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of Philosophy.

ABSTRACT

What is the fundamental process common to every dc todc conversion
system? How is the operation of the system limited by the charac-
teristics of the elements composing it? In seeking answers to these
questions, the thesis establishes a well -defined framework for dis-
cussing the problem. Basic results are stated in purely mathematical
form, but the main application here is to electrical networks.

Graph theory is used to find bounds on dc power, ac power, and aver-
age voltages and currents within a dc to dc conversion network, The
main graph theorems are derived from a theorem by Berge and Ghouila-
Houri which does not seem to have received much use previously in
electrical network theory.

Optimization techniques, including Pontryagin's principle, are used to
relate the dc power, ac power, and average voltage and current of an
element to the element's characteristics.

Also included is a theorem bounding the dc gain of a positive operator
feedback system with one time-varying unit. This result is applied to

electrical networks to show that every dc to dc conversion network must
include at least two resistors which are time-varying and/or nonlinear.

Thesis Supervisor: Roger W. Brockett

Title: Associate Professor of Electrical Engineering
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I. INTRODUCTION

1.1 Objectives: The purpose of the thesis is to meet to some degree

the following main objectives:

1. To establish a framework for the discussion and investigation of
the dc to dc conversion problem. It is hoped that the definitions and ap-
proaches giver here will serve as a clear and rigoreua foundation for
this and future study of the problem. An attempt has been made to avoid
leaving concepts undefined, making assumptions without justification,
and using ''folk lore'.

2. To expose the basic concept behind the dc to dc conversion
process--the features common to every dc to dc conversion system. As
will be shown, every dc to dc conversion network must include at least
two resistors* which are time-varying and/or nonlinear, The con-
version process can be viewed in terms of their operation.

3. To indicate the different types of dc to dc conversion systems.
Another feature common to all dc to dc conversion networks is that they
include at least one reactance. The different types of networks can then
be classified according to the types of reactances present.

4, To establish a relationship between the port parameters of a dc
to dc conversion system and the parameters of the elements composing
it. Most of the thesis is devoted to this objective, and the results throw
some light on the other objectives. The two classes of parameters to be

related might be called the converter and element specifications or the

Resistors are defined as the broadest sense of passive resistors (see
Definition 2.2).

-1-
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external and internal parameters. Below is a list of the parameters to

be considered in this thesis.

External Inte rnal
1. Voltage (or current) step-up. 1. Number of switches,
2. Output voltage (or current). 2. Number of capacitors.
3. Output power, 3. Number of inductors.
4. Efficiency. 4. Presence of mutual
coupling.

5. Power storage capability
of reactances.

6. Voltage and current capa-
bility of elements,

7. Lossiness of elements.

8. Frequency limitations of
switches,

Other external parameters which are usually of importance are output
ripple, regulation, stability, and nonelectrical considerations such as
size, weight, and cost. The thesis will not be directly concerned with

these parameters.

1.2 Scope: The term ''systems'' in the thesis title suggests con-
siderations broader than just electrical networks. While application to
electrical networks is the underlying motivation and primary focus of
the thesis, an attempt has been made to keep the development general.
All basic results are stated in purely mathematical terms so that they
may be applied to any system which meets the conditions set forth.

As will be seen in the mathematical development, a dc to dc con-
version.system in the broadest sense is a system which can be reduced
to a linear graph representation. One set of variables must be a flow

(satisfy Kirchoff's current law), and a second set must be a tension
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(satisfy Kirchoff's voltage law). There must be only one (source -like)
edge of the graph for which the average of the product of its flow vari-
able and tension variable is negative, and one of the two variables must
be constant. There must be another edge for which the average of one
of the variables is greater than the like (flow or tension) variable of the
""'source-like' edge. Any of the basic results of the thesis can be im-

mediately applied to a system which meets these conditions, *

In the broadest sense power conditioning may be defined as the pro-
cess of receiving power with a given voltage or current waveform and
delivering (almost all) that power with a different waveform. Then dc
to dc conversion is a form of power conditioning since the average volt-
age or current level is changed.

Another type of power conditioning is frequency conversion; power
is received_"at a given frequency" (See Definition 2.10) and delivered at
another. Examples of systems satisfying this description are modu -
lation mixers, parametric amplifiers, dc to ac inverters, and ac to dc
rectifiers. It will be shown in the thesis that a necessary part of dc to
dc conversion is dc to ac and ac to dc power conversion within the net-
work. Therefore this thesis also deals with frequency conversion where

one of the frequencies is zero (dc).

* An example of a nonelectrical system which meets the above con-
ditions could be a system of one-way toll roads. The tolls can be ad-
justed to always satisfy Kirchoff's voltage law, and the flow of cars
per minute satisfies Kirchoff's current law. Let one road have a fixed
negative toll, and let this be the only road on which the net transfer of
money at the end of some period is from the tollgate keeper to the
drivers. If the number of cars passmg over this road in the period is
less than the number of cars passing over another road in the penod
then the system is a dc to dc conversion system. If Theorem 4.3 is
applied to this sysfem, one re sult is that there are at least two roads
for which the toll is not constant.



-4-

Several of the basic results of the thesis follow from Theorems 4.2
and 4.3, which might be called ''positive decomposition theorems for
positive flows and positive tensions.' They appear to be due to Berge
and Ghouila-Houri (3);the author has been unable tc find them presented
elsewhere in the literature,

Theorem 4.4, Corollary 4.4.1, and Theorem 4.5 make use of these
theorems. Theorem 4.4 implies what may be a new necessary condition
on resistive n-ports (see Theorem 4.6). In Appendix A Theorem 4.4 is
generalized to fields in three-space. Corollary 4.4.1 implies that a set
of resistors cannot produce a voltage or current greater thanthe sum of
the voltages or currents of the sources to which it is connected (see
Appendix B). This is believed to be the first that a topalogical proof of this
intuitive fact has been given, A

4 ,
Theorems 5.1 and 5.2 imply that every dc to dc conversion network
must include at least two resistors that are time-varying and/or non-

linear. Appendix C proves this result from a different approach, ".éiving

K
-

a basic result for a feedback system with positive operatoré.

1.3 Need for Research: There has been a lack of basic research in the

study of dc to dc conversion systems. Most works on the subject have
dealt with specific network designs or narrowly restricted classes. To
the author's knowledge, the only works dealing with dc to dc conversion
in a broad, fundamental way have a master's thesis by the author (16) v
and a paper by Moore and Wilson (8). The work by Moore and Wilson,
described in Chapter III, served as the starting point for several re-. |

sults in this thesis,
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The objectives given in the first section indicate the gaps in knowl -
edge which the thesis seeks to fill. The assumption is, of course, that
the answers to such fundamental questions will aid in the design of dc
to dc conversion networks. The method of design has generally been
intuitive or ''cut-and-try'" as a result of not knowing basic relationships
between element parameters and converter parameters.

A sample design problem will illustrate some of the difficulties
encountered in trying to select a configuration and component values
without the knowledge of basic relations, Suppose that an engineer is

given the following specifications for a dc to dc converter:

voltage in: 10 volts dc
voltage out: 40 volts dc
current out: 2 amps dc
efficiency: > 85%

output ripple: < 5%

size, weight, and cost restrictions

The engineer decides to try the design using no inductors since
capacitors seem easier to work with than coils. An all-capacitor con-

verter which he has seen frequently is the ''ladder step-up configuration"

shown in Fig., 1.1,

The configuration does not seem to require too many capacitors and
switches, so the engineer decides to use this network.

He knows that it is good to use as large a capacitor as possible, so
he chooses 10,000 pf, the largest permitted by the size and weight re-
strictions. These also have a fairly small '"equivalent series resistance"

of 0.06 ohms, which should be good for efficiency.
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For a low output ripple, the switching frequency should be high. The

0.6 ms time constant of the capacitors restricts the frequency of oper -

ation to 400 Hz.

|
/

T
-
:

Fig. 1.1 "Ladder Step-up' dc to dc Conversion Network

The engineer then measures or calculates the losses in the network:

4 watts in the switches, 5 watts in the diodes, and 13 watts in the equi -

valent series resistance of the capacitors. These losses reduce the out-
put voltage to 40 from the ideal 50, as required, but the efficiency is
only 78%! Besides that the output ripple is 10%.

Were the specifications given the engineer unrealistic, considering

available components? Is there another “all-capacitor" configuration
which will use less capacitors and do the job better? Was it wrong to try
to do without inductors in this case?

It is hoped that the results of this thesis will answer questions of

N

this nature.
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1.4 Outline of Approach: After establishing sorhe terminology and con-

cepts in Chapter II, we will derive some basic theorems in graph theory
in Chapter IV. Chapters V and VI apply these results to'dc to dc con-
version networks to obtain some bounds on power, voltage, and current
associated with the elements in terms of the external network param-
eters. In Chapter VII the power, voltage, and current associated with
an element are related to the element's characteristics. Thus a re-
lationship is finally established between t.he external and the internal

parameters of the network (see Objective '4).



II. DEFINING THE PROBLEM CONTEXT

There are many types of dc to dc conversion systems which are in
use and many more which exist in theory. The treatment in this thesis
is not so general as to include all these systems, but is restricted to
purely electrical systems. This excludes systems which include ro-
tating machines, intermediate stages of radiant or thermal energy, etc.
The following definitions give a further and more precise description of
the context of the investigation,

Definition 2.1: When the voltage across an element (or a port)

4

and the current through an element (or a port) are referred to, the usual

convention of the current entering the positive terminal of the voltage is

} assumed.

Definition 2.2: A resistor is an element which constrains the

voltage v across it and the current i through it according to a relation

f(v,i,t) = 0
for which any v and i which satisfy the constraint for some time t
also satisfy
vi>0
Note that this definition classifies diodes, transistors, switches, and
most passive devices without energy storage as resistors,
The element defined here is usually called a ""passive resistor".
However, thei-e will never be need to refer to resistors that are not
passive,

The resistor is called time -invariant if the constraint function f

is not dependent on time.
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Tht_e resistor is called linear if the constraint can also be written
v = rt)i
A resistor that is either not time -invariant or not linear will be

called time -varying/nonlinear.

A resistor is called quasi-active if the constraint is f(v,i,t) = 0,

and there exist T il’ tl’ Vo iZ' and t2 such that

f(vl, il’ tl) =0

|
o

f(vz, iZ’ tz) =

v2> vl

1, < 1l
Moore and Wilson (8) call a resistor so defined an "active resistor",

but this is usually used to indicate = resistor that is not passive.

Definition 2.3: If the voltage v across an element and the current

i i through an element are constrained according to the relation

v =V (a constant),

the element is called a dc voltage source.

If the constraint can be written

i =1 (a constant),

the element is called a dc current source.

Definition 2.4: An inductor is an element which constrains the

‘roltage v across it and the current i through it according to the follow-

ing relations:

[ v = d\/dt

-
1]

f(M)
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where f(A\) is a monotonic increasing function of N\ such that f(0) = 0,
and A< o for f(A\) <oo. If f is also linear, then the inductor is

called a linear inductor.

Consider two n-vectors v and i where the entries of v and i
indicate the voltage across and current through each of n elements. The
elements are called inductors with mutual coupling if the constraint on

the voltages and currents is given by

d\ /dt

i)

v

i

where X is an n-vector, and where the Jacobian matrix (Bi)/(&_&) of
f is symmetric and positive definite for all A\, and where the Euclidean
norm ||\|| of M\ is finite for "i(&) | finite. (This treatment follows
Stern (11), p. 24.)

Note that in the case when f(\) is a diagonal matrix, the elements

become inductors without mutual coupling.

Definition 2.5: A capacitor is an element which constrains the

voltage v across it and the current i through it according to the re-

lations

dq/dt

[N
0]

v

f(q)

where f is a monotonic increasing function such that £(0) = 0, and

~

q <o for f(q) <. If f is also linear, then the capacitor is called

a linear capacitor.

The class of reactances consists of inductors and capacitors.
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Definition 2.6: The average X of a function of time x is defined

by
T

X = lim & f x dt
T—00 T
0
provided the limit exists. An over-bar is always used to indicate the
average operation,

When x is periodic, this definition coincides with the usual con-

cept of average over one period, *

Definition 2.7: Consider a two-port with one of the ports desig-

nated the "'input' and the other port the ''output'. The dc voltage

{current) gain of the two-port is the magnitude of the average of the out-

put voltage (current) divided by the magnitude of the ave rage of the in-
put voltage (current). If GV represents the dc voltage gain, and vy

and Vo the input and output voltage, then
G, = |%,l/1%,1

Definition 2.8: Consider a two-port network of resistors, in-

ductors (including mutual coupling), and capacitors,with a dc voltage or
current source at the input and a finite, linear, time -invariant resistor
(called the load ) at the output. If there exists an initial condition of the
network such that the two-port has a dc voltage gain or dc current gain

greater than unity, then the two-port network together with the dc

source and the load is called a dc to dc conversion network. This is

basically the same as the definition suggested by Moore and Wilson (8),

p. 621,
Notice that a network with a dc voltage source at the input and a dc

voltage gain always less than unity is considered a dec to dc conversion

network if the dc current gain can be greater than unity.
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A dc to dc conversion network, together with one of its‘solu'tions
starting from an initial condition that gives a dc gain greater than unity,

is called an operating dc to dc conversion network. We will then be able

to speak of various voltages and currents in an operating network.

Definition 2.9: The power p(t) absorbed at time t by an element
with voltage v(t) across it and current i(t) through it is given by the
product

p(t) = v(t) i(t)

If the power p(t) is known for all t> 0, the average power P

absorbed (or dissipated) by the element is given by the average of p:

— ——

P=p =i

Definition 2.10: Suppose that the voltage v(t) across an element

and the current i(t) through the element are known for all t >0, The
dc power Pdc absorbed by the element is the product of the averages
~of v and i:

PdC = Vv 1.

When Pdc is negative, it is sometimes convenient to refer to -Pdc as

the dc power delivered.

The ac power Pac absorbed by the element is defined as the

average power less the dc power:

P =P-P, =vi-v1
ac dc

The ac power delivered is the negative of Pac‘

NOTE: In the case when v and i are composed of a count-
able number of sinusoids

[00)

; jwit
v(t) = V0 + Re Zvi e

i=1



jwit
1(t)‘ = IO + Re Ii e
the average power is
(0]
P = V,I+ >R V.
T Yoo T 2R L, it
i=1

Then the definition of dc power above coincides with
the definition of dc power PO as

P0=VOIO=V1

(see Penfield (9), p. 2). We also have in this case that
the ac power is the sum of the powers at the frequencies
other than zero, where the power P1 at the frequency
mi is -
P - LRev
i 2 i1
Some of the definitions that have been made may seem unnecessarily

restrictive or too general, The following remarks will explain the moti-

vation behind some of these definitions.

Remark 2.1: Although most dc to dc converters that are designed

are periodic, the operation of averaging was defined in such a way that it
did not require a period function. Thus the development in the thesis
does not need to bother with specifying a period, although it applies, as
a special case, to periodic systems. Also, we will gain some generality

with hardly any increase in the complexity of the development.

Remark 2.2: Definition 2.8 has indicated that we will not be con -

sidering networks that include ideal transformers, The reason is that
the ideal transformer is not a good model of the physical device at zero
frequency (dc); and we will be very concerned with the dc characteristics

of devices. In fact, if ideal transformers were allowed, the problem
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of dc to dc conversion would become trivial in theory. Notice that we

have allowed inductors with mutual coupling, which adequately model

physical transformers, even down to zero frequency.

Remark 2.3: The definition of a dc to dc conversion network allows

for only linear, time-invariant loads. This insures that the load remains
distinct from those nonlinear and time -varying resistors within the net-
work which perform the dc to @c conversion. It is true that many
practical converters must deliver power to time -varying loads, and
there are many problems involving transients and stability with such
loads. However, the thesis will not deal with these problems. Also,
specifying a linear, time-invariant load will often permit results to be

expressed in a simple, meaningful way.

Remark 2.4: The definition of a dcto dc conversion network did not

require that the voltage (or current) delivered to the load be constant.
This coincides with reality and with most theory, where a small amount
of '""ripple' is aiways present at the output. While a good converter has
only a small amount of ripple, it would be arbitrary to specify a per-
centage of ripple below which a network can be called a dc to dc con-
version network. Therefore we require only that there be an increaée '
in the level of the average voltage or average current.

Of the average power delivered to the load, only the dc power P0 is
of interest here:

T

P0=v00

where Vg and i0 are the voltage across and current through the load.
We will not be concerned with how much ac power is delivered to the

load. In practice, the ac power can be spearated arbitrarily well from
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the dc power, so that as little ac power as desired reaches the load.

This is done by inserting the filter of Fig. 2.1 before the load.

O— W—O- ' L/cC = r?
from L |
output of C —=
two-port
network , Re¢
R

> load
I
i

o —0—
Fig., 2.1 Output Filter

The ripple at the load (and thus the ac power reaching the load) can be
made arbitrarily small by increasing L. and C. Notice that the output
of the two-port network still sees a pure resistance, as required by

Definition 2.8.

The following facts point out some basic properties of the elements
that have been defined. They are not difficult to prove and, in the case
of Property 2.1, can be readily seen from the definitions. Inthat case
no proof is given. Despite their simplicity, however, the properties
are fundamental to the development and will be referred to in proving

theorems.

Property 2.1: A quasi-active resistor is nonlinear and/or time -
varying,

A linear resistor is quasi-active if and cnly if it is time -varying.

A time -invariant resistor is quasi-active if and only if it is non-
linear and a portion of its v-i characteristic has a negative incremental

resistance.
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Property 2.2: The average voltage across an inductor is zero if
the current remains finite. This implies that the dc power absorbed by
the inductor is zero.

The average power absorbed by an inductor is zero if the current
remains finite, Together with the first statement, this implies that the

ac power absorbed by the inductor is zero.

Proof: The definition of an inductor gives us the following relation

between the voltage across and the current through the inductor:

d\ /dt

<
"

£(\)

e
1]

Now,

<1
'-]":
4
—~
<
S
'1’.':
85
S 3
[o N}
>

lim -,II-, [NMT) - N0)]
T—o0

But since i remains finite, \(t) is finite for all t> 0, Therefore
v=20
which proves the first statement.

Now the average power absorbed is

T
™ = lim % f £(\) (d\ /dt)dt
T—~m 0

Since f(\) is a monotonic increasing function of \, this can be written

A(T)
™ = lim -l,f £(\)dA

T—o0 (0)
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But i = f(\) remains finite; say If(k)lg_M for A between A(0) and

MT), which are also finite. Then

I |< lim %M INT) - M0)| = o
T—m
Therefore iv = 0

Property 2.3: Consider a set of inductors with mutual coupling.

