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Tumors encompass complex cellular ecosystems of malignant 
and non-malignant cells, whose diversity and interactions 
affect cancer progression and drug response and resistance. 

Recent advances in single-cell genomics, especially single-cell 
RNA-Seq (scRNA-Seq), have transformed our ability to analyze 
tumors, revealing cell types, states, genetic diversity and interactions 
in the complex tumor ecosystem1–6. Single-cell analysis of tumors is 

rapidly expanding, including the launch of a Human Tumor Atlas 
Network (HTAPP) as part of the Cancer Moonshot7.

Successful scRNA-Seq of clinical tumor specimens poses several 
challenges. First, it requires quick dissociation tailored to the tumor 
type, and involves enzymatic digestion, which can lead to loss of  
sensitive cells or changes in gene expression. Moreover, obtain-
ing fresh tissue is time-sensitive and requires tight coordination 
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Single-cell genomics is essential to chart tumor ecosystems. Although single-cell RNA-Seq (scRNA-Seq) profiles RNA from 
cells dissociated from fresh tumors, single-nucleus RNA-Seq (snRNA-Seq) is needed to profile frozen or hard-to-dissociate 
tumors. Each requires customization to different tissue and tumor types, posing a barrier to adoption. Here, we have developed 
a systematic toolbox for profiling fresh and frozen clinical tumor samples using scRNA-Seq and snRNA-Seq, respectively. We 
analyzed 216,490 cells and nuclei from 40 samples across 23 specimens spanning eight tumor types of varying tissue and 
sample characteristics. We evaluated protocols by cell and nucleus quality, recovery rate and cellular composition. scRNA-Seq 
and snRNA-Seq from matched samples recovered the same cell types, but at different proportions. Our work provides guidance 
for studies in a broad range of tumors, including criteria for testing and selecting methods from the toolbox for other tumors, 
thus paving the way for charting tumor atlases.
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between tissue acquisition and processing teams, posing a chal-
lenge in clinical settings. Conversely, single-nucleus RNA-Seq 
(snRNA-Seq) allows profiling of single nuclei isolated from frozen 
tissues, decoupling tissue acquisition from immediate sample pro-
cessing. snRNA-Seq can also handle samples that cannot be suc-
cessfully dissociated even when fresh, due to size or cell fragility8,9, 
as well as multiplexed analysis of longitudinal samples from the 
same individual10. However, nuclei have lower amounts of mRNA 
compared to cells and are more challenging to enrich or deplete 
for specific cell types of interest. Both scRNA-Seq and snRNA-Seq 
pose experimental challenges when applied to different tumor 
types, due to the distinct cellular composition and extracellular  
matrix (ECM) in different tumors, and thus each assay requires 
dedicated customizations11.

To address these challenges, we developed a systematic tool-
box for fresh and frozen tumor processing using scRNA-Seq and 
snRNA-Seq, respectively (Fig. 1a). The toolbox contains our experi-
mental workflow and methods, computational pipelines and evalua-
tion metrics. To generalize across tumor and sample types, we tested 
eight tumor types with different tissue characteristics (Fig. 1b),  
including comparisons of matched fresh and frozen preparations 
from the same tumor specimen. Our work provides direct recom-
mended protocols for multiple tumor types, decision trees that allow 
researchers to choose the most suitable protocol for their research 
goals, and guidelines on how to customize protocols for new tumor 
and specimen types.

Results
A systematic study to develop an sc/snRNA-Seq toolbox. To 
develop a toolbox of customized protocols for sc/snRNA-Seq of 
tumors, we studied eight tumor types with different tissue charac-
teristics (Fig. 1). The tumor types span the following characteristics: 
different cells of origin (for example, epithelial, neuronal), solid and 
non-solid, patient ages and transitions (for example, primary, meta-
static). We tested varying tissue and sample characteristics including 
resection, biopsy, ascites and orthotopic patient-derived xenograft 
(O-PDX). We included samples from non-small cell lung carci-
noma (NSCLC), metastatic breast cancer (MBC), ovarian cancer, 
neuroblastoma, glioblastoma (GBM), pediatric high-grade glioma, 
chronic lymphocytic leukemia (CLL), pediatric sarcoma and mela-
noma (Fig. 1b). In total, we analyzed 216,490 cells and nuclei across 
23 tumors, from 22 patients spanning 40 sample preparations. We 
provide a comprehensive analysis summary for each sample tested 
in a dedicated website (https://tumor-toolbox.broadinstitute.org).

Experimental and computational QCs assess quality and com-
position. We evaluated and compared protocols based on (1) cell/
nucleus quality; (2) number of recovered versus expected cells/
nuclei; (3) cellular composition (Fig. 1a). For ‘cell/nucleus qual-
ity’, we considered both experimental and computational metrics. 
Experimentally, we measured cell viability (for scRNA-Seq), the 
extent of doublets or aggregates in the cell/nucleus suspension and 
cDNA quality recovered after whole transcriptome amplification. 
Computationally, we evaluated the percent of reads mapping to the 
transcriptome, genome and intergenic regions, the number of cells/
nuclei exceeding a minimal number of genes and unique transcripts 
(reflected by unique molecular identifiers, UMIs), the number of 
reads, transcripts (UMIs) and genes detected per cell/nucleus and 
the percent of UMIs from mitochondrial genes (see Methods). To 
compare protocols, when there was a notable difference in sequenc-
ing saturation or total reads across samples, we also downsampled 
reads to equal numbers across samples and then re-estimated 
and compared their QC metrics. For ‘number of recovered ver-
sus expected cells/nuclei’, we evaluated the proportion of droplets 
scored as likely empty (that is, containing only ambient RNA rather 
than the RNA from an encapsulated cell12), and the proportion  

of doublets13 (see Methods). Because the algorithm for scoring 
empty droplets was developed for cells, we did not use it to evalu-
ate snRNA-Seq. Finally, for ‘cellular composition’, we considered 
the diversity of cell types captured, the proportion of cells/nuclei 
recovered from each subset and the copy number aberration (CNA) 
pattern classes that are recovered in malignant cells (see Methods). 
We considered it a virtue if a protocol recovers a larger diversity of 
cell types, because this facilitates comprehensive studies. However, 
capture of diverse cell types may not always be a researcher’s desired 
goal, nor would it always be the most accurate representation of 
a tumor’s composition (see Discussion). We annotated the malig-
nant cells based on the presence of CNAs (when detectable) and 
the cell type signature they most closely resembled (see Methods). 
We conducted initial data analysis using Cumulus, a cloud-based 
data analysis framework14 (see Methods and Fig. 1a), and developed 
a dedicated pipeline for additional quality control, tumor sample 
characterization and protocol comparison.

Customization of workflows and dissociation protocols for 
scRNA-Seq of fresh tumors. We customized successful protocols 
for specimen acquisition and dissociation for scRNA-Seq across 
five types of fresh tumor (NSCLC, ovarian cancer, MBC, neuro-
blastoma, GBM and cryopreserved CLL (Fig. 1b)). We constructed 
workflows that minimize the time interval between removal of the 
sample from the patient in a clinical setting and its dissociation into 
cells, to maximize cell viability and preservation of RNA profiles. 
We determined dissociation conditions for each tumor type and 
constructed specific steps as a decision tree to adjust for differences 
between clinical samples (for example, size, presence of red blood 
cells (RBCs); Fig. 2a and Methods). To choose the best performing 
dissociation method, when possible, we apportioned large tumor 
specimens into smaller pieces (~0.5–2 cm), dissociating each piece 
following a different protocol. When specimen size was limiting 
(for example, biopsies), optimization spanned multiple samples. We 
subjected the samples that yielded highly viable single cell suspen-
sions to droplet-based scRNA-Seq (see Methods), to allow sampling 
of larger number of cells for calculation of QC metrics. We tested 
protocols several times to confirm similar performance trends.

For dissociation, we selected enzymatic mixtures for process-
ing fresh tissues based on the specific characteristics of each tumor 
type, such as cell type composition and ECM components, literature 
review and experience from processing similar human or mouse tis-
sues. For example, to break down collagen fibers in breast cancer15,16 
we used Liberase TM (see Methods), whereas to break down ECM 
in GBM17 we used papain (cysteine protease). We also included 
DNase I to digest DNA released from dead cells to decrease vis-
cosity in all dissociation mixtures. In the following, we recommend 
those methods that broke down the ECM and cell-to-cell adhesions 
sufficiently, while minimizing processing time, maintaining high 
viability and supporting cell type diversity in the sample.

Cell-type-specific and cell-composition QCs are important in 
protocol evaluation. As an example of the optimization process, 
consider the in-depth analysis of an NSCLC resection sample 
(sample NSCLC14, Fig. 2b–f and Extended Data Figs. 1–3). We 
used three processing protocols: (1) collagenase 4 (NSCLC-C4), 
(2) a mixture of pronase, dispase, elastase and collagenases A and 
4 (PDEC) and (3) Liberase TM and elastase (LE), each in combina-
tion with DNase I (see Methods). For other tumor types, we show 
the results of selected protocols out of those tested (Figs. 1b, 2g and 
3a–e and Extended Data Fig. 4a,b).

Protocols often performed similarly on standard QC measures 
(for example, number of cells recovered), but differed markedly in 
recovered cellular diversity or in the fraction of droplets predicted to 
contain only ambient RNA (‘empty drops’)—two evaluation criteria 
that we prioritized. For example, in the NSCLC14 resection sample,  
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all methods yielded a similar number of cells with high-quality 
expression profiles (Fig. 2b,e and Extended Data Fig. 1a–c), dou-
blets (Fig. 2c) and CNA patterns in malignant cells (Fig. 2f and 
Extended Data Fig. 1d). However, only the PDEC and LE protocols 

recovered fibroblasts and endothelial cells (Fig. 2e and Extended 
Data Fig. 1c), and NSCLC-C4 had a 100-fold higher fraction of 
droplets called as ‘empty’ (7% versus 0.08% and 0.04% in PDEC  
and LE, respectively; Fig. 2d and Extended Data Fig. 1a). The drops 
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designated ‘empty’ in NSCLC-C4 clustered within macrophages 
(Fig. 2d and Extended Data Fig. 1c), the most prevalent cell type, 
suggesting that these cell barcodes either had lower sequencing sat-
uration or that the sample itself had higher ambient RNA content. 
Although we estimated similarly low levels of ambient RNA18 across 
the three protocols (Extended Data Fig. 1e), NSCLC-C4 indeed had 
lower overall sequencing saturation (Extended Data Fig. 1a).

Comparing QC metrics across protocols can be challenging due 
to differences in cell type recovery and in sequencing depth between 
preparations, which we controlled for in the NSCLC14 sample by 
also evaluating QC metrics within each cell type and downsam-
pling by total reads across protocols (Fig. 2b and Extended Data 
Fig. 2). For example, when we consider all cells in the NSCLC14 
samples, NSCLC-C4 had a significantly higher number of detected 
genes (P = 1.3 × 10−90 versus PDEC; 1.4 × 10−62 versus LE, two-sided 
Mann–Whitney U test), but within B cells, PDEC had a significantly 
higher number of detected genes (P = 2 × 10−15 versus NSCLC-C4; 
2 × 10−10 versus LE), whereas within epithelial cells, LE had the high-
est number (P = 5 × 10−6 versus NSCLC-C4; 2 × 10−4 versus PDEC) 
(Fig. 2b). Because the number of detected genes (and other metrics) 
varies between cell types, and cell type composition varies between 
the protocols (Fig. 2e), it is important to assess cell-type-specific 
QCs when selecting a protocol. Moreover, the lower sequencing sat-
uration does not directly reflect the performance of the NSCLC-C4 
protocol, and downsampling by total reads did not qualitatively 
change any of our protocol evaluation metrics (Extended Data  
Fig. 3). Considering all of these features, we selected the PDEC pro-
tocol for processing NSCLC tumor samples, as it balances cell type 
diversity and QCs per cell type.

