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A RIGOROUS DERIVATION OF THE HAMILTONIAN STRUCTURE FOR THE
NONLINEAR SCHRÖDINGER EQUATION

DANA MENDELSON1, ANDREA R. NAHMOD2, NATAŠA PAVLOVIĆ3, MATTHEW ROSENZWEIG4,
AND GIGLIOLA STAFFILANI5

Abstract. We consider the cubic nonlinear Schrödinger equation (NLS) in any spatial dimension,
which is a well-known example of an infinite-dimensional Hamiltonian system. Inspired by the knowledge
that the NLS is an effective equation for a system of interacting bosons as the particle number tends to
infinity, we provide a derivation of the Hamiltonian structure, which is comprised of both a Hamiltonian
functional and a weak symplectic structure, for the nonlinear Schrödinger equation from quantum many-
body systems. Our geometric constructions are based on a quantized version of the Poisson structure
introduced by Marsden, Morrison and Weinstein [19] for a system describing the evolution of finitely
many indistinguishable classical particles.
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1. Introduction

Hamiltonian partial differential equations (PDEs) are a ubiquitous class of equations which arise as
models of physical systems exhibiting at least one, and often several, conservation laws. While the
framework of finite-dimensional Hamiltonian systems was initially introduced to formalize Newtonian
mechanics, infinite-dimensional Hamiltonian systems have since become a vast area of study, comprising
an important class of models in diverse areas such as fluid mechanics, plasma physics, and quantum
many-body systems. Establishing a comprehensive mathematical theory of infinite-dimensional Hamil-
tonian systems which is rich enough to accommodate all the physical problems of interest seems beyond
reach; however, one can make mathematically rigorous sense of infinite-dimensional Hamiltonian sys-
tems in many interesting cases, see for instance [6] and [1].

The focus of the present work will be a particular example of an infinite-dimensional Hamiltonian
PDE, namely, the cubic nonlinear Schrödinger equation (NLS):

(1.1) i∂tφ+∆φ = 2κ|φ|2φ, φ : Rd → C, κ ∈ {±1}.

We will recall the precise Hamiltonian formulation of (1.1) in (1.4) and (1.5) below.
Over recent years, many authors have sought how to understand the manner in which the dynamics

of the NLS arise as an effective equation. By effective equation, we mean that solutions of the NLS
equation approximate solutions to an underlying physical equation in some topology in a particular
asymptotic regime. For example, the NLS is an effective equation for a system of N bosons interacting
pairwise via a delta or approximate delta potential, in the sense that the 1-particle density matrix
formed by a solution to the NLS is close to the 1-particle reduced density matrix of the system in trace
norm, with error tending to zero as the number of particles tends to infinity. Alternatively, the NLS
also arises as an effective equation for water waves, where the multiple scales expansion constructed by
solving the NLS approximates slowly modulated wave packet solutions to the water waves problem in
Sobolev norm, with error tending to zero as the steepness of the wave packets tends to zero.

In contrast to the vast amounts of activity on the derivation of the dynamics of the NLS, to the
best of our knowledge, questions about the origins of the Hamiltonian structure of the NLS have
remained unexplored. Indeed, continuing with our two examples from the previous paragraph, the N -
body Schrödinger problem is well-known to admit a description as an infinite-dimensional Hamiltonian
system, as are the water waves equations [38], but we are unaware of work which mathematically
demonstrates whether, and if so the manner in which, the Hamiltonian structure of the NLS can be
interpreted as a limit of the Hamiltonian structure of the N -body Schrödinger or water waves problems.

The Hamiltonian formulation for the NLS has two components: the Hamiltonian functional itself
and an underlying phase space geometry provided by a weak Poisson manifold.1 More precisely, to give
the Hamiltonian formulation of the NLS, we endow the d-dimensional Schwartz space S(Rd) with the

1We refer to Definition 4.1 and Definition 4.5 for definitions of a weak Poisson and weak symplectic manifold, respec-
tively.



DERIVATION OF HAMILTONIAN STRUCTURE FOR THE NLS 3

standard weak symplectic structure

(1.2) ωL2(f, g) = 2 Im

{∫

Rd

dxf(x)g(x)

}
, ∀f, g ∈ S(Rd).

Letting ∇s denote the symplectic L2 gradient, see Remark 4.12, the symplectic form ωL2 induces the
canonical Poisson structure

{F,G}L2(·) := ωL2(∇sF (·),∇sG(·)),(1.3)

defined for F,G belonging to a certain sub-algebra AS ⊂ C∞(S(Rd);R), the precise description of
which we postpone to Proposition 4.13. The solution of the NLS (1.1) is then the flow associated to a
Hamiltonian equation of motion on the infinite-dimensional weak Poisson manifold (S(Rk),AS , {·, ·}L2).
More precisely, (1.1) is equivalent to

(1.4)

(
d

dt
φ

)
(t) = ∇sHNLS(φ(t)),

where

(1.5) HNLS(φ(t)) :=

∫

Rd

dx
(
|∇φ(t, x)|2 + κ|φ(t, x)|4

)
.

The goal of the current work is to derive both the weak Poisson structure and Hamiltonian functional
constituting the Hamiltonian formulation of the NLS. Providing a rigorous definition and derivation of
the geometry will pose the bulk of the difficulty in this work.

The methods we adopt are guided by the extensive research activity in recent years on the derivation
of the NLS from the dynamics of interacting bosons. There are a number of different approaches to this
derivation problem, but the one which informs our strategy involves the so-called BBGKY hierarchy,2

which is a coupled system of linear equations describing the evolution of a system of finitely many
interacting bosons, see (2.4) below. This approach was pioneered by Spohn [35] in the quantum context
of the derivation of the Hartree equation in the mean field scaling regime.3 We mention the works of
Adami, Bardos, Golse, and Teta and Adami, Golse, and Teta [2, 3], who provided a derivation of the
one-dimensional cubic NLS via the BBGKY approach in an intermediate scaling regime between the
mean field and Gross-Pitaevskii regimes. We also mention in particular the works of Erdös, Schlein,
and Yau [7, 8, 9], who provided the first rigorous derivation of the three-dimensional cubic NLS in
the Gross-Pitaevskii scaling regime via the BBGKY hierarchy, resolving what was a significant open
problem, and the work of Klainerman and Machedon [13], who incorporated techniques from dispersive
equations to the study of this problem. There is by now an extensive body of work, spanning many
years, on deriving the dynamics of the NLS from many-body quantum systems. A thorough account of
this history would take us too far afield from our current goals, and consequently we are not mentioning
many important contributions in our very brief account. We instead refer the reader to [31] for a general
survey and more extensive review on the history of the derivation problem and to the more recent lecture
notes [30].

To appreciate some of the difficulties involved in our pursuit, it is important to note that while the
dynamics of a system of N -bosons is described by the linear Schrödinger evolution of a wave function,
such an equation is not amenable to taking the infinite-particle limit directly since the wave functions
for different particle numbers do not live in a common topological space. Consequently, in order to take
an infinite-particle limit, one performs a non-linear transformation of the N -body wave functions and
considers sequences of k-particle marginal density matrices whose evolution is governed by the BBGKY
hierarchy. In particular, there is no clear link between the evolution of the N -particle wave function
and the NLS each as Hamiltonian dynamical systems. To complicate matters further, the BBGKY
hierarchy is no longer an evidently Hamiltonian flow.

2Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy.
3See also the influential works of Lanford [15, 16] on the derivation of the Boltzmann equation.
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At the cost of the added complication of working with the BBGKY hierarchy, the aforementioned
works on the derivation of the one-particle dynamics actually yield the following stronger result: the full
dynamics of the interacting boson system governed by the BBGKY hierarchy converges to dynamics
described by the cubic Gross-Pitaevskii (GP) hierarchy, which is an infinite coupled system of partial

differential equations for kernels4 (γ(k))∞k=1 of k-particle density matrices, defined in (2.5) below. The
connection to the NLS is then as follows: the GP hierarchy admits a special class of factorized solutions
given by

(1.6) γ(k) := |φ⊗k〉 〈φ⊗k| , k ∈ N,

where φ : I × R
d → C solves (1.1).

One might conjecture that the BBGKY and GP hierarchies provide the required link to understand
the derivation of the geometry associated to the Hamiltonian formulation of (1.1). In particular, it is
natural to wonder whether the BBGKY and GP hierarchies are Hamiltonian evolution equations posed
on underlying weak Poisson manifolds of density matrices,5 and whether the Poisson structure for the
infinite-particle setting arises in the infinite-particle limit from the Poisson structure for the N -body
problem. To summarize, one can pose the following questions:

Question 1.1. Can we connect the Hamiltonian structure of the many-body system with that of the
infinite-particle system in the following sense: can the GP hierarchy be realized as a Hamiltonian
equation of motion with associated functional HGP on some weak Poisson manifold? Can the Poisson
structure and Hamiltonian functional for the GP hierarchy be derived in a suitable sense from a Poisson
structure and Hamiltonian functional at N -particle level?

In the current work, we answer these questions affirmatively and establish, for the first time, a
Hamiltonian formulation for the BBGKY and GP hierarchies, see Theorem 2.3 and Theorem 2.10
below, and a link between the underlying weak Poisson geometry and Hamiltonian functionals in the
finite- and infinite-particle settings, see Proposition 2.4.

Our geometric constructions will rely on a special type of weak Poisson structure, namely a Lie-
Poisson structure, on a space of density matrix ∞-hierarchies, see Section 2.2 below. These construc-
tions are motivated by the work of Marsden, Morrison, and Weinstein [19] on the Hamiltonian structure
of the classical BBGKY hierarchy, which relates to the earlier works on the Hamiltonian structure for
plasma systems discovered in Morrison and Green [26], Morrison [25], Marsden and Weinstein [21],
Spencer and Kaufman [34], and Spencer [33]. We refer to [22] for more discussion on the Hamiltonian
formulation of equations of motion for systems arising in plasma physics. Our geometric perspective
for the N -body Schrödinger equation is inspired by taking a “quantized” version of the work of [19]. By
adapting their work to the quantum setting, we obtain the formulae for the Poisson structure for the
(quantum) BBGKY hierarchy. Taking the infinite-particle limit, which was not considered in [19], we
obtain the formula for the Poisson structure we use in the infinite-particle setting. We expect that our
proofs can serve as a blueprint for deriving the Hamiltonian structure of more general infinite-particle
equations arising from systems of interacting classical and quantum particles.

Returning to the setting of the NLS, the fact that the GP hierarchy admits the factorized solutions
given by (1.6) tells us that the dynamics of the NLS are embedded in those of the GP hierarchy. Given
that the NLS is a Hamiltonian system and, with our affirmative answer to Question 1.1, so is the
GP hierarchy, one might ask if there exists an embedding of the Hamiltonian structure such that the
pullback of this embedding yields the NLS Hamiltonian and phase space geometry from that of the GP.
In other words, one can pose the following question:

Question 1.2. Given our affirmative answer to the previous question, is there then a natural way to
connect the Hamiltonian formulation of the GP hierarchy with the Hamiltonian formulation of the NLS
in such a manner so as to respect the geometric structure?

4In this work, we follow the widespread convention of using the same notation for both the kernel and the operator.
5We will in fact work on a Poisson manifold of density matrix hierarchies.
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We provide an affirmative answer to this second question by showing, in Theorem 2.12 below, that
the natural embedding map taking one-particle functions to factorized density matrices described in
(1.6) is a Poisson morphism between the weak symplectic manifold constituting the NLS phase space
and the weak Poisson manifold6 constituting the GP phase space. Moreover, the NLS Hamiltonian,
see (1.5) below, is just the pullback of the GP Hamiltonian under this embedding, see (2.30) below. In
summary, the factorization embedding pulls back the GP Hamiltonian structure to that of the NLS.

We claim that our work provides a new perspective on what it means to “derive” an equation from
an underlying physical problem. Indeed, to justify this assertion, we highlight some parallels between
our results and the aforementioned works of Erdös et al. on the derivation of solutions to the NLS
equation from the N -body problem. In [7, 8, 9], solutions to the BBGKY hierarchy with factorized
or asymptotically factorized initial data are shown to converge to solutions of the GP hierarchy as
the number of particles tends to infinity. The authors then show that solutions to the GP hierarchy
in a certain Sobolev-type space are unique.7 Thus, the solution to the NLS equation provides the
unique solution to the GP hierarchy starting from factorized initial data, thereby providing a rigorous
derivation of the dynamics of the NLS from (2.2). In the current work, we establish the existence
of both the underlying Lie algebra and Poisson structure associated to a Hamiltonian formulation of
the BBGKY hierarchy and prove that in the infinite-particle limit, these converge to a (previously
unobserved) Hamiltonian structure for the GP hierarchy. Moreover, the BBGKY Hamiltonian, defined
in (2.16), converges to the GP Hamiltonian. Finally, we demonstrate that the Hamiltonian functional
and phase space of the NLS can be obtained via the pullback of the canonical embedding (2.38), thereby
providing a derivation of the Hamiltonian structure of the NLS.

Remark 1.1. We note that our work does not address any derivation of the dynamics of the nonlinear
Schrödinger equation from many-body quantum systems in the vein of the aforementioned works by
Erdös et al. [7, 8, 9]. Our current work is complementary to those in the sense that it addresses geometric
aspects of the connection of the NLS with quantum many-body systems, answering questions which
are of a different nature than those about the dynamics.

Remark 1.2. We view this work as part of a broader program of understanding how qualitative
properties of PDE arise from underlying physical problems. We also mention the works of Lewin, Nam,
and Rougerie [17] and Fröhlich, Knowles, Schlein, and Sohinger [10], which derive invariant Gibbs
measures for the NLS from many-body quantum systems, as we believe they are related in spirit to
this program.

We conclude by mentioning an application of our current work. In the one-dimensional cubic case,
for which the corresponding one-dimensional cubic nonlinear Schrödinger equation is known to be
integrable, we establish in a companion work [23] that there exists an infinite sequence of Poisson
commuting functionals, which we call energies. The Hamiltonian flow associated to the third energy
yields the GP hierarchy, and the corresponding flows for the sequence of energies yield a “hierarchy of
infinite-particle hierarchies” which generalizes the Schrödinger hierarchy of Palais [29].

In the next section, Section 2, we will record the precise statements of our main results, which require
some additional notation and background. We postpone a subsection on the organization of our paper
until the end of this next section.

2. Statements of main results and blueprint of proofs

We will now state precisely and outline the proofs of our three main results: Theorem 2.3, The-
orem 2.10, and Theorem 2.12. The first two results provide the affirmative answer to Question 1.1,
establishing the BBGKY hierarchy and GP hierarchy, respectively, as Hamiltonian flows. Theorem 2.12

6We refer to Section 4 for definitions of Poisson morphism and weak Poisson manifold.
7A new proof of this uniqueness result was later given by Chen et al. in [4].
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provides the link between the Hamiltonian structure for the GP hierarchy and the Hamiltonian structure
for the nonlinear Schrödinger equation, answering Question 1.2.

We recall the N -body Schrödinger equation, BBGKY hierarchy, and limiting GP hierarchy to set
the stage for our discussion of the geometry below. It will be useful going forward to fix the following
notation: for d ≥ 1, we denote the point (x1, . . . , xN ) ∈ R

dN by xN . We let Ss(R
dN ) be the subspace

of S(RdN ) of Schwartz functions which are symmetric in their arguments, that is, for any π ∈ SN
8 we

have

(2.1) Φ(xπ(1), . . . , xπ(N)) = Φ(x1, . . . , xN ), xN ∈ R
dN .

We call Ss(R
dN ) the bosonic Schwartz space, see Definition 4.24 for more details.

Consider the N -body Schrödinger equation

(2.2) i∂tΦN = HNΦN , ΦN ∈ Ss(R
dN )

where HN is the N -body Hamiltonian

(2.3) HN :=

N∑

j=1

(−∆xj
) +

2κ

N − 1

∑

1≤i<j≤N

VN (Xi −Xj), κ ∈ {±1}.

The pair interaction potential has the form VN = NdβV (Ndβ ·), where β ∈ (0, 1), V is an even non-
negative function in C∞

c (Rd) with
∫
R
dxV (x) = 1, and VN (Xi − Xj) denotes the operator which is

multiplication by VN (xi − xj).

The N -body density matrix, associated to the wave function ΦN ∈ Ss(R
dN ) is given by

ΨN := |ΦN 〉 〈ΦN | ∈ L(S ′
s(R

dN ),Ss(R
dN )), 9

and the reduced density matrix hierarchy

(γ
(k)
N )Nk=1 := (Trk+1,...,N (ΨN ))Nk=1

solves the quantum BBGKY hierarchy

i∂tγ
(k)
N =

[
−∆xk

, γ
(k)
N

]
+

2κ

N − 1

∑

1≤i<j≤k

[
VN (Xi −Xj), γ

(k)
N

]

+
2κ(N − k)

N − 1

k∑

i=1

Trk+1

([
VN (Xi −Xk+1), γ

(k+1)
N

])
, 1 ≤ k ≤ N − 1

=
[
−∆xk

, γ
(k)
N

]
+

2κ

N − 1

∑

1≤i<j≤k

[
VN (Xi −Xj), γ

(k)
N

]
, k = N,

(2.4)

where we have introduced the notation ∆xk
:=
∑k

j=1∆xj
.

The GP hierarchy is formally obtained from the BBGKY hierarchy (2.4) by letting N → ∞. More

precisely, a time-dependent family of density matrix ∞-hierarchies Γ(t) = (γ(t)(k))∞k=1 solves the GP
hierarchy if

(2.5) i∂tγ
(k) = −

[
∆xk

, γ(k)
]
+ 2κBk+1γ

(k+1), ∀k ∈ N

with κ ∈ {±1} and

(2.6) Bk+1γ
(k+1) :=

k∑

j=1

(
B+

j;k+1 −B−
j;k+1

)
γ(k+1),

8
SN is the symmetric group of order N .

9L(S ′
s(R

dN),Ss(R
dN )) denotes the space of continuous linear maps from symmetric tempered distributions to sym-

metric Schwartz functions.
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where

(2.7)
(
B+

j;k+1γ
(k+1)

)
(t, xk;x

′
k) :=

∫

R2d

dxk+1dx
′
k+1δ(xk+1 − x′k+1)δ(xj − xk+1)γ

(k+1)(t, xk+1;x
′
k+1)

with an analogous definition for B−
j;k+1 with δ(xj − xk+1) replaced by δ(x′j − xk+1). When κ = 1, we

say that the hierarchy is defocusing and for κ = −1, we say that the hierarchy is focusing (in analogy
with the defocusing and focusing NLS, respectively).

As we outlined in the introduction, our first main results establish that the BBGKY hierarchy (2.4)
and the GP hierarchy (2.5) are Hamiltonian flows on appropriate weak Lie-Poisson manifolds. To do
this, we need to define a suitable phase space for the Hamiltonian evolution in both the finite- and
infinite-particle settings. In particular, we need to construct certain Lie-Poisson manifolds of density
matrix hierarchies, and we outline this construction in the next subsection. We will also establish
that the procedure described above for obtaining the BBGKY hierarchy from the N -body Schrödinger
equation can be given by the composition of several natural Poisson maps, thereby establishing the
existence of a natural Poisson morphism which maps the N -body Schrödinger equation to the BBGKY
hierarchy.

2.1. Construction of the Lie algebra GN and Lie-Poisson manifold G∗
N . For each k ∈ N, we let

gk := {A(k) ∈ L(Ss(R
k),Ss(R

k)) : (A(k))∗ = −A(k)},

endowed with the subspace topology of L(Ss(R
k),S ′

s(R
k)). We define a Lie algebra (gk, [·, ·]gk), with

Lie bracket defined by

(2.8)
[
A(k), B(k)

]
gk

:= k
[
A(k), B(k)

]
,

where the right-hand side denotes the usual commutator bracket. We refer to elements of gk as k-particle
bosonic observables. For N ∈ N, we then define the locally convex direct sum

GN :=

N⊕

k=1

gk,(2.9)

and we refer to elements of GN as observable N -hierarchies.
To define a Lie bracket on the space GN , we consider the following natural embedding maps. For

N ∈ N and k ∈ N≤N , there exists a smooth map

(2.10) ǫk,N : gk → gN ,

which embeds a k-particle bosonic observable in the space of N -particle bosonic operators so as to have
the filtration property

(2.11) [ǫℓ,N(gℓ), ǫj,N (gj)]gN ⊂ ǫmin{ℓ+j−1,N},N

(
gmin{ℓ+j−1,N}

)
⊂ gN .

Using this filtration property and the injectivity of the maps ǫk,N , we can now endow GN with a Lie
algebra structure by defining the bracket

(2.12) [A,B]
(k)
GN

:=
∑

1≤ℓ,j≤N
min{ℓ+j−1,N}=k

ǫ−1
k,N

([
ǫℓ,N

(
A(ℓ)

)
, ǫj,N

(
B(j)

)]
gN

)
, k ∈ {1, . . . , N}.

Furthermore, the maps {ǫk,N}Nk=1 induce a Lie algebra homomorphism

(2.13) ιǫ,N : GN → gN , ιǫ,N (AN ) :=
N∑

k=1

ǫk,N(A
(k)
N ), ∀AN = (A

(k)
N )k∈N≤N

.

In other words, ιǫ,N maps an observable N -hierarchy to an N -body bosonic observable. In Section 5,
we will establish several properties of the embedding map, which ultimately enable us to prove the
following result.
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Proposition 2.1. (GN , [·, ·]GN
) is a Lie algebra in the sense of Definition 4.14.

Next, we define the real topological vector space

(2.14) G∗
N :=

{
ΓN = (γ

(k)
N )Nk=1 ∈

N∏

k=1

L(S ′
s(R

dk),Ss(R
dk)) : (γ

(k)
N )∗ = γ

(k)
N

}
,

and we refer to elements of G∗
N as density matrix N -hierarchies. Let AH,N be the algebra with respect

to point-wise product generated by the functionals in the set

{F ∈ C∞(G∗
N ;R) : F (·) = iTr(AN ·), AN ∈ GN} ∪ {F ∈ C∞(G∗

N ;R) : F (·) ≡ C ∈ R}.

We can define a Lie-Poisson structure on G∗
N , given by

(2.15) {F,G}G∗
N
(ΓN ) := iTr

(
[dF [ΓN ], dG[ΓN ]]GN

· ΓN

)
, ∀ΓN ∈ G∗

N ,

where F,G ∈ AH,N .
To construct the weak Lie-Poisson manifold G∗

N , a good heuristic to keep in mind is that density
matrices are dual to skew-adjoint operators. The superscript ∗, however, does not denote the literal
functional analytic dual, but rather denotes a space in weakly non-degenerate pairing with GN . The
fact that we only have weak non-degeneracy means that we will be unable to appeal to classical results
on Lie-Poisson structures, see for instance Proposition 4.20 below, and instead we will proceed by direct
proof to establish the following result.

Proposition 2.2. (G∗
N ,AH,N , {·, ·}G∗

N
) is a weak Poisson manifold.

To establish that the BBGKY hierarchy is a Hamiltonian flow on this weak Poisson manifold, we
need to prescribe the BBGKY Hamiltonian functional

(2.16) HBBGKY,N (ΓN ) := Tr(WBBGKY,N · ΓN ),

where −iWBBGKY,N is the observable 2-hierarchy defined by

(2.17) WBBGKY,N := (−∆x, κVN (X1 −X2), 0, . . .).

We can now state the following theorem, which establishes that the BBGKY hierarchy admits a
Hamiltonian formulation and lays the groundwork for our answering of Question 1.1.

Theorem 2.3. Let I ⊂ R be a compact interval. Then ΓN = (γ
(k)
N )Nk=1 ∈ C∞(I;G∗

N ) is a solution to
the BBGKY hierarchy (2.4) if and only if

(2.18)
d

dt
ΓN = XHBBGKY,N

(ΓN ),

where XHBBGKY,N
is the unique vector field defined by HBBGKY,N (see Definition 4.1) with respect to

the weak Poisson structure (G∗
N ,AH,N , {·, ·}G∗

N
).

2.2. Derivation of the Lie algebra G∞ and Lie-Poisson manifold G∗
∞. Having established the

necessary framework at the N -body level, we are now prepared to address the infinite-particle limit of
our constructions. Via the natural inclusion map, one has GN ⊂ GM for M ≥ N . Hence, one has a
natural limiting algebra10 given by

F∞ :=

∞⋃

N=1

GN =

∞⊕

k=1

gk.(2.19)

By embedding GN into this limiting algebra, the rather complicated Lie bracket [·, ·]GN
converges

pointwise to a much simpler Lie bracket.

10This discussion could be formulated more precisely in terms of co-limits of topological spaces ordered by inclusion.
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We let Symk denote the k-particle bosonic symmetrization operator, see Definition 4.30, and we
let [·, ·]1 be a certain separately continuous, bilinear map, the precise definition of which we defer to
Section 5. We establish the following result.

Proposition 2.4. Let N0 ∈ N. For A = (A(k))k∈N, B = (B(k))k∈N ∈ GN0 , we have that

(2.20) lim
N→∞

[A,B]GN
= C = (C(k)k∈N,

where

(2.21) C(k) :=
∑

ℓ,j≥1
ℓ+j−1=k

Symk

([
A(ℓ), B(j)

]
1

)
,

in the topology of F∞.

The topological vector space given in (2.19) is too small to capture the generator of the GP Hamilton-
ian, defined in (2.29) below. Indeed, the 2-particle component VN (X1−X2) of the N -body Hamiltonian
HN given in (2.3) converges to the distribution-valued operator11 δ(X1−X2) as N → ∞. The operator
−iδ(X1 −X2) does not belong to g2 since it does not map Ss(R

2d) to itself.
Since we will need our Lie algebra G∞ to contain the generator of the GP Hamiltonian functional,

this necessitates an underlying topological vector space which includes distribution-valued operators
(DVOs). The inclusion of DVOs introduces technical difficulties in the definition of the bracket [·, ·]1.
As we will see, the definition of the bracket [·, ·]1, involves compositions of distribution-valued operators
in one coordinate, which in general is not possible. Consequently, we need to find a setting in which
we can give meaning to such a composition, thus motivating our introduction of the good mapping
property :

Definition 2.5 (Good mapping property). Let i ∈ N. We say that an operator A(i) ∈ L(S(Rdi),S ′(Rdi))
has the good mapping property if for any α ∈ N≤i, the continuous bilinear map

S(Rdi)× S(Rdi) → S ′(Rd)⊗̂S(Rd)

(f (i), g(i)) 7→

∫

Ri−1

dx1 . . . dxα−1dxα+1 . . . dxiA
(i)(f (i))(x1, . . . , xi)g

(i)(x1, . . . , xα−1, x
′
α, xα+1, . . . , xi),

may be identified with a continuous bilinear map S(Rdi)× S(Rdi) → S(R2d).12

Here and throughout this paper, an integral should be interpreted as a distributional pairing, un-
less specified otherwise. We will denote by Lgmp(S(R

di),S ′(Rdi)) the subset of L(S(Rdi),S ′(Rdi)) of
operators with the good mapping property.

Remark 2.6. It is evident that Lgmp(S(R
di),S ′(Rdi)) is closed under linear combinations and therefore

a subspace. Note that here and throughout we endow L(S(Rdi),S ′(Rdi)) with the topology of uniform
convergence on bounded sets, and we endow Lgmp with the subspace topology. To see that Lgmp is a

proper subspace of L, consider the multiplication operator δ(X2) ∈ L(S(R2d),S ′(R2d)).

The formula for the limiting Lie bracket given in Proposition 2.4 has a greatly simplified form
compared to the N -body bracket [·, ·]GN

due to the vanishing of the higher “contraction commutators”.
Moreover, as we prove in Appendix B.3, the good mapping property gives an appropriate definition
to the bracket

[
A(i), B(j)

]
1

as a well-defined element of Lgmp(S(R
dk),S ′(Rdk)). Hence, we can take

advantage of the good mapping property and extend the limiting formula from Proposition 2.4 to a
map on a much larger real topological vector space G∞ given by the locally convex direct sum

G∞ :=
∞⊕

k=1

gk,gmp, gk,gmp := {A(k) ∈ Lgmp(Ss(R
dk),S ′

s(R
dk)) : A(k) = −(A(k))∗}.(2.22)

11Not to be confused with operator-valued distribution.
12We use ⊗̂ to denote the completion of the tensor product in either the projective or injective topology (which

coincide). See Section 4.3 for furhter discussion.
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We refer to the elements of G∞ as observable ∞-hierarchies, and the elements of gk,gmp as k-particle
bosonic observables. The verification of the Lie algebra axioms then proceeds by direct computation,
and we are able to establish the following result.

Proposition 2.7. (G∞, [·, ·]G∞
) is a Lie algebra in the sense of Definition 4.14.

Analogously to the N -body setting, our second step is the dual problem of building a weak Lie-Poisson
manifold (G∗

∞,A∞, {·, ·}G∗
∞
). If we were in the finite-dimensional setting or a “nice” infinite-dimensional

setting, such as G∗
∞ being a Fréchet space and G∞ being its predual, then this step would follow from

standard results (see Section 4.2). While G∗
∞ is Fréchet, the predual of G∗

∞ is

(2.23)
{
A = (A(k))k∈N ∈

∞⊕

k=1

L(Ss(R
dk),S ′

s(R
dk) : (A(k))∗ = −A(k)

}
,

which is too large a space for the Lie bracket [·, ·]G∞
to be well-defined. Therefore, the standard

procedure for obtaining a Lie-Poisson manifold from a Lie algebra can only serve as inspiration.
We define the real topological vector space

(2.24) G∗
∞ :=

{
Γ = (γ(k))k∈N ∈

∞∏

k=1

L(S ′
s(R

dk),Ss(R
dk)) : γ(k) = (γ(k))∗ ∀k ∈ N

}
,

where the topology is the product topology. Using the isomorphism

(2.25) L(S ′
s(R

dk),Ss(R
dk)) ∼= Ss,s(R

dk × R
dk),

the elements of G∗
∞, which we call density matrix ∞-hierarchies, are infinite sequences of k-particle inte-

gral operators with Schwartz class kernels K(xk;x
′
k), which are separately invariant under permutation

in the xk and x′k coordinates.
Let A∞ be the algebra with respect to point-wise product generated by functionals in the set

{F ∈ C∞(G∗
∞;R) : F (·) = iTr(A·), A ∈ G∞} ∪ {F ∈ C∞(G∗

∞;R) : F (·) ≡ C ∈ R}.(2.26)

We will observe later that, importantly, our choice of A∞ contains the observable ∞-hierarchy −iWGP ,
which generates the GP Hamiltonian.

As in the finite-particle setting, the Lie algebra structure on G∞ canonically induces a Poisson
structure on G∗

∞. This canonical Poisson structure, which is called a Lie-Poisson structure, is defined
by the Poisson bracket

(2.27) {F,G}G∗
∞
(Γ) := iTr

(
[dF [Γ], dG[Γ]]G∞

· Γ
)
, ∀Γ ∈ G∗

∞,

where F,G ∈ C∞(G∗
∞;R) are functionals in the unital13 sub-algebra A∞ and we identify the Gâteaux

derivatives dF [Γ], dG[Γ] as observable ∞-hierarchies via the trace pairing iTr(·). We will ultimately
establish the following result, which provides the underlying geometric structure required to address
Question 1.1.

Proposition 2.8. (G∗
∞,A∞, {·, ·}G∗

∞
) is a weak Poisson manifold.

Define the Gross-Pitaevskii Hamiltonian functional

(2.28) HGP : G∗
∞ → R

by

(2.29) HGP (Γ) := −Tr1

(
∆x1γ

(1)
)
+Tr1,2

(
δ(X1 −X2)γ

(2)
)
, Γ = (γ(k))k∈N ∈ G∗

∞,

where Tr1,...,j denotes the j-particle generalized trace, see Appendix B.2 for definition and discussion.
Then we can rewrite HGP as

(2.30) HGP (Γ) = Tr(WGP · Γ), WGP := (−∆x1 , δ(X1 −X2), 0, . . .),

13i.e. containing a multiplicative identity
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which one should compare with (2.16).

Remark 2.9. Note that −iWGP is an observable ∞-hierarchy, that is, an element of G∞. Since we
have the convergence −iWBBGKY,N → −iWGP in G∞, as N → ∞, it follows that HBBGKY,N → HGP

in C∞(G∗
∞;R) endowed with the topology of uniform convergence on bounded sets.

We now state our next main result, which addresses the final component of Question 1.1:

Theorem 2.10 (Hamiltonian structure for GP). Let I ⊂ R be a compact interval. Then Γ ∈ C∞(I;G∗
∞)

is a solution to the GP hierarchy (2.5) if and only if

(2.31)

(
d

dt
Γ

)
(t) = XHGP

(Γ(t)), ∀t ∈ I,

where XHGP
is the unique Hamiltonian vector field defined by HGP with respect to the weak Poisson

structure (G∗
∞,A∞, {·, ·}G∗

∞
).

Remark 2.11. The result of Theorem 2.10 extends, with an almost identical proof, to the Hartree
hierarchy, and it seems likely that this result should also extend to the quintic GP hierarchy [5] and
other variants which account for higher-order particle interactions [37].

