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Abstract—The ability of cells to sense and respond to their
environment is encoded in biomolecular reaction networks,
wherein information travels through processes such as produc-
tion, modification, and removal of biomolecules. Recent advances
in biotechnology have made it possible to re-engineer these
physical processes to the point where synthetic biomolecular
circuits can be inserted into cells to program cell behavior
for useful functionalities. These circuits are often designed in
a bottom-up fashion with smaller components connected to form
complex systems. In a bottom-up approach to design, it is highly
desirable that circuit components behave modularly, that is, that
the input-output behavior of a module characterized in isolation,
remains unchanged when the context changes. Unfortunately, due
to the physical processes by which information is communicated
from one biomolecular circuit module to the other, lack of
modularity is often a problem. In fact, the input-output behavior
of a module depends on both direct connectivity to other modules,
due to loading effects, and indirect connectivity arising from loads
applied to shared cellular resources. In this review, we summa-
rize published work illustrating how the means of molecular
communication lead to these problems. Specifically, we review
the concept of retroactivity, which has been proposed to capture
loading problems within a “signals and systems” framework,
allowing for engineering solutions that restore modularity.

Index Terms—modularity, communication, synthetic biology,
biomolecular systems

I. INTRODUCTION

L IVING cells possess the ability to sense, process, react to
information from their environment, and to communicate

with other cells [1–4]. Specifically, cells sense environmental
stimuli such as temperature, pressure, or nutrients by means
of signal transduction cascades, wherein proteins become
covalently modified in response to signals and, once they are
modified, they can act on gene expression by enhancing or
inhibiting the production of other proteins [5]. The process
of gene expression regulation can create highly sophisticated
circuitry important for decision making [6–8] and enables the
cell to “compute” and respond to environmental stimuli. In
turn, the molecular processes constituting signal transduction
and gene expression regulation can be utilized to engineer and
design synthetic biological circuits, which may be inserted
into cells to ‘program’ cellular behavior [9]. Examples of
early synthetic genetic circuits constructed include the toggle
switch [10], which is a system capable of storing two memory
states to enable binary decisions, and the repressilator, which
is an oscillator that can be used as a clock [11]. The field
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of synthetic biology has flourished since these early circuits
continuing to the present. Today, cells may be engineered for
specialized tasks with far-reaching applications in fields such
as medicine [12, 13], the environment [14], or energy [15, 16].
For a recent review on synthetic biology, the reader is referred
to [17].

The design of synthetic biological circuits largely relies
on a bottom-up approach, which starts from building simple
functional modules that are then assembled together to build
larger, more complex systems [18]. Thus modularity, which
is the property where the input-output behavior of a system
does not depend on surrounding systems, is highly desir-
able. Modularity allows different modules to be designed and
characterized in “isolation” first, and then combined to form
larger systems that are capable of performing various complex
tasks. While several functional modules have been successfully
created [10, 11, 19, 20], the ability to combine these modules
to design complex circuits has been hampered by their lack of
modularity. There are many reasons why modularity fails [21],
and analyzing and overcoming several of these factors requires
a system-level understanding of how signals are processed and
communicated through biomolecular reactions.

In this work, we focus on this system-level understanding
and delve into a well studied cause of lack of modularity in
biomolecular networks: the effect of loads. In biomolecular
networks, modules are connected to each other via biochemical
reactions, that is, molecular species in an upstream module (the
module that sends information) react with species in a down-
stream module (the module that receives information). These
reactions result in an added reaction flux to the dynamics of
the upstream module which were not present in the absence of
the downstream module. Thus, the behavior of the upstream
module changes in the presence of a downstream module. As
a consequence, the signal being communicated from a sender
(upstream module) to a receiver (downstream module) is
changed by the presence of the receiver module. This loading
effect has been formally analyzed through the concept of
retroactivity–the signal that travels from a downstream module
to an upstream module–capturing the change in dynamics
of the upstream module upon connection to the downstream
module [22]. In this paper, we review how loads on an
upstream module arise due to direct connectivity to a down-
stream module with a focus on experimentally tested work
by delving into the molecular mechanisms that allow modules
to communicate [22–25]. We will then review both the direct
effects of such loads on an upstream module and the indirect
connectivity that arises among multiple downstream modules
when these share a common upstream module. The latter
phenomenon is especially relevant in synthetic genetic circuits
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because all circuit modules share one common upstream
module–the module that produces the resources required for
gene expression, chiefly RNAP and ribosomes [5, 26, 27].

Similar lack of modularity has been encountered in en-
gineering fields, most notably in electrical engineering. In
fact, impedance problems, where the output voltage of an
upstream circuit changes upon connection to a downstream
circuit, are at the core of electrical circuit design [28]. The
study of these problems led to foundational results, such as
Norton’s and Thévenin’s theorems, which allow designers to
compose systems by taking impedance effects into account
[28]. The design of negative feedback electrical circuitry led
to the ability to insulate an upstream circuit module from a
downstream one and enabled large-scale integrated circuits
with the advent of the op-amp [28]. This review describes
how similar problems arise when communication between
two modules occurs through molecular reactions. It further
details engineering solutions that have been implemented so
far, mostly relying on the design of biomolecular feedback
systems, in order to recover modularity [22, 29–33].