Fast depletion of immune cells for enrichment of malignant and 
stromal cells. Because in some tumor specimens the proportion 
of malignant cells is relatively low and that of immune cells is par-
ticularly high, we considered strategies to deplete CD45+ immune 
cells as a way to both enrich for epithelial cells without specific 
markers and to maintain any stromal cells. We chose to use MACS 
MicroBeads with anti-CD45 antibodies rather than sorting by flow 
cytometry (FACS), because samples are not always available at the 
designated time for which sorters are booked, and FACS requires 
longer sample processing, which may introduce additional cell 
stress, as we have found for epithelial cells (data not shown).

We optimized a CD45+ cell depletion strategy by testing different 
commercial kits and assessing the impact of one versus two rounds 
of depletion (data not shown). For example, we profiled an NSCLC 
tumor sample (NSCLC17) by scRNA-Seq before and after depletion, 
finding an increase from 26% to 82% epithelial cells (Fig. 2g and 

Extended Data Fig. 4a) and virtually no immune cells profiled post 
depletion. Similarly, in an ovarian ascites sample (HTAPP-727), we 
recovered 32% epithelial cells by scRNA-Seq post depletion (Fig. 2g  
and Extended Data Fig. 4b), compared to <1% CD45−EpCAM+ 
cells typically found in ovarian ascites by FACS (data not shown). 
Consistently, FACS shows that CD45+ cell depletion of another 
ascites sample increased the overall proportion of non-immune 
(CD45−) cells from 0.75% to 29.4% and increased the proportion of 
EpCAM+ cells from 0.17% to 4.9% (Extended Data Fig. 4c).

Successful scRNA-Seq of biopsies and post-treatment samples 
from diverse tumors. We successfully applied the scRNA-Seq tool-
box to much smaller core biopsy clinical samples from different 
anatomical sites. For example, in MBC, we applied the LD (Liberase 
TM and DNase I) protocol to a resection (HTAPP-254) and a biopsy 
(HTAPP-735) from lymph node metastases from two patients, 
yielding similarly successful QCs (Fig. 3a–d). The resection and 
biopsy of the two patients had different cellular compositions  
(Fig. 3e): the biopsy had a higher proportion of epithelial, endo-
thelial and fibroblast cells and a lower proportion of T cells com-
pared to the resection. We similarly successfully profiled biopsies 
of MBC liver metastases (HTAPP-285 and HTAPP-963) with the 
same protocol (Fig. 3a–d), recovering some hepatocytes in addition 
to a similar range of cell types as was recovered in the lymph node 
biopsy (Fig. 3e). Thus, this protocol can be used across breast cancer 
metastases from different anatomical metastatic sites.

The scRNA-Seq toolbox also performs well on samples obtained 
post-treatment, which can pose challenges as a result of cell death 
and changes in cell type composition with treatment. For exam-
ple, both a pre-treatment diagnostic biopsy (HTAPP-312-pre) 
and a post-treatment resection (HTAPP-312-post) from the same 
neuroblastoma patient profiled with the NB-C4 protocol yielded 
high QCs (Fig. 3a–d) and similar CNA patterns in malignant 
cells (Fig. 3f). More cells, but of fewer cell types, were recovered 
in the pre-treatment biopsy (4,369 cells: neuroendocrine, T  cells 
and macrophages) than the post-treatment resection (786 cells: 
neuroendocrine, T cells, macrophages, as well as endothelial cells 
and fibroblasts) (Fig. 3e), consistent with observed post-treatment 
fibrosis. We tested an additional dissociation protocol (papain) in a 
neuroblastoma O-PDX sample (O-PDX1)19,20, which is not expected 
to include non-malignant human cells and indeed resulted in 
high-quality malignant cell profiles (Fig. 3a–e). The experimental 
QCs for the papain protocol were superior to those we had observed 
in other samples with NB-C4, a trend we corroborated in additional 
neuroblastoma samples (data not shown). Thus, we ultimately 
selected the papain protocol for neuroblastoma tumors.

Fig. 2 | Fresh tumor processing and protocol selection for scRNA-Seq. a, Flow chart recommended for collection and processing of fresh tumor samples. 
b–f, Comparison of three dissociation protocols applied to one NSCLC sample. b, Protocol performance varies across cell types. Top and middle: 
distribution (median and first and third quartiles) of the number of reads per cell, the number of UMIs per cell, the number of genes per cell and fraction 
of UMIs per cell mapping to mitochondrial genes (Fr. mito. genes) (y axes) in each protocol (x axis) across the entire dataset. Bottom: distribution 
(median and first and third quartiles) of the number of genes per cell (y axis) only in epithelial cells (left) or in B cells (right). c, The protocols detect 
similar numbers of doublets. Uniform manifold approximation and projection (UMAP) embedding of single cell profiles (dots) for each protocol, colored 
by assignment as single cell (gray) or doublet (red). Horizontal bars (bottom): fraction of single (gray) and doublet (red) cells. d, The protocols vary in 
the number of empty drops. UMAP embedding of single cell profiles (dots) for each protocol, colored by assignment as cell (gray) or empty drop (red). 
Horizontal bars (bottom): fraction of assigned cells (gray) and empty drops (red). e, The protocols vary in the diversity of cell types captured. UMAP 
embedding of single cell profiles (dots) from all three protocols, colored by assigned cell subset signature (left) or by protocol (right). Bottom: proportion 
of cells in each subset in each of the three protocols; k, number of cells passing QC. f, Inferred CNA profiles. Chromosomal amplification (red) and 
deletion (blue) are inferred in each chromosomal position (columns) across the single cells (rows) using the PDEC protocol. Top: reference cells not 
expected to contain CNAs in this tumor. Bottom: cells tested for CNAs relative to the reference cells. Color bar: assigned cell type signature for each cell. 
g, Successful depletion of CD45+ cells. The proportion of cells in each subset without and with CD45+ depletion in NSCLCs (top) and ovarian ascites 
(bottom) samples is shown; k, number of cells passing QC. n = 1 sample per protocol. The numbers of cells (k) are indicated in e and g. Numbers of 
epithelial cells from NSCLC-C4, PDEC and LE are k = 1,284, 641 and 260, respectively, and the number of B cells is k = 100, 121 and 78, respectively. ACK, 
ammonium-chloride-potassium.
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In addition to such NSCLC, ovarian cancer ascite, MBC and 
neuroblastoma samples, we established effective scRNA-Seq pro-
tocols for GBM (GBM125), CLL (CLL1) and ovarian cancer 

tumors (HTAPP-624) (Fig. 3a–e). In particular, in CLL, we suc-
cessfully recovered the expected cell types from a cryopreserved 
sample, containing viable cells. This reflects the increased resilience  
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of immune cells to freezing compared to other cell types, also 
observed in other settings21, and the lack of a dissociation step in 
CLL scRNA-Seq (see Methods). Cryopreservation, however, can 

increase the proportion of damaged cells22 and may not success-
fully recover all the malignant and other non-malignant cells in  
the tumor.
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Four nucleus isolation protocols assessed for snRNA-Seq of fro-
zen tumors. For frozen specimens from solid tumors, we optimized 
snRNA-Seq, assessing different methods for nucleus isolation (Fig. 4a  
and Methods) across seven tumor types: neuroblastoma, MBC, 
ovarian cancer, pediatric sarcoma, melanoma, pediatric high-grade 
glioma and CLL (Fig. 1b). We initially apportioned larger sam-
ples or used multiple biopsies to compare four isolation methods: 
EZPrep8, Nonidet P40 with salts and Tris (NST) (modified from  
ref. 23), CHAPS, with salts and Tris (CST)11, and Tween with salts 
and Tris (TST)11. The methods differ primarily in the mechanical 
force (for example, chopping or douncing), buffer (EZ versus ST) 
and/or detergent composition (see Methods). Because in early tests 
EZPrep routinely underperformed CST, NST and TST (data not 
shown), we only included EZPrep in initial comparisons (below). 
We used single nucleus suspensions from all tested protocols as 
input for droplet-based snRNA-Seq (see Methods), thus sampling 
sufficiently large numbers of cells to evaluate cell diversity and QCs.

To evaluate protocols, we used the post hoc computational cri-
teria above (Fig. 1a), except we excluded the estimation of empty 
drops because it was only developed and tested on single-cell 
RNA-Seq data. We further customized Cumulus14 for snRNA-Seq 
data, mapping reads to both exons and introns, and adapted the QC 

thresholds for transcript (UMI) and gene counts to reflect the lower 
expected mRNA content in nuclei (see Methods). Experimentally, 
we added in-process light microscopy QCs to ensure complete 
nucleus isolation and to estimate doublets, aggregates and debris 
(Fig. 4a and Methods). As with scRNA-Seq, we tested protocols sev-
eral times to confirm similar performance trends.

TST protocol typically recovers the highest diversity of cell types. 
Overall, three nucleus isolation methods—TST, CST and NST—had 
comparable performances based on the assessed nucleus quality 
(Figs. 4b–d and 5 and Extended Data Figs. 5 and 6), with TST typi-
cally yielding the greatest cell type diversity and number of nuclei 
per cell type, together with the highest expression of mitochondrial 
genes, and NST typically having the fewest genes per nucleus and 
lowest diversity of cell types. For example, in neuroblastoma, testing 
each of the four protocols on a single resection sample (HTAPP-244)  
yielded a similar number of high-quality nuclei (7,896, 6,157, 7,531 
and 7,415 for EZ, CST, NST and TST, respectively) (Fig. 4b–d and 
Extended Data Fig. 5a–c), nucleus doublets (Fig. 4c), cell types—with 
malignant neuroendocrine cells being the most prevalent (Fig. 4d  
and Extended Data Fig. 5c) and malignant cells with similarly 
detectable CNAs (Fig. 4e and Extended Data Fig. 5d; CNAs are less 
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prominent, as expected for this pediatric, low-risk sample). Nuclei 
prepared with the EZ protocol had lower numbers of UMIs and genes 
detected (Fig. 4b) compared to the three ST protocols. TST recov-
ered more endothelial cells, fibroblasts, neural crest cells and T cells 
than the other protocols (Fig. 4d). TST also yielded a higher expres-
sion of mitochondrial genes (Fig. 4b), in this and all other tumors 
tested (Fig. 5c), because the nuclear membrane, endoplasmic reticu-
lum and ribosomes remain attached to the nucleus when using this 
method11. The same trends were preserved in cell-type-specific QCs 
(Extended Data Fig. 6) and after downsampling by the total number 
of sequencing reads (Extended Data Fig. 7).

