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Abstract—Very long baseline interferometry (VLBI) makes it
possible to recover images of astronomical sources with extremely
high angular resolution. Most recently, the Event Horizon Tele-
scope (EHT) has extended VLBI to short millimeter wavelengths
with a goal of achieving angular resolution sufficient for imaging
the event horizons of nearby supermassive black holes. VLBI
provides measurements related to the underlying source image
through a sparse set spatial frequencies. An image can then be re-
covered from these measurements by making assumptions about
the underlying image. One of the most important assumptions
made by conventional imaging methods is that over the course
of a night’s observation the image is static. However, for quickly
evolving sources, such as the galactic center’s supermassive black
hole (SgrA*) targeted by the EHT, this assumption is violated
and these conventional imaging approaches fail. In this work we
propose a new way to model VLBI measurements that allows
us to recover both the appearance and dynamics of an evolving
source by reconstructing a video rather than a static image. By
modeling VLBI measurements using a Gaussian Markov Model,
we are able to propagate information across observations in time
to reconstruct a video, while simultaneously learning about the
dynamics of the source’s emission region. We demonstrate our
proposed Expectation-Maximization (EM) algorithm, StarWarps,
on realistic synthetic observations of black holes, and show
how it substantially improves results compared to conventional
imaging algorithms. Additionally, we demonstrate StarWarps on
real VLBI data of the M87 Jet from the VLBA.

I. INTRODUCTION

Imaging distant astronomical sources with high resolving
power at radio wavelengths would require single-dish tele-
scopes with prohibitively large diameters due to the inverse
relationship between angular resolution and telescope diame-
ter. Very long baseline interferometry (VLBI) is a technique
that alleviates the need for building an impossibly large single-
dish telescope by simultaneously observing a common source
from an array of telescopes distributed around the Earth.
This technique makes it possible to emulate samples from a
single-dish telescope with a diameter equal to the maximum
distance between telescopes in the array, at the expense of
having to handle missing data [1]. Thus far, VLBI has been
primarily used to image sources that are static on the time
scale of a day’s observation. In this work, we extend the
technique’s applicability to imaging time-varying sources by
reconstructing a video of the source.

VLBI measurements place a sparse set of constraints on
the spatial frequencies of the underlying source image. In
particular, each pair of telescopes provides information about
a single 2D spatial frequency. This frequency is related to the
baseline vector connecting the two telescope sites, projected

orthogonal to the direction of the target source [1]. Thus,
at a single time, for an array with P telescopes, at most
P (P − 1)/2 spatial frequencies are measured. For example,
an array of 6 telescopes would yield only 15 measurements.
However, as the Earth rotates, the baseline vector connecting
each pair of telescopes changes. This allows the array to
sample additional spatial frequencies along elliptical paths in
the frequency domain [1]. Refer to Figure 1. Combining the
different measurements taken as the Earth rotates is referred
to as Earth Rotation Synthesis. Earth rotation synthesis is
essential for building up enough measurements to constrain
image reconstruction.

The task of reconstructing an image from these sparse con-
straints is highly ill-posed and relies heavily on assumptions
made about the underlying image [2], [3], [4]. If a source
is static, the VLBI measurements – taken over time as the
Earth rotates – all correspond to the same underlying image.
Under a static source assumption, recently developed VLBI
image reconstruction techniques have been demonstrated on
small telescope arrays [5], [6], [7], [8], [9]. However, for an
evolving source, measurements are no longer sampled from
the same image, and these reconstruction algorithms quickly
break down.

Although most astronomical sources are static over the
time scale of a night’s observation, some notable sources
have detectable structural changes on much shorter timescales.
For instance, the Galactic Center supermassive black hole,
Sagittarius A* (SgrA*), has an estimated mass of only four-
million solar masses [10]. This implies that SgrA* is quickly
evolving, with an innermost stable circular orbit of just 4 to 30
minutes, depending on the spin of the black hole [11]. Previous
observations have shown that SgrA* varies dramatically over a
night’s observation on the scale of its predicted event horizon,
in both total-intensity and polarization [12], [13].

SgrA* is a prime target for the Event Horizon Telescope
(EHT) – an international project whose goal is to take the first
image of the immediate environment around a black hole [14].
Realizing this goal would not only substantiate the existence of
a black holes’ event horizon, but also aid in studying general
relativity in the strong field regime [15], [16]. Unfortunately,
the amount of variation predicted for SgrA* suggests that
conventional VLBI imaging techniques will be inappropriate
for observations taken by the EHT [4], [11]. Thus, in this work
we present a new imaging algorithm for time-varying sources
that models the VLBI observations as being from a Gaussian
Markov Model. Our dynamic imaging algorithm allows for
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Fig. 1. Earth Rotation Synthesis: For every two telescopes in the interferometric array, we obtain a single measurement (visibility) related to the underlying
source image’s 2D spatial frequency. This frequency is related to the baseline between the telescopes in the direction perpendicular to the observing source. It
is prohibitively difficult to reconstruct a faithful image from just these small number of measurements. However, as the Earth rotates, the projected baselines
change, and we observe new measurements related to different regions of the 2D frequency plane. As time progresses (specified by the Greenwich Sidereal
Time (GST)), the projected baselines change and the red dots on the frequency coverage plot (bottom row), which indicate the current measurements, change
position. Assuming the source is static, this amounts to carving out elliptical paths in the frequency plane that are all related to the same image. The set of all
frequencies sampled over an observation is shown by the transparent blue lines. However, when a source evolves over the course of a night’s observation, each
instantaneous set of measurements (shown in red on each frequency plot) is only related to a single image. As light emitted from the source is real-valued
we obtain two measurements on opposite sides of the frequency plane – each independent set of measurements displayed as either the open or closed red
circles. The Earth diagrams are shown from the point of view of an observer at Sgr A*. Note that although the telescope array is not changing, the number
of visibilities at a given time changes depending on how many sites can still see Sgr A*.

an evolving emission region by simultaneously reconstructing
both images and motion trajectories - essentially reconstruct-
ing a video rather than a static image.

In Section II we review the basics of interferometric imaging
and the data traditionally used to constrain image reconstruc-
tion. In Section III we summarize standard approaches to
VLBI imaging and define a generalized expression for data
consistency. In Section IV we explain how static imaging can
be performed under a multivariate Gaussian prior. Highlighting
the approach’s benefits first in the case of a static source
becomes helpful when discussing our proposed solution to
the more complex dynamic imaging problem, StarWarps, in
Section V, and when deriving our proposed EM inference
algorithm in Section VI. Results can be seen in Section VII,
followed by concluding remarks in Section VIII.

II. VLBI MEASUREMENTS AND DATA PRODUCTS

A single-dish telescope is diffraction limited, with an an-
gular resolution dictated by the ratio of wavelength to dish
diameter [1]. This governing law limits the highest achievable
angular resolution of traditional single-dish telescopes. For ex-
ample, past observations and simulations suggest that the emis-
sion surrounding SgrA* subtends approximately 2.5× 10−10

radians, or 50 µ-arcseconds [15]. Imaging this emission region
at 1.3 mm wavelength would require an impossibly large
single-dish telescope with a 13, 000 km diameter. However,
simultaneously collecting data from an array of telescopes,
called an interferometer, allows us to overcome the single-
dish diffraction limit, and create a virtual telescope as large as

the maximum distance between telescopes in the array. When
these telescopes are distributed globally, using separate clocks
and recording systems, this technique is referred to as Very
Long Baseline Interferometry (VLBI) [1].

An interferometer consists of P telescopes simultaneously
observing and recording time-stamped data-streams of light
traveling from a common source [1]. From these measure-
ments a number of different data products can be computed.
Depending on the imaging technique and the quality of the
measurements, different data products may be used. In this
section we review a number of common data products used in
VLBI imaging, and throughout this paper.

