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Economically motivated adulteration (EMA) is a serious threat to public health. In this paper, we develop a modeling

framework to examine farms’ strategic adulteration behavior and the resulting EMA risk in farming supply chains. We study

both “preemptive EMA,” where farms engage in adulteration to decrease the likelihood of producing low-quality output, and

“reactive EMA,” where adulteration is done to increase the perceived quality of the output. We fully characterize the farms’

equilibrium adulteration behavior in both types of EMA and analyze how quality uncertainty, supply chain dispersion,

traceability, and testing sensitivity (in detecting adulteration) jointly impact the equilibrium adulteration behavior. We

determine when greater supply chain dispersion leads to a higher EMA risk and how this result depends on traceability

and testing sensitivity. Furthermore, we caution that investing in quality without also enhancing testing capabilities may

inadvertently increase EMA risk. Our results highlight the limitation of only relying on end product inspection to deter

EMA. We leverage our analyses to offer tangible insights that can help companies and regulators to more proactively

address EMA risk in food products.
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1. Introduction

Food adulteration is a serious threat to public health and a major concern to most governments in both

developed and developing countries. Food adulteration can occur in a broad range of scenarios. Unin-

tentional adulteration often occurs as a result of negligence or incompetence, for example, bacterial

contamination due to bad hygiene practices. In some scenarios, food adulteration is intentional, moti-

vated by malicious intent to harm the public food system (e.g., bioterrorism). In many other scenarios,

intentional adulteration is driven by economic motives and often referred to as economically motivated

adulteration (EMA). The U.S. Food and Drug Administration defines EMA as the “fraudulent, inten-

tional substitution or addition of a substance in a product for the purpose of increasing the apparent

value of the product or reducing the cost of its production, i.e., for economic gain” (Johnson 2014).

1
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We particularly focus on EMA that causes harm to human health. Over the last several decades there

were many publicly-known EMA incidents of food products around the world, and a majority of them

originated from developing countries. For example, consumption of melamine-tainted infant formula

and milk led to six infant deaths and nearly 300,000 young children severely sickened in China in 2008

(Everstine et al. 2013). Melamine was added to the milk by farmers and collectors to increase the

perceived protein content of the milk. In another example, outbreaks of avian flu led to extensive use

of antibiotics and other illegal drugs in poultry farming in Asia. In particular, the 2012 KFC “instant

chicken scandal” in China revealed that the chickens used by KFC were treated with as many as 18

illegal antibiotics on the farms (Pi et al. 2014). In both of these examples, the source of adulteration

was in the upstream parts of the supply chains, specifically farms and collectors.

In this paper, we develop a new modeling framework to examine strategic adulteration behaviors of

farms (and/or collectors) and the resulting EMA risk in a farming supply chain. Our models simulta-

neously capture various major drivers for EMA, including the uncertainty or variability of the quality

of the farms’ output, the dispersion and traceability of the supply chain, and the testing capabilities

present in the supply chain. We address two main research questions: (i) What are the farms’ optimal

or equilibrium adulteration strategies under different EMA scenarios? (ii) How do the above drivers

jointly impact the farms’ adulteration behaviors? We validate the models with real cases and field

data to ensure that the models are grounded in practice and consistent with empirical evidence. In

addition, we analyze a few managerial levers, such as investing in traceability and testing capabilities,

that a manufacturer can use to mitigate EMA risk in the supply chain. We leverage the analysis of

our models to derive important and unique insights that can be used to help both regulators and

commercial entities to better prioritize and address EMA risk more proactively. We next elaborate on

the major EMA risk drivers captured in our models.

The first factor is the uncertainty or variability of the quality of a farm’s output. Quality uncertainty

can result from issues inherent to the production process; e.g., the quality of milk produced from a

cow, typically measured by its compositional characteristics such as protein and fat content, depends

on the health of the cow. Quality uncertainty can also be the result of external factors; e.g., epidemics

like avian flu affect the quality, captured by the health and weight, of chickens raised in a farm. Quality

uncertainty can be a major cause of EMA in markets with quality-based pricing, i.e., where farms

receive a better selling price if the products appear to have higher quality. We divide food adulteration

driven by quality uncertainty into two distinct scenarios. The first scenario is called “preemptive EMA”

where adulteration occurs before the uncertain quality of the products is realized. The primary goal
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of preemptive EMA is to decrease the likelihood of producing low-quality output. For example, farms

overuse antibiotics to prevent producing sick or underweight (i.e., low-quality) animals. This is a serious

concern in pork, poultry, and seafood farming in various countries including Bangladesh, China, India,

and Vietnam (Doyle et al. 2013). The second scenario is called “reactive EMA” where adulteration

occurs after the uncertain quality of the products is realized. The primary goal of reactive EMA is to

increase the perceived quality of low-quality products and create fake high-quality ones. For example,

the intentional adulteration of raw milk with melamine emerged due to price pressure for low-protein

milk in China (Sharma and Rou 2014). Similarly, farms in India adulterated milk with urea to increase

its perceived solids-not-fat (SNF) content and attract higher prices (Tanzina and Shoeb 2016).

Another factor that may contribute to EMA is the dispersion of a farming supply chain. We define

supply chain dispersion as the extent to which agricultural products are sourced from a distributed

network of farms, each producing a small fraction of the total quantity (Huang et al. 2017b). Dispersed

farming supply chains with hundreds or thousands of smallholder farms are prevalent in many devel-

oping countries (Narrod et al. 2008, Chen et al. 2014). Supply chain dispersion may increase EMA

risk for at least two possible reasons. First, with a dispersed network of farms, it is difficult (if not

impossible) to inspect every farm or to trace every unit of supply back to the producing farm. Instead,

manufacturers (in the best case) only inspect the aggregated supply after the products from all farms

are mixed. Due to limited traceability, even if the manufacturer detects adulteration in the mixed

supply, it often cannot identify the problematic farms nor effectively impose penalties to deter the

farms from adulterating. In practice, some firms try to improve traceability by storing samples from

(some of) the farms before mixing the supply (Flynn and Zhao 2014). We model traceability in light

of such practices. Second, smallholder farms rely on the revenue from selling their products to sustain

their families. Hence, when they face quality uncertainty and the associated price pressure, they are

likely to become aggressive and engage in adulteration to ensure their only means of income.1

Adding to the complexity of a dispersed farming supply chain, the manufacturer’s testing capability

in terms of test sensitivity is another factor affecting EMA risk in food products. We model both perfect

and imperfect testing scenarios. Perfect testing corresponds to scenarios where a known adulterant is

being tested and accurate methods exist to examine whether the residue amount (if any) exceeds the

maximum allowable limit defined by food safety standards. For example, there are highly sensitive

methods to detect certain antibiotics in food products (Pikkemaat 2009, Mungroo and Neethirajan

1 In Appendix O.1.1, we show that farms’ aversion to quality uncertainty motivates them to adulterate even more.
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2014). However, since the space of possible adulterants is practically unlimited, it is difficult (if at all

possible) to develop sensitive tests for every adulterant. We thus model imperfect testing to capture

scenarios where the adulterant is less studied or even unknown. In these cases, the ability to detect

adulteration often depends on the relative amount of adulterants being used. For example, the presence

of a large quantity of adulterants may change the characteristics of the product (e.g., its texture, smell,

or color) or may lead to adverse symptoms when people consume the product, signaling adulteration. In

fact, the melamine-tainted infant formula scandal broke out precisely because the quantity of melamine

added to the milk became so high that many children got ill, thus alerting the authorities.

Related literature and contributions: This paper addresses a timely and crucial topic on food

safety and makes important contributions to both research and practice. From a research standpoint,

we develop a new modeling framework that realistically captures various major risk drivers of EMA and

validate the model predictions with field data. Our work is related to three streams of literatures: supply

chain risk management, quality management, and socially responsible operations. The supply chain risk

management literature has mainly focused on the topic of supply disruption risks, typically modeled

as exogenous shocks to the system (e.g., Sheffi 2005, Dada et al. 2007, Van Mieghem 2007, Tomlin

2009, Babich 2010, Wang et al. 2010, Simchi-Levi et al. 2014). A common conclusion in this literature

is that dual or multi-sourcing helps to mitigate disruption risks and establish supply chain resilience.

We instead focus on quality risks that stem from both exogenous uncertainty and endogenous actions

within the supply chain. In this regard, we are closely related to works in the quality management and

socially responsible operations literatures that examine opportunistic or unethical supplier behavior.

We refer readers to Nagurney and Li (2016), Atasu (2016), and Bouchery et al. (2017) for comprehensive

reviews on these two streams of literatures. We discuss here a subgroup of papers most relevant to

ours. For example, Babich and Tang (2012) analyze deferred payment and inspection mechanisms as

tools for a manufacturer to deter product adulteration by its supplier. Cho et al. (2015) study how a

brand-name company may use quality and price levers to combat counterfeiters and show that either

strategy could be ineffective when facing a deceptive counterfeiter. Mu et al. (2014, 2016) focus on

milk supply chains with monopolistic or competing collection intermediaries and examine incentive

schemes to induce better milk quality with minimal testing.

Our models differentiate from this group of papers in two key aspects. First, we explicitly model

exogenous quality uncertainty and distinguish it from endogenous adulteration decisions, whereas

prior works consider adulteration as equivalent to producing low-quality products at a lower cost.

Our approach is essential to adequately capture how quality uncertainty combined with quality-based
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pricing motivates adulteration. Second, while prior works treat detection of low-quality products as

exogenous, we model imperfect testing where the probability of detecting adulteration is endogenously

influenced by the farms’ adulteration decisions. This endogeneity substantially complicates our analysis

because we must consider the strategic interactions among farms and the interdependency of their

adulteration decisions under quality uncertainty. In the case of reactive EMA with imperfect testing,

we must solve for the farms’ equilibrium adulteration strategies in a game of asymmetric information

(as the number of realized low-quality units at each farm is the farm’s private information).

The socially responsible operations literature studies supplier behaviors that are socially undesirable

but do not directly impact the product’s functional quality. For example, Wang et al. (2016) studies

a regulator’s optimal reward and inspection policy to motivate a company to voluntarily disclose

a privately-observed, stochastically-occurring environmental hazard. Chen and Lee (2017) analyze

how a company can employ contingency payment, supplier certification, and process audit to prevent

unethical actions by a supplier. Letizia and Hendrikse (2016) and Orsdemir et al. (2016) examine how

horizontal or vertical integration of supply chain parties may enhance responsible supplier practices.

Plambeck and Taylor (2016) analyze a “backfiring condition” under which a supplier can effectively

evade a buyer’s audit and discuss its implications for motivating supplier responsibility. Fang and Cho

(2016) and Caro et al. (2018) study joint or shared audits with a collective penalty and analyze when

such audits lead to better supplier compliance compared to independent audits. Cho et al. (2018)

examine a company’s choice of inspection policy and wholesale price to combat a supplier’s use of

child labor. We differ from this body of research in the following ways. This literature mainly considers

settings of a supply chain with one or two suppliers where the action of the supplier(s) may or may

not be endogenized.2 We instead focus on a network of suppliers each simultaneously making strategic

decisions on adulteration. In addition, the two-step testing process and imperfect testing scenario in our

context further complicate our analysis of strategic interactions among the suppliers, whereas audits

of environmental and social issues typically act upon each individual supplier separately.

Due to these distinctive modeling features, our analysis yields new practical insights for addressing

EMA risk in food more proactively. For example, we show that supply chain dispersion plays a critical

role in affecting EMA risk. We determine when greater supply chain dispersion leads to a higher risk

and how this result depends on traceability and testing capabilities. We demonstrate that supply chain

2 Two recent exceptions are Huang et al. (2017a) and Zhang et al. (2017). The former studies a three-tier supply chain with one

player in each tier and only the most upstream player could incur a responsibility risk. The latter examines the problem of curbing

conflict minerals in a three-tier supply network consisting of manufacturers, smelters, and mines. They analyze the manufacturers’
decisions to be compliant or not and the smelters’ decisions to be certified or not in a deterministic setting.
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dispersion could increase EMA risk beyond its impact on decreased traceability. In particular, even in

a fully traceable supply chain, both preemptive and reactive EMA risk are higher in a more dispersed

supply chain when testing is imperfect. Furthermore, increasing testing frequency has a limited effect

on reducing EMA risk in a dispersed supply chain. Our results highlight the limitation of only relying

on end product inspection to deter EMA unless highly robust testing methods can be developed (e.g.,

methods that can detect adulteration even without knowing what the adulterant is). Another new

insight emerged from our analysis is that merely investing in quality improvement without enhancing

testing capabilities at the same time may backfire and inadvertently increase EMA risk. This can

occur when testing is imperfect, and hence, farms feel “safe” to adulterate to a moderate level without

worrying about being caught later. Taken together, our results underscore the importance and necessity

of applying a systemic, supply chain perspective to enable proactive management of EMA risk in food

products. Such a perspective is missing in most current practices, which mainly rely on inspection and

information at the product and individual company level to manage risk.