We now give a geometric formulation of the procedure by which one obtains the BBGKY hierarchy
from the N -body Schrödinger equation. The results described below will be proved in Section 5.3. To
record the Hamiltonian structure for the N -body Schrödinger equation, we equip the bosonic Schwartz
space Ss(R

dN ) with the standard symplectic structure and define the Hamiltonian functional

(2.32) HN (ΦN ) :=
1

N

∫

RdN

dxNΦN (xN )(HNΦN )(xN ), ∀ΦN ∈ Ss(R
dN ).

Then the Schrödinger equation (2.2) can be viewed as a Hamiltonian flow on this weak symplectic
manifold. We can endow the space L(S ′

s(R
dN ),Ss(R

dN )) of bosonic density matrices with a weak
Poisson structure by defining

(2.33) {F,G}N := iTr1,...,N

(
[dF [ΨN ], dG[ΨN ]]gNΨN

)
, ∀ΨN ∈ L(S ′

s(R
dN ),Ss(R

dN )),

where dF and dG denote the Gâteaux derivatives, see Definition A.4, of F and G, which are smooth
real-valued functionals with suitably regular Gâteaux derivatives. Then the Poisson bracket {·, ·}N is a
Lie-Poisson bracket induced by the Lie algebra of N -body bosonic observables with Lie bracket given
by [·, ·]gN .

There is a canonical map from N -body wave functions to N -body density matrices given by

(2.34) ιDM,N : Ss(R
dN ) → L(S ′

s(R
dN ),Ss(R

dN )), ιDM,N (ΦN ) := |ΦN 〉 〈ΦN | .

We will show in Proposition 5.27 that

ιDM,N : (Ss(R
dN ), {·, ·}L2,N) → (L(S ′

s(R
dN ),Ss(R

dN )), {·, ·}N ),

is a Poisson morphism14 and consequently maps solutions of the Schrödinger equation (2.2) to solutions
of the von Neumann equation

(2.35) i∂tΨN = [HN ,ΨN ],

where the right-hand side denotes the usual commutator. Defining the Hamiltonian functional

(2.36) HN (ΨN ) :=
1

N
Tr1,...,N (HNΨN ), ∀ΨN ∈ L(S ′

s(R
dN ),Ss(R

dN )),

the von Neumann equation (2.35) can be viewed as a Hamiltonian equation of motion on the weak
Poisson manifold (L(S ′

s(R
dN ),Ss(R

dN )), {·, ·}N ). We will prove in Proposition 5.29 that the dual of

14We recall {·, ·}
L2,N

= N{·, ·}
L2 , and see (1.3) for a definition of {·, ·}

L2 . We also note that the co-domain of this
map will be replaced by the appropriate space of N-body density matrices.
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the map ιǫ,N given in (2.13) induces a canonical morphism of Poisson manifolds, which is precisely the
reduced density matrix map, given by

(2.37) ιRDM,N = ι∗ǫ,N : g∗N → G∗
N , ιRDM,N (ΨN ) := (Trk+1,...,N(ΨN ))Nk=1 =: (γ

(k)
N )Nk=1,

which maps solutions of the von Neumann equation to solutions of the quantum BBGKY hierarchy.

2.3. The connection with the NLS. We will now tie together our main results and state the result
which provides an affirmative answer to Question 1.2. We connect the GP hierarchy to the cubic NLS,
each as infinite-dimensional Hamiltonian systems, through the canonical embedding

(2.38) ι : S(Rd) → G∗
∞, φ 7→ ( |φ⊗k〉 〈φ⊗k|)k∈N.

Although ι is rather trivial in terms of the simplicity of its definition, and for this reason we sometimes
refer to ι as the trivial embedding, it has the important property of being a Poisson morphism (see
Definition 4.7 below).

Theorem 2.12. The map ι is a Poisson morphism of (S(Rd),AS , {·, ·}L2) into (G∗
∞,A∞, {·, ·}G∗

∞
),

i.e. it is a smooth map such that

(2.39) {F ◦ ι,G ◦ ι}L2(φ) = {F,G}G∗
∞
(ι(φ)), ∀φ ∈ S(Rd),

for all functionals F,G ∈ A∞.

We conclude by discussing why the results described in this section provide “a rigorous derivation of
the Hamiltonian structure of the NLS”. It is a quick computation to show that the pullback of the GP
Hamiltonian (2.30) under the map ι, denoted by ι∗HGP , equals the NLS Hamiltonian (1.5),15 that is

ι∗HGP = HNLS.(2.40)

Hence, Theorem 2.12, Theorem 2.10 and (2.40) ultimately demonstrate that the Hamiltonian functional
and phase space of the NLS can be obtained via the pullback of the canonical embedding (2.38).
Together with the results of Section 5.3, which provide a geometric correspondence between the N -
body Schrodinger equation and the BBGKY hierarchy, and Proposition 2.4, which enables us to take
the infinite-particle limit of our geometric constructions at the N -body level, this provides a rigorous
derivation of the Hamiltonian structure of the NLS from the Hamiltonian formulation of the N -body
Schrödinger equation.

2.4. Organization of the paper. Section 4 is devoted to preliminary material on weak Poisson
manifolds modeled on locally convex spaces, Lie algebras, and tensor products. The reader familiar
with infinite-dimensional Poisson manifolds and Lie algebras may wish to skip the first two subsections
upon first reading and instead consult them as necessary during the reading of Section 5 and Section 6.

In Section 5, we build the requisite Lie algebra structure for GN and weak Lie-Poisson structure
for G∗

N , thereby proving Proposition 2.1 and Proposition 2.2. Section 5.1 contains the Lie algebra
construction, and Section 5.2 contains the dual Lie-Poisson construction. Lastly, in Section 5.3, we show
that the familiar maps of forming a density matrix from a wave function and taking the sequence of
reduced density matrices of a density matrix have geometric content. Namely, we prove Proposition 5.27
and Proposition 5.29, which assert that these maps are Poisson morphisms.

In Section 6, we build the requisite Lie algebra structure for G∞ and weak Lie-Poisson structure
for G∗

∞, thereby proving Proposition 2.7 and Proposition 2.8. The section is broken up into several
subsections. Section 6.2 is devoted the Lie algebra construction, and Section 6.3 is devoted to the dual
Lie-Poisson construction. Finally, we will prove Theorem 2.12 in Section 6.4.

Lastly, in Section 7, we prove our Hamiltonian flows results Theorem 2.3 and Theorem 2.10, which
assert that the BBGKY and GP hierarchies, respectively, are Hamiltonian flows on the weak Lie-Poisson
manifolds constructed in the previous sections.

15In particular, as a corollary of Theorem 2.10 and Theorem 2.12, we obtain the well-known fact that if φ(t) is a
solution to the cubic NLS (1.1), then Γ(t) := ι(φ(t)) is a solution to the GP hierarchy (2.5).
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Remark 2.13. In Section 5, Section 6, and Section 7, we will fix the dimension to be one for simplicity,
but we emphasize that our results hold independently of the dimension.

We have also included two appendices to make this work as self-contained as possible. Appendix A
contains some background material on locally convex spaces, specifying certain choices which we make
in the current work, which in infinite dimensions can lead to non-equivalent definitions. Appendix B is
devoted to technical facts about distribution-valued operators and topological tensor products, which
justify the manipulations used extensively in this paper. Furthermore, this appendix includes an elab-
oration on the good mapping property, in particular, some technical consequences of it which are used
in the body of the paper.

3. Notation

3.1. Index of notation. We include Table 1 as a notational guide for the various symbols which
appear in this work. In this table, we either provide a definition of the notation or a reference for where
the symbol is defined. When definitions for these objects may have appeared in the introduction, we
will give references to where they first appear in subsequent sections.

4. Preliminaries

4.1. Weak Poisson structures and Hamiltonian systems. The classical notion of Poisson struc-
ture, as can be found in [20], is ill-suited outside the Hilbert or Banach manifold setting due to the
fact that for a given smooth, locally convex manifold M , not every functional in C∞(M,R), the space
of smooth, real-valued functionals on M , need admit a Hamiltonian vector field. Since we will need to
work with Fréchet manifolds, an alternative theory is needed. We opt for the notion of a weak Poisson
structure due to Neeb et al. [27].

We recall that a unital subalgebra A ⊆ C∞(M ;R) contains constant functions and is closed under
pointwise multiplication.

Definition 4.1 (Weak Poisson manifold). A weak Poisson structure on M is a unital subalgebra
A ⊂ C∞(M ;R) and a bilinear map {·, ·} : A×A → A satisfying the following properties:

(P1) The bilinear map {·, ·}, is a Lie bracket and satisfies the Leibnitz rule

(4.1) {F,GH} = {F,G}H +G{F,H}, ∀F,G,H ∈ A.

We call {·, ·} a Poisson bracket.
(P2) For all m ∈M and v ∈ TmM satisfying dF [m](v) = 0 for all F ∈ A, we have that v = 0.
(P3) For every H ∈ A, there exists a smooth vector field XH on M satisfying

(4.2) XHF = {F,H}, ∀F ∈ A.16

We call XH the Hamiltonian vector field associated to H.

If properties (P1) - (P3) are satisfied, then we call the triple (M,A, {·, ·}) a weak Poisson manifold.

We now record some observations from [27] about the definition of a weak Poisson structure.

Remark 4.2. (P2) implies that the Hamiltonian vector field XH associated to some H ∈ A is uniquely
determined by the relation

(4.3) {F,H}(m) = (XHF )(m) = dF [m](XH (m)), ∀F ∈ A.

Indeed, if XH,1 and XH,2 are two smooth vector fields satisfying the preceding relation, then the smooth

vector X̃H := XH,1 −XH,2 satisfies

(4.4) dF [m](X̃H(m)) = 0, ∀F ∈ A,

for all m ∈M , which by (P2) implies that X̃H ≡ 0.

16In the left-hand side of identity (4.2), we use the notation XH to denote the vector field identified as a derivation.
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Remark 4.3. For all F,G,H ∈ A, we have that

[XF ,XG]H = {{H,G}, F} − {{H,F}, G}

= {H, {G,F}}

= X{G,F}H.(4.5)

Hence, by Remark 4.2, [XF ,XG] = X{G,F} for F,G ∈ A. Additionally, the Leibnitz rule for {·, ·}
implies the identity

(4.6) XFG = FXG +GXF , ∀F,G ∈ A.

Remark 4.4. If A ⊂ C∞(M ;R) is a unital sub-algebra which satisfies properties (P1) and (P2) of
Definition 4.1, then (4.6) implies that the subspace

(4.7) {H ∈ A : XH exists as in (P3)}

is a sub-algebra of A with respect to pointwise product. Hence, it suffices to verify property (P3) for a
generating subset A0 ⊂ A.

We note that unlike in the finite-dimensional setting, a symplectic form ω : V × V → R on an
infinite-dimensional locally convex space V need not represent every continuous linear functional via
ω(·, v), for some v ∈ V . If the form does satisfy such a Riesz-representation-type condition, we call
a symplectic form ω strong, otherwise, we call ω weak. Analogously, a 2-form ω on a smooth locally
convex manifold M is strong (resp. weak) if all forms ωp : TpM × TpM → R, for p ∈ M , are strong
(resp. weak).

Definition 4.5 (Weak symplectic manifold). Let M be a smooth locally convex manifold, and let
X (M) denote smooth vector fields on M . A weak symplectic manifold is a pair (M,ω) consisting of a
smooth manifold M and a closed non-degenerate 2-form ω on M .

Given a weak symplectic manifold, we denote the Lie algebra of Hamiltonian vector fields on M by

(4.8) ham(M,ω) := {X ∈ X (M) : ∃H ∈ C∞(M ;R) s.t. ω(X, ·) = dH}.

Similarly, we denote the larger Lie algebra of symplectic vector fields on M by

(4.9) sp(M,ω) := {X ∈ M : LXω = 0},

where LX denotes the Lie derivative with respect to the vector field X.
With this definition in hand, we see that one has the desired implication analogous to the finite

dimensional setting, namely that weak symplectic manifolds canonically lead to weak Poisson manifolds.

Remark 4.6 (Weak symplectic ⇒ weak Poisson). Let (M,ω) be a weak symplectic manifold. Let

(4.10) A := {H ∈ C∞(M ;R) : ∃XH ∈ X (M) s.t. ω(XH , ·) = dH},

then

(4.11) {·, ·} : A×A → A, {F,G} := ω(XF ,XG) = dF [XG] = XGF

defines a Poisson bracket on A satisfying properties (P1) and (P3). If we additionally have that for
each m ∈ M and all v ∈ TmM , the condition

(4.12) ω(X(m), v) = 0, ∀X ∈ ham(M,ω)

implies that v = 0, then property (P2) is also satisfied. Consequently, the triple (M,A, {·, ·}) is a weak
Poisson manifold.

We now turn to mappings between weak Poisson manifolds which preserve the Poisson structures.
This leads to the notion of a Poisson mapping, alternatively Poisson morphism.
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Definition 4.7 (Poisson map). Let (Mj ,Aj , {·, ·}j), for j = 1, 2, be weak Poisson manifolds. We say
that a smooth map ϕ : M1 → M2 is a Poisson map, or morphism of Poisson manifolds, if ϕ∗A2 ⊂ A1

and

(4.13) ϕ∗{F,G}2 = {ϕ∗F,ϕ∗G}1, ∀F,G ∈ A2.

Remark 4.8. In [27], the authors define a Poisson morphism

ϕ : (M1,A1, {·, ·}1) → (M2,A2, {·, ·}2)

with the requirement that ϕ∗A2 = A1. We drop this requirement in our Definition 4.7.

As an example, we demonstrate that the Schwartz space S(Rk) is a weak, but not strong, symplectic
manifold. The following analysis also holds for the bosonic Schwartz space Ss(R

k) mutatis mutandis,
which will be important for our applications in the sequel.

We equip the space S(Rk) with a real pre-Hilbert inner product by defining

(4.14) 〈f |g〉Re := 2Re

{∫

Rk

dxkf(xk)g(xk)

}
.

The operator J : S(Rk) → S(Rk) defined by J(f) := if defines an almost complex structure on
(S(Rk), 〈·|·〉Re), leading to the standard L2 symplectic form

(4.15) ωL2(f, g) := 〈Jf |g〉Re = 2 Im

{∫

Rk

dxkf(xk)g(xk)

}
, ∀f, g ∈ S(Rk).

Proposition 4.9. (S(Rk), ωL2) is a weak symplectic manifold.

Proof. S(Rk) is trivially a smooth manifold modeled on itself. Moreover, it is evident from its definition
that ωL2 is bilinear, alternating, and closed. To see that ωL2 is non-degenerate, let f ∈ S(Rk) and
suppose that

(4.16) ωL2(f, g) = 0 ∀g ∈ S(Rk).

It then follows tautologically that Im{〈f |g〉} = 0. Replacing g by ig, we obtain that Re{〈f |g〉} = 0,
which implies that 〈f |f〉 = 0, hence f = 0. �

Now given a functional F ∈ C∞(S(Rk);R), the Gâteaux derivative dF [f ] at the point f ∈ S(Rk)
defines a tempered distribution. We consider the case when dF [f ] can be identified with a Schwartz
function via the inner product 〈·|·〉Re. The next lemma follows by the Lebesgue lemma17 and the same
argument used to prove non-degeneracy in Proposition 4.9.

Lemma 4.10 (Uniqueness of gradient). Let F ∈ C∞(S(Rk);R) and f ∈ S(Rk). Suppose that there
exist g1, g2 ∈ S(Rk) such that

(4.17) 〈g1|δf 〉Re = dF [f ](δf) = 〈g2|δf〉Re , ∀δf ∈ S(Rk).

Then g1 = g2.

Definition 4.11 (Real L2 gradient). We define the real L2 gradient of F ∈ C∞(S(Rk);R) at the point
f ∈ S(Rk), denoted by ∇F (f), to be the unique element of S(Rk) (if it exists) such that

(4.18) dF [f ](δf) = 〈∇F (f)|δf〉Re , ∀δf ∈ S(Rk).

We say that F has a real L2 gradient if ∇F : S(Rk) → S(Rk) is a smooth map.

17We use the name Lebesgue lemma to refer to the result that if u1, u2 are two locally integrable functions such that
u1 = u2 in distribution, then u1 = u2 point-wise almost everywhere.
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Remark 4.12. Since the Hamiltonian vector field of XF , if it exists, is defined by the relation

(4.19) dF [f ](δf) = ωL2(XF (f), δf),

and since XF is unique by the fact that S(Rk) is dense in S ′(Rk), we see that XF (f) = −i∇F (f). In
the sequel, we will use the notation ∇sF := XF , which we refer to as the symplectic L2 gradient.

We now use Remark 4.6 to show that the symplectic form ωL2 , which we recall is defined in (1.2),
canonically induces an L2 Poisson structure on S(Rk).

Proposition 4.13. Define a subset AS ⊂ C∞(S(Rk);R) by

(4.20) AS :=
{
H : ∇sH ∈ C∞(S(Rk);S(Rk))

}
,

and define a bracket {·, ·}L2 on AS ×AS by

(4.21) {F,G}L2 := ωL2(∇sF,∇sG).

Then (S(Rk),AS , {·, ·}L2) is a weak Poisson manifold.

Proof. By Remark 4.6, we only need to check that for every fixed g ∈ S(Rk), the condition

(4.22) ωL2(X(f), g) = 0, ∀X ∈ ham(S(Rk), ωL2)

implies that g = 0 ∈ S(Rk). Since ham(S(Rk), ωL2) contains the constant vector fields X(·) ≡ f0, for
any fixed f0 ∈ S(Rk), we see that by taking X(f) := ig for all f ∈ S(Rk), that the condition (4.22)
implies that

(4.23) 0 = ω(ig, g) = −2 Im

{∫

Rk

dxk(ig)(xk)g(xk)

}
= 2‖g‖2

L2(Rk).

Hence, g = 0, completing the proof. �

4.2. Some Lie algebra facts. In this subsection, we collect some facts about Lie algebras for easy
referencing. We outline a canonical construction of a Poisson structure on the dual of a Lie algebra,
which is known as a Lie-Poisson structure. Furthermore, we will outline a construction of hierarchies
of Lie algebras which will serve as an inspiration for our construction of the Lie algebra G∞. We refer
the reader to [20, 19] for more background and details.

We begin by recording the definition of a Lie algebra for subsequent reference in our proofs.

Definition 4.14 (Lie algebra). A Lie algebra is a locally convex space g over the field F ∈ {R,C}
together with a separately continuous binary operation [·, ·] : g × g → g called the Lie bracket, which
satisfies the following properties:

(L1) [·, ·] is bilinear.
(L2) [x, x] = 0 for all x ∈ g.
(L3) [·, ·] satisfies the Jacobi identity

(4.24) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z ∈ g.

Remark 4.15. Usually (see, for instance, [28]), a Lie bracket is required to be continuous, as opposed
to separately continuous. We drop this requirement in this work, due to functional analytic difficulties.

Definition 4.16 (Nondegenerate pairings). Let V and W be topological vector spaces over the field
F, and let

〈·|·〉 : V ×W → F

be a bilinear pairing between V and W . We say that the pairing is V -nondegenerate (respectively, W -
nondegenerate) if the map V →W ∗, x 7→ 〈x|·〉 (respectively, W → V ∗, y 7→ 〈·|y〉) is an isomorphism. If
the pairing is both V - and W -nondegenerate, then we say that the pairing is nondegenerate.
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Definition 4.17 (dual space g∗). Let (g, [·, ·]) be a Lie algebra. We say that a topological vector g∗ is
a dual space to g if there exists a pairing 〈·|·〉 : g× g∗ → F which is nondegenerate.

Example 4.18. If g is a reflexive Fréchet space, for instance the Schwartz space S(Rd), then taking
g∗ to be the topological dual of g equipped with the strong dual topology, the standard duality pairing

g× g∗ → F : 〈x|ϕ〉 = ϕ(x)

is nondegenerate.

A consequence of the existence of a dual space g∗ for a Lie algebra g is the existence of functional
derivatives, which is crucial to proving that the Lie-Poisson bracket in Proposition 4.20 below is well-
defined.

Lemma 4.19 (Existence of functional derivatives). Let g be a Lie algebra, and let g∗ be dual to g with
respect to the nondegenerate pairing 〈·|·〉g−g∗ . For any functional F ∈ C1(g∗;F), there exists a unique

element δF
δµ

∈ g such that

(4.25)

〈
δF

δµ

∣∣∣∣δµ
〉

g−g∗
= dF [µ](δµ), µ, δµ ∈ g∗.

Proof. Let µ ∈ g∗. The Gâteaux derivative of F at µ denoted dF [µ] and defined in Definition A.4 is
a continuous linear functional on g∗. Hence by the nondegeneracy of the pairing, there exists a unique
element δF

δµ
∈ g such that 〈

δF

δµ

∣∣∣∣δµ
〉

g−g∗
= dF [µ][δµ], δµ ∈ g∗. �

We now have the necessary ingredients to define the canonical Poisson structure on the dual space
g∗, which we call the Lie-Poisson structure, following Marsden and Weinstein [18].

Proposition 4.20 (Lie-Poisson structure). Let (g, [·, ·]g) be a Lie algebra, such that the Lie bracket

is continuous, and let g∗ be dual to g with respect to the non-degenerate pairing 〈·|·〉g−g∗ . Define the
Lie-Poisson bracket

(4.26) {·, ·} : C∞(g∗;F)× C∞(g∗;F) → C∞(g∗;F)

by

(4.27) {F,G}(µ) :=

〈[
δF

δµ
,
δG

δµ

]

g

∣∣∣∣∣µ
〉

g−g∗

, µ ∈ g∗.

Then (C∞(g∗;F), {·, ·}) is a Lie algebra.

Remark 4.21. Note that in the statement of Proposition 4.20, we require that the Lie bracket [·, ·]g be
continuous, not merely separately continuous as in Definition 4.14. Since the Lie brackets we consider
in Section 5 and Section 6 are only separately continuous, we do not use Proposition 4.20 directly,
and therefore we have omitted the proof of it. We emphasize, though, that the construction of the
proposition inspires our constructions in the sequel.

4.3. Bosonic functions, operators and tensor products. We denote the symmetric group on k
letters by Sk. For a permutation π ∈ Sk, we define the map π : Rk → R

k by

(4.28) π(xk) := (xπ(1), . . . , xπ(k)).

For a complex-valued, measurable function f : Rk → C, we define the map

(4.29) (πf)(xk) := (f ◦ π)(xk) = f(xπ(1), . . . , xπ(k)).

We denote the pairing of a tempered distribution u ∈ S ′(Rk) with a Schwartz function f ∈ S(Rk) by

(4.30) 〈u, f〉S′(Rk)−S(Rk).
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Throughout, we will use an integral to represent the pairing of a distribution and a test function. For
1 ≤ p ≤ ∞, we use the notation Lp(Rk) to denote Banach space of p-integrable functions with norm
‖ · ‖Lp(Rk). In particular, when p = 2, we denote the L2 inner product by

(4.31) 〈f |g〉 :=

∫

Rk

dxkf(xk)g(xk).

Note that we use the physicist’s convention that the inner product is complex linear in the second entry.
Similarly, for u ∈ S ′(Rk) and f ∈ S(Rk), we use the notation 〈u|f〉 to denote

(4.32) 〈u|f〉 := 〈u, f̄〉S′(Rk)−S(Rk).

Alternatively, the right-hand side may be taken as the definition of the tempered distribution ū.

Definition 4.22. We say that a measurable function f : Rk → C is symmetric or bosonic if

(4.33) π(f) = f

for all permutations π ∈ Sk.

Definition 4.23. We define the symmetrization operator Symk on the space of measurable complex-
valued functions by

(4.34) Symk(f)(xk) :=
1

k!

∑

π∈Sk

(πf)(xk).

By duality, we can extend the symmetrization operator to S ′(Rk).

Definition 4.24 (Symmetric Schwartz space). For k ∈ N, let Ss(R
k) denote the subspace of S(Rk)

consisting of Schwartz functions f with the property that

(4.35) f(xπ(1), . . . , xπ(k)) = f(xk), (xk) ∈ R
k

for all permutations π ∈ Sk.

Definition 4.25 (Symmetric tempered distribution). We say that a tempered distribution u ∈ S ′(Rk)
is symmetric or bosonic if for all permutations π ∈ Sk,

(4.36) 〈u, πg〉S′(Rk)−S(Rk) = 〈u, g〉S′(Rk),S(Rk),

for all g ∈ S(Rk). We denote the subspace of symmetric tempered distributions by S ′
s(R

k).

Remark 4.26. It is straightforward to check that Symk is a continuous operator S(Rk) → Ss(R
k) and

S ′(Rk) → S ′
s(R

k). Furthermore, a measurable function f is bosonic if and only if f = Symk(f).

Lemma 4.27. We have the identification

(4.37) S ′
s(R

k) ∼= (Ss(R
k))′.

Proof. Let ℓ ∈ (Ss(R
k))′. For all f ∈ Ss(R

k), we have that

(4.38) ℓ(f) = ℓ(π(f)), π ∈ Sk.

Hence,

(4.39) ℓ(f) =
1

k!

∑

π∈Sk

ℓ(π(f)) = ℓ(Symk(f)).

Since Symk is a continuous linear operator on S(Rk), it follows that ℓ ◦ Symk ∈ S ′(Rk). Since
Symk(π(f)) = Symk(f) for any permutation π ∈ Sk, it follows that ℓ ◦ Symk is permutation invariant,
hence an element of S ′

s(R
k). �

Given two locally convex spaces E and F , we denote the space of continuous linear maps E → F by
L(E;F ). We topologize L(E;F ) with the topology of bounded convergence. For our purposes, we will
typically have E,F ∈ {S(Rk),Ss(R

k),S ′(Rk),S ′
s(R

k)}.
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Remark 4.28. In the special case where E = F = S(Rk), we will write L̃(S(Rk),S(Rk)) to denote
the vector space L(S(Rk),S(Rk)) equipped with the subspace topology induced by L(S(Rk),S ′(Rk)).
The same statement holds with the Schwartz space replaced by the bosonic Schwartz space.

In the case that E = S(Rd) and F = S ′(Rd), the bounded topology is generated by the seminorms

(4.40) ‖A‖R := sup
f,g∈R

|〈Af, g〉S′(Rd)−S(Rd)|, ∀A ∈ L(S(Rd),S ′(Rd)),

where R ranges over the bounded subsets of S(Rd). An identical statement holds with all spaces
replaced by their symmetric counterparts. We topologize S ′(RN ) with the strong dual topology, which
is the locally convex topology generated by the seminorms of the form

(4.41) ‖f‖B := sup
ϕ∈B

∣∣∣∣
∫

RN

dxNf(xN )ϕ(xN )

∣∣∣∣ ,

where B ranges over the family of all bounded subsets of S(RN ). Note that since S(RN ) is a Montel
space, bounded subsets are precompact. An identical statement holds with all spaces replaced by their
symmetric counterparts.

Definition 4.29 (Symmetric wave functions). For k ∈ N, let L2
s(R

k) denote the subspace of L2(Rk)
consisting of functions f which are bosonic a.e.

For A ∈ L(S(Rk),S ′(Rk)) and τ ∈ Sk, we define

(4.42) A(τ(1),...,τ(k)) := τ ◦ A ◦ τ−1.

Definition 4.30. Given A ∈ L(S(Rk),S ′(Rk)), we define its bosonic symmetrization Symk(A) by

(4.43) Symk(A) :=
1

k!

∑

π∈Sk

A(π(1),...,π(k)).

Definition 4.31 (Bosonic operators). Let k ∈ N. We say that an operator A : S(Rk) → S ′(Rk) is
bosonic or permutation invariant if A maps Ss(R

k) into S ′
s(R

k).

The analogue of Remark 4.26 holds for the symmetrization of operators in that symmetrized operators
are indeed operators on the bosonic Schwartz space.

Lemma 4.32. Let k ∈ N. If A(k) ∈ L(S(Rk),S ′(Rk)), then

(4.44) Symk(A
(k)) ∈ L(Ss(R

k),S ′
s(R

k)).

Proof. It suffices to show that for any k-particle operator A(k) ∈ L(S(Rk),S ′(Rk)) and any permutation
σ ∈ Sk, it holds that

(4.45)

∫

Rk

dxk

(
Symk(A

(k))f
)
(xk)g(σ

−1(xk)) =

∫

Rk

dxk

(
Symk(A

(k))f
)
(xk)g(xk)

for all f ∈ Ss(R
k) and for all g ∈ S(Rk). To this end, observe that
∫

Rk

dxk

(
Symk(A

(k))f
)
(xk)g(xσ−1(1), . . . , xσ−1(k))

=

∫

Rk

dxk

(
1

k!

∑

π∈Sk

(
A

(k)
(π(1),...,π(k))f

)
(xk)

)
g(xσ−1(1), . . . , xσ−1(k)).(4.46)

By definition (4.42), we have

A
(k)
(π(1),...,π(k))f = πA(k)(π−1f).(4.47)
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Therefore,

1

k!

∑

π∈Sk

∫

Rk

dxk

(
A

(k)
(1,...,k)(π

−1f)
)
(xπ(1), . . . , xπ(k))g(xσ−1(1), . . . , xσ−1(k))

=
1

k!

∑

π∈Sk

∫

Rk

dxk

(
A(k)(π−1f)

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k))

=
1

k!

∑

π∈Sk

∫

Rk

dxk

(
A(k)f

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k)),(4.48)

where, recalling (4.29), the second line follows from a change of variable and the third line follows from
the assumption that f is symmetric with respect to permutation of the coordinates. Since for any fixed
σ ∈ Sk, π 7→ π−1σ−1 defines a bijection of the group Sk, it follows from a change of summation index
that

1

k!

∑

π∈Sk

∫

Rk

dxk

(
A(k)f

)
(xk)g(xπ−1σ−1(1), . . . , xπ−1σ−1(k))

=
1

k!

∑

π̃∈Sk

∫

Rk

dxk

(
A(k)f

)
(xk)g(xπ̃(1), . . . , xπ̃(k))

=
1

k!

∑

π̃∈Sk

∫

Rk

dxk

(
A(k)(π̃f)

)
(xπ̃−1(1), . . . , xπ̃−1(k))g(xk)

=

∫

Rk

dxk

(
Symk(A

(k))f
)
(xk)g(xk),(4.49)

where the penultimate line follows from the assumption that f is symmetric and a change of variable.
This concludes the proof. �

The following technical lemma will be useful in the sequel. For definitions and discussion of the
generalized trace, see Definition B.5.

Lemma 4.33. Let k ∈ N, and let γ(k) ∈ L(S ′
s(R

k),Ss(R
k)) and A(k) ∈ L(S(Rk),S ′(Rk)). Then for

any permutation τ ∈ Sk, we have that

(4.50) Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))

γ(k)
)
= Tr1,...,k

(
A(k)γ(k)

)
.

Proof. Let τ ∈ Sk. Now let

(4.51) γ(k) =

∞∑

j=1

λj |fj〉 〈gj |

be a decomposition for γ(k), where
∑∞

j=1 |λj | ≤ 1, and {fj}
∞
j=1, {gj}

∞
j=1 are sequences tending to zero

in Ss(R
k). In particular, the partial sums

(4.52)

N∑

j=1

λj |fj〉 〈gj | −−−−→
N→∞

γ(k) in L(S ′
s(R

k),Ss(R
k)).

Since the map

(4.53) Tr1,...,k

(
A

(k)
(τ(1),...,τ(k)·

)
: L(S ′(Rk),S(Rk)) → C,
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is continuous and the inclusion Ss(R
k) ⊂ S(Rk) is trivially continuous, it follows that

Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))γ

(k)
)
= lim

N→∞
Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))

( N∑

j=1

λj |fj〉 〈gj|

))

= lim
N→∞

N∑

j=1

λj Tr1,...,k

(
A

(k)
(τ(1),...,τ(k))( |fj〉 〈gj |)

)

= lim
N→∞

N∑

j=1

λj

〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
.(4.54)

Since fj and gj are both bosonic, we have by definition of the notation A
(k)
(τ(1),...,τ(k)) in (4.42) that

〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
=
〈
τ−1(gj)

∣∣∣A(k)(τ−1(fj))
〉
=
〈
gj

∣∣∣A(k)fj

〉
, ∀j ∈ N.(4.55)

Therefore,

lim
N→∞

N∑

j=1

λj

〈
gj

∣∣∣A(k)
(τ(1),...,τ(k))fj

〉
= lim

N→∞

N∑

j=1

λj

〈
gj

∣∣∣A(k)fj

〉

= lim
N→∞

Tr1,...,k

(
A(k)

( N∑

j=1

λj |fj〉 〈gj |

))

= Tr1,...,k

(
A(k)γ(k)

)
,(4.56)

where in order to obtain the ultimate equality, we again use the continuity of the functional Tr1,...,k
(
A(k)·

)

and the convergence of the partial sums. �

We define the usual contraction operator Bi;j appearing in the literature on derivation of quantum
many-body systems.