If the current in each inductor remains finite, the average voltage across
each must be ze‘ro. Th}s implies that the dc power absorbed by each in-
ductor is zero.

The sum, over the set, of the average power absorbed by each in-
ductor is zero if the currents remain finite. Together with the first
statement this implies that the total, over the set, of the ac power ab-

sorbed by the inductors is zero.

Proof: The definition of inductors with mutual coupling relates the

vectors representing the voltages and currents by

d\/dt

f(})

The proof that ¥ = 0 proceeds in the same way as the proof for a single

v

K i

inductor.

The total average power absorbed (sum over the set of inductors) is

| given by
T
- Ty = lim 1 f £'(A)(dN_/dt)dt
- T—oo
0
( Since (ag/(ay is a symmetric, positive-definite matrix for all A, we

may write
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A(T)
Tv = lim % £1(N) dA
T T—~m T - T
X(0)
where the integral is the same for any path between A(0) and A(T)
in M -space (see Apostol (1), p. 296). But the current in each inductor
remaining finite says "_g(L) | is finite; say M(L) <M on the straight

line between \'(0) and A (T), which also have finite norms. Then

fel< Lim T aMIINT) - MO = o
-0

Therefore i'v =0

Property 2.4: The average current through a capacitor is zero if
the voltage remains finite. This implies that the dc poWer absorbed by
the capacitor is zero.

The average power absorbed by a capacitor is zero if fhe voltage re-
mains finite. Together with the first statement this implies that the

ac power absorbed by the capacitor is zero.
The proof is the dual of the proof of Property 2.2.

Property 2.5: The ac power absorbed by a dc voltage source or

dc current source is zero.
Proof: The ac power absorbed by an element is defined as ¥vi -V T.
Now, for a dc voltage source v = v, and for a dc current source i =1.

In either case vi =vi, and zero ac power is absorbed.
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III. PREVIOUS RESEARCH ON THE PROBLEM

As mentioned in Chapter I, the only previous general . work on dc
to dc conversion networks was done by Moore and Wilson (8). This
chapter will summarize their contributions.

The objectives of the paper by Moore and Wilson are to establish
some definitions as guidelines in discussing the dc to dc conversion prob-
lem, to state some ""basic conditions'' for dc to dc conversion, and to
stimulate further basic research in the area of power conditioning.

A somewhat broader context is allowed by Moore and Wilson by al -
lowing a "network' to include nonelectrical energy storage, mechanical
power transfer, and time-varying reactances which are conservative.
(Compare Definitions 2.2, 2.4, 2.5 and 2.8.) Other than this, their
definition of a ''dc to dc conversion network' is basically the same as
that used in this thesis. (See Definitions 2.3, 2.7, and 2.8.) The
'"active resistor'' defined by Moore and Wilson is the same as the quasi-
active resistor of Definition 2.2.

Four basic conditions which all dc to dc conversion networks must

" satisfy are stated in the paper. These are given below, making use of

some definitions in Chapter II. Statements 1) and 2) are proved by
Duffin (4) and Leine (7), respectively. Statements 3) and 4) are proved

later in this thesis (see Theorem 5.3 and Corollary 5.4.1).

1) A network cannot convert to ac power any portion of the power
it receives from a dc source unless the dc source is in a loop which
contains a quasi-active resistor and no capacitors. ("Loop" is used as

defined by Seshu and Reed (11), p. 15.)

-19-
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2) The ac power —Pac which is delivered by a quasi-active
resistor with the constitutive relation f(v,i,t) = 0 is bounded by

-P > max [(v,-v))(,-i )]
ac ("1'11)55 2 1’1 "2

(vz,iz)es
where S is the set of all pairs (v,i) which satisfy f(v,i,t) = 0 for

some t,

3) A dc to dc conversion network must, within the network, con-

vert at least a portion of the dc power it receives to ac power,

4) Let G be the dc voltage gain or dc current gain, which ever is
greater than unity., Let P, be the dc power delivered to the load. Then
the total ac power delivered by some set S of elements in the dc to dc

conversion network is bounded by

1 > G-1
Zpac— G I30
ke




IV. GRAPH THEORY

This chapter will establish some theorems about directed graphs,
flows, and tensions. In Chapters V and VI these will be applied to the
dc to dc conversion problem. Most of the theorems prese.hted here are
not new resglts but are included to lay the groundwork for Theorems 4.4

and 4.5.

Definition 4.1: We will use the following common terms as defined

by Seshu and Read (11): vertex, edge, graph, loop, cut-set, connected,

and nonseparable.

The remaining definitions are pvatterned after Berge and Ghouila-
Houri {3). When their term is different, it follows in parentheses the

term used here.

Definition 4.2: A directed graph (graph) is a graph for which an

orientation has been assigned to each edge in the graph by ordering the

pair of endpoints of each edge.

Definition 4.3: An oriented cut-set (elementary coboundary) is a

cut-set to which an orientation has been assigned by ordering the pair
of maximal connected subgraphs into which the cut-set divides the graph.
Let the edges of a directed graph be ordered. Then an oriented cut-

set in the graph is identified with an ordered set {qk} where

0 if the kth edge is not in the cut-set,

+1 if the k'" edge is in the cut-set and has
N its orientation corresponding to the
orientation of the cut-set,.

-1 if the kP edge is in the cut-set and has its
orientation opposite to the orientation of the
cut -set, ’

-21-
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An aligned cut-set (cocircuit) is an oriented cut-set for which the
orientation of the edges in the cut-set correspond with the orientation of

the cut-set, Then if {qk} is an aligned cut-set, each N is 0 or 1,

Definition 4.4: An oriented loop (elementary cycle) is a loop to

which an orientation has been assigned by ordering the vertices in the
loop such that successive vertices are the endpoints of an edge in the

loop.

Let the edges of a directed graph be ordered. Then an oriented
loop in the graph is identified with an ordered set {bk} where

0 if the k" edge is not in the loop.

+1 if the kth edge is in the loop and has its
b, = orientation corresponding to the orien-
tation of the loop.

-1 if the k'™ edge is in the loop and has its
orientation opposite to the orientation of
the loop.

An alignéd loop (circuit) is an oriented loop for which the orien-
tation of the edges in the loop correspond with the orientation of the loop.

If {bk} is an aligned loop, then each bk is either 0 or 1.

Definition 4.5: Let the n edges of a directed graph be ordered. A

flow, relative to the graph, is an ordered set {¢ok} of real numbers,
with each member of {¢k} corresponding to an edge of the graph, which

satisfies
n

k=1
for every oriented cut-set {qk} in the graph.
It can be shown that ‘it is sufficient if the condition is satisfied for

every cut-set consisting of edges incident at a node.
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A positive flow is a flow {q,k} for which each member ¢, satisfies
¢k Z 0'
Notice that a linear combination of flows is a flow. If a flow is a

function of time, then a linear function or a linear functional of the flow

is a flow. That is, if {¢k(t)} is a flow for all t, then {d¢k/dt} and

b
| {!f(t)d:k(t)dt} are flows.

In electrical engineering the condition on a flow is called Kirchoff's
current law because the currents in a network are observed to satisfy

the condition.

Definition 4.6: Let the n edges of a directed graph be ordered. A

tension, relative to the graph, is an ordered set {Ok} of real numbers,
with each member corresponding to an edge of the graph, which satisfies
n

bkek =0

k=1

for every oriented ldop {bk} in the graph.

A positive tension is a tension {Bk} whose members satisfy O, >0.

As for a flow, a linear combination of tensions is a tension. If
{Bk(t)} is a tension for all t, then {de/dt} and {}f(t)ﬂk(t)dt} are
tensions. :

The condition on a tension is often called Kirchoff's voltage law be -

cause voltages in a network are observed to satisfy the condition.

Definition 4.7: Given a condition, resulf, or proof, the dual con-

dition, result, or proof is obtained by interchanging the terms '"loop"

and '"cut-set'", and ''flow'" and 'tension''.
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Theorem 4.1 (Berge and Ghouila-Houri (3), p. 147): Consider the
space R" of ordered sets of n real numbers. Given a directed graph,

{¢k} is a flow if and only if

n
z Bk(bk =0

k=1

for every tension {Gk} in R". Given a directed graph, {Ok} is a

tension if and only if

n

Z qu,k =0
k=

This may be stated: the space of flows and the space of tensions

for every flow {¢k} in R",

are orthogonal, and they span the space R".

This important theorem is known in electrical engineering as
Tellegen's theorem after the author who first indicated its wide appli-
cation to network theory (14). For a comprehensive discussion of the

history and application of Tellegen's theorem, see Penfield et al. (10).

Theorem 4.2 (Berge and Ghouila-Houri (3), p. 143): Given a

directed graph with n edges, the set {¢k} is a positive flow if and only

if

o m
¢k = z bk!“l ; k=1,2,...,n

£=1
where the set {bkl} over the index k is the th aligned loop of a set
of m aligned loops, and the p.l'z 0. As noted in Definition 4.4, each

b is either 0 or 1.

k!
Since “’l{bk!} is a positive flow for each f, this theorem amounts
to expressing a positive flow as a sum of ''positive loop flows'. (See

Appendix A for a descriptive discussion.)
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Theorem 4.3 (Berge and Ghouila~Houri (3), p. 146): Given a di-

rected graph with n edges, the set {Gk} is a positive tension if and

only if

m
Gk = Eqk!wl H k=l,z,...,n

1=1
where the set {qkl} over the index k is the f! aligned cut-set of a
set of m aligned cut-sets, and the w, corresponding to each cut-set

satisfies w, 2 0. As noted in Definition 4.3, each E) is either 0 or 1.

Since wl{qk!} is a positive tension for each !, the theorem says
that a positive tension can be expressed as the sum of ""positive cut-set

tensions''. (See Appendix A for a descriptive discussion.)

Theorem 4.4: Consider a flow {¢k} and a tension {Gk} relative to

a directed graph G. Let the set S of edges of the graph be divided into

four sets Sl’ SZ’ 53, and S4 so that

6 b 20 ; keS,
Then, ' ‘
@ 2181y le1-Y aa+ Y los 20
ke%S1 jeSZ keSZ k€S3
CHED WD WA WD TR
keSl j€sS, keS, keS,

Proof: Reorient the edges of G to form a new directed graph G'
as follows: reverse the orientation of the kth edge if and only if keS ,

where

S™ = {keS:¢k< 0}
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Form a new set {9;(} by

v Tk
Gk =
+6 ; otherwise
k
!
Form a new set {¢k} by
1
o = ol (4.1)

It should be clear from the construction that {91'(} is a tension relative

to G', {4);(} is a positive flow relative to G', and

0,4, = 0, by i  keS (4.2)
lel'(l = 16, ;  keS (4.3)
91'( >0 i keS, (4.4)

Now, from Theorem 4.2 we can find a set L of aligned loops

{b feL, with

kl};

b = 0,1 for all keS, L€L

ke

and a set {p‘} with each member correspondingto a loop in L, and

with
B2 0 ; feL
such that
b = 2 Prgty i keS
feL ‘

Define a new set {apl'(} by

1
"’k = Z b}d"’l ; keS

where L, = {teL bkl =1, keSz}
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Then by Theorem 4.2, {ﬂ’;(} is a positive flow relative to G'. Other

properties of {xpl'(} are:

;pL < b ;  keS (4.5)
ho= & 5 keS, (4.6)
Then
L R X
b = he = bty = My by
keS, keS2 keS, IeLZ feL, keS,
But for each !eLZ, bkl =1 for some keSz. Therefore
z bkl >1 ; IGLZ
keS2
and ' z 4’;(2 z My .
keS2 1€L2
1
' But ;pk = Z bklp'l-<— Z My ; keS
!eLZ leLZ
Therefore < ' ; keS 4.7
' ibk - Z ¢J ( )
JES,

Now, since {91'(} is a tension and {4{(} is a (positive) flow,
Theorem 4.1 can be applied to give

29;,;,1‘(=o

keS

f or 2 k"’k"'z 9k¢k+29 zeiwic:o

keS keS 2 keS keS 4
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Observing that

|91'<’ Zel'( ; keS

(4.4)

we obtain
1 [ ] ] 1
2 |9 14 Z 6l ¥ - Z 6, 14 < o
keS1 keS keS

The properties of z];l" given in Eqs. (4.5), (4.6), and (4.7) then give us

DIIDITTD T WL

keS j€S, keS, keS

The parameters relative to the graph G' are related to the parameters

relative to G by Eqs. (4.1), (4.2), and (4.3). Using these relations,

Llal 2 lel+ 2 ow -2 I llsl< o

keS j€sS, keS, keS,

we obtain

which gives result (a) of the theorem.
Result (b) of the theorem is the dual of result (a), and its proofis
the dual of the above. Theorem 4.3 is usedin place of Theorem 4.2 in

the proof.

Appendix A gives a theorem involving fields in three -dimensional

space., It is analogous to Theorem 4.4 and gives some insight.

Corollary 4.4.1: Consider a flow {¢k} and a tension {Gk}

relative to a directed graph. Let the edges of the graph be divided into
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two sets Sl and S, so that

2
0, < O i ke§,
9k¢kz 0 ; keS2
Then

~ (a) l6, 1< z 6.1 5 ke§,
je§1

(b) I¢klsz o] & ke,
j€8) J

Proof: Consider result (a) of Theorem 4.4. Let a particular edge
k ~

o of S2 correspond to SZ' and let the rest of §2 correspond to S4

~

Let S1 correspond to S

1 Nothing corresponds to S3, so that S3 is
empty. Then Theorem 4.4 gives

ZIHIMk Lz

JES

Since Gk ¢, 2 0, we may write

(o]
0. - 16 ; > 0
2 lsl o |- Iy |y 12
j€§l
Therefore lekol < z |9j|

j€S1

But ko was any edge of S » so that

lode 2 1ol i e,

JES

which is result (a) of the corollary,
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Result (b) of the corollary proceeds in a similar manner from result
(b) cf Theorem 4.4, |

The results of Corollary 4.4.1 are well known in electrical engi- _
neering as the fact that a resistive network cannot give voltage gain or
current gain., Talbot (13) proved the result for one source (one edge in
Sl.) The result of Corollary 4. 4. 1, applied to a linear resistive net-
work, is usually proved by applying superposition to Talbot's result.

To the author's knowledge, this is the first time that the results of
Corollary 4.4.1 have been proved where more than one source is con-
sidered and nonlinear resistors are allowed by topdogical cansiderations only.

A direct proof of Corollary 4.4,1 (from Kirchoff's voltage and

current laws) is given in Appendix B,

Theorem 4.5: Consider a flow {¢k} and a tension {Gk} relative

to a directed graph G. Let the set S of edges of the graph be divided

into four sets S SZ’ S3, and S

G so that

4

O, & > 0 ; keS,

6,4y > O ; keS

If (i) ,lek|>2|9jl ;  keS,

jeS1

4

then (a) Iy I Z |41 i keS,

jes,

If (i) l¢k!>2l¢jl i kes,

jeS1
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(but (i) does not necessarily hold), then
< .
(b) lo, I < z lejl i keS,
jéSZ
Proof: As in the proof of Theorem 4.4, reorient the edges of G

to form a new directed graph G' as follows: reverse the orientation of

the kth edge if and only if keS~, where
S™ = {keS: ¢, <0}
Form a new set {31'(} by

0! =4

k +6 otherwise

ko
Form a new set {¢l'(} by
t
4 = oyl 3 kes (4.8)
It should be clear from the construction that {61'(} is a tension relative

to G', {¢1.<} is a positive flow relative to G', and

l91'<| = lekl ; keS (4.9)
91'< = lekl ; keS, (4.10)
91'{ > 0 ; keS, (4.11)

From Theorem 4.2 we can find a set L of aligned loops {bkl} ;
fel,, with

b = 0,1 for all k€S, felL

ke

and a set {”I} with each member corresponding to a loopin L, and with

p.!ZO ; Q€L



-32-

such that

' _
¢ = Zbkz"t »  keS

feL,

Since {bkl} is a loop, fe€L; and {GL} is a tension, we have by .

- '
Zbkle = 0 ; l€L3

Definition 4.6

keS

where L3 = {feL : bkl =1, k€S3}

' , ' ' ' |
or Z By * z Praby Z Preex Z Pet® =0 ter,

k€S, k€S, keS, keS,
But lel'( [> 6, i keS

]

and 6,>0 ;  keS, (4.11)

Then

-Z 101'(!+ z bk!91'<+ z bklel'( <0 ;  fel, (4.12)

keS1 keS2 k€S3

Assume that condition (i) of the theorem holds. Then substituting ac-

cording to Eq. (4.9) and Eq. (4.10), the condition gives

R '
ek>z "’jl ; keS,

<5
Since

b =1 for some k€S3, for all felL.

k! 3

we may write

Z by O > Z'el i kel

k€S3 J€S
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Together with Ineq. (4.12) this requires

6 .
z b, 8 <0 ; feL,

keS2
which implies
bkl =1 for some keSZ, for all leL3 (4.13)
Now,
EDND)
ST - Pjets
j€s, j€s, felL
ZZ z Bigky = Z“IZ"J‘!
_]€S2 !€L3 xl.eL3 JGS2
[ Then, with Eq. (4.13), we have
'
DN
) jeSZ leL3

We also have

1el, !eL3 !€L3

Therefore ¢1'< < z ¢'j ; k€S3
j€s,

The parameters in graph G' are then related back to the parameters in

G by Eq. (4.8) to give

I¢klsz lo;1 5 kesy

J€S,

which proves result (a) of the theorem, given condition (i).
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Condition (ii) and result (b) are duals of condition (i) and result (a).
The proof that result (b) follows from condition (ii) is the dual of the

above proof.

Theorem 4.4 has a very direct result when applied to resistive
n-ports, The following theorem will not be used later in the thesis,
but its results may be of interest in characterizing the properties of

resistive n-ports.

Theorem 4.6: Consider a resistive n-port (which includes no

transformers) whose set S of ports, at a given time, has voltages and
currents {vk} and {ik}, keS. Let the ports be divided into three sets:

~ U4

5, §,, and S,. Then

3
Z v | Z‘ i1+ z vkik+2|vkik|_>_0

keS| j€S, keS, keS,

and
PALUDNLARE JIRAED S PN
ke's"l i€, keS, keS,

Proof: Let an element be connected across each of the ports. Then
‘the voltages and currents of the elements can be taken as {vk} and
{-ik} . (Note that the reference convention necessitates changing the
sign of either voltage or current.) Considering Theorem 4.4, let the
set SI be the set of elements across the ports in the set gl-’ and let S4
be the (linear, time-invariant) resistors in the n-port. Let the re-
sistors and added elements generate the graph G. Then the currents
through the resistors and elements are a flow relative to G, and the
voltages across the resistors and elements are a tension relative to G.