2. Modeling the Farming Supply Chain

We consider a farming supply chain in which a manufacturer (she) procures a total supply chain output

of k units of an agricultural product from n homogeneous farms (he). Based on farming supply chain

data we collected for multiple industries in China, we observe that when a manufacturer sources from

multiple farms, the output level of each farm is very similar. We thus focus on homogeneous farms.

Let m denote the number of output units from each farm, i.e., m = k/n. The quality of a farm’s

output is uncertain ex ante. Specifically, the quality of each unit is low with probability pL and high

with probability (1− pL).3 Hence, the total number of low-quality units at a farm follows a binomial

distribution with parameters m (number of units) and pL (probability of each unit being low-quality)4.

We study the effect of supply chain dispersion by keeping the total supply chain output k constant

and changing n. This effectively varies the fraction of the total supply chain output supplied by each

farm. In particular, a larger n (i.e., a smaller m) represents higher supply chain dispersion, i.e., a supply

chain with a larger number of farms each supplying a smaller fraction of the total output. Another

parameter of interest is pL, the probability of a unit being low-quality. Changing pL allows us to study

how a farm’s adulteration behavior is affected by an increased or a decreased chance of producing

3 In Appendix O.1.2, we analyze a case where the quality of all units from the same farm is perfectly correlated and obtain similar

insights.

4 In examples such as milking farms where the output is fluid, one unit of output corresponds to all the milk produced by one cow;
i.e., quality uncertainty acts at the cow level. We normalize the milk volume produced by each cow to 1.
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low-quality output. A high pL means there is a greater chance for the farm to produce low-quality

output (e.g., during epidemics).

We study both preemptive and reactive EMA. Under preemptive EMA, farms make adulteration

decisions before the uncertain quality of their output is realized. Preemptive EMA reduces the value of

pL, i.e., decreases the chance of producing low-quality output. We measure preemptive EMA risk in the

supply chain based on the amount of adulterants added by the farms. Conversely, under reactive EMA,

farms make adulteration decisions after the uncertain quality of their output is realized. Reactive EMA

increases the perceived quality of the output and creates fake, high-quality units. Farms can condition

their reactive EMA decisions on the realized number of low-quality units. Therefore, we measure

reactive EMA risk in the supply chain by both the probability of an individual farm adulterating his

output and the expected total number of adulterated units within the total supply chain output.

Figure 1 illustrates the sequence of events in our model for both preemptive and reactive EMA.

The key differences between the two scenarios are in the first two steps. For preemptive EMA, the

model dynamics are as follows: (i) Each farm simultaneously and individually decides the amount

of adulterants to add to reduce pL. (ii) The uncertain quality of the output is realized. (iii) The

manufacturer purchases from all farms and pays each farm based on the average quality of his output.

(iv) The manufacturer stores output samples from t randomly-chosen farms, where t ∈ [0, n]. (v) The

manufacturer aggregates the output from all farms; with probability q, she tests the aggregated supply

for adulteration. (vi) If adulteration is detected in the aggregated supply, then the manufacturer tests

each of the stored samples. (vii) If a farm is found to have adulterated his output, then he is charged

a penalty of cm, where c is the per-unit penalty. For reactive EMA, the first two steps in the model

dynamics are instead as follows: (i) The uncertain quality of the output is realized. Each farm privately

observes the number of low-quality units he produces. (ii) Each farm simultaneously and individually

decides whether or not to adulterate all of the realized low-quality units to create fake high-quality

ones. The remaining steps proceed exactly the same as in preemptive EMA.5

To map steps (i) and (ii) to practice, first consider for preemptive EMA the example of excessive or

illegal use of antibiotics in poultry farming. Here, quality refers to the weight and health status of the

grown-up chickens at the time of sale as these parameters largely determine the selling price. Step (i)

in Figure 1 corresponds to a farm adding (or not) antibiotics to the feeds of all chickens, and step (ii)

5 Mu et al. (2014, 2016) also consider adulteration in milk supply chains with individual and mixed testing. The major differences

between our model and theirs are twofold: First, we distinguish between exogenous quality uncertainty and endogenous adulteration

decisions, whereas they model adulteration as farms producing (deterministically) low-quality output. Second, we model both perfect
and imperfect testing scenarios, whereas they only analyze perfect testing.
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Figure 1 Sequence of Events for Preemptive and Reactive EMA
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corresponds to some chickens growing healthily while others suffering from disease. For reactive EMA,

consider the example of milking farms adding melamine to artificially increase the perceived protein

content in milk. Here, quality refers to the compositional characteristics (e.g., protein and fat content)

of the milk, which again substantially influence the selling price. Step (i) in Figure 1 corresponds to

some cows producing milk with good protein content while others producing milk with lower protein

level, and step (ii) corresponds to the farm adding (or not) melamine to the milk.6 Note that the

“farm” and “manufacturer” notation in our model represents more generally a player in the upstream

(e.g., a farm or a collector) and downstream (e.g., a manufacturer or a wholesaler) of the supply chain.

We note a key difference in the farm’s adulteration decision between preemptive and reactive EMA.

In preemptive EMA, the farm chooses how much to adulterate, i.e., the amount of adulterants to add,

and the adulterants are applied to all units. In reactive EMA, the farm chooses whether or not to

adulterate; in the case of adulterating, he adulterates all of the realized low-quality units.7. In addition,

we remark that we do not treat preemptive and reactive EMA as mutually exclusive choices by the

farms. There could be situations when farms engage in both types of EMA. We consider the separate

analysis of either scenario as a critical first step toward analyzing situations where both types of EMA

6 Agricultural studies show that even in the absence of any equipment, milking farmers can predict the key compositional features

(e.g., protein and fat content) of raw milk with high accuracy based on a number of features known to the farmers, e.g., the health
of the cow, the quality of the feed, climate, the age and breed of the cow (Gale. and Hu 2009, Wongpom et al. 2017).

7 In Appendix O.1.3, we allow farms to adulterate a fraction of their low-quality units under reactive EMA and obtain similar results.
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could be relevant.8 When we analyze the manufacturer’s testing capability as a lever to deter EMA in

§7, we allow the farms to engage in both types of EMA.

We next explain steps (iii)–(vii) in Figure 1 in more detail. First, in step (iii), we model quality-based

pricing – a very common payment scheme in many agricultural industries (Bennett et al. 2001). In

particular, the price for a high-quality (low-quality) unit is rH (rL) with rH > rL. This price difference

is an important economic motive for farms to engage in adulteration. Note that the manufacturer does

not need to test the quality of every unit to determine the price. Instead, our model captures linear

pricing based on average quality.9 In the example of preemptive EMA and poultry farming, our model

corresponds to a process where all chickens from a farm are weighed and the farm gets paid based

on the total weight. Similarly, in the example of reactive EMA and milk farming, a farm typically

aggregates the milk from all the cows before bringing to the manufacturer. Hence, the manufacturer

simply tests the (average) protein and fat content of the mixed milk and pays a price accordingly.

Second, in step (iv), we capture the traceability of the supply chain with the number of randomly-

chosen farms, t∈ [0, n], from which the manufacturer stores samples. In a fully traceable supply chain

(t= n), samples from all farms are stored and hence, can be tested for adulteration if needed. Con-

versely, in a partially traceable supply chain (t < n), only some of the farms’ samples are stored.10

Therefore, the traceability of the supply chain significantly impacts the manufacturer’s ability to iden-

tify all of the adulterating farms. Only those farms that are traced could potentially incur a penalty

from adulterating. In practice, some dairy (poultry) companies store samples of milk (meat) before

aggregating the supply for processing. If a quality problem is detected in the output, the companies

test the samples to identify problematic farms (Flynn and Zhao 2014, Zhang and Bhatt 2014).

Third, in steps (v) and (vi), we model the manufacturer’s two-step process of testing for adulteration.

Specifically, with some probability q (which captures inspection frequency), the manufacturer tests

the aggregated supply for adulteration. Only if adulteration is detected in the aggregated supply will

8 The two types of EMA could be linked in our analysis by allowing pL to be dependent on the farms’ preemptive EMA decision.

Under the reasonable assumption of farmers being short-term oriented (e.g., Antle 1987, Chintapalli and Tang 2017, Hu et al. 2017),

their preemptive and reactive EMA decisions are effectively decoupled. That is, when farmers are making preemptive EMA decisions
(which would impact pL), they are not likely to have the foresight to account for every possible realized number of low-quality units
in the future and the corresponding reactive EMA decision. As such, the analyses in this paper can be directly applied to examine
farms’ adulteration behaviors and the resulting total EMA risk when both types of EMA occur.

9 Mathematically, let nH and nL denote the number of high-quality and low-quality units from a farm, and recall that m is the total

number of units at each farm. The price based on the average quality of the farm’s output can be modeled as rH(nH/m)+rL(nL/m).

This formulation essentially linearizes the two extreme price points onto the average quality level. Therefore, the revenue to the farm
from selling all m units is equal to rHnH + rLnL, equivalent to each high-quality (low-quality) unit selling at rH (rL).

10 Storage of food/agricultural samples for an extensive period of time is difficult and costly due to perishability and the substantial
facility investments needed (relative to the generally low margin of agricultural products). Furthermore, it is challenging (if not

impractical) to build full traceability in a dispersed supply chain with a large number of small farms. These features partly explain
why the traceability of agricultural supply chains is typically lower than that of pharmaceutical and electronics supply chains.
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the manufacturer then test the stored samples. This two-step process is common in practice due to

its cost effectiveness and potential resource constraints of the manufacturer (Draaiyer 2002, Mu et al.

2016). Note that tests for adulteration differ substantially from quality tests for pricing purposes. In

particular, quality-based pricing typically considers a small number of quality parameters (e.g., weight

of a chicken, or protein and fat content in milk) that can be measured with simple tests in real time.

For example, checking the weight of chickens is simple and quick. Similarly, the Gerber butterfat test

widely used in the dairy industry involves a simple procedure and takes about 10 minutes to complete

(FAO 2009). In contrast, tests for adulteration often require more advanced technologies, take longer

time, and are more expensive. For example, the HPLC-UV test for targeted detection of adulterants

uses specialized equipment and is labor intensive and costly (Handford et al. 2016). In practice, many

of these tests are done in formal testing labs. Thus, to do these tests requires the manufacturer to send

samples to a lab and wait for up to a few weeks’ time to get the results. However, the manufacturer often

needs to pay the farms at the time of sale (or shortly after). Due to these differences, the predominant

majority of food manufacturers do not perform adulteration tests all the time in current practices.

Furthermore, the two-step process also captures cases where adulteration is detected more downstream

in the supply chain when products are inspected by a third party (e.g., government agencies) or when

consumers develop adverse symptoms due to consumption of adulterated products.

An important factor we capture related to testing is the sensitivity of the test in detecting adulter-

ation. We model both perfect and imperfect testing. With perfect testing (e.g., advanced tests targeted

for certain antibiotics), the test is very sensitive and can accurately detect whether the residue amount

of an adulterant (if any) in the food exceeds the maximum limit allowed by food safety standards.

With imperfect testing, the sensitivity of the test depends on the relative amount of adulterants in the

total supply chain output. The larger this relative amount, the more likely that adulteration can be

detected. We capture this dependency by modeling the detection probability to be linearly increasing

in the relative amount of adulterants in the total output.11

Finally in step (vii), we model the penalty for an adulterating farm to be cm. This penalty structure

is motivated by current food safety regulations in China regarding highly toxic adulterants (e.g.,

melamine, malachite green, or other legally controlled/banned compounds; Handford et al. 2016). For

these adulterants, regulations and standards are defined based on whether or not the residue amount

exceeds the maximum allowable limit (e.g., PRC-MIIT 2011, FAO 2017, CFDA 2018). As long as

11 In Appendix O.1.4, we analyze settings where we relax the linearity assumption under imperfect testing.
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Table 1 Notations

Variable Definition

k total supply chain output

n total number of farms in the supply chain

m Number of units supplied by each farm; m= k/n

pL Probability that a unit of output is of low quality

rH Per-unit price paid by the manufacturer to the farm for high-quality output

rL Per-unit price paid by the manufacturer to the farm for low-quality output

t Number of farms whose samples are stored by the manufacturer; t∈ [0, n]

q Probability that the manufacturer tests the aggregated supply for adulteration

c Per-unit penalty charged to a farm that is found adulterating

this limit is exceeded, monetary fines (or prison time) are primarily determined based on the sales

revenue associated with the products (PRC-NPC 2015).12 Furthermore, modeling the penalty to be

proportional to the size of the farm can be interpreted as capturing the cost of lost future business if a

farm is caught adulterating. This interpretation is particularly relevant in situations where smallholder

farmers are rarely fined or legally prosecuted due to political sensitivity (e.g., in India).

Table 1 summarizes the key parameters in our model. In the next section, we examine the farms’

adulteration behaviors and the resulting EMA risk in the supply chain in four different settings:

preemptive or reactive EMA with perfect or imperfect testing. All proofs are deferred to the online

appendix. Additional results presented in the online appendix are referenced as O.X.