The CST, NST and TST nucleus isolation methods had similar per-
formance characteristics when tested with MBC, ovarian cancer and 
pediatric sarcoma samples, with TST providing the most diversity in 
cell types, especially in non-malignant cells. In MBC, we compared 
CST and NST in one metastatic brain resection (HTAPP-394) and 
CST and TST in another metastatic brain resection (HTAPP-589)  
and in a metastatic liver biopsy (HTAPP-963) (Fig. 5). In all cases, 
QC statistics (Fig. 5a–c) and CNA patterns (Extended Data Fig. 8a–f)  
were similar between protocols, and nuclei from epithelial cells were 
the most prevalent (Fig. 5d). CST and NST captured a very similar 
distribution of cell types, while TST captured more non-malignant 
cells, including T cells (Fig. 5d), and a higher fraction of mitochon-
drial reads (Fig. 5c). In ovarian cancer, CST, NST and TST recov-
ered similar CNA patterns from the same sample (HTAPP-316; 
Extended Data Fig. 8g–i), but TST captured the greatest cell type 
diversity (Fig. 5d), whereas NST recovered fewer nuclei, genes per 
nucleus and UMIs per nucleus (Fig. 5a–c), and had a lower cell type 
diversity (Fig. 5d), despite having greater overall sequencing depth 
(73% sequencing saturation versus 57% in CST and 50% in TST). In 
a rhabdomyosarcoma sample (HTAPP-951), CST and TST captured 
the same cell types at similar proportions (Fig. 5d) and showed simi-
lar CNA patterns (Extended Data Fig. 8j,k).

Overall, we chose the TST protocol for most tumor types and 
CST for tumors from neuronal tissues, such as pediatric high-grade 
glioma. With the protocols we selected (Fig. 1b, right column), we 
profiled additional neuroblastoma tumors (HTAPP-656, O-PDX1) 
as well as Ewing sarcoma (HTAPP-975), melanoma (MEL112, 
MEL128), pediatric high-grade glioma (HTAPP-443) and CLL 
(CLL1) tumor samples—spanning biopsies, resections and treated 
samples (Figs. 1b and 5). We also tested a pediatric rhabdomyo-
sarcoma sample (HTAPP-951) by two different chemistries for 
droplet-based snRNA-Seq (V2 versus V3 from 10x Genomics; see 
Methods), obtaining, overall, similar results in terms of cell types 
detected, but an improved number of recovered versus expected 
nuclei and higher complexity per nucleus in V3 (Extended  
Data Fig. 9).

Different cell composition recovered by scRNA-Seq and 
snRNA-Seq. We compared scRNA-Seq and snRNA-Seq by test-
ing matching samples from the same specimen each in neuroblas-
toma (HTAPP-656, Fig. 6a–g), MBC (HTAPP-963, Fig. 6h–n), CLL 
(CLL1, Extended Data Fig. 10a–g) and O-PDX (O-PDX1, Extended 
Data Fig. 10h–n). The two approaches typically recovered similar 
cell types, but sometimes at varying proportions. In both neuro-
blastoma and MBC, immune cells were much more prevalent in 
scRNA-Seq, and parenchymal (especially malignant) cells were 
much more prevalent in snRNA-Seq (Fig. 6a–d,h–k). In all tested 
tumor types, cells and nuclei readily aligned following batch correc-
tion by canonical correlation analysis (CCA24, see Methods), group-
ing by cell type (Fig. 6e–g,l–n and Extended Data Fig. 10e–g,l–n).

Finally, we leveraged the matched data to examine the extent 
to which expression patterns in cells from dissociated fresh tissue 
indicate specific stress and compared these to those in nuclei from 
snap-frozen tissue. To this end, we scored each cell or nucleus in 
the matched data from recently published ‘dissociation signatures’25 
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(Extended Data Fig. 10o–r). In general, dissociation signatures were 
detectable in a larger proportion of cells than of nuclei, especially in 
solid tumors (neuroblastoma and MBC), and scored significantly 
higher in cells (P < 1 × 10−100, two-sided Mann–Whitney U test). 
When present in nuclei, however, these nuclei are embedded in the 
same regions of the phenotypic space as high scoring cells. Notably, 
in both cells and nuclei, the signature is more prominent in immune 
cells (for example, T, NK and macrophages) and stroma cells (for 
example, fibroblasts and endothelial). Although this may be a sig-
nature of damage from dissociation in some parenchymal cells, it is 
also probably a signature of immune activation and the immediate 
early response more generally. As a result, the interpretation of a 
‘dissociation signature’ derived in a distinct setting must be done 
with extreme care, accounting for its cell (rather than nucleus) data 
source and its relation to immediate early gene expression (a native 
response in situ as well).

Discussion
Single-cell genomics of clinical tumor specimens obtained as part 
of routine disease management or through research biopsies should 
help guide new discoveries and better deployment of therapies26,27, as 
initial studies have shown in the context of gliomas6,17, melanoma3,28, 
head and neck squamous cell carcinoma4,29 and other malignan-
cies30–34. However, this requires adaptation of laboratory protocols, 
initially developed in research settings and requiring very rapid han-
dling of fresh tissue, into the context of clinical sample acquisition 
and processing. Indeed, these initial studies were applied to small 
numbers of samples, often from resections, or focused on readily 
isolated immune cells. Analyzing the larger numbers of samples that 
would be required in the context of a clinical trial or longitudinal 
research, involving multiple sites, calls for streamlined and robust 
protocols. Moreover, systematically characterizing the diverse cells 
in solid tumors requires robust recovery of cells, many of which, 
including malignant epithelial cells, are highly sensitive. These chal-
lenges are further compounded by the diversity of tissues in which 
tumors and metastases reside.

Here, we take on these challenges by developing a systematic 
toolbox for protocols for single-cell and single-nucleus RNA-Seq, 
with detailed workflows and protocols from sample acquisition to 
library preparation for processing fresh and frozen clinical tumor 
samples across eight tumor types, as well as guidelines for testing 
and selecting protocols for processing future clinical tumor samples. 
We provide computational pipelines for extensive QCs at https://
github.com/klarman-cell-observatory/HTAPP-Pipelines, and all 
laboratory protocols are provided in detailed form in the open 
access platform protocols.io.

When selecting a protocol for fresh tissue dissociation, we sug-
gest testing two to three dissociation methods, chosen based on 
tumor type and tissue composition, and processing according to the 
fresh sample decision tree (Fig. 2a). We selected the best perform-
ing protocol by assessing both experimental and computational QC 
metrics, and, if desired, added a depletion step. When selecting a 
protocol for frozen tissues, we suggest testing the NST, TST and 
CST protocols, and processing according to our snRNA-Seq work-
flow (Fig. 4a). Although TST is often favorable due to its ability to 
capture the most diverse set of cells, in some tumors we recommend 
CST or NST (for example, CST for pediatric high-grade glioma;  
Fig. 1b). CST also yields fewer mitochondrial reads, reducing 
sequencing cost. For both sc- and snRNA-Seq, it is important to 
evaluate the selected protocol on multiple samples to ensure consis-
tent performance, given the inherent variation in tumors.

Although we indicate the protocol we ultimately selected for the 
eight tumor types tested, the optimal protocol could be different for 
other studies due to sample characteristics and research questions. 
First, each patient and each sample are different, and researchers 
must strike a balance between a uniform protocol and realistic 

expectations of success. Second, the ‘ideal’ protocol depends on the 
research goals. As we show, most protocols vary in cell recovery, 
and it is not clear which, if any, provides the full ground truth of cel-
lular composition. Moreover, even when one protocol does provide 
a faithful cellular composition, a researcher may opt for another 
approach. For example, some researchers may want to detect as 
many cell types as possible (and may favor one that enriches rare 
cells), others may be interested in a specific category of cells and opt 
for the one that is most successful in their recovery and yet others 
would want to compare cell proportions across tumors and would 
want their most faithful representation. Our decision trees will help 
researchers in making informed choices best suited to their samples 
and questions.

When researchers set out to test new protocols, several princi-
ples can help in experimental design. First, because clinical samples 
are often inherently limiting, benchmarking and technical devel-
opment often cannot be performed on a single matched sample. 
This is especially the case for fresh sample dissociation, because 
it requires both larger input specimens and very rapid processing. 
In this case, we suggest testing different protocols across several 
samples. Researchers may also choose one of the protocols we pre-
sented as a starting point for further optimization. For fresh tissue, 
researchers should first evaluate tissue dissociation by in-process 
QCs, especially cell viability and extent of dissociation to single-cell 
suspension, and only samples that pass those should proceed to 
scRNA-Seq (for example, in MBC we have previously ruled out the 
use of Accumax for dissociation (data not shown)). FACS could 
also be used prior to profiling as an additional QC. It is easier to 
perform a side-by-side evaluation of nucleus isolation protocols, 
because they require smaller portions of tissue and can be started at  
a convenient time. However, in-process experimental QCs for 
nuclei are less informative and snRNA-Seq is typically required to 
assess performance.

Because scRNA-Seq and snRNA-Seq vary in their recovered cel-
lular compositions, it is advantageous, when possible, to analyze both 
fresh and frozen tumor samples. The choice between scRNA-Seq 
and snRNA-Seq is typically driven by sample availability, logistics 
and biological questions. scRNA-Seq measures the expression in 
the whole cell, and the intact cell membrane allows for selection of 
specific cellular populations and protein profiling by CITE-Seq35. 
snRNA-Seq decouples sample procurement from processing, recov-
ers nuclei from hard-to-dissociate samples (for example, bone, adi-
pose and liver), and allows multiplexing of samples accrued over 
time36,37, including from banks. This can aid in sample selection and 
experimental design, reduce batch effects and open the study of rare 
or unusual samples that may be collected from many sites.

Our toolbox will help researchers systematically profile addi-
tional human tumors, leading to a deeper understanding of tumor 
biology. The toolbox will support charting of high-resolution tumor 
cell atlases7, which will yield insights that inform clinical work and 
should help improve precision in diagnostics and therapeutics.
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Methods
Experimental methods. Human patient samples. External sample cohorts 
were added to the Broad Institute’s Molecular Classification of Cancer protocol 
(15–370B) and reviewed and approved by the Dana-Farber Cancer Institute’s 
(DFCI) Institutional Review Board (IRB). No subject recruitment or ascertainment 
was performed as part of the Broad protocol. Samples added to this protocol also 
underwent IRB review and approval at the institutions where the samples were 
originally collected. Specifically, DFCI IRB approved the following protocols: 
NSCLC (IRB protocol 98-063), MBC (IRB protocol 05-246), neuroblastoma  
(IRB protocols 11-104 and 17-104), ovarian cancer (IRB protocol 02-051), 
melanoma (IRB protocol 11-104), sarcoma (IRB protocol 17-104), GBM  
(IRB protocol 10-417) and CLL (IRB protocol 99-224), and the St Jude Children’s 
Research Hospital IRB approved the following protocol: pediatric high-grade 
glioma (IRB protocol 97BANK).

The XPD 09-234 MAST (Molecular Analysis of Solid Tumor) protocol for 
creating the neuroblastoma O-PDX sample was reviewed and approved by the  
St Jude Children’s Research Hospital IRB.

Laboratory animals. For the neuroblastoma O-PDX sample, animal use was 
restricted to one female nude athymic mouse for para-adrenal injection of O-PDX 
cells. This study was carried out in strict accordance with the recommendations 
in the Guide to Care and Use of Laboratory Animals of the National Institute 
of Health. The protocol was approved by the Institutional Animal Care and Use 
Committee at St Jude Children’s Research Hospital. All efforts were made to 
minimize suffering. All mice were housed in accordance with approved IACUC 
protocols. Animals were housed on a 12–12 h light cycle (light on 6:00 and off 
18:00) and provided food and water ad libitum. Athymic nude female mice were 
purchased from Charles River Laboratories (strain code 553).