A. Visibilities

The time-averaged cross-correlation of the recorded scalar
electric fields at two telescopes, called a visibility, provides
information about the spatial structure of the observed source1.
Formally, the van Cittert-Zernike theorem states that a visi-
bility, Γ(I, u, v) is related to the ideal source image I(%, δ)
through a Fourier transform:

Γ(I, u, v) ≈
∫
%

∫
δ

e−i2π(u%+vδ)I(%, δ)d%dδ (1)

where (%, δ) is the angular sky coordinate in radians, and (u, v)
is the dimensionless baseline vector between two telescopes,
measured in wavelengths and orthogonal to the source direc-
tion [1]. Note that each visibility is a complex value with both

1Although the particular length of time-averaging varies per experiment, for
the EHT data is averaged over sub-second intervals before additional coherent
averaging is done to increase SNR (on an order of 5-100 seconds).
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Fig. 2. Simulated data under a static vs. varying source: Contrasting of data observed from a static emission region (magenta) to that of a varying emission
region (blue) over the course of 2.5 hours. Although both sequences start with the same image, the visibility amplitude and closure phase both begin to deviate
from the static image very quickly. The ideal observation for the static and time-varying source is shown by the solid red and blue lines, respectively. We
also show sample measurements with their respective error bars in the same colors. This data is simulated at a sampling interval of 11 seconds using the
EHT2017 array from the frames in Video 3 presented in Section VII. This figure shows 1 of the
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)
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possible

closure phases (phase of the bispectrum).

an amplitude and a phase. As each visibility is calculated from
a pair of telescopes, for a P telescope array we can obtain
up to P (P−1)

2 visibility measurements at a single instant in
time. The image spatial frequency sampled by a visibility is
related to the distance between the telescopes; telescopes that
are father apart inform us about higher spatial frequencies
of the underlying image. For radio wavelengths, the thermal
noise appearing on perfectly calibrated visibilities is circularly
Gaussian in the real-imaginary plane2 [3].

B. Bispectrum and Closure Phases

The van Cittert-Zernike theorem (Equation 1) is derived
under the assumption that light is moving through a vacuum.
However, in reality, inhomogeneity in the Earth’s atmosphere
causes the light to move at different velocities towards each
telescope. At short observing wavelengths, this propagation
delay has a large effect on the phase of measurements,
and renders the absolute visibility phase unusable for image
reconstruction [17]. Although absolute phase measurements
cannot be used, a property called phase closure allows us to
still obtain some information from these phases.

Consider three telescopes, denoted by i, j, and k, observing
the same source. From each pair of telescopes we compute
a visibility: Γi,j ,Γj,k,Γk,i. Rapidly changing atmospheric
propagation delays, resulting in phase errors of φi and φj
to telescopes i and j respectively, will cause error in the
visibility’s phase:

Γmeas
i,j = ei(φi−φj)Γideal

i,j . (2)

However, by multiplying the visibilities from 3 different
telescopes in a closed loop, we obtain a term that is invariant
to the atmosphere (Equation 3) [18].

Γmeas
i,j Γmeas

j,kΓmeas
k,i = ei(φi−φj)Γideal

i,j e
i(φj−φk)Γideal

j,ke
i(φk−φi)Γideal

k,i

= Γideal
i,jΓideal

j,kΓideal
k,i. (3)

We refer to the multiplication of these three complex
visibilities in a closed loop as the bispectrum, and the phase
of the bispectrum as the closure phase. Although these data
products are invariant to atmospheric noise, they come at the

2In practice, the thermal noise is calculated from first principles using
measured SEFD values at each telescope (see Eq 42) or estimated empirically.

cost of having a fewer number of independent data points -
only (P−1)(P−2)

2 compared to P (P−1)
2 independent visibilities.

Additionally, when using these data products, information
related to the absolute location of the source is lost.

As each bispectrum (Eq. 3) is the multiplication of three
visibilities with Gaussian noise, its noise is not Gaussian.
Although the noise cannot be fully expressed simply with
a covariance matrix, we follow [5] and approximate the
bispectrum’s distribution as Gaussian with a best-fit covariance
matrix. Refer to the supplemental material for a derivation of
this approximation.

C. Visibility Amplitudes

Bispectrum measurements not only entangle the phase,
but also the amplitudes of the three corresponding spatial
frequency components. Although atmospheric inhomogeneity
causes substantial phase errors in each complex visibility,
with careful calibration the amplitude of the visibility can
be well estimated. Thus, we have found that during image
reconstruction it is quite helpful to additionally constrain the
visibility amplitude in addition to the bispectrum or closure
phase. Empirically we have found this to be especially im-
portant when reconstructing an image with a large field of
view. As thermal noise is isotropic in the real-imaginary plane,
a perfectly gain-calibrated visibility amplitude has the same
standard deviation of noise as a perfectly calibrated complex
visibility [1].

III. PREVIOUS IMAGING APPROACHES

VLBI image reconstruction has similarities with other spec-
tral image reconstruction problems, such as Synthetic Aperture
Radar (SAR), Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), and seismic interferometry [19], [20], [21],
[22]. However, VLBI image reconstruction faces a number
of unique challenges. For instance, SAR, MRI, and CT are
generally not plagued by large corruption of the signal’s phase,
as is the case due to atmospheric differences in mm/sub-mm
VLBI. Additionally, the frequency coverage obtained in VLBI
is dictated by where there are existing telescopes, and often
contains large gaps of unsampled space. Accounting for these
differences is crucial.
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Traditional interferometric imaging methods, such as
CLEAN, are not inherently capable of handing the atmo-
sphere’s corruption of the visibility phases in mm/sub-mm
wavelengths, even for static sources [2], [3]. Thus, they
frequently have trouble imaging with sparse, short-wavelength
interferometric arrays like the EHT. However, Bayesian-style
methods have made it possible to handle sparse and heteroge-
neous arrays in the mm/sub-mm regime, and can often even
achieve accurate super-resolved images in the case of a static
source [23], [24], [6].

In order to reconstruct an image from the observed VLBI
data, y, these methods first approximate the continuous image
I(%, δ) as a square M ×M array of values, x, that represents
the source image’s flux over a specified field of view (FOV)3.
Using this representation, the imaging methods aim to solve

x̂ = argmin
x

[χ(x,y)− γR(x)] (4)

where χ(x,y) indicates how inconsistent the image, x, is
with the observed data, y, and R(x) expresses how likely
we are to have observed the image x. These two terms often
have different preferences for the “best” image, and fight
against each other in selecting x̂. Their relative impact in
this minimization process is specified with the hyperparam-
eter γ. Equation 4 can be interpreted probabilistically when
−χ(x,y) = log p(y|x), R(x) = log p(x), and γ = 1. In
this case, the minimizing cost function is a log-posterior with
maximum a posteriori (MAP) estimate x̂, and can be solved
using a Bayesian inference method. While many methods do
not have a probabilistic interpretation, their formulation leads
to a similar optimization.

Multiple algorithms have taken this Bayesian-style approach
to VLBI imaging. These algorithms often define a similar data
inconsistency measure, χ(x,y) (refer to Section III-A), but
vary in what characterizes a “good” image, R(x). Maximum
entropy, total variation, sparsity, and patch-based priors have
all been used to construct R(x), and have been demonstrated
in imaging both optical and radio interferometry data taken
with sparse, heterogeneous arrays of static sources [5], [6],
[8], [25], [26], [27], [28].

VLBI data taken from an evolving source are significantly
different from that of a static source [29], [30]. For example,
Figure 2 shows a simulated visibility amplitude and closure
phase expected for a source evolving over time, and compares
it to the data products expected if the same source were static.
As the data can no longer be explained by a single image with
similar structure, most static imaging methods break down on
this data and are unable to produce accurate results.

Recent work has attempted to recover a single average
image by first normalizing the data and then smoothing it
within a characteristic time-frame [30]4. However, as this
method was designed to be applied to multi-epoch data, it is
often unable to recover an improved reconstruction for a single
day’s observation when there is significant source variability.

3The FOV for a time-varying source can be estimated from the variation
in visibilities obtained over simultanoulsy observed frequency bands.

4In the case of no atmospheric error the visibilities are smoothed. In the case
of atmospheric error the bispectrum and visibility amplitudes are smoothed.

(see Section VII).
In [31] we simultaneously developed an alternative method

for time-variability imaging that also reconstructs a video of
the underlying emission region from sparse interferometric
measurements. In that work, we develop a more flexible frame-
work with fewer model constraints. However, this modeling
choice leads to a much more difficult optimization problem
that is prone to local minima, and often requires ad hoc
methods to achieve satisfactory convergence. This frequently
leads to a solution inconsistent with the true structure of the
source images when the data is especially sparse or noisy.
Thus, the strengths and weaknesses of this alternative method
are complementary to those of the approach we develop
here. Similarly, in [32] a Kalman Filter based approach was
proposed for video generation from sparse interferometric
measurements. This early work has striking similarities to parts
of our own presented approach; however, the method was not
demonstrated on interferometric data – real or synthetic – and
does not address many of the limiting characteristics of EHT-
quality data.