Application of Theorem 4.4 gives the results immediately.
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Consider the case when a resistive n-port can be characterized by
an impedance or admittance matrix. If ideal transformers are allowed,
then any positive -semidefinite matrix can be realized. If ideal trans-
formers are not allowed in the resistive n-port, then positive -
semidefiniteness of the matrix is necessary but not sufficient for
realizability. Another necéssary condition is that the n-port not be
capable of voltage gain or current gain (satisfies Corollary 4.4.1). A
stronger necessary condition is that the matrix be paramount (see
Weinberge (15)).

A resistive n-port must also satisfy Theorem 4.6, It is not known
whether this theorem is implied by paramoncy, or whether it is a new

condition on a resistive n-port.

The following example illustrates an application of Theorem 4.1,

Corollary 4.4.1, and Theorem 4.5.

Example 4.1: A number of dc voltage sources with given current

capabilities are available as follows:

Source 1: 1 volt at 15 amps (maximum)
Source 2: 2 volts at 8 amps (maximum)
Source 3: 2 volts at 4 amps (maximum)
Source 4: 3 volts at 2 amps (maximum)
l Source 5: 4 volts at 1 amp (maximum)

It is desired to connect the sources through resistors (and wires) to
a load such that the voltage across the load is seven volts. Find a bound
on the current which can be delivered to the load.
We will try several approaches and compare the results. Let Vi
( and ik represent the voltage and current of source k, and let Vo and
’ i6 represent the voltage and current of the load. Let R be the set
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of connecting resistors. Now since the voltages and currents of all the
elements in the network form a tension and a flow, Theorems 4.1,
4.4, and 4.5 can be applied.
Considering Corollary 4.4.1, let the sources constitute S,, and

the load together with R constitute SZ' Since the load is a member of

SZ’ result (b) of Corollary 4.4.1 gives
5
i < D Iy | < [0 amps
k=1
Considering Theorem 4.1 we have
5
z vkik + voi0 + Z il = 0
k=1 keR
But voio >0
Vide 2 0 ; keR
i 5 5
. _ - .
Therefore | v, | < z vklk—Z' Vil
k=1 k=1
5
and i | < =2+ ) Ivii | <49/7 = [7 amps
o' - |v l kk' —
o
k=1
Considering Theorem 4.5, let S, = {1,2,3}, S, = {4,5}, S5 = load,
S4 = R. Then condition (i) is satigfied:

ol 27> 3 Iyl =5
ke'S1
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Resr't (a) of Theorem 4.5 then gives

li, | sz il < |3 amps

keS2

How good the bound obtained by this last method is depends, of
course, on how the sources are assigned to S1 and S,. An algorithm
can probably be developed to find the lowest bound without trying all
combinations.,

A simple construction procedure shows that Theorem 4.4, properly

applied, gives the lowest obtainable bound for this type of problem if

il 2 D Il 5 kes,



V. RESISTORS IN DC TO DC CONVERSION NETWORKS

As applied to networks, the flow and tension in the preceding chapter
are the currents and voltages of the network and linear functionsand
functionals of them. The theorems of Chapter 4 require only that the
network in which the currents are observed and the network mWthhthe
voltages are observed generate the same directed graph (see Definition
5.4 below). No other relation is necessary. The many applications of
Theorem 4.1 (Tellegen's theorem) arise from making use of this fact.
(See Penfield et al. (10).)

We will not take advantage of this flexibility of the theorems here;
currents and voltages will be observed in the same network and under
the same excitation. Rather we will use another kind of flexibility which
Theorem 4.4 and Theorem 4.5 possess. Different applications of fhe se
theorems can be generated by dividing up the network elements into the
four sets in different ways.

In this thesis we will be primarily concerned with the averages of
the network parameters. Since the averaging operation (Definition 2.6)
is a linear functional, the average of the currents in a network is also a
flow, and the average of the voltages is also a tension. Then the oper-
ation of averaging may be performed either before or after one of the
theorems in Chapter IV is invoked.

If the currents and voltages are averaged before using one of the
theorems of Chapter IV, the effect is to ignore the role played by the re-
actances. This is because the average voltage across an inductor is
zero (Properties 2.2 and 2.3), and the average current through a capaci-

tor is zero (Property 2.4).

-38-
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The following definitions will help in the study of the role of resistors

in a dc to dc conversion network.

Definition 5.1: The dc-active set in an operating dc to dc conversion

network is the set of elements which each absorb negative dc power (de-

liver positive dc power). The ac-active set in an operating dc to dc

converter is the set of elements which each absorb negative ac power

(deliver positive ac-power). Definition 2.10 defines dc power and ac power.

Definition 5.2: Given a network of resistors, inductors, capacitors,

and dc sources, the corresponding dc network is formed as follows:

Remove all capacitors from the network. Combine all nodes connected

by inductors, and remove the inductors.

Definition 5.3: The primary set of a dc to dc conversion network is

the set of elements in the maximal nonseparable portion of the corre-

sponding dc network which includes the dc source. The secondary set

is the set of elements in the maximal nonseparable portion of the corre -

sponding dc network which includes the load.

The term ''primary'' follows Duffin's use of it (4). However, we use

the term "'secondary' in an entirely different way from Duffin.

Definition 5.4: The directed graph ig»xe_ra}tgqy by anp‘e’t_y»p\:v"k“i)shgb-
tained in the obvious way: vertices correspond to nodes, edges to ele-
ments, and orientations to references. In fact, if the identity of the ele-
ments is ignored, a network is a graph. Therefore we will sometimes

apply graphical terms to a network.

Definition 5.5: Given a condition, result, or proof, the dual condition,

result, or proof is obtained by interchanging the terms "loop'' and ''cut -

set", "flow" and '"tension", ""voltage' and ''current', "inductor' and

"capacitor'', and "flux-linkage' and ""charge''.
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The following properties should be clear from the definitions. No

proofs are given.

Property 5.1: A linear, time-invariant resistor cannot absorb
negative dc power or negative ac power,
This fact follows easily from the constraint imposed by the resistor:

v=Ri,

Property 5._2: Any resistors in the dc -active set of an operating dc

to dc converter must be time -varying/nonlinear.
This is merely a restatement of part of Property 5.1 in a specialized

context.

Property 5.3: Any resistors in the ac-active set of an operating dc
to dc converter must be time -varying/nonlinear.
Any resistors in the ac-active set of an operating dc to dc converter

must be quasi-active (see Definition 2.2).
The first statement follows from Property 5.1. The second state -

ment is stricter than the first, andis proved by Leine (7).,

 Property 5.4: The dc-active set and the ac-active set in an oper-
ating dc to dc conversion network are disjoint.
This is a result of the passivity of the resistors, inductors, and

capacitors, and the fact that dc sources absorb zero ac power.

Property 5.5: Consider a network with currents {ik} and voltages
: {vk}. Let G be the graph generated by the network, and let {'f’k} and
{vk} be the averages of {1k} and {vk}. Then {1k} and {Tk} are

flows relative to G, and {Vk} and {Vk} are tensions relative to G.

Property 5.6: Consider an operating dc to dc conversion network

with currents {ik} and voltages {Vk}. Let G be the graph generated
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by the corresponding dc network. Let the sets {Tk} and {Vk} be the
averages of the ik and Vi corresponding to elements in the corre-
sponding dc network., Then {-1_k} is a flow relative to G, and {\Tk}

is a tension relative to G.

Property 5.7: Consider an operating dc to dc conversion network

with currents {ik} and voltages {vk}. Let G be the graph generated
by the primary set in the corresponding dc network. Let the sets Gl:}

and {\7]:} be the averages of the i, and v, corresponding to elements
in the primary set. Then {Tl:} is a flow relative to G', and {Vl'(} is a

" tension relative to 'é'.

Property 5.8: Consider an operating dc todc conversion network

with currents {ik} and voltages {vk}. Let G" be the graph generated
by the secondary set in the corresponding dc network. Let the sets

{Tl'('} and {'\71:} be the averages of the iy and v, corresponding to
elements in the secondary set. Then {-i_I:} is a flow relative to G , and

{‘\71:} is a tension relative to G'.

Theorem 5.1: There is at least one resistor whichis in both the dc-

active set and the secondary set of an operating dc to dc conversion net-

work.

Proof. Case 1l: The network achieves dc voltage gain greater than

unity.
Let the sets {Tl'('} and {Vku} be the averages of the currents and
voltages corresponding to elements in the secondary set. Then

Property 5.8 says that we may apply Corollary 4.4.1 to {Tk”}, {‘71:},
and the graph G generated by the secondary set. Assume that noele-
ments of the dc-active set, other than possibly the dc source, are in the

secondary set, If the dc source is in the secondary set, then according
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to Corollary 4.4.1 the set Sl consists of the dc source, and S2 con-

sists of the other elements in the secondary set (resistors, including the

load). Let the average of the voltage across the dc source be Vl”. Then
result (a) of Corollary 4.4.1 gives

-t —n

I T I5)'] keS, (5.1)

But by Definition 5.3, the load is a member of S,, and thus the average
% of the load voltage is a member of {vk }. The network has voltage

gain greater than unity, so that

%> 15"

which contradicts Ineq, (5.1). Therefore an element inthe dc-active
set other than the dc source must be in the secondary set. This element
must be a resistor since the secondary set includes no capacitors or
inductors. |

Case 2: The network achieves dc current gain greater than unity,
The proof in this case is the dual of the proof in Case 1. Result (b) of

[

Corollary 4.4.1 is used in place of result (a).

Corollary 5.1.1: The secondary set of a dc to dc conversion net-

work includes at least one time -varying/nonlinear resistor.
This follows from Property 5.2.

Lemma 5.2.1, (Penfield et al. (10)): Let pé‘c

PX ., and PX be
ac

the dc power, ac power, and average power absorbed by the kth element.
Let S be the set of elements in the network. Then

DEE R

keS keS
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Proof: Property 5.5 together with Theorem 4.1 imply

keS

and

keS keS

The average of Eq. {5.2) is

= ) =0
keS keS
Now the ac power absorbed by element k is
k _ sk _pk
Pac = P Pdc ; keS
N ' _k
Therefore z P = =0
(., ac

keS keS keS

which completes the results of the lemma.

Theorem 5.2, ‘There is at least one resistor

after Duffin (4)):
k which is in both the ac-active set and the primary set of an operating dc

to dc conversion network.

Proof: Let Ptli(c' P:c, and -I3k be the dc power, ac power, and -
average power absorbed by the kth element., Let S be the set of ele-
ments in the network, and let S' be the primary set.

Property 5.6 and Theorem 4.1 imply

kes'

we also have from Lemma 5.2.1




or

Therefore

or (5.3)

keS' ke(S-S")

Case 1: The load is in (S-S'). Now by Definition 5.3 the dc source
is in S'; then BK > 0, ke(S-S'). But Definition 2.8 requires the load to

be finite, so that the average power absorbed by the load is non-zero.

Z 5o

ke(S-S")

Therefore

and Eq. (5.3) therefore implies

o
, ac

keS'

Since the dc source absorbs no ac power, and S' includesno inductors

k'

or capacitors, there must be a resistor k' in S', for which P < 0;

that is, k' is in the ac-active set,

Case 2: The load is in S'. Then by Definition 5.3 S' is also the

secondary set., Theorem 5.1 implies then that there is at least one re-

11 (R} — i ) te
sistor k" in S' for which Pcl{ < 0. But Pkc BX P:l(c , so that for

' "
this resistor PX. > 0.
ac
~ Assume that no member of the ac-active set isin S'. Then
k . " Pk |
Pac > 0; keS'. But k'"eS', and > 0. Therefore

z pk >0 (5.4)

keS'
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Also, since the dc source is in S', B > 0; ke(S-S8'), and

z PE >0 (5.5)

ke(S-S')
But Ineq. (5.4) together with Ineq. (5.5) contradict Eq. (5.3). Then
there must be at least one member k' of the ac-active set in S'. Since
the dc source absorbs no ac power, and S' includes no inductors or

capacitors, that member must be a resistor.

Corollary 5.2.1: The primary set of a dc to dc conversion net-

work includes at least one time -varying/nonlinear resistor which is
quasi-active.

This follows from Property 5.3.

Theorem 5.3: Consider an operating dcto dc conversion network. Let Rd

(]

be the set of resistors in the dc-active set, and Rac be the set of re-
sistors in the ac-active set. If Pé(c and P:C are the dc power and the

ac power absorbed by the kth element, then

z PK > - PX > pk>-z P >0
L dc — . ac — £, ac — & dc
k_c-:RaC keR_ keRdC keR .

Proof: Let the sets of resistors, inductoré, and capacitors in the
network be R, L, and C. Let the ac power absorbed by the dc source
be 121(:. According to Lemma 5.2.1, the total of the ac power absorbed
by all elements in a network is zero:

p‘+Zpk+2pk+ZPk=o (5.6)
ac £ ac , ac & ac
keL keC keR

But we have from Properties 2.2, 2.3, 2.4, and 2.5,

Zpk -0 ; KkeL
e ac

PX - 0 ; keC
ac

P!

ac
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2, oo

keR

Then Eq. (5,6) becomes

Let the set of resistors in neither Rdc nor Rac be designated R*.

Then, observing Property 5.4, we may write

2I) aczpkzo

kéii keR_ keR*

k

But by definition, Pac >0; keR¥*, Therefore

' Now P o= B*-pPX |, ker (5.8)
ac dc '
r where PK is the average power absorbed, which is non-negative for a

resistor. Applying this to keRdc

- K .
Z Pac Z - Z l:)cli(c (5'9,)

1§
! keR de keR de

Eq. (5.8), applied to keRac, gives

2 Pcll(cz-z P:c (5.10)

ke Rac keRaC

Z Pcll(c> 0 (5.11)

Inequalities (5.7), (5.9), (5.10), and (5.11) together constitute the re-

Theorem 5.1 implies

sult of the theorem.
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Theorem 5.4: The total dc power delivered by the set Rdc

of resistors in the dc-active set of an operating dc to dc conversion net-
work is bounded in terms of the dc voltage gain G and the dc power P0
delivered to the load by
- z Pé(c z & p0
keRdc
The result also holds for G the dc current gain.

Proof: Property 5.6 says that we may apply Theorem 4.4 to the
set’ of average currents {Tk} and the set of average voltages {Vk}
corresponding to elements in the corresponding dc network and to the
graph which it generates. Considering result (a) of Theorem 4.4, let
S1 be the dc source with voltage vy Let S2 be the load with voltage

v, and current io. Let S3 be the set Rdc of resistors in the dc-

0
active set, Let S4 be the remaining resistors in the corresponding dc

network. Then result (a) of Theorem 4.4 is

oy gl - %510 + z Vi i | 20

keR de

Now the load is a linear, time-invariant resistor, so Vo TO > 0. Also

v, i, <0; keR, . Then

k 'k dc
AT AT JE "
keRdc
I, | - I¥, ]
- - = 0 1 — -
or - Z Vi ik 2 Al 17| Tig |
keR

dc
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But
k _— =—
Fac = Vi Ik
Py =71 = 15 1[5

Q
I

v /19,1
The result follows.

The proof for G the dc current gain proceeds similarly, using re-

sult {b) of Theorem 4.4 instead of result (a).

Corollary 5.4.1: A bound on the total ac power delivered by the set

Rac of resistorsin the ac-active set of an operating dc to dc conversion

network s given by

keR

where G is either the dc voltage gain or the dc current gain, and P,

is the dc power delivered to the load.

This follows from Theorem 5.3 and Theorem 5. 4.

The corollary proves statement 4 made by Moore and Wilson (§).

Corollary 5.4.2: A bound on the total dc power absorbed by the set

R_. of resistors in the ac-active set of an operating dc to dc conversion

network is given by

C . oa
Z Fic 2 G Fo

keR
ac

where G is either the dc voltage gain or the dc current gain, and P0
is the dc power delivered to the load.

This also follows from Theorem 5.3 and Theorem 5. 4.
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If we make a constiraint on the topology of the dc to dc conversion

network, we can obtain a somewhat better bound than that given by

Theorem 5.4. The next theorem inve stigates this,

Theorem 5.5: Let Rdc and Rac be the sets of resistors in the
T dc-active set and ac-active set of an operating dc to dc conversion net-
work. Let P:c and Pal:c be the dc power and ac power absorbed by the
kth element. If the primary set of the network is not also the secondary
k» set, then

' z 1:’cll(cz-z P:CZ"Z P‘li(cz_p

keR keR keR
ac ac

where P0 is the dc power delivered to the load,

Proof: According to Property 5.8, we may apply Theorem 5.1 to

the set of average currents {Tk} and the set of average voltages {Vk}
of the elements in the secondary set and to the graph generated by the
secondary set in the corresponding dc network. Let S" be the secondary
set. Then Theorem 4.1 gives

z Vk Tk = 2 Pclltc =0

keS" keS"
Since the primary set is different from the secondary set, the dc source
is not in S Also, S" includes .0 reactances, Let R* be the set of

resistors (other than the load) which are not in R

TS HETE

ke R keR*

de* Then

But by definition Pk 2 0; keR*, Therefore

Z
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Together with Theorem 5.3, this gives the result of the theorem.

Theorem 5.6: Let Rac be the set of resistors in the ac-active set

of an operating dc to dc conversion network. Then we have the following

bounds on the average currents Tk and the average voltages Vk of the

resistors Ra :

C
(a) Z 26, -1 [
keR
ac
where GV is the dc voltage gain, and iO is the load voltage.
keR
ac

where G, is the dc current gain, and Yo is the load voltage.

Proof: Property 5.6 says that we may apply Theorem 4. 4 to the set
of average currents {Tk} and the set of average voltages {;k} corre-
sponding to elements in the corresponding dc network and to the graph
which it generates. Considering result (a) of Theorem 4.4, let S1 be
the dc source with voltage Vi- Let S, be the set Rac of resistors in
the ac-active set, together with the load with voltage vy and current io.

Let S, be the set R of resistors in the dc-active set. Let S4 be

3 dc
the remaining resistors in the corresponding dc network. Then result

(a) of Theorem 4.4 is

Now Volg 2 0: and‘v1 <o, L

0 k'k

HERAIAE

keR
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By Theorem 5.3

keRac keRdc
Therefore '71, ’Tk, + ’Vl , ’TO’ - 'Vol ,i0, 20
keRac

or

2, Tilzdwilel - byl =, - nh,l
keR

ac
which is result (a) of the theorem.

Result (b) follows in a similar manner, using result (b) of Theorem 4.4

instead of result (a).