Collection of fresh tissue for scRNA-Seq. Collection of fresh solid tumor tissue for 
NSCLC, ovarian cancer and MBC at Brigham and Women’s Hospital (BWH)/DFCI  
was performed following protocols established to reduce the time elapsed 
between removal of the tumor tissue from the body, placement of the specimen 
in media and processing for scRNA-Seq. To this end, we established procedures 
between the hospital team (surgeon/clinical research coordinator/clinical 
pathologist), the coordinating team (project managers/pathology technician) 
and the processing team (staff scientists/research technicians) before procedure 
day. This included providing the hospital team with collection containers with 
appropriate media and predefining allocation priorities to ensure quick handling 
by the pathology technician of the sample received. On the day of the procedure, 
timely communication between the teams ensured quick specimen transfer from 
the hospital team to the research team, timely transport to the Broad Institute 
for processing, and immediate loading of the single cell suspension into the 
10x Genomics Single-Cell Chromium Controller (as described in the section 
‘Dissociation workflow from fresh solid tumor samples’ below).

In all cases, the tissue received from the hospital team was examined by the 
research pathology technician and, following procurement of a specimen for 
anatomic pathology review, the highest-quality portion (or core) was allocated 
for scRNA-Seq, placed in medium and transported to the Broad Institute for 
dissociation following the appropriate protocol (protocols are detailed for each 
tumor type below). Tissue quality was assessed based on visual examination and 
rapid pathology interpretation at the time of collection, and determined based on 
tumor content, necrosis, calcification, fat and hemorrhage.

For ovarian cancer ascites, ~300 ml was usually received from the hospital 
team within 1 h after being taken out of the body, and contained a vast majority of 
non-malignant (mainly immune) cells. Hence, all ascites samples were subjected to 
CD45+ cell depletion (below) to enrich for malignant cells.

For CLL, samples were generated from peripheral blood mononuclear cells 
isolated using density centrifugation (Ficoll-Paque) and stored in freezing medium 
(FBS + 10% DMSO) in liquid nitrogen until processing.

For O-PDX of neuroblastoma samples Foxn1−/− nude mice (Charles River 
Laboratories) were orthotopically injected via ultrasound-guided para-adrenal 
injection with cells derived from a patient MYCN-amplified neuroblastoma 
(available as sample SJNBL046_X1 through the Childhood Solid Tumor 
Network)19,20. A portion of O-PDX tumor was flash-frozen for future snRNA-Seq, 
while the remainder underwent dissociation as described below.

Preservation of tissue for snRNA-Seq. For those samples that we prospectively 
collected for snRNA-Seq (neuroblastoma HTAPP-244-SMP-451 and HTAPP-
656-SMP-3481), freezing of tumor samples was performed as quickly as possible 
after sample collection using a standard biobanking technique and the dates when 
samples were frozen were recorded. (Other samples were obtained from tissue 
banks with a limited record on how they were frozen, which is a typical scenario.) 
Samples were placed in cryo-tubes without any liquid. Complete removal of liquid 
from the sample was accomplished by gently wiping it (not patting, as this would 
damage the tissue) on the side of the container, before placing in the cryotube. The 
tubes were then covered in dry ice and transferred to −80 °C for long-term storage.

The other frozen samples from snRNA-Seq were obtained from tissue banks 
as follows: ovarian optimal cutting temperature compound (OCT)-frozen archival 

samples were obtained from the DFCI Gynecology Oncology Tissue Bank; 
sarcoma snap-frozen samples were obtained from the Boston Children’s Hospital 
Tissue Bank; pediatric snap-frozen glioma samples were obtained from the St Jude 
Children’s Research Hospital Biorepository; neuroblastoma snap-frozen samples 
were obtained from the St Jude Children’s Research Hospital Biorepository and the 
Boston Children’s Hospital Precision Link Biobank for Health Discovery; MBC 
OCT-frozen samples were obtained from the Center for Cancer Precision Medicine 
Bank; snap-frozen melanoma samples were obtained through the laboratory of 
Dr C. Yoon at BWH.

Dissociation workflow from fresh solid tumor samples to a single-cell suspension 
for scRNA-Seq. MBC, NSCLC (protocols PDEC and LE), ovarian cancer solid 
tumor and neuroblastoma workflows. Fresh tissue dissociation of MBC, NSCLC 
(protocols PDEC and LE), ovarian cancer solid tumor and neuroblastoma were 
performed using a similar workflow (Fig. 2a), with different components of the 
dissociation mixture for each tumor type, as described in the next section.

Samples were transferred from interventional radiology (biopsies) or the 
operating room (resections) in DMEM (MBC), RPMI (NSCLC) or RPMI with 
HEPES (ovarian cancer and neuroblastoma) medium. On arrival at the laboratory, 
the sample was washed in cold PBS and transferred into either a 2 ml Eppendorf 
tube containing dissociation mixture (for biopsies) or a 5 ml Eppendorf tube 
containing 3 ml dissociation mixture (for resections). Next, the sample was minced 
in the Eppendorf tube using spring scissors (Fine Science Tools, cat. no. 15514-12) 
into fragments under ~0.4 mm, and incubated at 37 °C, while rotating horizontally 
at ~14 r.p.m., for 10 min. After 10 min, the sample was pipetted 20 times with a 1 ml 
pipette tip at room temperature and placed back into incubation with rotation for 
an additional 10 min. The sample was pipetted again 20 times using a 1 ml pipette 
tip, transferred to a 1.7 ml Eppendorf tube and centrifuged at 300–580g for 4–7 min 
at 4 °C. The supernatant was removed and the pellet was resuspended in 200–500 µl 
of ACK (ammonium-chloride-potassium) RBC lysis buffer (Thermo Fisher 
Scientific, A1049201). The ACK volume added depended on the size of the pellet; 
while pellet size is hard to quantify, we suggest adding ~100 µl ACK lysis buffer 
per 100,000 cells, with a minimum volume of 200 µl. The sample was incubated 
in ACK RBC lysis buffer for 1 min on ice, followed by the addition of cold PBS at 
twice the volume of the ACK. The cells were pelleted by a short centrifugation for 
8 s at 4 °C using the short spin setting with centrifugal force ramping up to, but not 
exceeding, 11,000g. The supernatant was removed. The pellet color was assessed; 
if RBCs remained (pellet color pink or red), the ACK step was repeated up to two 
additional times. To remove cell clumps in the MBC protocol (or sample), the 
pellet was resuspended in 100 µl of TrypLE (Life Technologies, cat. no. 12604013) 
and incubated while constantly pipetting at room temperature for 1 min with a 
200 µl pipette tip. TrypLE was inactivated by adding 200 µl of cold RPMI 1640 with 
10% FBS. The cells were pelleted using short centrifugation as described above. 
The pellet was resuspended in 50 µl of 0.4% BSA (Ambion, cat. no. AM2616) in 
PBS. To assess the single-cell suspension, viability and cell count, 5 µl of Trypan 
blue (Thermo Fisher Scientific, cat. no. T10282) was mixed with 5 µl of the sample 
and loaded onto an INCYTO C-Chip Disposable Hemocytometer, Neubauer 
Improved (VWR, cat. no. 82030-468). The cell concentration was adjusted if 
necessary to a range of 200–2,000 cells per µl. A total of 8,000 cells were loaded 
into each channel of the 10x Genomics Single-Cell Chromium Controller. Due 
to differences between clinical samples, some steps may need to be repeated or 
adjusted; for a general overview of guidelines see Fig. 2a.

NSCLC-C4 protocol workflow. A similar workflow was used for protocol 
NSCLC-C4 with the following modifications. Following mechanical chopping  
as above, sample was dissociated for 15 min in a 15 ml falcon tube, with a  
gentle vortex every 5 min, followed by filtration through a 70 µm filter, and washed 
with 20 ml of ice-cold PBS and centrifuged at 580g for 5 min. RBC lysis was 
performed similarly to the above workflow by resuspending the pellet in 1 ml  
ACK lysis buffer with incubation on ice for 1 min. A 20 ml volume of ice-cold  
PBS was added to quench the ACK lysis buffer, followed by filtration through  
a 70 µm filter, and centrifugation at 580g for 5 min. Sample NSCLC14 was further 
cleaned using a Viahance dead-cell removal kit (BioPAL, cat. no. CP-50VQ02) 
according to the manufacturer’s instructions. Cells were then resuspended in  
M199 and loaded on the 10x Genomics Single-Cell Chromium Controller as 
described above.

GBM workflow. All steps were completed on ice. Each sample was minced 
thoroughly in a Petri dish, 4 ml HBSS was added (Life Technologies, cat. no. 
14175095), then the sample was transferred to 15 ml tubes and centrifuged at 
1,000 r.p.m. for 2 min. After centrifugation, supernatant was removed, pre-heated 
dissociation mixture was added, and the sample was incubated while shaking at 
37 °C for 15 min. Sample was pipetted up–down 20 times, incubated at 37 °C for an 
additional 15 min, and pipetted again. After dissociation, the sample was filtered 
through a 100 μm cell strainer (Fisher Scientific, cat. no. 22–363–549) into a 50 ml 
tube. We recommend keeping any tissue fragments left in the cell strainer, as they 
can be reprocessed with the same protocol if initial cell recovery is low. The filtrate 
was centrifuged at 1,000 r.p.m. for 3 min, and the supernatant was removed. If the 
pellet was bloody, RBC removal was performed when needed using Lympholyte H 
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(Cedarlane, cat. no. CL5015) or RBC Lysis Solution (10×) (Miltenyi Biotec,  
cat. no. 130-094-183). The pellet was washed with 10 ml of cold PBS/1% BSA, 
transferred to a 15 ml tube and centrifuged at 1,200 r.p.m. for 3 min. Supernatant 
was removed and the pellet was resuspended in 0.4% BSA in PBS. The single-cell 
suspension was visualized, counted and loaded on the 10x Genomics Single-Cell 
Chromium Controller as described above.

Dissociation mixtures for different tumor types. Dissociation mixtures were prepared 
~5–10 min before sample processing from frozen aliquoted stocks, as follows.

MBC LD protocol. A 950 µl volume of RPMI 1640 (Thermo Fisher Scientific,  
cat. no. 11875093) was used with 10 µl of 10 mg ml−1 DNAse I (Sigma Aldrich,  
cat. no. 11284932001) to a final concentration of 100 µg ml−1, and 40 µl of 
2.5 mg ml−1 Liberase TM (Sigma Aldrich, cat. no. 5401127001).

Ovarian cancer resection MHTD kit. The dissociation mixture was based on the 
Miltenyi Human Tumor Dissociation Kit (Miltenyi Biotec, cat. no. 130-095-929).  
Before starting, enzymes H, R and A were resuspended according to the 
manufacturer’s instructions. Dissociation mix containing 2.2 ml RPMI,  
100 µl enzyme H, 50 µl enzyme R and 12.5 µl enzyme A was prepared  
immediately before use.

Neuroblastoma NB-C4 protocol. Medium 199 with Hanks balanced salts  
buffer (Thermo Fisher Scientific) was used with 100 µg ml−1 of DNAse I (Millipore 
Sigma, cat. no. 11284932001) and 100 µg ml−1 collagenase IV (Worthington,  
cat. no. LS004186).

O-PDX neuroblastoma. A papain kit, the Worthington Papain Dissociation System 
(cat. no. LK003150), was used. Dissociation was performed according to the 
manufacturer’s instructions, with deviation of the dissociation duration, which was 
shortened to 15 min.