3. When Will Farms Adulterate?

3.1. Preemptive EMA

Let x ∈ [0,1] be a farm’s adulteration decision, where x = 0 means the farm does not adulterate

his output and x = 1 means the farm adulterates with the maximum dosage. In light of our earlier

discussions, a decision of x= 0 represents the farm using the adulterant (e.g., veterinary drugs) within

the legal limit. A decision of x> 0 represents using the adulterant beyond the legal limit (as opposed to

using a positive quantity per se), and thus, it will cause harm to human health. We assume that adding

more adulterants beyond the maximum dosage can no longer decrease the likelihood of producing low-

quality output. Therefore, x can be interpreted as the relative quantity of adulterants used by the farm

as compared to the maximum dosage. Let h(x) denote the resulting probability that a unit of output

is low-quality given x. We assume that h(x) is convex decreasing in x with h(0) = pmax
L , h(1) = pmin

L ,

and pmax
L > pmin

L . The notations pmax
L and pmin

L represent the largest and smallest probability that a unit

of output is low-quality given the farm’s adulteration decision. With a large (small) pmax
L , the farms

12 For less toxic adulterants whose harm to human health gradually increases with quantity (e.g., using nonhygienic water to
adulterate food; Handford et al. 2016), it may be reasonable to model the per-unit penalty to increase in the amount of adulterants
used. In Appendix O.1.5, we show that all of our results remain the same with this alternative formulation.
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face a higher (lower) risk of producing low-quality units without adulteration. During epidemics, for

example, we can expect pmax
L to be large. The convexity of h(x) implies that the effectiveness of the

adulteration to reduce pL is marginally decreasing. In what follows, we characterize the farms’ optimal

preemptive EMA strategies under perfect and imperfect testing separately.

3.1.1. Perfect testing. Given a farm’s adulteration decision x, the probability that each unit of

his output is of low quality is h(x). Hence, the expected total number of low-quality units is mh(x).

If the farm chooses not to adulterate (i.e., x = 0), then he earns an expected payoff of rHm(1 −

pmax
L ) + rLmp

max
L . If instead the farm chooses to adulterate, then he earns an expected revenue of

rHm(1− h(x)) + rLmh(x) but would incur a penalty of cm if he is caught by the manufacturer. We

now analyze the probability that an adulterating farm will be caught by the manufacturer.

Recall from §2 that the manufacturer employs a two-step testing process. Suppose in the case that

the manufacturer tests the aggregated supply (which happens with probability q), she randomly picks

one unit of the aggregated supply (e.g., a chicken) to test for adulteration. With perfect testing, the

manufacturer detects adulteration as long as any one farm has adulterated. Let na be the total number

of farms that have adulterated their output. The chance that the manufacturer picks an adulterated

unit is thus na/n. If the manufacturer detects adulteration in the first step, then she further tests

the t samples. Since samples are taken from randomly-chosen farms, the chance that an adulterating

farm’s sample has been stored is t/n. Taken together, the probability that an adulterating farm will

eventually be caught by the manufacturer is thus q(na/n)(t/n).

We make two important observations from the analysis thus far. First, since testing is perfect, the

farm faces the same level of penalty for any x> 0. In addition, his expected revenue without considering

the potential penalty is increasing in x. Hence, if the farm decides to adulterate, it is in his best

interest to adulterate with the maximum dosage, i.e., choosing x= 1. As a result, an adulterating farm’s

expected payoff is equal to rHm(1− pmin
L ) + rLmp

min
L − q(na/n)(t/n)cm. Second, a farm’s adulteration

decision depends on how many other farms are also adulterating (i.e., the value of na). Therefore, the

farms’ adulteration decisions impact each other’s payoffs, and we solve for a Nash equilibrium (NE) in

this static game of complete information (Fudenberg and Tirole 1991, Chapter I). Theorem 1 below

characterizes the set of Nash equilibria in the game.

Theorem 1. For preemptive EMA with perfect testing, the total number of adulterating farms in

any Nash equilibrium of the game is characterized by

n∗a = max

{
0,min

{
n,

⌈
(rH − rL)(pmax

L − pmin
L )n2

cqt
− 1

⌉}}
, (1)
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where d·e denotes the smallest integer greater than the argument. That is, any subset of n∗a farms

adulterating with the maximum dosage while the rest (n−n∗a) farms not adulterating constitutes a Nash

equilibrium of the game.13

The farm’s decision on whether or not to adulterate is driven by the tradeoff between the expected

revenue gain and the potential penalty from adulteration. By adulterating, the farm increases his

expected revenue by (rH − rL)(pmax
L −pmin

L ) per unit of output, while in the meantime facing a penalty

of q(na/n)(t/n)c per unit. The equilibrium value n∗a defines the threshold number such that none of

the adulterating farms find it profitable to not adulterate, and none of the non-adulterating farms find

it profitable to adulterate.

3.1.2. Imperfect testing. The key difference under imperfect versus perfect testing is that the

detection of adulteration depends on the relative amount of adulterants in the output. Here, we model

this dependency to be linearly increasing. Index the farms by i = 1, . . . , n and let xi ∈ [0,1] be farm

i’s adulteration decision. Due to imperfect testing, the amount of adulterants added (i.e., xi) affects

the chance that an adulterating farm will be caught. As a result, it is not necessarily optimal for the

farm to adulterate to the maximum dosage (unlike in perfect testing). We first derive the chance of

an adulterating farm eventually being caught by the manufacturer. Similar to §3.1.1, suppose with

probability q, the manufacturer picks one unit (e.g., a chicken) from the aggregated supply to test for

adulteration. In this case, the probability that the manufacturer detects adulteration in the aggregated

supply can be derived as follows:

P(detection) =
∑
j

[
P(detection|farm j’s output is picked)P(farm j’s output is picked)

]
=
∑
j

[xj(1/n)] =
∑
j

xj/n.

The conditional probability in the bracket is equal to xj because (i) under preemptive EMA, the added

adulterants affect all units of output at a farm, and (ii) the detection sensitivity is linearly increasing

in the relative amount of adulterants added. If the manufacturer detects adulteration in the aggregated

supply, then she will test the t samples. An adulterating farm’s sample will be stored with probability

t/n. Finally, the chance that the manufacturer detects adulteration in the sample again depends on the

amount of adulterants added, xi. To summarize, the chance that an adulterating farm i will eventually

13 We assume that when a farm is indifferent between adulterating or not, he chooses not to adulterate.
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be caught by the manufacturer is equal to q(
∑

j xj/n)(t/n)xi. Therefore, farm i’s expected payoff given

his adulteration decision xi can be characterized as follows.

πPV (xi, x−i) = rHm(1−h(xi)) + rLmh(xi)− q
(
xi +

∑
−i x−i

n

)
(t/n)xicm, (2)

where −i denotes all farms other than i. Since all the farms are homogeneous, we focus on analyzing

symmetric NE of the game; i.e., NE in which the equilibrium strategy xPV
∗

i has the same structure

for all i. This approach is common in game-theoretic analysis with homogeneous players (e.g., Che

1993, Lee et al. 1997, Wang and Zender 2002, Golosov et al. 2014). The next theorem characterizes

the unique symmetric NE of the game. We drop the subscript i to simplify notation.

Theorem 2. For preemptive EMA with imperfect testing, there exists a unique symmetric NE in

which xPV
∗

is determined as follows.

(a) If c <
−h′(1)(rH − rL)

q(t/n)((n+ 1)/n)
, then all farms adulterate to the maximum level; i.e., xPV

∗
= 1.

(b) If c≥ −h
′(1)(rH − rL)

q(t/n)((n+ 1)/n)
, then the farms adulterate to some extent; i.e., xPV

∗ ∈ (0,1) and is the

solution to the following equation: −h′(x)/x= q(t/n)((n+ 1)/n)c/(rH − rL).

When the per-unit expected penalty is sufficiently small compared to the per-unit expected revenue

gain, all farms adulterate to the maximum level as under perfect testing. However, when the per-unit

expected penalty is large, farms in equilibrium adulterate to some extent but not to the maximum

level (Theorem 2(b)). This is because both the expected revenue gain and the chance of being caught

increase as farms increase the amount of adulterants.

3.2. Reactive EMA

Recall from §2 that under reactive EMA, the farms decide whether or not to adulterate his low-quality

units to create fake high-quality ones after the uncertain quality of his output is realized. In addition,

the total number of low-quality units at a farm follows a binomial distribution with parameters m

(number of units) and pL (probability of each unit being low-quality). This distribution can be well

approximated by a normal distribution with mean mpL and variance mpL(1 − pL) if mpL ≥ 5 and

m(1− pL) ≥ 5 (Ross 2005, Stirzaker 1999, Clemens and Inderfurth 2015). To ensure tractability, we

perform our analysis with this normal approximation. Let f(x,m,p) denote the probability density

function (PDF) of a normal distribution with mean mp and variance mp(1−p) evaluated at x. We now

characterize the farms’ optimal reactive EMA strategies under perfect and imperfect testing separately.



 Electronic copy available at: https://ssrn.com/abstract=3060078 

Levi, Singhvi, Zheng: EMA in Farming Supply Chains 15

3.2.1. Perfect testing. Let nL be the realized number of low-quality units at a farm. If the farm

does not adulterate, then he earns rH(m− nL) + rLnL based on the average quality of his output.

If the farm decides to adulterate, then he earns a revenue of rHm but would incur a penalty of cm

if he is caught by the manufacturer. Note that if a farm adulterates, then the adulterants will be

present in his output, the manufacturer’s aggregated supply, and the stored sample. For example, if

a dairy farm adds melamine to his raw milk, then melamine will be present in the milk from this

farm, the aggregated pool of milk at the manufacturer, and any sample stored from this farm. Under

perfect testing, the manufacturer detects adulteration in the aggregated supply as long as any farm has

adulterated and the manufacturer tests the aggregated supply (the latter occurs with probability q). If

further the sample of an adulterating farm is stored (this occurs with probability t/n), then the farm

will be caught and incur the penalty. Hence, the probability of a farm’s adulteration being detected

is q(t/n), and the expected payoff of an adulterating farm is equal to rHm− q(t/n)cm. Observe that

the farms’ adulteration decisions do not affect each other’s payoffs and can be solved independently.

A farm chooses whether or not to adulterate to maximize his expected payoff. The following theorem

describes the optimal adulteration strategy for a farm with nL units of low-quality output.

Theorem 3. For reactive EMA with perfect testing, the optimal adulteration strategy for a farm is

a threshold strategy: He does not adulterate if nL ∈ [0, βRP ], and he adulterates if nL ∈ (βRP ,m]. In

addition, βRP is decreasing in the price difference between high- and low-quality output (rH − rL) and

increasing in testing frequency (q), the number of stored samples (t), and per-unit penalty (c).

The threshold strategy in Theorem 3 follows from a tradeoff between revenue gain and the potential

penalty from adulteration. Since the revenue gain increases with nL whereas the expected penalty is

independent of nL, the farm finds it beneficial to adulterate when nL is sufficiently large. The more

frequent the manufacturer tests the aggregated supply or the better traceability in the supply chain

(higher q and t), the higher chance that an adulterating farm will be caught, and hence, the less

likely a farm is to adulterate. Similarly, a smaller per-unit penalty (c) and a greater price difference

between high- and low-quality output (rH − rL) make the penalty from adulteration less severe and

the gain more attractive, thus motivating a farm to adulterate more often. This last point is in line

with qualitative evidence that many adulteration incidents occurred when there was external price

pressure for low-quality products. For example, the Indian government found that milk adulteration

was significantly more severe in Maharashtra where low-fat milk was rejected at collection centers

versus in Gujarat where it was accepted at a lower price (Deshmukh 2011). We warrant that simply
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reducing the price difference is not likely a viable way to deter adulteration, especially if farms rely on

the price premium for higher quality to truly invest in quality. Instead, we advocate that fairer risk

sharing between the manufacturer and the farms is essential (e.g., offering protective prices in light of

quality uncertainty common in agricultural production).

3.2.2. Imperfect testing. In this case, the chance that the manufacturer detects adulteration

when testing the aggregated supply is modeled as linearly increasing in the fraction of adulterated

units within the total output. Therefore, the farms’ (simultaneous) adulteration decisions affect each

other’s payoffs through this detection probability. Since the realized number of low-quality units at a

farm is the farm’s private information, we model the farms’ strategic interactions as a static game of

incomplete information and solve for the Bayesian Nash equilibrium (BNE) of the game (Fudenberg

and Tirole 1991, Chapter III).

Formally, let nL,i denote the realized number of low-quality units at farm i (i= 1, . . . , n). Let ai(nL,i) :

{1, . . . ,m}→ {0,1} be farm i’s adulteration strategy, where a value of 1 (0) means adulterating (not

adulterating). That is, farm i’s adulteration strategy specifies for each realized number of low-quality

units, whether or not the farm adulterates these low-quality output. From farm i’s perspective, given

all other farms’ adulteration strategies a−i(nL,−i), the expected total number of adulterated units

from these farms is equal to EnL,−i

[∑
−i nL,−ia−i(nL,−i)

]
. The expectation is taken on the (uncertain)

number of low-quality units at the other farms, which is not observable by farm i.

