

-209-

APPENDIX

WEAK PRECEDENCE GRAMMARS

A CF grammar is called ¢ -free if and only if it has no productions
with empty right parts.

An ¢ -free CF graminar is called weak precedence (&M 69) if

and only if (1) no two productions have identical right parts, (2) at most

one of the following relations hold between any two of the symbols in V:

.

(a) X1 < X2 if A- 91X1X202 is a production, or A~ (Jl)\lAzo2
-) 3 *
is a production and A2 X203
> ‘- .‘ - . 3
(b) X1 Xz if A °1A1X2°2 (or A OIAIAzoz) is a production
dA -"¢.X (andA_-"X_0)
and 8y 7 0gfy fand i, 294’

and (3) neither of these relations hold between X1 and A2 if there exist

productions A1 - 01X1X2°2 and A2 - X2°2'
The sequence of theorems below proves that any weak precedence
grammar is SLR(1). The inverse is not true: grammar GO (page 29) is

LR(0) (and therefore SLR(1)), as was shown in Chapter 3, but it is not weak

precedence since productions 3 anu identical right parts.

Lemma A.1. Let G be a CF grammar and N be a state of G's

CFSM having a #p-transition, whose production p is A~ w.

: -210-

Then any string ¢ which accesses N must end in

w; Lo, o 7 pw for some pe Vy'.

Proofl: ‘I'he CI'SM accepts the characteristic string
(p#p, therefore there exists a canonical form ¢8 = puf

which reduces to pAB, by definition of characteristic

strings. Q. E. D.

Theorem A.2. When the CFSM of a weak precedence

grammar GW p enters an inadequate state, the last

L]

symbol of the left context is implicitly known.

Proof: The fact that Gwp is ¢-free in conjunction with

Lemma A.1 proves this. QL. D

Lemma A.3. Let G be a CF grammmar with characteristic

string po, X X y#p. Then X, < X

2 1 2

Proof: By definition of characteristic strings

s
p01X1X2'yB is a canonical form, for some 8 in VT' Thus,

| either
%k %
S— pAB8 - polxlxzozﬁ - polxlxzvﬁ

" _
where 0, 7%, or

sk
S~ pAB-po,X, 20213 po, X X0 3058 = po, X, X,78

%* * %
- '
where ‘32 X2°3’ 02 0'26 VT’ and vy = 03 9"

P) -211-

These are the only two possibilities and each implies that

X, < X, : Q. K. D,

Theorem A.4. The CFSM of a weak precedence grammar

has no multiply inadequate states.

Proof: Lemma A.1l implies that any ¢ which accesses a
state N with transitions under distinct #p and #q must
end in both wp and wq, where productions p and q are

Ap L and A - aiq, respectively. But we cannot have
L)

wp = wq for distinct p and q, because that would violate
condition (1) in the definition of weak precedence.

. S)
Furthermore, if prl |wq| then we have w = 0,X X 0,

and wq chr2 But this implies that (p#q = pol‘ilxzo #

is a characteristic string (by Lemma A. 1), and therefore,

‘that polxlAzﬁ is a canonical form, for some B8 in V,1

whose characteristic string is po, X A 0# for some

1712
%*
6 in VT and some production r. Thus, Lemma A. 2 implies
that X1 < Az. But that violates condition (3) of the definition,
so no such state N can exist. ' Q. E.D. -

Theorem A.5. Let Gwpbe a weak precedence grammar.

Then Gwp is SLR(1).

-212-

Proof: Because of Theorem A. 4 and the SLR(k) definition
(page 73) we need only prove, for any inadequate state N of
Gwp's CFSM with (among others) transitions under some

terminal t and #p for some production p which is A ~ w,

that t is not in the set F,II,(A). Consider the following.