NSCLC PDEC protocol. We used 2692 µl HBSS (Thermo Fisher Scientific,  
cat. no. 14170112), 187.5 µl of 20 mg ml−1 pronase (Sigma Aldrich,  
cat. no. 10165921001) to a final concentration of 1,250 µg ml−1, 27.6 µl of 1 mg ml−1 
elastase (Thermo Fisher Scientific, cat. no. NC9301601) to a final concentration 
of 9.2 µg ml−1, 30 µl of 10 mg ml−1 DNase I (Sigma Aldrich, cat. no. 11284932001) 
to a final concentration of 100 µg ml−1, 30 µl of 10 mg ml−1 Dispase (Sigma Aldrich, 
cat. no. 4942078001) to a final concentration of 100 µg ml−1, 30 µl of 150 mg ml−1 
collagenase A (Sigma Aldrich, cat. no. 10103578001) to a final concentration of 
1,500 µg ml−1 and 3 µl of 100 mg ml−1 collagenase IV (Thermo Fisher Scientific,  
cat. no. NC9836075) to a final concentration of 100 µg ml−1.

NSCLC LE protocol. We used 4.7 ml RPMI 1640 (Thermo Fisher Scientific,  
cat. no. 11875093), 200 µl of 2.5 mg ml−1 Liberase TM (Millipore Sigma,  
cat. no. 5401119001) to a final concentration of 100 µg ml−1, 50 µl of 10 mg ml−1 
DNase I (Sigma Aldrich, cat. no. 11284932001) to a final concentration  
of 100 µg ml−1 and 46 µl of 1 mg ml−1 elastase (Thermo Fisher Scientific,  
cat. no. NC9301601) to a final concentration of 9.2 µg ml−1.

NSCLC-C4 protocol. M199 (5 ml) was used with DNase 1 (final concentration  
of 10 µg ml) and collagenase IV (final concentration of 100 µg ml−1).

GBM BTD kit. A Brain Tumor Dissociation Kit (P) (Miltenyi Biotech,  
cat. no. 130-095-942) was used with 4 ml buffer X, 40 µl buffer Y, 50 µl enzyme N 
and 20 µl enzyme A.

Processing of non-solid tumor samples for scRNA-Seq. CLL. Frozen (cryopreserved) 
cells were thawed in 10 ml RPMI, pelleted and washed with an additional 10 ml 
RPMI. Live cells were sorted using the MoFlo Astrios EQ Cell Sorter and  
8,000 cells were loaded on one channel of the 10x Genomics Single-Cell Chromium 
Controller. Remaining cells were pelleted by short centrifugation, the supernatant 
was discarded and the pellet was frozen on dry ice and stored at −80 °C.

Ovarian cancer ascites. Ascites samples without spheres were selected and 
delivered in four 50 ml conical tubes, for a total of 200 ml of fluid. Tubes were  
spun down at 580g for 5 min in a 4 °C pre-cooled centrifuge and supernatants  
were aspirated.

Pellets were resuspended in 5 ml cold ACK lysing buffer and combined from 
all tubes at this step. ACK lysis was done on ice for 3 min, and quenched by adding 
10 ml of cold PBS, followed by centrifugation at 580g for 5 min at 4 °C. Pellet color 
was assessed; if it was pink or red, revealing a significant portion of erythrocytes, 
ACK treatment steps were repeated as needed for two additional times, at most. 
Post ACK treatment, the pellet was resuspended in 20 ml cold PBS, filtered through 
a 70 µm cell strainer into a 50 ml conical tube, and the filter was washed with 
additional 20 ml cold PBS to recover as many cells as possible. The sample was then 
centrifuged at 580g for 5 min at 4 °C. To reduce the fraction of immune cells in the 
sample, CD45+ cell depletion was performed using the MACS CD45 depletion 
protocol described below.

Depletion of CD45+ cells for scRNA-Seq. Depletion of CD45+ cells in ovarian cancer 
ascites samples and NSCLC samples was performed using CD45 MicroBeads 
(Miltenyi Biotec, cat. no. 130-045-801) according to the manufacturer’s protocol. 
Briefly, following filtration of the ovarian cells from ascites or dissociation 
of NSCLC tissue samples, cells were counted. The single-cell suspension was 
centrifuged at 500g for 4 min at 4 °C. The supernatant was removed and the pellet 
was resuspended in 80 µl of MACS buffer (PBS supplemented with 0.5% BSA, 
and 2 mM EDTA) per 106 cells. MACS CD45 microbeads were added to the cell 
suspension (20 µl per 10 million cells). The cells were incubated on ice for 15 min. 
During incubation, the column (MS for NSCLC and LS for ovarian ascites) was 
prepared by attaching the column to a MidiMACS separator and rinsing the 
column with 3 ml MACS buffer. Following incubation, the cells and bead  
conjugate were washed with 900 µl MACS buffer per 10 million cells. The cells  
were centrifuged at 500g for 4 min at 4 °C. The supernatant was removed and 
the pellet was resuspended in 500 µl MACS buffer. The cell suspension was 
transferred to the column and the effluent was collected (CD45− fraction). The 
column was washed three times with 3 ml MACS buffer. The CD45− fraction was 
centrifuged at 500g for 4 min at 4 °C. In the ascites sample, bead attachment and 
column separation can be repeated to increase the number of tumor and stromal 
cells relative to immune cells. The pellet was resuspended in 50 µl of 0.4% BSA 
(Ambion, cat. no. AM2616) in PBS. Cells were counted by mixing 5 µl of Trypan 
blue (Thermo Fisher Scientific, cat. no. T10282) with 5 µl of the sample and  
loaded on INCYTO C-Chip Disposable Hemocytometer, Neubauer Improved 
(VWR, cat. no. 82030-468). The cell concentration was adjusted if necessary  
to a range of 200–2,000 cells per µl. A total of 8,000 cells were loaded into each 
channel of the 10x Genomics Single-Cell Chromium Controller.

Flow cytometry analysis. For flow cytometry analysis of CD45+ depletion in the 
ovarian cancer ascites sample, cells were resuspended in PBS complemented  
with 2% FBS and stained with FITC anti-human CD45 antibody (BioLegend,  
cat. no. 304006CD45; 1:200 dilution), PE anti-human EpCAM antibody (Miltenyi 
Biotech, cat. no. 130-113-264; 1:50 dilution), APC anti-human CD14 (BioLegend, 
cat. no. 367118, clone 63D3; 1:20 dilution) and PE-cy7 anti-human CD24 
(BioLegend, cat. no. 311120, clone ML5; 1:20 dilution) for 20 min, and with 7-AAD 
(Invitrogen, cat. no. A1310; 1:200 dilution) for 5 min. The same cells were also used 
for single-stain and unstained controls to perform compensation and adjust gating. 
Analysis was performed on a BD LSRFortessa cell analyzer with BD FACSDiva 
Software Version 8.0.1 and plots were generated with FlowJo Version 10.5.3. Gating 
for CD45 and EpCAM was performed as described in Extended Data Fig. 4c. 
CD24 and CD14 antibodies were included in the antibody panel for FACS analysis 
to provide additional information and better inform scRNA-Seq. Specifically, 
expression of CD24 on tumor cells has been shown to relate to ovarian cancer 
invasiveness and expression of CD14 identifies monocytes/macrophages.

ST-based buffers for snRNA-Seq. A 2× stock of salt-Tris solution (ST buffer) 
containing 292 mM NaCl (Thermo Fisher Scientific, cat. no. AM9759), 20 mM 
Tris-HCl pH 7.5 (Thermo Fisher Scientific, cat. no. 15567027), 2 mM CaCl2  
(VWR International Ltd, cat. no. 97062-820) and 42 mM MgCl2 (Sigma Aldrich, 
cat. no. M1028) in ultrapure water was made and used to prepare three buffers: 
for CST, 1 ml of 2× ST buffer, 980 µl of 1% CHAPS (Millipore, cat. no. 220201), 
10 µl of 2% BSA (New England BioLabs, cat. no. B9000S) and 10 µl of nuclease-free 
water; for TST, 1 ml of 2× ST buffer, 60 µl of 1% Tween-20 (Sigma Aldrich, cat. 
no. P-7949), 10 µl of 2% BSA (New England Biolabs, cat. no. B9000S) and 930 µl 
of nuclease-free water; for NST, 1 ml of 2× ST buffer, 40 µl of 10% Nonidet P40 
Substitute (Fisher Scientific, cat. no. AAJ19628AP), 10 µl of 2% BSA (NEB) and 
950 µl of nuclease-free water. 1× ST buffer was prepared by dilution 2× ST with 
ultrapure water (Thermo Fisher Scientific cat. no. 10977023) in a ratio of 1:1.

Nucleus isolation from frozen samples for snRNA-Seq. On dry ice, tissue was split 
and subjected to one of three ST-based nucleus isolation protocols11 and the EZ 
nucleus isolation buffer8, as detailed in the following.

Nucleus isolation workflow for ST-based buffers. On ice, a piece of frozen tumor 
tissue was placed into a well of a 6-well plate (Stem Cell Technologies, cat. no. 
38015) with 1 ml of CST, TST or NST buffer. For samples frozen in OCT, an 
additional step of removing the surrounding OCT and washing any residual OCT 
from the sample with PBS was performed in a 10 cm Petri dish. Tissue was then 
chopped using Noyes Spring Scissors (Fine Science Tools, cat. no. 15514-12) for 
10 min on ice. For cell pellets, such as for CLL frozen cells, sample was pipetted  
in the buffer on ice, instead of chopping. The homogenized solution was  
then filtered through a 40 µm Falcon cell strainer (Thermo Fisher Scientific,  
cat. no. 08-771-1). An additional 1 ml of the detergent buffer solution was  
used to wash the well and filter. The volume was brought up to 5 ml with 3 ml  
of 1× ST buffer. The sample was then transferred to a 15 ml conical tube  
and centrifuged at 4 °C for 5 min at 500g in a swinging bucket centrifuge.  
The pellet was resuspended in 1× ST buffer. Resuspension volume was dependent 
on the size of the pellet, usually within the range of 100–200 µl. The nucleus 
solution was then filtered through a 35 µm Falcon cell strainer (Corning,  
cat. no. 352235). Nuclei were counted using a C-chip disposable hemocytometer 
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(VWR, cat. no. 82030-468). Either 10,000 or 8,000 nuclei (V2 or V3 10x Genomics, 
respectively) of the single-nucleus suspension were loaded onto the Chromium 
Chips for the Chromium Single Cell 3′ Library (V2, PN-120233; V3, PN-1000075) 
according to the manufacturer’s recommendations (10x Genomics).

Nucleus isolation workflow using EZ lysis buffer. Nucleus isolation was done as 
previously described8. Briefly, tissue samples were cut into pieces <0.5 cm and 
homogenized using a glass Dounce tissue grinder (Sigma, cat. no. D8938). The 
tissue was homogenized 25 times with pestle A and 25 times with pestle B in 
2 ml of ice-cold nuclei EZ lysis buffer. The sample was then incubated on ice for 
5 min, with an additional 3 ml of cold EZ lysis buffer. Nuclei were centrifuged at 
500g for 5 min at 4 °C, washed with 5 ml ice-cold EZ lysis buffer and incubated 
on ice for 5 min. After centrifugation, the nucleus pellet was washed with 5 ml 
nuclei suspension buffer (NSB; consisting of 1× PBS, 0.01% BSA and 0.1% RNase 
inhibitor (Clontech, cat. no. 2313A)). Isolated nuclei were resuspended in 2 ml 
NSB, filtered through a 35 μm cell strainer (Corning-Falcon, cat. no. 352235)  
and counted. A final concentration of 1,000 nuclei per µl was used for loading  
on a 10x channel.