The problem of reconstructing video of a moving subject
from sparse frequency samples appears in the MRI literature
and is often referred to as Dynamic MRI (dMRI) [33], [34],
[35], [36]. Recent dMRI approaches reconstruct time-evolving
MRI images using a variety of sophisticated regularization
techniques, such as non-linear manifold [37] and sparsity mod-
els [38], [39]. Although this problem has similarities to VLBI,
there are substantial differences that make it not possible to
blindly apply approaches developed for dMRI to VLBI. As
discussed in Section III-A, due to atmospheric inhomogeneity,
VLBI measurements for short wavelength observations lose
absolute phase information. Not only does this mean it is
not possible to simply use a linear DTFT relationship to
recover the underlying image from the data, but additionally
the absolute position of the image on the sky is lost. Therefore,
the common strawman approach of using a sliding-window to
share data across time results in a series of frames with no
spatial consistency, leading to a flickering video.

A. Data Consistency

Methods often constrain the image reconstruction using a
different set of data products. However, most can be general-
ized through a common definition of χ(x,y). This general-
ization will become helpful in defining models in Sections IV
and V.

Let y be a K-dimensional real vector of, possibly hetero-
geneous, data products. We define a function f(x) to return
the expected value of y if x were the true underlying image.
This measurement function, f(x), is composed of a set of
sub-functions, gk(x), that each simulate an ideally observed
data product:

f(x) =


g1(x)
g2(x)

...
gK(x)

 : <M
2×1 → <K×1. (5)

Although interferometric observables (e.g. visibilities, bis-
pectrum) are in general complex valued, we break up these
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complex quantities into their real and imaginary parts in the
vector y. For example, if we wish to constrain image recon-
struction with complex visibilities for P observing telescope
sites, then y2k = < [Γ(uk, vk)] and y2k+1 = = [Γ(uk, vk)] for
K = P (P − 1)/2. In this case,

g2k(x) =<[f(uk, vk)]Tx (6)

g2k+1(x) ==[f(uk, vk)]Tx, (7)

for the complex row-vector f(uk, vk) that extracts a single
spatial frequency (uk, vk) from the vectorized image x.

Using these functions, we define χ(x,y) as

χ(x,y) ∝
K∑
k=1

(y[k]− gk(x))2

σ[k]2
(8)

= (y − f(x))TR−1(y − f(x)), (9)

for R = diag[σ[1]2, .., σ[K]2] composed of the variance of
noise on each y[k]. If y is sampled from a Gaussian distribu-
tion with mean f(x) and covariance R then 1

Kχ(x,y) ≈ 1.
Depending on the data products selected for y, the measure-

ment function, f(x), may be a linear or non-linear function
of x. Visibilities can be extracted by performing a linear
matrix operation similar to a Discrete Time Fourier Transform
(DTFT): f(x) = Fx [5]. However, in the presence of
atmospheric noise, y may be populated with data products that
are invariant to atmospheric inhomogeneity. The bispectrum,
closure phase, and visibility amplitude data products are
invariant to this error, but come at the cost of requiring a
non-linear measurement function, f(x) [5], [6], [26].

IV. STATIC MODEL & INFERENCE

Before discussing our proposed approach to dynamic imag-
ing for time-varying sources, we first review interferometric
imaging for a static source and discuss a simple, yet instruc-
tive, approach using a multivariate Gaussian image prior. The
intent of this section is not to present a novel and competitive
static imaging method, but instead to set up the tools necessary
to easily understand dynamic imaging in Sections V and VI.

We measure a vector of real values y that are generated
by observing a static source’s emission region image, I(%, δ).
These measurements are extremely sparse and noisy, and thus
do not fully characterize the underlying image. For example,
a simple PCA analysis on rows of the DTFT matrix F for the
EHT 2017 campaign (see the uv-coverage of Fig. 4) shows
that 95% of the variance can be described using only 1624
measurement sub-functions, g(x), for a 10000 pixel image;
essentially F constrains only 16% of the unknowns. To solve
this problem, we impose a prior distribution on x and seek
a maximum a posteriori (MAP) estimate of the underlying
image given these sparse observations. We adopt the model
presented in [5] to represent I(%, δ) as vectorized coefficients,
x. Using this representation, we define our observation model
as:

y ∼ Ny(f(x),R), (10)
x ∼ Nx(µ,Λ), (11)
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Fig. 3. Gaussian Image Prior: The covariance matrix constructed for
a = 2, 3, 4 along with image samples from the prior Nx(µ,Λ). The image
samples have a field of view of 160 µ-arcseconds. Notice that as a increases,
the sampled images appear smoother (i.e., the prior encourages smoother
structure). In these examples µ is a 2D Gaussian image with standard deviation
of 75 µ-arcseconds. and c = 0.5.

where Nz(m,Σ) is the multivariate normal distribution of z
with mean m and covariance Σ. In the chosen model, both the
data likelihood, p(y|x), and the underlying image prior, p(x),
are multivariate normal distributions. The posterior probability
is written in terms of these two terms:

p(x|y) ∝ p(y|x)p(x) (12)
= Ny(f(x),R)Nx(µ,Λ).

Unfortunately, p(y|x) is not truly Gaussian when y is
composed of bispectra or closure phases, as each visibility
is used to compute multiple terms. However, as discussed in
Section II-B, we assume that each term of y is independent
and can be described with a Gaussian noise model. This
approximation has been shown to be a good approximation
in practice (see the supplemental material) [1], [5].

A. Multivariate Gaussian Image Prior

A prior distribution on x constrains the space of possible
solutions during inference, and can be defined in a variety
of ways. For instance, maximum entropy, sparsity, and patch
priors have been all used previously for VLBI imaging [6],
[7], [5], [4]. In this work we instead choose to define the
underlying image, x, as being a sample from the distribution
Nx(µ,Λ). This choice leads to less sharp image reconstruc-
tions compared to richer priors, but its simplicity allows for a
cleaner understanding of our solutions. This proves especially
valuable in propagating uncertainties during dynamic imaging
(refer to Section VI).

Studies have shown that the average power spectrum of an
image often falls with the inverse of spatial frequency in the
form 1/(u2 + v2)a/2, where a is a value that specifies the
smoothness of the image [40]. As the amplitude of a spatial
frequency is linearly related to the image itself, this statistical
property can also be enforced by specifying the covariance in
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Fig. 4. Static Imaging Comparison: Results of static imaging using a multivariate Gaussian prior ( a = 2, 5, 10) compared to state-of-the-art reconstruction
methods using MEM & TV regularizers [6] as well as patch-based regularizers (CHIRP) [5]. All images are shown with a field of view of 160 µ-arcseconds.
Data is generated using a static image with the uv-coverage of the EHT2017 array shown on the left (see Section VII). The uv-coverage is colored by time, as
indicated by the colorbar in Figure 7. Note however that in this static imaging case the time of measurements is not relevant. Although the previous algorithms
(MEM & TV and CHIRP) both produce better results, the Gaussian reconstruction is able to correctly get the broad structure of the underlying image. Since
we do not impose positivity, negative values are reconstructed. However, by clipping the resulting image we can see that the result aligns well with the true
static image. The Gaussian prior model also allows us to easily estimate our reconstructed image uncertainty. We visualize the diagonal entries of the posterior
covariance matrix as the reshaped standard deviation image. Note that as the smoothness parameter a is increased, the per-pixel standard deviation becomes
smaller, but the structure of the standard deviation deviates from what was specified in the prior (recall Λ is scaled by µ, which we have specified as a 2D
Gaussian in this work). For large a the uncertainty is shown to be primarily in the diagonal north-west to south-east direction, due to the lack of spatial
frequencies sampled by the telescope array in this direction. To avoid approximations and best show the recovered posterior covariance matrices, atmospheric
error has not been included in the data used to recover these images. The scaling of the colormaps is in mili-Jansky per squared µ-arcsecond.

a prior distribution. Specifically,

Λ′ = W ∗T diag [b]W (13)

b[i] =

{
(u[i]

2
+ v[i]

2
)−a/2 u[i]

2
+ v[i]

2
> 0

ε u[i]
2

+ v[i]
2

= 0
(14)

for DFT matrix W of size M2 × M2 for an M × M
pixel image and a small positive value, ε. Each row of W
and b corresponds to a (u, v) coordinate in the 2D grid of
frequencies, { S × S }, for

S =

{
m−M/2

FOV

}
,m ∈ Z : m ∈ [0,M − 1], (15)

where FOV is the image’s field of view in radians. To specify
the variance of each pixel and help encourage positivity, we
modify the amplitude of the covariance by left and right
multiplying by c · diag[µ]:

Λ = c2diag[µ]TΛ′diag[µ] (16)

A c value of 1/3 implies that 99% of flux values sampled from
Nx(µ,Λ) will be positive. In this work we have chosen µ to
be a circular Gaussian with a standard deviation of 40-50%
of the reconstructed FOV to encourage most of the flux to
stay near the center of the image and away from the edges.