Theorem 5.7: Let Rdc be the set of resistors in the dc-active

set of an operating dc to dc conversion network. Then the average volt-
ages ¥V, and the average currents —i-k of the resistors in Ryc are
bounded as follows:

- G, -l
(@ Y 5l 2 ey

keRdc

where GV is the dc voltage gain, and VO is the load voltage.

(o Y Rlsalf

keR

where G, is the dc current gain, and i0 is the load current,

t Proof: Property 5.6 says that we may apply Corollary 4.4.1 to the
set of average currents {Tk} and the set of average voltages {;k} corre-
sponding to elements in the corresponding dc network and to the graph

f G which it generates. Considering result (a) of Corollary 4.4.1, the
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set S1 is the set Rdc of resistors in the dc-active set together with
the dc source with voltage vi- The set S, consists of the remaining
resistors in the corresponding dc network, including the load with volt-

age vg. Then result (a) of Corollary 4.4.1 gives

AR YN AR Y

k‘é'Rdc
L LA L e
or "' TR I7T% T Yol = T 1Y

which is result (a) of the theorem,
Result (b) follows in a similar manner, using result (b) of Corollary
4.4.1 instead of result (a).
Theorem 5.7 does not give a meaningful bound on the Vk in R,
when G_<1 or onthe i, in R when G. < 1. The bounds given by
\4 k dc i
the following theorem are meaningful in these cases, although they are

not so strong as the bounds in Theorem 5.7 in other cases.

Theorem 5.8: Let Rdc be the set of resistors in the dc-active set

of an operating dc to dc conversion network. If the dc voltagegain is
greater than unity; that is, for Vi the dc source voltage and vy the

load voltage,

(i) ARSI

then (a)

where io is the load current.

If the dc current gain is greater than unity; that is, for il the dc

source current,
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(i) | 1< i

then (b)

"""" v [ 2 19,1

keRdc

Proof: Property 5.6 says that we may apply Theorem 4.5 to the set
of average currents {Tk} and the set of average voltages {Vk} corre-
sponding to elements in the corresponding dc network and to the graph
which it generates,

Considering result (a) of Theorem 4.5, let the set S1 be the dc
source. Let S2 be the set Rdc of resistor in the dc-active set, Let
S3 be the load. Let S4 be the remaining resistors in the corresponding
dc network. Then condition (i) of Theorem 4.5 is satisfied, and result
(a) of Theorem 4.5 is

> Rzl

keRdc

which is also result (a) of this theorem.
Result (b) follows in a similar manner from condition (ii), using re-

sult (b) of Theorem 4.5 in place of result (a).

It is a well-known fact that a passive network cannot achieve both
voltage gain and current gain greater than unity. Conservation of power
is cited as the proof. For completeness we will prove this fact for dc

voltage gain and dc current gain as we have defined them.

Theorem 5.9: Let the dc voltage gain and dc current gain of an

operating dc to dc conversion network be G, and G;. Then

G,G; <1
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Proof: Lemma 5.2.1 states that the total average power absorbed

by the set S of all the elements in a network is zero:

keS
Since the PX - 0 for the reactances, and e > 0 for the resistances,

we then have

P+B% <0
where f’l and l—:’0 are the average power dissipated by the dc source

and the load, respectively. Now Property 2.5 implies

1 - =
dc ac de ~ V111

Also, since the load is a linear, time-invariant resistor, Property 5.1

implies
s0_ 0 0 0 _- T
P FetBac2Fic "V to
Therefore Vl il t vg ig <0

Vo [ Tigls I3y 1T
175! [l

<1
91 'ill B

G G. <1 Q.E.D.
v oi—

A consequence of Theorem 5.9 is that G and Gi cannot both be

greater than unity.

Remark 5.1: Theorems 5.1, 5.2, and 5.3 imply that everydc to

dc conversion network has at least two time -varying/nonlinear resistors.
The purpose of one of these, the resistor inthe ac-active set, can be

viewed as converting dc power to ac power. The resistor in the dc-active
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set converts the ac power back to dc power. This dc power, and possibly
dc power directly from the dc source, are delivered to the load, Figure

5.1 illustrates this process,

L~
11T 1
'T—,-- N Rac

Figure 5.1 Power Transfer in a dc to dc
Conversion Network

Remark 5.2: Notice that the requirement that a resistor absorb

negative dc power is equivalent to saying that the ave rage current and
average voltage have opposite sign. This implies that a locus of current
versus voltage must lie in both the first and third quadrants. The device
usually used to realize the necessary resistor(s) in fhe dc-active set is
a diode. The v-i characteristic of a typical diode is shown in Fig. 5.2,

i

?

Figure 5.2 v-i Characteristic of a Diode
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The diode is said to switch if its operating point changes quadrants. 1f

the vwopen'' voltage and nclosed” current are not too small, the diode will
absorb negative dc power.
The resistor in the ac-active set has no requirement that it operate

in both the first and third quadrants. HoweVverT, it is quasi -active, and

as Property 2.1 points out: if the resistor 18 time -invariant, its v-i

i characteri stic must have a portion with negative incremental resistance.
Therefore 2 simple diode cannot be used to realize the necessary re-
sistor(s) in the ac-active set. Examples of time -invariant devices which
have satisfactory v-i characteristics are tunnel diodes and four -layer
diodes. The v-i characteristics of these twoO devices are shown in Fig.

5.3

Tunnel Diode Four -l.ayer Dicde

Figure 5.3 v-i Characteristics of Devices which
May Be in the ac -Active Set

It is easy 1o show that any time -varying recistor may be made to
absorb negative 3¢ power. Two time -varying devices commonly used to
realize the resistd_.r(s) in the ac-active set are relays and transistors.

Figure 5.4 shows the v-i characteristics of these devices for tWo dif-

ferent times.
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Typical operating points are indicated on the characteristics.

fi
’fﬂ_——--/ﬁ

*i

Relay Transistor
Figure 5.4 v-i Characteristics of Two Time-Varying Devices

Remark 5.3: Referring to Fig. 5.1, ifthe '"lower path' of power

transfer is eliminated, the network cannot act as a dc to dc converter. One
! would then expect that if the power through this path is restricted, then the
| dc gain or some other parameter of the converter would be restricted.
Theorem 5.4 gives the relationship. It indicates that less dc power de -
livered by resistors in the dc-active set (or less ac power delivered by
resistors in the ac-active set) implies less dc gain or less dc power de-
livered to the load.

The condition of Theorem 5.5 is equivalent to eliminating the '"'upper
path" of power transfer in Fig. 5.1. The result of Theorem 5.5 then
gives the lower bound on the power transferred by '"lower path''.

The nexf chaptef wi}l show how the maximum dc power or ac power
that a resistor can deliver is dependent on its characteristi.cs. We will
also see how the average power dissipated by a resistor is related to the

dc power or ac power that it delivers,
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Remark 5.4: Theorems 5.6, 5.7, and 5.8 give bounds on the
average current and average voltage of the resistors in the dc-active and
ac-active sets, Note that a restriction on the average current in terms
of the average voltage (and vice-versa) may always be obtained through

the restriction on the dc power given by Theorems 5.4 and 5.5.

The utility of these bounds is obvious since the average current ofa
. device is often limited. In the next chapter, the average voltage and

current will be related to peak voltage and current.

Example 5.1: We will consider a specific dc to dc conversion net-

work to illustrate the results of the theorems in this chapter. Figure 5.5
shows a simple inductor fly-back dc to dc converter with dc voltage gain

greater than unity.

. | 13 ' +v3 - .
. +_1_ + :-
! V) — V2 - 0

Figure 5.5 Simple dc to dc Conversion Network

The dc voltage gain depends on the duty cycle of the switch. Assume that
the inductor and capacitor are large enough that their current and volt-

L age, respéctively, are nearly constant in steady-state. Then the dc volt-

age gain is given by G = (1 -d)-'1 where d is the duty cycle of the switch.

) Consider the case for Vy=1, d= 2/3, and R =1, Then



G =3

Vo = 3, i0:3 R Po = 9
- = 2
v, = 1, 12-6 ’Pdc = 6
- _ _ - 3
vy = 2, 13_3 . Pdc =-6

Now the dc-active set consists of the dc voltage source and the diode,
and the ac-active set consists of the switch. Then we may check that the

above figures satisfy the theorems of this chapter:

Theorem 5.3: P

Theorem 5. 4: -By > = Py
6 > 23t
Theorem 5. 6: [, >G-n [5,l
6 >(3-1)3
Theorem 5.7: v,] 2 S5,
2 >3 s
Theorem 5. 8: i1 > M5y |
3 > 3

Remark 5.5: Example 5.1 shows that Theorems 5.4, 5.6, 5.7, and

5.8 give a greatest lower bound (not for a specific network, but in general).

Remark 5.6: The purpose of the theorems is obviously not to obtain

bounds on the parameters in a specific netwcrk since the actual values
may easily be found directly from the network. Rather the theorems

give a priori bounds for all dc to dc conversion networks. They tell
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"the best that can be done'', and the parameters of a specific network can

be checked against these results to see if it is possible to better the

parameters,

Example 5.2: To illustrate when Theorem 5.5 is applicable, we

give an example of a dc to dc conversion network for which the primary

set is not also the secondary set,

W)
o
w

_ Jc M & ‘ V
+V, — 0
2

-_—f - S

Figure 5.6 Dc to dc Conversion Network with
Disjoint Primary and Secondary Sets

=+
\|
1

Consider the network of Fig. 5.6, Identifying the nodes to which the i.n-.
ductor is connected causes the network to become separable at that node.
Then the primary set consists of the dc voltage source and the switch,
and the secondary set consists of the load and the diode.

Assume that the inductor and capacitor are large enough that their
curren{ and voltage are nearly constant in steady-state. Then the dc
voltage gain is given by szd/(l-d), where d is the duty cycle of the

switch., For d = 3/4, V, =1, and R =1, we have

vo = 3, g =3 , B =09
7, = 1 I, =9 P2 -9
V2 T I ’ dc =
V. =3 , T, =3 P} - 9
vy = y iy = , e =



2 3
so that Pdc > -Pdc > P0

as required by Theorem 5.5,

Remark 5.7: Example 5.2 shows that Theorem 5.5 gives a greatest

lower bound (not for a specific network, but in general).

As mentioned after Definition 2.8, a network with a dc voltage source
at the input and which has a dc voltage gain less than unity is still con-
sidered a dc to dc conversion network if the dc current gain is greater
than unity. Such a ''voltage step-down'' network is illustratedin the next

example,

Example 5.3: Consider the dc to dc conversion network in Fig. 5.7,

Figure 5.7 Voltage Step-Down dc to dc
Conversion Network

‘An analysis similar to that of Fig. 5.5 in Example 5.1 shows that

G = 1

\'4

IA

d
G = dl>1

1

|V

where d is the duty cycle of the switch.
It is easy to show that this network also satisfies Theorems 5.3,

5.4, 5.6, 5.7, and 5.8, as it must since it meets the conditions of a dc

to dc conversion network.



VI. REACTANCES IN DC TO DC CONVERSION NETWORKS

In this chapter we will study dc to dc conversion networks by first
applying a theorem from Chapter IV and then performing the averaging
operation. The purpose is to observe some average parameters associ-
ated with the reactances. Now, the average power absorbed by a re-
actance, the average voltage across an inductor, and the average cur-
rent through a capacitor are all zero., However, we will select time -
dependent sets (in the theorems) so that the parameters of interest do

not vanish,

Lemma 6.1.1: Given vis Vo and io which satisfy
vy = "71 (constant)
Vg T Rlo ; R constant
1Tl 2 [7y1
then voig = M TTigl 2 (15l - 19, D [iyl

The dual lemma also holds.

> R [Tl ligl = 1951 Ti]
Also, since v1=§71,
vyl ligl = 17,1 Tig)

-62-
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Then voio - Il Tigl 2 (151 =I5,y Tig |
But ,;OI .>_ ,-‘71,
Therefore voi0 - lvll ’iol 3(lvol - 'Vl ’) ,TOI

Lemma 6.1.2: Let X be a set of reactances, and let

X(t) = {keX : v (t) ii(t) <0}

Then
R § e
, Vit 2 k'k
keX (t) keX
Proof:
’ ‘ . A . 1 \ .
T vklk = Th_r’rzn T f Z- vklk dt
keX ~(t) 0 keX (t)
Let

{t:v i (m>0, 0<t<T}

? QH(T)
Q(T)

Then we may write eqﬁivalently,

- Z lim IT f vy i dt (6.1)

keX "(t) keX 1 ® Q(T)

{t:v, (i (<0 , 0<t<T}

Now, the average power absorbed by a reactance is zero; viz.,

T
— 1 ,
Vklk T 1 v dt
T——a:) 0

(continued on next page)
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1}
jon
3
el
W'<
[
w
=}
o+
-+
<
x
[
b
[oN
(ad

Therefore
'11‘1—120—-[ vklkdt = -Tli.n;-_.? i Vi dt ; keX
Qk(T) Qk(T)
Then

'vkikl 8 lim %f 'vkik'dt
' 0

I
ek
o)
3
o] L
<
=
[
=
o}
-+
]
~
e
R.
(o d

T—0o + -
Q,(T) Q,(T)
= -2 lim = f Vi dt ; keX
T—oo J
Q,(T)

Together with Eq. (6.1), this gives the result of the lemma.

Theorem 6.1: Consider a dc to dc conversion network which has a

dc voltage source at the input. Let X be the set of reactances, P0
be the dc power delivered to the load, and Gv be the dc voltage gain.
If G, > 1, then
3 T s 2
22, il 25 Po
keX v
The dual theorem also holds.
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Proof: By Property 5.5 we may apply Thecrem 4.4 to the currents

{ik} and voltages {vk} of the elements in the network and to the graph

G which it generates. Considering result (a) of Theorem 4.4, let Sl
be the dc ‘v,oltage source with voltage vy Let S, be the load with

} voltage Vo and current io. Let S3be the set X‘-"(t) of reactan;:es for
which vk(t)ik(t) <0 ; keX. Let S4 be the resistors, together with the
reactances for which vk(t)ik(t) > 0; keX. Then result (a) of Theorem

4.4 gives

Ivllliol - Voo * z lvkikl >0

keX (t)

But by definition

lvkikl = -vidy s keX (t)

Therefore we can write

vy lig = vgio - 9. vy 20

keX ()
F Taking the average of both sides,
lvll lioi - Voig - z- Vil 20
keX (t)

Then Lemma 6.1.1 and Lemma 6.1,2 give

% Z 'vkik

(171 - 15D Tip]

2
keX
[ _ IVOI/'VII -1 _ :
! S EAVIEN T
Gv-l
= Gv PO

The proof of the dual theorem is the dual of the above proof.
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Lemma 6.2.1: Consider a capacitor as characterized in Definition

2.5; that is, the constitutive relations are

v = f(q)

i = dq/dt
where df(q)/dq > 0 ; f§0) =0
Let QY (T) = {t: v(v)ift) >0 , 0<t<T)
Q(T) = {t : v(t)ift) <0, 0<t<T}

If the voltage v remains finite, then

lim & lilat = 1im & lifae = i
T—*mT . T—»ooT 2
Q(T) Q(T)
Proof:
dg _ .
a - !
dig®) _ ,, 4

Then if the zero-crossings of q(t) are countable,

2
d _ d .
e dlal = o 880 o

except on a set of measure zero. But the conditions on f(q) imply that

sgn{q) = sgn(v)

Then sgn %—?—l = sgn (vi)
df = |d
R

Therefore

el = oo 23] 82 - Bl 0

Noting the definition for Q+(T) and Q (T), we may write



= f li| dt - f lildt + |q(0)] (6.2)

ot (T) Q(T)

Definition 2.5 also requires that v finite implies q finite. Then

. 1 . 1
lim = |q(T)| = lim = |q(0)|
T—o T T—00 T

Applying these facts to Eq. (6.2), we obtain

lim%‘[ lildt = 1lim f ||dt
T—00 Tco

Q (T) Q(

which is the first result of the lemma. Now,

l—i_[ellm flldt

- lim 'IT* f li|dt + lim %5[ li] at
(T)

T—~o0 Q+(T) T—o0
. 1 .
= 2 lim & f |1| dt
T—o0 T <
Q(T)

which gives the second result of the lemma.

Theorem 6.2: Consider a dc to dc conversion network which has a

dc voltage source at the input. Let C be the set of capacitors, L be
the set of inductors, G be the dc voltage gain, and io be the load cur -

rent, If Gv> 1, then

i Z Iik|+z li] > (G, -1 [ijl

keC keL

The dual theorem also holds.
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Proof: By Property 5.5 we can apply Theorem 4.4 to the currents
{ik} and voltages {vk} of the elements in the network and to the di-
rected graph which it generates. Considering result (a) of Theorem 4.5,

let S, be the dc voltage source with voltage v;. Let S, be the set

1
X+(t) of reactances for which vk(t)ik(t) > 0, together with the load with
voltage v and current io. Let S3 be the set X (t) of reactances for
which vk(t)ik(t) < 0. Let S4 be the set of resistors in the network. Then

result (a) of Theorem 4.4 gives

v | g+ v, z+ iy | - vgig - Z+ v, + Z v | 20
KeX ' (t) Kex ' (t) KeX (t)
(6.3)

By definition

v | = =vdy 5 keXT(1)
and the union of X+(t) and X (t) is the set X of all reactances. Then
we may combine the last two terms of Ineq. (6.3) and write
lvHigl+ |1 z+ lig | - voig - z Vil 20
keX (t) keX
Taking the average of both sides,

Ivllliol - Voig * |v1| z+ Iikl + Z Vi 20 (6.4)

keX (t) keX

Now, Lemma 6.1.1 has

Voio = IV1|'10| Z(Ivol = Ivll)ﬁol

Since vy is constant,

NN

keX (t) keX T (t)
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In accord with Properties 2.2, 2.3, and 2.4,

z Vkik = 0

keX

Using these three facts in Ineq. (6.4), we obtain

ADNRAEUARANA

keX  (t)
z . 17, | . .

. IlkIZ. -IV_I-I ’Tol =(Gv'l)[1_0|
keX (t) 1

Let C+(t) be the set of capacitors for which vk(t)ik(t) > 0, and let

L¥(t) be the set of inductors for which v, (t)i,(t) > 0. Then we have
z+ li, | + z+ li, | > (G, -1 il (6.5)
keC' (t) keL" (t)
—_ T
Now, z li, | 2 1im lf li, | at
+ k T—m T + k
keC’ (t) 0 keC '(t)

Let QH(T) = {t:v (i (t)> 0, 0<t<T}

Then li I = lim = |1 | dt
k T—o00 T k

keC! (t) keC Q, (T)

Lemma 6.2.1 then gives

z li | = %Z iy | (6.6)

keC ' (t) keC

Now, since L+(t) is a subset of L,

NP AED AN (6.7)

keL'(t) kel kel

Inequality (6.5), Eq. (6.6), and Ineq. (6.7) yield the result of the theorem.