Droplet-based sc/snRNA-Seq. For V2 10x technology, either 8,000 single cells or 
10,000 single nuclei were loaded into each channel of a Chromium single-cell  
3′ Chip. For V3 10x technology, 8,000 single cells and 8,000 single nuclei were 
loaded. Single cells/nuclei were partitioned into droplets with gel beads in 
the Chromium Controller. After emulsions were formed, barcoded reverse 
transcription of RNA took place. This was followed by cDNA amplification, 
fragmentation and adapter and sample index attachment, all according to the 
manufacturer’s recommendations. Libraries from four 10x channels were pooled 
together and sequenced on one lane of an Illumina HiSeq X, or on one flow  
cell of a NextSeq, with paired end reads as follows: read 1, 26 nt; read 2, 55 nt;  
index 1, 8 nt; index 2, 0 nt.

Computational methods. scRNA-Seq data processing. We used Cell Ranger 
mkfastq (v2.0 and v3.0) (10x Genomics) to generate demultiplexed FASTQ files 
from the raw sequencing reads. We aligned these reads to the human GRCh38 
genome and quantified gene counts as UMIs using Cell Ranger count (v2.0 and 
v3.0) (10x Genomics). For snRNA-Seq reads, we counted reads mapping to introns 
as well as exons, as this results in a greater number of genes detected per nucleus, 
more nuclei passing quality control and better cell type identification, as previously 
described38. To count introns during read mapping, we followed the approach 
described at https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/advanced/references. Briefly, we built a ‘pre-mRNA’ 
human GRCh38 reference using Cell Ranger mkref (v3.0) (10x Genomics) and a 
modified gene transfer format (GTF) file, where, for each transcript, the feature 
type had been changed from transcript to exon. The starting GTF files came 
from refdata-cellranger-GRCh38-1.2.0.tar.gz or refdata-cellranger-GRCh38-
3.0.0.tar.gz, and are available for download at https://support.10xgenomics.com/
single-cell-gene-expression/software/downloads/3.0.

To downsample sequencing reads or gene counts (UMIs) when comparing 
protocols, we used downsampleReads and downsampleMatrix, respectively, from 
the R package DropletUtils (v1.0.3 or higher)12. Reads were downsampled to match 
the protocol with the lowest number of total reads. After downsampling by total 
reads, we used write10xCounts from DropletUtils and a custom Python script to 
generate an HDF5 file for input into our analysis pipelines, as described in the 
sections that follow and in the ‘Code availability’ section.

QC of scRNA-Seq data. To maintain explicit control over all gene and cell quality 
control filters, in all our downstream analyses we used the raw feature-barcode 
matrix, rather than the filtered feature-barcode matrix generated by Cell Ranger. 
We removed low-quality cells by requiring each cell to have a minimal number 
of UMIs and genes detected. We used different thresholds depending on the 
experimental modality (single cell or single nucleus) and on the 10x kit (V2 or 
V3 chemistry). For single nucleus data, we retained nuclei with at least 200 genes 
and 400 UMIs detected by V2 chemistry and with at least 500 genes and 1,000 
UMIs detected by V3 chemistry. For single-cell data, we retained cells with at least 
500 genes and 1,000 UMIs detected by either V2 or V3 chemistry. For the V2–V3 
comparison in HTAPP-951-SMP-4652 (Extended Data Fig. 9), we used the same 
thresholds for both chemistries: at least 200 genes and 400 UMIs detected. For both 
data types, we filtered out those cells or nuclei where >20% of UMIs came from 
mitochondrial genes. Finally, we normalized the total UMIs per cell or nucleus to 
100,000 (CP100K) and log-transformed these values to report gene expression as 
E = log(CP100K + 1).

We reported the following QC metrics: number of total reads per 
library sample, sequencing saturation (fraction of reads originating from an 
already-observed UMI as reported by Cell Ranger count), total recovered cells or 
nuclei, number of reads per cell or nucleus, number of UMIs per cell or nucleus, 
number of genes detected per cell or nucleus, fraction of UMIs in a cell or nucleus 
aligned to mitochondrial genes, fraction of droplets estimated to contain only 
ambient RNA (‘empty drops’), fraction of cell or nucleus doublets, the number of 
detected cell types and the pattern of CNAs for malignant cells. For a subset of 

samples, we also calculated the number of cells or nuclei per detected cell type and 
the estimated level of ambient RNA in droplets containing cells.

We predicted droplets containing only ambient RNA and no cells using 
EmptyDrops (part of DropletUtils, v1.0.3 or higher), with the retain parameter 
set by the knee of the curve in the barcode rank plot (cell barcodes ranked by 
their total UMIs)12. We predicted potential doublets using Scrublet (v0.2) with 
expected_doublet_rate = 0.06 (ref. 13). We estimated the levels of ambient RNA 
using SoupX (v0.3.1)18 and a set of cell-type-specific marker genes (Supplementary 
Table 1). Importantly, we flagged the doublets and empty drops and retained them 
in our analysis, instead of immediately filtering them out. Droplets that appear 
to contain doublets or empty drops can arise from many different effects, such as 
cellular differentiation or insufficient sequencing, and by carrying them through 
the analysis, potential doublets or empty drops can be more clearly interpreted in 
the context of the full dataset.

Dimensionality reduction, clustering and visualization. For each tumor sample, 
we analyzed the filtered expression matrix to identify cell subsets, as previously 
described39,40. We chose highly variable genes with a z-score cutoff of 0.5 (ref. 41),  
centered and scaled the expression of each gene to have a mean of zero and 
standard deviation of one, and performed dimensionality reduction on the 
variable genes using principal component analysis. We used the top 50 principal 
components (PCs) as input to Louvain graph-based clustering, with the resolution 
parameter set to 1.3. For each cluster of cells, we identified cluster-specific 
differentially expressed genes using the following tests: an AUC classifier, Welch’s 
t-test and Fisher’s exact test. For tests that returned a P value, we controlled  
the false discovery rate at 5% with the Benjamini–Hochberg procedure42.  
We visualized gene expression and clustering results by embedding cells or nuclei 
profiles in a Uniform Manifold Approximation and Projection (UMAP)43 of the  
top 50 PCs, with min_dist = 0.5, spread = 1.0, number of neighbors = 15 and  
the Euclidean distance metric.

Annotating cell subsets. For each cell subset identified by clustering, we assigned a 
cell type from the malignant, parenchymal, stromal and immune compartments 
of the tumor microenvironment using a combination of differentially expressed 
genes, known gene signatures (Supplementary Table 1) and SingleR (v0.2.2)44, an 
automated annotation package. When running SingleR, only cell types assigned 
to 30 or more cells were considered. When scoring cells for the expression of 
known gene signatures, we used the AddModuleScore function in Seurat (v2.3.4)24. 
We note that overlapping expression programs between T cells and NK cells 
make these cell types sometimes more difficult to identify accurately. We did not 
distinguish macrophages, monocytes and dendritic cells, and annotated all of these 
as scoring for ‘macrophages’ signatures.

We identified the malignant cells by inferring chromosomal CNAs from  
the gene-expression data using inferCNV (v1.1.0)45. On a sample-by-sample  
basis, we used the immune and endothelial cells as a healthy reference to estimate 
CNAs in the malignant cells. We created the count matrix file and annotation file 
for inferCNV by randomly subsetting the counts data to sample at most 2,000 
cells or nuclei. We created a gene ordering file from the human GRCh38 assembly, 
which contains the chromosomal start and end positions for each gene. To run 
inferCNV, we used a cutoff of 0.1 for the minimum average read counts per gene 
among reference cells or nuclei, clustered according to the annotated cell types, 
denoised our output, ran a hidden Markov model (HMM) to predict the CNA 
level, implemented inferCNV’s i6 HMM model, and requested eight threads for 
parallel steps.

Comparing sc- and snRNA-Seq data. To compare profiles between sc- and 
snRNA-Seq data collected from the same sample, we used a batch  
correction approach.

We performed batch correction using CCA as implemented in Seurat (v2.3.4)24. 
We selected 1,500 genes that were variable across both the cell and nucleus 
data, used those genes as input to RunCCA to compute the first 20 canonical 
components, and aligned the first 12 canonical components with AlignSubspace. 
The aligned canonical components represent a co-embedding of the cell and 
nucleus data, and we carried out clustering in this dimensionality-reduced space 
using FindClusters.

Following batch correction by CCA, we scored the dissociation signature  
from ref. 25 (from their Supplementary Table 5) on our matched cell/nuclei samples 
using the AddModuleScore function in Seurat (v2.3.4)24.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
All main and extended data figures have associated raw data. Raw data will be 
available in the controlled access repository dbGaP (https://www.ncbi.nlm.nih.
gov/gap/), under dbGaP Study Accession phs001983.v1.p1. Raw data will also be 
available in the controlled access repository DUOS (https://duos.broadinstitute.
org/), under DUOS Dataset IDs DUOS-000111, DUOS-000112, DUOS-000113 
and DUOS-000114. The counts matrices and metadata for each sample will be 
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publicly available in the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/) under data repository accession no. GSE140819. Finally, we provide a  
website that displays a comprehensive analysis summary for each sample tested 
(https://tumor-toolbox.broadinstitute.org).