Figure 3 shows the covariance matrix constructed for a =
2, 3, 4 along with images sampled from the prior Nx(µ,Λ).
Notice that as a increases, the sampled images are smoother.
Thus, a provides the ability to tune the desired smoothness of
the inferred images.

B. Inference

Our goal is to find the most likely image, x, that describes
the data products we have observed, y. A maximum a posteri-
ori (MAP) solution is found by maximizing the log-posterior
from Equation 12:

x̂ = argmax
x

log p(x|y) (17)

= argmin
x

[
(f(x)− y)TR−1(f(x)− y)

+(x− µ)TΛ−1(x− µ)
]
. (18)

Note the similarities of this equation’s structure to that of
previous static imaging methods in Equation 4 and 9. Although
the hyperparameter γ is no longer explicit, the scaling of Λ
acts like this hyperparameter and balances influence of the
measured data with influence of the prior.

1) Linear Measurements: As explained in Section III-A,
f(x) is linear when y is composed solely of calibrated
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complex visibilities with no atmospheric error. In this case
– when f(x) = Fx – a closed-form solution of x̂ can be
found through traditional Weiner filtering. Specifically, we can
compute the most likely estimate of each x as:

x̂ = µ+ ΛFT (R+ FΛF T )−1(y − Fµ). (19)

In the limit of having no prior information about the under-
lying image x, e.g., Λ = limλ→∞ λ1 for identity matrix 1,
this MAP solution reduces to x̂ = F+y. In other words, in
the absence of prior image assumptions, the noise on each
measurement, R, is no longer relevant and the reconstructed
image is simply obtained by inverting y = Fx. This is very
similar to reconstructing the “dirty image” [3].

The same solution can also be obtained by evaluating the
posterior distribution. With a linear measurement function,
f(x), the proposed Gaussian formulation leads to a closed-
form expression for the posterior. In particular,

p(x|y) = Nx(x̂,C). (20)

for covariance matrix

C = Λ−ΛF T (R+ FΛF T )−1FΛ. (21)

Estimating uncertainty with the covariance matrix is useful
in understanding what regions of the reconstructed image
we trust. This becomes especially helpful when propagating
information in dynamical imaging, as will be demonstrated in
Figure 9.

2) Non-linear Measurements: When f(x) is a non-linear
function of x, as is the case when the data products in y are
invariant to atmospheric noise, a closed-form solution does not
exist. However, to solve for the optimal x we linearize f(x) to
obtain an approximate solution, x̂. Using a first order Taylor
series expansion approximation around x̃, we approximate the
data likelihood as

p(y|x) = Ny(f(x),R) ≈ Ny
(
f(x̃) + Ḟ (x− x̃),R

)
,

(22)

for Ḟ = df(x)
dx

∣∣∣
x̃

. Using this approximation, the optimal x̂ is

x̂ = µ+ ΛḞ T (R+ ḞΛḞ T )−1(y − f(x̃) + Ḟ (x̃− µ)).
(23)

To further improve the solution, we solve Equation 23
iteratively by updating x̂ and setting x̃ = x̂ until convergence.
Note that in the case that f(x) is linear, Ḟ = F and Equa-
tion 23 reduces to Equation 19. We compare results of this
reconstruction method to other state-of-the-art methods for a
static source in Figure 4. Figure 4 demonstrates that, although
this approach does not outperform other state-of-the-art static
imaging methods, reasonable results are achieved despite a
simpler image regularizer and optimization procedure. This
simpler approach will become useful in developing a dynamic
imaging approach.

V. DYNAMIC MODEL

Earth rotation synthesis inherently assumes that the source
being imaged is static over the course of an observation [3]. If

x1 x2 x3 xN

yNy1 y2 y3

µ1 µ2 µ3 µN

...

⇤, ✓

'x2|x1

'
y
1
|x

1
'

x
1

Q⇤, ✓⇤

Fig. 5. Graphical Representation of our Dynamic Imaging Model: At
each time t we observe a vector of data products yt corresponding to the
instantaneous source image xt. We assume each image xt is related to
its adjacent neighbors in time, xt−1 and xt+1, and is also related to a
multivariate Gaussian distribution specified by mean µt and covariance Λ.
The persistent global evolution of the source images over time is specified by
A, which is further parameterized by θ. Additional intensity perturbations in
time are constrained by the covariance matrix Q. In this diagram, squares
indicate parameters, circles are variables, and shaded circles indicate the
variable is observed.

this assumption holds, it is possible to collect more than P (P−
1)/2 measurements that inform us about the underlying source
through earth rotation synthesis However, in the case of an
evolving source, as is predicted to be the case for SgrA*, this
assumption is violated – measurements taken at different times
throughout the observation correspond to different underlying
source images.

At each time t = 1, ..., N we measure a vector of data
products yt, that are observed from an evolving source image,
xt. Our goal is to reconstruct the N instantaneous images
X = {x1, ...,xN} using the set of sparse observations Y =
{y1, ...,yN}. We define a dynamic imaging model for this
observed data as potentials (ϕ) of an undirected tree graph
(see Figure 5):

ϕyt|xt = Nyt(ft(xt),Rt), (24)
ϕxt = Nx1

(µt,Λt), (25)
ϕxt|xt−1

= Nxt(Axt−1,Q), (26)

for Λt = diag[µt]
TΛ′diag[µt].

Similar to the static imaging model, each set of observed
data yt taken at time t is related to the underlying instanta-
neous source image, xt, through the functional relationship,
ft(xt), and xt is encouraged to be a sample from a multi-
variate Gaussian distribution. However, new to this dynamic
imaging model is the addition of (26) that describes how im-
ages evolve over time. If we assume that there is no evolution
between neighboring images in time (A = 1,Q = 0), this
dynamic model reduces to that of static imaging. Using the
Hammersley-Clifford Theorem [41], the joint distribution of
this dynamic model can be written as a product of its potential
functions:

p(X,Y;A) ∝
N∏
t=1

ϕyt|xt

N∏
t=1

ϕxt

N∏
t=2

ϕxt|xt−1
. (27)
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A. Evolution Model

Each image xt is related to the previous image xt−1 through
a linear relationship: xt ≈ Axt−1. Matrix A (size M2×M2)
defines the evolution of the source’s emission region between
time steps. For instance, A = 1 indicates that, on average,
the source image does not change, whereas A = 21 indicates
that the image’s brightness doubles at each time step. Since
the evolution matrix A is not time dependent, the underlying
source image evolves similarly over the entire observation.
However, at each time the image can deviate slightly from this
persistent evolution. The amount of allowed intensity deviation
is expressed in the time-invariant covariance matrix Q.

We assume that the evolution of the emission region over
time is primarily described by small perturbations on top of a
persistent 2D projected flow of material that preserves total
flux. We treat each source image like a 2D array of light
pulses originating at locations (%, δ). These pulses can shift
around, causing motion in the image. As described by the Shift
Theorem, the shift of a pulse by ∆ will change the phase of
its Fourier Transform by 2πf∆ for each frequency f . Thus,
under small motions, we can write A in terms of the image’s
full M2 × M2 DFT matrix W (see Section IV-A), and a
column-vector of M pixel shifts: s = (s%, sδ):

A = <
[
W ∗T (exp

[
−i2π(usT% + vsTδ )

]
�W

)]
. (28)

Applying A to a vectorized image xt of light pulses results
in a new image, xt+1, where the pulses have been shifted
according to s and re-interpolated on the 2D DFT grid. Note
that in the case s = 0 then A = W ∗TW = 1.