Definition 4.34 (The contractions operator Bi;j). Let k ∈ N. For integers 1 ≤ i, j ≤ k with i 6= j, we
define the continuous linear operators operators

(4.57) B±
i;j : L(S

′(Rk+1),S(Rk+1)) → L(S ′(Rk),S(Rk))

by defining the Schwartz kernel of B+
i;j(γ

(k+1)) by the formula

B+
i;j(γ

(k+1))(xk;x
′
k) :=

∫

R

dyδ(xi − y)γ(k+1)(x1;j−1, y, xj;k;x
′
1;j−1, y, x

′
j;k),

for all (xk, x
′
k) ∈ R

2k. Similarly, we define the Schwartz kernel of B−
i;j(γ

(k+1)) by the formula

B−
i;j(γ

(k+1))(xk;x
′
k) :=

∫

R

dyδ(x′i − y)γ(k+1)(x1;j−1, y, xj;k;x
′
1;j−1, y, x

′
j;k),

for all (xk, x
′
k) ∈ R

2k We define the continuous linear operator

Bi;j : L(S
′
s(R

k+1),Ss(R
k+1)) → L(S ′

s(R
k),Ss(R

k))

by

(4.58) Bi;j := B+
i;j −B−

i;j.
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Given two locally convex spaces E and F , we denote an18 algebraic tensor product of E and F
consisting of finite linear combinations

(4.59)

n∑

j=1

λjej ⊗ fj, ej ∈ E, fj ∈ F

by E ⊗ F . We note that since the spaces we deal with in this paper are nuclear, the topologies of the
injective and projective tensor products coincide. Hence, we can unambiguously write E⊗̂F to denote
the completion of E ⊗ F under either of the aforementioned topologies.

Given locally convex spaces Ej and Fj for j = 1, 2 and linear maps T : E1 → E2 and S : F1 → F2,
and a tensor product

(4.60) B : E1 × E2 → E1 ⊗ E2,

the notation T ⊗ S denotes the unique linear map T ⊗ S : E1 ⊗ F1 → E2 × F2 such that

(4.61) (T ⊗ S) ◦B = T × S.

Note that the existence of such a unique map is guaranteed by the universal property of the tensor
product.

When E and F are subspaces of measurable functions on R
m and R

n respectively, and e ∈ E and
f ∈ F , we let e⊗ f denote the function

(4.62) e⊗ f : Rm × R
n → C, (e⊗ f)(xm;x′n) := e(xm)f(x′n),

which induces a bilinear map E × F → E ⊗ F . Similarly, if E′ and F ′ are the duals of spaces of
test functions E and F , for instance E′ = D′(Rm) and F ′ = D′(Rn), we let u ⊗ v denote the unique
distribution satisfying

(4.63) (u⊗ v)(e⊗ f) = u(e) · v(f).

Finally, if φ : Rm → C is a measurable function, we use the notation φ⊗k, for k ∈ N, to denote the
measurable function φ⊗k : Rmk → C defined by

(4.64) φ⊗k(xm,1, . . . , xm,k) :=

k∏

ℓ=1

φ(xm,ℓ).

5. Geometric structure for the N-body problem

In this section we establish proofs of the results stated in Section 2.1.

5.1. Lie algebra GN of finite hierarchies quantum observables. We begin by defining a Lie
algebra gk of k-body observables. We have some freedom to choose our definition of this Lie algebra,
provided that our choice is large enough to include the Hamiltonian of the N -body problem yet small
enough so that operations such as composition and taking adjoints are well-defined. We find that
continuous linear maps from the bosonic Schwartz space to itself forms a convenient choice.

For k ∈ N, define

(5.1) gk := {A(k) ∈ L̃(Ss(R
k),Ss(R

k)) : (A(k))∗ = −A(k)},

where we recall that L̃(Ss(R
k),S ′

s(R
k)) is defined in Remark 4.28. Let

[·, ·]gk : gk × gk → gk

be the usual commutator bracket scaled by a factor of k:

(5.2) [A,B]gk := k[A,B] = k(AB −BA).

Note that the commutator is well-defined since the space L(Ss(R
k),Ss(R

k)) is closed under composition.
We refer to the elements of gk as k-body observables.

18The reader will recall that the algebraic tensor product is only defined up to unique isomorphism.
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The first goal of this subsection is to verify that (gk, [·, ·]gk) is a Lie algebra in the sense of Defini-
tion 4.14. Namely, we prove the following proposition.

Proposition 5.1. (gk, [·, ·]gk) is a Lie algebra in the sense of Definition 4.14

Proof. That [·, ·]gk is algebraically a Lie bracket is immediate from the fact that the commutator satisfies

properties (L1), (L2), and (L3). Therefore, it remains to verify that the commutator is separately

continuous with respect to the topology on gk. By symmetry, it suffices to show that for fixed A(k) ∈ gk,
the map B(k) 7→ A(k)B(k) is continuous on L̃(Ss(R

k),Ss(R
k)), which amounts to showing that for any

bounded subset R ⊂ Ss(R
k), there exists a bounded subset R̃ ⊂ Ss(R

k), such that

(5.3) sup
f,g∈R

∣∣∣
〈
g
∣∣∣A(k)B(k)f

〉∣∣∣ . sup
f,g∈R̃

∣∣∣
〈
g
∣∣∣B(k)f

〉∣∣∣ .

Now note that
〈
g
∣∣A(k)B(k)f

〉
=
〈
(A(k))∗g

∣∣B(k)f
〉
. Since (A(k))∗ = −A(k), it follows from the continuity

of A(k) that (A(k))∗(R) it a bounded subset of Ss(R
k). Choosing R̃ = R ∪ (A(k))∗(R) completes the

proof. �

We next introduce some combinatorial notation used frequently in the sequel. For N ∈ N and
k ∈ N≤N , let PN

k denote the collection of k-tuples (j1, . . . , jk) with k distinct elements drawn from the

set N≤N . Given an element (j1, . . . , jk) ∈ PN
k , let (m1, . . . ,mN−k) denote the increasing arrangement

of N≤N \ {j1, . . . , jk}. We denote by πj1···jk ∈ SN the permutation

(5.4) π(a) :=

{
i, a = ji for i ∈ N≤k

k + i, a = mi for i ∈ N≤N−k

.

Our first lemma defines a continuous linear map ǫk,N which allows us to regard a k-particle observable
as an N -particle observable. This map ǫk,N is crucial to the definition of the Lie bracket between two
observable N -hierarchies and by duality, to the Poisson bracket of two density matrix N -hierarchies.

For A(k) ∈ L(Ss(R
k),Ss(R

k)), N ∈ N with 1 ≤ k ≤ N , and (j1, . . . , jk) ∈ PN
k we can define the

operator

A
(k)
(j1,...,jk)

∈ L(Ss(R
N ),S(RN ))(5.5)

which acts only on the variables {j1, . . . , jk} by defining

A
(k)
(1,...,k) = A(k) ⊗ IdN−k

and setting

(5.6) A
(k)
(j1,...,jk)

= π−1
j1···jk

◦ A
(k)
(1,...,k) ◦ πj1···jk .

We establish some properties of such operators, which we call k-particle extensions, in Proposition B.10.
These k-particle extensions are used to define a map ǫk,N . We will show first, in the following lemma,
that εk,N have the desired mapping properties, and then subsequently that the ǫk,N are injective, and
hence they are proper embeddings of the space gk into gN .

Remark 5.2. Although A(k) is a priori only defined on the proper subspace Ss(R
k) ⊂ S(Rk), this

operator admits an extension to the space S(Rk) since we may always consider A(k) ◦ Symk. We agree

going forward to abuse notation by identifying A(k) with this extension. Consequently, we may regard

A
(k)
(j1,...,jk)

∈ L(S(RN ),S(RN )). As the reader will see, though, all our constructions are independent of

the choice of extension.

Lemma 5.3. For integers 1 ≤ k ≤ N , there is a continuous linear map

(5.7) ǫk,N : L(Ss(R
k),S ′

s(R
k)) → L(Ss(R

N ),S ′
s(R

N ))
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defined by

(5.8) ǫk,N(A(k)) := Ck,N

∑

(j1,...,jk)∈P
N
k

A
(k)
(j1,...,jk)

,

where

(5.9) Ck,N :=

(
k!

(
N

k

))−1

=
1

N · · · (N − k + 1)
.19

Moreover, if A(k) ∈ L(Ss(R
k),Ss(R

k)), then ǫk,N(A(k)) ∈ L(Ss(R
N ),Ss(R

N )), and if A(k) is skew-

adjoint, then ǫk,N (A(k)) is skew-adjoint. In particular, ǫk,N(gk) ⊂ gN .

Proof. Fix 1 ≤ k ≤ N . From Proposition B.10, it follows that if A(k) ∈ L(Ss(R
k),S ′

s(R
k)), then

ǫk,N(A(k)) as given in (5.8) is a well-defined element of L(Ss(R
N ),S ′

s(R
N )) and the map ǫk,N is linear.

Furthermore, it follows from Lemma B.11 that skew-adjointness is preserved. So it remains for us to
show that

(5.10) ǫk,N(L(Ss(R
k),Ss(R

k))) ⊂ L(Ss(R
N ),Ss(R

N ))

and that ǫk,N is continuous.

• Consider the assertion (5.10). By properties of tensor product and the continuity of A(k), it follows

that A
(k)
(1,...,k) = A(k)⊗̂IdN−k is a continuous map of Ss(R

k)⊗ S(RN−k) to itself, and hence that

A
(k)
(j1,...,jk)

: Ss(R
N ) → S(RN )

is a continuous map follows directly from (5.6). We thus need to show that ǫk,N(A(k))(f) is bosonic.

Let π ∈ SN . It is straightforward from the definition of A
(k)
(j1,...,jk)

and (4.29) that, for any test

function f ∈ Ss(R
N ), we have

(5.11) πA
(k)
(j1,...,jk)

(f) = A
(k)
(π(j1),...,π(jk))

(πf) = A
(k)
(π(j1),...,π(jk))

(f),

where the ultimate equality follows from f being bosonic. Since SN induces a left group action on
PN
k , it follows that

(5.12)
∑

(j1,...,jk)∈P
N
k

A
(k)
(j1,...,jk)

=
∑

(j1,...,jk)∈P
N
k

A
(k)
(π(j1),...,π(jk))

on Ss(R
k), which implies together with (5.11) that

(5.13) πǫk,N(A(k))(f) = Ck,N

∑

(j1,...,jk)∈P
N
k

πA
(k)
(j1,...,jk)

(f) = ǫk,N(A(k))(f),

as desired.
• Now we will prove the assertion that ǫk,N is continuous. Let RN be a bounded subset of Ss(R

N ).

We need to show that there exists a bounded subset Rk ⊂ Ss(R
k) such that

(5.14) sup
f(N),g(N)∈RN

∣∣∣
〈
g(N)

∣∣∣ǫk,N(A(k))f (N)
〉∣∣∣ . sup

f(k),g(k)∈Rk

∣∣∣
〈
g(k)

∣∣∣A(k)f (k)
〉∣∣∣ .

Using the fact that there are finitely many terms in the definition of ǫk,N and that the finite union of
bounded subsets is again a bounded subset, it suffices to show that, for RN as above and any tuple
(j1, . . . , jk) ∈ P

N
k , there exists a bounded subset R(j1,...,jk) ⊂ S(Rk), such that

(5.15) sup
f(N),g(N)∈RN

∣∣∣
〈
g(N)

∣∣∣A(k)
(j1,...,jk)

f (N)
〉∣∣∣ . sup

f(k),g(k)∈R(j1,...,jk)

∣∣∣
〈
g(k)

∣∣∣A(k)f (k)
〉∣∣∣ ,

19Note that Ck,N = 1/|PN
k |.
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since then the desired bounded subset Rk ⊂ Ss(R
k) is obtained by taking

Rk := Symk




⋃

j
k
∈PN

k

R(j1,...,jk)


.

Now (5.15) is a consequence of the fact that

(5.16) L(Ss(R
k),S ′

s(R
k)) 7→ L(Ss(R

k)⊗̂S(RN−k),S ′(RN )), A(k) 7→ A(k) ⊗ IdN−k

is continuous, (5.6), and the fact that for any j
k
∈ PN

k , the map πj1...jk defined by (5.4) and duality

is a continuous endomorphism of S ′(RN ).

�

We next show that the maps ǫk,N are injective. This property is crucial as we will ultimately
construct our Lie bracket on the hierarchy algebra by embedding elements of the sequence into the
ambient algebra gN , taking the bracket in gN , and then identifying the output as an embedded element
of gk, for some k ∈ N≤N .

Lemma 5.4 (Injectivity of ǫk,N). For integers 1 ≤ k ≤ N , the map ǫk,N : gk → gN is injective.

Consequently, ǫk,N has a well-defined inverse on its image, which we denote by ǫ−1
k,N .

Proof. Fix 1 ≤ k ≤ N . We will show the contrapositive statement: if A(k) 6= 0, then ǫk,N(A(k)) 6= 0.

We introduce a parameter n ∈ N0, with n < k. We say that A(k) has property Pn if the following
holds: there exists f, g1, . . . , gk−n ∈ S(R) such that

(5.17) A(k)

(
Symk

(
f⊗k−n ⊗

n⊗

a=1

ga

))
6= 0,

where the tensor product is understood as vacuous when n = 0. We define the integer nmin by

(5.18) nmin := max{min{n ∈ N<k : A(k) has property Pn}, k}.
20

Note that we must have nmin < k, else, by definition of property Pn, we would then have that for all
g1, . . . , gk ∈ S(R),

(5.19) A(k)(Symk(g1 ⊗ · · · ⊗ gk)) = 0.

By linearity and continuity of A(k) together with density of finite linear combinations of symmetric
pure tensors in Ss(R

k), (5.19) implies that A(k) ≡ 0, which is a contradiction.
To avoid notation confusion, we first dispense with the trivial case nmin = 0. The definition of

property P0 implies that there exists an element f ∈ S(R) such that A(k)(f⊗k) 6= 0. It then follows

trivially from the definition of each summand A
(k)
(j1,...,jk)

in the definition of ǫk,N(A(k)) that

(5.20) ǫk,N(A(k))(f⊗N ) 6= 0 ∈ S ′
s(R

N ).

We now consider the case 1 ≤ nmin < k. The definition of property Pnmin
implies that there exist

elements f, g1, . . . , gnmin
∈ S(R) such that

(5.21) A(k)

(
Symk

(
f⊗k−nmin ⊗

nmin⊗

a=1

ga

))
6= 0 ∈ S ′

s(R
k).

Define an element h(N) ∈ Ss(R
N ) by

(5.22) h(N) := SymN

(
f⊗k−nmin ⊗ (

nmin⊗

a=1

ga)⊗ f⊗N−k

)
.

20We adopt the convention that the minimum of the empty set is ∞, and therefore we take the maximum with k to
ensure that nmin is finite.
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We claim that ǫk,N (A(k))(h(N)) 6= 0 ∈ S ′
s(R

N ). Indeed, unpacking the definition of ǫk,N(A(k)) and
SymN , we have

ǫk,N(A(k))(h(N)) = Ck,N

∑

j
k
∈PN

k

A
(k)
(j1,...,jk)

(∑

π∈SN

π(f⊗k−nmin ⊗ (

nmin⊗

a=1

ga)⊗ f⊗N−k)

)
.(5.23)

We first examine the interior sum. For each j
k
∈ PN

k , we can partition SN into the sets

(5.24) Sj
k
,r := {π ∈ SN : |{π(k − nmin + 1), . . . , π(k)} ∩ {j1, . . . , jk}| = r}

for r = 0, . . . , nmin. We write

(5.25)
∑

π∈SN

π(f⊗k−nmin ⊗ (

nmin⊗

a=1

ga)⊗ f⊗N−k) =

nmin∑

r=0

∑

π∈Sj
k
,r

π(f⊗k−nmin ⊗ (

nmin⊗

a=1

ga)⊗ f⊗N−k).

By symmetry considerations, we may suppose that (j1, . . . , jk) = (1, . . . , k). It is a short counting
argument that for each r ∈ {0, . . . , nmin}, we have that

∑

π∈S(1,...,k),r

π(f⊗k−nmin ⊗ (

nmin⊗

a=1

ga)⊗ f⊗N−k)

= C(k, nmin, r,N)
∑

ℓnmin
∈P

nmin
nmin

Symk

(
f⊗k−r ⊗

r⊗

a=1

gℓa

)
⊗ SymN−k

(
(

nmin⊗

a=r+1

gℓa)⊗ f⊗N−nmin−k+r

)
,

(5.26)

where C(k, nmin, r,N) is another combinatorial factor depending on the data (k, nmin, r,N). Each term

Symk

(
f⊗k−r ⊗

r⊗

a=1

gℓa

)
⊗ SymN−k

(
(

nmin⊗

a=r+1

gℓa)⊗ f⊗N−nmin−k+r

)
(5.27)

is an element of Ss(R
k)⊗̂Ss(R

N−k), and therefore (5.27) belongs to the domain of A
(k)
(1,...,k). Now by

definition of nmin, we have that for each r ∈ {0, . . . , nmin − 1} that

A
(k)
(1,...,k)

(
Symk

(
f⊗k−r ⊗

r⊗

a=1

gℓa

)
⊗ SymN−k

(
(

nmin⊗

a=r+1

gℓa)⊗ f⊗N−nmin−k+r

))

= A(k)

(
Symk(f

⊗k−r ⊗
r⊗

a=1

gℓa)

)
⊗ SymN−k

(
(

nmin⊗

a=r+1

gℓa)⊗ f⊗N−nmin−k+r

)

= 0 ∈ S ′
s(R

k)⊗̂Ss(R
N−k).

When r = nmin, we have that

A
(k)
(1,...,k)

(
Symk(f

⊗k−nmin ⊗
nmin⊗

a=1

gℓa)⊗ f⊗N−k)

)

= A(k)

(
Symk(f

⊗k−nmin ⊗
nmin⊗

a=1

ga)

)
⊗ f⊗N−k

is a non-zero element of S ′
s(R

k)⊗̂Ss(R
N−k) by choice of the elements f, g1, . . . , gnmin

∈ S(R). Conse-
quently, for a possibly different combinatorial factor C ′(k,N), we conclude that

ǫk,N(A(k))(h(N)) = C(k,N)′ SymN

(
A(k)

(
Symk(f

⊗k−nmin ⊗

nmin⊗

a=1

ga)

)
⊗ f⊗N−k

)
(5.28)
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is a nonzero element of S ′
s(R

N ), completing the proof of the lemma. �

We next show that the bracket [·, ·]gN respects the hierarchy in the sense that

(5.29) [ǫℓ,N(gℓ), ǫj,N(gj)]gN ⊂ ǫmin{ℓ+j−1,N},N(gmin{ℓ+j−1,N}) ⊂ gN .

This filtration or gradation property is crucial to our definition of the hierarchy Lie bracket in the
sequel.

Before proving Lemma 5.7 below, we introduce some contraction and commutator-type notation
used in the proof and in the sequel. Consider integers N ∈ N, ℓ, j ∈ N≤N , k := min{ℓ+ j − 1, N} and

r ≥ 1 satisfying appropriate conditions. Let A(ℓ) ∈ L(Ss(R
ℓ),Ss(R

ℓ)) and B(j) ∈ L(Ss(R
j),Ss(R

j)).
We define the r-fold contractions

A(ℓ) ◦r B
(j) := A

(ℓ)
(1,...,ℓ)

( ∑

αr∈P
ℓ
r

B
(j)
(αr ,ℓ+1,...,ℓ+j−r)

)
∈ L(Ss(R

k),S ′(Rk))(5.30)

B(j) ◦r A
(ℓ) := B

(j)
(1,...,j)

( ∑

αr∈P
j
r

A
(ℓ)
(αr ,j+1,...,j+ℓ−r)

)
∈ L(Ss(R

k),S ′(Rk)).(5.31)

Note that the compositions are well-defined since

(5.32)
∑

αr∈P
ℓ
r

B
(j)
(αr,ℓ+1,...,ℓ+j−r) and

∑

αr∈P
j
r

A
(ℓ)
(αr,j+1,...,j+ℓ−r)

have targets which are symmetric under permutation in the first ℓ and j coordinates, respectively. We
then set

(5.33)
[
A(ℓ), B(j)

]
r
:=

(
j

r

)
A(ℓ) ◦r B

(j) −

(
ℓ

r

)
B(j) ◦r A

(ℓ).

The motivation for the combinatorial factors in (5.33) will become clear from the proof of Lemma 5.7
below.

Remark 5.5. We may also proceed term-by-term to define (5.30) and (5.31) by considering an ex-

tensions of A(ℓ) and B(j) to L(S(Rℓ),S(Rℓ)) and L(S(Rj),S(Rj)), so that A
(ℓ)
(1,...,ℓ)

and B
(j)
(1,...,j)

are

then elements of L(S(Rk),S(Rk)). The choice of extensions is immaterial by the target symmetry of
operators with which the extensions are right-composed.

In the sequel, we will need a technical lemma concerning the separate continuity of the binary
operation ◦r. The proof of this result is quite similar to that of (the more general) Lemma 6.1 below,
so we omit the proof.

Lemma 5.6. Let ℓ, j, k,N ≥ 1 be integers such that ℓ, j ≤ N and min{ℓ+ j − 1, N} = k. Let r be an
integer such that r0 ≤ r ≤ min{ℓ, j}, where

(5.34) r0 := max{1,min{ℓ, j} − (N −max{ℓ, j})}.

Then the bilinear map

(5.35) (·) ◦r (·) : L̃(S(R
ℓ),S(Rℓ))× L̃(S(Rj),S(Rj)) → L̃(S(Rk),S(Rk))

is separately continuous.21

Lemma 5.7 (Filtration of hierarchy). Let N ∈ N and let 1 ≤ ℓ, j ≤ N . Then for any A(ℓ) ∈ gℓ and

B(j) ∈ gj, there exists a unique C(k) ∈ gk, for k := min{ℓ+ j − 1, N}, such that

(5.36)
[
ǫℓ,N (A(ℓ)), ǫj,N (B(j))

]
gN

= ǫk,N (C(k)).

21We recall that L̃(S(Rk),S(Rk) denotes the space L(S(Rk),S(Rk)) of continuous linear maps from Schwartz space to
itself equipped with the subspace topology induced by L(S(Rk),S ′(Rk)).
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Proof. By definition,
[
ǫℓ,N (A(ℓ)), ǫj,N (B(j))

]
gN

= NCℓ,NCj,N



∑

mℓ∈P
N
ℓ

A
(ℓ)
(m1,...,mℓ)

( ∑

nj∈P
N
j

B
(j)
(n1,...,nj)

)
−
∑

nj∈P
N
j

B
(j)
(n1,...,nj)

( ∑

mℓ∈P
N
ℓ

A
(ℓ)
(m1,...,mℓ)

)



= NCℓ,NCj,N

min{ℓ,j}∑

r=1

( ∑

mℓ∈P
N
ℓ

A
(ℓ)
(m1,...,mℓ)

( ∑

nj∈PN
j

|{m1,...,mℓ}∩{n1,...,nj}|=r

B
(j)
(n1,...,nj)

)

−
∑

nj∈P
N
j

B
(j)
(n1,...,nj)

( ∑

mℓ∈PN
ℓ

|{m1,...,mℓ}∩{n1,...,nj}|=r

A
(ℓ)
(m1,...,mℓ)

))
.

(5.37)

Without loss of generality, suppose that ℓ ≥ j. We consider the case ℓ + j − 1 ≤ N . For each integer
1 ≤ r ≤ j, we have by the Sj-invariance of the operator B(j) that

(5.38)
∑

nj∈PN
j

|{m1,...,mℓ}∩{n1,...,nj}|=r

B
(j)
(n1,...,nj)

=

(
j

r

) ∑

nj∈PN
j

{n1,...,nr}⊂{m1,...,mℓ}
{nr+1,...,nj}∩{m1,...,mℓ}=∅

B
(j)
(n1,...,nj)

.

Similarly, by the Sℓ-invariance of the operator A(ℓ), we have that

(5.39)
∑

mℓ∈PN
ℓ

|{n1,...,nj}∩{m1,...,mℓ}|=r

A
(ℓ)
(m1,...,mℓ)

=

(
ℓ

r

) ∑

mℓ∈PN
ℓ

{m1,...,mr}⊂{n1,...,nj}

{mr+1,...,mℓ}∩{n1,...,nj}=∅

A
(ℓ)
(m1,...,mℓ)

.

Upon relabeling the summation, we see that

(5.37) = NCℓ,NCj,N

min{ℓ,j}∑

r=1

∑

p
ℓ+j−r

∈PN
ℓ+j−r

((
j

r

)
A

(l)
(p1,...,pl)

( ∑

1≤ℓ1,...,ℓr≤ℓ

|{ℓ1,...,ℓr}|=r

B
(j)
(pℓ1 ,...,pℓr ,pℓ+1,...,pℓ+j−r)

)

−

(
ℓ

r

)
B

(j)
(p1,...,pj)

( ∑

1≤j1,...,jr≤j

|{j1,...,jr}|=r

A
(ℓ)
(pj1 ,...,pjr ,pj+1,...,pj+ℓ−r)

))
.

(5.40)

If r = 1, then the summand of (5.40) equals

NCℓ,NCj,N

∑

p
k
∈PN

k

jA
(ℓ)
(p1,...,pℓ)

( ℓ∑

α=1

B
(j)
(pα,pℓ+1,...,pk)

)
− ℓB

(ℓ)
(p1,...,pℓ)

( j∑

α=1

A
(ℓ)
(pα,pj+1,...,pk)

)

= NCℓ,NCj,N

∑

p
k
∈PN

k

j(A(ℓ) ◦1 B
(j))(p1,...,pk) − ℓ(B(j) ◦1 A

(ℓ))(p1,...,pk)

= ǫk,N

(
NCℓ,NCj,N

Ck,N

Symk

(
j(A(ℓ) ◦1 B

(j))− ℓ(B(j) ◦1 A
(ℓ))
))

.(5.41)
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Now suppose that r > 1. Observe that

∑

p
ℓ+j−r

∈PN
ℓ+j−r

((
j

r

)
A

(ℓ)
(p1,...,pℓ)

( ∑

1≤ℓ1,...,ℓr≤ℓ

|{ℓ1,...,ℓr}|=r

B
(j)
(pℓ1 ,...,pℓr ,pℓ+1,...,pℓ+j−r)

)

−

(
ℓ

r

)
B

(j)
(p1,...,pj)

( ∑

1≤j1,...,jr≤j

|{j1,...,jr}|=r

A
(ℓ)
(pj1 ,...,pjr ,pj+1,...,pj+ℓ−r)

))(5.42)

cannot be immediately identified as an embedded element of gk because the summation is not over
tuples p

k
∈ PN

k . Indeed, we are missing k − (ℓ+ j − r) = r − 1 coordinates. To address this issue, we

observe that we can write p
k
∈ PN

k as p
k
= (p

ℓ+j−r
, q

r−1
), where p

ℓ+j−r
∈ PN

ℓ+j−r and

(5.43) q
r−1

∈ (N≤N \ {p1, . . . , pℓ+j−r})
r−1, with |{q1, . . . , qr−1}| = r − 1.

For each p
ℓ+j−r

∈ PN
ℓ+j−r, the number of (r − 1)-cardinality subsets of N≤N \ {p1, . . . , pℓ+j−r} is

(
N − ℓ− j + r

r − 1

)
.

Since there are (r−1)! ways of permuting r−1 distinct elements, we conclude that for p
ℓ+j−r

∈ PN
ℓ+j−r,

|{q
r−1

∈ (N≤N \ {p1, . . . , pℓ+j−r})
r−1 : |{q1, . . . , qr−1}| = r − 1}| =

(
N − ℓ− j + r

r − 1

)
(r − 1)!

=
r−1∏

m=1

(N − k +m),(5.44)

where we use that ℓ+ j − 1 = k. Hence, the summand of (5.40) equals

NCℓ,NCj,N∏r−1
m=1(N − k +m)

∑

p
k
∈PN

k

((
j

r

)
A

(ℓ)
(p1,...,pℓ)

( ∑

ℓr∈P
ℓ
r

B
(j)
(pℓ1 ,...,pℓr ,pr+1,...,pℓ+j−r)

)

−

(
ℓ

r

)
B

(j)
(p1,...,pj)

( ∑

j
r
∈P j

r

A
(ℓ)
(pj1 ,...,pjr ,pj+1,...,pj+ℓ−r)

))
,

(5.45)

and by definition, we obtain that this expression equals

(5.46) ǫk,N

(
NCℓ,NCj,N

Ck,N

∏r−1
m=1(N − k +m)

Symk

((
j

r

)
A(ℓ) ◦r B

(j) −

(
ℓ

r

)
B(j) ◦r A

(ℓ)

))
.

Now suppose that ℓ+ j − 1 > N . Then proceeding as above, we see that r ≥ 1 must in fact satisfy
the lower bound

(5.47) r ≥ min{ℓ, j} − (N −max{ℓ, j}) =: r0.

Combining these results, we conclude that
[
ǫℓ,N (A(ℓ)), ǫj,N (B(j))

]
gN

= ǫk,N

(
Symk

(
N∑

r=r0

NCℓ,NCj,N

Ck,N

∏r−1
m=1(N − k +m)

((
j

r

)
A(ℓ) ◦r B

(j) −

(
ℓ

r

)
B(j) ◦r A

(ℓ)

))
,

(5.48)

which concludes the proof of the lemma. �
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We now have all the technical lemmas needed to define the Lie algebra GN of observable N -
hierarchies. For N ∈ N, let GN denote the locally convex direct sum

(5.49) GN :=

N⊕

k=1

gk,

where we recall that

(5.50) gk = {A(k) ∈ L̃(Ss(R
k),Ss(R

k)) : (A(k))∗ = −A(k)}.

We define a bracket on AN = (A
(k)
N )k∈N≤N

, BN = (B
(k)
N )k∈N≤N

∈ GN by

(5.51) [AN , BN ]GN
:= CN = (C

(k)
N )k∈N≤N

,

where

(5.52) C
(k)
N

:=
∑

1≤ℓ,j≤N
min{ℓ+j−1,N}=k

ǫ−1
k,N

([
ǫℓ,N(A

(ℓ)
N ), ǫj,N (B

(j)
N )
]
gN

)
.

It remains for us to check that GN together with its bracket is actually a Lie algebra in the sense of
Definition 4.14, as we have so claimed above. Before doing so, we collect a result which will be useful
in the sequel. Namely, that as a byproduct of the proof Lemma 5.7, we have the following explicit
formula for the Lie bracket [AN , BN ]GN

for two observable N -hierarchies, which is quite useful for
computations.

Proposition 5.8 (Formula for [AN , BN ]
(k)
GN

). Let N ∈ N, and let AN = (A
(k)
N )k∈N≤N

, BN = (B
(k)
N )k∈N≤N

be observable N -hierarchies. Then for integers 1 ≤ k ≤ N , we have that

(5.53) [AN , BN ]
(k)
GN

=
∑

1≤ℓ,j≤N
min{ℓ+j−1,N}=k

Symk

(min{ℓ,j}∑

r=r0

CℓjkrN

[
A

(ℓ)
N , B

(j)
N

]
r

)
,

where

(5.54) CℓjkrN :=
NCℓ,NCj,N

Ck,N

∏r−1
m=1(N − k +m)

, 22 r0 := max{1,min{ℓ, j} − (N −max{ℓ, j})},

and where [·, ·]r is defined in (5.33).

We now establish Proposition 2.1, which is our first main result of this section.

Proposition 2.1. (GN , [·, ·]GN
) is a Lie algebra in the sense of Definition 4.14.

Proof of Proposition 2.1. There are two parts to the verification: an algebraic part and an analytic
part.

• We first consider the algebraic part, which amounts to checking bilinearity, anti-symmetry, and the
Jacobi identity. The first two properties are obvious from the definition of GN . For the third property,
let AN , BN , CN ∈ GN . We need to show that

(5.55)
[
AN , [BN , CN ]GN

]
GN

+
[
CN , [AN , BN ]GN

]
GN

+
[
BN , [CN , AN ]GN

]
GN

= 0.

Since ǫk,N is injective, it suffices to show that ǫk,N applied to the left-hand side of the preceding
identity equals the zero element of gN . We only present the details when the component index

22Recall that Cℓ,N = 1/|PN
ℓ |.
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satisfies 1 ≤ k < N and leave verification of the remaining k = N case as an exercise to the reader.
Using the definition of the Lie bracket and bilinearity, we have the identities

ǫk,N

([
AN , [BN , CN ]GN

](k)
GN

)
=

∑

j1+j2−1=k

[
ǫj1,N (A

(j1)
N ), ǫj2,N ([BN , CN ]

(j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑

j3+j4−1=j2

[
ǫj1,N(A

(j1)
N ),

[
ǫj3,N (B

(j3)
N ), ǫj4,N (C

(j4)
N )

]
gN

]

gN

=
∑

ℓ1+ℓ2+ℓ3=k+2

[
ǫℓ1,N (A

(ℓ1)
N ),

[
ǫℓ2,N (B

(ℓ2)
N ), ǫℓ3,N (C

(ℓ3)
N )

]
gN

]

gN

,

ǫk,N

([
CN , [AN , BN ]GN

](k)
GN

)
=

∑

j1+j2−1=k

[
ǫj1,N (C

(j1)
N ), ǫj2,N([AN , BN ]

(j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑

j3+j4−1=j2

[
ǫj1,N(C

(j1)
N ),

[
ǫj3,N (A

(j3)
N ), ǫj4,N (B

(j4)
N )

]
gN

]

gN

=
∑

ℓ1+ℓ2+ℓ3=k+2

[
ǫℓ3,N (C

(ℓ3)
N ),

[
ǫℓ1,N (A

(ℓ1)
N ), ǫℓ2,N (B

(ℓ2)
N )

]
gN

]

gN

,

ǫk,N

([
BN , [CN , AN ]GN

](k)
GN

)
=

∑

j1+j2−1=k

[
ǫj1,N (B

(j1)
N ), ǫj2,N([CN , AN ]

(j2)
GN

)
]
gN

=
∑

j1+j2−1=k

∑

j3+j4−1=j2

[
ǫj1,N(B

(j1)
N ),

[
ǫj3,N (C

(j3)
N ), ǫj4,N (A

(j4)
N )

]
gN

]

gN

=
∑

ℓ1+ℓ2+ℓ3=k+2

[
ǫℓ2,N (B

(ℓ2)
N ),

[
ǫℓ3,N (C

(ℓ3)
N ), ǫℓ1,N(A

(ℓ1)
N )

]
gN

]

gN

.