Code availability
We implemented all initial analysis steps, from FASTQ files to clustering cell 
subsets, in Cumulus14, which may be executed in both a cloud-based environment 
and locally. Pipelines were written in the Workflow Description Language (WDL) 
and run on Cromwell in the Terra Cloud platform (https://app.terra.bio/), and data 
were stored in Google Cloud Platform storage buckets. Cumulus workflows are 
publicly available at https://github.com/klarman-cell-observatory/Cumulus.
We built and ran an additional pipeline for subsequent QC steps, including 
detecting empty drops and doublets, annotating cell subsets, evaluating cell type 
specific QCs and inferring CNAs. This pipeline was implemented in R (v3.5 or 
higher) by converting the single-cell AnnData objects from Cumulus into Seurat 
objects, and was used to compare and evaluate processing protocols. Our analysis 
pipeline, including complete example analysis for one scRNA-Seq sample and 
one snRNA-Seq sample, will be made publicly available at https://github.com/
klarman-cell-observatory/HTAPP-Pipelines.
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Extended Data Fig. 1 | scRNA-Seq protocol comparison for a single NSCLC sample. (a) Sample processing and QC overview. For each protocol, shown are 
the number of cells passing QC, and the number of sequencing reads and sequencing saturation across all cells. The remaining metrics are reported for cells 
passing QC: the median number of reads per cell, median number of UMIs per cell, median number of genes per cell, median fraction of UMIs mapping to 
mitochondrial genes, fraction of cell barcodes called as empty droplets and fraction of cell barcodes called as doublets. (b) Read mapping QCs. The percent 
of bases in the sequencing reads (y axis) mapping to the genome, transcriptome and intergenic regions (x axis) across the three protocols (colored bars). 
(c) Cell type assignment. UMAP embedding of single cell profiles from each protocol colored by assigned cell type signature. (d) Inferred CNA profiles. 
Chromosomal amplification (red) and deletion (blue) inferred in each chromosomal position (columns) across the single cells (rows) from the NSCLC-C4 
(left) and LE (right) protocols. Top: reference cells not expected to contain CNA in this cancer type. Bottom: cells tested for CNA relative to the reference 
cells. Color bar: assigned cell type signature for each cell. (e) Ambient RNA estimates. Estimates18 of the fraction of RNA in each cell type derived from 
ambient RNA contamination (y axis), with cell types ordered by their mean number of UMIs/cell (x axis). Red line: global average of contamination fraction; 
Green line: LOWESS (locally weighted scatterplot smoothing) smoothed estimate of the contamination fraction within each cell type, along with the 
associated binomial 95% confidence interval (Clopper–Pearson interval). n = 1 sample per protocol and number of cells (k) is indicated in (a).
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Extended Data Fig. 2 | Cell type specific QC metrics for scRNA-Seq protocol comparison in a single NSCLC sample. Cell type specific QCs for NSCLC14. 
Distribution (median and first and third quartiles) of the number of reads per cell, number of UMIs per cell, number of genes per cell and fraction of UMIs 
mapping to mitochondrial genes in each cell (y axes) in each of the three protocols (x axis), for cells passing QC from each cell type (rows). n = 1 sample 
per protocol. Number of B cells (k) from NSCLC-C4, PDEC and LE, respectively, is: 100, 121, 78; endothelial cells: 0, 920, 1,078; epithelial cells: 1,284, 641, 
260; fibroblasts: 0, 1,476, 1,403; macrophages: 3,306, 911, 727; mast cells: 0, 119, 77; T cells: 449, 723, 722.
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Extended Data Fig. 3 | scRNA-Seq protocol comparison for NSCLC following read down-sampling. Shown are analyses for NSCLC14 (as in Extended Data 
Figs. 1 and 2), but after the total number of sequencing reads within each sample was down-sampled to match the protocol with the fewest total sequencing 
reads. (a) Sample processing and QC overview. For each protocol, shown are the number of cells passing QC. The remaining metrics are reported for those 
cells passing QC: median number of UMIs per cell, median number of genes per cell, median fraction of UMIs mapping to mitochondrial genes in each cell, 
fraction of cell barcodes called as empty droplets and fraction of cell barcodes called as doublets. (b, c) Overall and cell types specific QCs. Distribution 
(median and first and third quartiles) of the number of UMIs per cell, number of genes per cell and fraction of gene expression per cell from mitochondrial 
genes (y axes) in each of the three protocols (x axis), for all cells passing QC (b) and for cells from each cell type (c, rows). (d,e) Relation of empty droplets 
and doublets to cell types. UMAP embedding and fraction (horizontal bar) of single cell (gray), empty droplet (red, d) and doublet (red, e) profiles for each 
protocol (f) Cell type assignment. UMAP embedding of single cell profiles from each protocol colored by assigned cell type signature. n = 1 sample per 
protocol and number of cells (k) is indicated in (a). Number of B cells (k) from NSCLC-C4, PDEC and LE, respectively, is: 114, 157, 78; endothelial cells:  
0, 879, 1,078; epithelial cells: 1,283, 644, 260; fibroblasts: 0, 1,439, 1,403; macrophages: 3,278, 853, 727; mast cells: 0, 106, 77; T cells: 432, 663, 722.
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Extended Data Fig. 4 | CD45+ depletion protocol enriches for non-immune cells in freshly processed NSCLC and ovarian ascites. (a, b) QCs. Distribution 
(median and first and third quartiles) of the number of reads per cell, number of UMIs per cell, number of genes per cell and fraction of gene expression per 
cell from mitochondrial genes (y axes) for all cells passing QC from NSCLC (a) before and after CD45+ cell depletion, and for ovarian ascites (k = 2,998 and 
10,716 cells, respectively) or (b) after CD45+ cell depletion (2,359 cells) (x axis). n = 1 sample per protocol. (c) CD45+ cell depletion estimates in ovarian 
cancer ascites by FACS. Flow-cytometry comparison of single cells isolated without (top) or with (bottom) depletion of CD45+ cells. Cells were gated by 
FSC and SSC (first column), doublets removed using FSC-A and FSC-H (second column), 7-AAD gating of dead cells to identify live cells (third column), 
the distribution of immune and non-immune cells quantified using a CD45 antibody (fourth column) and the distribution of EPCAM+ cells quantified using 
an EPCAM antibody (fifth column). (Efficient removal of CD45+ cells from ovarian cancer ascites was also demonstrated with an independent sample from 
a different patient (data not shown).) Number of cells without and with depletion, respectively are: 10,000, 10,000 (1st column), 3,468, 2,256 (2nd column), 
3,467, 2,251 (3rd column), 2,936, 2,174 (4th and 5th columns).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | snRNA-Seq protocol comparison in a single neuroblastoma sample. (a) Sample processing and QC overview. For each protocol, 
shown are the number of nuclei passing QC, number of sequencing reads and sequencing saturation across all nuclei. The remaining metrics are reported 
for those nuclei passing QC: median number of reads per nucleus, median number of UMIs per nucleus, median number of genes per nucleus, median 
fraction of UMIs mapping to mitochondrial genes in each nucleus and fraction of nucleus barcodes called as doublets. (b) Read mapping QCs. The percent 
of bases in the sequencing reads (y axis) mapping to the genome, transcriptome and intergenic regions (x axis) across the four protocols (colored bars). 
(c) Cell type assignment. UMAP embedding of single nucleus profiles from each protocol colored by assigned cell type signature. (d) Inferred CNA 
profiles. Chromosomal amplification (red) and deletion (blue) inferred in each chromosomal position (columns) across the single nuclei (rows). Top: 
reference nuclei not expected to contain CNA in this cancer type. Bottom: nuclei tested for CNA relative to the reference nuclei. Color bar: assigned cell 
type signature for each nucleus. n = 1 sample per protocol and number of nuclei (k) is indicated in (a).
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Extended Data Fig. 6 | Cell type specific QC metrics for snRNA-Seq protocol comparison in a single neuroblastoma sample. Cell type specific QCs for 
HTAPP-244-SMP-451. Distribution (median and first and third quartiles) of the number of reads per nucleus, number of UMIs per nucleus, number of 
genes per nucleus and fraction of UMIs mapping to mitochondrial genes in each nucleus (y axes) in each of the four protocols (x axis), for nuclei passing 
QC from each cell type (rows). n = 1 sample per protocol. Number of endothelial nuclei (k) from EZ, CST, NST and TST, respectively, is: 69, 32, 91, 95; 
erythrocyte: 0, 18, 0, 15; T cell: 157, 171, 229, 337; neuroendocrine: 7,379, 5,728, 6,790, 6,477; neural crest: 18, 27, 50, 67; macrophage: 119, 107, 189, 230; 
fibroblast: 138, 74, 182, 194; zona glomerulosa: 16, 0, 0, 0.
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Extended Data Fig. 7 | snRNA-Seq protocol comparison in a single neuroblastoma sample following read down-sampling. Shown are analyses for NB HTAPP-
244-SMP-451 (as in Extended Data Figs. 5 and 6), but after the total number of sequencing reads within each sample was down-sampled to match the protocol 
with the fewest total sequencing reads. (a) Sample processing and QC overview. For each protocol, shown are the number of nuclei passing QC. The remaining 
metrics are reported for those nuclei passing QC: median number of UMIs per nucleus, median number of genes per nucleus, median fraction of UMIs mapping 
to mitochondrial genes in each nucleus and fraction of nucleus barcodes called as doublets. (b,c) Overall and cell types specific QCs. Distribution (median 
and first and third quartiles) of the number of UMIs per nucleus, number of genes per nucleus and fraction of UMIs mapping to mitochondrial genes in each 
nucleus (y axes) in each of the four protocols (x axis), for all nuclei passing QC (b) and for nuclei from each cell type (c, rows). (d) Relation of doublets to cell 
types. UMAP embedding and fraction (horizontal bar) of single nucleus (gray) and doublet (red) profiles for each protocol. (e) Cell type assignment. UMAP 
embedding of single nucleus profiles from each protocol colored by assigned cell type signature. n = 1 sample per protocol and number of nuclei (k) is indicated 
in (a). Number of endothelial nuclei (k) from EZ, CST, NST, TST is: 53, 31, 95, 98; erythrocyte: 0, 0, 0, 23; T cell: 146, 177, 230, 345; neuroendocrine: 7,407, 
5,726, 6,776, 6,454; neural crest: 14, 27, 50, 69; macrophage: 123, 104, 196, 240; fibroblast: 111, 81, 177, 186; zona glomerulosa: 21, 0, 0, 0.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Inferred CNA profiles from snRNA-Seq in diverse tumors. Chromosomal amplification (red) and deletion (blue) inferred in 
each chromosomal position (columns) across the single nuclei (rows) from three MBC samples (a–f), one ovarian cancer sample (g-i) and one sarcoma 
sample (j, k). Top: reference nuclei not expected to contain CNA in this cancer type. Bottom: nuclei tested for CNA relative to the reference nuclei. Color 
bar: assigned cell type signature for each nucleus. n = 1 sample per protocol and number of nuclei (k) per sample: MBC HTAPP-963-SMP-4741—9,857 
(CST), 7,260 (TST); MBC HTAPP-394-SMP-1561—6,948 (CST), 8,058 (NST); MBC HTAPP-589-SMP-2851—7,858 (CST), 8,373 (TST); ovarian HTAPP-
316-SMP-991—9,026 (CST), 5,970 (NST), 10,493 (TST); sarcoma HTAPP-951-SMP-4652—7,858 (CST), 4,458 (TST).
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Extended Data Fig. 9 | snRNA-Seq protocol comparison of V2 and V3 chemistry from 10x Genomics on a resection of sarcoma. (a) Sample processing 
and QC overview. For each protocol, shown are the number of nuclei passing QC, after the total number of sequencing reads from the V3 protocol data 
was down-sampled to match the number of reads in the V2 data. The remaining metrics are reported for those nuclei passing QC: median number of 
UMIs per nucleus, median number of genes per nucleus, median fraction of UMIs mapping to mitochondrial genes in each nucleus and fraction of nucleus 
barcodes called as doublets. (b) Overall QCs. Distribution (median and first and third quartiles) of number of UMIs per nucleus, number of genes per 
nucleus and fraction of UMIs mapping to mitochondrial genes in each nucleus (y axes) for all nuclei passing QC. n = 1 sample per chemistry type and 
number of nuclei (k) is indicated in (a).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of scRNA-Seq and snRNA-Seq from the same tumor sample. (a–g) CLL. UMAP embedding of scRNA-Seq and 
snRNA-Seq profiles of the same CLL sample combined by CCA24 (Methods) showing profiles (dots) from both (a), scRNA-Seq (b) and snRNA-Seq (c), 
colored by assigned cell type signatures. (d) Proportion of cells from each subset in the two protocols. k: number of cells or nuclei passing QC. (e-f) Same 
UMAP embedding as in (a), colored by cells or nuclei (e) or unsupervised clustering (f). (g) Fraction of cells and nuclei in each cluster. n = 1 sample per 
protocol and number of cells and nuclei is indicated in (d). (h–n) O-PDX neuroblastoma. As in (a-g) for an O-PDX neuroblastoma sample. n = 1 sample per 
protocol and number of cells and nuclei is indicated in (k). (o-r) Dissociation signatures are more prominent in cells than in nuclei from the same tumors. 
Left and middle: UMAP embedding of scRNA-Seq (left) and snRNA-Seq (middle) profiles (dots) of the same tumor combined by CCA24 and colored by the 
score of a dissociation signature (color bar). Right: Distribution of dissociation signature score (y axis; median and first and third quartiles) in cells (green) 
and nuclei (orange). (o) neuroblastoma (3,449 cells, 7,810 nuclei), (p) MBC (5,163 cells, 7,260 nuclei), (q) CLL (2,562 cells, 2,339 nuclei), (r) O-PDX 
neuroblastoma (3,495 cells, 4,946 nuclei).
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We did not use any software for data collection. 