The above parameterization of evolution matrix A in terms
of s allows for independent, arbitrary shifts of each pulse of
light, resulting in 2M2 shift parameters. However, as neighbor-
ing material generally moves together, the pixel shifts should
have a much lower intrinsic dimensionality. To address this,
and simultaneously reduce the number of free parameters, we
instead describe motion A using a low-dimensional subspace,
parameterized by θ. The length of θ, D, is much smaller than
the number of unconstrained shift parameters, 2M2. We define
a motion basis M =

[
M%,Mδ

]T
of size 2M2 ×D+ 1, and

restrict the motion at every time step to be a linear function
of this motion:[

%t+1

δt+1

]
=

[
%t
δt

]
+

[
s%t
sδt

]
=

[
M%t

Mδt

] [
1
θ

]
. (29)

This parameterization allows us to describe a wide variety
of motion (or warp) fields. Generic “smooth” warp fields can
be described by using a truncated Discrete Cosine Transform
(DCT) basis as M. However, more compressed motion bases
can also be used [42], [43]. In this work, results are shown
using an affine transformation parametrized with a four-
dimensional θ that captures rotation, shear, and scaling. As an
affine transformation, θ, acting on a pulse at location (%t, δt)
results in moving the pulse to location

[
%t+1

δt+1

]
=

[
θ1 θ2

θ3 θ4

] [
%t
δt

]
=

[
%t δt 0 0
0 0 %t δt

]
θ1

θ2

θ3

θ4

 , (30)

in this work we define,[
M%t

Mδt

]
=

[
0 %t δt 0 0
0 0 0 %t δt

]
. (31)

For example, using this motion basis with θ1 = cosφ, θ2 =
sinφ, θ3 = − sinφ, and θ4 = cosφ would specify that every
time step the image is rotated by φ radians.

VI. DYNAMIC IMAGING INFERENCE & LEARNING

We solve for the best set of N images X constrained
by the N vectors of sparse observations Y . In general,
we assume that ft(.), Rt, µt, Λt, Q are known/specified
model parameters. However, A, which defines how the source
evolves, is not necessarily known ahead of time. If there is
reason to believe that only small perturbations exist in the
source image over time, then a reasonable assumption is to
set A = 1. However, in the case of large persistent motion
this may fail to give informative results.

We begin in Section VI-A by discussing how to solve for
X when A is known. In this case, the model contains no
unspecified parameters and the goal is to simply solve for the
latent images. In Section VI-B, we forgo this assumption and
no longer assume that A is known. In this case, we jointly
solve for A and X by first learning A’s parameters θ using
an Expectation-Maximization (EM) algorithm before solving
for the latent images, X . We refer to our proposed method as
StarWarps.

A. Known Evolution

Given all of the model parameters and observed data, our
goal is to estimate the optimal set of latent images,X . In static
imaging we set up an optimization problem that allowed us
to easily solve for the most likely latent image, x, given the
observed data, y. In the proposed dynamic model, a similar
closed-form solution exists in the case of a linear f(x) and
diagonal Rt and Q matrices [35]. However, this requires us
to invert a large M4 ×N2 non-block-diagonal matrix. Thus,
instead of the MAP estimate, we compute the most likely
instantaneous image at each time, t, given all of the observed
data Y . In particular, we estimate the marginal distribution of
each xt, p(xt|Y ), by integrating out the other latent images
in time, and set x̂t equal to the mean of each distribution.

Since we have defined our dynamic model in terms
of Gaussian distributions, we can efficiently solve for
p(xt|y1, ...,yN ) by marginalizing out the latent images
{x1, ...,xt−1,xt+1, ...,xN} using the Elimination Algo-
rithm [44]. Specifically, we derive a function proportional
to the marginal distributions. This function is evaluated us-
ing a two-pass algorithm, which consists of a forward pass
and a backward pass. Each pass, outlined in Algorithms 1
and 2, propagates information using recursive updates that
compute distributions proportional to p(xt,y1, ...,yt−1) and
p(yt, ...,yN |xt) for each xt in the forward and backward pass,
respectively. By combining these terms we obtain

p(xt|Y ) = Nxt(x̂t,Ct) (32)

∝ Nxt(zαt|t−1,P
α
t|t−1)Nxt(z

β
t|t,P

β
t|t),



9

Algorithm 1: Forward Updates t = 1→ 2→ ...→ N

Predict:

zαt|t−1 = Azαt−1|t−1

Pαt|t−1 = Q+APαt−1|t−1A
T

zα∗t|t−1 = Λt(Λt + Pαt|t−1)−1zαt|t−1 + Pαt|t−1(Λt + Pαt|t−1)−1µt

Pα∗t|t−1 = Λt(Λt + Pαt|t−1)−1Pαt|t−1

Update:

y∆ = (yt + Ḟ x̃t − f(x̃t)− Ḟ zα∗t|t−1)

zαt|t = zα∗t|t−1 + Pα∗t|t−1Ḟ
T
t (Rt + ḞtP

α∗
t|t−1Ḟ

T
t )−1y∆

Pαt|t = Pα∗t|t−1 −Pα∗t|t−1Ḟ
T
t (Rt + ḞtP

α∗
t|t−1Ḟ

T
t )−1ḞtP

α∗
t|t−1

Initialization:

zα∗1|0 = µ1 , Pα1,0 = Λ1

which, as shown in the supplemental material, has mean x̂t
and covariance Ct:

x̂t = Pβ
t|t(P

α
t|t−1 + Pβ

t|t)
−1zαt|t−1 + Pαt|t−1(Pαt|t−1 + Pβ

t|t)
−1zβ

t|t

Ct = Pαt|t−1(Pαt|t−1 + Pβ
t|t)
−1Pβ

t|t, (33)

where zαt|τ , Pα
t|τ are the estimates of the mean and covariance

of xt using observations at time steps 1 through τ . Similarly,
zβt|τ , Pβ

t|τ are the estimates of the mean and covariance of xt
using observations τ through N .

For generality, we have listed the forward and backward
algorithms in terms of non-linear measurement functions,
ft(xt) with derivative Ḟ . In this case, similar to our static
model inference in Section IV-B, we linearize the solution
around x̃t to get an approximate estimate. To improve the
solution of the forward and backward terms, each step in
the forward pass can be iteratively re-solved, updating x̃t
at each iteration. The values of x̃t are then fixed for the
backwards pass. Recall that when ft(x) is linear in x then
ft(x) = Ftx = Ḟtx, and the x̂ will converge to the optimal
solution in a single update.

The above inference algorithm is similar to the forward-
backward algorithm used for Gaussian Hidden Markov Mod-
els [44]. In fact, removing the ϕxt term for t > 1 in Equa-
tion 27 yields the familiar form of a Gaussian Hidden Markov
Model. In this case, inference reduces to the traditional
Kalman filtering and smoothing (extended Kalman filtering
in the case of non-linear ft(x)) [32]. Although this simpler
formulation can sometimes produce acceptable results, in our
typical scenario of especially sparse or noisy data keeping
the additional potential terms helps to further constrain the
problem, and results in better reconstructions.

B. Unknown Evolution
If the evolution matrix A is unknown, it is not possible

to simply solve for X in the way outlined in Section VI-A.

Instead we choose to use an Expectation-Maximization (EM)
algorithm to recover A (parameterized by θ), and then subse-
quently use the procedure presented in Section VI-A to recover
X .

The EM algorithm defines an iterative process that solves
for the evolution parameters θ that maximize the complete
likelihood in Equation 27 when all of the underlying images,
X , are unknown (latent). Each iteration of EM improves
the log-likelihood of the data under the defined objective
function and is especially useful when the likelihood is from
an exponential family, as is the case in our proposed model.
In particular the EM algorithm consists of the following two
iterative steps:

• Expectation step (E step): Calculate the expected value of
the log likelihood function (see Equation 27), with respect
to the conditional distribution of X given Y under the
current estimate of the θ parameters, θ(i):

Q(θ|θ(i)) = EX|Y,θ(i) [log p(X,Y|θ)] (34)

• Maximization step (M step): Find the parameter that
maximizes:

θ(i+1) = argmax
θ
Q(θ|θ(i)). (35)

We solve for θ using gradient ascent. As A is a function
of θ, we must compute the derivative of Q(θ|θ(i)) using the
chain rule. We compute this derivative with respect to each
element j in θ:

d

dθ[j]
Q(θ|θ(i)) =

∑
p

∑
q

dQ(θ|θ(i))

dA[p, q]

dA[p, q]

dθ[j]
(36)

Using the low-dimensional subspace evolution model proposed
in Section V-A, the derivative dA[p,q]

dθ[j] can be computed as

dA

dθ[j]
= −i2πθ[j]A

(
uM%[:, j + 1]T + vMδ[:, j + 1]T

)
.