Since [·, ·]gN is a Lie bracket and therefore satisfies the Jacobi identity, it follows that for fixed integers
1 ≤ ℓ1, ℓ2, ℓ3 ≤ N ,

0 =

[
ǫℓ1,N(A

(ℓ1)
N ),

[
ǫℓ2,N (B

(ℓ2)
N ), ǫℓ3,N (C

(ℓ3)
N )

]
gN

]

gN

+

[
ǫℓ3,N (C

(ℓ3)
N ),

[
ǫℓ1,N (A

(ℓ1)
N ), ǫℓ2,N (B

(ℓ2)
N )

]
gN

]

gN

+

[
ǫℓ2,N (B

(ℓ2)
N ),

[
ǫℓ3,N (C

(ℓ3)
N ), ǫℓ1,N (A

(ℓ1)
N )

]
gN

]

gN

.

(5.56)

Hence,

(5.57) ǫk,N

([
AN , [BN , CN ]GN

](k)
GN

+
[
CN , [AN , BN ]GN

](k)
GN

+
[
BN , [CN , AN ]GN

](k)
GN

)
= 0 ∈ gN .

• We now consider the analytic part, which amounts to checking the separate continuity of [·, ·]GN
.

Using the anti-symmetry of the bracket, it suffices to show that for AN ∈ GN fixed, the map

(5.58) GN → GN , BN 7→ [AN , BN ]GN

is continuous. Moreover, it suffices to show that for each k ∈ N≤N , the map

GN → gk, BN 7→ [AN , BN ]
(k)
GN

is continuous.
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Let (BN,a)a∈A, where BN,a = (B
(k)
N,a)k∈N≤N

, be a net in GN converging to BN = (B
(k)
N )k∈N≤N

∈ GN .

By the continuity of the projection maps GN → gk for each k ∈ N≤N , we have that (B
(k)
N,a)a∈A is a

net in gk converging to B
(k)
N ∈ gk.

Unpacking the definition of [AN , BN,a]
(k)
GN

and using the continuity of the Symk operator and the
operations of addition and scalar multiplication, together with the fact there are only finitely many
terms, it suffices to show that for any integers 1 ≤ ℓ, j ≤ N satisfying min{ℓ + j − 1, N} = k, any
integer r0 ≤ r ≤ min{ℓ, j}, we have the net convergence

(5.59)
[
A

(ℓ)
N , B

(j)
N,a

]
r
→
[
A

(ℓ)
N , B

(j)
N

]
r

in L̃(Ss(R
k),S(Rk)). But this convergence is a consequence of Lemma 5.6, thus completing the proof.

�

5.2. Lie-Poisson manifold G∗
N of finite hierachies of density matrices. In this subsection, we

define the Lie-Poisson manifold g∗N of N -body density matrices and the Lie-Poisson manifold G∗
N of

density matrix N -hierarchies. A good heuristic to keep in mind is that density matrices are dual
to skew-adjoint operators. We remind the reader that the superscript ∗ does not denote the literal
functional analytic dual of gN (respectively, GN ) as a topological vector space, but rather a space in
weakly non-degenerate pairing with gN (respectively, GN ).

To begin with, we define the real topological vector space

(5.60) g∗N := {ΨN ∈ L(S ′
s(R

N ),Ss(R
N )) : Ψ∗

N = ΨN}

endowed with the subspace topology.

Remark 5.9. Our definition of g∗N is quite natural as it is isomorphic to the strong dual of gN . The
proof of this fact is quite similar to that of Lemma 6.8 shown below.

We now define a suitable unital sub-algebra ADM,N ⊂ C∞(g∗N ;R) of admissible functionals to build
a weak Poisson structure for g∗N .

Definition 5.10. Let ADM,N be the algebra with respect to point-wise product generated by the
functionals in

(5.61) {F ∈ C∞(g∗N ;R) : F (·) = iTr1,...,N (A(N)·), A(N) ∈ gN} ∪ {F ∈ C∞(g∗N ;R) : F (·) = C ∈ R}.

In words, ADM,N is the algebra (under point-wise product) generated by the constants and the image
of gN under the canonical embedding into (g∗N )∗.

We record the following result, whose proof we omit since it is similar to and simpler than that of
Proposition 2.8, which will be used in Section 5.3 below.

Proposition 5.11. (g∗N ,ADM,N , {·, ·}g∗
N
) is a weak Poisson manifold.

Before proceeding, it will be useful to record the following lemma regarding the dual of g∗N . In
particular, we note that the dual of g∗N is not isomorphic to gN .

Lemma 5.12 (Dual of g∗N ). The topological dual of g∗N , denoted by (g∗N )∗ and endowed with the strong
dual topology, is isomorphic to

(5.62) {A(N) ∈ L(Ss(R
N ),S ′

s(R
N )) : (A(N))∗ = −A(N)},

equipped with the subspace topology induced by L(Ss(R
N ),S ′

s(R
N )), via the canonical bilinear form

(5.63) iTr1,...,N (A(N)ΨN ), ΨN ∈ g∗N .

Proof. The proof follows from the duality L(Ss(R
N ),S ′

s(R
N ))) ∼= L(S ′

s(R
N ),Ss(R

N ))∗ together with a
polarization-type argument. We leave the details to the reader. �
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Remark 5.13. The previous lemma implies that, given a functional F ∈ C∞(g∗N ;R) and a point
ΨN ∈ g∗N , we may identify the continuous linear functional dF [ΨN ], given by the Gâteaux derivative

of F at the point ΨN , as a skew-adjoint element of L(Ss(R
N ),S ′

s(R
N )). We will abuse notation and

denote this element by dF [ΨN ]. Moreover, as we will see below, it is a small computation using the
generating structure of ADM,N that dF [ΨN ] ∈ gN .

We next define the Lie-Poisson manifold of density matrix N -hierarchies. To begin, define the real
topological vector space

(5.64) G∗
N :=

{
ΓN = (Γ

(k)
N )k∈N≤N

∈
N∏

k=1

L(S ′
s(R

k),Ss(R
k)) : γ

(k)
N = (γ

(k)
N )∗ ∀k ∈ N

}

endowed with the subspace product topology. We first note that our definition of G∗
N is quite natural,

as it is isomorphic to the topological dual of GN , a fact we prove in the next lemma.

Lemma 5.14 (Dual of GN ). The topological dual of GN , denoted by (GN )∗ and endowed with the
strong dual topology, is isomorphic to G∗

N .

Proof. Using the isomorphism

(5.65)
(
L̃(Ss(R

k),Ss(R
k))
)∗

∼=
(
L(Ss(R

k),S ′
s(R

k))
)∗

= L(S ′
s(R

k),Ss(R
k)), ∀k ∈ N,

which follows from the proof of Lemma B.15 together with the duality of direct sums and direct
products, see for instance [12, Proposition 2 in §14, Chapter 3], we have that

(5.66)

(
N⊕

k=1

L̃(Ss(R
k),Ss(R

k))

)∗

∼=︸︷︷︸
=:Φ′

N∏

k=1

L(S ′
s(R

k),Ss(R
k)),

via the canonical trace pairing
(AN ,ΓN ) 7→ iTr(AN · ΓN ).

Thus elements of (GN )∗ may be identified with functionals iTr(·ΓN ), and so to prove the lemma, we
will show that the map

(5.67) Φ : G∗
N → (GN )∗, ΓN 7→ iTr(·ΓN ),

is bijective and that both Φ and Φ−1 are continuous.
First, we show surjectivity of Φ. Given any functional F ∈ (GN )∗, we need to find some density

matrix N -hierarchy ΓN ∈ G∗
N such that

(5.68) F (AN ) = iTr(AN · ΓN ).

To accomplish this task, we define a functional

(5.69) F̃ ∈

(
N⊕

k=1

L̃(Ss(R
k),Ss(R

k))

)∗

by the formula

(5.70) F̃ (AN ) :=
1

2
F (AN −A∗

N )−
i

2
F ((AN −A∗

N )) +
1

2
F (i(AN +A∗

N ))−
i

2
F (i(AN +A∗

N )).

By the canonical dual trace pairing, there exists a unique

ΓN ∈
N∏

k=1

L(S ′
s(R

k),Ss(R
k))

such that

(5.71) F̃ (AN ) = iTr(AN · ΓN ), ∀AN ∈
N⊕

k=1

L̃(Ss(R
k),Ss(R

k)).
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Evaluating F̃ on AN ∈ GN , that is assuming AN = −A∗
N , we obtain from (5.70) that

(1− i)F (AN ) = iTr(AN · ΓN ),(5.72)

and adding this expression to its conjugate implies that

2F (AN ) = i
(
Tr(AN · ΓN )− Tr(AN · ΓN )

)
.

Since

(AN · ΓN )(k) = A
(k)
N γ

(k)
N ∈ L(S ′

s(R
k),Ss(R

k)), ∀k ∈ N≤N ,

its trace exists in the usual sense of an operator on a separable Hilbert space. Furthermore, the adjoint of

A
(k)
N γ

(k)
N as a bounded linear operator on L2

s(R
k), denoted by (A

(k)
N γ

(k)
N )∗, belongs to L(S ′

s(R
k),S(Rk)).

A short computation using the skew- and self-adjointness of A
(k)
N and γ

(k)
N , respectively, shows that

(A
(k)
N γ

(k)
N )∗ = −γ

(k)
N A

(k)
N ,

where we abuse notation by letting A
(k)
N also denote the extension to an element of L(S ′

s(R
k),S ′

s(R
k)).

Consequently, we are justified in writing

Tr1,...,k

(
A

(k)
N γ

(k)
N

)
= Tr1,...,k

(
(A

(k)
N γ

(k)
N )∗

)
= −Tr1,...,k

(
γ
(k)
N A

(k)
N

)
= −Tr1,...,k

(
A

(k)
N γ

(k)
N

)
,

where the ultimate equality follows from an approximation of A
(k)
N and the cyclicity of trace. Therefore,

(5.73) Γ̃N =
1

2
(ΓN + Γ∗

N )

is the desired density matrix N -hierarchy. Injectivity of Φ follows from the polarization identity by
considering elements of GN of the form

(5.74) A
(k)
N,k0

=

{
i |f (k0)〉 〈f (k0)| , k = k0

0, otherwise
,

where k0 ∈ N≤N and f (k0) ∈ Ss(R
k0). Hence Φ is bijective.

Next, we claim that both Φ and Φ−1 are continuous. Since G∗
N is a Fréchet space, it suffices by the

open mapping theorem to show that Φ is continuous. Let ιGN
denote the canonical inclusion map

(5.75) GN ⊂
N⊕

k=1

L̃(Ss(R
k),Ss(R

k)),

which is continuous by definition of the subspace topology, with adjoint

(5.76) ι∗GN
:

(
N⊕

k=1

L̃(Ss(R
k),Ss(R

k))

)∗

→ (GN )∗,

and let ιG∗
N

denote the canonical inclusion map

(5.77) G∗
N ⊂

N∏

k=1

L(S ′
s(R

k),Ss(R
k)),

which is also continuous by definition of the subspace topology. Then we can write

(5.78) Φ = ι∗GN
◦ (Φ′)−1 ◦ ιG∗

N
,

where Φ′ is the canonical isomorphism described in (5.66). Since ι∗GN
is continuous, as can be checked

directly or by appealing to the corollary of Proposition 19.5 in [36], it follows that Φ is the composition
of continuous maps, completing the proof of the claim. �
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We now need to establish the existence of a Poisson structure for G∗
N . As before, we choose a unital

sub-algebra AH,N ⊂ C∞(G∗
N ;R), generated by trace functionals and constant functionals, to be the

algebra of admissible functionals.

Definition 5.15. Let AH,N be the algebra with respect to point-wise product generated by the func-
tionals in

(5.79) {F ∈ C∞(G∗
N ;R) : F (·) = iTr(AN ·), AN ∈ GN} ∪ {F ∈ C∞(G∗

N ;R) : F (·) ≡ C ∈ R}.

Remark 5.16. Our definition of AH,N is not canonical in the sense that one may include additional
functionals in it. However, since we are really only interested in trace functionals, we will not do so in
this work.

Remark 5.17. The structure of AH,N will be frequently used in the following way: it will suffice to
verify various identities for finite products of trace functionals and constant functionals. Moreover,
by Remark 5.18 below and the Leibnitz rule for the Gâteaux derivative, it will often suffice to check
identities on trace functionals.

Remark 5.18. By the linearity of the trace and the definition of the Gâteaux derivative, a trace func-
tional has constant Gâteaux derivative. Similarly, a constant functional has zero Gâteaux derivative.

To define the Lie-Poisson bracket on AH,N × AH,N using the Lie bracket [·, ·]GN
constructed in

Section 5.1, we need the following identification of continuous linear functionals with skew-adjoint
operators, given via the canonical trace pairing. We note, in particular, that (G∗

N )∗ is not isomorphic
to GN .

Lemma 5.19 (Dual of G∗
N ). The topological dual of G∗

N , denoted by (G∗
N )∗ and endowed with the

strong dual topology, is isomorphic to

(5.80) G̃N :=
{
AN ∈

N⊕

k=1

L(Ss(R
k),S ′

s(R
k)) : (A

(k)
N )∗ = −A

(k)
N

}
.

Proof. We omit the proof as it proceeds quite similarly to that of Lemma 5.14. �

We continue to abuse notation by using dF [ΓN ] to denote both the continuous linear functional and

the element of G̃N . We are now prepared to introduce the Lie-Poisson bracket {·, ·}G∗
N

on AH,N×AH,N .

Definition 5.20. Let N ∈ N. For F,G ∈ AH,N , we define

(5.81) {F,G}G∗
N
(ΓN ) := iTr

(
[dF [ΓN ], dG[ΓN ]]GN

· ΓN

)
=

N∑

k=1

iTr1,...,k

(
[dF [ΓN ], dG[ΓN ]]

(k)
GN
γ
(k)
N

)
,

for ΓN = (γ
(k)
N )k∈N≤N

∈ G∗
N .

We now turn to the second main goal of this subsection, that is, proving Proposition 2.2, the statement
of which we repeat here for the reader’s convenience.

Proposition 2.2. (G∗
N ,AH,N , {·, ·}G∗

N
) is a weak Poisson manifold.

We begin with the following technical lemma for the functional derivative of {·, ·}G∗
N

.

Lemma 5.21. Suppose that Gj ∈ AH,N is a trace functional Gj(ΓN ) = iTr(dGj [0] · ΓN ) for j = 1, 2.
Then for all ΓN ∈ G∗

N , the Gâteaux derivative d{G1, G2}G∗
N
[ΓN ] at the point ΓN may be identifed with

the element

(5.82) [dG1[0], dG2[0]]GN
∈ GN
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via the canonical trace pairing. If G1 is a trace functional and G2 = G2,1G2,2 is the product of two trace
functionals in AH,N , then d{G1, G2}G∗

N
[ΓN ] may be identified with

(5.83) G2,1(ΓN )[dG1[0], dG2,2[0]]GN
+G2,2(ΓN )[dG1[0], dG2,1[0]]GN

for all ΓN ∈ G∗
N via the canonical trace pairing.

Proof. The first assertion follows readily from the definition of {G1, G2}G∗
N

. To see the second assertion,

observe that by the Leibnitz rule for the Gâteaux derivative and the bilinearity of the bracket [·, ·]r,
[
dG1[ΓN ](ℓ), dG2[ΓN ](j)

]
r
= G2,1(ΓN )

[
dG1[0]

(ℓ), dG2,2[0]
(j)
]
r
+G2,2(ΓN )

[
dG1[0]

(ℓ), dG2,1[0]
(j)
]
r
.

Hence using Proposition 5.8 and introducing the notation

(5.84) CℓjkrN :=
NCℓ,NCj,N

Ck,N

∏r−1
m=1(N − k +m)

, r0 := max{1,min{ℓ, j} − (N −max{ℓ, j})},

we obtain that

[dG1[ΓN ], dG2[ΓN ]]
(k)
GN

=
∑

1≤ℓ,j≤N
min{ℓ+j−1,N}=k

Symk

(min{ℓ,j}∑

r=r0

CℓjkrN

[
dG1[ΓN ](ℓ), dG2[ΓN ](j)

]
r

)

= G2,1(ΓN )
∑

1≤ℓ,j≤N

min{ℓ+j−1,N}=k

Symk

(min{ℓ,j}∑

r=r0

CℓjkrN

[
dG1[0]

(ℓ), dG2,2[0]
(j)
]
r

)

G2,2(ΓN )
∑

1≤ℓ,j≤N
min{ℓ+j−1,N}=k

Symk

(min{ℓ,j}∑

r=r0

CℓjkrN

[
dG1[0]

(ℓ), dG2,1[0]
(j)
]
r

)

= G2,1(ΓN )[dG1[0], dG2,2[0]]
(k)
GN

+G2,2(ΓN )[dG1[0], dG2,1[0]]
(k)
GN
,(5.85)

where the ultimate equality follows from another application of Proposition 5.8. �

We divide our proof of Proposition 2.2 into several lemmas. We first show that {·, ·}G∗
N

is well-defined

and is a Lie bracket satisfying the Leibnitz rule.

Lemma 5.22. The formula

(5.86) {F,G}G∗
N
(ΓN ) := iTr

(
[dF [ΓN ], dG[ΓN ]]GN

· ΓN

)
, ∀ΓN ∈ G∗

N

defines a map AH,N ×AH,N → AH,N which satisfies property (P1) in Definition 4.1.

Proof. We first show that for F,G ∈ AH,N , one has {F,G}G∗
N
∈ AH,N . Recall that AH,N is generated

by constant functionals and trace functionals, hence using the Leibnitz rule, bilinearity of [·, ·]GN
, and

the linearity of the trace, it suffices to consider the case where F,G are both trace functionals. Indeed,
elements of AH,N are finite linear combinations of finite products of trace functionals and constant
functionals, hence using that the derivative of constant functionals is zero, upon applying the Leibnitz
rule, the elements of the product which are not differentiated can be treated as scalars when evaluated
at a point ΓN and hence can be pulled out of the Lie bracket and then out of the trace by bilinearity.

When F,G are both trace functionals, dF [ΓN ] and dG[ΓN ] are constant in ΓN by Remark 5.18, hence

(5.87) {F,G}G∗
N
(ΓN ) = iTr

(
[dF [0], dG[0]]GN

· ΓN

)
, ∀ΓN ∈ G∗

N .
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So, we only need to show that the right-hand side defines an element of AH,N . Since dF [0] and dG[0]
both belong to GN , it follows from Proposition 2.1 that [dF [0], dG[0]]GN

∈ GN . Hence, {F,G}G∗
N

∈

AH,N , which completes the proof of the claim.
Bilinearity and anti-symmetry of {·, ·}G∗

N
are immediate from the bilinearity and anti-symmetry of

[·, ·]GN
, so it remains to verify the Jacobi identity. Let F,G,H ∈ AH,N . As we argued above, it suffices

to consider the case where G and H are trace functionals and F is a product of two trace functionals,
that is, F = F1F2, where F1, F2 ∈ AH,N are such that

(5.88) Fj(ΓN ) = iTr(dFj [0] · ΓN ), ∀ΓN ∈ G∗
N , j = 1, 2.

Thus, we need to show that for all ΓN ∈ G∗
N ,

0 =
{
F, {G,H}G∗

N

}
G∗

N

(ΓN ) +
{
G, {H,F}G∗

N

}
G∗

N

(ΓN ) +
{
H, {F,G}G∗

N

}
G∗

N

(ΓN )

= iTr

([
dF [ΓN ], d{G,H}G∗

N
[ΓN ]

]
GN

· ΓN

)
+ iTr

([
dG[ΓN ], d{H,F}G∗

N
[ΓN ]

]
GN

· ΓN

)

+ iTr

([
dH[ΓN ], d{F,G}G∗

N
[ΓN ]

]
GN

· ΓN

)
.(5.89)

We show the desired equality by direct computation:
First, since dF [ΓN ] = F1(ΓN )dF2[0] + F2(ΓN )dF1[0], where we use that F1 and F2 have constant

Gâteaux derivatives by Remark 5.18, it follows from the linearity of the trace that

iTr

([
dF [ΓN ], d{G,H}G∗

N
[ΓN ]

]
GN

· ΓN

)
= iF1(ΓN )Tr

([
dF2[0], d{G,H}G∗

N
[ΓN ]

]
GN

· ΓN

)

+ iF2(ΓN )Tr

([
dF1[0], d{G,H}G∗

N
[ΓN ]

]
GN

· ΓN

)

= iF1(ΓN )Tr

([
dF2[0], [dG[0], dH[0]]GN

]
GN

· ΓN

)

+ iF2(ΓN )Tr

([
dF1[0], [dG[0], dH[0]]GN

]
GN

· ΓN

)
,(5.90)

where we use Lemma 5.21 to obtain the ultimate equality.
Next, since F is a product of two trace functionals, we have by Lemma 5.21 that

(5.91) d{H,F}G∗
N
[ΓN ] = F1(ΓN )[dH[0], dF2[0]]GN

+ F2(ΓN )[dH[0], dF1[0]]GN
, ∀ΓN ∈ G∗

N .

Hence by bilinearity of the Lie bracket and linearity of the trace,

iTr

([
dG[ΓN ], d{H,F}G∗

N
[ΓN ]

]
GN

· ΓN

)
= iF1(ΓN )Tr

([
dG[0], [dH[0], dF2[0]]GN

]
GN

· ΓN

)

+ iF2(ΓN )Tr

([
dG[0], [dH[0], dF1[0]]GN

]
GN

· ΓN

)
.(5.92)

Finally, similarly to the preceding case,

(5.93) d{F,G}G∗
N
[ΓN ] = F1(ΓN )[dF2[0], dG[0]]GN

+ F2(ΓN )[dF1[0], dG[0]]GN
,

and therefore,

iTr

([
dH[ΓN ], d{F,G}G∗

N
[ΓN ]

]
GN

· ΓN

)
= iF1(ΓN )Tr

([
dH[0], [dF2[0], dG[0]]GN

]
GN

· ΓN

)

+ iF2(ΓN )Tr

([
dH[0], [dF1[0], dG[0]]GN

]
GN

· ΓN

)
.(5.94)
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Combining the preceding identities, we obtain that

iTr

([
dF [ΓN ], d{G,H}G∗

N
[ΓN ]

]
GN

· ΓN

)
+ iTr

([
dG[ΓN ], d{H,F}G∗

N
[ΓN ]

]
GN

· ΓN

)

+ iTr

([
dH[ΓN ], d{F,G}G∗

N
[ΓN ]

]
GN

· ΓN

)

= iF1(ΓN )Tr

(([
dF2[0], [dG[0], dH[0]]GN

]
GN

+
[
dG[0], [dH[0], dF2[0]]GN

]
GN

+
[
dH[0], [dF2[0], dG[0]]GN

]
GN

)
· ΓN

)

+ iF2(ΓN )Tr

(([
dF1[0], [dG[0], dH[0]]GN

]
GN

+
[
dG[0], [dH[0], dF1[0]]GN

]
GN

+
[
dH[0], [dF1[0], dG[0]]GN

]
GN

)
· ΓN

)

= 0,(5.95)

where the ultimate equality follows from the fact that both lines in the penultimate equality vanish by
virtue of the Jacobi identity of the Lie bracket [·, ·]GN

.

Finally, we claim that {·, ·}G∗
N

satisfies the Leibnitz rule:

(5.96) {FG,H}G∗
N
(ΓN ) = G(ΓN ){F,H}G∗

N
(ΓN ) + F (ΓN ){G,H}G∗

N
(ΓN ), ∀ΓN ∈ G∗

N .

Since d(FG)[ΓN ] = F (ΓN )dG[ΓN ] +G(ΓN )dF [ΓN ] by the Leibnitz rule for the Gâteaux derivative, we
see that

{FG,H}G∗
N
(ΓN ) = iTr

(
[d(FG)[ΓN ], dH[ΓN ]]GN

· ΓN

)

= iF (ΓN )Tr
(
[dG[ΓN ], dH[ΓN ]]GN

· ΓN

)
+ iG(ΓN )Tr

(
[dF [ΓN ], dH[ΓN ]]GN

· ΓN

)

= F (ΓN ){G,H}G∗
N
(ΓN ) +G(ΓN ){F,H}G∗

N
(ΓN ),(5.97)

where the penultimate equality follows by bilineariy of the Lie bracket and linearity of the trace and
the ultimate equality follows from the definition of the Poisson bracket. �

We next verify that AH,N satisfies the non-degeneracy property (P2).

Lemma 5.23. AH,N satisfies property (P2) in Definition 4.1.

Proof. Let ΓN ∈ G∗
N and v ∈ TΓN

G∗
N , and note that TΓN

G∗
N = G∗

N . Suppose that dF [ΓN ](v) = 0 for
all F ∈ AH,N . We will show that v = 0.

Consider functionals of the form Ff,k0(·) := iTr(AN,k0 ·),

(5.98) A
(k)
N,k0

:=

{
−i |f (k0)〉 〈f (k0)| , k = k0

0, otherwise
,

for k0 ∈ N≤N and f (k0) ∈ Ss(R
k0). By Remark 5.18, we have dFf,k0 [ΓN ](·) = Ff,k0(·), so if v =

(v(k))k∈N≤N
∈ G∗

N is as above, we have by definition of the trace that

(5.99) Ff,k0(v) =
〈
v(k0)f (k0)

∣∣∣f (k0)
〉
= 0.

Since v(k) extends uniquely to a bounded operator on L2
s(R

k) and Ss(R
k) is dense in L2

s(R
k), it follows

from a standard polarization argument that v(k) = 0 for all k ∈ N≤N , which completes the proof. �



DERIVATION OF HAMILTONIAN STRUCTURE FOR THE NLS 39

Lastly, we show the existence of a unique Hamiltonian vector XH for H ∈ AH,N with respect to
the Poisson structure {·, ·}G∗

N
. With this last (most difficult) step, the proof of Proposition 2.2 will be

complete.

Lemma 5.24. (G∗
N ,AH,N , {·, ·}G∗

N
) satisfies property (P3) in Definition 4.1. Furthermore, if H ∈

AH,N , then we have the following formula for the Hamiltonian vector field XH :

XH(ΓN )(ℓ) =

N∑

j=1

min{ℓ,j}∑

r=r0

C ′
ℓjkrN Trℓ+1,...,k




 ∑

αr∈P
ℓ
r

dH[ΓN ]
(j)
(αr ,ℓ+1,...,min{ℓ+j−r,k}), γ

(k)
N




,(5.100)

where

k := min{ℓ+ j − 1, N}, r0 := max{1,min{ℓ, j} − (N −max{ℓ, j})}

and where

C ′
ℓjkrN :=

(
j

r

)
NCℓ,NCj,N

Ck,N

∏r−1
m=1(N − k +m)

,

for Cℓ,N , Ck,N as in (5.9).

Proof. Given F,H ∈ AH,N , we first identify a candidate vector field XH by directly computing
{F,H}G∗

N
. Once we have found the candidate and verified its smoothness as a map G∗

N → G∗
N ,

the proof is complete by the uniqueness guaranteed by Remark 4.2.
By definition of the Poisson bracket on G∗

N , we have that

{F,H}G∗
N
(ΓN ) = iTr

(
[dF [ΓN ], dH[ΓN ]]GN

· ΓN

)

= i
N∑

k=1

Tr1,...,k

(
[dF [ΓN ], dH[ΓN ]]

(k)
GN
γ
(k)
N

)
,(5.101)

for ΓN = (γ
(k)
N )Nk=1 ∈ G∗

N . Using the linearity of the Symk operator, we have by the formula from
Proposition 5.8 that

[dF [ΓN ], dH[ΓN ]]
(k)
GN

=
∑

1≤ℓ,j≤N

min{ℓ+j−1,N}=k

min{ℓ,j}∑

r=r0

CℓjkrN Symk

([
dF [ΓN ](ℓ), dH[ΓN ](j)

]
r

)
,

and

Symk

([
dF [ΓN ](ℓ), dH[ΓN ](j)

]
r

)
= Symk

((
j

r

)
dF [ΓN ]

(ℓ)
(1,...,ℓ)

( ∑

αr∈P
ℓ
r

dH[ΓN ]
(j)
(αr,ℓ+1,...,ℓ+j−r)

))

− Symk

((
ℓ

r

)
dH[ΓN ]

(j)
(1,...,j)

( ∑

αr∈P
j
r

dF [ΓN ]
(ℓ)
(αr ,j+1,...,j+ℓ−r)

))
,

where we have used the combinatorial notation CℓjkrN defined in (5.84). Recall from Remark 5.5 that
we are justified in writing

(5.102) dH[ΓN ]
(j)
(1,...,j)

( ∑

αr∈P
j
r

dF [ΓN ]
(ℓ)
(αr,j+1,...,j+ℓ−r)

)
=
∑

αr∈P
j
r

dH[ΓN ]
(j)
(1,...,j)dF [ΓN ]

(ℓ)
(αr,j+1,...,j+ℓ−r).
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Let (m1, . . . ,mj−r) be the increasing arrangement of the set N≤j \ {α1, . . . , αr}. Defining the permu-
tation τ ∈ Sk by the formula

(5.103) τ(a) :=





i, a = αi for 1 ≤ i ≤ r

a− j + r, j + 1 ≤ a ≤ j + ℓ− r

ℓ+ i, a = mi for 1 ≤ i ≤ j − r

a, otherwise

,

we find that for each αr ∈ P
j
r fixed,

(5.104)
(
dH[ΓN ]

(j)
(1,...,j)dF [ΓN ]

(ℓ)
(αr ,j+1,...,j+ℓ−r)

)
(τ(1),...,τ(k))

= dH[ΓN ]
(j)
(1,...,r,ℓ+1,...,ℓ+j−r)dF [ΓN ]

(ℓ)
(1,...,ℓ).

Since the Symk operator is Sk-invariant, it then follows that
(5.105)

Symk

(
dH[ΓN ]

(j)
(1,...,j)dF [ΓN ]

(ℓ)
(αr,ℓ+1,...,ℓ+j−r)

)
= Symk

(
dH[ΓN ]

(j)
(1,...,r,ℓ+1,...,ℓ+j−r)dF [ΓN ]

(ℓ)
(1,...,ℓ)

)
.

Consequently, using that |P j
r | =

(
j
r

)
r!, we obtain that

Symk

((
ℓ

r

)
dH[ΓN ]

(j)
(1,...,j)

( ∑

αr∈P
j
r

dF [ΓN ]
(ℓ)
(αr ,j+1,...,j+ℓ−r)

))

=

(
ℓ

r

)(
j

r

)
r! Symk

(
dH[ΓN ]

(j)
(1,...,r,ℓ+1,...,ℓ+j−r)

dF [ΓN ]
(ℓ)
(1,...,ℓ)

)
.

(5.106)

Now given αr ∈ P ℓ
r , let (m1, . . . ,mℓ−r) be the increasing arrangement of the set N≤ℓ \ {α1, . . . , αr}.

We recycle notation to define a new permutation τ ∈ Sk by

(5.107) τ(i) :=





αi, 1 ≤ i ≤ r

mi−r, r + 1 ≤ i ≤ ℓ

i, otherwise

.

Then

Symk

((
dH[ΓN ]

(j)
(1,...,r,ℓ+1,...,ℓ+j−r)dF [ΓN ]

(ℓ)
(1,...,ℓ)

)
(τ(1),...,τ(k))

)

= Symk

(
dH[ΓN ]

(j)
(αr ,ℓ+1,...,ℓ+j−r)dF [ΓN ]

(ℓ)
(1,...,ℓ)

)
,

(5.108)

where we can “undo” the permutation τ ’s effect on dF [ΓN ]
(ℓ)
(1,...,ℓ) by its Sℓ-invariance. Using that

|P ℓ
r | =

(
ℓ
r

)
r!, we obtain that

(
ℓ

r

)(
j

r

)
r! Symk

(
dH[ΓN ]

(j)
(1,...,r,ℓ+1,...,ℓ+j−r)

dF [ΓN ]
(ℓ)
(1,...,ℓ)

)

=

(
j

r

) ∑

αr∈P
ℓ
r

Symk

(
dH[ΓN ]

(j)
(αr ,ℓ+1,...,ℓ+j−r)dF [ΓN ]

(ℓ)
(1,...,ℓ)

)
.