-70-
The proof of the dual theorem is the dual of the above proof, using
result (b) of Theorem 4.4 in place of result (a), and using the Lemma 6.3.1
(stated next) in place of Lemma 6.2.1,

Lemma 6.3,1: Consider an inductor as characterized in Definition

2.3; that is, the constitutive relations are

i = (N
v = d)\/dt
where df(\)/dA> 0 f(0) = O
Let Qf(T) = {t:vii) >0 , 0<t<T}
Q(T) = {t:v()i(t)<0 , 0<t<T}

If the current remains finite, then
lim = f lv|dt = lim 'lf'f lvlae = L ]v]
T—00 Q(T) T—00 Q+(T)

Proof: The proof is the dual of that for Lemma 6.2, 1,

Theorem 6,3: Consider a dc to dc conversion network which has a

dc voltage source at the input. Let C be the set of capacitors, L be

the set of inductors, G be the dc voltage gain, and Vo be the load

G -1
AR NAE == 1%,

keC keL

voltage. Then

The dual theorem also holds,

Proof: By Property 5.5 we can apply Corollary 4.4.1 to the cur-
rents {ik} and the voltages {vk} of the elements in the network and to
the directed graph which it generates. Considering result (a) of Corollary

4.4.1, S1 is the source with voltage Vi together with the set X7 (t) of
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reactances for which v(t)i(t) <0, And S, consists of the load with

2

voltage vy together with the set of resistors and the set X+(t) of re-
actances for which v(t)i(t) > 0. Since the load is a member of SZ’ re -

sult (a) of Corollary 4.4.1 gives

or AR

kex'(t)

Taking the average of both sides,

D lnlalvgl -l = Tl - 17

MVACIER. g2 St
\'4 === |V
ol /1% | ° G 0

|V

lv-ol = 'v.l' =

Let C+(t) be the set of capacitors for which vk(t)ik(t) > 0, and let

L+(t) be the set of inductors for which vk(t)ik(t) 2 0. Then we have

G,-1 _
2 lqls 2. lal 25 (6.8)
keC (t) keL  (t)
T
A . 1
Now, z+ lvkl =T11_1;nm Tf . lvk,dt
kel (t) 0 keL (t)
+ .
Let Qk(T) = {t: i (>0, 0<t< T}

Then Z Ivk, = Z‘ lin %f Ivkldt
ke
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Lemma 6.3.1 then gives

Y nd =Y (6.9

keLT(t) kel

Now, since C+(t) is a subset of C,

AL ILAED)

keCT(t) keC KeC

Ivkl (6.10)

Inequality (6.8), E . (6.9), and Ineq. (6.10) yield the result of the
theorem.

The proof of the dual theorem is the dual of the above proof, using
result (b) of Corollary 4.4.1 in place of result (a), and using Lemma 6.2.1

in place of Lemma 6.3.1.

Remark 6.1: Consider a dc to dc conversion network whose oper-

ation is periodic with period T, and whose inductors have no mutual

. A
coupling. Let X be the set of reactances, and let Wk be the maximum
energy stored by the kth reactance. If the power vkik absorbed by each

reactance changes sign not more than 2s times during each period, then

keX
where G is the dc voltage or current gain and P0 is the dc power de -
livered to the load.
A
Since W,

k

by the switching speed of devices in the network, the above inequality

is related to the size of the reactance, and T is limited

has meaningful design implications.
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Remark 6.2: Consider a dc to dc conversion network whose oper -

ation is periodic with period T, and whose inductors have no mutual
coupling. Let C be the set of capacitors, and ak be the maximum
charge in the kth capacitor. Let L. be the setof inductors, and /):k
be the maximum flux-linkage in the kth inductor, If the power vkik

absorbed by each reactance changes sign not more than 2s times during

each period, then

|
%T llklisak i keC
1 1 2
ZTlvklsst ; kel

Now, the size of a reactance is related to the maximv;li:n charge or
flux-linkage it must store. Then the above facts together with Theorems
6.2 and 6.3 relate the size and number of reactances in a dc to dc con-
version network to the period of operation, the dc gain, and the load

voltage or current.

Remark 6.3: Theorem 6.2 and Theorem 6.3, which give bounds on

the average magnitude of the currents and voltages of the reactances,
also imply bounds on the peak currents and voltages of the reactances,
In the next chapter we will relate the dissipation due to losses in the
reactances to the current in the reactances. Theorems 6.2 and 6.3 will
then be used to extend the relation to the external parameters of the net-

work.,

Remark 6.4;: Theorem 6.1 implies that if a network has no re-

actances, then the dc gain must be unity or less., That is, every dc to

dc conversion network must include at least one reactance.

Then the types of dc to dc conversion networks might be classed ac-

cording to the types of reactance they include: capacitors, inductance,
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mutual coupling, or any combination of these. The most important of
the combinations is the inductor-capacitor network. In the other two
combinations the roles of the different reactam‘
dependent.

The "all capacitor' and ''all inductor' (without mutual coupling)
networks show a dependence of dc gain on the number of reactances;
this is discussed in Chapter VIII. Another characteristic seems to be
that there is no efficient way to change the dc gain. This is a dis-
advantage of these types of circuits when a fair amount of regulation is
required.

A network using only the mutual coupling (transformer) property
of inductors has a similar problem with regulation. The dc gaincan be
varied without sacrificing efficiency only by changing the '"turns ratio' of
the mutual coupling. But this results in quantized regulation.

The following examples will concentrate on the role of the reactances
in several dc to dc conversion networks., We will compare their voltage,

current, and power with the bounds given by the theorems of this chapter,

Example 6.1: Figure 6.1 show a dc to dc conversion network with-

out inductors.

Dot i,
+ +
;:\-‘_’1 ;:VZ +
;}'__;_ Cl CZ - Vo
R BN B R —

Figure 6.1 Dc to Dc Conversion Network
Without Inductors



-75-
The switches operate periodically, remaining in the position shown for a

time T1 and in the opposite position for a time TZ' For low output

ripple, RC2>>T If T

1-

say €, compared to the load current, The dc voltage gainis Gv =2,

1'<< TZ and C1 >> CZ’ then Iizl is very small,

For Vl=1 and R=1 we have the following parameters:
Wol =2 5 [igl=2 ; Fy=1
oT=2 : Tl=c & Toipl-2e

We compare these figures with the results of the theorems of this chapter:

Theorem 6.1:

[\ =
3
x—-

Vv
oL
1
Q*U

keX

2+e >2

Theorem 6.2:

ga

i, | 2 (G- i
keC

Theorem 6.3:

Example 6.2: Figure 6.2 shows a dc to dc conversion network

which has no capacitors. The switches are closed alternately for equal
lengths of time. Let the period of the network be T. For low output

ripple, LL/R>> T. The dc voltage gainis G = 2.



g
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i

== I

+v, -
2 Ayt D
4+ v - i
2 ol
+_—
\'s Yo

] —

R

Figure 6.2 Dc to Dc Conversion Network
Without Capacitors

For V1=1 and R=1, we have the following parameters:

1]

Tl =2 & [l
Ml =1 & Tl

' =1 H |i2|

2 ; B =4

2 lv.i, = 2

<

2 5 v,i,l =2

<
o~

Comparing these figures with the theorems of this chapter, we find:

Theorem 6.1:

— G.-1
1 - v
Ez vl 2 5— R

keX v

2 > 2

Theorem 6.2:

Z li | > (G,-1 [i,l

keLL
4 > 2
Theorem 6.3:
G -1
1 v -—
LY ol 22— 1%
kel,
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Example 6.3: Figure 6.3 shows a dc to dc conversion network using

inductors with mutual coupling.

Pt

Figure 6.3 Dc to Dc Conversion Network
Using Inductors with Mutual Coupling

The coupling coefficient is unity, and the inductors are large enough to
keep the magnetization current reasonable. The switches are closed

alternately for equal lengths of time. For a '"turns ratio" of n, the dc

voltage gainis G =n+l.
For V1=l, R=1, and n=1, we have the following parameters:
Gv = 2
’?0, = 2 ; ﬁ0|=2 H PO = 4
lvkl =1 ; likl =1 ; ,vkikl =1 ; k=1,2,3,4
E Compare these figures with the results of the theorems of this chapter.
Theorem 6.1:
1 Gv-l
z vid | 2 5= B
v
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Theorem 6.2:

4> 2
)
b Theorem 6.3:
1 i -
LY Tolz % I
i keL
2> 1

Example 6.4: Figure 6.4 shows a dc to dc conversion network using

both inductive and capacitive energy storage.

| DT i

,—T | ) .

=<+
\|
7| <
T+
\[L
a /i
&

Q]
[
[\]

I

Figure 6.4 Dc to Dc Conversion Network Using
Both Inductive and Capacitive Energy Storage

The two SCR's are pulsed alternately and so that both are not on at the
same time. Let the period of the network operation be T. For low out-
put ripple, RC2 >> T. For R>> \]f?Cl, the dc voltage gain is given

closely by
2RC
Gv = T

1 R C
Sn’ Ll

For G near its maximum for given element values, the voltages

across L and C1 are nearly sinusoidal, and the analysis is easier.
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The network parameters are then given by

|"_1'=|—"3_'=%|Vo| i Ej: Yo
i1 = Tigl = 26, Tl Tl = 2[5l
vy | = Ivgigl= la®, i Iv,,l = 27
For V=1, R=10, G =10, we have

|51 = 10 i, =1 5 Py=10
v, = 6.3 5 W =20 ;  Ivji| = 50
lv,| = 10 ; ITZT =2 5 vl = 20
vl = 6.3 5 [ig] = 20 ; [vig] = 50

We compare these figures with the results of the theorems of this chapter:

Theorem 6.1:

1 Gv-l
z v | 2 G, B
keX
60 > 9

Theorem 6.3:

1 Gv-l ‘
Z Ivk' +EZ Ivkl Z GV Vol
keC kel
19.5 > 9
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Remark 6.5: Example 6.1 and Example 6.2 show that Theorems

6.1, 6.2, and 6.3 give a greatest lower bound (not for a specific network,

but in general).



VIiI. ELEMENT CHARACTERISTICS AND LIMITATIONS
In this chapter we will consider some models for déviées which
might be used to realize the elements in a dc to dc conversion network.
These models will be used to find a relationship between the element
characteristics and limitations and the electrical variables associated
~with the element: average voltage and current, dc poweir and ac power,
and average power. The relationships will be found in terms of bounds

by fixing certain parameters and optimizing others,

Theorem 7.1: If the periodic functions wv(t) and i(t) with period

T satisfy
(i) v(t)i(t)> 0 ; 0<t<T
(ii) vic<o

where ¥ and i are the averages of v(t) and i(t), then

where ¢ = max |v(t)|
0<t<T
? = max l]{t)|

Proof: We will put the problem in a form such that it canbe treated
by Pontryagin's principle for finding an optimum control (see Athans and
Falb (2)).

Consider the controls v(t) and i(t) with the restriction that their

values be in the set  for 0 <t < T, where Q is the region

-81-
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Figure 7.1 Region of Allowable Controls

Case l: i>0. Then Vv <0 in order that vVi<O.
Let i be fixed and find the minimum ¥ which can be obtained for
the given restriction on the controls, Then let
x =i , x(0) = 0

 Requi ring that

x(T) = Ti

insures that the average of i :

T
fia
0

i Liae

attains the desired value.

The average value of v:

<|
"

fvdt

| 0

i Llan

which must be negative, is to be minimized.
Following the procedure of Pontryagin's principle, we form the
Hamiltonian

H = L+<E,£>
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where L is the integrand of the parameter to be minimized, p is a
""costate', and f is the right hand side of the (vector)\ state equation,
Then
H = v+pi

and the costate equation is

p =-8H/ax = 0

or ’ P = const
The theory states that the controls v and i satisfying £, attaining
i, and minimizing v must also minimize H at all times.

Now, if p >0, H is minimized by setting v(t) = -V, which implies
that i(t) < 0; 0 <t < T,which makes it impossible to attain a,positive i,
Therefore p <0, |

Figure 7.2 shows loci of constant values of H for p = -V/I.

N
Nhn R
R \\ \
N\

Figure 7.2 Loci of Constant Values of
The Hamiltonian for p = -V/I
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The value of H decreases as the operating point moves toward the upper
left. For p = -V/I the locus of H = -V passes through both the points
(-vV,0) and (0,I). Then H is minimized fc;r either (v,i) = (-V,0) or
(v,i) = (0,1).

If p is greater or less than -V/I, then the slope of the loci of
constant H changes so that H is minimized for (v,i) = (-V,0) or
(v,i) = (0,I), respectively. In the first case v = 0, and lin theisecond
iz0. Ineither case v i = 0, which does not satisfy the conditions of
the theorem,

Then we must have p = -V /I, as in Figure 7.2. The desired value
of i is attained by having (v,i) = (0,I) for part of the interval [0, T],
and then (v,i) = (-V,0) for the remainder of [0,T]. If d is the
fraction of [0,T] for which (v,i) = (0,I), then

d = i/I

The minimum average value of ¥V is then obtained and is given by

v . = =(1-dyv = -
min

Since ;min is a monotonic decreasing function of V, the equation states
conversely that V is the minimum bound on lvl for which v = Vmin

can be attained. If v(t) is other than the optimum, then the maximum

v of lv(t) l over [0,T] must exceed V. Therefore we may write

v > - —II" v
Now, Vmin is also a monotonic decreasing function of I for I >7,

the region for which a solution exists. Then by a similar argument,

N T
- i-ia
VZ‘ A v
i
AN AT _N
vi>vi ~-vi
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But i>0
v<O
Then ¢ ?_>_'\> [i] +?|V|

which proves the theorem for the case 1i>0, v<O0.

Case 2: ¥ >0,1<0. The proof of the theorem for this case is

the dual of the proof for Case 1.

Corollary 7.1.1: Consider a periodic operating dc to dc conversion

network with load voltage Vo and load current iO’ with dc voltage gain
Gv, and for which there is only one resistor in the dc-active set. Let
the voltage and current of this resistor be v and i,

(i) If there is a constraint lvl <V,

(a) Then the maximum ? of Ii over a period is bounded by
p

A vlig|
ERRE LA
Gv-l
where B =
GV

(ii) If there is a constraint [i| <1

(b) Then the maximum ¢ of |v| over a period is bounded by

18 |vg |

T- 1% |

0

<
v

The dual theorem also holds.

Proof: The result of Theorem 7.1 may be written

A (,‘
i >
- A
v - |

-

|

Assume that condition (i) of the Corollary holds. Then

<l

¢ = max |vI§V
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Also, from Theorem 5.7 we have

7l > —=— 15! = 8l¥,
v
and from Theorem 5.8 we have

[il > [i,]

Then
Al Y [i |

v-g v, |
which is result (a) of the Corollary,

Result (b) follows from condition (ii) in a similar manner, solving
the result of Theorem 7.1 for v rather than '1\

The proof of the dual theorem (involving the dc current gain) isthe

dual of the above proof.

In the examples of this chapter the units of voltage and current are

volts and amperes, unless otherwise specified,

Example 7.1: The specifications of a dc to dc conversion network

are
G, = 10
v, = 100
iy = 1

Is it possible to construct the network using only one diode, for which
the maximum peak voltage is 200, and not have the diode current exceed
1.5? (There are to be no other resistors in the dc-active set.)
Applying result (a) of Corollary 6.1.1 we have
vigl
1y — 0



Gv-l 9
where B = G = 35
v
A 200 ~
Then i > 200 - 90 - 1.8

so the diode current must, in fact, exceed 1.5.

Several theorems of Chapter V deal with the dc power and ac power
which must be delivered by certain resistors in a dc to dc conversion
network. If these resistors are not lossless, one would expect the average
power dissipated to be an increasing function of the dc power or ac power

delivered. The next several results deal with this question,

Theorem 7.2: If the periodic functions v(t) and i¢t) with period

T satisfy
(1) OiRl SV(t)/i(t)st ’ 0<t<LT
(ii) vi<o
then (a) v i (-v i)

If condition (i) holds and
(iii) vi>vi
then (b)

_ | W,

i> ———=— (vi)
(1+'~IP_~1 7RZ)Z
Proof: This theorem will also be proved by using Pontryagin's

principle. Let

r(t) = v(t)/i(t)

T

T
Then \_r.i_=-1—2fidtfirdt
T 0

0
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T
and vi - leizr dt
0

We state the problem as an optimum control problem: Given the con-

trols i(t) and r{t) which satisfy

Ry ST SR, ; O0<t<T

and the state equations

x, =1 ; xl(O) =0

)':2 = ir ; xZ(O) =0

we desire to find the controls which attain a given vi<o:

x,(T) x,(T) = ™3y 71

and for which vi is minimized.

Forming the Hamiltonian,

H = L+ <p, >

.2 . .
=1 r+1:>11+pZ ir
where P and p, are the costate variables that satisfy
P, = H/ox, = 0

p, =-8H/8x, = 0

Py(T) x,(T)
and A T XM

P l
Therefore

P = const

P, = const

Py %(T) 277

np

2
*,(T)
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For each value of r, the value of i must be such that H is minimized.

Now H is minimized for

dH _ . _
3i—21r+p1+p2r_0
_ pl + pzr pz(b-i-r)

Substituting this value of i into H, we obtain a Hamiltonian H(r) which

is dependent only on r:

2 2
(b+r)“p

H(r) = - 4r

This function is plotted for b = -N/RIRZ and for b = 'JRIRZ in Fig. 7.3

H(r) 4 H(r)

r

Figure 7.3 Hamiltonian vs, Control 'r

If |b]< '\/RIRZ, the curves shift to the left, and the minimum of H(r) in
the interval [R‘l’ RZ] occurs for r=R2. If [b[ > '\/R.IRZ, the curves shift
to the right, and the minimum of H(r) in [Rl’ RZ] occurs for r=R,. In
either case the control r is constant, and condition (ii) or (iii) of the theorem
cannot be satisfied., Therefore Pb’ = \ERZ , and H(r) is minimized

for either r:R1 or r:RZ, as in Fig. 7.3.
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We can now solve for our '"'target set'' xl(T) and xZ(T):

Y1
b

e

T.