(37)

Algorithm 2: Backward Updates: t = N → N − 1→ ...→ 1

Predict:
zβ∗
t|t+1

=µt + ΛtA
T (Q+ Pβ

t+1|t+1
+AΛtA

T )−1(zβ
t+1|t+1

−Aµt)

Pβ∗
t|t+1

=Λt −ΛtA
T (Q+ Pβ

t+1|t+1
+AΛtA

T )−1AΛt

Update:

y∆ = (yt + Ḟ x̃t − f(x̃t)− Ḟtzβ∗t|t+1
)

zβ
t|t = zβ∗

t|t+1
+ Pβ∗

t|t+1
Ḟ Tt (Rt + ḞtP

β∗
t|t+1

Ḟ Tt )−1y∆

Pβ
t|t = Pβ∗

t|t+1
−Pβ∗

t|t+1
Ḟ Tt (Rt + ḞtP

β∗
t|t+1

Ḟ Tt )−1ḞtP
β∗
t|t+1

Initialization:

zβ∗
N|N+1

= µN , Pβ∗
N|N+1

= ΛN
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By expanding and taking the derivative of the log-likelihood
from Equation 27 with respect to A, we obtain the expression

d

dA
Q(θ|θ(i)) = −1

2

N∑
t=2

[
2Q−1AEX|Y ,θ(i)

[
xt−1x

T
t−1

]
(38)

−Q−1EX|Y ,θ(i)
[
xtx

T
t−1

]
−Q−1EX|Y ,θ(i)

[
xt−1x

T
t

]]
.

By inspecting this expression we can see that the sufficient
statistics we require to maximize the log-likelihood are the
expected value of xtxTt and xt−1x

T
t under the distribution

p(X|Y ; θ(i)). Conveniently, these sufficient statistics can be
computed using from the set of z’s and P’s computed in
Section VI-A. From the marginal distributions (Equations 32
and 33) derived in Section VI-A, we obtain

EX|Y ,θ(i)
[
xtx

T
t

]
= x̂tx̂

T
t + Ct. (39)

The sufficient statistic EX|Y ,θ(i)
[
xt−1x

T
t

]
is a bit trickier

to obtain, but can also be calculated using the same forward-
backward terms, as shown in the supplemental material. Math-
ematically,

EX|Y ,θ(i)
[
xt−1x

T
t

]
= x̂t−1x̂

T
t + ξ3ξ

T−1
1 , (40)

where ξ1 and ξ3 are defined according to

p(xt,xt−1|Y ) = Nxt−1(ξ1xt + ξ2, ξ3) (41)

∝ Nxt−1(zαt−1|t−1,P
α
t−1|t−1)Nxt(Axt−1,Q)Nxt(z

β
t|t,P

β
t|t).

To learn the parameters θ, we iterate between computing
sufficient statistics of X given the current estimate of pa-
rameters, θ(i), and solving for new parameters that maximize
the updated log-likelihood, θ(i+1), under those statistics. Once
convergence has been reached, we return the parameters θ̂ and
the optimal set of instantaneous images under that transforma-
tion E[X] = {x̂t}Nt=1.

Note that since our EM method’s maximization step requires
solving a non-convex problem we likely will only find a local-
maximum of θ at each step. Nonetheless, the log-likelihood
is guaranteed to increase for a θ that increases Q(θ|θ(i))
(Equation 34) [45]. This class of algorithms, which do not
necessarily find the optimal θ at each iteration, are more
rigorously referred to as “Generalized EM” [45]. In the case of
a linear f(x) this EM procedure is exact and the log-likelihood
increases at every iteration. In the case of a non-linear f(x)
the forward-backward algorithm in Section VI-A provides only
an approximation of the true sufficient statistics. Nonetheless,
we empirically find that, when we fix each latent image’s
linearization point, the log-likelihood consistently improves.

VII. DYNAMIC IMAGING RESULTS

As data from the EHT 2017 campaign is yet to be released,
in this section we demonstrate our method on synthetic EHT
data and real data from the Very Long Baseline Array (VLBA).
Additional results can be seen in the supplemental document
and video. The StarWarps algorithm has been implemented
as part of the publicly available python eht-imaging5

library [6].
5https://github.com/achael/eht-imaging

A. Synthetic Data Generation
We demonstrate our algorithm on synthetic data generated

from four different sequences of time-varying sources. These
sequences include two realistic fluid simulations of a black
hole accretion disk for different observing orientations [48],
a realistic sequence of a “hot spot” rotating around a black
hole [47], and a toy sequence evolving with pure rotation.
The field of view of each sequence ranges from 120 to 160
µ-arcseconds. A still frame from each sequence is shown
in Figure 6. To help give a sense of the variation in each
sequence, the figure also displays the mean and standard
deviation of flux density. We refer to these sequences by their
video number, indicated in the figure.

In order to demonstrate the quality of results under various
observing conditions, VLBI observations of SgrA* at 1.3 mm
(230 GHz) are simulated assuming three different telescope
arrays. The first array, EHT2017, consists of the 8 telescopes
at 6 distinct locations that were used to collect measurements
for the Event Horizon Telescope in the spring of 2017. The
uv-coverage for this array can be seen in Figure 4. The
second array, EHT2017+, augments the EHT2017 array with
3 potential additions to the EHT: Plateau de Bure (PDB),
Haystack (HAY), and Kitt Peak (KP) Observatory. Details on
telescopes used in the EHT2017 and EHT2017+ array are
shown in Table VII-A. The third array, FUTURE, consists
of 9 additional telescopes. The uv-coverage of these latter
two arrays, along with a colorbar indicating the time of each
measurement, is shown in Figures 7.

Visibility measurements are generated using the python
eht-imaging library [6]. Realistic thermal noise, resulting
from a bandwidth (∆ν) of 4 GHz and a 100 second integration
time (tint), is introduced on each visibility. The standard
deviation of thermal noise is given by

σ =
1

0.88

√
SEFD1 × SEFD2

2×∆ν × tint
, (42)

for System Equivalent Flux Density (SEFD) of the two tele-
scopes corresponding to each visibility6 [3]. Random station-
based atmospheric phases drawn from a uniform distribution
at each time step are introduced into measurements using the
eht-imaging library. In Videos 2-4 a set of measurements
is sampled every 5 minutes over a roughly 14 hour duration,
resulting in 173 time steps. In Video 1 only 30 time steps are
measured over a 12 hour duration.

B. Static Evolution Model (No Warp)
We first demonstrate results of our method under a static

evolution model. In this case, we fix parameters θ such that
A = 1. This assumes that there is no global motion under
a persistent warp field, but only perturbations around a fairly
static scene. Despite this incorrect assumption (especially in
Videos 1 and 2), this simple model results in reconstructions
that surpass the state-of-the-art methods, and recovers distinc-
tive structures that appear in the underlying source images.

1) Synthetic Data Result Comparison: Figure 8 shows
example reconstructions, and corresponding measured error

6The factor of 1/0.88 is due to information loss due to recording 2-bit
quantized data-streams at each telescope [1].

https://github.com/achael/eht-imaging
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VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4
Pure Rotation Rotating Hotspot Face-on Disk Edge-on Disk
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Fig. 6. Ground truth videos: The four ground truth sequences used to demonstrate results. We show a single frame from each sequence, the mean frame,
and the spatial standard deviation of flux density. Video 1 consists of a 160µ-arcsecond image [46] that rotates 180◦ over the course of a 12 hour observation
(24 hour rotational period). Video 2 is a 120µ-arcsecond view of an edge-on black hole disk with a rotating “hot spot” predicted by [47] with a rotational
period of 2.78 hours. Video 3 and 4 are generated using a model of a black hole observed face on and at a 45◦ inclination with a 160µ-arcsecond field of
view [48]. They assume a spin of 0.9375 with an Innermost Stable Circular Orbit (ISCO) rotational period of 8.96 minutes. The specified FOV and colormaps
for the single frame and mean images are used for each corresponding video throughout the remainder of the paper.
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Fig. 7. Time-varying uv-coverage: The uv-coverage for EHT2017+ and
FUTURE arrays when observing SgrA. The uv-coverage for the EHT2017
array can be seen in Figure 4. Baselines are colored by the time of each
observation relative to the start time, indicated by the colorbar to the right.