Data analysis 1) Cell Ranger mkfastq (v2.0 and v3.0) (10x Genomics) to generate demultiplexed FASTQ files from the raw sequencing reads 
2) Cell Ranger count (v2.0 and v3.0) (10x Genomics) to align reads and quantify gene counts as UMIs 
3) Cell Ranger mkref (v3.0) (10x Genomics) to build a custom reference  
4) R (v3.5 or higher) for gene expression analyses  
5) RStudio (v1.2.1335) for running R analyses 
6) Python (v3.7) for gene expression analyses  
7) DropletUtils (v1.0.3 or higher, R package, http://bioconductor.org/packages/release/bioc/html/DropletUtils.html) to estimate droplets 
containing only ambient RNA 
8) Scrublet (v0.2, Python package, https://github.com/AllonKleinLab/scrublet) to estimate droplets contain doublets  
9) SoupX (v0.3.1, R package, https://github.com/constantAmateur/SoupX) to estimate ambient RNA in droplets that also contain cells  
10) SingleR (v0.2.2, R package, https://github.com/dviraran/SingleR) for automated draft annotation  
11) Seurat (v2.3.4, R package, https://satijalab.org/seurat/install.html) as a framework for additional quality control steps, cell-subset 
annotation, and cell/nuclei batch correction 
12) inferCNV (v1.1.0, https://github.com/broadinstitute/infercnv) for inferring chromosomal copy number aberrations (CNAs) from the 
gene-expression data 
13) Cumulus (https://github.com/klarman-cell-observatory/Cumulus), developed by Bo Li and his colleagues, is used to perform all major 
single-cell and single-nucleus RNA-Seq data analysis 
14) BD FACSDiva Software (v8.0.1) for flow cytometry analysis.  
15) FlowJo (v10.5.3) for flow cytometry plotting 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All main and Extended Data figures have associated raw data. Raw data will be available in the controlled access repository dbGaP (https://www.ncbi.nlm.nih.gov/
gap/), under the dbGaP Study Accession phs001983.v1.p1; raw data will also be available in the controlled access repository DUOS (https://
duos.broadinstitute.org/), under the following DUOS Dataset IDs: DUOS-000111, DUOS-000112, DUOS-000113, and DUOS-000114. The counts matrices and 
metadata for each sample will be publicly available in Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under data repository accession no. 
GSE140819. Finally, we provide a website that displays a comprehensive analysis summary for each sample tested (https://tumor-toolbox.broadinstitute.org).

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For each sample, an input of 8,000 single cells or 8,000-10,000 single nuclei were loaded into each channel of the 10x Genomics Single-Cell 
Chromium Controller. These loading values were chosen to balance the probability of forming doublets with the goal of having maximal cell 
recovery and sufficient cell/nuclei recovery to reveal the heterogeneous landscape of the tumors.

Data exclusions We removed low quality cells by requiring each cell to have a minimal number of UMIs and genes detected. We used different thresholds 
depending on the experimental modality (single cell or single nucleus) and on the 10x kit (V2 or V3 chemistry). For single nucleus data, we 
retained nuclei with at least 200 genes and 400 UMIs detected by V2 chemistry and with at least 500 genes and 1,000 UMIs detected by V3 
chemistry. For single cell data, we retained cells with at least 500 genes and 1,000 UMIs detected by either V2 or V3 chemistry. For the V2-V3 
comparison in HTAPP-951-SMP-4652 (Extended Data Fig. 9), we used the same thresholds for both chemistries: at least 200 genes and 400 
UMIs detected. For both data types, we filtered out those cells or nuclei where >20% of UMIs came from mitochondrial genes. 

Replication Each biological sample is unique to a patient due to tumor heterogeneity, and furthermore, tissue samples from the same patient tumor may 
have intra-tumor heterogeneity. All single-cell dissociation protocols and single-nuclei isolation methods that we recommend were tested on 
more than one patient tumor sample (biological replicate) and protocol performance was consistent across the different samples tested. For 
under-performing protocols, we generally do not include replicate samples.

Randomization We do not have experimental groups. 

Blinding We do not have experimental groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used 1) FITC anti-human CD45 Antibody, BioLegend #304006, https://www.biolegend.com/en-us/products/fitc-anti-human-cd45-



3

nature research  |  reporting sum
m

ary
O

ctober 2018
antibody-707, Clone HI30, Lot #B226081, used at 1:200 dilution 
2) CD45 MicroBeads, human, Miltenyi # 130-045-801, https://www.miltenyibiotec.com/US-en/products/macs-cell-separation/
cell-separation-reagents/microbeads-and-isolation-kits/tumor-cells/cd45-microbeads-human.html 
3) CD326 (EpCAM)-PE, human, Miltenyi Biotech #130-113-264, https://www.miltenyibiotec.com/US-en/products/macs-flow-
cytometry/antibodies/primary-antibodies/cd326-epcam-antibodies-human-hea-125-1-50.html#pe:for-100-tests, Clone HEA-125, 
Lot #5190328519, used at 1:50 dilution 
4) APC anti-human CD14, BioLegend #367118, https://www.biolegend.com/nl-nl/products/apc-anti-human-cd14-
antibody-12901, Clone 63D3, Lot #B262993, used at 1:20 dilution 
5) PE-cy7 anti-human CD24, BioLegend #311120, https://www.biolegend.com/nl-nl/products/pe-cy7-anti-human-cd24-
antibody-6126, Clone ML5, Lot #B226384, used at 1:20 dilution

Validation All of the antibodies used in this study were validated for use in human specimens by the manufacturers, as indicated below:  
 
FITC anti-human CD45 Antibody, BioLegend #304006: 
Application: FC - Quality tested (FC: Flow cytometric analysis of antibody surface-stained cells.) 
Recommended Usage: Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric 
analysis. 
 
CD326 (EpCAM)-PE, human, Miltenyi Biotech # 130-113-264: 
Peripheral blood leukocytes mixed with cells from a breast cancer cell line (SK-BR-3) were stained with CD326 (EpCAM) 
antibodies and analyzed by flow cytometry using the MACSQuant® Analyzer.  
 
APC anti-human CD14, BioLegend #367118: 
Application: FC - Quality tested (FC: Flow cytometric analysis of antibody surface-stained cells.) 
Recommended Usage: Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric 
analysis. 
 
PE-cy7 anti-human CD24, BioLegend #311120: 
Application: FC - Quality tested (FC: Flow cytometric analysis of antibody surface-stained cells.) 
Recommended Usage: Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric 
analysis.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The neuroblastoma O-PDX was propagated in one female nude adult athymic Foxn1-null mouse (Charles River Laboratories, 
strain code 553) via para-adrenal injection. At the time of injection, the mice are 6-8 weeks in age, and it takes 4-8 weeks for the 
O-PDX to grow. 

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve field-collected samples. 

Ethics oversight Animal use was restricted to 1 female nude athymic mouse for para-adrenal injection of O-PDX cells. This study was carried out 
in strict accordance with the recommendations in the Guide to Care and Use of Laboratory Animals of the National Institute of 
Health. The protocol was approved by the Institutional Animal Care and Use Committee at St. Jude Children’s Research Hospital. 
All efforts were made to minimize suffering. All mice were housed in accordance with approved IACUC protocols. Animals were 
housed on a 12-12 light cycle (light on 6 am and off 6 pm) and provided food and water ad libitum. Athymic nude female mice 
were purchased from Charles River Laboratories (strain code 553).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics This research was not designed as a population study. Only a small number of samples (2-7) are profiled and analyzed per cancer 
type. Most samples are from adults, with the remaining samples being pediatric (pediatric high-grade glioma and 
neuroblastoma).

Recruitment Patients were not actively recruited for this secondary-use study. Instead, patients were recruited under the initial IRB protocols 
approved by our collaborating institutions (see "Ethics oversight" section). External sample cohorts were then added to the 
Broad's Molecular Classification of Cancer protocol (15-370B) and reviewed and approved by the Dana Farber Cancer Institute 
(DFCI) IRB. Patient population compositions are not expected to impact our results as our analyses were done on a per sample 
basis, rather than on patient populations. 

Ethics oversight Ethics oversight for the Molecular Classification of Cancer protocol (15-370B) is performed by the DFCI IRB. Samples added to 
this protocol also underwent IRB review and approval at the institutions where the samples were originally collected.  
Specifically, Dana-Farber Cancer Institute IRB approved the following protocols: lung cancer (IRB protocol 98-063), metastatic 
breast cancer (IRB protocol 05-246), neuroblastoma (IRB protocols 11-104 and 17-104), ovarian cancer (IRB protocol 02-051), 
melanoma (IRB protocol 11-104), sarcoma (IRB protocol 17-104), GBM(IRB protocol 10-417), and chronic lymphocytic leukemia 
(IRB protocol 99-224), and the St. Jude Children’s Research Hospital IRB approved the following protocol: pediatric high-grade 
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glioma (IRB protocol 97BANK).  
 
The XPD 09-234 MAST (Molecular Analysis of Solid Tumor) protocol for creating the neuroblastoma O-PDX sample was reviewed 
and approved by the St. Jude Children’s Research Hospital IRB.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation For flow cytometry analysis of CD45+ depletion in the ovarian cancer ascites sample, cells were resuspended in PBS 
complemented with 2% fetal bovine serum and stained with FITC anti-human CD45 antibody (BioLegend #304006CD45, 1:200 
dilution), PE anti-human EPCAM antibody (Miltenyi Biotech #130-113-264, 1:50 dilution), APC anti-human CD14 (BioLegend 
#367118, clone 63D3, 1:20 dilution), and PE-cy7 anti-human CD24 (BioLegend #311120, clone ML5, 1:20 dilution) for 20 
minutes, and with 7-AAD (Invitrogen #A1310, 1:200 dilution) for 5 minutes. The same cells were also used for single-stain and 
unstained controls in order to perform compensation and adjust gating. 

Instrument BD LSRFortessa Cell Analyzer (Cat. No. 647177)

Software BD FACSDiva Software Version 8.0.1; plots were generated with FlowJo Version 10.5.3

Cell population abundance We used a CD45+ depletion strategy to prepare an ovarian ascites sample for scRNA-Seq. To assess how well our CD45+ 
depletion strategy worked, we took a sample of these prepared cells, with and without the CD45+ depletion, and performed 
flow cytometry. CD45- cells were enriched from 0.75% to 29.4% of the population, as determined using the anti-CD45 antibody. 
EpCAM+ cells were enriched from 0.17% to 4.9%, as determined by the PE anti-human EPCAM antibody.

Gating strategy Cells were gated by FSC and SSC (35% of events retained for no depletion, 23% of events retained for depletion of CD45+ cells), 
doublets removed using FSC-A and FSC-H (100% singlets for no depletion, 99.8% singlets for depletion of CD45+ cells), live cells 
identified using 7-AAD (84.7% of cells retained for no depletion are live, 96.6% of cells retained for depletion of CD45+ cells are 
live), the distribution of immune and non-immune cells quantified using the CD45 antibody (99.3% of cells retained for no 
depletion are CD45+, 70.5% of cells retained for depletion of CD45+ cells are CD45+), and the distribution of EPCAM+ cells 
quantified using the EPCAM antibody (0.17% of the cells retained for no depletion are EPCAM+, 4.92% of cells retained for 
depletion of CD45+ cells are EPCAM+). 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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