We next derive the chance of farm i being caught if he adulterates. First, the fraction of adulterated

units within the total output (hence the chance that the manufacturer detects adulteration when testing

the aggregated supply) is equal to
nL,i +EnL,−i

[∑
−i nL,−ia−i(nL,−i)

]
k

. Conditional on adulteration

being detected in the aggregated supply, if farm i’s sample is stored (which occurs with probability

t/n), then farm i will be caught with probability nL,i/m. Since the manufacturer tests the aggregated

supply with probability q, the ultimate probability for farm i to be caught if he adulterates is equal to

γi(nL,i, a−i(nL,−i))≡ q
(
t

n

)(nL,i
m

)(nL,i +EnL,−i

[∑
−i nL,−ia−i(nL,−i)

]
k

)
. (3)

Thus, the final expected payoff if farm i chooses to adulterate is equal to rHm−γi(nL,i, a−i(nL,−i))cm.

Conversely, the final payoff if farm i chooses not to adulterate is equal to rH(m−nL,i) + rLnL,i. Farm

i decides whether or not to adulterate depending on which action yields a higher final payoff.

We again focus on analyzing symmetric BNE of this game; i.e., BNE in which the strategy a∗i (nL,i)

has the same structure for all i. The next theorem characterizes the unique BNE of this game. We

drop the subscript i to simplify notation.
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Theorem 4. For reactive EMA with imperfect testing, there exists a unique symmetric BNE of the

game in which a farm’s adulteration strategy is a threshold strategy: a∗(nL) = 1 if nL ∈ [0, βRV ) and

a∗(nL) = 0 if nL ∈ [βRV ,m]. The threshold βRV is unique and determined as follows:

(a) If n≤ 2(1−pL)

/(√
p2L +

4(1− pL)(rH − rL)

cqt
− pL

)
, then βRV ∈ (0,m) and is the solution to the

following equation: β =
nk(rH − rL)

cqt
− (n− 1)

∫ β
0
xf(x, k

n
, pL)dx.

(b) If n> 2(1− pL)

/(√
p2L +

4(1− pL)(rH − rL)

cqt
− pL

)
, then βRV =m.

In addition, βRV is increasing in the price difference between high- and low-quality output (rH − rL)

and decreasing in testing frequency (q), the number of stored samples (t), and per-unit penalty (c).

Figure 2 contrasts the farms’ optimal reactive EMA strategies under perfect testing (Theorem 3)

versus imperfect testing (Theorem 4). Under perfect testing, farms adulterate when the realized number

of low-quality units, nL, is greater than the threshold βRP . In contrast, under imperfect testing, farms

adulterate when nL is smaller than the threshold βRV . This latter result is because under imperfect

testing, the expected penalty from adulterating increases with nL faster than the revenue gain does.

Observe from Equation (3) that the chance of farm i being caught adulterating increases with nL,i

quadratically, whereas the revenue gain, (rH − rL)nL,i, increases with nL,i linearly. Therefore, farms

find it more beneficial to adulterate when nL is low. More intuitively, the key driver of this pattern

is the farms’ “free-riding” behavior; that is, when a farm believes that there is a sufficiently large

number of high-quality units in the supply chain that can hide his adulteration (i.e., when nL and the

belief of other farms’ nL are small), the farm is more likely to adulterate. Evidence of such free-riding

behavior exists in practice. For example, Gadzikwa et al. (2007) report that organic producers are more

likely to adulterate (e.g., using pesticides) and fake organic products when the fake quantity is small

relative to the total quantity. In an extension (§O.1.4), we allow the sensitivity of imperfect testing to

increase faster than the linear model, and hence, become closer to the sensitivity of perfect testing.

We demonstrate that the farms’ equilibrium reactive EMA strategy becomes a combination of the two

structures in Figure 2; i.e., farms adulterate when nL is either small or large but do not adulterate in

between.

Due to the aforementioned contrasting pattern under perfect versus imperfect testing, the effects of

the price difference, testing frequency, traceability, and per-unit penalty on βRV are opposite to those

for βRP (see Theorem 3). Comparing these two thresholds, we obtain the following result.

Proposition 1. (i) If βRP ∈ (0,m), then βRV =m. (ii) If βRV ∈ (0,m), then βRP =m.
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Figure 2 Reactive EMA: Farms’ Optimal Adulteration Strategies under Perfect and Imperfect Testing
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Proposition 1 shows that given the same model parameters, whenever farms would possibly adulterate

under perfect testing (i.e., βRP ∈ (0,m)), then they would always adulterate under imperfect testing.

Similarly, whenever farms would possibly not adulterate under imperfect testing (i.e., βRV ∈ (0,m)),

then they would never adulterate under perfect testing. Consequently, the resulting reactive EMA risk

is always higher under imperfect than perfect testing.

Corollary 1. The reactive EMA risk in the supply chain is always higher under imperfect testing

than under perfect testing.

4. The Effect of Supply Chain Dispersion on EMA Risk

We now analyze how supply chain dispersion affects preemptive and reactive EMA risks in the supply

chain. We measure preemptive EMA risk by the fraction of adulterating farms, n∗a/n, under perfect

testing, and the farms’ adulteration decisions, xPV
∗
, under imperfect testing. A larger (smaller) value

of these terms indicates a larger (smaller) amount of adulterants being used in the total output, and

hence, a higher (lower) risk of preemptive EMA. Similarly, we measure reactive EMA risk in two ways:

Pn denotes the probability of an individual farm adulterating in a supply chain with n farms, and En

denotes the expected total amount of adulterated output in the supply chain. Under perfect testing,

Pn = Prob(nL >β
RP ), and En = n

∫ k/n
βRP xf(x,k/n, pL)dx, where βRP is defined in Theorem 3. We can

similarly define Pn and En under imperfect testing. For the analysis in this section, we treat n to be a

continuous variable to ensure tractability. Our first result shows how supply chain dispersion (captured

by n) impacts preemptive and reactive EMA risk under perfect and imperfect testing.

Proposition 2A. Under perfect testing: When t < n (t= n), (i) preemptive EMA risk, measured

by n∗a/n, is increasing (constant) in n; (ii) reactive EMA risk, measured by Pn and En, is increasing

in n if qc≥ pL(rH − rL)

3(t/n)
(qc≥ pL(rH − rL)).

Proposition 2B. Under imperfect testing: (i) Preemptive EMA risk, measured by xPV
∗
, is increas-

ing in n; (ii) reactive EMA risk, measured by Pn and En, is increasing in n.
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Proposition 2A considers perfect testing and characterizes conditions under which supply chain

dispersion increases EMA risk (or not). First, greater dispersion leads to higher preemptive EMA risk

under perfect testing only in partially traceable supply chains. That is, this higher risk is solely due to

decreased traceability in a more dispersed supply chain (observe that n∗a/n is constant in n if t= n).

In Appendix O.1.1, we show that if farms are averse to quality uncertainty, then an additional reason

for this higher risk is that a smaller farm faces larger uncertainty in the quality of his output. Second,

regardless of traceability, dispersion increases reactive EMA risk under perfect testing if the per-unit

expected penalty for adulteration (qc) is high. This result can be explained by the following dynamics.

Imagine that the manufacturer diversifies her supply base by procuring one fewer unit from each of the

existing farms and procuring the resulting gap from a new farm. When the per-unit expected penalty is

high, these units originally procured from each existing farm would not be adulterated in expectation.

However, when they are instead procured from a new farm, some of them would be adulterated at

least sometimes. Therefore, reactive EMA risk increases in a more dispersed supply chain. Conversely,

if the per-unit expected penalty is low, these units when procured from the original farms would all

be adulterated in expectation, while only some of them would be adulterated when procured from the

new farm. Hence, reactive EMA risk decreases in a more dispersed supply chain.14

Proposition 2B considers imperfect testing and shows that both preemptive and reactive EMA risk

always increase in a more dispersed supply chain, regardless of traceability. With a large number of

farms in the supply chain, each farm produces only a small fraction of the total output. As a result, each

farm’s adulteration has a limited impact on the total amount of adulterants and adulterated output in

the aggregated supply, and hence, on the likelihood that the manufacturer would detect adulteration.

Therefore, farms feel less risky to adulterate in a more dispersed supply chain, resulting in higher EMA

risk. In sharp contrast, if the supply chain consists of only two farms each producing half of the total

output, then the adulteration decision of each farm would have a much more prominent impact on the

detection probability. Thus, these larger farms would be more cautious in their adulteration decisions.

Table 2 summarizes the key insights from Proposition 2. We observe that the effect of supply chain

dispersion on EMA risk highly depends on the manufacturer’s testing capability. When test is perfect,

greater dispersion does not always result in higher EMA risk. However, when test is imperfect, increased

dispersion is always harmful. Note that even if the manufacturer tests the aggregated supply with

certainty (i.e., q = 1), these results remain. The insights from Table 2 thus highlight the limitation of

14 We show analytically that when the condition in Proposition 2A part (ii) is not satisfied, Pn decreases with n (see the proof of
Proposition 2A). For En, we observe from numerical simulation that it decreases with n when qc is sufficiently low.
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Table 2 Effect of Increased Supply Chain Dispersion on EMA Risk

Perfect testing Imperfect testing

Preemptive EMA Risk increases (is constant) under partial (full) traceability Risk increases

Reactive EMA Risk increases (decreases) if penalty is high (low) Risk increases

relying on product inspection to deter EMA, particularly if the farming supply chain is highly dispersed

and testing methods are imperfect (as is the case in most developing countries with a large variety of

possibly unknown adulterants). Hence, to more proactively fight EMA, our results call for the need

to incorporate a systemic, supply chain perspective to complement an inspection-centered approach

adopted in current practices.

5. The Effect of Quality Uncertainty on EMA Risk

The following proposition demonstrates how the likelihood of producing low-quality output (pL) affects

both preemptive and reactive EMA risk.

Proposition 3. (i) For preemptive EMA, both n∗a/n and xPV
∗

are increasing in pmax
L .

(ii) For reactive EMA under perfect testing, both Pn and En are increasing in pL.

(iii) For reactive EMA under imperfect testing, Pn is decreasing in pL.

Proposition 3 parts (i) and (ii) show that as the likelihood of producing low-quality output (pmax
L

or pL) at a farm increases, the supply chain would face a higher risk of EMA for preemptive EMA

under either testing sensitivity and reactive EMA under perfect testing. Specifically, a higher pmax
L

means there is a greater chance of producing low-quality units, and hence, farms are more motivated to

engage in preemptive EMA to reduce that chance. Similarly, a higher pL means the realized number of

low-quality units, nL, is more likely to be large, as nL follows a binomial distribution with parameters

m and pL. Therefore, farms are more likely to engage in reactive EMA (recall from Theorem 3 that

under perfect testing, a farm adulterates if nL >β
RP ).

In sharp contrast, Proposition 3 part (iii) shows that under imperfect testing, the probability that an

individual farm engages in reactive EMA decreases as pL increases. This result is related to the farms’

“free-riding” behavior discussed in §3.2.2. In particular, when pL is low, an individual farm expects

that the other farms would have many high-quality units. As a result, even if this farm chooses to

adulterate, the fraction of adulterated units in the aggregated supply can be sufficiently low that the

manufacturer would not be able to detect adulteration. Therefore, farms feel “safe” to adulterate and

are more likely to do so. Finally, we observe that under reactive EMA with imperfect testing, the effect

of quality uncertainty on En, the expected total amount of adulterated output in the supply chain,
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Figure 3 Effect of Quality Uncertainty (pL) on the Expected Total Amount of Adulterated Output (En)
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is nonmonotone. Figure 3 illustrates the general pattern of this effect based on extensive numerical

simulations. As pL decreases (i.e., as overall quality becomes better), En first increases and then

decreases. Furthermore, the decreasing region predominantly corresponds to situations when all farms

adulterate all the time in equilibrium (which occurs when pL is low). In this case, En is equal to the

expected total number of low-quality units, and hence, it decreases as pL decreases. These observations

highlight that, if the current quality level is bad (i.e., when pL is high), then a substantial quality

investment (to decrease pL significantly) is necessary to reduce reactive EMA risk with respect to En

under imperfect testing. Nevertheless, if the focus is to mitigate Pn (e.g., when highly toxic adulterants

are concerned), then investing in quality alone is not effective.

Investing in quality to reduce the probability of producing low-quality output is generally believed

to be beneficial. Our analysis demonstrates that for reactive EMA with imperfect testing, this strategy

may backfire if it is not accompanied by also improving the supply chain’s capability to detect adulter-

ation. This is because a lower chance of producing low-quality output can inadvertently motivate some

parties in the supply chain to endogenously adulterate their output and create fake high-quality units.