(5.109)
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Substituting the preceding identity into the expression Tr1,...,k([dF [ΓN ], dH[ΓN ]]
(k)
GN
γ
(k)
N ) and using

Lemma 4.33 to eliminate the Symk operator, we obtain that

iTr1,...,k

(
[dF [ΓN ], dH[ΓN ]]

(k)
GN
γ
(k)
N

)

= i
∑

min{ℓ+j−1,N}=k

min{ℓ,j}∑

r=r0

CℓjkrN

(
j

r

) ∑

αr∈P
ℓ
r

(
Tr1,...,k

(
dF [ΓN ]

(ℓ)
(1,...,ℓ)dH[ΓN ]

(j)
(αr ,ℓ+1,...,ℓ+j−r)γ

(k)
N

)

− Tr1,...,k

(
dH[ΓN ]

(j)
(αr,ℓ+1,...,ℓ+j−r)dF [ΓN ]

(ℓ)
(1,...,ℓ)γ

(k)
N

))
.

(5.110)

Since dH[ΓN ]
(j)
(αr ,ℓ+1,...,ℓ+j−r) is skew-adjoint and therefore by duality extends to an element in L(S ′

s(R
k),S ′(Rk)),

it follows from the cyclicity property of Proposition B.7(iii) that

Tr1,...,k

(
dH[ΓN ]

(j)
(αr ,ℓ+1,...,ℓ+j−r)dF [ΓN ]

(ℓ)
(1,...,ℓ)γ

(k)
N

)

= Tr1,...,k

(
dF [ΓN ]

(ℓ)
(1,...,ℓ)(γ

(k)
N dH[ΓN ]

(j)
(αr,ℓ+1,...,ℓ+j−r))

)
.

(5.111)

Since

(5.112) dH[ΓN ]
(j)
(αr ,ℓ+1,...,ℓ+j−r)γ

(k)
N , γ

(k)
N dH[ΓN ]

(j)
(αr ,ℓ+1,...,ℓ+j−r) ∈ L(S ′

s(R
k),S(Rk)),

the usual partial trace Trℓ+1,...,k of each of these operators exists and defines an element of L(S ′
s(R

ℓ),S(Rℓ)).

Moreover, since dH[ΓN ](j) and γ
(k)
N are skew- and self-adjoint, respectively, these partial traces are self-

adjoint.

Returning to the expression iTr
(
[dF [ΓN ], dH[ΓN ]]GN

· ΓN

)
and interchanging the order of the k

and ℓ summations, we see that

N∑

k=1

iTr1,...,k

(
[dF [ΓN ], dH[ΓN ]]

(k)
GN
γ
(k)
N

)

= i
N∑

ℓ=1

N∑

j=1

min{ℓ,j}∑

r=r0

C ′
ljk̃rN

(
Tr1,...,ℓ

(
dF [ΓN ](ℓ)

( ∑

αr∈P
ℓ
r

Tr
ℓ+1,...,k̃

(
dH[ΓN ]

(j)

(αr ,ℓ+1,...,min{ℓ+j−r,k̃})
γ
(k̃)
N

)))

− Tr1,...,ℓ

(
dF [ΓN ](ℓ)

( ∑

αr∈P
ℓ
r

Tr
ℓ+1,...,k̃

(
γ
(k̃)
N dH[ΓN ]

(j)

(αr,ℓ+1,...,min{ℓ+j−r,k̃})

))))
,

where

k̃ := min{ℓ+ j − 1, N},(5.113)

C ′
ℓjk̃rN

:=
NCℓ,NCj,N

Ck̃,N

∏r−1
m=1(N − k̃ +m)

(
j

r

)
.(5.114)

Note that since γ
(k̃)
N admits a decomposition

(5.115) γ
(k̃)
N =

∞∑

m=1

λm |f (k̃)m 〉 〈f (k̃)m | ,
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where
∑∞

m=1 |λm| ≤ 1 and f
(k̃)
m , g

(k̃)
m converge to zero in Ss(R

k̃), we see that

Tr
ℓ+1,...,k̃

(
γk̃NdH[ΓN ]

(j)

(αr ,ℓ+1,...,min{ℓ+j−r,k̃})

)

=

∞∑

m=1

λm

〈
f (k̃)m

∣∣∣dH[ΓN ]
(j)

(αr,ℓ+1,...,min{ℓ+j−r,k̃})
f (k̃)m

〉
,

(5.116)

which is independent of the choice of extension of dH[ΓN ](j) to domain S(Rj) by the permutation

invariance of each f
(k̃)
m . Furthermore, the operator

(5.117)
∑

αr∈P
ℓ
r

Tr
ℓ+1,...,k̃

(
γ
(k̃)
N dH[ΓN ]

(j)

(αr ,ℓ+1,...,min{ℓ+j−r,k̃})

)

is invariant under the Sℓ action, since P ℓ
r is invariant under the Sℓ group action. Hence, it maps into

Ss(R
ℓ), and its left-composition with dF [ΓN ](ℓ) is well-defined.

Using the bilinearity of the generalized trace, we obtain the candidate Hamiltonian vector field

XH(ΓN )(ℓ) :=

N∑

j=1

min{ℓ,j}∑

r=r0

C ′
ℓjk̃rN

∑

αr∈P
ℓ
r

(
Trℓ+1,...,k̃

(
dH[ΓN ]

(j)

(αr ,ℓ+1,...,min{ℓ+j−r,k̃})
γ
(k̃)
N

)

− Tr
ℓ+1,...,k̃

(
γ
(k̃)
N dH[ΓN ]

(j)

(αr,ℓ+1,...,min{ℓ+j−r,k̃})

))
.

(5.118)

We now verify that XH , as defined above, is a smooth map G∗
N → G∗

N , so that we may conclude the
proof by Remark 5.18. We claim that the right-hand side of the preceding identity defines a continuous
linear (hence, smooth) map

(5.119) G∗
N →

N⊕

k=1

L(S ′
s(R

k),Ss(R
k)).

Linearity is obvious, and the map is continuous from

G∗
N →

N⊕

k=1

L(S ′
s(R

k),S(Rk))

by Proposition B.8. That we may replace the target S(Rk) by the bosonic subspace Ss(R
k) is a

consequence of the following facts: P ℓ
r is invariant under the Sℓ group action, dH[ΓN ](j) is Sj-invariant,

and γ
(k̃)
N is a fortiori Sℓ-invariant. The self-adjointness of XH(ΓN )(ℓ) follows from the skew- and self-

adjointness of dH[ΓN ](j) and γ
(k̃)
N , respectively, and the adjoint properties of the generalized partial

trace. �

5.3. Density matrix maps as Poisson morphisms. We close this section with the observations
that the well-known operations of forming a density matrix out of a wave function and forming an N -
hierarchy of reduced density matrices from an N -body density matrix respect the geometric structure
we have developed, in the sense that these operations define Poisson morphisms.

We first define the density matrix map or ket-bra map from N -body bosonic wave functions to
N -body bosonic density matrices.

Definition 5.25 (Density matrix map). We define the density matrix map or ket-bra map by

(5.120) ιDM,N : Ss(R
N ) → g∗N ιDM,N (ΦN ) := |ΦN〉 〈ΦN | = ΦN ⊗ ΦN .
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It is easy to verify that ιDM,N is a smooth map from Ss(R
N ) to g∗N . We now show that the density

matrix map is a Poisson map. To prove this property, we recall from Definition 4.7 the requirement
that ι∗DM,NADM,N ⊂ AS . If F is smooth, then the smoothness of ιDM,N implies by the chain rule that

f = F ◦ ιDM,N ∈ C∞(Ss(R
N );R). However, it is not a priori clear that f ∈ AS , where we recall that

AS ⊂ C∞(S(RN );R) is defined by

(5.121) AS :=
{
H : ∇sH ∈ C∞(S(RN );S(RN ))

}
,

In the sequel, we will use the notation AS,N to make the dependence on N explicit.

Lemma 5.26. Let N ∈ N. For any F ∈ ADM,N , the functional f := F ◦ ιDM,N ∈ C∞(Ss(R
N );R)

belongs to AS,N . Furthermore,

(5.122) ∇sf(ΦN ) = dF [ιDM,N (ΦN )](ΦN ), ∀ΦN ∈ Ss(R
N ),

where we identify dF [ιDM,N (ΦN )] as a skew-adjoint operator by Remark 5.13.

Proof. Observe from the chain rule that for ΦN , δΦN ∈ Ss(R
N ),

df [ΦN ](δΦN ) = dF [ιDM,N (ΦN )](dιDM,N [ΦN ](δΦN ))

= dF [ιDM,N (ΦN )](|ΦN 〉 〈δΦN |+ |δΦN 〉 〈ΦN |),(5.123)

where we use the elementary computation

(5.124) dιDM,N [ΦN ](δΦN ) = |ΦN 〉 〈δΦN |+ |δΦN 〉 〈ΦN | .

Identifying the functional dF [ιDM,N (ΦN )](·) with a skew-adjoint DVO given by dF [ιDM,N (ΦN )] as in
Remark 5.13, we have that

dF [ιDM,N (ΦN )](|ΦN〉 〈δΦN |+ |δΦN 〉 〈ΦN |) = iTr1,...,N (dF [ιDM,N (ΦN )](|ΦN 〉 〈δΦN |+ |δΦN 〉 〈ΦN |))

= i 〈δΦN |dF [ιDM,N (ΦN )]ΦN 〉+ i 〈ΦN |dF [ιDM,N [ΦN ]δΦN 〉 .

Since dF [ιDM,N (ΦN )] is skew-adjoint, the preceding expression equals

i 〈δΦN |dF [ιDM,N (ΦN )]ΦN 〉 − i 〈dF [ιDM,N (ΦN )]ΦN |δΦN 〉 = −2 Im 〈δΦN |dF [ιDM,N (ΦN )]ΦN 〉

= ωL2(dF [ιDM,N (ΦN )]ΦN , δΦN ).

We claim that the map ΦN 7→ dF [ιDM,N (ΦN )]ΦN is a smooth map of Ss(R
N ) to itself, which justifies

our preceding manipulations. Indeed, suppose first that F ∈ ADM,N is a trace functional. Then
dF [ιDM,N (ΦN )] = dF [0], and therefore the claim follows since dF [0] is a continuous linear map of

Ss(R
N ) to itself by definition of ADM,N . The general case then follows by the Leibnitz rule for the

Gâteaux derivative. Therefore, the functional f has symplectic L2 gradient

∇sf(ΦN ) = dF [ιDM,N (ΦN )]ΦN ,

and ∇sf is a smooth map of Ss(R
N ) to itself, which implies that f ∈ AS,N . �

We recall from (1.3) the definition for {·, ·}L2 , and we consider the rescaled Poisson bracket

(5.125) {·, ·}L2,N := N{·, ·}L2 .

Proposition 5.27. Let N ∈ N. Then

(5.126) ιDM,N : (Ss(R
N ),AS,N , {·, ·}L2,N) → (g∗N ,ADM,N , {·, ·}g∗

N
)

is a Poisson map.

Proof. As observed above, the smoothness of ιDM,N is evident, and by Lemma 5.26, F ◦ ιDM,N ∈ AS,N

for any F ∈ ADM,N . Hence, it remains for us to show that for all F,G ∈ ADM,N ,

(5.127) {F ◦ ιDM,N , G ◦ ιDM,N}
L2,N

(ΦN ) = {F,G}g∗
N
◦ ιDM,N (ΦN ), ∀ΦN ∈ Ss(R

N ).
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For convenience, we introduce the notation f := F ◦ ιDM,N and g := G ◦ ιDM,N . We first consider the
expression {f, g}L2,N (ΦN ). Observe that by definition of the Poisson bracket {·, ·}L2,N ,

{f, g}L2,N (ΦN ) = NωL2(∇sf(ΦN ),∇sg(ΦN ))

= 2N Im 〈dF [ιDM,N (ΦN )]ΦN |dG[ιDM,N (ΦN )]ΦN 〉 .(5.128)

Now using the skew-adjointness of dG[ιDM,N (ΦN )] and dF [ιDM,N (ΦN )], we conclude that the last
expression equals

iN(〈ΦN |dF [ιDM,N (ΦN )dG[ιDM,N (ΦN )]ΦN 〉 − 〈ΦN |dG[ιDM,N (ΦN )]dF [ιDM,N (ΦN )]ΦN 〉)

= iTr1,...,N

(
[dF [ιDM,N (ΦN )], dG[ιDM,N (ΦN )]]

gN
|ΦN 〉 〈ΦN |

)

= {F,G}g∗
N
◦ ιDM,N (ΦN ),(5.129)

which is exactly what we wanted to show. �

We next show that there is a linear homomorphism of Lie algebras GN → gN induced by the
embeddings {ǫk,N}k∈N≤N

. We will then combine this fact with a duality argument to prove that the
reduced density matrix operation is a Poisson mapping

(5.130) (g∗N ,ADM,N , {·, ·}g∗
N
) → (G∗

N ,AH,N , {·, ·}G∗
N
).

Proposition 5.28. For any N ∈ N, the map

(5.131) ιǫ,N : GN → gN , ιǫ,N (AN ) :=

N∑

k=1

ǫk,N(A
(k)
N ),

is a continuous linear homomorphism of Lie algebras.

Proof. Continuity and linearity are evident from the continuity and linearity of the maps ǫk,N (recall
Lemma 5.3). To show that ιsum,N is a homomorphism of Lie algebras, we need to show that for any

(5.132) AN = (A
(k)
N )k∈N≤N

, BN = (B
(k)
N )k∈N≤N

∈ GN ,

we have that

(5.133) ιǫ,N

(
[AN , BN ]GN

)
= [ιǫ,N (AN ), ιǫ,N (BN )]

gN
.

Consider the left-hand side expression. By the definition of the map ιǫ,N , the definition of the Lie
bracket [·, ·]GN

from (5.52), and Lemma 5.7, we obtain that

ιǫ,N

(
[AN , BN ]GN

)
=

N∑

k=1

ǫk,N

(
[AN , BN ]

(k)
GN

)

=
N∑

k=1

ǫk,N(C
(k)
N )

=

N∑

k=1

∑

1≤ℓ,j≤N

min{ℓ+j−1,N}=k

[
ǫℓ,N (A

(ℓ)
N ), ǫj,N (B

(j)
N )
]
gN
.

Using the partition

(5.134) {(ℓ, j) ∈ (N≤N )2} =
N⋃

k=1

{(ℓ, j) ∈ (N≤N )2 : min{ℓ+ j − 1, N} = k},
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we see that

(5.135)
N∑

k=1

∑

1≤ℓ,j≤N

min{ℓ+j−1,N}=k

[
ǫℓ,N (A

(ℓ)
N ), ǫj,N (B

(j)
N )
]
gN

=
N∑

ℓ=1

N∑

j=1

[
ǫℓ,N (A

(ℓ)
N ), ǫj,N (B

(j)
N )
]
gN

.

By the definition of the map ιǫ,N and the bilinearity of Lie brackets, we observe that

(5.136)
N∑

ℓ=1

N∑

j=1

[
ǫℓ,N (A

(ℓ)
N ), ǫj,N (B

(j)
N )
]
gN

= [ιǫ,N (AN ), ιǫ,N (BN )]
gN
,

which completes the proof. �

Finally, we show that there is a canonical Poisson mapping of g∗N → G∗
N given by taking the sequence

of reduced density matrices.

Proposition 5.29 (RDM Map is Poisson). The map ιRDM,N : g∗N → G∗
N given by

(5.137) ιRDM,N (ΨN ) := ΓN = (γ
(k)
N )k∈N≤N

, γ
(k)
N

:= Trk+1,...,N (ΨN )

is a Poisson map.

To prove Proposition 5.29, we will show that ιRDM,N is the dual of the map ιsum,N , which, by
Proposition 5.28, we know is a continuous linear homomorphism of Lie algebras. We then appeal to
the following general result, the statement of which we have taken from [20, Proposition 10.7.2].

Lemma 5.30. Let (g, [·, ·]g) and (h, [·, ·]h) be Lie algebras. Let α : g → h be a linear map. Then the

map α is a homomorphism of Lie algebras if and only if its dual map α∗ : h∗ → g∗ is a (linear) Poisson
map.

Proof of Proposition 5.29. As stated above, we want to show that the reduced density matrix ιRDM,N

is the dual of the map

(5.138) ιǫ,N : GN → gN , AN = (A
(1)
N , . . . , A

(N)
N ) 7→

N∑

k=1

ǫk,N(A
(k)
N ).

Indeed, observe that for ΨN ∈ g∗N and AN = (A
(k)
N )k∈N≤N

∈ GN , we see from unpacking the definition
of ιǫ,N and using the bilinearity of the generalized trace that

(5.139) ι∗ǫ,N (ΨN )(AN ) = iTr1,...,N (ιǫ,N(AN )ΨN ) =

N∑

k=1

iTr1,...,N

(
ǫk,N(A

(k)
N )ΨN

)
.

Unpacking the definition (5.8) of the map ǫk,N(A
(k)
N ) and using the bilinearity of the generalized trace

again, we see that

(5.140)

N∑

k=1

iTr1,...,N

(
ǫk,N(A

(k)
N )ΨN

)
=

N∑

k=1

∑

p
k
∈PN

k

iCk,N Tr1,...,N

(
A

(k)
N,(p1,...,pk)

ΨN

)
.

Hence using that ΨN is bosonic and Lemma 4.33, we have that

Tr1,...,N

(
A

(k)
N,(p1,...,pk)

ΨN

)
= Tr1,...,N

(
A

(k)
N,(1,...,k)ΨN

)
= Tr1,...,k

(
A

(k)
N Trk+1,...,N(ΨN )

)

= Tr1,...,k

(
A

(k)
N γ

(k)
N

)
,(5.141)

where the ultimate equality follows by definition of γ
(k)
N . Since |PN

k | = 1/Ck,N , we conclude that

(5.142) ι∗ǫ,N(ΨN )(AN ) =
N∑

k=1

iTr1,...,k

(
A

(k)
N γ

(k)
N

)
= iTr(AN · ιRDM,N (ΨN )),
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which completes the proof of the proposition. �

6. Geometric structure for infinity hierarchies

In this section, we compute the limit of the N -body Lie algebra (GN , [·, ·]GN
) as N → ∞. We then

show that in this limit, the higher-order contractions appearing in formula (5.53) vanish. Consequently,
the domain of definition of the Lie bracket may be enlarged, for which we construct the Lie algebra
(G∞, [·, ·]G∞

) of observable ∞-hierarchies and dually, the weak Lie-Poisson manifold (G∗
∞,A∞, {·, ·}G∗

∞
)

of density matrix ∞-hierarchies.

6.1. The limit of GN as N → ∞. In order to pass from the N -particle setting to the ∞-particle
setting, we first study the limit of the Lie algebra (GN , [·, ·]GN

) as N → ∞.
Via the natural inclusion map, we can identify GN as the subspace of the locally convex direct sum

(6.1) F∞ :=
∞⋃

N=1

GN =
∞⊕

k=1

gk

consisting of elements A = (A(k))k∈N, where A(k) = 0 for k ≥ N+1. In our next result, Proposition 2.4,
we establish a formula for the limiting bracket structure for G∞.

Proposition 2.4. Let N0 ∈ N. For A = (A(k))k∈N, B = (B(k))k∈N ∈ GN0 , we have that

(2.20) lim
N→∞

[A,B]GN
= C = (C(k)k∈N,

where

(2.21) C(k) :=
∑

ℓ,j≥1
ℓ+j−1=k

Symk

([
A(ℓ), B(j)

]
1

)
,

in the topology of F∞.

Proof. Let k ∈ N. For M ≫ k, we have by Proposition 5.8 and the linearity of the map ǫk,N that

∑

ℓ,j≥1
ℓ+j−1=k

ǫ−1
k,M

([
ǫℓ,M (A(ℓ)), ǫj,M (B(j))

]
gM

)

=
∑

ℓ,j≥1
ℓ+j−1=k

Symk




min{ℓ,j}∑

r=1

MCℓ,MCj,M

Ck,M

∏r−1
a=1(M − k + a)

[
A(ℓ), B(j)

]
r




=
∑

ℓ,j≥1
ℓ+j−1=k

Symk

(
MCℓ,MCj,M

Ck,M

[
A(ℓ), B(j)

]
1

)

+
∑

ℓ,j≥1
ℓ+j−1=k

Symk




min{ℓ,j}∑

r=2

MCℓ,MCj,M

Ck,M

∏r−1
a=1(M − k + a)

[
A(ℓ), B(j)

]
r




=: Term1,M +Term2,M .(6.2)

We first consider Term1,M . Since

lim
M→∞

MCℓ,MCj,M

Ck,M

= lim
M→∞

M
∏k

a=1(M + 1− a)

(
∏ℓ

a=1(M + 1− a))(
∏j

a=1(M + 1− a))
= lim

M→∞

Mk+1

M ℓ+j
= 1,

we see that

(6.3) Term1,M →
∑

ℓ,j≥1;ℓ+j−1=k

Symk

([
A(ℓ), B(j)

]
1

)
,
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as M → ∞, in gk.
We next consider Term2,M . Let 2 ≤ r ≤ min{ℓ, j}. Since

lim
M→∞

MCℓ,NCj,M

Ck,M

∏r−1
a=1(M − k + a)

= lim
M→∞

M
∏k

a=1(M + 1− a)

(
∏ℓ

a=1(M + 1− a))(
∏j

a=1(M + 1− a))(
∏r−1

a=1(M − k + a))

= lim
M→∞

Mk+1

M ℓ+j+r−1

= lim
M→∞

M1−r

= 0,(6.4)

we see that

(6.5) Symk

(
MCℓ,MCj,M

Ck,M

∏r−1
a=1(M − k + a)

[
A(ℓ), B(j)

]
r

)
→ 0,

as M → ∞, in gk. Summing over the ranges 2 ≤ r ≤ min{ℓ, j} and ℓ+ j − 1 = k, for a total of finitely
many terms, we conclude that

(6.6) Term2,M → 0,

as M → ∞, in gk, proving the result. �

6.2. The Lie algebra G∞ of observable ∞-hierarchies. As mentioned in the introduction, the
simplified form of [·, ·]G∞

allows us to take advantage of the good mapping property and extend this
bracket to a map on a much larger real topological vector space, which we redefine G∞ to be, to obtain
a Lie algebra of observable ∞-hierarchies. We rigorously construct this extension now.

We define gk,gmp to be

gk,gmp := {A(k) ∈ Lgmp(Ss(R
k),S ′

s(R
k)) : A(k) = −(A(k))∗}.(6.7)

In words, gk,gmp is the real, locally convex space consisting of skew-adjoint elements of Lgmp(Ss(R
k),S ′

s(R
k)).

We will hereafter refer to the elements of gk,gmp as k-particle or k-body observables. We define the locally
convex direct sum

G∞ :=

∞⊕

k=1

gk,gmp.(6.8)

We refer to the elements of G∞ as observable ∞-hierarchies. For

A = (A(k))k∈N, B = (B(k))k∈N ∈ G∞,

we define

[A,B]G∞
:= C = (C(k))k∈N,

C(k) := Symk

( ∑

ℓ,j≥1
ℓ+j−1=k

[
A(ℓ), B(j)

]
1

)
,(6.9)

where Symk denotes the bosonic symmetrization operator defined in Section 4, which we recall is given
by

(6.10) Symk(A
(k)) :=

1

k!

∑

π∈Sk

A
(k)
(π(1),...,π(k)), A

(k)
(π(1),...,π(k)) = π ◦A

(k)
1,...,k ◦ π

−1
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and where
[
A(ℓ), B(j)

]
1

is given according to (5.33) by
[
A(ℓ), B(j)

]
1
= jA(ℓ) ◦1 B

(j) − ℓB(j) ◦1 A
(ℓ)

= jA
(ℓ)
(1,...,ℓ)

( ℓ∑

α=1

B
(j)
(α,ℓ+1,...,ℓ+j−1)

)
− ℓB(j)

( j∑

α=1

A
(ℓ)
(α,j+1,...,j+ℓ−1)

)
.

(6.11)

The main goal of this section is to establish the existence of a Lie algebra of observable ∞-hierarchies,
namely, to prove Proposition 2.7:

Proposition 2.7. (G∞, [·, ·]G∞
) is a Lie algebra in the sense of Definition 4.14.

The construction follows closely our N -body approach in Section 5; however, there are new technical
difficulties that have to be considered. Indeed, G∞ contains more singular objects than GN , and we
have to heavily exploit the good mapping property in order to handle this issue. We remind the reader
the enlarged definition of G∞, as opposed to simply the union of the GN , is necessary to accommodate
the observable ∞-hierarchy −iWGP which generates the GP Hamiltonian functional.

We first need to establish that the Lie bracket given by (6.9) is well-defined on G∞. To this end, we
must begin by giving meaning to the composition

(6.12) A
(ℓ)
(1,...,ℓ)

(
ℓ∑

α=1

B
(j)
(α,ℓ+1,...,ℓ+j−1)

)

as an operator in L(S(Rk),S ′(Rk)), for which it will be convenient to proceed term-wise by extending
A(ℓ) and B(j) to operators defined on the entire space S(Rℓ) and S(Rj), respectively, as described in

Remark 5.5.23 For general A(ℓ) ∈ L(S(Rℓ),S ′(Rℓ)) and B(j) ∈ L(S(Rj),S ′(Rj)), such a composition
may not be well-defined, see Remark B.12, and hence we appeal to the good mapping property of
Definition 2.5 to give meaning to (6.12). It will be useful in the sequel to observe that the definition of the

good mapping property says the following: let A(ℓ) ∈ L(S(Rℓ),S ′(Rℓ)) and (f (ℓ), g(ℓ)) ∈ S(Rℓ)×S(Rℓ),
and for fixed x′α ∈ R, consider the distribution in S ′(R) defined by

(6.13) φ 7→
〈
A(ℓ)f (ℓ),

(
φ⊗α g

(ℓ)(·, x′α, ·)
)〉

S′(Rℓ)−S(Rℓ)
,

where

(6.14)
(
φ⊗α g

(ℓ)(·, x′α, ·)
)
(y

ℓ
) := φ(yα)g

(ℓ)(y
1;α−1

, x′α, yα+1;ℓ
), y

ℓ
∈ R

ℓ.

Then A(ℓ) ∈ Lgmp(S(R
ℓ),S ′(Rℓ)) if the element of S(R;S ′(R))24 defined by

(6.15) x′α 7→
〈
A(ℓ)f (ℓ), (·) ⊗α g

(ℓ)(·, x′α, ·)
〉
S′(Rℓ)−S(Rℓ)

,

may be identified with a (necessarily unique) Schwartz function Φ(f (ℓ), g(ℓ)) in S(R2) by

(6.16)
〈
A(ℓ)f (ℓ), φ⊗α g

(ℓ)(·, x′α, ·)
〉
S′(Rℓ)−S(Rℓ)

=

∫

R

dxαΦ(f, g)(xα, x
′
α)φ(xα), x′α ∈ R,

and the assignment Φ : S(Rℓ)× S(Rℓ) → S(R2) is continuous.

23We will see later that the choice of extension is immaterial.
24Given a Hausdorff locally convex space E, we let S(Rd;E) denote the space of functions f ∈ C∞(Rd;E) such that for

each pair of d-dimensional polynomials P and Q with complex coefficients, the union
⋃

x∈Rd{P (x)Q(∂x)f(x)} is contained
in a bounded subset of E. We endow S(Rd;E) with the topology of uniform convergence of the functions P (x)Q(∂x)f(x),
for all P and Q.
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Lemma 6.1 (◦βα contraction). Let i, j ∈ N, let k := i+ j − 1, and let (α, β) ∈ N≤i × N≤j. Then there
exists a bilinear map, continuous in the first entry,

(6.17) ◦βα : L(S(Ri),S ′(Ri))× Lgmp(S(R
j),S ′(Rj)) → L(S(Rk),S ′(Rk)),

such that A(i) ◦βα B(j) corresponds to

(6.18) A(i) ◦βα B
(j) = A

(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k),

when A(i) ∈ L(S(Ri),S(Ri)) and B(j) ∈ L(S(Rj),S(Rj)) or A(i) ∈ L(S(Ri),S ′(Ri)) and B(j) ∈
L(S ′(Rj),S ′(Rj)). If we replace the domain space L(S(Ri),S ′(Ri)) for the first entry by Lgmp(S(R

i),S ′(Ri)),
then the bilinear map

(6.19) ◦βα : Lgmp(S(R
i),S ′(Ri))× Lgmp(S(R

j),S ′(Rj)) → Lgmp(S(R
k),S ′(Rk))

is continuous in the first entry.

Remark 6.2. Using this lemma and bosonic symmetry, we note that we can rewrite our definition of

[·, ·]1 from (5.33) using the contractions ◦βα as follows: Let i, j ∈ N and set k := i + j − 1. We extend
[·, ·]1 to be the bilinear, continuous in the first entry, map

[·, ·]1 : Lgmp(S(R
i),S ′(Ri))× Lgmp(S(R

j),S ′(Rj)) → Lgmp(S(R
k),S ′(Rk))

(A(i), B(j)) 7→
i∑

α=1

j∑

β=1

A(i) ◦βα B
(j) −B(j) ◦αβ A

(i),
(6.20)

for ◦βα and ◦αβ as in Lemma 6.1.

Proof of Lemma 6.1. We first show that for fixed f ∈ S(Rk), there is a well-defined element

(6.21) (A(i) ◦βα B
(j))(f) ∈ S ′(Rk)

corresponding to

(6.22) A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k)(f).

Let g ∈ S(Rk). Now it follows from the assumption that B(j) has the good mapping property and
Remark B.13 that the bilinear map

(f̃ , g̃) 7→
〈
B

(j)
(2,...,β,1,β+1,...,j)(f̃(xα−1, ·, xα+1;i, ·)), (·) ⊗ g̃(x′i, ·)

〉
S′(Rj)−S(Rj)

,(6.23)

which is a priori a bilinear continuous map

(6.24) S(Rk)× S(Rk) → S(xα−1,xα+1;i,x
′
i)
(Rα−1 ×R

i−α × R
i;S ′

xα
(R)),

is identifiable with a unique smooth map

(6.25) ΦB(j),α,β : S(Rk)× S(Rk) → S(xi;x
′
i)
(R2i).

Since we have the canonical isomorphism

(6.26) L(S(Ri),S ′(Ri)) ∼= S ′(R2i)

by the Schwartz kernel theorem, we therefore define the composition (6.21) by

〈(A(i) ◦βα B
(j))f, g〉S′(Rk)−S(Rk) :=

〈
KA(i) ,ΦB(j),α,β(f, g)

t
〉
S′(R2i)−S(R2i)

,(6.27)

where

ΦB(j),α,β(f, g)
t(xi;x

′
i) = ΦB(j),α,β(f, g)(x

′
i;xi), (xi, x

′
i) ∈ R

2i.
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Hence, taking (6.27) as the definition of (6.21) for f ∈ S(Rk), we have defined an evidently linear
map

(6.28) A(i) ◦βα B
(j) : S(Rk) → S ′(Rk).

The continuity of this map follows from its definition as a composition of continuous maps. Bilinearity

of ◦βα in A(i) and B(j) is obvious. Moreover, it is clear that if B(j) has the good mapping property,

then A(i) ◦βα B(j) has the good mapping property. Lastly, the reader can check from the distributional

Fubini-Tonelli theorem that our definition of A(i) ◦βα B(j) coincides with the composition (6.22) in

the cse where A(i) ∈ L(S(Ri),S(Ri)) and B(j) ∈ L(S(Rj),S(Rj)) or A(i) ∈ L(S(Ri),S ′(Ri)) and

B(j) ∈ L(S ′(Rj),S ′(Rj)).
We now prove that the map

(6.29) (·) ◦βα (·) : L(S(Ri),S ′(Ri))× Lgmp(S(R
j),S ′(Rj)) → Lgmp(S(R

k),S ′(Rk))

is continuous in the first entry, that is, for fixed B(j) ∈ Lgmp(S(R
i),S ′(Ri)), the map

(6.30) L(S(Ri),S ′(Ri)) → Lgmp(S(R
k),S ′(Rk)), A(i) 7→ A(i) ◦βα B

(j)

is continuous. By considerations of symmetry, it suffices to consider the case (α, β) = (1, 1). To this

end, it suffices to show that given a bounded subset R(k) ⊂ S(Rk), there exists a bounded subset

R(i) ⊂ S(Ri) such that

(6.31) sup
f(k),g(k)∈R(k)

∣∣∣
〈
(A(i) ◦11 B

(j))f (k)
∣∣∣g(k)

〉∣∣∣ . sup
f(i),g(i)∈R(i)

∣∣∣
〈
A(i)f (i)

∣∣∣g(i)
〉∣∣∣ .