%, (T)

xZ(T) = bxl(T) = TNbV 1

(We must take b = -NR R, for vi<o0, and b =VRR, for vi>0.) In
order to reach this target set, we must have r:R1 for half the time
during [0, T}, and r=R, for the other half of the time. We must also

have i:I1 when r:R.l and i=IZ when r=R2, where

2 J|vil

h (R.R.) 41 -NETRS)
1Ra /R,
- >
IZ = :I:Il'\’ﬁJRZ ; vi<o

For these controls we obtain the minimum average power:

4*@ ZRZ

vi = A (~vi) ;3 vi>vi

min -
(1+ R1 RZ)

The equations yield the results of the theorem.

Corallary 7.2.1: If the periodic functions v(t) and i(t) with period

T satisfy
(1) 0 <R, <v(/i(t) < R, ;3 O0<St<T
(ii) vi-vic<o

then R Ty MR
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Proof: The conditions of the corollary satisfy conditions (i) and

(iii) of Theorem 7.2, Then result (b) of the theorem gives

Therefore vi-vig —— (v

which gives the result of the corollary,

The following theorem is an interesting implication of Theorem 7.2.

It will not be used later in the thesis, however,

Theorem 7.3: Consider a one-port network of n linear, time-

varying resistors rk(t) which satisfy

0<R <r)<SR’  ;  k=1,2,...,n

Then the resistance ro(t) seen at the port must satisfy

R, <r,(t) < R

1 11
0<To 0

R;}/R; > mlin [R,/R}]

Proof: Suppose that there is a current source io(t) connected to

the port. Let the voltage across the current source be vo(t). Let the

h =k

average power and dc power absorbed by the kt element be P and

P(l;c. Then Lemma 5.2.1 gives us for the source
n
0 . k
Fac = Z (-Fac)
k=1
and

n
P - Z K (7.1)
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Now Theorem 7.2 gives

k =k
(-Py) <a, P ; k=1,2,...,n

(l-VRk7Rk)
where a = ; k=0,1,2,...,n

R /Ry,

n
0 -—
Therefore Pdc < E ay Pk (7.2)
k=1

Now suppose that the rk(t) are varied periodically so that ro(t) = RE)
for a given length of time and ro(t):RB for an equal length of time. Then
ro(t) satisfies the optimum ccntrol for Theorem 7.2. Let io(t) be
chosen so that it satisfies the optimum control of Theorem 7.2. Then
the equality of result (a) of Theorem 7.2 holds, giving the following
value of ch:

PO* =

de - 4'\/R0' 7R0"

and using Eq. (7.1),

n
* . %
ch - ZQO K (7.3)

k=1

-BY) = ag(-P)

We will prove the theorem by contradiction. Assume R(')/R'(;
<min [R!/R']. Since a, is a monotonic decreasing function of
n LR/ By k

(R;(/R.L), we then have

>a k=1,2,...,n (7.4)

% "% i

Since PX>0; k=1,2,...,n, Eq. (7.3) and Ineq. (7.4) give

n
0* \ =k*
Py > z oy X
k=1
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But this contradicts Ineq. (7.2). Therefore we must have
[] 1" : 1 1"
Ry/Ry > n;:n [R,/R,] Q.E.D,

This theorem is also a result of a more general theorem by Kawakami
(5). It follows from the fact that (R'IL/RI';) is a monotonic decreasing
function of the '"figure of merit' given by Kawakami. The proof above

has been included as an interesting application of the concept of dc power.

Example 7.2: The specifications for a dc to dc conversion network

are

G =10
v

Po

100

It is desired to construct the network using one transistor and one diode,
both cf which can be modeled by linear, time-varying resistors which

satisfy 0.1< r(t) <100 K. What is the best efficiency which the network

can possibly have?

Let -P;C be the ac power delivered by the transistor, and let

-ch be the dc power delivered by the diode. Theorem 5.4 and Corol-

lary 5.4.1 give us

2 Gv"1
-Pdc z G P0 = 80
v
1 Gv-1
-Pac Z G 1:’0 = 80
v
Let 1_31 and -152 be the average power dissipated by the transistor and

the diode. Theorem 7.2 and Corollary 7.2.1 give us
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MR /R, 2

=2

PT 2 (-P;)
(1- m—l RZ)Z dc

=1 WR/R, :

L (-F¢)

(1 VR /R;)*

where R_1 =0.1 and R,= 100K. Then

2
P% > 0.32

Pl >0.32

Define the network efficiency as
P0
- —_— <
n -1 =3 $99.2%

P0+P +P

The proof of Theorem 6.2 gives us the optimum voltage and current in
the devices (to approach the 99.2% efficiency): The peak voltage in both
transistor and diode is 180 and the‘ peak current in both transistor and
diode is 1.8.

The above analysis did not account for switching losses and other
losses. Also the model for the transistor and diode was not very good;
the "off" state is not modeled well by al00K resistor, and the breakdown
voltages were not accounted for. The following propositions consider

better models.

Proposition 7.1: Consider a device which has the time-varying

characteristic shown in Fig. 7.4. The characteristic of the device al -
ternates between the dashed and solid curves., The slope of the dashed
curve is 1/R.

If the maximum average power which the device may dissipate is P,

and if VZ/R > 300 P then the bound on the ac power -P, _ which the
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device delivers is given to within 10% by

VABP/R - P

The equality holds when the operating point is at {V, 0) for two-thirds of

-P <
e =

NI

C

the time and at (RI,I) for one-third of the time, where

I = N3P/R

AR
|
/

/
/
-—#————,lv—p- v

Figure 7.4 Time-Varying v-i Characteristic

Notice that the bound on (-PaC/P) is a monotonic decreasing function
of P. This indicates that if a given total amount of ac power is to be de-
livered, the ""efficiency' is always increased by using more of the de-
vices, each device delivering less ac power and dissipating less average
power. The ac power delivered per watt dissipated increases without
bound as the number of devices increases.

Outline of Proof; It is assumed that the optimum operation is for

the operating point to remain at (V,0) for a fraction (1-d) of the time
and at (RI,I) for a fraction d of the time, for some d and 1I.

Then d is chosen as d = P/(RIZ) so that P:dRI2 =vi.

To simplify the solution, the approximation is made that V > 10RI.
(This will be true if VZ/R 2 300P.) Then the average voltage ¥ is

about (1-d)V, and the average current i is dI. Maximizing
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-P_ = vi-PZ=d(i-d) VI-P over I (and corresponding d) gives the

result of the proposition,

Example 7.3: The characteristic of a transistor is approximated by
Fig. 7.4, where V = 100 and R = 1/8. The value of R takes into ac-
count dissipation due to the base drive. The maximum power dissipation
of the transistor is 10. If the '"switching losses' are known to be 5,
then the '"conductance loss'' is limitedto P = 5. What is the maximum
ac power which the transistor can deliver?

From Proposition 7.1 we have

2
(-Pac) = 3-V N3P/R - P

max
= 235

To realize this, the peak current must be

I = 3P/R =11

Proposition 7.2: Consider a device which has the characteristic

shown in Fig. 7.5

Figure 7.5 v-i Characteristic

The finite slope of the graph is 1/R.
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If the maximum average power which the device may dissipate is P,
and if

V > 40U
2
1_ U
-_—C  e—
and s< PR S5

then the bound on the dc power -P;. Wwhich the device delivers is given
to within 20% by

p. < Y (NaP+ 1)P
dc = (2NaP + 1)2

where

R
ZU2

The equality holds when the operating point is at (-V,0) for (1-d) of

the time and at (U + RI, I) for d of the time, where

1 = \ZB/R
P
and d = 55701

Notice that the bound on (—Pdc/P) is a monotonic decreasing function

of P. This indicates that if a given total amount of dc power is to be de-

livered, the "efficiency' is always increased by using more devices.

The
dc power delivered per watt dissipated cannot exceed V/U, however.

QOutline of Proof:

It is assumed that the optimum operation is for

the operating point to remain at (-V,0) for a fraction (1-d) of the time
and at

(U + RI, I) for a fraction d of the time, for some d and I.
Then d is chosen as d = P/(U I+ RI?) so that P=d(U I + RI%) = v1.

To simplify the solution, the approximation is made that V > 10(U+RI]).
(This will be true if the conditions of the theorem are satisfied.) Then

the average voltage Vv is about -(1-d)V, and the average current i is
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dI. Maximizing -P, =v 12

e d(1-d)VI over I (and corresponding d)

gives a polynomial to solve for the optimum I.
If 1/4< UZ/PR < 15, this polynomial is approximated by a quad-
ratic, giving a simple expression for the optimum 1. The result of the

theorem is given by the 'Pdc for this (approximation of) the optimum 1.

Example 7.4: The characteristic of a diode is approximated by

Fig. 7.5, where V =200, U=0.7, and R =0,04. The maximum power
dissipation is P = 2,
It is desired to use several of these diodes in the construction of a

dc to dc converter with the following specifications:

G, =5
v
PO = 500

What is the smallest number of diodes that can be used. What is the
least dissipation for this number?

By Proposition 7.2 the dc power —Pk delivered by eachdiode is

dc
bounded by
_Pcll( s l NaP + 1 PZ (7.5)
¢ (2NaP + 1)
where a = -Lzz 0.04
2U
Then e < 300 (7.6)
de -— '

The peak current to realize -Pcll(c = 300 is

I = \ZP/R = 10

and the duty cycle is

d = P/2P+ Ul = 2/11

aempims demgmm AR PA P A aem A — S - e — [
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Now, Theorem 5.4 gives the bound on the total dc power delivered:

= k Gv-1
Z(-Pdc) > TV PO = 400
k=1

Considering Ineq. (7.6), we must have

n > 2

If n=2, then the (-P:C) for each diode must be 200. Inequality (7.5)
is difficult to solve in terms of P, but a graphical solution gives for
-P = 200,
c
B*- P >1.2.

Then for n=2 the total dissipation in the diodes is

2
Zf’k > 2.4 watts
k=1

In the limit as n—oo, the F“——o and -Pcll(c_’o' and the bound on I_3k

approaches

- ﬁkzng(-Pk)

\'4 dec

Then for n—oo the total dissipation in the diodes is

00 o]
=k U
RS e
k=1 k=1
G_-1
U ~v _
>y G, P0 = 1.4] watts

This example has ignored bounds on the average voltage and average
current given by Theorems 5.7 and 5.8, which must also be satisfied,

For instance, for —Pcll(c =200, in order to realize f>k=P=l.2 the average



-100-

current in the diode must be i = dI =1.19. Then if n=2, and the output

current is TO=3, Theorem 5.8 says -13k=1.2 cannot be realized.

Theorem 7.4 (Leine (7)): If f(v,i,t) = 0, then

—(V i-v T)_<_ max [ i-(vz -vl)(il-iz)]

where S is the set of pairs (v,i) which satisfy f(v,i,t) = 0 for some t.

The equality holds for the operating point at (vl,il) half the time and

at (VZ’iz) half the time.

This is a restatement of condition 2) given in Chapter III. It is in-
~cluded here for completeness. The paper by Leine (7) gives an algorithm

for finding the bound for a given nonlinear characteristic,

Example 7.5: It is desired to construct a low-power dc to dc con-

verter using a tunnel diode. The specifications of the converter are

r G, =2
v0 = 300 mv
iO = 0.5 ma

The v-i characteristic of the tunnel diode to be used is shown in Fig., 7.6.

0
o
=
]
o
£
«
5
£
1 T - + L d v
i 200 400
millivolts

Figure 7.6 v-i Characteristic of Tunnel Diode
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First we shall apply some theorems of Chapter V to see if operating
points on the characteristic can be found to satisfy the theorems.

Theorem 5.6 requires that

[il>(G,-D iyl = 0.5ma

This can be satisfied if the operating point (v,i) is at (50 mv, 1,0 ma)

half the time. Now, Corollary 5.4.2 requires

4 G -1

v 1] > —=— |

Yo i0 | = 75 pw

v

For IT, = 0.5 ma,

|¥]> 150 mv.
This can be satisfied if the operating point is at (300 mv, 0.2 ma) for
& half the time. So it appears that the tunnel diode might be suitable for
this application,

Let us now check with Corollary 5.4.1. This requires that

P > =< l?o'i'ol = 75 pw

Now, Theorem 7.3 states that

"B < max [3(v,-v)i-i,)]
(vl,11)€S

(vz,iz)es
A little trial-and-error finds the values (vl, i1)=(50, 1.0) and (VZ, i2)=(400, 0.3).
then

-P . <62.5 uw

and the tunnel diode, by itself, is not compatible with the specifications

for the converter.
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We turn our attention now to the reactances in a dc to dc conversion
network., Unlike resistors, the average power dissipated by a reactance
is not related only to the power it handles (the rate at which it stores

and unstores energy). This will be illustrated in the following remark.

Remark 7.1: Consider a dc to dc conversion network which in-
cludes n reactances, has a dc voltage source at the input, has a dc
voltage gain G, and delivers a dc power F, tothe load. Then

Theorem 6.1 gives
1 € G,-1
z z iy 12 G, ‘o
keX

where X is the set of reactances. We also have

. <A .
lvklk! <V llkl ; keX
A
where Vi T mtax Ivk(t)’ ;7 keX
Suppose that Gk <V ; keX
Then Z |1k| > v G, Po
keX

Suppose that each reactance has an equivalent series resistance of R.

Let the average power dissipated in the kth reactance due to R be l—z'k.
Then

= 2 ™12
= Riy > R([i ] ; keX

Zf’k > R z (FJ)Z Z“B[kz lil]z
kex keX €X
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Evidentally the dissipation decreases for greater V; that is, the net-
work can be more efficient if the reactances are operated at a higher
voltage, However, for a given G, Vo and io, the dissipation cannot
be made arbitrarily small by operation the reactances at an arbitrarily
high voltage.
It appears, then, that Theorem 6.2 and Theorem 6.3 are better

suited for obtaining a bound on the power dissipated in the reactances.

Theorem 7.5: Consider a dc to dc conversion network which in-

cludes n reactances,has a dc voltage source at the input, has a dc volt-
age gain Gv’ and has a load current io. If each reactance has an equi-
valent series resistance of R, then the total average power dissipated in

the reactances is bounded by

\ | = R 2 1+ 2
(a) z B¢ > Byg 1% 5]
keX
If the network includes no inductors, then
' =k . 4R 2 = 2
(b) ZP > (G, -1 [ig]
keC

k

Proof: If P is the average power dissipated in the kth reactance,

D NEED N ) o

then 2

Ri
keX keX keX

But Theorem 6.2 implies

which yields result (a).
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If the network includes no inductors, Theorem 6.2 implies

I 122G, -1 i |
keC
which yields result (b).

Theorem 7.6: Consider a dc to dc conversion network which in-

cludes n reactances, has a dc current source at the input, has a dc
current gain Gi’ and has a load current io. If each reactance has an
equivalent series resistance of R, then the total average power dissi-
pated in the reactances is bounded by
2
(a) 2 PF> f—[%—l] Iy 1°
keX t
If the network includes no inductors, then

_ 12
(b) Zﬁkz%[%l-] i, I°

keC

Proof: If f’k is the average power dissipated in the kth reactance,

2
- — —2 —
=k .2 - R -
2P - Y oriZar Y (fid 2B Y T

keX keX keX keX

i then

- But the dual of Theorem 6.3 implies
— Gi-l
2. Tolz 3= |
keX
which yields result (a).
If the network includes no inductors, then the dual of Theorem 6.3
implies

i]22 —t— [5,|
keC 1

which yields result (b).
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Example 7.6: It is desired to construct a dc to dc converter which

includes no inductors, has a dc voltage source at the input, and has the

following specifications:

If the four capacitors used in the construction each have an equivalent

series resistance

R = 0,06
find a bound on the power dissipated in the capacitors.

Result (b) of Theorem 6.4 gives

B> B g 7,12 > 2.2
keC
Compare this with the dissipated power of 13 in Example 1.1,
There has been no statement that Theorem 7.4 or Theorem 7.5 gives
a greatest lower bound, but networks can be constructed which come
close to realizing the lower bound. When operated at the proper fre-
quency, a network of the type in Example 5.1 comes close to doing this,

for example.



VIII. NETWORKS WITH ONE TYPE OF REACTANCE

Dc to dc conversion networks which include only one type of re-
actance—inductors or capacitors —~possess several distinctive properties.
Some of these were discussed in Remark 6.4, This chapter will initiate
an investigation of a conjecture (not yet proved) that the dc gain is limited
by the number of reactances. This seems to be the case, more specifi-
cally, for the dc voltage gain when a dc voltage source is at the input,
and for the dc current gain when a dc current source is at the input.

Consider a set of n capacitors with value Ck' where
C; << G, k... Cn‘ Let these capacitors (initially discharged) be con-
nected in various consecutive configurations with a dc voltage source
(battery) of value 1. Suppose that the maximum voltage that can be
generated in this manner is Vn.

Now consider a set of (n+l) capacitors with C1<< C2<<. << Cn+1
and a battery of voltage 1. By repeatedly operating with the first n
capacitors as above, capacitor (n+l) can be charged (almost) to a value
of Vn' Let the voltage on capacitor k be Ve We have vn+1=Vn’ Now
put capacitor (n+l) in series with the battery, and charge capacitor n.

Since Cn<<C the v remains nearly Vn' and v becomes nearly

n+l’ n+l
(Vn+1). If capacitor n, capacitor (n+l), and the battery are now put in
series we have generated a voltage twice (Vn+1) . The voltage can be
doubled in this manner by charging successively each of the smaller
capacitors. The final voltage will then be Zn(Vn+l).

There is no proof that this is the highest voltage which can be at-

tained by (n+l) capacitors related as described or for (nt+l) capacitors

-106-
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in general. However, if it is the highest voltage, it would imply that the
maximum dc voltage gain Gmax(n+1) which a dc to dc conversion network
with a voltage source at the input can achieve with (n+l) capacitors and

no inductors is given by

G_ ., () = 27 G_ (™ +1] (8.1)

where G (0) =1
max

There is some indication that a dc to dc conversion network using
no capacitors or mutual coupling will also display the restriction given by
Eq. {8.1). It is true at least for the case n=l, as is proved by the fol-

lowing theorems.