Fr(A) = [(18) € V. | 5~ pag)

= {X GVTIS-‘ pAB - poAXoBor

%*
PAB = po A Aj0,8 and A, - X g0, Or

X
pAB - p(rlAIXzozB and A1 - «73X1 or
pAB - po,A A 0,8 and A= 03X

andAz-' X O }

Thus, the relation > holds between the last symbol of the
left context implicit when the CFSM s in N (i.e., w:l by
Lemma A.1 and Theorem A. 2) and every symbol in l",ll,(/\).
But from Lemma A. 1 all of the characteristic strings which
correspond to the. t-transition are of the form wte#q = pwte#q,
so Lemma A.3 implies that (w:1) < t. Since condition (2)
of the definition of weak precedence states that both the
relations < and > cannot hold between (w:1) and t, we see

that t is not in F,lr(A). QE.D

Che 67

Chr 67

DD 69

DeR 68

Eva 65
Eva 68
Eva 69
Fel 64

F&G 68

Flo 64

L

. -213-
REFERENCES

Cheatham, P, b., Jr. .'l'hv’l'lmm‘y und Construction of
of Compilers, Massachusells Computer Asdociates, (ne. .
Wakefield, Mass., 1967.

Christensen, C. An example of the manipulation of
graphs using the AMBIT/G programming language:
Proc. Symp. Interative Systems in Iixperimental
Appl. Math., Washington, D.C., 1967.

Dennis, J.B., and Denning, P.J., Machines, l.anguages
and Computation, Dept. of Electrical Engineering,
Mass. Inst. of Tech., Cambridge, Mass., 1969.

DeRemer, F. L. On the automatic generation of
a compiler for an extensible language. Report no.
KC-T-055, NASA Electronics Research Center,
Cambridge, Mass., Aug., 1968.

Evans, A., Jr. Syntax analysis by a production
language. Ph.D. thesis Carnegie Inst. of Tech.,
Pittsburgh, Pa., 1965.

Evans, A., Jr. PAL - a language designed for teaching
programming linguistics, Proc. 23rd Nat. Conf. ACM,
1968, pp. 395-403.

Evans; A., Jr. PAL - Pedagogic Algorithmic Language -
A Reference Manual and Primer, Dept. of Elec. Eng.,
Mass. Inst. of Tech., Cambridge, Mass., June 1969.

Feldman, J. A. -A formal semantics for computer oriented
languages. Ph. D. thesis, Carenegie, Inst. of Tech.,

- Pitsburgh, Pa., 1964.

Feldman, J. A., and Gries, D. Translator writing systems.
CACM 11 (February 1968) pp. 77-113.

Floyd, R. W. Bounded context syntactic analysis. CACM 7
(February 1964) pp. 62-617.

Gin 66

Han 68

H&U 69

kM 69

Joh 68

Jor 69

Knu 65

Knu 66

Kor 69

Lan 66

Lyn 68

-214-

Ginsburg, S. The Mathematical Theory of Context-free
Languages, McGraw-1lill, Inc., New York, 1966,

Hennie, . C. Finite-Statec Models tor Logical Machines ,
John Wiley and Sons, Inc., New York, 1968,

Hopcroft, J.E., and Ullman, J.1). Formal Languages
and their Relation to Automata, Addison-Wesley, Inc.,
Reading, Mass., 1969.

Ichbiah, J.D., and Morse, S. P. Optimal generation of
Floyd-Evans productions for precedence grammars.
Report No. DR. S. 69. 65. ND., Compagnie Internationale
pour L'informatique, Les Clayes-Sous-Bois, lrance,
April 1969.

Johnson, W., et al. Automatic generation of efficient
lexical processors using finite-state techniques. CACM 11
(December 1968) pp. 805-813.

Jorrand, P., and Hammer, M. The formal definition of
BASEL, parts I (Introduction), Il (Compiler), and 111
Interpreter), report nos. CA-690-1511, 1512, 1513.
Massachusetts Computer Associates, Inc., Waketield,
Mass., August 1969.

Knuth,D. E. On the translation of languages from left to
right. Inf. Contr. 8 (October 1965) pp. 607-G39.