To see how to obtain the desired seminorm, first observe that
∣∣∣
〈
(A(i) ◦11 B

(j))f (k)
∣∣∣g(k)

〉∣∣∣ =
∣∣∣∣
〈
KA(i) ,ΦB(j),1,1(f

(k), g(k))t
〉
S′(R2i)−S(R2i)

∣∣∣∣

=
∣∣∣Tr1,...,i

(
A(i)ΦB(j),1,1(f

(k), g(k))
)∣∣∣ ,(6.32)

where the ultimate equality follows from the definition of the generalized trace (recall Definition B.5) and

we commit an abuse of notation by using ΦB(j),1,1(f
(k), g(k)) to denote the operator in L(S ′(Ri),S(Ri))

defined by this integral kernel. Since R(k) is bounded, the image ΦB(j),1,1(R
(k) × R(k)) is a bounded

subset of S(R2i) ∼= L(S ′(Ri),S(Ri)), and since A(i) is continuous, it follows that

(6.33) sup
γ(i)∈Φ

B(j),1,1
(R(k)×R(k))

∣∣∣Tr1,...,i
(
A(i)γ(i)

)∣∣∣ <∞.

Hence, there exists an element γ
(i)
0 ∈ ΦB(j),1,1(R

(k) ×R(k)) such that

(6.34)
∣∣∣Tr1,...,i

(
A(i)γ

(i)
0

)∣∣∣ ≥ 1

2
sup

γ(i)∈Φ
B(j),1,1

(R(k)×R(k))

∣∣∣Tr1,...,i
(
A(i)γ(i)

)∣∣∣ .

Since each element of S(R2i) can be written as
∑∞

ℓ=1 λℓf
(i)
ℓ ⊗ g

(i)
ℓ , where

∑∞
ℓ=1 |λℓ| ≤ 1, and f

(i)
ℓ , g

(i)
ℓ

are sequences in S(Ri) converging to zero, we see from the separate continuity of the generalized trace
that

∣∣∣Tr1,...,i
(
A(i)γ

(i)
0

)∣∣∣ ≤
∞∑

ℓ=1

|λℓ|
∣∣∣Tr1,...,i

(
A(i)(f

(i)
0,ℓ ⊗ g

(i)
0,ℓ)
)∣∣∣

≤ sup
f(i),g(i)∈{f

(i)

0,ℓ′
,g

(i)

0,ℓ′
}∞
ℓ′=1

∣∣∣〈A(i)f (i), g(i))〉S′(Ri)−S(Ri)

∣∣∣ .(6.35)
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We claim that {f
(i)
0,ℓ , g

(i)
0,ℓ}

∞
ℓ=1 is a bounded subset of S(Ri), which then completes the proof. Indeed,

this follows readily from the fact that f
(i)
0,ℓ , g

(i)
0,ℓ converge to zero. �

Remark 6.3. If we restrict the domain of the map ◦βα to the space

Lgmp,∗(S(R
i),S ′(Ri))× Lgmp,∗(S(R

j),S ′(Rj))

consisting of distribution-valued operators satisfying the good mapping property such that their adjoints
also satisfy the good mapping property, which we endow with the subspace topology, then it follows by

duality that ◦βα is separately continuous on this space.

Remark 6.4. If B(j) ∈ Lgmp(Ss(R
j),S ′

s(R
j)), then it follows from bosonic symmetry that for any

(α, β) ∈ N≤i × N≤j,

(6.36) A(i) ◦βα B
(j) = A(i) ◦1α B

(j).

Remark 6.5. If A(i) ∈ L(Ss(R
i),S ′(Ri)) and B(j) ∈ Lgmp(Ss(R

j),S ′
s(R

j)), then given two extensions

A
(i)
1 , A

(i)
2 ∈ L(S(Ri),S ′(Ri)) of A(i), we claim that

(6.37)

i∑

α=1

A
(i)
1 ◦1α B

(j) =

i∑

α=1

A
(i)
2 ◦1α B

(j) ∈ L(Ss(R
k),S ′(Rk)).

Indeed, for f ∈ Ss(R
k), g ∈ S(Rk), we have that

i∑

α=1

〈g, (A
(i)
1 ◦1α B

(j))f〉S(Rk)−S′(Rk) =
i∑

α=1

〈
K

A
(i)
1

,ΦB(j),α,1(f, g)
t
〉
S′(R2i)−S(R2i)

.(6.38)

Since each ΦB(j),α,1(f, g) ∈ S(R2i) and f ∈ Ss(R
k), we see that

(6.39)
i∑

α=1

ΦB(j),α,1(f, g)(π(xi);x
′
i) =

i∑

α=1

ΦB(j),α,1(f, g)(xi;x
′
i), (xi, x

′
i) ∈ R

2i,

for any permutation π ∈ Si. Consequently, for fixed x′i ∈ R
i, the function

∑i
α=1ΦB(j),α,1(f, g)(·, x

′
i)

belongs to Ss(R
i) on which the two extensions A

(i)
1 and A

(i)
2 agree. It then follows from the Schwartz

kernel theorem that
〈
K

A
(i)
1
,

(
i∑

α=1

ΦB(j),α,1(f, g)

)t〉

S′(R2i)−S(R2i)

=

〈
K

A
(i)
2
,

(
i∑

α=1

ΦB(j),α,1(f, g)

)t〉

S′(R2i)−S(R2i)

,(6.40)

and therefore

(6.41)

i∑

α=1

〈g, (A
(i)
1 ◦1α B

(j))f〉S(Rk)−S′(Rk) =

i∑

α=1

〈g, (A
(i)
2 ◦1α B

(j))f〉S(Rk)−S′(Rk),

which establishes our claim.

By Lemma 6.1,

(6.42) A(ℓ) ◦βα B
(j) ∈ Lgmp(S(R

k),S ′(Rk)), for ℓ+ j − 1 = k.

Hence, by definition of the bracket [·, ·]1 and Remark 6.2,

(6.43)
∑

ℓ,j≥1
ℓ+j−1=k

[
A(ℓ), B(j)

]
1
∈ Lgmp(Ss(R

k),S ′(Rk)).

Thus it remains to show two properties: first that the symmetrization of an operator preserves the good
mapping property, which will then establish that C(k) ∈ Lgmp(Ss(R

k),S ′
s(R

k)), where C(k) is defined
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according to (6.9), and second that C(k) is skew-adjoint. We begin with the following lemma which
establishes the desired property of the symmetrization operators.

Lemma 6.6. If A = (A(k))k∈N ∈
⊕∞

k=1Lgmp(S(R
k),S ′(Rk)), then

Sym(A) ∈
∞⊕

k=1

Lgmp(Ss(R
k),S ′

s(R
k)).

Proof. It suffices to show that for each k ∈ N, if A(k) ∈ Lgmp(S(R
k),S ′(Rk)), then

Symk(A
(k)) ∈ Lgmp(Ss(R

k),S ′
s(R

k)).

Let α ∈ N≤k. We need to show that the map

Ss(R
k)× Ss(R

k) → S(R;S ′(R))

(f (k), g(k)) 7→
〈
Symk(A

(k))(f (k)), (·) ⊗α g(·, x
′
α, ·)

〉
S′(Rk)−S(Rk)

(6.44)

may be identified with a continuous map Ss(R
k)×Ss(R

k) → S(R2). By definition of the Symk operator
and bilinearity of the distributional pairing, we have that

〈
Symk(A

(k))f (k), (·) ⊗α g
(k)(·, x′α, ·)

〉
S′(Rk)−S(Rk)

=
1

k!

∑

π∈Sk

〈
A

(k)
(π(1),...,π(k))f

(k), (·) ⊗α g
(k)(·, x′α, ·)

〉
S′(Rk)−S(Rk)

.(6.45)

By definition of the notation A
(k)
(π(1),...,π(k)) = π ◦A

(k)
1,...,k ◦ π

−1, we have that
〈
A

(k)
(π(1),...,π(k))f

(k), (·) ⊗α g
(k)(·, x′α, ·)

〉
S′(Rk)−S(Rk)

=
〈
A(k)(f (k) ◦ π−1) ◦ π, (·) ⊗α g

(k)(·, x′α, ·)
〉
S′(Rk)−S(Rk)

=
〈
A(k)(f (k)) ◦ π, (·) ⊗α g

(k)(·, x′α, ·)
〉
S′(Rk)−S(Rk)

,(6.46)

where the ultimate equality follows from the assumption f (k) ∈ Ss(R
k). Let φ ∈ S(R) be a test function.

Then by definition of the permutation of a distribution,

〈
A(k)(f (k)) ◦ π, φ⊗α g

(k)(·, x′α, ·)
〉
S′(Rk)−S(Rk)

=
〈
A(k)f (k), (φ⊗α g

(k)(·, x′α, ·)) ◦ π
−1
〉
S′(Rk)−S(Rk)

.

(6.47)

Observing that
(6.48)

((φ⊗αg
(k)(·, x′α, ·))◦π

−1)(xk) = g(k)(xπ−1(1), . . . , xπ−1(α−1), x
′
α, xπ−1(α+1), . . . , xπ−1(k))φ(xπ−1(α)), xk ∈ R

k,

upon setting j := π−1(α) and using the bosonic symmetry of g(k), we obtain that

(6.49) ((φ⊗α g
(k)(·, x′α, ·)) ◦ π

−1)(xk) = g(k)(xj−1, x
′
α, xj+1;k)φ(xj) = (φ⊗j g

(k)(·, x′α, ·))(xk).

Since A(k) has the good mapping property, we have that
〈
A(k)f (k), φ⊗j g

(k)(·, x′α, ·)
〉
S′(Rk)−S(Rk)

=
〈
ΦA(k),j(f

(k), g(k))(·, x′α), φ
〉
S′(R)−S(R)

,(6.50)

where ΦA(k),j : S(Rk) × S(Rk) → S(R2) is a continuous bilinear map. Since Ss(R
k) continuously

embeds (trivially) in S(Rk) and since α ∈ N≤k was arbitrary, we conclude that (6.45) is identifiable

with a finite sum of continuous bilinear maps Ss(R
k) × Ss(R

k) → S(R2), and the proof of the lemma
is complete. �
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Finally, to conclude our proof that the Lie bracket is well-defined, we only need to verify that C(k)

defined according to (6.9) is skew-adjoint. This is a consequence of Remark 6.2, Remark 6.5, and the
following lemma.

Lemma 6.7. Let i, j ∈ N, and define k := i + j − 1. Let A(i) ∈ Lgmp(S(R
i),S ′(Ri)) and B(j) ∈

Lgmp(S(R
j),S ′(Rj)) be skew-adjoint distribution-valued operators. Then for any (α, β) ∈ N≤i × N≤j,

(6.51) (A(i) ◦βα B
(j))∗ = (B(j) ◦αβ A

(i))(i+1,...,i+β−1,α,i+β,...,k,1,...,i) ∈ Lgmp(S(R
k),S ′(Rk)).

Proof. By considerations of symmetry, it suffices to consider the case where (α, β) = (1, 1). Recalling
the definition of the adjoint of a distribution-valued operator, see Lemma B.1, we need to show that

〈
(B(j) ◦11 A

(i))(1,i+1,...,k,2,...,i)g, f̄
〉
S′(Rk)−S(Rk)

=
〈
(A(i) ◦11 B

(j))f, g
〉
S′(Rk)−S(Rk)

,
(6.52)

for any f, g ∈ S(Rk). By Lemma B.11,

A
(i)
(1,...,i) and B

(j)
(1,i+1,...,k)

are both skew-adjoint elements of Lgmp(S(R
k),S ′(Rk)). Now by density of linear combinations of pure

tensors, linearity, and the continuity of the operators A
(i)
(1,...,i), B

(j)
(1,i+1,...,k), and A(i) ◦11 B

(j), it suffices

to consider the expression

(6.53)
〈
(A(i) ◦11 B

(j))f, g
〉
S′(Rk)−S(Rk)

in the case where f, g ∈ S(Rk) are pure tensors of the form

(6.54) f =

k⊗

a=1

fa and g =

k⊗

a=1

ga,

respectively, where f1, . . . , fk, g1, . . . , gk ∈ S(R). Recalling the definition (6.27) for A(i) ◦11B
(j), we have

that
〈
(A(i) ◦11 B

(j))f, ḡ
〉
S′(Rk)−S(Rk)

=
〈
KA(i) ,ΦB(j),1,1(f, ḡ)

t
〉
S′(R2i)−S(R2i)

.

An examination of the ΦB(j)(f, ḡ) together with the tensor product structure of f and g reveals that

ΦB(j),1,1(f, ḡ)(xi;x
′
i) = (

i⊗

a=2

fa)

︸ ︷︷ ︸
=:f(i−1)

(x2;i) (

i⊗

a=1

ga)

︸ ︷︷ ︸
=:g(1)⊗g(i−1)

(x′i)

×

〈
B(j)

(
f1 ⊗

k⊗

a=i+1

fa

)
, (·)⊗

k⊗

a=i+1

ga

〉

S′(Rj)−S(Rj)

(x1).

(6.55)

Since B(j) has the good mapping property, it follows that the element of S ′
x1
(R) defined by the second

factor in the right-hand side of (6.55) is in fact an element of S(R), which we denote by

(6.56) φB(j) ,1

(
f1 ⊗

k⊗

a=i+1

fa,

k⊗

a=i+1

ga

)
=: φB(j),1(f

(j), g(j−1)).

Thus, using (6.56) and (6.55), we can write
(6.57)

ΦB(j),1,1(f, ḡ)(xi;x
′
i) = φB(j) ,1(f

(j), g(j−1))(x1)f
(i−1)(x2;i)g

(1)(x′1)g
(i−1)(x′2;i), (xi, x

′
i) ∈ R

2i,
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and
〈
KA(i) ,ΦB(j),1,1(f, ḡ)

t
〉
S′(R2i)−S(R2i)

=
〈
A(i)

(
φB(j),1(f

(j), g(j−1))⊗ f (i−1)
)
, g(1) ⊗ g(i−1)

〉
S′(Ri)−S(Ri)

(6.58)

by the Schwartz kernel theorem. Since A(i) is skew-adjoint, we have that this last expression equals

−
〈
A(i)

(
g(1) ⊗ g(i−1)

)
, φB(j) ,1(f

(j), g(j−1))⊗ f (i−1)
〉
S′(Ri)−S(Ri)

.(6.59)

Now since A(i) also has the good mapping property by assumption, the element of S ′
x1
(R) defined by

(6.60) −
〈
A(i)

(
g(1) ⊗ g(i−1)

)
, (·) ⊗ f (i−1)

〉
S′(Ri)−S(Ri)

is identifiable with a unique element of Sx1(R), which we denote by

(6.61) − φA(i),1(g
(1) ⊗ g(i−1), f (i−1)).

Using (6.61), we see that

(6.62) (6.59) = −

∫

R

dxφA(i),1(g
(1) ⊗ g(i−1), f (i−1))(x)φB(j) ,1(f

(j), g(j−1))(x).

After unpacking the definition of the Schwartz function φB(j),1(f
(j), g(j−1)) given in (6.55) and (6.56),

it follows that

(6.62) =
〈
B(j)f (j), φA(i),1(g

(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)
〉
S′(Rj)−S(Rj)

=
〈
B(j)

(
φA(i),1(g

(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)
)
, f (j)

〉
S′(Rj)−S(Rj)

=

〈
KB(j) ,

((
φA(i),1(g

(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)
)
⊗ f (j)

)t〉

S′(R2j)−S(R2j )

,(6.63)

where we use the skew-adjointness of B(j) to obtain the penultimate equality and the Schwartz kernel
theorem to obtain the ultimate equality.

Our goal now is to show that
(
φA(i),1(g

(1) ⊗ g(i−1), f (i−1))⊗ g(j−1)
)
⊗ f (j)(xj ;x

′
j)

= ΦA(i),1,1(g ◦ π, f̄ ◦ π)(xj ;x
′
j)

(6.64)

where π ∈ Sk is the permutation

(6.65) π(a) =





1, a = 1

a+ j − 1, 2 ≤ a ≤ i

a− i+ 1, i+ 1 ≤ a ≤ k.

With (6.64), we then have by definition of the composite distribution B(j) ◦11 A
(i), see (6.27), and the

notation

(B(j) ◦11 A
(i))(1,i+1,...,k,2,...,i),
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see Proposition B.10, that

(6.63) =
〈
KB(j) ,ΦA(i),1,1(g ◦ π, f̄ ◦ π)t

〉
S′(R2j )−S(R2j)

=
〈
(B(j) ◦11 A

(i))(g ◦ π), f̄ ◦ π
〉
S′(Rk)−S(Rk)

=
〈
(B(j) ◦11 A

(i))(1,i+1,...,k,2,...,i)g, f̄
〉
S′(Rk)−S(Rk)

,(6.66)

which is exactly what we needed to show.
Turning to (6.64), observe that

(6.67) (g ◦ π)(xk) = g(x1, xj+1, . . . , xk, x2, . . . , xj) = g1(x1)(
i⊗

a=2

ga)(xj+1;k)(
k⊗

a=i+1

ga)(x2;j),

and similarly for (f̄ ◦ π). By the same analysis as in (6.55), it then follows that

ΦA(i),1,1(g ◦ π, f̄ ◦ π)(xj ;x
′
j) = (

k⊗

a=i+1

ga)(x2;j)(

k⊗

a=i+1

fa)(x
′
2;j)f1(x

′
1)

×

〈
A(i)(

i⊗

a=1

ga), (·) ⊗
i−1⊗

a=2

fa

〉

S′(Ri)−S(Ri)

(x1)

= φA(i),1(g
(1) ⊗ g(i−1), f (i−1))(x1)g

(j−1)(x2;j)f
(j)(x′j),(6.68)

as desired. �

We now turn to the proof of Proposition 2.7.

Proof of Proposition 2.7. We first verify the Lie bracket properties (L1)-(L3) in Definition 4.14. Bilin-
earity and anti-symmetry are immediate from the linearity of the bosonic symmetrization Sym operator,
see (6.10) above, and the bilinearity and anti-symmetry of the bracket [·, ·]1.

To verify the Jacobi identity

(6.69) [A, [B,C]](k) + [C, [A,B]](k) + [B, [C,A]](k) = 0,

we use our convergence result Proposition 2.4 together with the fact that [·, ·]GN
is a Lie bracket by

Proposition 2.1. Let A,B,C ∈ G∞, where A = (A(k))k∈N, B = (B(k))k∈N, C = (C(k))k∈N. Note that

since G∞ is a direct sum, there exists an N0 ∈ N such that A(k) = B(k) = C(k) = 0 for k ≥ N0. Now by
mollifying and truncating the Schwartz kernels of the k-particle components A(k), B(k), C(k), we obtain
approximating sequences

(6.70) An1
:= (A(k)

n1
)k∈N, Bn2

:= (B(k)
n2

)k∈N, Cn3
:= (C(k)

n3
)k∈N ∈ G∞ ∩

∞⊕

k=1

L(S ′
s(R

k),Ss(R
k))

such that for all (n1, n2, n3) ∈ N
3, A

(k)
n1 = B

(k)
n2 = C

(k)
n3 = 0 ∈ gk,gmp for k ≥ N0. In particular,

An1 , Bn2 , Cn3 ∈ GM for any integer M ≥ N0. Now for such M , we know from the Jacobi identity for
[·, ·]GM

that

(6.71)
[
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

= 0 ∈ GM ⊂ G∞.

Consequently, for fixed (n1, n2, n3) ∈ N
3, we obtain from Proposition 2.4 that

0 = lim
M→∞

([
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

)

=
[
An1 , [Bn2 , Cn3 ]G∞

]
G∞

+
[
Cn3 , [An1 , Bn2 ]G∞

]
G∞

+
[
Bn2 , [Cn3 , An1 ]G∞

]
G∞

.(6.72)
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Next, using three applications of the separate continuity of the bracket [·, ·]G∞
established below, we

have that
[
A, [B,C]G∞

]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
An1 , [Bn2 , Cn3 ]G∞

]
G∞

,(6.73)
[
C, [A,B]G∞

]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
Cn3 , [An1 , Bn2 ]G∞

]
G∞

,(6.74)
[
B, [C,A]G∞

]
G∞

= lim
n1→∞

lim
n2→∞

lim
n3→∞

[
Bn2 , [Cn3 , An1 ]G∞

]
G∞

.(6.75)

Summarizing our computations, we have shown that

0 = lim
n1→∞

lim
n2→∞

lim
n3→∞

lim
M→∞

([
An1 , [Bn2 , Cn3 ]GM

]
GM

+
[
Cn3 , [An1 , Bn2 ]GM

]
GM

+
[
Bn2 , [Cn3 , An1 ]GM

]
GM

)

=
[
A, [B,C]G∞

]
G∞

+
[
C, [A,B]G∞

]
G∞

+
[
B, [C,A]G∞

]
G∞

,(6.76)

which completes the proof of the Jacobi identity.
Finally, we check that the map [·, ·]G∞

is separately continuous. By linearity, it suffices to show that

for each fixed ℓ, j ∈ N and fixed α ∈ N≤ℓ, the binary operation ◦1α is separately continuous as a map

(6.77) ◦1α : gℓ,gmp × gj,gmp → Lgmp,∗(S(R
k),S ′(Rk))

where k := ℓ+j−1 and where the space Lgmp,∗(S(R
k),S ′(Rk)) consists of distribution-valued operators

satisfying the good mapping property such that their adjoints also satisfy the good mapping property,
endowed with the subspace topology. This property follows from Remark 6.3 together with the fact that
the adjoints of elements in gℓ,gmp and gj,gmp also satisfy the good mapping property by skew-adjointness.
Thus, the proof of the proposition is complete. �

6.3. Lie-Poisson manifold G∗
∞ of density matrix ∞-hierarchies. In this subsection, we define the

Poisson structure on G∗
∞, which will be used in the sequel in order to establish Hamiltonian properties

of the GP hierarchy. Since many of the proofs from Section 5.2 carry over with trivial modification,
as they do not make use of the good mapping property, we focus instead in this section on the parts
of the construction which require the good mapping property. To begin, we define the real topological
vector space

(6.78) G∗
∞ := {Γ = (γ(k))k∈N ∈

∞∏

k=1

L(S ′
s(R

k),Ss(R
k)) : γ(k) = (γ(k))∗ ∀k ∈ N},

endowed with the product topology.25 Analogous to Lemma 5.14, it holds that G∗
∞ is isomorphic to

the dual of (G∞)∗.

Lemma 6.8 (Dual of G∞). The topological dual of G∞, denoted by (G∞)∗ and endowed with the strong
dual topology, is isomorphic to G∗

∞.

We now need to established the existence of a Poisson structure on G∗
∞. We start by specifying a

unital sub-algebra of C∞(G∗
∞;R).

Definition 6.9. Let A∞ be the algebra with respect to point-wise product generated by functionals in

{F ∈ C∞(G∗
∞;R) : F (·) = iTr(A·), A ∈ G∞} ∪ {F ∈ C∞(G∗

∞;R) : F (·) ≡ C ∈ R}.(6.79)

In other words, A∞ is the algebra (under point-wise product) generated by constants and the image
of G∞ under the canonical embedding into (G∗

∞)∗. We note that our previous remarks Remark 5.16,
Remark 5.17, Remark 5.18 carry over with AH,N replaced by A∞.

25We remark that G∗
∞ is the projective limit of the spaces {G∗

N}N∈N directed with respect to reverse inclusion.
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We now wish to define the Lie-Poisson bracket {·, ·}G∗
∞

on A∞×A∞ using the Lie bracket constructed

in Section 6.2. In order to so, we first need an identification of continuous linear functionals as skew-
adjoint operators, which follows from Lemma 5.19.

Lemma 6.10 (Dual of G∗
∞). The topological dual of G∗

∞, denoted by (G∗
∞)∗ and endowed with the

strong dual topology, is isomorphic to

(6.80) G̃∞ := {A ∈
∞⊕

k=1

L(Ss(R
k),S ′

s(R
k)) : (A(k))∗ = −A(k)},

equipped with the subspace topology induced by
⊕∞

k=1L(Ss(R
k),S ′

s(R
k)), via the canonical bilinear form

(6.81) iTr(A · Γ) = i
∞∑

k=1

Tr1,...,k(A
(k)γ(k)), Γ = (γ(k))k∈N ∈ G∗

∞.

Remark 6.11. The previous lemma implies that, given a smooth real-valued functional F : G∗
∞ → R

and a point Γ ∈ G∗
∞, we may identify the continuous linear functional dF [Γ], given by the Gâteaux

derivative of F at Γ, as a skew-adjoint element of
⊕∞

k=1L(Ss(R
k),S ′

s(R
k)). We will abuse notation by

denoting this element by dF [Γ] = (dF [Γ](k))k∈N.

We are now prepared to introduce the Lie-Poisson bracket {·, ·}G∗
∞

on A∞ ×A∞.

Definition 6.12. For F,G ∈ A∞, we define

(6.82) {F,G}G∗
∞
(Γ) := iTr

(
[dF [Γ], dG[Γ]]G∞

· Γ
)
, ∀Γ ∈ G∗

∞.

Remark 6.13 (Existence of Casimirs). The functional F (Γ) := Tr1(γ
(1)) is a Casimir26 for the Poisson

bracket {·, ·}G∗
∞

. Consequently, the Poisson bracket {·, ·}G∗
∞

is not canonically induced by a symplectic

structure on G∗
∞.

We now turn to our ultimate goal of this subsection, that is, proving the following:

Proposition 2.8. (G∗
∞,A∞, {·, ·}G∗

∞
) is a weak Poisson manifold.

Properties (P1) and (P2) in Definition 4.1 for weak Poisson manifolds are readily proved using the
same arguments in the proofs of Lemma 5.22 and Lemma 5.23, respectively, together with the following
technical result, which in turn follows from the same argument as in Lemma 5.21. We omit the details
of the verification of these properties.

Lemma 6.14. Suppose that Gj ∈ A∞ is a trace functional Gj(Γ) = iTr(dGj [0] · Γ) for j = 1, 2. Then
for all Γ ∈ G∗

∞, the Gâteaux derivative d{G1, G2}G∗
∞
[Γ] at the point Γ may be identified with the element

(6.83) [dG1[0], dG2[0]]G∞
∈ G∞

via the canonical trace pairing. If G1 is a trace functional and G2 = G2,1G2,2 is the product of two trace
functionals in A∞, then d{G1, G2}G∗

∞
[Γ] may be identified with

(6.84) G2,1(Γ)[dG1[0], dG2,2[0]]G∞
+G2,2(Γ)[dG1[0], dG2,1[0]]G∞

for all Γ ∈ G∗
∞ via the canonical trace pairing.

Property (P3) is more delicate: to show that the Hamiltonian vector field is well-defined, we have
to exploit the good mapping property. Analogous to the proof of Proposition 2.7, rather than prove
directly the well-definedness of the Hamiltonian vector field, we can use our earlier investment of work
in proving Lemma 5.24, which gives an explicit formula for the N -body vector field, together with our
convergence result Proposition 2.4 and an approximation argument.

26i.e. it Poisson commutes with every functional in A∞.
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Lemma 6.15. (G∗
∞,A∞, {·, ·}G∗

∞
) satisfies property (P3) in Definition 4.1. Furthermore, if H ∈ A∞,

then we have the following formula for the Hamiltonian vector field XH :

XH(Γ)(ℓ) =

∞∑

j=1

j Trℓ+1,...,ℓ+j−1

([
ℓ∑

α=1

dH[Γ]
(j)
(α,ℓ+1,...,ℓ+j−1), γ

(ℓ+j−1)

])
.(6.85)

Proof. Let F,H ∈ A∞. In order to find a candidate Hamiltonian vector field, we compute {F,H}G∗
∞

using an approximation to reduce to the case where F and G belong to AH,N , for all N sufficiently
large, together with the N -hierarchy Hamiltonian vector field result Lemma 5.24 and our convergence
result Proposition 2.4. Once we have found a candidate, we then verify that the vector field is a smooth
map G∗

∞ → G∗
∞, which then completes the proof by the uniqueness guaranteed by Remark 4.2.

By definition of A∞, the functionals F and H are finite linear combinations of finite products of
trace functionals generated by elements in G∞:

(6.86) F (Γ) =

MF∑

a=1

Ca,F

Ma,F∏

b=1

iTr(Ab,F · Γ), H(Γ) =

MH∑

a=1

Ca,H

Ma,H∏

b=1

iTr(Ab,H · Γ),

where MF ,MH ,Ma,F ,Ma,H ∈ N, Ca,F , Ca,H ∈ R, and Ab,F = (A
(k)
b,F )k∈N, Ab,H = (A

(k)
b,H)k∈N ∈ G∞.

Additionally, since G∞ is a direct sum, there exists an integer N0 ∈ N such that for each 1 ≤ a ≤ MF

and 1 ≤ b ≤Ma,F ,

(6.87) A
(k)
b,F = 0 ∈ gk,gmp, ∀1 ≤ k ≤ N0

and similarly for A
(k)
b,H . So by mollifying and truncating the Schwartz kernels of each A

(k)
b,F , A

(k)
b,H , we

obtain approximating sequences An,b,F := (A
(k)
n,b,F )k∈N and An,b,H := (A

(k)
n,b,H)k∈N, such that

(6.88) An,b,F , An,b,H ∈ G∞ ∩
∞⊕

k=1

L(S ′
s(R

k),Ss(R
k)),

An,b,F → Ab,F , and An,b,H → Ab,H in G∞ as n→ ∞. In particular, each An,b,F , An,b,H ∈ GM for every
integer M ≥ N0. Now using the approximants An,b,F and An,b,H , we can define sequences (Fn)n∈N and
(Hn)n∈N of functionals in A∞ by

(6.89) Fn(Γ) :=

MF∑

a=1

Ca,F

Ma,F∏

b=1

iTr(An,b,F · Γ), Hn(Γ) :=

MH∑

a=1

Ca,H

Ma,H∏

b=1

iTr(An,b,H · Γ),

such that Fn(Γ) → F (Γ) and Hn(Γ) → H(Γ) as n→ ∞ uniformly on bounded subsets of G∗
∞. Lastly,

note that by the Leibnitz rule for the Gâteaux derivative,

(6.90) dFn[Γ], dHn[Γ] ∈ GM , ∀M ≥ N0

and dFn[Γ] → dF [Γ] and dHn[Γ] → dH[Γ] in
⊕∞

k=1L(Ss(R
k),S ′

s(R
k)), as n → ∞, uniformly on

bounded subsets of G∗
∞.

Now by separate continuity of the Lie bracket [·, ·]G∞
and the separate continuity of the generalized

trace (see Proposition B.7), we obtain from the definition of {·, ·}G∗
∞

that

{F,H}G∗
∞
(Γ) = iTr

(
[dF [Γ], dH[Γ]]G∞

· Γ
)

= i lim
n1→∞

lim
n2→∞

Tr
(
[dFn1 [Γ], dHn2 [Γ]]G∞

· Γ
)

= lim
n1→∞

lim
n2→∞

{Fn1 ,Hn2}G∗
∞
(Γ),(6.91)

for each Γ ∈ G∗
∞. Since

(6.92) dFn1 [Γ]
(k) = dHn2 [Γ]

(k) = 0 ∈ gk,gmp, ∀k ≥ N0, (n1, n2) ∈ N
2, Γ ∈ G∗

∞,
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it follows from an examination of the definition of [dFn1 [Γ], dHn2 [Γ]]G∞
that

(6.93) [dFn1 [Γ], dHn2 [Γ]]
(k)
G∞

= 0 ∈ gk,gmp, ∀k ≥ 2N0 + 1, (n1, n2) ∈ N
2, Γ ∈ G∗

∞.

Therefore, if Γ = (γ(k))k∈N ∈ G∗
∞, then letting ΓM := (γ(k))Mk=1 be the projection onto an element of

G∗
M , for M ≥ 2N0 + 1, we see that

Tr
(
[dFn1 [Γ], dHn2 [Γ]]G∞

· Γ
)
= Tr

(
[dFn1 [Γ], dHn2 [Γ]]G∞

· Γ2N0+1

)

= Tr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]G∞

· Γ2N0+1

)
.(6.94)

For each (n1, n2) ∈ N
2, we have by Proposition 2.4 and the separate continuity of the generalized trace

that

Tr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]G∞

· Γ2N0+1

)
= lim

M→∞
Tr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM

· Γ2N0+1

)
.

(6.95)

For M ≫ 2N0+1, we have by Lemma 5.24 that

iTr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM

· Γ2N0+1

)
= {Fn1 ,Hn2}G∗

M
(Γ2N0+1)

=

N0∑

ℓ=1

iTr1,...,ℓ

(
dFn1 [Γ2N0+1]

(ℓ)XHn2 ,G
∗
M
(Γ2N0+1)

(ℓ)
)
,(6.96)

where

XHn2 ,G
∗
M
(Γ2N0+1)

(ℓ)

=
M∑

j=1

min{ℓ,j}∑

r=r0

C ′
ℓjkrM Trℓ+1,...,k




 ∑

αr∈P
ℓ
r

dHn2 [Γ2N0+1]
(j)
(αr ,ℓ+1,...,min{ℓ+j−r,k}), γ

(k)
2N0+1




(6.97)

and where

k := min{ℓ+ j − 1,M}, r0 := max{1,min{ℓ, j} − (M −max{ℓ, j})},(6.98)

and

C ′
ℓjkrM :=

(
j

r

)
MCℓ,MCj,M

Ck,M

∏r−1
m=1(M − k +m)

.(6.99)

Since dFn1 [Γ2N0+1]
(ℓ) = 0 ∈ gℓ and dHn2 [Γ2N0+1]

(j) = 0 ∈ gj , for ℓ, j ≥ N0, we see upon substituting the
right-hand side of (6.97) into (6.96) that, for any M ≥ 2N0+1, only pairs (ℓ, j) satisfying ℓ+j−1 ≤M
give a nonzero contribution to the resulting expression. Similarly, only pairs (ℓ, j) such that r0 = 1 give
a nonzero contribution to (6.96). Therefore, we may write

XHn2 ,G
∗
M
(Γ2N0+1)

(ℓ)

=
M∑

j=1

min{ℓ,j}∑

r=1

C ′
ℓjkrM Trℓ+1,...,ℓ+j−1




 ∑

αr∈P
ℓ
r

dHn2 [Γ2N0+1]
(j)
(αr ,ℓ+1,...,ℓ+j−r), γ

(ℓ+j−1)
2N0+1




.