Without the capability to differentiate fake high-quality units from truly high-quality ones, consumers

could suffer from consuming adulterated products. An example in China’s dairy industry illustrates

this point. After the 2008 melamine-tainted infant formula scandal, many dairy companies made sub-

stantial quality investments in their upstream supply chains. However, without similar improvement

in testing methods, adulteration in raw milk escalated again in 2011 when a new type of protein-

enhancing yet toxic substance was added by milk farms (Handford et al. 2016). We summarize the

effect of quality uncertainty on EMA risk for the different modeling scenarios in Table 3.
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Table 3 Effect of an Increased Probability of Producing Low-Quality Output (pmax
L or pL) on EMA Risk

Perfect testing Imperfect testing

Preemptive EMA Risk increases Risk increases

Reactive EMA Risk increases

Probability of adulteration decreases, while expected total

amount of adulterated output first increases then decreases

Table 4 Parameter Values for Guangdong and Shandong Provinces

n m rH rL c q t pmax
L pmin

L

Guangdong 8 84,000 19.07 0 19.07 {0.1, ..,0.9} {1, ..,8} {0.2, ..,0.9} 0.1

Shandong 13 67,000 19.07 0 19.07 {0.1, ..,0.9} {1, ..,13} {0.2, ..,0.9} 0.1

6. Relating Model Predictions to Empirical Observations

In this section, we calibrate our model parameters with field data to the extent possible to examine

how well our models’ predictions align with empirical evidence in two prominent EMA scenarios.

6.1. Preemptive EMA: Misuse of Antibiotics in Poultry Farming in China

As in many developing countries, China’s poultry industry is subject to misuse of antibiotics, antivi-

rals, and herbal medicines at poultry farms, especially since multiple outbreaks of avian flu (CCTV

2012, Huang et al. 2017b). We collected farming supply chain data published by China’s General

Administration of Quality Supervision, Inspection, and Quarantine (AQSIQ), a government agency

responsible for entry-exit commodity inspection, certification, accreditation, and import-export food

safety. By utilizing this data and various market data, we calibrate our model parameters and predict

the risk levels of poultry manufacturers in two leading provinces of poultry production, Shandong and

Guangdong, which account for 15% and 8% of the total production (Inouye 2017).

Table 4 summarizes the parameter values used in our analysis. The values of n and m are derived

by averaging the number of farms and the size of farms (in the number of chickens produced annually)

supplying to different poultry manufacturers in each province (18 manufacturers in Guangdong and

34 in Shandong). One immediate observation is that poultry supply chains in Shandong are more

dispersed than those in Guangdong, as seen by a larger number of farms supplying to an average

manufacturer (n) and the smaller size of an average farm (m). The value of rH corresponds to the

selling price of broiler chickens (in RMB per kilogram) in 2016 (Inouye 2017). Low-quality chickens

mean sick chickens which cannot be sold; thus, rL = 0. According to China’s food safety law (PRC-

NPC 2015), financial penalties on adulterating firms are determined based on the sales value of the

products, with a larger marginal increase in penalty at a higher level of product value. We capture

this structure by using rHm
2 as the penalty for a farm of size m.15 For the manufacturers’ testing

15 We verify that all of our results in §3 continue to hold with a convex (in m) penalty function (Proposition O.5 in Appendix O.1.5).
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Figure 4 Effect of Traceability (t), Quality Uncertainty (pmax
L ), and Testing Frequency (q) on Preemptive EMA Risk
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(c) Effect of testing frequency (q)

Note. In Figures 4a and 4b, we use the average values of n and m presented in Table 4 for the two provinces. In Figure 4c, we use

the whole range of n values in the data and do not distinguish between the two provinces.

frequency (q) and the traceability of their supply chains (t), we consider a wide range of values. We

use h(x) = (pmax
L −pmin

L )x2− 2(pmax
L −pmin

L )x+pmax
L to ensure that h(0) = pmax

L , h(1) = pmin
L , and h(x) is

convex decreasing. We fix pmin
L = 0.1 and vary pmax

L from 0.2 to 0.9 to capture different levels of quality

uncertainty in the farms’ output. Since poultry farms use a large variety of drugs in their practices,

we consider the imperfect testing scenario. Given these parameter values, we calculate the risk levels

of an average manufacturer in these two provinces with 936 different parameter combinations.

Our results show that an average poultry manufacturer in Shandong always faces higher preemptive

EMA risk than an average manufacturer in Guangdong does. Averaging over all parameter instances,

the risk in Shandong is twice of that in Guangdong. This prediction is consistent with empirical

evidence; more poultry manufacturers in Shandong have been found to be involved in EMA incidents

than those in Guangdong (Huang et al. 2017b). Among the manufacturers in our data, 4 out of 34

(11.8%) Shandong companies and 1 out of 18 (5.6%) Guangdong companies were caught in EMA

incidents. Figures 4a and 4b further illustrate how preemptive EMA risk changes with pmax
L and t in

these two provinces. We observe that adulteration increases at a faster rate for Shandong than for

Guangdong as pmax
L increases or t decreases. Therefore, manufacturers in Shandong are at a greater risk

of increased adulteration due to quality uncertainty, and they can gain more benefit in risk mitigation

by improving the traceability of their supply chains.

Lastly in Figure 4c, we illustrate how preemptive EMA risk changes with supply chain dispersion

(n) for different testing frequencies (q). The values of n are taken from our data. We observe that as

the supply chain gets more dispersed, increasing q becomes much less effective in reducing preemptive

EMA risk (e.g., risk > 0.6 even if q= 0.9 when n> 20). Note that we have kept the fraction of traced
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farms (t/n) constant as we increase n in Figure 4c. The reason behind this observation is the following.

When the supply chain is composed of a few large farms, each farm’s adulteration has a big impact

on the total amount of adulterants in the aggregated supply (and hence, the detection probability).

Therefore, each farm is cautious about adulterating and sensitive to the testing frequency. However,

when the supply chain is composed of many small farms, each farm produces only a small quantity,

which, even adulterated, would not increase the detection probability noticeably. Hence, these small

farms are not as concerned about the aggregated supply being tested frequently. As a result, increasing

testing frequency has a limited effect on their adulteration behavior, and thus, the resulting preemptive

EMA risk in the supply chain.

6.2. Reactive EMA: Melamine-Tainted Infant Formula Scandal

In the second empirical case, we examine the risk of two major Chinese dairy companies, Sanlu Group

and Bright Dairy, operating at the time of the melamine-tainted infant formula scandal. Regarding

Sanlu, the company sourced 2.6 million liters of raw milk from 52,000 small farms primarily through

middlemen with little traceability (Chen et al. 2014). These small farms often produced low-quality

milk due to poor diets and disease control of the cows (Gale. and Hu 2009). In addition, leveraging

an exemption of certificate verification from the Chinese government, Sanlu rarely tested the raw milk

before production (Flynn and Zhao 2014). All of these data suggest that pL is high whereas t and q

are low in Sanlu’s supply chain. In sharp contrast, Bright Dairy sourced 1.625 million liters of raw

milk from 2,335 corporate-owned or cooperative farms (Flynn and Zhao 2014). The company stored

samples from each cow to ensure full traceability. In addition, it also made significant investments in

feed and animal health in the farms and frequently conducted quality tests to uphold its high quality

standards. Therefore, in Bright Dairy’s supply chain, pL is low while both t and q are high.

Based on the above discussion, we construct the parameter set as summarized in Table 5 for our

analysis. In 2008, the average price of raw milk was 6.8 RMB per liter (Gale and Arnade 2015). We

use this price as rL and vary the premium for high-quality milk to be 5% to 25% above rL. We again

use rHm
2 as the penalty function, and consider imperfect testing. Despite qualitative evidence that

traceability in Sanlu’s supply chain is almost absent, we allow for some traceability for Sanlu in our

analysis. Hence, we likely underestimate its risk level. We analyze a total of 500 parameter combinations

for each company and observe a stark contrast in the reactive EMA risk faced by the two companies.

On average, the probability of an individual farm adulterating (Pn) is 0.617 for Sanlu versus 0.003 for

Bright Dairy. Similarly, the expected fraction of adulterated supply in the total output (En/k) is 0.398
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Table 5 Parameter Values for Sanlu Group and Bright Dairy

n m pL t q rL rH c

Sanlu Group 52,000 50 {0.5, ..,0.9} {520, ..,2080} {0.1, ..,0.5} 6.8 {1.05rL, ..,1.25rL} rH
Bright Dairy 2,335 700 {0.1, ..,0.5} {520, ..,2080} {0.5, ..,0.9} 6.8 {1.05rL, ..,1.25rL} rH

Figure 5 Effect of Traceability (t), High-Quality Unit Price (rH), and Testing Frequency (q) on Reactive EMA Risk
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Note. We observe very similar patterns if we examine the expected fraction of adulterated output (En/k) as the y-axis.

for Sanlu versus 0.0005 for Bright Dairy. These predictions match empirical evidence. In particular,

Sanlu’s products were the most heavily adulterated in the scandal, whereas Bright Dairy passed all

quality inspections by the authorities during the crackdown (Chen et al. 2014).

Figures 5a and 5b show, for each company, how Pn changes as t and rH change. While Sanlu’s risk

increases quickly as t decreases or rH increases, Bright Dairy’s risk is almost 0 in all instances. Despite

the lack of perfect testing for melamine (at that time), the less dispersed supply chain and better

quality assurance established in Bright Dairy’s supply chain have acted as important levers to protect

the company from reactive EMA risk. Lastly in Figure 5c, we observe a very similar pattern as in

Figure 4c. That is, increasing testing frequency q has a limited effect on reducing reactive EMA risk

when the supply chain is highly dispersed.

7. Analyzing Managerial Levers to Mitigate EMA Risk

In this section, we take the manufacturer’s perspective and examine a few managerial levers that could

help to mitigate EMA risk in the supply chain. We first consider increasing supply chain traceability

t and testing frequency q (Appendix O.2). Since strengthening these levers is costly, we develop an

optimization model where the manufacturer’s objective is to minimize total investment costs while

satisfying a constraint that the resulting EMA risk in the supply chain cannot exceed a certain level.

This modeling approach is common in the risk management literature (e.g., Federgruen and Yang
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2008, Meena et al. 2011, Federgruen et al. 2015). We highlight two results. First, whenever a feasible

solution exists (i.e., the risk constraint can be satisfied with full traceability and constant testing),

the manufacturer optimally utilizes the two levers by prioritizing the more cost-effective one (Theorem

O.8). Second, given a desirable risk constraint, it is always more difficult for a manufacturer with a more

dispersed supply chain to satisfy the constraint. Conditional on being able to satisfy the risk constraint,

it is always more costly for a manufacturer with a more dispersed supply chain to do so (Proposition

O.6). Thus, higher supply chain dispersion results in a greater challenge for a manufacturer to manage

and mitigate EMA risk, from both feasibility and financial standpoints. This result aligns with our

earlier discussion regarding the adverse impact of supply chain dispersion on EMA risk.

We next consider the lever of testing capability. In particular, the manufacturer can choose to invest

in perfect testing for either preemptive or reactive EMA or both. We consider the manufacturer’s

decision for the two types of EMA separately because in practice, companies contracting with testing

labs (for perfect testing) typically can choose what adulterants to test and are priced accordingly. Our

focus is to examine how the total EMA risk in the supply chain, accounting for both preemptive and

reactive EMA, is affected by the testing capabilities of the manufacturer. To do so, we analyze a setting

in which the manufacturer decides whether or not to adopt perfect testing for either type of EMA, and

the farms strategically respond by making preemptive and reactive EMA decisions (Appendix O.3).

The farms’ reactive EMA decisions are conditioned upon their preemptive EMA decisions because the

latter impact the likelihood of producing low-quality output, pL, at the farms. Our main results are

twofold. First, by Proposition 1, perfect testing always decreases reactive EMA risk as compared to

imperfect testing. Thus, if the risk reduction outweighs the investment cost, then the manufacturer

should invest in perfect testing to deter reactive EMA. In sharp contrast, perfect testing may lead to

a higher preemptive EMA risk than imperfect testing, when the per-unit penalty c is not too low nor

high enough.16 This counterintuitive result can be explained as follows. Recall from Theorems 1 and 2

that for preemptive EMA under perfect testing, adulterating farms all adulterate with the maximum

dosage, whereas under imperfect testing, they adulterate at a lower level that balances revenue gain

and expected penalty. When the penalty is not high enough, many farms choose to adulterate with

the maximum dosage under perfect testing. Collectively, they result in a larger amount of adulterants

in the total supply chain output than under imperfect testing.

16 When the penalty is very low, all farms adulterate with the maximum dosage under either testing scenario, and hence, the resulting
preemptive EMA risk is independent of the testing capability.
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8. Conclusions

In this paper, we develop a new set of analytical models to investigate how exogenous quality uncer-

tainty, supply chain dispersion, traceability, and testing sensitivity (with regard to detecting adulter-

ation) jointly impact farms’ strategic adulteration behavior in a farming supply chain consisting of

a distributed network of farms. We focus on economically motivated adulteration and consider two

distinct scenarios: “preemptive EMA” in which adulteration occurs before the uncertain quality of a

farm’s output is realized with the primary goal of reducing the probability of producing low-quality

output; “reactive EMA” in which adulteration occurs after the uncertain quality of a farm’s output is

realized with the primary goal of increasing the perceived quality of the output and creating fake high-

quality units. We fully characterize the farms’ equilibrium adulteration strategies for both scenarios.