(NRMSE), for combinations of the 4 source videos observed
under the 3 telescope arrays. For these results we have set
a = 2, c = 1/2, and Q = 10-71. The main portion of this
figure is broken up into 4 quadrants, each containing results
for one video. From left to right, up to down, each quadrant
corresponds to Video 1-4 respectively. The ground truth mean
image for each video is shown in the upper table. These images
correspond to those shown in Figure 6, but are smoothed to 3/4
the nominal resolution of the interferometer to help illustrate
the level of resolution we aim to recover.

Horizontally within each quadrant we present results ob-
tained using data with varying degrees of difficulty. As the
number of telescopes in the array increases, so does the spa-
tial frequency coverage. Therefore, reconstructing an accurate
video with the FUTURE array is a much easier task than with

TABLE I
EHT 2017 STATION PARAMETERS

Telescope Location SEFD (Jy)
ALMA Chile 110
APEX Chile 22000
LMT Mexico 560
SMT Arizona 11900
SMA Hawaii 4900
JCMT Hawaii 4700

PV Spain 2900
SPT South Pole 1600

PDB* France 1600
HAY* Massachusetts 2500
KP* Arizona 2500

The location and SEFD of each telescope in the EHT2017 and EHT2017+ ar-
rays. These parameters and locations were used to generate the uv-trajectories
in frequency space shown in Figure 4 and 7. Telescope names followed by a
star (*) were not included in the EHT2017 array.

the EHT2017 array. Additionally, using complex visibilities
that are not subject to atmospheric errors is much easier than
having to recover images from phase corrupted measurements.
In the case where there are atmospheric phase errors (ATM.),
we constrain the reconstruction problem using a combination
of visibility amplitude and bispectrum data products. This
results in a non-convex problem (that we approximate with
series of linearizations) that is much more difficult to solve
than when using complex visibilities when there is no atmo-
spheric phase error (NO ATM.). We demonstrate results on
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Fig. 8. Static evolution model: Results obtained using data simulated from each of the 4 video sequences (see Figure 6) under different telescope arrays
(see Figures 4 and 7) and noise conditions. The main portion of the figure is broken up into 4 quadrants corresponding to Videos 1-4 when moving from
left to right, top to bottom. The true mean image from the ground truth videos, blurred to 3/4 the nominal resolution of the array, is shown on the top. We
compare results of our proposed method, StarWarps, to that of the single imaging methods presented in [30] and [6]. In particular, we compare the mean
image obtained using StarWarps video reconstruction. The error type NO ATM. indicates reconstructing using visibilities on data with no atmospheric error,
while the error type ATM. indicates using the visibility amplitudes and bispectrum on data where atmospheric phase errors have been introduced. The quality
of each result, compared to the ground truth mean image, is indicated in the table of normalized root mean squared errors (Normalized RMSE). To account
for the loss of absolute position in the presence of atmospheric phase error, images were rigidly aligned to the true mean before computing the error. The
FOV and colorbar used for each reconstruction can be seen in Figure 6.
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Fig. 9. Propagating Uncertainty: During inference, StarWarps approximates
each image’s covariance matrix in order to propagate its uncertainty to
neighboring frames in time. Propagating this information is crucial when using
very few measurements. We show frames resulting from the same EHT2017
data of Video 3 when the covariance is propagated (PROP.) as described
in this paper, versus not propagated (NO PROP.). Note that propagating the
covariance results in significantly improved results. This is true even in the
case of using non-linear measurements when atmospheric error is present
(ATM.). In this non-linear case the covariance matrix is simply a crude
approximation of the uncertainty, but proves critical in obtaining a result that
captures the ring structure of the underlying source.

the EHT2017 array for both cases, and the EHT2017+ and
FUTURE arrays in the case of atmospheric error.

Vertically within each quadrant we illustrate the results
of our method, StarWarps, by displaying the average frame
reconstructed. We compare our method to two state-of-the-
art Bayesian-style methods. [6] solves for a single image by
imposing a combination of MEM and TV priors. This method
performs well in the case of a static source (see Figure 4),
however, in the case of an evolving source it often results
in artifact-heavy reconstructions that are difficult to interpret.
In [30] the authors attempt to mitigate this problem by first
smoothing the time-varying data products before imaging. This
approach was originally designed to work on mutli-epoch data;
we find it is unable to accurately recover the source structure
from a single day (epoch) observation. Results of [30] are
reconstructed by an author of the method.

2) The Importance in Propagating Uncertainty: StarWarps
uses a multivariate Gaussian regularizer for imaging, which
leads to a straightforward optimization method that propagates
information through time. The uncertainty of each recon-
structed image is encompassed in its approximated covari-
ance matrix (Pt|t), which informs the reconstruction of each
neighboring latent image. Although this covariance matrix is
sometimes a crude estimate of the true uncertainty, it is still
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Fig. 10. Comparison to [31] and Snapshot Imaging: A comparison of
results obtained using the proposed StarWarps method to Snapshot imaging
and a method presented in [31]. The same simulated EHT2017 data of Video 3
was used for each result, and contained atmospheric noise. Snapshot imaging,
which independently reconstructs each frame, is unable to produce reasonable
results, and has no continuity through time due to the loss of absolute location
information when using atmosphere corrupted measurements. The more flex-
ible framework of [31] often makes it possible to obtain sharper and cleaner
images, however struggles when working with very few measurements, as
is the case for the EHT2017 array. Although results are consistent through
time, [31] fails to recover the true ring structure of the source. StarWarps is
able to begin recovering this ring structure, but contains a number of artifacts
spurring from the main ring structure. Initializing [31] with the result of
StarWarps produces a cleaner and sharper result.
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Fig. 11. Single frame uv-coverage: (a) The uv-coverage for the first frame
shown in Figure 10 contains 21 measurements while (b) the uv-coverage for
the first frame shown in Figure 12 contains 1736. When the measurements
provided are very sparse, as in (a), StarWarps significantly outperforms [31].
However, in the case of many measurements, as in (b), [31] achieves better
results with a higher dynamic range.

crucial in reconstructing faithful images when measurements
are especially sparse.

The importance of propagating uncertainty through the co-
variance matrix is demonstrated in Figure 9. This figure shows
the effect of turning on and off the covariance propagation.
Covariance propagation can be easily turned off by setting
Pt|t = 0 at each forward and backward update. Results in
the figure are shown on simulated data from the EHT2017
array on Video 3, with and without atmospheric error. Note
that in both cases, propagating the covariance matrix helps to
substantially improve results. This is true even even in the
case of atmospheric error, when the measurement function
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Fig. 12. Video Reconstruction of Real Observations: A StarWarps movie reconstruction obtained using real VLBI data taken of the M87 jet over the
course of a year. Frames are shown with a gamma correction of γ = 1/3 to highlight weak emission. Data was collected in 2007 using the Very Long
Baseline Array (VLBA) at 43 GHz [49]. As the source structure does not evolve over the course of a night, traditional imaging approaches can be used to
reconstruct ‘snapshot’ images from this data. The forked structure appearing in the StarWarps reconstructions also appears in images reconstructed using the
CLEAN static imaging approach [49] and the dynamic imaging approach presented in [31] (see left-most image). StarWarps produces a video that allows
us to easily visualize the moving arms of the jet; the reconstructed video appears to contain outward motion, with a brighter region propagating down the
arms. By visualizing the same slice of each frame (indicated by the cyan line) it becomes easier to see this motion as a static image (see the 3 Space ×
Time images on the far right). Note the diagonal ‘line’ shown in the top 2 of these Space × Time images indicates a bright region moves down the arm,
towards the right of the image. The intensity of these slices has been increased by 70% to highlight the evolving, weak emission. By controlling the amount
of temporal regularization, Q, we control the amount of motion that appears in the reconstructed video. Increasing the temporal regularization, by decreasing
Q, results in a Space × Time slice that varies less with Time. Individual frames shown were generated using Q = 10-61.

f(x) is non-linear and the covariance matrix is only a rough
approximation of the true uncertainty.

3) Dynamical Imaging Comparison: As discussed in Sec-
tion III, the Dynamical Imaging method presented in [31] was
developed simultaneously, and shares many similarities to the
work presented in this paper: they both aim to solve for a
video rather than a static image. However, they have significant
differences, leading to different strengths and weaknesses. The
framework of [31] allows for more sophisticated image and
temporal regularization, at the cost of a difficult optimization
problem that does not propagate uncertainty. This results in
sharper and cleaner videos when there is sufficient data, but
can lead to poor results when there are very few measurements.
Conversely, StarWarps’ use of very simple Gaussian image
and temporal regularization results in blurry results, but allows
us to propagate an approximation of uncertainty (through the
covariance matrix) and produce better results when very few
measurements are available.