(6.100)

By the analysis from the proof of Proposition 2.4, we have that

(6.101) lim
M→∞

C ′
ℓjkrM =

{
j, r = 1

0, 2 ≤ r ≤ min{ℓ, j}
.
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Since the summands in (6.100) are zero for j ≥ N0, it then follows that
(6.102)

XHn2 ,G
∗
M
(Γ2N0+1)

(ℓ) g∗
ℓ−−−−→

M→∞

∞∑

j=1

j Trℓ+1,...,ℓ+j−1

([
ℓ∑

α=1

dHn2 [Γ2N0+1]
(j)
(α,ℓ+1,...,ℓ+j−1), γ

(ℓ+j−1)
2N0+1

])

︸ ︷︷ ︸
=:XHn2 ,G∗

∞
(Γ2N0+1)(ℓ)

.

The preceding convergence result implies, by the separate continuity of the generalized trace, that for
fixed (n1, n2) ∈ N

2,

lim
M→∞

N0∑

ℓ=1

iTr1,...,ℓ

(
dFn1 [Γ2N0+1]

(ℓ)XHn2 ,G
∗
M
(Γ2N0+1)

(ℓ)
)

=

N0∑

ℓ=1

iTr1,...,ℓ

(
dFn1 [Γ2N0+1]

(ℓ)XHn2 ,G
∗
∞
(Γ2N0+1)

(ℓ)
)
.

(6.103)

Recalling from (6.92) that dHn2 [Γ2N0+1]
(j) = dHn2 [Γ]

(j), for all j ∈ N, and

γ
(ℓ+j−1)
2N0+1 = γ(ℓ+j−1), for ℓ+ j − 1 ≤ 2N0 + 1,

by definition of the projection Γ2N0+1, we obtain that

(6.104) XHn2 ,G
∗
∞
(Γ2N0+1)

(ℓ) =

∞∑

j=1

jTrℓ+1,...,ℓ+j−1

([
ℓ∑

α=1

dHn2 [Γ]
(j)
(α,ℓ+1,...,ℓ+j−1), γ

(ℓ+j−1)

])

︸ ︷︷ ︸
=:XHn2

(Γ)(ℓ)

,

for ℓ ∈ N≤N0 . Similarly, by (6.92), dFn1 [Γ2N0+1]
(ℓ) = dFn1 [Γ]

(ℓ), and so we have that

(6.105)

N0∑

ℓ=1

iTr1,...,ℓ

(
dFn1 [Γ2N0+1]

(ℓ)XHn2 ,G
∗
∞
(Γ2N0+1)

(ℓ)
)
=

N0∑

ℓ=1

iTr1,...,ℓ

(
dFn1 [Γ]

(ℓ)XHn2
(Γ)(ℓ)

)
.

We now proceed to the analysis of the iterative limits n2 → ∞ followed by n1 → ∞. Since

dHn2 [Γ] → dH[Γ]

in G∞, as n2 → ∞, it follows from Proposition B.10 and the universal property of the tensor product
that the (ℓ+ j − 1)-particle extensions

(6.106) dHn2 [Γ]
(j)
(α,ℓ+1,...,ℓ+j−1) −→ dH[Γ]

(j)
(α,ℓ+1,...,ℓ+j−1),

in Lgmp(S(Rℓ+j−1),S ′(Rℓ+j−1)) as M → ∞. for Γ ∈ G∗
∞ fixed. The continuity of the commutator

bracket, the good mapping property, and the separate continuity of the generalized trace imply that

(6.107) XHn2
(Γ) −→ XH(Γ).

in
∏∞

k=1L(S
′
s(R

k),Ss(R
k)) as n2 → ∞. Moreover, the continuity of the adjoint operation (see Lemma B.1)

and the self-adjointness of XHn2
(Γ) imply that XH(Γ) is self-adjoint, hence an element of G∗

∞. We

note that writing XH(Γ) is a slight abuse of notation since we have not yet verified that XH satisfies
all of the desired properties, but this limit, XH , will be our candidate Hamiltonian vector field from
the statement of the lemma.

For each n1 ∈ N fixed, the separate continuity of the generalized trace and the fact that dFn1 [Γ]
(ℓ) = 0,

for ℓ ≥ N0, then implies

(6.108) lim
n2→∞

iTr
(
dFn1 [Γ] ·XHn2

(Γ)
)
= iTr(dFn1 [Γ] ·XH(Γ)).
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Since dFn1 [Γ] → dF [Γ] in G∞, as n1 → ∞, by construction of the approximations Fn1 , another
application of the separate continuity of the generalized trace yields

(6.109) lim
n1→∞

iTr(dFn1 [Γ] ·XH(Γ)) = iTr(dF [Γ] ·XH(Γ)).

After a little bookkeeping, we have shown that for every Γ ∈ G∗
∞,

{F,G}G∗
∞
(Γ) = lim

n1→∞
lim

n2→∞
lim

M→∞
iTr
(
[dFn1 [Γ2N0+1], dHn2 [Γ2N0+1]]GM

· Γ2N0+1

)

= lim
n1→∞

lim
n2→∞

lim
M→∞

iTr
(
dF [Γ2N0+1] ·XHn2 ,GM

(Γ2N0+1)
)

= lim
n1→∞

lim
n2→∞

iTr
(
dFn1 [Γ] ·XHn2

(Γ)
)

= iTr(dF [Γ] ·XH(Γ)).(6.110)

We now verify that XH is a smooth map G∗
∞ → G∗

∞ in order to conclude by Remark 4.2. It remains

only to check the smoothness property. If H is a trace functional, then since dH[Γ](j) = dH[0](j)

satisfies the good mapping property, the desired conclusion is immediate. The general case then follows
by the Leibnitz rule for the Gâteaux derivative, since constant functionals and trace functionals generate
A∞. �

6.4. The Poisson morphism ι : S(R) → G∗
∞. We now turn to the proof of Theorem 2.12. We recall

that we are considering the map

(6.111) ι : S(R) → G∗
∞, ι(φ) :=

(
|φ⊗k〉 〈φ⊗k|

)
k∈N

,

which sends a 1-particle wave function to a density matrix ∞-hierarchy. We recall the definition

AS =
{
H : ∇sH ∈ C∞(S(R);S(R))

}
⊂ C∞(S(R);R).

and we restate Theorem 2.12 here for the reader’s convenience.

Theorem 2.12. The map ι is a Poisson morphism of (S(Rd),AS , {·, ·}L2) into (G∗
∞,A∞, {·, ·}G∗

∞
),

i.e. it is a smooth map such that

(2.39) {F ◦ ι,G ◦ ι}L2(φ) = {F,G}G∗
∞
(ι(φ)), ∀φ ∈ S(Rd),

for all functionals F,G ∈ A∞.

We recall that although we set d = 1 in the proof, it works in any dimension. To prove Theorem 2.12,
we will need the following technical result which gives a formula for the Gâteaux derivative of ι.

Lemma 6.16 (Formula for dι). Let φ,ψ ∈ S(R). Then for all k ∈ N,

dι[φ](ψ)(k) =

k∑

m=1

|φ⊗(m−1) ⊗ ψ ⊗ φ⊗(k−m)〉 〈φ⊗k|+
k∑

m=1

|φ⊗k〉 〈φ⊗m−1 ⊗ ψ ⊗ φ⊗(k−m)| .(6.112)

Proof. The desired formula follows readily from the product rule. �

Remark 6.17. We record here the observation that for φ ∈ S(R) fixed, each sum in (6.112) has co-
domain L(S ′

s(R
k),Ss(R

k)). We will use this observation throughout the proof of Theorem 2.12 below.

Proof of Theorem 2.12. Smoothness of ι follows readily from Lemma 6.16 and induction on k, therefore,
it remains to check that

(i) ι∗A∞ ⊂ AS ,
(ii) ι∗{·, ·}G∗

∞
= {ι∗·, ι∗·}S(R).
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We prove assertion (i). Let F ∈ A∞. We need to show that f := F ◦ ι ∈ AS , that is, we need to
show the symplectic L2 gradient of f exists and is a smooth S(R)-valued map. To this end, observe
that by the chain rule, for any φ, δφ ∈ S(R), we have

df [φ](δφ) = dF [ι(φ)](dι[φ](δφ))

= iTr(dF [ι(φ)] · dι[φ](δφ))

= i

∞∑

k=1

Tr1,...,k

(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
,(6.113)

where the penultimate equality follows from the identification of dF [ι(φ)] as an element of G̃∞, the
bi-dual of G∞, via the canonical trace pairing and the ultimate equality follows from the definition of
the dot product. Now applying Lemma 6.16 and the bilinearity of the generalized trace, we see that

Tr1,...,k

(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
= Tr1,...,k

(
dF [ι(φ)](k)

(
k∑

m=1

|φ⊗(m−1) ⊗ δφ ⊗ φ⊗(k−m)〉 〈φ⊗k|

))

+Tr1,...,k

(
dF [ι(φ)](k)

(
k∑

m=1

|φ⊗k〉 〈φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)|

))

=

〈
φ⊗k

∣∣∣∣∣dF [ι(φ)]
(k)

(
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

+

〈
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)]
(k)φ⊗k

〉
,(6.114)

where the ultimate equality is just applying the definition of the generalized trace. Since dF [ι(φ)](k) is
skew-adjoint, we have that

〈
φ⊗k

∣∣∣∣∣dF [ι(φ)]
(k)

(
k∑

m=1

φ⊗(m−1) ⊗ δφ ⊗ φ⊗(k−m)

)〉

= −

〈
dF [ι(φ)](k)φ⊗k

∣∣∣∣∣
k∑

m=1

φ⊗(m−1) ⊗ δφ ⊗ φ⊗(k−m)

〉
.

(6.115)

Since dF [ι(φ)](k) satisfies the good mapping property, the preceding expression can be written as
−〈ψF,k|δφ〉, where ψF,k ∈ S(R) is the unique Schwartz function coinciding with the bosonic tempered
distribution

(6.116)

〈
k∑

α=1

(·)⊗α φ
⊗(k−1)

∣∣∣∣∣dF [ι(φ)]
(k)φ⊗k

〉
,

and we recall the notation (·)⊗α φ
⊗(k−1) introduced in (6.14). Similarly,

(6.117)

〈
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)]
(k)φ⊗k

〉
= 〈δφ|ψF,k〉 .
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Therefore, we have shown that
〈
φ⊗k

∣∣∣∣∣dF [ι(φ)]
(k)

(
k∑

m=1

φ⊗(m−1) ⊗ δφ⊗ φ⊗(k−m)

)〉

+

〈
k∑

m=1

φ⊗(m−1) ⊗ δφ ⊗ φ⊗(k−m)

∣∣∣∣∣dF [ι(φ)]
(k)φ⊗k

〉

= 2i Im{〈δφ|ψF,k〉}

= iωL2(δφ, ψF,k)(6.118)

and consequently by (6.113), (6.114), (6.118) and bilinearity

(6.119) i
∞∑

k=1

Tr1,...,k

(
dF [ι(φ)](k)dι[φ](k)(δφ)

)
= −

∞∑

k=1

ωL2(δφ, ψF,k) = ωL2(ψF , δφ),

where we have defined ψF :=
∑∞

k=1 ψF,k and used the anti-symmetry of ωL2 to obtain the ultimate
equality. Note that moving the summation inside the second entry of ωL2 is justified by the bilinearity
of the symplectic form since dF [ι(φ)](k) = 0 for all but finitely many k, by assumption that F ∈ A∞

and the generating structure of A∞. Consequently, ψF,k ≡ 0 for all but finitely many k. We conclude
that

(6.120) df [φ](δφ) = ωL2(ψF , δφ),

and hence, recalling the definition of the symplectic L2 gradient in Remark 4.12, we have that

(6.121) ∇sf(φ) = ψF ∈ S(R).

Lastly, using the identity (6.121), we prove assertion (ii). By definition of the Hamiltonian vector
field XG(ι(φ)) in (P3) together with Lemma 6.15, which gives a formula for XG(ι(φ)), we have that for
F,G ∈ A∞,

{F,G}G∗
∞
(ι(φ))

= dF [ι(φ)](XG(ι(φ)))

= i
∞∑

k=1

Tr1,...,k


dF [ι(φ)](k)

∞∑

j=1

jTrk+1,...,k+j−1

([
k∑

α=1

dG[ι(φ)]
(j)
(α,k+1,...,k+j−1), ι(φ)

(k+j−1)

])
.

(6.122)

Observe that

(6.123) dG[ι(φ)]
(j)
(α,k+1,...,k+j−1)ι(φ)

(k+j−1) = |φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j)〉 〈φ⊗(k+j−1)| ,

where φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j) is the tempered distribution in S ′(Rk+j−1) defined by
(
φ⊗(k−1) ⊗α dG[ι(φ)](j)(φ⊗j)

)
(xk+j−1)

:= φ⊗(α−1)(xα−1)φ
⊗(k−α)(xα+1;k)dG[ι(φ)]

(j)(xα, xk+1;k+j−1).
(6.124)

Since dG[ι(φ)](j) has the good mapping property by assumption G ∈ A∞, it follows from Remark B.13
and the definition of the generalized partial trace that

Trk+1,...,k+j−1

(
dG[ι(φ)]

(j)
(α,k+1,...,k+j−1)ι(φ)

(k+j−1)
)

= |φ⊗(α−1) ⊗ ψG,j,α ⊗ φ⊗(k−α)〉 〈φ⊗k| ,
(6.125)

where ψG,j,α ∈ S(R) is the unique Schwartz function such that

(6.126) 〈δφ|ψG,j,α〉 =
〈
δφ ⊗α φ

⊗(j−1)
∣∣∣dG[ι(φ)](j)(φ⊗j)

〉
, ∀δφ ∈ S(R).
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Moreover, since dG[ι(φ)](j)(φ⊗j) ∈ S ′
s(R

j), it follows from Lemma 4.27 that

(6.127)
〈
δφ ⊗α φ

⊗(j−1)
∣∣∣dG[ι(φ)](j)(φ⊗j)

〉
=
〈
δφ ⊗α′ φ⊗(j−1)

∣∣∣dG[ι(φ)](j)(φ⊗j)
〉
,

for any 1 ≤ α,α′ ≤ j, and therefore ψG,j,α = ψG,j,α′ . Hence,

Trk+1,...,k+j−1

(
dG[ι(φ)]

(j)
(α,k+1,...,k+j−1)ι(φ)

(k+j−1)
)

=
1

j
|φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)〉 〈φ⊗k| ,

(6.128)

where ψG,j is defined the same as ψF,k above, except with (F, k) replaced by (G, j). By completely

analogous reasoning together with the skew-adjointness of dG[ι(φ)](j), we also obtain that

Trk+1,...,k+j−1

(
ι(φ)(k+j−1)dG[ι(φ)]

(j)
(α,k+1,...,k+j−1)

)

= −
1

j
|φ⊗k〉 〈φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)| ,

(6.129)

Substituting the identities (6.128) and (6.129) into (6.122), we obtain the expression

i

∞∑

k=1

Tr1,...,k

(
dF [ι(φ)](k)

( ∞∑

j=1

k∑

α=1

|φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)〉 〈φ⊗k|

+ |φ⊗k〉 〈φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)|
))

= i

∞∑

j=1

∞∑

k=1

〈
φ⊗k

∣∣∣∣∣dF [ι(φ)]
(k)

(
k∑

α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

)〉

+

〈
k∑

α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

∣∣∣∣∣dF [ι(φ)]
(k)φ⊗k

〉

= −2
∞∑

j=1

∞∑

k=1

Im

{〈
k∑

α=1

φ⊗(α−1) ⊗ ψG,j ⊗ φ⊗(k−α)

∣∣∣∣∣dF [ι(φ)]
(k)φ⊗k

〉}

= −2

∞∑

j=1

∞∑

k=1

Im{〈ψG,j|ψF,k〉},(6.130)

where the penultimate equality follows from the skew-adjointness of dF [ι(φ)](k) and the ultimate equal-
ity follows from the definition of ψF,k. Since ψF,k = ψG,j ≡ 0 for all but finitely many j, k, we are
justified in writing

(6.131) − 2
∞∑

j=1

∞∑

k=1

Im{〈ψG,j|ψF,k〉} = −2 Im{〈ψG|ψF 〉},

where ψF is defined as above and ψG :=
∑∞

j=1ψG,j is defined completely analogously. Recalling (4.15)

for the definition of ωL2 and identity (6.121) for the symplectic gradient, we obtain that

(6.132) − 2 Im{〈ψG|ψF 〉} = ωL2(∇sf(φ),∇sg(φ)).

After a little bookkeeping, we realize that we have shown that

(6.133) {F,G}G∗
∞
(ι(φ)) = ωL2(∇sf(φ),∇sg(φ)).

Since the symplectic form ωL2 canonically induces the Poisson bracket {·, ·}L2 through

(6.134) {f, g}L2(φ) = ωL2(∇sf(φ),∇sg(φ)),

the proof of assertion (ii) is complete. �
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7. GP Hamiltonian flows

In this last section, we prove Theorem 2.3 and its limiting version Theorem 2.10.

7.1. BBGKY Hamiltonian Flow. For the reader’s benefit, we recall that the BBGKY Hamiltonian
HBBGKY,N is the trace functional given by

(7.1) HBBGKY,N (ΓN ) = Tr(WBBGKY,N · ΓN ),

where

(7.2) WBBGKY,N = (−∆x, κVN (X1 −X2), 0, . . .),

with κ and VN as in (2.3). We also recall here the statement of Theorem 2.3.

Theorem 2.3. Let I ⊂ R be a compact interval. Then ΓN = (γ
(k)
N )Nk=1 ∈ C∞(I;G∗

N ) is a solution to
the BBGKY hierarchy (2.4) if and only if

(2.18)
d

dt
ΓN = XHBBGKY,N

(ΓN ),

where XHBBGKY,N
is the unique vector field defined by HBBGKY,N (see Definition 4.1) with respect to

the weak Poisson structure (G∗
N ,AH,N , {·, ·}G∗

N
).

We now proceed to proving Theorem 2.3. Since by Lemma 5.24, we have the formula

XHBBGKY,N
(ΓN )(ℓ)

=
N∑

j=1

min{ℓ,j}∑

r=r0

C ′
ℓjkrN Trℓ+1,...,k




 ∑

αr∈P
ℓ
r

dHBBGKY,N [ΓN ]
(j)
(αr ,ℓ+1,...,min{ℓ+j−r,k}), γ

(k)
N




,

(7.3)

where

k := min{ℓ+ j − 1, N}, r0 := max{1,min{ℓ, j} − (N −max{ℓ, j})},(7.4)

and

C ′
ℓjkrN :=

NCℓ,NCj,N

Ck,N

∏r−1
m=1(N − k +m)

(
j

r

)
,

our task reduces to simplifying the expression in the right-hand side of (7.3).
To this end, we first need a formula for the Gâteaux derivative dHBBGKY,N of HBBGKY,N and its

identification with an observable N -hierarchy via the canonical trace pairing. Indeed, let N ∈ N. Then

for any ΓN = (γ
(k)
N )Nk=1 ∈ G∗

N , we have that

(7.5) dHBBGKY,N [ΓN ](δΓN ) = Tr(WBBGKY,N · δΓN ), ∀δΓN ∈ G∗
N .

Therefore, dHBBGKY,N [ΓN ] = dHBBGKY,N [0] is uniquely identifiable with the observable 2-hierarchy
−iWBBGKY,N . As a consequence, we see that

(7.6) dHBBGKY,N [ΓN ]
(j)
(αr ,ℓ+1,...,min{ℓ+j−r,k}) = 0

for 3 ≤ j ≤ N . Therefore, by (7.3), we have

XHBBGKY,N
(ΓN )(ℓ) = −iC ′

ℓ1ℓ1N

ℓ∑

α=1

[
(−∆x1)(α), γ

(ℓ)
N

]

− iκ

min{ℓ,2}∑

r=r0

C ′
ℓ2krN

∑

αr∈P
ℓ
r

Trℓ+1,...,k

([
(VN (X1 −X2))(αr ,ℓ+1,...,min{ℓ+2−r,k}), γ

(k)
N

])

=: Term1,ℓ +Term2,ℓ.(7.7)
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We first consider Term1,ℓ. Note that (−∆x)(α) = −∆xα . Now unpacking the definition of the
normalizing constant C ′

ℓ1ℓ1N , we find that

C ′
ℓ1ℓ1N =

NCℓ,NC1,N

Cℓ,N
= NC1,N = 1,(7.8)

where the ultimate equality follows from the fact that C1,N = 1/|PN
1 | = 1/N . Hence,

(7.9) Term1,ℓ = −i
ℓ∑

α=1

[
−∆xα , γ

(ℓ)
N

]
.

We next consider Term2,ℓ. We divide into cases based on the values of ℓ ∈ {1, . . . , N}.

• If ℓ = 1, then

(7.10) Term2,1 = −iκC ′
1221N Tr2

([
(VN (X1 −X2)(1,2), γ

(2)
N

])
,

where we use that k = 2. Since (VN (X1 −X2))(1,2) = VN (X1 −X2), it follows that

(7.11) Term2,1 = −iκC ′
1221N Tr2

([
VN (X1 −X2), γ

(2)
N

])
.

Unpacking the definition of the constant C ′
1221N , we see that

C ′
1221N =

NC1,NC2,N

C2,N

(
2

1

)
= 2NC1,N = 2,(7.12)

hence,

(7.13) Term2,1 = −2iκTr2

([
VN (X1 −X2), γ

(2)
N

])
.

• If 2 ≤ ℓ ≤ N − 1, then

(7.14) r0 = max{min{ℓ, 2} − (N −max{ℓ, 2}), 1} = max{2− (N − ℓ), 1} = 1

and therefore

(7.15) Term2,ℓ = −iκ
2∑

r=1

C ′
ℓ2(ℓ+1)rN

∑

αr∈P
ℓ
r

Trℓ+1

([
VN (X1 −X2)(αr,ℓ+1), γ

(ℓ+1)
N

])
,

where we use that k = ℓ+ 1. If r = 1, then

∑

α1∈P
ℓ
1

Trℓ+1

([
VN (X1 −X2)(α1,ℓ+1), γ

(ℓ+1)
N

])
=

ℓ∑

α=1

Trℓ+1

([
VN (Xα −Xℓ+1), γ

(ℓ+1)
N

])
,(7.16)

and recalling (5.9), we have

(7.17) C ′
ℓ2(ℓ+1)1N =

NCℓ,NC2,N

Cℓ+1,N

(
2

1

)
=

2(N − ℓ)

(N − 1)
.

If r = 2, then min{ℓ+ 2− r, k} = ℓ, which per our notation implies that

∑

αr∈P
ℓ
r

Trℓ+1

([
VN (X1 −X2)(αr ,ℓ+1), γ

(ℓ+1)
N

])
=

∑

(α1,α2)∈P ℓ
2

Trℓ+1

([
(VN (X1 −X2)(α1,α2), γ

(ℓ+1)
N

])
.

(7.18)

Since α1, α2 ∈ N≤ℓ and VN (X1 −X2)(α1,α2) = VN (Xα1 −Xα2), we have that

(7.19) Trℓ+1

([
(VN (X1 −X2)(α1,α2), γ

(ℓ+1)
N

])
=
[
VN (Xα1 −Xα2), γ

(ℓ)
N

]
.
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Now since k = ℓ+ 1, it follows from our computation in (7.17) that

(7.20) C ′
ℓ2(ℓ+1)2N =

NCℓ,NC2,N

Cℓ+1,N(N − k + 1)

(
2

2

)
=

1

N − 1
.

Since VN (Xα1 −Xα2) = VN (Xα2 −Xα1) by the evenness of the potential V , it follows that

(7.21)
∑

α2∈P
ℓ
2

[
VN (Xα1 −Xα2), γ

(ℓ)
N

]
=

2

N − 1

∑

1≤α1<α2≤ℓ

[
VN (Xα1 −Xα2), γ

(ℓ)
N

]
.

After a little bookkeeping, we obtain that

Term2,ℓ = −iκ
2(N − ℓ)

N − 1

ℓ∑

α=1

Trℓ+1

([
VN (Xα −Xℓ+1), γ

(ℓ+1)
N

])

− iκ
2

N − 1

∑

1≤α1<α2≤ℓ

[
VN (Xα1 −Xα2), γ

(ℓ)
N

]
.

(7.22)

• Lastly, if ℓ = N , then

(7.23) r0 = max{min{N, 2} − (N −max{N, 2}), 1} = 2.

Moreover, k = N , so that

(7.24) Term2,N = −iκC ′
N2N2N

∑

α2∈P
N
2

[
(VN (X1 −X2))(α2)

, γ
(N)
N

]
.

Since

(7.25) C ′
N2N2N =

NCN,NC2,N

CN,N

(
2

2

)
=

1

N − 1
,

we can again use the evenness of the potential V to conclude that

(7.26) Term2,N = −
2iκ

N − 1

∑

1≤α1<α2≤N

[
VN (Xα1 −Xα2), γ

(N)
N

]
.

Putting our case analysis together, we obtain

(7.27) XHBBGKY,N
(ΓN )(1) = −i

[
−∆x1 , γ

(1)
N

]
− 2iκTr2

([
VN (X1 −X2), γ

(2)
N

])
,

while for 2 ≤ ℓ ≤ N − 1 we have

XHBBGKY,N
(ΓN )(ℓ) = −i

ℓ∑

α=1

[
−∆xα, γ

(ℓ)
N

]
−

2iκ

N − 1

∑

1≤α1<α2≤ℓ

[
VN (Xα1 −Xα2), γ

(ℓ)
N

]

−
2iκ(N − ℓ)

N − 1

ℓ∑

α=1

Trℓ+1

([
VN (Xα −Xℓ+1), γ

(ℓ+1)
N

])
,

(7.28)

and finally

(7.29) XHBBGKY,N
(ΓN )(N) = −i

N∑

α=1

[
−∆xα , γ

(ℓ)
N

]
−

2iκ

N − 1

∑

1≤α1<α2≤N

[
VN (Xα1 −Xα2), γ

(N)
N

]
,

which we see, upon comparison with (2.4), are precisely the equations for solutions to the BBGKY
hierarchy, thus completing the proof.
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7.2. GP Hamiltonian Flow. In this subsection, we prove Theorem 2.10. For the reader’s benefit, we
recall that the GP Hamiltonian HGP is the trace functional given by

(7.30) HGP (Γ) := Tr(WGP · Γ), Γ ∈ G∗
∞; WGP = (−∆x, κδ(X1 −X2), 0, . . .).

We recall the statement of the theorem.

Theorem 2.10 (Hamiltonian structure for GP). Let I ⊂ R be a compact interval. Then Γ ∈ C∞(I;G∗
∞)

is a solution to the GP hierarchy (2.5) if and only if

(2.31)

(
d

dt
Γ

)
(t) = XHGP

(Γ(t)), ∀t ∈ I,

where XHGP
is the unique Hamiltonian vector field defined by HGP with respect to the weak Poisson

structure (G∗
∞,A∞, {·, ·}G∗

∞
).

The proof is similar to the proof that the BBGKY hierarchy is a Hamiltonian equation of motion,
and Theorem 2.10 may be viewed as the N → ∞ limit of Theorem 2.3. In our companion work [23],
we will obtain Theorem 2.10 for the 1D cubic GP hierarchy as part of a more general theorem which
connects the Hamiltonian structure of an infinte coupled system of linear equations, which we call the
n-th GP hierarchy, to the Hamiltonian structure of the n-th equation of the nonlinear Schrödinger
hierarchy, which is of fundamental interest in the study of the NLS as an integrable system (see, for
instance, the survey of Palais [29]). The GP hierarchy under consideration here then corresponds to
the n = 3 equation of the aforementioned family of equations.

We now proceed to proving Theorem 2.10. Recalling equation (2.5) for the GP hierarchy, we need
to show that

(7.31) XHGP
(Γ)(k) = −i

([
−∆xk

, γ(k)
]
+ 2κBk+1γ

(k+1)
)
, k ∈ N,

for any Γ = (γ(k)) ∈ G∗
∞, which we do by direct computation.

Let Γ ∈ G∗
∞. By application of Lemma 6.15 to HGP together with the identification

(7.32) dHGP [Γ] = −iWGP ,

which is immediate from the fact that HGP is a trace functional, we know that

XHGP
(Γ)(k) =

∞∑

j=1

j Trk+1,...,k+j−1

([
k∑

α=1

dHGP [Γ]
(j)
(α,k+1,...,k+j−1), γ

(k+j−1)

])
.(7.33)

Since −iW
(j)
GP = 0 ∈ gj,gmp, for j ≥ 3, we see from (7.30) that the formula for XHGP

(Γ) simplifies to

XHGP
(Γ)(k) = −i

k∑

α=1

(
(−∆x1)(α)γ

(k) − γ(k)(−∆x1)(α)

)

− i2κ
k∑

α=1

Trk+1

(
δ(X1 −X2)(α,k+1)γ

(k+1)
)
− Trk+1

(
γ(k+1)δ(X1 −X2)(α,k+1)

)
,

(7.34)

for k ∈ N.
Since (−∆x1)(α) = −∆xα and ∆xk

=
∑k

α=1 ∆xα by definition, it follows that

(7.35) − i

k∑

α=1

(
(−∆x1)(α)γ

(k) − γ(k)(−∆x1)(α)

)
= −i

[
−∆xk

, γ(k)
]
.

Since δ(X1 −X2)(α,k+1) = δ(Xα −Xk+1), it follows from Proposition B.8 for the generalized partial

trace that Trk+1(δ(Xα −Xk+1)γ
(k+1)) is the element of L(S ′

s(R
k),S(Rk)) with Schwartz kernel

(7.36)

∫

R

dxk+1δ(xα − xk+1)γ
(k+1)(xk+1;x

′
k, xk+1) = γ(k+1)(xk, xα;x

′
k, xα) = B+

α;k+1γ
(k+1)(xk;x

′
k).
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Similarly, Trk+1(γ
(k+1)δ(Xα −Xk+1)) is the operator with Schwartz kernel

(7.37)

∫

R

dx′k+1δ(x
′
α − xk+1)γ

(k+1)(xk, x
′
k+1;x

′
k+1) = γ(k+1)(xk, x

′
α;x

′
k, x

′
α) = B−

α;k+1γ
(k+1)(xk;x

′
k).

Since Bk+1 =
∑k

α=1B
+
α;k+1 −B−

α;k+1 by definition, we conclude that

− 2κi
k∑

α=1

Trk+1

(
δ(X1 −X2)(α,k+1)γ

(k+1)
)
− Trk+1

(
γ(k+1)δ(X1 −X2)(α,k+1)

)

= −2κiBk+1γ
(k+1).

(7.38)

After a little bookkeeping, we see that we have shown (7.31), thus completing the proof of Theo-
rem 2.10.

Appendix A. Locally convex spaces

A.1. Calculus on locally convex spaces. The following material is intended as a crash course on
calculus in the setting of locally convex topological vector spaces. Since we are in general not dealing
with Banach spaces or Banach manifolds, the usual notion of the Fréchet derivative is not suitable for
our purposes. Indeed, the prototypical example we ask the reader to keep in mind is the Schwartz space
S(R).

One main issue posed by this more general setting is that there are several inequivalent notions of the
derivative for maps between locally convex spaces. Here, we use the definition which is typically called
the Gâteaux derivative, which has the property that C1 maps are continuous,27 and hence enables us
to regard the derivative of a smooth real-valued functional f at a point x ∈ X, which we denote by
df [x], as an element of the topological dual X∗.

The following material can be found in lecture notes by Milnor [24]. Many of the definitions we
record are standard, but we include them for completeness. The proofs are omitted, but can be found
in [11].

Definition A.1 (Topological vector space). A real or complex topological vector space (tvs) X is a
vector space over a field K ∈ {R,C} with a topology τ which is Hausdorff and such that the operations
of addition

(A.1) + : X ×X → X, (x, y) 7→ x+ y

and scalar multiplication

(A.2) · : K×X → X, (λ, x) 7→ λx

are continuous (the domains are equipped with the product topology).

Definition A.2 (Locally convex space). A tvs X is said to be locally convex if every neighborhood
U ∋ 0 contains a neighborhood U ′ ∋ 0 which is convex.

A particularly nice consequence of local convexity is the following Hahn-Banach type result.

Proposition A.3 (Hahn-Banach). If X is locally convex, then given two distinct vectors x, y ∈ X,
there exists a continuous K-linear map ℓ : X → K with ℓ(x) 6= ℓ(y).