We show how these strategies are impacted by quality uncertainty, the level of dispersion and trace-

ability in the supply chain, and the sensitivity of the manufacturer’s test for adulteration. We calibrate

our model based on real cases and field data and demonstrate that the models’ predictions are in line

with empirical observations. Furthermore, we examine a number of model extensions to confirm that

our main conclusions are robust to a few modeling assumptions. Finally, we analyze several managerial

levers available to the manufacturer to mitigate EMA risk in the supply chain.

Our analysis offers important and unique insights for policy makers and commercial entities in

food supply chains to more proactively address EMA risk. First, we demonstrate when supply chain

dispersion increases EMA risk in farming supply chains and how this result depends on traceability and

testing sensitivity. Our results complement the supply chain risk management literature in which multi-

sourcing is found to be desirable for guarding against disruption risks (e.g., earthquake, fire, hurricane).

We study, instead, quality risks related to both exogenous uncertainty and endogenous decisions within

the supply chain (i.e., farms adulterating their output). A recent paper by Huang et al. (2017b)

empirically shows the adverse effect of supply chain dispersion on EMA risk in China’s farming supply

chains, based on supply chain and quality data across five different industries. Second, by explicitly

modeling exogenous quality uncertainty (common in agricultural production) and distinguishing it

from endogenous adulteration decisions, we caution that quality investments need to be accompanied

by improvement in testing capabilities. This is because a lower (exogenous) chance of producing low-

quality output could inadvertently induce suppliers to endogenously adulterate the realized low-quality

units, if the detection of adulteration relies on having a sufficient amount of adulterants in the total

output. In such situations, the ability to differentiate fake high-quality products from truly high-quality

ones is essential to combat EMA.
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Our results have important practical implications and also open up a fruitful avenue for future

research. We recommend that companies address risks resulting from supply chain dispersion by mit-

igating the potential underlying issues in a dispersed supply chain, for example, by enabling better

traceability and risk sharing between farms and manufacturers. Some possible strategies include cre-

ating farming cooperatives that can allow for better traceability and knowledge transfer in terms

of best practices, or developing fairer contracts and support systems such as protective prices and

guaranteed distribution channels for farms (especially smallholder farms who face significant financial

pressures). Analytical and empirical research is needed to better understand the effectiveness of these

remedies in mitigating EMA risk under different market and socioeconomic environments. In addition,

future research can build upon our models to further examine other relevant supply chain settings. For

example, it would be valuable to jointly consider quality and disruption risks (or yield and demand

uncertainty when dispersion may be beneficial) to develop further insights regarding the role of dis-

persion in a farming supply chain. Analyzing repeated interactions where the manufacturer adapts

her testing strategies over time could also be helpful. For policy makers and regulators, we underscore

the importance of collecting data and verifying a food manufacturer’s sourcing supply chain to more

proactively manage EMA risk in food products. Current practices primarily focus on sampling prod-

ucts and inspecting facilities, with limited attention to the upstream parts of the supply chains where

agricultural production happens. As countries around the world scale up their food defense efforts,

with prominent examples such as the recent enactment of the Food Safety Modernization Act in the

U.S. and the new food safety law in China, our results offer timely and actionable insights on the

relatively overlooked supply chain perspective in the defense of food safety.
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Online Appendix

O.1. Analytical Details on Model Extensions

O.1.1. Preemptive EMA When Farms are Averse to Quality Uncertainty

To model this extension, we subtract a penalty, λE[I{nL > γm}], from the farm’s expected payoff function formulated in §3.1. This

penalty captures the farm’s aversion to producing too many low-quality units, which can threaten the livelihood of his family. The

next two theorems characterize farms’ equilibrium adulteration behavior under perfect and imperfect testing when they are averse

to quality uncertainty.

Theorem O.1. For preemptive EMA with perfect testing and farms aversive to quality uncertainty, the total number of adulter-

ating farms in any NE of the game is characterized by nRA
∗

a = min{n, dTRA− 1e}, where

TRA ≡ n2
(rH − rL)(pmax

L − pmin
L ) + (λ/m)

(
F (γ,m,pmax

L )−F (γ,m,pmin
L )

)
cqt

,

and F (γ,m,h(x))≡ 1−
∫ γm
0

f(x,m,h(x))dx. We have the following three cases.

(i) If TRA ≤ 1, then no farm adulterates.

(ii) If TRA >n, then all farms adulterate.

(iii) If TRA ∈ (1, n], then any subset of nRA
∗

a farms adulterating while the rest (n− nRA∗a ) farms not adulterating constitutes a

NE of the game.

Theorem O.2. Define T (x)≡−h′(x)
(rH − rL) +λf(γm,m,h(x))

(
γ(1−2h(x))+h(x)

2h(x)(1−h(x))

)
cq(t/n)((n+ 1)/n)

. For preemptive EMA with imperfect testing

and farms aversive to quality uncertainty, if γ ≤
pmin
L

1− 2pmin
L (1− pmin

L )
, then there exists a unique symmetric NE of the game in

which xPV
∗

RA is determined as follows.

(a) If c < T (1), then all farms adulterate to the maximum level; i.e., xPV
∗

RA = 1.

(b) If c≥ T (1), then the farms adulterate to some extent; i.e., xPV
∗

RA ∈ (0,1] and is the solution to the equation: x= T (x).

We observe that the farms’ equilibrium adulteration behavior under either testing scenario follows a very similar pattern as in

Theorems 1 and 2 in §3.1. The condition on γ in Theorem O.2 means that a farm should begin to exhibit aversion when the number

of his low-quality units is not too large. This condition is reasonable given our focus on smallholder farms. Our next result shows

that the risk of preemptive EMA in the supply chain is higher when farms are averse to quality uncertainty than when they are

expected-profit maximizers, under both perfect and imperfect testing.

Proposition O.1. nRA
∗

a ≥ n∗a and xPV
∗

RA ≥ xPV ∗ .

With respect to the effect of supply chain dispersion on preemptive EMA risk in the supply chain, we show as in Proposition 2

that greater dispersion leads to higher risk under imperfect testing.

Proposition O.2. If γ ≤
pmin
L

1− 2pmin
L (1− pmin

L )
, then

∂xPV
∗

RA

∂n
≥ 0.17

For the case of perfect testing, we cannot characterize the effect of dispersion on risk analytically. Therefore, we perform extensive

numerical simulation and observe that in a total of 32,000,000 numerical instances we run, greater dispersion always leads to a higher

risk.18

17 We treat n as a continuous variable in this analysis for tractability.

18 We use the following parameter values in the numerical simulation: k = 100000, 100 m values in {100, . . . ,1000}, 20 pmax
L values

in {0.1, . . . ,0.9}, pmin
L = 0.1, c= 19.07, 20 q values in {0.1, . . . ,0.9}, rH = 19.07, rL = 0, t= n, λ= {1,2, . . . ,40}, and 20 γ values in

{0.1, . . . ,0.9}.
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O.1.2. EMA Risk When the Quality of All Units from the Same Farm is Perfectly
Correlated

In this extension we analyze a setting where all units of the same farm are of low (high) quality with probability pmaxL (1− pmaxL ).

This setup captures scenarios where quality of units of the same farm are highly correlated (in contrast to being independent as

in our base model). We again analyze a setting where farms decide whether or not to adulterate low quality units. We first note

that our results for preemptive EMA in §3.1 will not change in this setup. This is because farms’ expected payoff does not change

in either perfect or imperfect testing with this updated distrbution of low quality units. Next, we characterize farms’ equilibrium

adulteration behavior under both perfect and inperfect testing for reactive EMA.

Theorem O.3. (i) For reactive EMA with perfect testing,

(a) if rH − rL ≤ q(t/n)c, then none of the farms adulterate low quality units.

(b) If rH − rL > q(t/n)c, then all the farms always adulterate low qualtiy units.

(ii) For reactive EMA with imperfect testing,

(a) if q(t/n)c≤
(rH − rL)n

pmaxL (n− 1) + 1
, then all the farms always adulterate low quality units.

(b) If cq(t/n)∈ (
(rH − rL)n

pmaxL (n− 1) + 1
, (rH − rL)n) , then a mixed strategy Nash equilibrium exists where all farms adulterate low

quality units with probability pad ∈ (0,1) and pad =
(rH − rL)n2

cqt(n− 1)pmaxL

−
1

(n− 1)pmaxL

.

(c) if (rH − rL)n≤ q(t/n)c , then farms never adulterate low quality units.

Theorem O.3 shows that under perfect testing, farms always (never) adulterate low quality units if the expected per unit penalty is

smaller (larger) than the expected per unit revenue gain from adulteration. In contrast, since expected penalty increases with total

amount of adulterants under imperfect testing, a symmetric mixed strategy Nash equilbirum that randomizes between adulteration

and non adulteration balances the payoffs. Our next proposition shows that similar to Proposition 2B, the risk of reactive EMA as

measured by the total expected number of adulterated output in the supply chain is again increasing in supply chain dispersion.

Proposition O.3. For reactive EMA with imperfect testing where all units of the same farm are of low quality with probability

pmaxL ,
∂En

∂n
≥ 0.

O.1.3. Reactive EMA with Decision on How Much to Adulterate

In §3.2.2, we focus on the setup where farms adulterate either all or none of the realized low-quality units. An alternative setup is for

farms to decide how many of the realized low-quality units to adulterate. This setup can capture scenarios in which a farm adulterates

to fake the overall quality of his output to a desirable level. We first note that our results for perfect testing will not change under

this setup. This is because under perfect testing, any amount of adulteration induces the same level of expected penalty, whereas the

revenue gain increases in the number of units being adulterated. Hence, a farm would always adulterate all of his low-quality units

if he decides to adulterate. Theorem O.4 below characterizes the farms’ equilibrium adulteration strategy under imperfect testing,

where a∗(nL,i) denotes the number of realized low-quality units that farm i adulterates in equilibrium.

Theorem O.4. For reactive EMA with imperfect testing where a farm can choose how many of the realized low-quality units

to adulterate, there exists a unique symmetric BNE of the game in which a farm’s adulteration strategy is a threshold strategy:

a∗(nL,i) = nL,i if nL,i ∈ [0, βRVf ] and a∗(nL,i) = βRVf if nL,i ∈ (βRVf ,m], for all i. The threshold βRVf is unique and determined as

follows:

(a) If cq

(
t

n

)
≥

n(rH − rL)

2 + (n− 1)pL
, then βRVf ∈ (0,m) and is the solution to the equation:

2β =
nk(rH − rL)

cqt
− (n− 1)

(∫ β
0
xf(x, k

n
, pL)dx+

∫m
β
βf(x, k

n
, pL)dx

)
.

(b) If cq

(
t

n

)
<

n(rH − rL)

2 + (n− 1)pL
, then βRVf =m.
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Theorem O.4 shows that when farms can choose to adulterate a fraction of his low-quality units, then they adulterate all low-quality

units up to a threshold, after which they adulterate a constant number of low-quality units. This structure is very similar to that

in Theorem 4. The only difference is that in the current setup, when a farm has many low-quality units, the farm would adulterate

just enough to make the marginal revenue gain from adulteration equal to the marginal penalty, i.e., adulterating βRVf units (as

opposed to not adulterating at all in Theorem 4). Similar to Proposition 2B, we show that the risk of reactive EMA as measured by

the total expected number of adulterated output in the supply chain is increasing in supply chain dispersion.

Proposition O.4. For reactive EMA with imperfect testing where a farm can choose how many of the realized low-quality units

to adulterate,
∂En

∂n
≥ 0.

O.1.4. Alternative Models of Imperfect Testing Sensitivity

In this extension, we analyze settings of imperfect testing to model scenarios where detection probability is not linearly increasing

in the relative amount of adulterated output in the total supply chain output (as in §3.1.2 and §3.2.2). In particular, we examine

three alternative models where the detection probability is (i) convex increasing in the relative amount of adulterated output, (ii)

convex increasing in the relative amount of adulterated output and reaches 1 in the interior of the (0, 1) interval, and (iii) linearly

increasing in the relative amount of adulterated output and reaches 1 in the interior of the (0, 1) interval. The last two alternatives

capture scenarios in which detection probability increases quickly as a small amount of adulterants are added.

Formally, let the detection probability S1 : [0,1]→ [0,1] be a convex increasing function such that S1(0) = 0 and S1(1) = 1 under

scenario (i). That is, the detection probability should be 0 (1) if none (all) of the output is adulterated. Under imperfect testing, if

farm i adulterates with xi, then the chance that the manufacturer detects adulteration when testing the aggregated supply is equal

to
S1 (xi) +

∑
−i S1 (x−i)

n
. If the manufacturer further tests the individual sample of farm i, then she detects adulteration in the

sample with probability S1 (xi). Since the manufacturer tests the aggregated supply with probability q, the ultimate probability for

farm i to be caught if he adulterates is equal to

γi(xi, x−i))≡ q
(
t

n

)(
S1 (xi) +

∑
−i S1 (x−i)

n

)
S1 (xi) .

Similarly, the probability for farm i to be caught if he adulterates under imperfect testing is equal to

γi(nL,i, a−i(nL,−i))≡ q
(
t

n

)
S1

(nL,i
m

)
EnL,−i

[
S1

(
nL,i +

∑
−i nL,−ia−i(nL,−i)

k

)]
.