Theorem 8.1: Cdns_ider a dc to dc conversionnetwork which con-

sists of linear (time-varying) resistors, one linear capacitor, and a dc
voltage source. If GV is the dc voltage gain, then
G, < 2
Proof: Let the network seen from the terminals of the capacitor

be replaced by the Thevenin equivalent, as shown in Fig. 8.1

g(t) it
i —
—-’
-+
-+ -+ -+ |
vV, —/— linear —_ Vv => u(t) '71"\ v{t)
1 — N T~
—_— resistors — - —

Figure 8.1 Thevenin Equivalent
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The "'driving point conductance' g(t) is always positive, and the "open

circuit voltage' u(t) is bounded by

luy] < Ivyl 5 t20

as may be shown from Corollary 4.4.1. The first step is to show that

IV' ivl'

For simplicity let the system be scaled so the value of the capacitor

is unity. Then the constitutive relation is

av
dt

We have from the Thevenin equivalent

i = glu-v)
Then L . gu-v
t
v(t) = b(t, 0)v(0) +fb(t,'r)g('r)u('r)d1'
; 0
J‘g(o')da-
where bit,7) = e T
t
Then lvin | < b, 0) [vioy | + |v; ] f g(T)b(t, T)dr
0

= b(t,0) |v(0) | + |V [ 1-b(t, )]

But 0< b(t,7) L1 ;3 1<t

Therefore lvity | < b(e, 0) [v(oy | + vy |



T
< lim %f[b(t.m lvior | + [vy [ at
T—o0 :
0

Now, for t greater than some finite t,, we must have

t

fg(tr)dchat ; a>0
0

Otherwise g = 0, and we cannot satisfy Theorem 6.2, which requires
lil >2 (G -1 [igl>0

Then for t > tl
b(t,0) < e 2t

T

and lv(t)] < 1lim %f[e-atlv(O)’ + |v1|] dt

" With this estimate on Iv(t) | we can get a bound on the output voltage

Vo in terms of |Vl l A simple application of Corollary 4.4.1 gives
vy 1< 1vy |+ fvin |
7,1 < Tvgl < v, | + [vl<2lv, |
Now G, 215,1/1v,] <2 Q.E.D
v - 0 l — . . L]

It should be clear that the theorem holds when the capacitor and re-
sistors are nonlinear. The development to show Iv(t)l < lVll is more

difficult then,
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Theorem 8.2

Consider a dc to dc conversion network which con-

sists of resistors, one inductor, and a dc voltage source. If GV is the

dc voltage gain, then

G <2

v -

Proof: Let the voltage of the dc voltage source be Vir and let the

inductor voltage and current be v and i. Define the sets of time

o (T)

{t : v(thi(t) 20 , 0<t<T}

Q (T)

{t s vi)i(ty <0 , 0<t<T}
Let Yo be the load voltage. A simple application of Corollary 4.4.1
shows

lvor [ < v, | 5 ted'(T)

(8.2)
lvor 1< vyl + Ivi] 5 te@(T) (8.3)
A similar application of Corollary 4.4.1 shows
+
lviy! < Iyl 5 teQ(T) (8.4)
T
Now, IVG' %Tlim l?flvoldt
. 1 . 1
= 'r11_1;n T f Ivo'dt+ 'Il‘l_r.nm-f lvol dt
®  oim Q~(T)
Inequalities (8.2) and (8.3) then give
. 1 '
Vol < vy I+ tim & [ ol (8.5)
—

Q(T)
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But Lemma 6.3.1 states

lim % lvlat = 1lim v |at
T—00 T s T—o %
Q(T) aH(T)

Then Ineq. (8.4) gives
lim f |v|dt < |v l
T—o I ¥ -1
Q(T)

and so with Ineq. (8.5) we kave

lvol 22 IVl

But 'Vol_<_ volf_zlvll
A | —

and G, = |V0|/|V1| <2

which is the desired result.

Example 8.1: Figure 8.2 shows two dc to dc conversion networks,

which meet the requirements of Theorems 8.1 and 8.2, respectively.

2% A
+ oo K - v

V1 :‘_____
- T >~ = T -
(2) (b)

Figure 8.2 Dc to dc Conversion Networks
Using Only One Reactance

+

Consider the network using the capacitor. With the switches in the
position shown, the capacitor is charged instantaneously, in theory. The

position of the switches then reverses and applies a voltage of ZVl across
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the load. As the period of operation approaches zero, and the ratio of
charge to discharge time approaches zero, the dc voltage gain ap-
proaches two.
Consider the network using the inductor. As the duty cycle of the
switch approaches unity, the current in the inductor becomes arbitrarily

large, and the average voltage across the load approaches 2V1.

Remark 8.1: The peak deviation of the load voltage from the average

load voltage cannot be made arbitrarily small in a dc to dc conversion net-
work described in Theorem 8.1 or Theorem 8.2 (unless the dc voltage
gain approaches unity). This is because the reactance must receive
power from the source at some time. During this time the load voltage
cannot exceed the source voltage, as can be shown from Corollary 4.4.1.

In the case of the network with one capacitor, the ac power delivered
to the load can still be made arbitrarily small. This is done by letting

the charging time of the capacitor approach zero.

Remark 8.2: Theorem 8.2 does not hold when (all other conditions

remaining the same) the dc current gain is considered instead of the dc
voltage gain. The network in Fig. 5.7 is a counter-example, showing
that the dc current gain is not bounded, although there is one inductor

and no capacitors.



IX. SUMMARY

Brief statements of the major results of the thesis are assembled
here for convenience., The summary is designed to be understandable by
itself, given the definitions in the thesis. However, a complete listing
of the conditions is not always given in order to keep the presentation

simple.

The symbols used below have the following meanings:

{cpk}, {Bk} : flow, tension. (Def. 4.5, Def. 4.6)

Vor i0 load voltage, load current.

G, G dc voltage gain, dc current gain. (Def. 2.7)

=k Sk k th

P, Pdc’ Pac : average, dc, and ac power absorbed by the k™ element.
(Def. 2.9, Def. 2.10)

PO dc power delivered to the load.

Rdc’ Rac . set of resistors in the dc-active set, inthe ac-active
set. (Def. 5.1)

s', s" primary set, secondary set. (Def. 5.3)

C, L, X : set of capacitors, inductors, reactances in the network.

Theorems in Chapters V, VI, VII, and VIII apply to a dc to dc con-
version network, which is defined as follows: A two-pcrt network together
with a dc source at the input and a linear, time-invariant resistor (load)
at the output; the two-port network includes only passive resistors (may
be nonlinear and/or time-varying) and time -invariant inductors and capaci-
tors (may be nonlinear, and inductors may have mutual coupling): either

the dc voltage gain or the dc current gain of the network is greater than

unity.

-113-
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'~ Many of the theorems in the thesis have two parts which are duals.

In these cases only one part will be stated.

n
Thm. 4.1 (p. 24) Zekcbk = 0 (Result not new.)
k=1
Thm. 4.4 (p. 25) : If 6,6 >0 ; keS,
- >
then z lejlz |¢k| z 0, + |> o
3€S1 k€S2 keS2
Cor. 4.4.1 (p.28) : If 6,4 <0 i keS,
6k¢k >0 ; kGSZ
< Y .
then lskl_z IBJ.I i kes,
jeS1
Thm. 4.5 (p. 30) : If 6,6, 20 ; keS3,S,
|9k|> z |9j| ;  keS,
j€S,
hen Il P el 5 xess
jeSZ
Thm. 5.1 (p. 41) : S"f1R . £ d
Thm. 5.2 (p. 43) : S'TIR__#¥
« . « |
Thm. 5.3 (p.45) : Z Pr > - paczz P > - ) PY >0
keRa kGRaC ke de keRdC
: k Gv-1
Thm. 5.4 (p. 47) : -Z P.> <G B
v
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Thm. 5.5 (p. 49) : If S8'#s"
_ .
then - z Py > F,
keRdC
Thm. 5.6 (p. 50) : Z Fkl > (G, -1) I'i'ol
keR
ac
—_— Gv- .
Thm. 5.7 (p.51) : 2 v | 2 G, 17, |
keRdc
Thm. 5.8 (p. 52) : If G_>1
then Z 70> I,
keRdc
Thm. 6.1 (p. 64) : If source is dc voltage source,
1 Z p Gv-l
then > 2 IVklkl > G, R,
keX
Thm. 6.2 (p.67) : If source is dc voltage source,
i I ‘ . —
then 22|1k|+2|1k|3(c;v 1) lxol
keC keL
Thm. 6.3 (p. 70) : If source is dc voltage source,
2 Tl b2 Tole =&
then Ivkl + 5 'Vk'_>_ -E;— lvol
keC keL,
Thm. 7.1 (p.8l) : If vi>0 and v i<0
then ¢ 1 _>_<r'|.i-|+/i‘|-\7|
where ¢ and T are the maxima of v and i.



Cor. 7.1.1 (p. 85) :

Thm. 7.2 (p. 87)

Cor. 7.2.1 (p. 90)

then

Thm. 7.4 (p. 100)

then

where
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There is only one resistor in Rdc' The maxima

. . A ~
of its voltage v and current i are V and 1.

If |v{t)] <V forall t,
viiyl

~ )
then i > \T‘_ﬁTVTr

If |i(t)] <1 for all t,

18[9,
then v > ———
1- i,
G, -1

where B =
GV

If 0<R1gv/igR2

and v i<0

If f(v,i,t) =0

-(vi-¥ 1)< max [ %(VZ-Vl)(il

(vl , 11)€S
} (vz, 1Z)€S
S is set of (v,i) satisfying f(v,i,t)

(Result not new.)

-i,)]

= 0



-117-

Thm. 7.5 (p. 103) . Source is dc voltage source; network includes

no inductors; all n capacitors have ESR of

value R,
=k 4R 21— 12
then Z P> == (G -1) |10|
keC
Thm. 7.6 (p. 104) : Source is dc current source; network includes no
inductors; all n capacitors have ESR of value R.
2
G, -1
=k 4R i — (2
> = e
then ZP 2 4 [Gi] |10|
keC
Thm. 8.1 (p. 107) : Network consists of dc voltage source, one linear

capacitor, and linear resistors. Then Gv < 2.
Thm. 8.2 (p. 110) : Network consists of dc voltage source, one in-

ductor, and resistors. Then G <2,



APPENDIX A

DISCUSSION OF THEOREMS 4.2 AND 4,3 AND
AN EXTENSION OF THEOREM 4.4 TO FIELDS IN THREE -SPACE

Theorems 4.2 and 4.3, due to Berge and Ghouila-Houri (3), may be
stated as follows: In a linear graph a positive flow (or tension) may be
expressed as the sum of positive loop flows (or cutset tensions). The
method of proof is to find an aligned loop (or cutset) in the graph and sub-
tract a multiple of it, leaving all flow (or tension) members non-negative.
This process is repeated until all members are zero.

That one may always find an aligned cutset in a graph with a positive
tension is shown by construction in the proof of Theorem B.1l. However,
that one may always find an aligned loop in a graph with a positive flow is
not so obvious, Some insight is gained by looking at the decomposition
on a microscopic level (e.g., as the flow of electrons) or, equivalently,
by consiciering the case of continuous flow densities and potential dif-
ferences in three-space.

Consider a (compressible) fluid in motion in a box. If the rate and
direction of flow is constant at every point, then it should be clear that
a particle of the fluid at a certain time and position returns to that
position at a later time without crossing the path of another particle.

That is, lines of flow can be established. If the vector field J represents
the rate of mass flow as a function of position in space, then we have

97 aJ aJ

o= —X y 2z
VJ_8x+ay+az =0

at every point in space. By Gauss' Law, this is equivalent tothe fact that
the net flow through a closed surface is zero for a stationary flow. (see

Kaplan (6), p. 270).
-118-
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Consider a number of surfaces in the space for which the direction
of flow over each surface is uniform. Select a reference such that the
net flow through each surface is positive. By a simple construction it
is possible to find a set of ""bundles'' of flow lines such that the flow
through each surface can be expressed as the sum of the flows in certain
of these bundles.

That such a construction is possible is analogous to Theorem 4.2.

Consider a potential function ¢ in a box whose walls are at a con-
stant potential. The potential may be electric potential, pressure,
temperature, distance from a point within the box, etc. We may define a

vector field by the gradient of the potential:

E = V¢ = Exi+Eyj+Ezk
where E=-a-i;E=ai;E:§i
x  9x y oy z oz
[BEZ oE ] [aEx aEz]
Then VxXE = |55 -3z 11+ {5z "=l
[aE 8Ex]
L ox T oy k =0

everywhere in the space. Also, VVXE =0 onlyif E = V¢ for some ¢,
(see Kaplan (6) , p. 280). By Stokes' theorem, VXE =0 is equivalent
to the fact that the sum of potential rises around a closed path is zero,
(see Kaplan (6) , p. 276).

Consider a number of pairs of points in the space and the potential
rise from the lower to higher potential in each pair. By a simple con-
struction it is possible to find a set of positive potential rises such the
potential rise for each pair of points is the sum of certain potential rises
in the set, Such a construction would be: pass a surface of constant po-
tential through each point considered,and take the potential differences

between successive surfaces as the desired set of potential rises.
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That such a construction is possible is analogous to Theorem 4.3.

A physical electrical network consists of electron flows and electric
fields in the wires and elements of the network. When the elements are
"lumped' (not distributed), the network can be modeled well by a linear
graph. In this case there are analogous theorems betweenthe flows and
tensions in the graph and the fields in three space. The graph theorems are
usually simpler to state, but they cannot be applied to networks with distri-
buted elements,

We will now state a theorem for fields in three -space which is
analogous to Theorem 4.4. In the proof of the theorem the variables are
assumed to be sufficiently smooth that the mathematical operations will
hold.

| In the fpllowing, line, surface, and volume integrals are indicated
by fB-d!, fB-da, and dev, respectively., A referenceis associated

with df and da, and B.df and B.da are scalar products.

Lemma A.1.1: If Z is a space with two fields J and E defined

in Z such that
V-7
E = V¢

0

where ¢ is some scalar function over Z, then

fE-JdV: fd).]'da.
Z 0Z

Throughout this lemma and the following theorem 8Z indicates the

boundary of Z.

Proof: Gauss's theorem states that for any field F in 2,

fv'de = fF-da
Z 9Z
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where the orientation of da is directed into Z. Let F = ¢J.

fV- (6J) dv = f¢J-da
Z Y4

But Ve (¢7)

Then

Vé.JT+¢6V. 7T

v¢.J = E.J

and the result follows.

| Theorem A,1l:

Consider a closed, bounded, three-dimensional

space S with two fields J and E with bounded magnitude which satisfy

V-J =0
VXE =0

fJ-da = 0
A
S

where As is any portion of the boundary of S, and Cs is a curve be-

tween two points on the boundary of S.

Let S be divided into disjoint subspaces S,, SZ’ 53, and 54,
whose union is S. The only requirement in this division is that

E - J<0 everywhere in S4. Then

‘ max ' 1 f .
a. z c,Csi J E-dff > [7-da|+ JE-Jdv + | |[E.J|dv> 0
i=1 C; as, 5, S,
n
and b. ) [max fEdl]-;-flJ.dal+fEJdv+fIEJldv>o
1
i-1 |lc,Cs; c; 8s, s, S,
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where S; is closed and connected, i=1,2,...,n, and

n .
Us, - s
i=1

Proof: Let a scalar potential function be defined over S as
follows: assign a reference potential of zero to a point Pg On 89S, and

let the potential ¢(p) at a point p be given by

p

o) = [E - a

Pg
The function ¢ is well defined since the integral is independent of path,

and ¢(p0) = 0 for all pOEBS. Then

E = V¢
An equipotential surface is one on which ¢ is constant. Equivalently,
fE -df = 0 between any two points on the surface.

Now the space S1 is composed of the Si spaces:

n
i
s, = st
i=1
i

Let Vi be the space of minimum volume which includes S1 and whose

boundary consists of equipotential surfaces., Let Xi be defined as

follows:
X5 =Y
X, =V, -X, ; i=2,3,...n
i i i-1

so that the Xi are disjoint, and the boundary of each Xi consists of

equi-potential surfaces. Also
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n
_ 1 1
i=1l i

Since by construction ViDS; , we have

n n n

i
Ux -UJviaUst - s
i=1 i=1 i=1

Let the equi-potential surfaces which form the boundary of Xi be

Ail’ AiZ’ . Airni with the corresponding potentials d:ys ¢12, .. ¢imi'
From the lemma we have

m,

1
fE'J :Z¢iij-da
Xi j=1 A,.

1)

Let Bij be the space enclosed by the equipotential surface Aij (Aij is

assured of completely enclosing a space in S since 3S is an equi-

potential surface.) Then by Gauss's theorem,

: m
fE-Jdv=Z¢ifV-Jdv=o (A.1)
X, j=1 B.. '

1 1]

. 4
Now, S =‘ ’Sj

Then Eq. (A.1) becomes

=0 (A.2)
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Because S4 was chosen sothat E . J <0 everywhere in S

f E-Jdv< 0

xiﬂs4

4’

Then Eq. (A.2) gives
fE-Jdv+ f E. Jdv+ f E.Jdv >0 (A.3)
X.Ms, X.Ns, X.Ns,
We will now get an estimate on the middle term. The notation

72 -z - 882 will be used below so that all unions become disjoint. Con-

sider the boundary of XinSZ'

3(X,Ns,) = (xiﬂasz)U(sznaxi)
= (xiﬂasz)U(szﬂafi) [ disjoint]
m
where a)?i = U Xj
j=l

Then applying the lemma to the middle term of Eq. (A.3),

f E- Jdv - f ¢J-da+Z¢i f J- da
o A
X.Ms, xiﬂas2 j=1 s.‘.,_nAj

(A. 4)

Let Xf = S-Xi. Consider the boundary of XiCnSz.

l a(xfNs,) = (x{NasyUts, N oXs)
; m
AC _ ~ A
where BXi = (LIJAj)U as
J:

Noting that Sznbg = ¢, apply Gauss's theorem to an SZ:




'Z J . da+ f J.da = f J - da

3(X;Ns,)

f V- Jdv = 0
C
X.Ns,

The first term on the left, if it is to be consistent with the same expression

T
wn
[y¥]
D
>
s
(2]
D
Q
w0
N

in Eq. (A.4), must have the minus sign. This is because the orientation

of da, as usedin Eq. (A.4), is directed out of X;: SZ' Therefore
f J. da = f J . da
o N c
j=1 SznAj X; r']asZ
Then Eq. (A.4) yields
f E-Jdv < f ¢$J - da + max ¢jl f J.da
: i<u<m c
X.Ns, X.Nas, x.Nes,

Let Z' be the region of Z over which J-da >0, andlet Z~ be the

region over which J* da < 0. Then

lJ-da|+[ max ¢j] f [7-da|

1<j<m +
(X{N8S,)

E-Jdv< [ ]
(X;1195,)
X.Ns iN X;Nas, y

2

-!Exmin ¢] f |7.da| =[min ¢] f |7-da

.floS 1<i<m c -
;N3s,) " | ix .Nas,)” SiEm }x¢Nes,)
where Z is the closure of Z.
Now, max ¢. = max¢ < max ¢
1<j<m ! aX X

min ¢,
1<j<m J  aX,

3
&
©
|V
IS,
:5
©
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¢ < maxé¢
(X; 95,) X,
and min _ ¢ > min ¢,
(X, 85,) X,
We also have
(X{N8s,)' |y (X N8s,)* = (sNes,) = ss;
(xinasz)'u(xfﬂasz)' = (S(8S,)” = 8s,

Therefore,

f E.Tdv<[ma_x¢]f |7-da] - [mm¢]f|J da|

xﬂs

But fIJ.daI - f|J-da| = fJ-da = fV-Jdv = 0
+ -
as, 3s, S,

as,

and fIJ-da|+ flJ'da| = f IJ'da|
+ -

BSZ 352 GSZ
so that flJ-dal = f'J-da' = -é— flJ-dal

+ -

BSZ SSZ BSZ
and Jdv<[max4> m1n¢] flJ da (A.5)
X. ns '

We will now get an estimate on the ''potential difference' factor in

Eq. (A.5). From the way Xi was constructed, it is clear that

X.CV,
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where Vi was defined as the space of minimum volume which includes

Sl1 and whose boundary consists of equipotential surfaces. Therefore

max ¢ - min¢ < max ¢ - min ¢ (A.6)
Xi Xi Vi Vi

The claim is that

max ¢ < max ¢
V. i

i 3Sl
and min ¢ > min ¢
Vi 8s)

which will be proved by contradiction. Let

Suppose that there is a point p in Vi for which ¢(p) > ¢m' Because E
is bounded, ¢ is continuous. Therefore there are distinct points q and
r close to p such that ¢(y) > ¢m' o(r) > ¢m’ q lies on an equipotential
surface Aq’ and r lies on an equipotential surface Ar' Let the closed
space whose boundary is AqU Ar be Vqr. Since equipotential surfaces

do not cross, V EV.. Now V does not include S! since V. is
qr i qr 1 i

the space of minimum volume which includes S; and whose boundary is

equipotential surfaces. Also, Aq and Ar do not intersect asi since

i

1

i . i
Vqrnsl = 0. Therefore the space Vi -vqr includes S1 and hasa

boundary consisting of equipotentials, and the volume of Vi-Vqr isless

¢(q) > q,m and ¢(r) > ¢ - Then the connectedness of S, implies that

than the volume of Vi‘ But this contradicts the assumption on Vi.