Definition A.4 (Gâteaux derivative). Let X and Y be locally convex R-tvs, let X0 ⊂ X and Y0 ⊂ Y
be open sets, and let f : X0 → Y0 be a continuous map. Given a point x ∈ X0 and a direction v ∈ X,
we define the directional derivative or Gâteaux derivative of f at x in the direction v to be the vector

(A.3) f ′(x; v) =: f ′x(v) := lim
t→0

f(x+ tv)− f(x)

t
,

27For a notion of smoothness which allows for maps to be smooth but not continuous, we refer the reader to the
monograph [14].
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if this limit exists. We call the map f ′x : X → Y the derivative of f at the point x. We use the notation
df [x](v) := f ′(x; v).

Definition A.5 (C1 Gâteaux map). Let X0, Y0, and f be as above. The map f : X0 → Y0 is C1 if
f ′(x; v) exists for all x ∈ X0, v ∈ X and is continuous as a map

(A.4) f ′ : X0 ×X → Y,

where the domain is equipped with the product topology.

The Gâteaux derivative f ′x of a map f between two locally convex spaces may fail to be linear in the
direction v. However, C1 smoothness is enough to ensure linearity in the direction variable. We always
work with C∞ functionals (see Definition A.7), so the requisite C1 smoothness is not problematic for
our purposes.

Proposition A.6 (Linearity of derivative). If f is C1, then for all x0 fixed, the map

(A.5) X → Y, v 7→ f ′(x0; v)

is linear.

Having defined the derivative and C1 regularity, we can inductively define higher-order derivatives
and regularity.

Definition A.7 (Higher derivatives). The map f : X0 → Y0 is C2 Gâteaux if f is a C1 Gâteaux map
and for each v1 ∈ X fixed, the map

(A.6) X0 → Y, x 7→ f ′(x; v1)

is C1 with Gâteaux derivative

(A.7) lim
t→0

f ′(x+ tv2; v1)− f ′(x; v1)

t

depending continuously on (x; v1, v2) ∈ X0 ×X ×X equipped with the product topology. If this limit
exists, we call it the second Gâteaux derivative of f at x in the directions v1, v2 and denote it by
f ′′(x; v1, v2). We inductively define Cr maps X0 → Y0. If a map is Cr for every r ∈ N, then we say
that f is a C∞ map or alternatively, smooth map.

Proposition A.8 (Symmetry and r-linearity of f
(r)
x0 ). If for r ∈ N, the map f is Cr, then for each

fixed x0 ∈ X0, the map

(A.8) X × · · · ×X︸ ︷︷ ︸
r

→ Y, (v1, . . . , vr) 7→ f (r)(x0; v1, . . . , vr)

is r-linear and symmetric, i.e. for any permutation π ∈ Sr,

(A.9) f (r)(x0; vπ(1), . . . , vπ(r)) = f (r)(x0; v1, . . . , vr).

Proposition A.9 (Composition). If f : X0 → Y0 and g : Y0 → Z0 are Cr maps, then g ◦ f : X0 → Z0

is Cr and the derivative of (g ◦ f) at the point x ∈ X0 is the map g′
f(x) ◦ f

′
x : X → Z.

A.2. Smooth locally convex manifolds. In this subsection, we use the calculus reviewed in the
preceding subsection to introduce the basics of smooth manifolds modeled on locally convex topological
vector spaces, which is needed for the construction of the Lie-Poisson manifold structure in Section 6.
Much of the theory parallels the finite-dimensional setting, where the model space R

d is now replaced
by an arbitrary, possibly infinite-dimensional locally convex tvs. Consequently, many of the definitions
below will be familiar to the reader with a minimal knowledge of differential topology, but we record
them for completeness. As in the last subsection, we closely follow [24] in our presentation.

Definition A.10 (Smooth manifold). A smooth manifold modeled on a locally convex space V consists
of a regular, Hausdorff topological space M together with a collection of homeomorphisms ϕα : Vα →
Mα satisfying the following properties:
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(M1) Vα ⊂ V is open.
(M2) Mα ⊂M is open and

⋃
αMα =M .

(M3) ϕ−1
β ◦ ϕα : ϕ−1

α (Mα ∩Mβ) → ϕ−1
β (Mα ∩Mβ) is a smooth map between open subsets of V . We

refer to the maps ϕα as local coordinate systems on M and the maps ϕ−1
α as coordinate charts.

Remark A.11. We will sometimes say that the manifold M is a Fréchet manifold if the locally convex
model space V is a Fréchet space.

Using the smooth structure together with the calculus from the last subsection, we can define the
notion of a smooth map between manifolds.

Definition A.12 (Smooth map). If M1 and M2 are smooth manifolds modeled on locally convex spaces
V1 and V2, respectively, then a continuous function f :M1 →M2 is smooth if the composition

(A.10) ϕ−1
β,2 ◦ f ◦ ϕα,1 : ϕ

−1
α,1

(
M1,α ∩ f−1(M2,β)

)
→ V2,β

is smooth whenever f(M1,α) ∩M2,β 6= ∅. We say that f is a diffeomorphism if it is bijective and both
f and f−1 are smooth.

Definition A.13 (Submanifold). A subset N of a smooth locally convex manifold M is a submanifold
if for each m ∈ N , there exists a chart (Mα, ϕ

−1
α ) about the point m, such that ϕ−1

α (Mα ∩ N) =
ϕ−1
α (Mα) ∩W , where W is a closed subspace of the space V on which M is modeled.

Remark A.14. The submanifold N is smooth locally convex manifold modeled on W . Indeed, the
reader may check that the maps ϕα|Vα∩W : Vα ∩W → Mα ∩ N are homeomorphisms which satisfy
properties (M1) - (M3).

In this work, we use the kinematic definition of tangent vectors (i.e. equivalence classes of smooth
curves), as opposed to the operational definition (i.e. derivations). While these two definitions are
equivalent in the finite-dimensional setting, they are in general inequivalent in the infinite-dimensional
setting.

Definition A.15 (Tangent space). Let ϕα : Vα → Mα be a local coordinate system on M with
x0 ∈ Mα. Let p1, p2 : I → M be smooth maps on an open interval I ⊂ R with pi(0) = x0 for i = 1, 2.
We say that p1 ∼ p2 if and only if

(A.11)
d

dt

(
ϕ−1
α ◦ p1

)
|t=0 =

d

dt

(
ϕ−1
α ◦ p2

)
|t=0.

The reader may verify that ∼ defines an equivalence relation on smooth curves p : I → M with
p(0) = x0. The set of all such equivalence classes is called the tangent space at x0, denoted by Tx0M .

Definition A.16 (Tangent bundle). We define the tangent bundle TM as a set by
∐

x∈M

TxM.

We define a smooth locally convex structure on TM modeled on V ×V by the local coordinate systems

(A.12) ψα : Vα × V → TMα ⊂ TM,

where ψα(u, v) is defined to be the equivalence class containing the smooth curve t 7→ ϕα(u + tv)
through the point ϕα(u) ∈ M . The reader may verify that ψα maps {u} × V isomorphically onto the
tangent space Tϕα(u)M .

Definition A.17 (Derivative). Let M1 and M2 be smooth locally convex manifolds. A smooth map
f :M1 →M2 induces a continuous map

(A.13) f ′x : TxM1 → Tf(x)M2, [p1] 7→ [f ◦ p1]

called the derivative of f at x. Together, the maps f ′x induce a smooth map

(A.14) f∗ : TM1 → TM2, (x, v) 7→ (f(x), f ′x(v))
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which maps TxM1 linearly into Tf(x)M2.

Definition A.18 (Smooth vector field). A smooth vector field on M is a smooth map X : M → TM
such that X(x) ∈ TxM . We denote the vector space of smooth vector fields on M by X(M).

Appendix B. Distribution-valued operators

We review and develop some properties of distribution-valued operators (DVOs), that is, elements
of L(S(Rk),S ′(Rk)), which are used extensively in this work. Most of these properties are a special
case of a more general theory involving topological tensor products of locally convex spaces for which
we refer the reader to [32, 12, 36] for further reading.

B.1. Adjoint. In this subsection, we record some properties of the adjoint of a DVO as well as some
properties of the map taking a DVO to its adjoint. The proofs follow more or less readily from the
definition and standard arguments, and are left to the reader.

Lemma B.1 (Adjoint map). Let k ∈ N, and let A(k) ∈ L(S(Rk),S ′(Rk)). Then there is a unique map

(A(k))∗ ∈ L(S(Rk),S ′(Rk)) such that

(B.1)
〈
(A(k))∗g(k), f (k)

〉
S′(Rk)−S(Rk)

=
〈
A(k)f (k), g(k)

〉
S′(Rk)−S(Rk)

, ∀f (k), g(k) ∈ S(Rk).

Furthermore, the adjoint map

(B.2) ∗ : L(S(Rk),S ′(Rk)) → L(S(Rk),S ′(Rk)), A(k) 7→ (A(k))∗

is a continuous involution.
Additionally, for B(k) ∈ L(S ′(Rk),S ′(Rk)), there exists a unique linear map in (B(k))∗ ∈ L(S(Rk),S(Rk))

such that

(B.3)
〈
u(k), (B(k))∗g(k)

〉
S′(Rk)−S(Rk)

=
〈
B(k)u(k), g(k)

〉
S′(Rk)−S(Rk)

, ∀(g(k), u(k)) ∈ S(Rk)× S ′(Rk).

Moreover, the adjoint map

(B.4) ∗ : L(S ′(Rk),S ′(Rk)) → L(S(Rk),S(Rk))

is a continuous involution.

The next lemma is useful for computing the adjoint of the composition of maps. We omit the proof,
which is standard.

Lemma B.2. Let A(k) ∈ L(S(Rk),S ′(Rk)) and B(k) ∈ L(S ′(Rk),S ′(Rk)). Then

(B.5)
(
B(k)A(k)

)∗
= (A(k))∗(B(k))∗.

Definition B.3 (Self- and skew-adjoint). Given k ∈ N, we say that an operator A(k) ∈ L(S(Rk),S ′(Rk))

is self-adjoint if (A(k))∗ = A(k). Similarly, we say that A(k) ∈ L(S(Rk),S ′(Rk)) is skew-adjoint if

(A(k))∗ = −A(k).

Remark B.4. Note that if A(k) ∈ L(S(Rk),S ′(Rk)) is an operator mapping S(Rk) → L2(Rk), then our
definition of self-adjoint does not coincide with the usual Hilbert space definition for densely defined
operators, but instead with the definition of a symmetric operator.
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B.2. Trace and partial trace. In this subsection, we generalize the trace of an operator on a separable
Hilbert space to the DVO setting. First, we record some remarks to motivate our definition. Since the
operator |f〉 〈g|, where f, g ∈ L2(RN ), has trace equal to 〈f |g〉, we might try to generalize the notion
of trace to pure tensors of the form f ⊗ u, where u ∈ S ′(RN ) and f ∈ S(RN ), by defining

(B.6) Tr1,...,N(f ⊗ u) = 〈u, f〉S′(RN )−S(RN )

and hope to extend this definition to S(RN )⊗̂S ′(RN ) through linearity, continuity, and density. How-
ever, the evaluation map

(B.7) S(RN )× S ′(RN ) → C, (f, u) 7→ 〈u, f〉S′(RN )−S(RN ),

is not continuous, but only separately continuous, preventing us from appealing to the universal property
of the tensor product to guarantee the existence of a unique generalized trace

(B.8) Tr1,...,N : S(RN )⊗̂S ′(RN ) → C

satisfying (B.6).
Nonetheless, by viewing the trace as a bilinear map and using the canonical isomorphisms

(B.9) L(S(RN ),S ′(RN )) ∼= S ′(R2N ) and L(S ′(RN ),S(RN )) ∼= S(R2N ),

we can uniquely define the generalized trace of the right-composition of an operator in L(S(RN ),S ′(RN ))
with an operator in L(S ′(RN ),S(RN )) through the pairing of their Schwartz kernels. More precisely,

(B.10) Tr1,...,N (A(N)γ(N)) = 〈A(N), (γ(N))t〉S′(R2N )−S(R2N )

is, with an abuse of notation, the distributional pairing of the Schwartz kernel of A(N), which belongs to
S ′(R2N ), with the Schwartz kernel of the transpose of γ(N),28, which belongs to S(R2N ). Equivalently,
for each fixed A(N) ∈ L(S(RN ),S ′(RN )), the Schwartz kernel theorem implies the existence of a unique
linear map L(S ′(RN ),S(RN )) → C, such that

(B.11) Tr1,...,N

(
A(N)(f ⊗ g)

)
= 〈A(N)f, g〉S′(RN )−S(RN )

for all f, g ∈ S(RN ).

Definition B.5 (Generalized trace). We define

Tr1,...,N : L(S(RN ),S ′(RN ))× L(S ′(RN ),S(RN )) → C

Tr1,...,N

(
A(N)γ(N)

)
:= 〈A(N), (γ(N))t〉S′(R2N )−S(R2N ).

(B.12)

Remark B.6. The reader can check that if A(N) ∈ L(S(RN ),S ′(RN )) and γ(N) ∈ L(S ′(RN ),S(RN ))

are such that A(N)γ(N) is a trace-class operator ρ(N), then our definition of the generalized trace of
A(N)γ(N) coincides with the usual definition of the trace of ρ(N) as an operator on the Hilbert space
L2(RN ).

We now establish some properties of the generalized trace which are reminiscent of properties of the
usual trace encountered in functional analysis.

Proposition B.7 (Properties of generalized trace). Let A(N) ∈ L(S(RN ),S ′(RN )), and let γ(N) ∈
L(S ′(RN ),S(RN )). The following properties hold:

(i) Tr1,...,N is separately continuous.
(ii) We have the following identity:

(B.13) Tr1,...,N

(
(A(N))∗γ(N)

)
= Tr1,...,N

(
A(N)(γ(N))∗

)
.

28(γ(N))t is the operator f 7→
∫
RN dx′

Nγ(x′
N ;xN )f(x′

N).
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(iii) If B(N) ∈ L(S ′(RN ),S ′(RN )), then Tr1,...,N satisfies the cyclicity property

(B.14) Tr1,...,N

((
B(N)A(N)

)
γ(N)

)
= Tr1,...,N

(
A(N)

(
γ(N)B(N)

))
.

Proof. Assertion (i) follows from the separate continuity of the distributional pairing 〈·, ·〉S′(R2N )−S(R2N ).

To prove assertion (ii), it suffices by density of finite linear combinations of pure tensors together with

bilinearity and separate continuity of the generalized trace to consider the case where γ(N) = f (N)⊗g(N),
for f (N), g(N) ∈ S(RN ). By definition of the generalized trace,

(B.15) Tr1,...,N

(
(A(N))∗(f (N) ⊗ g(N))

)
=
〈
(A(N))∗f (N), g(N)

〉
S′(RN )−S(RN )

,

and by definition of the adjoint in Lemma B.1,

(B.16)
〈
(A(N))∗f (N), g(N)

〉
S′(RN )−S(RN )

=
〈
A(N)g(N), f (N)

〉
S′(RN )−S(RN )

.

Since (γ(N))∗ = g(N) ⊗ f (N), the desired conclusion then follows from another application of the defi-
nition of the generalized trace.

To prove assertion (iii), we note that since

(B.17) B(N)A(N) ∈ L(S(RN ),S ′(RN )), γ(N)B(N) ∈ L(S ′(RN ),S(RN )),

all expressions are well-defined. As before, it suffices to consider the case where γ(N) = f (N) ⊗ g(N),
for f (N), g(N) ∈ S(RN ). The proof then follows readily using the involution property of the adjoint and
the definition of generalized trace. �

We now extend the partial trace map to our setting using our bilinear perspective.

Proposition B.8 (Generalized partial trace). Let N ∈ N and let k ∈ {0, . . . , N −1}. Then there exists
a unique bilinear, separately continuous map

(B.18) Trk+1,...,N : L(S(RN ),S ′(RN ))× L(S ′(RN ),S(RN )) → L(S(Rk),S ′(Rk)),

which satisfies

(B.19) Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
=

∫

RN−k

dxk+1;N (A(N)f (N))(xk, xk+1;N)g(N)(x′k, xk+1;N).

for all A(N) ∈ L(S(RN ),S ′(RN )), and f (N), g(N) ∈ S(RN ). That is,
〈
Trk+1,...,N

(
A(N)(f (N) ⊗ g(N))

)
φ(k), ψ(k)

〉
S′(Rk)−S(Rk)

=
〈
A(N)f (N), ψ(k) ⊗ 〈g(N), φ(k)〉S′

xk
(Rk)−Sxk

(Rk)

〉
S′(RN )−S(RN )

,
(B.20)

for all φ(k), ψ(k) ∈ S(Rk).

Remark B.9. Our notation Trk+1,...,N implies a partial trace over the variables with indices belonging
to the index set {i : k + 1 ≤ i ≤ N}. To alleviate some notational complications, we will use the
convention that if the index set of the partial trace is empty, we do not take a partial trace.

Proof. We first show uniqueness. Fix N ∈ N and k ∈ {0, . . . , N − 1}. Fix A(N) ∈ L(S(RN ),S ′(RN )).

Suppose that there are two maps Trk+1,...,N and T̂rk+1,...,N satisfying (B.19). Since every element

γ(N) ∈ L(S ′(RN ),S(RN )) is of the form

(B.21) γ(N) =

∞∑

j=1

λjf
(k)
j ⊗ f

(N−k)
j ⊗ g

(k)
j ⊗ g

(N−k)
j ,
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where {λj}j∈N ∈ ℓ1 and f
(k)
j , g

(k)
j and f

(N−k)
j , g

(N−k)
j are sequences converging to zero in S(Rk) and

S(RN−k), respectively. Since the partial sums converge in L(S ′(RN ),S(RN )), we have by separate
continuity that

Trk+1,...,N

(
A(N)γ(N)

)
=

∞∑

j=1

λj Trk+1,...,N

(
A(N)

(
f
(k)
j ⊗ f

(N−k)
j ⊗ g

(k)
j ⊗ g

(N−k)
j

))

=

∞∑

j=1

λjT̂rk+1,...,N

(
A(N)

(
f
(k)
j ⊗ f

(N−k)
j ⊗ g

(k)
j ⊗ g

(N−k)
j

))

= T̂rk+1,...,N

(
A(N)γ(N)

)
,(B.22)

which completes the proof of uniqueness.
We now prove existence. Let N, k and A(N) be fixed as above. For f (k), g(k) ∈ S(Rk) and γ(N) ∈

L(S ′(RN ),S(RN )), we define the integral kernel

(B.23) Kf(k),g(k),γ(N)(xN ;x′N ) := g(k)(x′k)

∫

Rk

dy
k
γ(N)(xN ; y

k
, x′k+1;N )f (k)(y

k
), (xN , x

′
N ) ∈ R

2N .

It is evident that Kf(k),g(k),γ(N) ∈ S(R2N ). Moreover, it is straightforward to check that the trilinear
map

(B.24) S(Rk)× S(Rk)× S(R2N ) → S(R2N ), (f (k), g(k), γ(N)) 7→ Kf(k),g(k),γ(N)

is continuous, where we abuse notation by using γ(N) to denote the Schwartz kernel as well as the
operator. Therefore by the Schwartz kernel theorem and the fact that A(N) ∈ L(S(RN ),S ′(RN )) by

assumption, for fixed f (k) ∈ S(Rk), the map

(B.25) S(Rk) → C, g(k) 7→
〈
KA(N) ,Kt

f(k),g(k),γ(N)

〉
S′(R2N )−S(R2N )

defines an element of S ′(Rk) and the map

(B.26) S(Rk) → S ′(Rk), f (k) 7→
〈
KA(N) ,Kt

f(k),·,γ(N)

〉
S′(R2N )−S(R2N )

is continuous. We therefore define Trk+1,...,N (A(N)γ(N)) to be the element of L(S(Rk),S ′(Rk)) given
by

(B.27)
〈
Trk+1,...,N (A(N)γ(N))f (k), g(k)

〉
S′(Rk)−S(Rk)

:=
〈
KA(N) ,Kt

f(k),g(k),γ(N)

〉
S′(R2N )−S(R2N )

,

which is evidently bilinear in (A(N), γ(N)).
It remains for us to prove separate continuity. Implicit in our work in the preceding paragraph is conti-

nuity in the second entry for fixed A(N). Continuity in the first entry for fixed γ(N) ∈ L(S ′(RN ),S(RN ))
then follows by duality. �

B.3. Contractions and the “good mapping property”. Given A(i) ∈ L(S(Ri),S ′(Ri)), an integer
k ≥ i, and a cardinality-i subset {ℓ1, . . . , ℓi} ⊂ N≤k, we want to define to an operator acting only on
the variables associated to {ℓ1, . . . , ℓi}. We have the following result.

Proposition B.10 (k-particle extensions). There exists a unique A
(i)
(ℓ1,...,ℓi)

∈ L(S(Rk),S ′(Rk)), which

satisfies

(B.28) A
(i)
(ℓ1,...,ℓi)

(f1 ⊗ · · · ⊗ fk)(xk) = A(i)(fℓ1 ⊗ · · · ⊗ fℓi)(xℓ1 , . . . , xℓi) ·

( ∏

ℓ∈N≤k\{ℓ1,...,ℓi}

fℓ(xℓ)

)

in the sense of tempered distributions.
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Proof. We first consider the case (ℓ1, . . . , ℓi) = (1, . . . , i). By the universal property of the tensor
product, there exists a unique continuous linear map

(B.29) A
(i)
(1,...,i)

:= A(i) ⊗ Idk−i : S(R
i)⊗̂S(Rk−i) → S ′(Ri)⊗̂S ′(Rk−i),

satisfying

(B.30) A
(i)
(1,...,i)(f

(i) ⊗ g(k−i))(xk) = A(i)(f (i))(xi)g
(k−i)(xk−i), ∀f ∈ S(Ri), g ∈ S(Rk−i).

For the general cases where (ℓ1, . . . , ℓi) 6= (1, . . . , i), we set

(B.31) A
(i)
(ℓ1,...,ℓi)

:= π−1 ◦A
(i)
(1,...,i) ◦ π,

where π ∈ Sk is any permutation such that π(ℓj) = j for j ∈ N≤i and we let π act on measurable
functions by (4.29) and on distributions by duality. Let (ℓ∗1, . . . , ℓ

∗
k−i) denote the increasing ordering of

the elements of the set N≤k \ {ℓ1, . . . , ℓi}. Then for test functions f1, . . . , fk, g1, . . . , gk ∈ S(R), we have
〈
(π−1 ◦A

(i)
(1,...,i) ◦ π)(

k⊗

ℓ=1

fℓ),

k⊗

ℓ=1

gℓ

〉

S′(Ri)−S(Ri)

=

〈
A(i)(

i⊗

j=1

fℓj)⊗
k−i⊗

j=1

fℓ∗j , (
k⊗

j=1

gj) ◦ π

〉

S′(Rk)−S(Rk)

=

〈
A(i)(

i⊗

j=1

fℓj),
i⊗

j=1

gℓj

〉

S′(Ri)−S(Ri)

·

〈
k−i⊗

j=1

fℓ∗j ,
k−i⊗

j=1

gℓ∗j

〉

S′(Rk−i)−S(Rk−i)

=

〈
A(i)(

i⊗

j=1

fℓj),

i⊗

j=1

gℓj

〉

S′(Ri)−S(Ri)

·
∏

j∈N≤k\{ℓ1,...,ℓi}

〈fj, gj〉S′(R)−S(R),(B.32)

where the penultimate equality follows from the definition of the tensor product of two distributions. By
the density of finite linear combinations of pure tensors in S(Rk), it follows from the preceding equality
that our definition (4.42) is independent of the choice of permutation π ∈ Sk satisfying π(ℓj) = j for
every j ∈ N≤i. �

An important property of the above k-particle extension is that it preserves self- and skew-adjointness.

Lemma B.11. Let i ∈ N, let k ∈ N≥i, and let A(i) ∈ L(S(Rk),S ′(Ri)) be self-adjoint (resp skew-

adjoint). Then for any cardinality-i subset {ℓ1, . . . , ℓi} ⊂ N≤k, we have that A
(i)
(ℓ1,...,ℓi)

is self-adjoint

(resp. skew-adjoint).

Proof. Replacing A(i) by iA(i), it suffices to consider the self-adjoint case. By considerations of sym-
metry, it suffices to consider the case (ℓ1, . . . , ℓi) = (1, . . . , i). The desired conclusion then follows from
the fact that

〈
A

(i)
(1,...,i)(f

(i) ⊗ f (k−i))
∣∣∣g(i) ⊗ g(k−i)

〉
=
〈
Af (i)

∣∣∣g(i)
〉〈

f (k−i)
∣∣∣g(k−i)

〉

=
〈
f (i)
∣∣∣A(i)g(i)

〉〈
f (k−i)

∣∣∣g(k−i)
〉

=
〈
f (i) ⊗ f (k−i)

∣∣∣A(i)
(1,...,i)(g

(i) ⊗ g(k−i))
〉
,(B.33)

for all (f (i), f (k−i), g(i), g(k−i)) ∈ (S(Ri) × S(Rk−i))2, linearity, and density of linear combinations of
such pure tensors in S(Rk). �
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Now let i, j ∈ N, let k := i + j − 1, and let (α, β) ∈ N≤i × N≤j. To construct a Lie bracket in
Section 6.2, we need to give meaning to the composition

(B.34) A
(i)
(1,...,i)B

(j)
(i+1,...,i+β−1,α,i+β,...,k)

as an operator in L(S(Rk),S ′(Rk)), when A(i) ∈ L(S(Ri),S ′(Ri)) and B(j) ∈ L(S(Rj),S ′(Rj)).

Remark B.12. Without further conditions on A(i) or B(j), the composition (B.34) may not be well-
defined. Indeed, consider the operator A ∈ L(S(R2),S ′(R2)) defined by

(B.35) Af := δ0f, ∀f ∈ S(R2),

where δ0 denotes the Dirac mass about the origin in R
2. Then for f, g ∈ S(R),

(B.36)

∫

R

dx2(Af
⊗2)(x1, x2)g

⊗2(x′1, x2) = f(0)g(0)f(x1)g(x
′
1)δ0(x1) ∈ S ′(R)⊗ S(R).

It is easy to show that fδ0 ∈ S ′(R) does not coincide with a Schwartz function.

This issue leads us to a property we call the good mapping property. The intuition for the good
mapping property is the basic fact from distribution theory that the convolution of a distribution of
compact support with a Schwartz function is again a Schwartz function. We recall the definition of the
good mapping property here.

Definition 2.5 (Good mapping property). Let i ∈ N. We say that an operator A(i) ∈ L(S(Rdi),S ′(Rdi))
has the good mapping property if for any α ∈ N≤i, the continuous bilinear map

S(Rdi)× S(Rdi) → S ′(Rd)⊗̂S(Rd)

(f (i), g(i)) 7→

∫

Ri−1

dx1 . . . dxα−1dxα+1 . . . dxiA
(i)(f (i))(x1, . . . , xi)g

(i)(x1, . . . , xα−1, x
′
α, xα+1, . . . , xi),

may be identified with a continuous bilinear map S(Rdi)× S(Rdi) → S(R2d).29

Remark B.13. By tensoring with identity, we see that if A(i) has the good mapping property, then

A
(i)
(ℓ1,...,ℓi)

has the good mapping property, where i is replaced by k and α ∈ N≤k.

B.4. The subspace Lgmp(S(R
k),S ′(Rk)). In this subsection, we expand more on Lgmp(S(R

k),S ′(Rk))

as a topological vector subspace of L(S(Rk),S ′(Rk)) and more on the identification of its topological
dual.

Lemma B.14. Lgmp(S(R
k),S ′(Rk)) is a dense subspace of L(S(Rk),S ′(Rk)).

Proof. We first show density, beginning by recalling that Lgmp(S(R
k),S ′(Rk)) is endowed with the

subspace topology induced by L(S(Rk),S ′(Rk)). Let A(k) ∈ L(S(Rk),S ′(Rk)), and let KA(k) ∈ S ′(R2k)

denote the Schwartz kernel of A(k). Since S(R2k) is dense in S ′(R2k), given any bounded subset
R ⊂ S(R2k) and ε > 0, there exists KR,ε ∈ S(R2k) such that

(B.37) sup
K̃∈R

∣∣∣〈KA(k) −KR,ε, K̃〉S′(R2k)−S(R2k)

∣∣∣ < ε.

Since the integral operator defined by the kernelKR,ε is a continuous endomorphism of S(Rk), it belongs

to Lgmp(S(R
k),S ′(Rk)). Since any bounded subset S ⊂ S(Rk) induces a bounded subset R ⊂ S(R2k)

by

(B.38) R := S⊗S := {f ⊗ ḡ : f, g ∈ S},

29We use ⊗̂ to denote the completion of the tensor product in either the projective or injective topology (which
coincide). See Section 4.3 for furhter discussion.
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we conclude that given any ε > 0 and bounded subset S ⊂ S(Rk), there exists an element A
(k)
S,ε ∈

L(S ′(Rk),S(Rk)) such that

(B.39) sup
f,g∈S

∣∣∣
〈
(A(k) −A

(k)
S,ε)f

∣∣∣g
〉∣∣∣ < ε.

Since the preceding seminorms generate the topology for L(S(Rk),S ′(Rk)), the proof of density is
complete. �

Using the preceding lemma, we can show that the strong dual of the subspace Lgmp(S(R
k),S ′(Rk))

is isomorphic to the space of linear operators with Schwartz-class kernels.

Lemma B.15. The space Lgmp(S(R
k),S ′(Rk))∗ endowed with the strong dual topology is isomorphic

to L(S ′(Rk),S(Rk)).

Proof. Since the canonical embedding ι : Lgmp(S(R
k),S ′(Rk)) → L(S(Rk),S ′(Rk)) is tautologically

continuous, the adjoint map

(B.40) ι∗ : L(S(Rk),S ′(Rk))∗ → Lgmp(S(R
k),S ′(Rk))∗

is continuous. Now since Lgmp(S(R
k),S ′(Rk)) is dense in L(S(Rk),S ′(Rk)), any linear functional

(B.41) ℓ ∈ Lgmp(S(R
k),S ′(Rk))∗

extends to a unique element ℓ̃ ∈ L(S(Rk),S ′(Rk))∗ by the Hahn-Banach theorem. Hence, ι∗ is a
continuous bijection. Since the domain of the canonical isomorphism

(B.42) Φ : L(S ′(Rk),S(Rk)) → L(S(Rk),S ′(Rk))∗

is a Fréchet space, it follows from the open mapping theorem that ι∗ ◦ Φ is an isomorphism. �
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Symbol Definition

(xk), xk (x1, . . . , xk)

xm1;mk
(xm1

, . . . , xmk
)

xi;i+k (xi, . . . , xi+k)

dxk dx1 · · · dxk

dxi;i+k dxi · · · dxi+k

N≤i or N≥i {n ∈ N : n ≤ i} or {n ∈ N : n ≥ i}

Sk symmetric group on k elements

S(Rk),S ′(Rk) Schwartz space on Rk and tempered distributions on Rk

D′(Rk) distributions on Rk

Ss(R
k),S ′

s(R
k) symmetric Schwartz space, Definition 4.24, and symmetric tempered distributions

L(E;F ) continuous linear maps between locally convex spaces E and F

L̃(S(Rk),S(Rk)) L(S(Rk),S(Rk)) equipped with the subspace topology induced by L(S(Rk),S ′(Rk))

L̃(Ss(R
k),Ss(R

k)) analogous to previous definition

dF the Gâteaux derivative of F , Definition A.4

∇ or ∇s the real or symplectic L2 gradients, Definition 4.11 and Remark 4.12

A(π(1),...,π(k)) conjugation of an operator by a permutation, see (4.42)

Sym(f) symmetrization operator for functions, Definition 4.23

Sym(A) symmetrization operator for operators, Definition 4.30

L2
s(R

k) symmetric wave functions, Definition 4.29

B±
i;j , Bi;j contraction operators, Definition 4.34

φ⊗k k-fold tensor of φ with itself, (4.64)

ωL2 symplectic form on L2(Rk), (4.15)

AS see Proposition 4.13 and (5.121)

{·, ·}L2 Poisson bracket on L2(Rk), (4.21)

A
(k)
(j1,...,jk)

k-particle extension, (5.5)

gk locally convex space of k-body bosonic observables, (5.1)

(GN , [·, ·]GN
) Lie algebra of observable N -hierarchies, (5.49)

◦r r-fold contraction, (5.30)

(G∗
N ,A∞, {·, ·}G∗

N
) Lie-Poisson manifold of density matrix N -hierarchies, (5.64)

gk,gmp locally convex space of k-body observables satisfying the good mapping property, (6.7)

(G∞, [·, ·]G∞
) Lie algebra of observable ∞-hierarchies, (6.8) and (6.9)

◦βα contraction operator, Lemma 6.1

(G∗
∞,A∞, {·, ·}G∗

∞

) Lie-Poisson manifold of density matrix ∞-hierarchies, (6.78), Definition 6.9 and (6.82)

Tr1,...,N generalized trace, Definition B.5

Trk+1,...,N generalized partial trace, Proposition B.8

Table 1: Notation
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