Under model (ii), let the detection probability S2 : [0,1]→ [0,1] be such that S2(0) = 0, S2(a) is convex increasing in a for

a ∈ [0, τ), and S2(a) = 1 for a ∈ [τ,1], for some τ ∈ (0,1). Lastly, let the detection probability S3 : [0,1]→ [0,1] under model (iii) be

a piecewise increasing function such that S3(x) = min(αx,1) for some α ≥ 1. Note that α captures the detection level of testing.

Higher the α, higher is the range in which detection of adulterants happens with perfect accuracy. Under preemptive case, if farm i

adulterates with xi, then the chance that the manufacturer detects the adulteration when testing the aggregated supply is equal to

min(
α(xi +

∑
−i x−i)

n
,1). If the manufacturer further tests the individual sample of farm i, then she detects the adulterants in the

sample with probability min(αxi,1).

We characterize farms equilibrium adulteration behavior under both preemptive and reactive EMA for the three models. Under

preemptive EMA, the equilibrium adulteration behavior (Theorem O.5) again follows the same structure as in Theorem 2 with

updated thresholds. In particular, if penalty is smaller than a threshold, then all farms adulterate upto the maximum level and if it

is large enough then farms adulterate to some extent but not to the maximum level.

Theorem O.5. (i) For preemptive EMA with imperfect testing and convex increasing testing sensitivity modeled by S1(·), there

exists a unique symmetric NE in which xPV
∗

is determined as follows.

(a) If c <−h′(1)(rH − rL)/[S′1(1)q(t/n)((n+ 1)/n)], then all farms adulterate to the maximum level; i.e., xPV
∗

= 1.

(b) If c≥ [−h′(1)(rH − rL)/[S′1(1)q(t/n)((n+ 1)/n)], then the farms adulterate to some extent; i.e., xPV
∗ ∈ (0,1) and is the

solution to the following equation: −h′(x) = S1(x)S′1(x)q(t/n)((n+ 1)/n)c/(rH − rL).
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(ii) For preemptive EMA with imperfect testing and convex increasing testing sensitivity modeled by S2(·), there exists a unique

symmetric NE in which xPV
∗

is determined as follows.

(a) If c <−h′(τ)(rH − rL)/[S2(τ)S′2(τ)q(t/n)((n+ 1)/n)], then all farms adulterate to the maximum level; i.e., xPV
∗

= 1.

(b) If c ≥ −h′(τ)(rH − rL)/[S2(τ)S′2(τ)q(t/n)((n + 1)/n)], let x∗ ∈ (0, τ) be the solution to the equation: −h′(x) =

S2(x)S′2(x)q(t/n)((n+ 1)/n)c/(rH − rL). There are two cases:

i. If c < h(x∗)/[q(t/n)(1−S2(x∗)2)], then all farms adulterate to the maximum level; i.e., xPV
∗
=1.

ii. If c≥ h(x∗)/[q(t/n)(1−S2(x∗)2)], then all farms adulterate to some extent; i.e., xPV
∗

= x∗.

(iii) For preemptive EMA with imperfect testing and testing sensitivity modeled by S3, there exists a unique symmetric NE of the

game in which xPV
∗

is determined as follows.

(a) If c <−h′(1/α)(rH − rL)/[αq(t/n)((n+ 1)/n)], then all farms adulterate to the maximum level; i.e. xPV
∗

= 1.

(b) If c≤−h′(1/α)(rH−rL)/[αq(t/n)((n+1)/n)], then let x∗ ∈ (0,1/α) be the solution to the following equation: −h′(x)/x=

q(t/n)((n+ 1)/n)cα2/(rH − rL).

i. If c < (h(x∗)−h(1))(rH − rL)/[α2q(t/n)(1−x∗2)] then xPV
∗

= 1

ii. If c≥ (h(x∗)−h(1))(rH − rL)/[α2q(t/n)(1−x∗2)] then xPV
∗

= x∗

Under reactive EMA, we again analyze a setting where a farm adulterates either all or none of his realized low-quality units; i.e.,

the adulteration strategy can be characterized by the mapping ai(nL,i) : {1, . . . ,m}→ {0,1}.

Theorem O.6. (i) For reactive EMA with imperfect testing and convex increasing testing sensitivity modeled by S1(·), there

exists a unique symmetric BNE of the game in which a farm’s adulteration strategy is a threshold strategy: a∗(nL,i) = 1 if

nL,i ∈ [0, βS) and a∗(nL,i) = 0 if nL,i ∈ [βS ,m], for all i. The threshold βS is unique and determined as follows:

(a) If cq

(
t

n

)
≥

(rH − rL)

EnL,−i
[
S1

(
m+

∑
−i nL,−i
k

)] , then βS ∈ (0,m) and is the solution to the equation:

βS(rH − rL) = q
(
t

n

)
S1

(
βS

m

)
EnL,−i

[
S1

(
βS+

∑
−i nL,−iI{nL,−i<β

S}
k

)]
cm,

where I{·} is an indicator function whose value is 1 if the argument is true and 0 otherwise.

(b) If cq

(
t

n

)
<

(rH − rL)

EnL,−i
[
S1

(
m+

∑
−i nL,−i
k

)] , then βS =m.

(ii) For reactive EMA with imperfect testing and convex increasing testing sensitivity modeled by S2(·), in any BNE of the game,

there exist thresholds βl and βu such that βl <βu and the following must hold:

(a) If cq

(
t

n

)
≥

(rH − rL)

EnL,−i
[
S2

(
m+

∑
−i nL,−i
k

)] , then in equilibrium a∗(nL,i) = 1 if nL,i < βl or if nL,i > βu; a∗(nL,i) = 0 if

nL,i ∈ [βl, βu]. Furthermore, we must have βu ≥ τm.

(b) If cq

(
t

n

)
<

(rH − rL)

EnL,−i
[
S2

(
m+

∑
−i nL,−i
k

)] , then all farms always adulterate.

(iii) For reactive EMA with imperfect testing and testing sensitivity modeled by S3, there exists a symmetric BNE of the game in

which a farm’s adulteration strategy is a threhold strategy: a∗(nL,i) = 1 if nL,i ∈ [0, βS ] or if nL,i ∈ [βU ,m].

(a) If cq(t/n)≤max
( rH − rL

α
,

k(rH − rL)

α(pα(k−m) +m)

)
then βS = βU =m

(b) If cq(t/n)>max
( rH − rL

α
,

k(rH − rL)

α(pα(k−m) +m)

)
then

βS =max
(

0,
k(rH − rL)

cqα2
− (

k

m
− 1)(

∫ βS
0

xf(x,m,p)dx+
∫m
βU

xf(x,m,p)dx)
)

and

βU =min
(
m,

cqm(t/n)

rH − rL
,

(
k

m
− 1)(

∫ βS
0

xf(x,m,p)dx+
∫m
βU

xf(x,m,p)dx)

k(rH − rL)

cqmα
− 1

)

Theorems O.5 and O.6 below show that the farms’ equilibrium adulteration behavior under scenario (i) follows a very similar

structure as in Theorems 4 in and §3.2.2. Under scenario (ii) and (iii), the structure of the equilibrium strategy in Theorem O.6
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can be viewed as a combination of the equilibrium strategies described in Theorems 3 and 4 in §3.2. In particular, the equilbrium

strategy here combines the adulteration strategies identified in perfect and imperfect testing. If the number of low quality units are

very low, then the testing sensitivity is similar to the imperfect testing case and farms adulterate when their low quality units are

less than a threshold. In contrast, if low quality units are greater than a thereshold, then testing sensitivity is similar to perfect

testing and farms adulterate when their low quality units are greater than a threshold.

O.1.5. Alternative Penalty Structures

In this extension, we first analyze cases in which per unit penalty is linearly increasing in the amount of adulterants. This section

is valuable in capturing scenarios where harmful effects of adulterants are increasing in the amount of adulterants. We model such

case by assuming that penalty is linearly increasing in the amount of adulterants. Thus for a farm that adds xi adulterants per unit

under preemptive testing and is caught, the penalty is cm(mx). We again find that the equilibrium structure under all the scenarios

is similar to the ones identified in Section§3.2 and §3.1 except in one case: For penalty alternative (i) and preemptive EMA with

perfect testing, adulterating farms use an amount of adulterants that balances the revenue gain with the penalty from adulterating.

The additional tradeoff arise because the penalty on being caught adulterating is no longer constabt but increaisng in the amount

of adulterants.

Theorem O.7. (i) For preemptive EMA with perfect testing, there exists a unique symmetric NE in which xPP
∗

is determined

as follows.

(a) If c≥−h′(0)(rH − rL)n/[mq(t/n)(n+ 1)], then

n∗a =

⌈
−h′(0)(rH − rL)n2

mcqt
− 1

⌉
(O.1)

(b) If c <−h′(0)(rH − rL)n/[mq(t/n)(n+ 1)], then n∗a = n

Let x∗ be the solution to the following equation:−h′(x)(rH − rL) = mcq(t/n)(n∗a/n). Then xPP
∗

a = min(x∗,1) and xPP
∗

a ∈

(0,1).

(ii) For preemptive EMA with imperfect testing, there exists a unique symmetric NE in which xPV
∗

is determined as follows.

(a) If c <−h′(1)(rH − rL)/[mq(t/n)((2n+ 1)/n)], then all farms adulterate to the maximum level; i.e., xPV
∗

= 1.

(b) If c≥ [−h′(1)(rH − rL)/[mq(t/n)((2n+ 1)/n)], then the farms adulterate to some extent; i.e., xPV
∗ ∈ (0,1) and is the

solution to the following equation: −h′(x)/x2 = q(t/n)((2n+ 1)/n)c/(rH − rL).

(iii) For reactive EMA with perfect testing,

(a) if rH − rL ≤ q(t/n)cm , then none of the farms adulterate; i.e. βRP
∗

= 0.

(b) If rH − rL > q(t/n)cm , then all the farms adulterate to the maximum level; i.e., βRP
∗

=m

(iv) For reactive EMA with imperfect testing, there exists a unique symmetric BNE of the game in which a farm’s adulteration

strategy is a threshold strategy: a∗(nL,i) = 1 if nL,i ∈ [0, βRV ) and a∗(nL,i) = 0 if nL,i ∈ [βRV ,m], for all i. The threshold

βRV is unique and determined as follows:

(a) If cq

(
t

n

)
≥

k(rH − rL)

m(m+ (n− 1)mp)
then βRV ∈ (0,m) and is the solution to the equation: β2 +β(n−1)

∫ β
0
xf(x, k

n
, pL)dx=

nk(rH − rL)

cqt
.

(b) If cq

(
t

n

)
<

k(rH − rL)

m(m+ (n− 1)mp)
, then βRV =m.

Next, we find qualitative evidence that larger companies who are caught adulterating face more severe penalty than smaller ones.

For example, they face longer jail terms and are fined more heavily (Yan 2017). This observation can be captured by modeling the

total penalty from adulterating as convex increasing in m. We find that all of our results continue to hold in this alternative setup

with updated threshold values.

Proposition O.5. All of our results in §3.1 and §3.2 continue to hold if the penalty that a farm incurred for adulterating is

convex increasing in the total number of units, m, supplied by the farm.



 Electronic copy available at: https://ssrn.com/abstract=3060078 

e-companion to Levi, Singhvi, Zheng: EMA in Farming Supply Chains ec7

O.2. Investing in Traceability and Testing Frequency to Mitigate EMA
Risk

Given a supply network of farms, the manufacturer has two levers to mitigate the risk of EMA in the supply chain: increasing supply

chain traceability and the frequency of testing the aggregated supply. Developing these capabilities can be costly. For example, it is

very difficult to trace and inspect every individual farm in a supply chain sourcing from thousands of farms (Nestlé 2015). Therefore,

the manufacturer needs to balance between the cost of investing in these capabilities and the benefit of reducing EMA risk in the

supply chain. To address this tradeoff, we develop an optimization model from the manufacturer’s perspective, where the objective

is to minimize total investment costs while satisfying a constraint that the resulting risk of EMA in the supply chain cannot exceed

a certain level.

First consider preemptive EMA. In this setting, the overall risk of EMA in the supply chain is measured by n∗a/n under perfect

testing and xPV
∗

under imperfect testing (see §4). Define l(q) and g(t) as the manufacturer’s investment costs for increasing testing

frequency and traceability, both of which are convex and increasing functions. The manufacturer’s optimization problem under

preemptive EMA can be characterized as follows.

ΠPP (q, t) ≡ min
q,t
{l(q) + g(t) |n∗a/n≤ α, q ∈ [0,1], t∈ [0, n]} , (O.2)

ΠPV (q, t) ≡ min
q,t

{
l(q) + g(t)

∣∣∣xPV ∗ ≤ α, q ∈ [0,1], t∈ [0, n]
}
, (O.3)

where n∗a and xPV
∗

are defined in Theorems 1 and 2, and α is the maximum level of risk allowed. For reactive EMA, the manufacturer’s

optimization problem can be modeled similarly as follows.