A comparison of results from [31] and StarWarps on
EHT2017 simulated data can be seen in Figure 10. Results
of [31] were produced using R∆I and KL R∆t temporal
regularization, and Maximum Entropy and Total Variation
Squared image regularization. Note that for this especially
sparse data, [31] on its own does not faithfully reconstruct
the ring structure of the underlying source. StarWarps is able
to produce a ring, but with a number of blurry artifacts.
Initializing [31] with the output of StarWarps produces the
cleanest result. Although the StarWarps method runs faster on
this example than [31] (84 seconds vs 204 seconds in Python
on a 2.8 GHz Intel Core i7), StarWarps is memory intensive
and its computational complexity scales poorly with increasing
image size compared to [31]. To help solve these issues, in the
future ideas from Ensemble Kalman Filters could be adapted in
order to avoid StarWarp’s costly matrix inversions and reduce
the method’s memory footprint [50].

An additional result comparing the two methods can be
seen in Figure 12, which is discussed in the next section. In
this example there is sufficient data to reconstruct each frame
independently, and [31] is able to produce a cleaner image
with a higher dynamic range than StarWarps.

Figure 11 compares the uv-coverage of a single frame

for Figures 10 and Figure 12, highlighting that StarWarps is
comparatively strongest in the case of sparse data, as will
be available for the EHT. These examples demonstrate that
StarWarps and [31] are complementary methods, and may
ultimately lead to hybrid approaches for video reconstruction
that produce higher quality results.

4) Application to Real VLBI Data: Although StarWarps
was developed with the considerations of the EHT in mind,
it can be applied to VLBI data taken from other sources and
telescope arrays. For instance, galactic relativistic jet sources
(“microquasars”) often show variability over the course of a
single observation [51]. However, due to physical constraints,
most VLBI telescope networks observe sources that do not
evolve this quickly, such as distant jets from the cores of Ac-
tive Galactic Nuclei. In these cases, traditional static imaging
approaches can be applied to each night of data to produce
faithful reconstructions. Yet, by jointly processing the data
taken over a larger span of time, we are able to make movies of
long-term source evolution that preserve continuity of features
through time, thus reducing the flickering that occurs when
independently reconstructing each frame.

In Figure 12 we demonstrate StarWarps on archival data
taken of the M87 jet. This data was taken using the Very Long
Baseline Array (VLBA) as part of the M87 Movie Project [49].
Ten epochs of data between the beginning of January and
end of August in 2007 were processed simultaneously. Images
were reconstructed with a 10 m-arcsecond field of view with
M = 70 pixels.

Unlike as expected in EHT observations, the dynamic range
of the M87 Jet is very high. In order to faithfully reconstruct
a high dynamic range image using the simple Gaussian prior,
we have incorporated gamma correction into our measurement
function. Rather than reconstruct a video containing linear-
scale images, we instead reconstruct gamma-corrected images.
To do this we replace the measurement function f(x) with
f(x

1
γ ). During reconstruction of this M87 Jet video we have

used γ = 1/2. Although these images still do not have the
same dynamic range that is achieved through other imaging
methods [49], [31], StarWarps is still able to recover the faint
arms of the jet.

The reconstructed movie produced by StarWarps shows
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Fig. 13. Recovering Warp Field: By solving for the parameters of a
persistent warp field using the proposed EM algorithm, we are able to recover
a low-dimensional representation of the source dynamics. Results are shown
using the EHT2017+ array with and without atmospheric error (ATM. and
NO ATM. ERROR, respectively). Arrows showing the direction of recovered
motion are overlaid on the mean image for a recovered video. Refer to the
supplemental video for a visualization of the true underlying and recovered
videos. In Video 1 the true underlying motion can be described by a clockwise
rotation. The proposed method is able to recover Video 1’s motion from the
observed data. Video 2 contains a ‘hot spot’ rotating counter-clockwise around
a static emission. Video 2 cannot be described using a single persistent flow
field. Yet, despite this, the proposed method is still able to recover the general
direction of counter-clockwise motion.

outward motion along the jet. While this motion is hard to
see in Figure 12’s static frames, by visualizing a slice of each
image (indicated by the cyan line) through time the motion
becomes more apparent. The resulting Space × Time image
shows a brighter region of emission moving along the arm
of the jet. We show the same Space × Time reconstruction
for different weightings of temporal regularization, Q. Note
that as temporal regularization increases, by decreasing Q,
the Space × Time image becomes more uniform in time.

C. Unknown Evolution Model (Learn Warp)

In Section VII-B we showed that a static model can often
substantially improve results over the state-of-the-art methods,
even when there is significant global motion. However, when
a source’s emission region evolves in a similar way over
time, we are able to further improve results by simultaneously
estimating a persistent warp field along with the video frames.
We demonstrate the StarWarps EM approach proposed in
Section VI-B, on Videos 1 and 2. In results presented, we
have assumed an affine motion basis with no translation (θ
consists of 4 parameters), and have allowed the method to
converge over 30 EM iterations.

Figure 13 shows the warp field recovered by our EM
algorithm. Results were obtained from data with and without
atmospheric error. In Video 1 the true underlying motion of
the emission region can be perfectly captured by the affine
model we assume. This allows us to freely recover a very
similar warp field. However, in the “hot spot” video (Video
2), there does not exist a persistent warp field that fits the
data, let alone an affine warp field. Although the true motion
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Fig. 14. Visualizing Recovered Motion: We visualize the recovered motion
in Video 2 by displaying the change in intensity around a circle in the image
over time. After fitting a circle of constant radius to each video, the intensities
around the circle in each image are unwrapped and placed in a single column
in the unwrapped space× time image. As the hot spot rotates around the black
hole a distinctive line appears in the true angle × time image. These lines
also appear in the StarWarps angle × time images, but are harder to discern
among the other artifacts in the snapshot imaging result. Results were obtained
using the EHT2017+ array with added atmospheric noise, and correspond to
results shown in Figure 2 of the supplemental document. As the absolute
position of the source is lost when using the closure phase or bispectrum,
the position of the recovered black hole moves slightly over the course of
the video. This causes the fluctuation in the intensity of the bright horizontal
line in the StarWarps recovered angle × time images, as we do not shift the
position of the fitted circle.

cannot be described by our model, we still recover an accurate
estimate indicating the direction of motion.

Figure 14 helps to further visualize the recovered motion in
the “hot spot” video by showing how the intensities of a region
evolve over time. Results of our method are compared to that
of a simple baseline method that we refer to as ‘snapshot
imaging’. In snapshot imaging each frame is independently
reconstructed using only the small number of measurements
taken at that time step. In particular, we use the MEM & TV
method shown in Figure 4 to reconstruct each snapshot. Our
results using StarWarps show substantial improvement over
snapshot imaging, especially in the case of data containing
atmospheric phase error.

We expand upon these results in the supplemental material’s
video and document. Figures 1 and 2 in the supplemental
material document compare results obtained when we assume
no global motion (A = 1) to those when we allow the method
to search for a persistent warp field. In the case of large
global motion, most of the reconstructed motion is suppressed
when we assume A = 1. However, by solving for the low
dimensional parameters of the warp field, θ, we can learn
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about the underlying dynamics and sometimes produce higher
quality videos.

VIII. CONCLUSION

Traditional interferometric imaging methods are designed
under the assumption that the target source is static over the
course of an observation [1]. However, as we continue to push
instruments to recover finer angular resolution, this assumption
may no longer be valid. For instance, the innermost orbital
periods around the Milky Way’s supermassive black hole, Sgr
A*, are just minutes [11]. In these cases, we have demonstrated
that traditional imaging methods often break down.

In this work, we propose a way to model VLBI measure-
ments that allows us to recover both the appearance and dy-
namics of a rapidly evolving source. Our proposed approach,
StarWarps, reconstructs a video rather than a static image. By
propagating information across time, it produces significant
improvements over conventional approaches to create static
images or a series of snapshot images in time.

Our technique will hopefully soon allow for video recon-
struction of sources that change on timescales of minutes,
allowing a real-time view of the most energetic and explosive
events in the universe.
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