Knuth,D. E. Semantics of context-free languages. Math,
Sys. Th. 2 (February 1966), pp. 127-145. -

Korenjak, A. Efficient LLR(1) processor construction.
Conf. Rec. ACM Symp.Th. of Computing, Marina Del
Rey, Calif., May 1969, pp. 191-200.

Landin, P.J. The Next 700 Programming Languages.
CACM 9 (March 1966) pp. 157-166.

Lynch, W. C. A high-speed pérsing algorithm for ICCR
grammars. Andrew R. Jennings Comp. Ctr. report no.
1097, Case West. Res. Uniy., Spring 1968.

1£P 68

1&S

McC 65

McC 66

Nau 63 *

Pro 59

Tho 69

War 62

WAE 69

W&W 66

-215-

Lynch, W.C., and Pierson, H.L. A finite-statc transducoer
model for compiler lexical scanners. Andrew I. Jennings.
Comp. Ctr., report no. 1098, Casc West. Res. Univ, ,
Spring 1968. '

Lewis, P. M., and Stearns, R.1l.. Syntax-directed
transduction. JACM 15 (July 19¢8) pp. 465-493.

McCarthy, J., et al. LISP 1.5 Programmar's Manual ,
M.1. T. Press, Mass. Inst..of Tech., Cambirdge, Mass. ,
1965.

McCarthy, J. A formal description of a subsel of AL.GOL.,
Formal Language Description Languages, (1:d Steele, I'. 13, |)

North Holland Pub. Co., Amsterdam, Holland, 1966,

Naur, P. (Ed.) Revised report on the algorithmic language
ALGOL 60. CACM 6 (January 1963) pp. 1-17.

Prosser, R.T. Applications of Boolean matrices to the
analysis of flow diagrams. Proc. Easter Joint Com p. Conf.,
No. 16 (1969)p. 133.

Thomas, R. H. A conceptual basis for language extension.
Sc. D. thesis proposal, Mass. lnst. of Tech., Cambridge,

" Mass., September 1969,

Warshall, S. A theorem on Boolean malrices, JACM o
(January 1962), pp. 11-12.

Wozencraft, J. M., and Evans, A., Jr. Notes on Programming
Linguistics, Dept. of Elec. Eng., Mass. Inst. of Tech.,
Cambridge, Mass., July 1969.

Wirth, and Weber, H. EULER - a generalization of ALGOL,
and its formal definition: parts I, 1. CACM 9 (Jan., Ieb. 1966)
pp. 13-25, 89-99.

-216-

BIOGRAPHICAL NOTE

'

Franklin Lewis DeRemer was born on December 3, 1942, in
Baltimore, Maryland. Shortly thereafter his parents moved to Dallas,
Texas and took the unknowing tike along with them. It was in Dallas that
he grew up, attended public schools, and graduated from South Qak Cliff
High School in 1961.

Ultimately, this Texan received a Eugene McDermott Scholarship
to attend M. I. T. as an undergraduate. At M. 1. T. he majored in
Electrical Science and Engineering, and he was elecled to membership
in Eta Kappa Nu, Tau Beta Pi, and Sigma Xi. In his sophomore ycar he
jointed the ''cooperative program" in Electrical Engineering and went to
work for the RCA Laboratories in Princeton, New Jersey. [He received
his B. S. in 1965 and, after writing his master's thesis at RCA, received
his M. S. in 1966.

As a graduate student at M. 1. T., Mr. DeRemer was a teaching
assistant for six semesters and a research assistant for three.

On September 7, 1968, he married the former Miss Sherry Lynn
Gulmon, an M. L T. graduate of the Department of Biology.

Mr. DeRemer is the author of a paper entitled '"Generating Parsers
from BNF Grammars" which he presented at the 1969 Spring Joint Conference
Computer Conference. He is also the author of several internal publications
at the RCA Laboratories, :he Department of Computer Science at the
University of Illinois, and NASA's Electronics Research Center in Cambridge,
Massachusetts.

Currently, he is an assistant professor of Information and Computer
Science and the assistant director of the computation center at the University
of California at Santa Cruz.