ΠRI(q, t) ≡ min
q,t
{l(q) + g(t) |Pn ≤ α, q ∈ [0,1], t∈ [0, n]} , (O.4)

ΠRE(q, t) ≡ min
q,t
{l(q) + g(t) |En ≤ α, q ∈ [0,1], t∈ [0, n]} , (O.5)

where Pn and En are defined in §4 given the farms’ optimal adulteration strategies under perfect and imperfect testing, characterized

in Theorems 3 and 4. The key difference is that we measure the risk of reactive EMA in the supply chain in two ways: the probability

of an individual farm adulterating (i.e., Pn as in Model (O.4)) and the expected total amount of adulterated output in the supply

chain (i.e., En as in Model (O.5)).

Before characterizing the manufacturer’s optimal investment strategy under each of these model scenarios, we first define the

following useful constants.

(i) For Model (O.2):

uPP ≡
(rH − rL)(pmax

L − pmin
L )n2

c(1 + bnαc)
. (O.6)

(ii) For Model (O.3):

uPV ≡
−h′(α)(rH − rL)n

αc(n+ 1)/n
. (O.7)

(iii) For Model (O.4) under perfect testing:

uRP ≡
(
n2(rH − rL)

ck

)(
pLk

n
+φ−1(1−α)

√
kpL(1− pL)

n

)
. (O.8)

(iv) For Model (O.4) under imperfect testing:

uRV ≡
(
kn(rH − rL)

c

)pLk

n
+φ−1(α)

√
kpL(1− pL)

n
+ (n− 1)

∫ pLk
n

+φ−1(α)

√
kpL(1−pL)

n

0

xf(x,k/n, pL)dx

−1

. (O.9)

The notation φ represents the PDF of the standard normal distribution. These constants are the values of qt when the risk constraint

in the corresponding models indicated is binding. Note that in the optimal solution to these models, the risk constraint must be

binding because n∗a, xPV
∗
, and Pn are all decreasing in q and t, whereas the investment costs are increasing in q and t. The following

theorem summarizes the manufacturer’s optimal investment strategy for Models (O.2), (O.3), and (O.4) under perfect and imperfect

testing.
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Theorem O.8. Given the constants uj with j ∈ {PP,PV,RP,RV } defined in Equations (O.6)–(O.9), we have the following results

for α≤ 0.5.

(i) If uj >n, then the corresponding manufacturer problem is infeasible.

(ii) If uj ≤ n, then the optimal solution to the corresponding manufacturer problem (q∗, t∗) can be characterized as follows.

(a) If l′(1)≤ ujg′(uj), then (q∗, t∗) = (1, uj).

(b) If g′(n)≤
uj

n2
l′
(
uj

n

)
, then (q∗, t∗) =

(
uj

n
,n

)
.

(c) If l′(1)> ujg′(uj) and g′(n)>
uj

n2
l′
(
uj

n

)
, then (q∗, t∗) ∈ (0,1)× (0, n) and satisfy the following first-order conditions:

q∗ =

√
ujg′(uj/q∗)

l′(q∗)
and t∗ =

uj

q∗
.

Theorem O.8 part (i) suggests that if the manufacturer cannot satisfy the risk constraint even when the supply chain is fully

traceable and she always tests the aggregated supply, then additional levers are necessary to meet the risk constraint. Given our

earlier discussions in §4, one possible solution is to reduce supply chain dispersion. Theorem O.8 part (ii) shows that when a feasible

solution exists, the manufacturer always chooses the solution with the best cost-effectiveness. If the marginal cost at maximum

testing frequency is lower than the marginal cost at the minimum necessary traceability to satisfy the risk constraint (i.e., increasing

testing frequency is in general more cost effective than increasing traceability; Theorem O.8 part (ii-a)), then it is optimal for

the manufacturer to always test the aggregated supply and build just enough traceability given the risk constraint. Conversely, if

increasing traceability is in general more cost effective than increasing testing frequency (Theorem O.8 part (ii-b))), then it is optimal

for the manufacturer to build full traceability in the supply chain and test just enough given the risk constraint. If neither of the

above is true (Theorem O.8 part (ii-c))), then the optimal investment is an interior solution that achieves the best cost balance

between investing in the two levers.

Our next proposition characterizes how the optimal investment solution (q∗, t∗) described in Theorem O.8 and the resulting

optimal cost change with supply chain dispersion.

Proposition O.6. Let SCH and SCL be two supply chains such that the supply chain dispersion in SCH is greater than that

in SCL (i.e., nH >nL). Consider each of the manufacturer’s optimization problems formulated in Models (O.2), (O.3), and (O.4)

under perfect and imperfect testing. We have the following results for α≤ 0.5.

(i) If the manufacturer’s problem is infeasible for SCL, then it is also infeasible for SCH .

(ii) If the manufacturer’s problem is feasible for SCH , then it is also feasible for SCL.

(iii) Assume that the manufacturer’s problem is feasible for SCH . Let (q∗H , t
∗
H) and (q∗L, t

∗
L) be the optimal solution for SCH and

SCL respectively. Then, q∗L ≤ q∗H , t∗L ≤ t∗H , and the resulting optimal cost for the manufacturer is lower in SCL than in SCH .

Proposition O.6 highlights two results. First, given a desirable risk constraint, it is always more difficult for a manufacturer with

a more dispersed supply chain to satisfy the constraint (parts (i) and (ii)). Second, conditional on being able to satisfy the risk

constraint, it is always more costly for a manufacturer with a more dispersed supply chain to do so (part (iii)). Therefore, higher supply

chain dispersion results in greater challenges for a manufacturer to manage and mitigate the risk of individual farms adulterating,

from both feasibility and financial standpoints.

Finally, we consider the manufacturer’s problem formulated in Model (O.5). The key difference in this model versus the others is

that the risk constraint is imposed on En, the expected total amount of adulterated output in the supply chain. Since En aggregates

all farms’ adulteration decisions, we cannot derive the manufacturer’s optimal decisions analytically. Nevertheless, consistent with

Proposition O.6, we show that higher supply chain dispersion again makes it more costly for the manufacturer to satisfy a desirable

risk constraint, regardless of testing sensitivity (perfect or imperfect testing).

Proposition O.7. Let SCH and SCL be two supply chains such that the supply chain dispersion in SCH is greater than that in

SCL (i.e., nH >nL). Consider the manufacturer’s optimization problem formulated in Model (O.5) and assume that it is feasible

for SCH . If α≤ n
∫
mp/3

xf(x,m,p)dx, then for both perfect and imperfect testing, the optimal cost for the manufacturer is lower

in SCL than in SCH .
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Table O.1 Total EMA Risk When Farms Engage in Both Preemptive and Reactive EMA

Reactive EMA, perfect testing Reactive EMA, imperfect testing

Preemptive EMA, perfect testing λmn∗a + (n−n∗a)
∫m
βRP

xf(x,m,pmax
L )dx λmn∗a + (n−n∗a)

∫ βRV
0

xf(x,m,pmax
L )dx

Preemptive EMA, imperfect testing λkxPV
∗

+n
∫m
βRP

xf(x,m,h(xPV
∗
))dx λkxPV

∗
+n

∫ βRV
0

xf(x,m,h(xPV
∗
))dx

O.3. Investing in Testing Capabilities to Mitigate EMA Risk
We examine the effect of the manufacturer investing in perfect testing on mitigating EMA risk in the supply chain. To this end,

we allow farms to engage in both preemptive and reactive EMA in response to the manufacturer’s testing capability. The model

dynamics are similar to those described in §2 with the first two steps revised as follows. (i) The manufacturer chooses whether or

not to adopt perfect testing for preemptive or reactive EMA respectively. The farms observe the manufacturer’s choice. (ii) Each

farm simultaneously and individually decides the amount of adulterants to add to reduce the likelihood of producing low-quality

output from pmax
L to some pL ≤ pmax

L (preemptive EMA). (iii) The uncertain quality of each unit of output is realized. (iv) Each

farm simultaneously and individually decides whether or not to adulterate all of the realized low quality units nL to create fake

high-quality ones (reactive EMA). The remaining steps are exactly the same as in Figure 1. We are interested in analyzing how the

total EMA risk, accounting for both preemptive and reactive EMA, is affected by the manufacturer’s testing capability for either type

of EMA. In particular, we analyze whether adopting perfect testing always reduces EMA risk in the supply chain. In this analysis,

we take the farms to be short-term oriented (see footnote 8), and thus, they do not account for every possible realization of nL and

the corresponding reactive EMA decision when making their preemptive EMA decision. To simplify exposition, we also assume that

when the farms adulterate preemptively with the maximum dosage, pL becomes 0. Our results remain qualitatively the same without

this simplifying assumption. Table O.1 summarizes the total EMA risk in the supply chain for the four different scenarios we analyze

in §3. For example, the top left cell shows the total EMA risk if the manufacturer invests in perfect testing for both preemptive and

reactive EMA. By Theorem 1 we know that under perfect testing, a subset of n∗a farms adulterate preemptively with the maximum

dosage while the remaining do not adulterate at all. Thus, the expected total amount of adulterants added preemptively is mn∗a. In

the reactive EMA stage, we again know from Theorem 3 that under perfect testing, farms adulterate when their low-quality units

are greater than βRP . Hence, the total EMA risk in the supply chain is equal to λmn∗a + (n−n∗a)
∫m
βRP

xf(x,m,pmax
L )dx. Note that

λ here measures the importance of preemptive EMA relative to reactive EMA when the manufacturer evaluates the total EMA risk.

We can similarly characterize the total EMA risk in the supply chain for the other three scenarios.

By Proposition 1, we know that reactive EMA risk is always lower when the manufacturer adopts perfect testing. Thus, we only

need to compare the total EMA risk in the left two cells in Table O.1. We first focus on comparing the preemptive EMA risk between

these two scenarios. Our results are summarized in the next proposition.

Proposition O.8. Let RPp ≡mn∗a and RPip ≡ kxPV
∗

denote the preemptive EMA risk under perfect and imperfect testing respec-

tively . Then,

(i) If c <−h′(1)(rH − rL)/[q(t/n)(n+ 1)/n], then RPp = k and RPip = k. Thus, all farms adulterate to the maximum level under

both perfect and imperfect testing cases.

(ii) If c ∈ [−h′(1)(rH − rL)/[q(t/n)(n+ 1)/n, (rH − rL)(pmaxL − pminL )/[q(t/n)]], then xPV
∗ ∈ (0,1) and n∗a = n. Thus, RPp ≥RPip,

i.e., preemptive EMA risk is higher under perfect testing than under imperfect testing.

(iii) If c≥ (rH − rL)(pmaxL − pminL )/[q(t/n)]], and

(a) If c < (rH − rL)(pmaxL −pminL )/[q(t/n)h−1((pminL −pmaxL )(1 + 1/n))], then RPp ≥RPip, i.e., preemptive EMA risk is higher

under perfect testing than under imperfect testing.

(b) If c≥ (rH − rL)(pmaxL − pminL )/[q(t/n)h−1((pminL − pmaxL )(1 + 1/n))] then RPip ≥RPp , i.e., preemptive EMA risk is higher

under imperfect testing than under perfect testing.
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Proposition O.8 shows that when the per-unit penalty is not high enough, adopting perfect testing can in fact backfire and result

in higher preemptive EMA risk. This is because under perfect testing, adulterating farms all adulterate with the maximum dosage,

while under imperfect testing, they adulterate at a lower level to trade off revenue gain with the expected penalty. When the penalty

is not high enough, more farms adulterate to the maximum dosage under perfect testing, therefore leading to a higher risk. Our next

result shows that this observation remains true when considering the total EMA risk that also accounts for reactive EMA.

Theorem O.9. Let RTp denote the total EMA risk under perfect testing for both preemptive and reactive EMA, and RTip the total

EMA risk under imperfect testing for preemptive EMA and perfect testing for reactive EMA. We have the following results.

(i) If c <−h′(1)(rH − rL)/[q(t/n)(n+ 1)/n], then RTp =RTip.

(ii) If c≥ (rH − rL)/[q(t/n)], and

(a) If c < (rH − rL)(pmaxL )/[q(t/n)h−1(−pmaxL (1 + 1/n))]), then RTp ≥RTip.

(b) If c≥ (rH − rL)(pmaxL )/[q(t/n)h−1(−pmaxL (1 + 1/n))]), then RTip ≥RTp .

We complement Theorem O.9 with extensive numerical simulation for the range of c values that we cannot characterize the total

risk analytically. Figure O.1 presents a representative pattern of how the total EMA risk changes with c under either perfect or

imperfect testing for preemptive EMA and perfect testing for reactive EMA. Observe that adopting perfect testing for preemptive

EMA in fact leads to higher total EMA risk inadvertently when c is not sufficiently high (for c < rH in this example).

Figure O.1 Total EMA Risk under Perfect or Imperfect Testing for Preemptive EMA and Perfect Testing for Reactive EMA
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Note. We use the following parameters in this example: k = 100,000, m= 1,000, q = 1, rH = 10, rL = 0, t= n, c ∈ {1,1.5, . . . ,50},
pmax
L = 0.5, and pmin

L = 0.