Therefore

max ¢ < max ¢

i
Vi asl
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In a similar manner

min ¢ 2 min ¢

Then Ineq. (A.6) gives

nlax$-rr_lin¢ < max ¢ - min ¢

X. X. i i
i i BSI 851
= max f E. d¢
i
C,Cos) ¢

1

With this, Ineq. (A.5) becomes

f E.Jdv < | max fE-dI %—fl.]-dal
1

c.Cs
x.Ns, i—71 C, S

Finally, we can use this in Ineq. (A. 3) to get

E. .Idv+[c ax fE-d!]-:la—flJ-da|+ f E.Jdv > 0
XnS

Cs C, 85, X.S,

Noting that the X. are disjoint, we sum the inequalityover i.

fEJdv+z max fEd!]—flea|+ fEJdv>0

xS, i=1 cC'.s C; XxMNs,
(A.T)

n
where X = U Xi
i=1

As pointed out when the Xi were constructed, X:)Sl, so that
XNs, =

Also f E.Jdv < f |E.J|av gflE.Jldv
3
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Together with Inéq. (A.7) this gives

n
fE-Jdv+z max fE-dl:ll%-flJ-da|+ flE-Jldv?_O
3s, S,

. 1

which proves result (a).

Result (b) is proved in a similar way, constructing spaces Vi
which include S2 and whose boundaries are not crossed by lines of the
field J. This is analogous to finding a decompositon for {u;l'(} in

Theorem 4.4.



APPENDIX B
A DIRECT PROOF OF COROLLARY 4.4.1

It has long been recognized as an intuitively obvious fact that, given
a network of resistors and sources, the voltage magnitude across any
resistor is not greater than the sum of the voltage magnitudes across the
sources, and the current magnitude through any resistor is not greater
than the sum of the current magnitudes through the sources. For the
case of one source and linear resistors, this is sometimes stated that
the voltage and current transfer ratios of a resistive two-port are not
greater than unity.

Talbot (13) and Schwartz (21) prove the ''no voltage gain' result for
one source and general (nonlinear, time-varying) resistors by showing
that the nodes of maximum and minimum potential must be connected to
a source. Talbot also proves the ''no current gain' result for one source
by a method that makes use of cutsets. (The basis of his proof is similar
to the proof here of Theorem B.1.)

When the resistors are linear there are many other proofs of these
results, and the case of many sources can be included by using super-
position. The result may then be extended to nonlinear resistors by con-
sidering the operating point of the network of resistors at a given time,
A network with the same operating point can be constructed by replacing
the nonlinear resistors with linear resistors, and the result follows.
(See Desoer and Kuh (18).)

Corollary 4.4.1 provides a purely graphical proof of the result--
without reference to the element characteristics, except that vi >0,

It is an interesting application of Theorems 4.2 and 4.3 due to Berge and
Ghouila-Houri (3).

-130-
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We will now prove the result of Corollary 4.4.1 more directly and in

the terms of eiectrical engineering.

Theorem B.1l: Given a network of sources and (nonlinear, time-

varying) positive resistors, the current magnitude through any resistor
at a given time is not greater than the sum of the current magnitudes

through the sources at that time.

Proof: Let the element references be chosen so that all voltages
are positive, Theorem 4.3 then implies that every element is included
in at least one aligned cutset. (This fact is actually the result of a
theorem by Minty (20) which is used in the proof of Theorem 4.3.) A
simple method of constructing such an aligned cutset is as follows. Con-
sider any element, and select a potential €o which lies between the
potentials of the nodes to which the element is connected, Divide the
nodes in the network into two sets El and E2 so that a node is in El
if its potential is greater than ey and is in E2 otherwise. Then the
elements connected to nodes in both E1 and E2 constitute an aligned
cutset (all the element references have the same orienfation as the cutset).

Select any resistor with current io. Select (or construct as above)
ah aligned cutset which includes this resistor. Let S be the set of
sources in this cut set and let R be the set of the other resistors in the

cutset. Now, the sum of currents in a cutset is zero:

ke keR
But since all voltages are positive, the currents in all resistors are
positive, and (in the worst case) the currents in all sources are negative.

Then we can write
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ligh = D Il + D I | = o

keS keR
Therefore |i0 l < z ,ik ’
keS

But the term on the right is less than the sum over all sources, and io
was the current in any resistor. Then the current magnitude through any
resistor is less than the sum of the current magnitudes through the

sources.

Theorem B.2: Given a network of sources and (nonlinear, time-
varying) positive resistors, the voltage magnitude across any resistor

is not greater than the sum of the voltage magnitudes across the sources.

Proof: Let the element references be chosen so that all currents
are positive. The proof of the theorem is then exactly the dual of
Theorem B.1. The only difference is that it is not so easy toconstruct
an aligned loop as it is an aligned cutset. This is because the con-
struction of an aligned cutset made use of nodes, and the nodehas no

dual in the general (nonplanar) case,




APPENDIX C

DC GAIN OF A POSITIVE OPERATOR FEEDBACK SYSTEM WITH
ONE TIME-VARYING UNIT '

The system to be studied by Theorem C.1 can be represented by

the block diagram in Figure C.1.

u ' g(s) —>- y

k(t)  |e—

Figure C.1 Block Diagram of
Feedback System Characterized by Eq. (C.2)

The operator in the forward path can be expressed as a convolution
integral or by one of several differential equation forms. The time -
varying gain in the reverse path is positive. We will find bounds on the
average of the output when the input is constant,

Theorems C.2 and C.3 apply the result to electrical networks to
show that a network of linear, time-invariant elements and only one time
varying resistor cannot be a dc to dc conversion network. Now, Theorem
5.3 already implies this for the more general case allowing nonlinear re-
actances, and its proof is shorter. However, the main result here is
Theorem C.1. Theorems C.2 and C 3 are included to show a particular

application of Theorem C. 1 to the dc to dc conversion problem.

Lemma C.1.1: Let p(D) be an nth order polynomial in D, where

D is the operator d/dt. Let the average X of the function x be defined

-133-
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T

by X = lim {7 x(t)dt
T "@"T

0
If x(t) is n times differentiable and its first {(n-1) derivatives are

bounded for t> 0, then

p(D)x = p(D)x = p(0)x

Proof: Let p(D) = ag + a D+.. .+anDn. Now,

T
fa Dix(t)dt
0

a. . .,
= lim +[0%m)-0%0)] ; i-1,2,...,n.
T—o0

1

i
aiD x

Hi=

T——oo

But Dl-lx(t) is bounded for t=0 and t=T. Therefore

Also Dx = 0

Therefore

p(D)x = Zainif = ao? = p(0)x

which proves the lemma.

Lemma C.1.2;: If g(s) = q(s)/p(s) is a positive real function of
s, where p(s) is an n':h order polynomial in s, q(s) is a polynomial of

order less than n, and p(s) and q(s) have no common factors, then

T
[eD=OTlaom®] £ tim L [ [pox(o]lamxola s o

T—m
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-

for all functions x which are n times differentiable and whose first

(n-1) derivatives are bounded for t > 0.

Proof: We separate the integral of interest into two parts, one

that is bounded and one that is positive, by addingand subtracting a term:

T .
(px®1[aDx] = tim & [{[pDm)Ila@x)] -
0

T—

T
[ r(D)x(t)]%}dt + lim %f[ D)x(t)] %at (C.1)
. T~ 0
where r(D) = [Ev p(D)q(-D)]"

Now, Brockett (17) has shown that the first integral in Eq. (C.1) is in-
dependent of path; that is, its value F[ {x(i)(O)}, {x(i)(T)' }] depends
only on the value of x(t) and its first (n-1) derivatives at t=0 and t=T.
But the x(i)(t) ; i=0,1,...,n-1 are bounded for t > 0. Then F is also

bounded and

Therefore,

[p(D)x(t)][q(D)x(t)] = 1lim
T—oo

HI=

T
f[ r(D)x(t)]%dt> 0
0

which is the desired result.
When applied to electrical networks, this well-known result has the
interpretation that a network of passive elements cannot deliver positive

average power if the stored energy is bounded.
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Theorem C.1: Consider the system equations

t> 0

p(D)x(t) + k(t)q(D)x(t) = u ;

y(t) = q(D)x(t) ; t> 0
where p(D) is an nth order polynomial in D, q(D) is a polynomial of
order less than n, p{(D) and q(D) have no common factors,

u = constant > 0

and k(t) > 0 H t> 0

Let the average X of the function x be defined by

£ = lim lfx(t)dt
T
T—o0
0
If x(t) is n times differentiable and its first

where the limit exists,
(n-1) derivatives are bounded, and if g(s) = q(s)/p(s) is a positive real

function of s, then

—LBOM < ¢ < goy

1+kg(0y —

Proof: Let us define

z(t) = p(D)x(t) ; t> O

Then the system equation is
(C.2)

z+ky = u

Therefore
yz+yky = yu = yu
But vz = yz + (y-yNz-2)

Then yz+(y-5Nz-2) +yky = yu
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Now, by Lemma C.1.1,

q(D)x

y q(D)x

z

p(D)x

p(D)xX

so that (y-y)(z-2Z) = [q(D)(x-X)][p(D)(xX)]

Then Lemma C.1.2 gives

(y-y){(z-2) 2 0

i Therefore ;;+ vyky < yu (C.3)
Also yky > 0
Then ¥z £Vu (C.4)
We also have by Lemma C.1.1 and Lemma C.1.2

’ YZ =q(DX p(D)X = [q(D)X][p(D)X] > 0
and as .required in the conditions,
. u>0
Then Ineq. (C.4) gives
F>0

Dividing Ineq. (C.4) by ¥,

z< u
But by Lemma C.1.1,
y = q(D)x = q(0)X
z = p(Dx = p(OX = 7/gl0)
Therefore y < g(O)u

which is the upper bound of the theorem.

Now, yky = 2yky - kv + k(y-y)2
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Substituting this into Ineq. (C.3),

But k(y-y)2 > 0
Therefore ¥ Z+ 2¥ky - yky <Vu

Since y >0, dividing by y gives

z+2ky -ky <u

Now, taking the average of Eq. (C.2),

Z + ky

1]
[«

2% + 2ky

2u

Subtracting Ineq. (C.5) from this,

Z+ky > u

But z = y/g(0)
Therefore y > __g_(-_?_)u_
1+ kg(0)

which is the lower bound of the theorem and completes the proof.

Example: Given the differential equation

¥ +ft)x+£tyx=1 ; £(t)= |sint]+1
find bounds on X.

The equation can be put in the form

P(D)x + f(t) q(D)x = 1

2

where ;(D) D

q(D) D+1

We have f(t) = |sint|+1> 0 for all t,

(C.5)
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But B A () -
g1 P(s) &

is not a p.r. function because it has a pole of second order for Re[ s] =0.
Therefore Theorem C.1 is not applicable. However, the equation may

also be put in the form

p(D) x + k(t) q(D) x = 1

where p(D) = Dz +D+1
q(D) = D+1
k(t) = f(t) -1 = |sint|>0 for all t.
NOW, g(s) = SLI(S) = ——-——-—ZS+1
pis s“+s+1
Re[ g(jw)] = — 1 = >0 for all w.
w +(l-w)

The poles of g(s) occur for Re[s] < 0. Also, g(s) has no poles or
zeros for Re [s] = 0 of order greater than one. Therefore g(s) is a

p.r. function of s. (See Guillemin (19).) Then Theorem C.1 gives

Theorem C.2: If a system consisting of linear, time-invariant

capacitors, inductors, and resistors is connected to a DC voltage source
and to a time-varying, positive resistor, then the magnitude of the average
voltage across any two nodes in the system is not greater than the magni-
tude of the DC voltage éourée. That is, for the network in Figure C.2,

v, V.
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+ [ — ©+
vi-V = 1 L,C,R 3 vy
_ | o~
2
i3T—-AA7—J
+Vy, -

Figure C.2 Network With Ports of Inte rest Extractedto
Show No Average Voltage Gain

Proof: Let the system be characterized by

03 h (s} hy,(s) 6‘1
% hyy(s)  hy,(s) | |5,
iz(t) = -k(t) vz(t) : k(t) > 0 for all t.

where % indicates the Laplace transform. Since hZZ(s) is the driving

point impedance of port 2 with port 1 shorted and port 3 open,
Re [h,,(jw)]> 0 for all o
Since hll(s) is the voltage transfer function for port 2 open,
<
Ih @] <1

Since [hll(s) -hlz(s)hZI(s)h-zlz(s)] e f(s) is the voltage transfer function ,

for port 2 shorted,

(o) [< 1
Putting the system equations in block diagram form yields Figure C. 3,

Since V is a constant, u is a constant. Specifically,

-1
u = hy (0) b3, (0) V
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—l  {(S)

-1 -
Ve—Iip h,5(8)h,,(s) h,,(s) h,> (s) h?_lz(s)

k(t)

Figure C.3 Block Diagram of System Equations

Choose the labeling of voltage at port 2 such that u >0, Then by The-
orem C. 1

0<y<h,,(0)u = h,,(0) V

Now, V3 = h,(0) 1-.2‘;',;(0) y + £(0) V

Since 73 is a linear function of ¥, |V3’ will be a maximum when ¥ is

at one of its extreme values:

\T3|<max r|\73| s "73|
¥=0 V=h, (OV
_ 8
or V3l <max {le0)] V], | (0)] IVI]
But [f(0)] <1
Ih @[ <1
therefore , JV3, < IV’

Theorem C.3: If a system consistingof linear, time -invariant

capacitors, inductors, and resistors is connected to a time -varying,

positive resistor and to a DC voltage source, then the magnitude of the
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average current in any branch is less than the magnitude of the average

current through the DC voltage source. That is, for the network of

Figure C.4, |i_3| < 'Tll

1
o
+
v1=V '__E_T L,C,R 3 lv13
-
]
o)
+V, -

Figure C.4 Network With Ports of Interest Extracted to
Show No Average Current Gain

Proof: Let the system be characterized by

7, 'y, (s) hlz(sﬂ A

P = | P21l®  hpal®) ?2

T h, (s) h,5(s)

L 1 i 31 32 ]

i(t) = -k(t) vo(t) ; K(t)>0 for all t.
2 2

where ® is the Laplace transform. Since hzz(s) is the driving point

impedance at port 2 with port 1 shorted and port 3 shorted,

Re[hzz(jw)] >0 for all w.

Since h31(s) is the driving point admittance at port 1 with port 2 open
and port 3 shorted,

h;,(0) >0 (assume h,,(0) £0).

Let £5(s) %h31(s) - hy,(s) by, (s) h’zlz(s)
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Since f3(s) is the driving point admittance at port 1 with port 2 shorted

and port 3 shorted,

f3(0) > 0.
Since hll(s)/h31(s) is the current transfer function for port 2 open

I (01 /hy (00 < 1.

A -1
Let fl(s) = hll(s) -hlz(s) hzl(s) hZZ(s)'
Since fl(s)/f3(s) is the current transfer function for port 2 shorted,
[£,00)/£5(0) | < 1.

Putting the system in block diagram form, we have Figure C.5

P fl(s)
! g h,,(s) b (s) hl(s) 2
—=1 ha(s) by (s) 2 22(s A RPY
— — y
k(t) h32(s) h}z(s)

—— f3(s)

Figure C.5 Block Diagram of System Equations
Since V is a constant, u is a constant, Specifically,
u = h,(0) hL(0) V
- 21 22

Choose the labeling of the voltage at port 2 such that u > 0. Then by

Theorem C.1,
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— -1 —_
Now, i; = h},(0) h3,(0) T+ £,(0) V
- -1 —
i} = h3,(0) h,(0) ¥+ £5(0) V
therefore T, | = £,(0) V = |£,(0)V] sign (V)
1 3 3
y=0
N =h, {(0) V = |h,,(0)V]| sign (V).
1 y=h, OV 31 31

Since i is a linear function of vy,

sign (i}) = sign (V) ; 0<§<h, (OV

Since -i_3 is also a linear function of y, and i, doesn't change sign as

1

y varies over its range, the maximum of li_3/i_1| will be when y is

at one of its extreme values:

i3/, | < max [Ii_fi/;;,f:O’ ,;;/Tl,§'=h21(0)VJ

}  or i5/1; | < max [lfl(O)/f3(0)l. Ihy1(0/hg (0] |
. But g0 /50 <1 Ihy (0 /by (0 [ <1
!

| therefore II'3/1'1| <1

which gives the result of the theorem.
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