This paper is organized as follows. Section II provides an
introduction to the physics of the core components of synthetic
biological circuits. Section III describes retroactivity and its
consequences, and Section IV describe its effects in a resource
sharing context. Section V describes the efforts to characterize
retroactivity, and Section VI illustrates the concept of feedback
design and demonstrates practical applications to restore mod-
ularity in synthetic biology. We conclude with Section VII.

II. THE PHYSICS OF BIOMOLECULAR CIRCUITS

In the design of biomolecular circuits, core cellular pro-
cesses are utilized and composed together within a network
[17, 18]. Nodes of this network are defined as the dynamical
processes taking one or more proteins as input and giving
a protein as output. These processes include protein pro-
duction through transcription and translation, their regulation
by other proteins, and protein covalent modification, wherein
the activity of a protein is modified through various means
such as phosphorylation (Fig. 1) [5, 34]. The connection of
nodes through output-to-input assignments creates a biomolec-
ular circuit. Example circuits include oscillators [11], toggle
switches [10, 19] and logic gates [20]. These circuits can
then be connected to create more sophisticated systems ca-
pable of sensing, e.g. cancer identification [35] or biohazard
detection [14]; actuation, e.g. periodic drug release [12] or
cancer immunotherapy [13]; or biofuel production [15, 16],
among others. Additionally, synthetic biomolecular circuits
may be used to enable molecular communication systems
whereby signals may be passed between distinct cells using
engineered sender and receiver circuits [36–41]. In this section,
we introduce the main biological processes used to create
biomolecular circuits [5, 34].

A. Background on Biological Processes

In a cell, proteins are important signal-carrying molecules.
Therefore the dynamics of protein production are an important
driver of the dynamics of biomolecular networks. The process

of protein production is a two step process. First, an mRNA
molecule is created from DNA by the process of transcription
(TX). Next, a protein is produced using this mRNA by the
process of translation (TL). Key cellular resources involved
in these processes are RNA polymerases (RNAP), which bind
to the DNA and initiates transcription, and ribosomes, which
bind to the mRNA and perform translation. These steps make
up the TX/TL process, whose output is the protein produced
(Fig. 1a). Other proteins may act as an input to the TX/TL
process by binding to DNA, resulting in a change in the rate
of transcription. If the input increases the rate of transcription,
the input is called an activator; while if an input decreases the
rate of transcription, it is called a repressor. Once proteins
are formed, they may also undergo post-translational covalent
modifications (for example in the presence or absence of
signals from the environment). One important example of such
a modification is phosphorylation, where a phosphate group is
attached to the substrate protein. This process is catalyzed by
an enzymatic protein called the kinase. The phosphorylated
protein is then typically dephosphorylated (removal of the
phosphate group), by means of an enzymatic protein called
the phosphatase. These processes form the phosphorylation-
dephosphorylation cycle, a common example of a signaling
cycle (Fig. 1c).

Toggle switchOscillator

Resources
input

output

TX/TL process

* output

input

Covalent modification
process

(a)

(c)

(b)

Fig. 1. Diagram of core processes in a biomolecular network. (a) The
TX/TL process takes a protein input, which binds to the DNA. This DNA
then produces a protein using cellular resources. (b) TX/TL processes can be
connected whereby the output of one process activates (→) or represses (a)
the transcription rate (TX) of another process. Multiple TX/TL processes may
be connected to form circuits such as an oscillator [11] or the toggle switch
[10]. (c) The covalent modification process takes a protein (kinase) as input,
which acts to catalytically modify the substrate protein. The modified protein
is also de-modified enzymatically by the phosphatase, forming the covalent
modification cycle process. The output of this process may, for example, be
the modified protein.
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B. Mathematical Modeling of Biomolecular Processes

The TX/TL and phosphorylation-dephosphorylation pro-
cesses may be modeled through biomolecular reactions be-
tween proteins and DNA. Assuming that molecular counts
are sufficiently high and the system is well-mixed so that
number of molecules can be quantified through molecular
concentration, ordinary differential equation (ODE) models
may be used to describe biomolecular processes based on
reaction-rate equations, which are derived from first principles
using the law of mass action [5]. In general, we represent the
concentration of a molecule z as z. Consider a process with
input protein(s) u and output protein y. This process can be
described by the set of ODEs

ẋ = f(x, u) (1a)
y = g(x), (1b)

where x, is a vector of concentrations of internal states to the
process, u is the concentration of the input to the process,
f gives the process dynamics derived from the reaction-rate
equations, y is the concentration of the output of the process,
and g is the output function. Often, model reduction may be
used to reduce the dimensionality of the process dynamics to
one state and then the process dynamics may be written as a
single ODE.

In the case of TX/TL processes, the process dynamics may
be reduced to the dynamics of the output protein given as

ẏ = H(u)− γy, (2)

where u is the input to the process, H(u) is the rate of
production of the protein y, and γ is the decay rate of protein
y. For a single input process, the rate of protein production is
modeled using Hill functions [42] of the form

H(u) =
α+ βun

1 + un
, (3)

for activation, and of the form

H(u) =
β

1 + un
, (4)

for repression. Here, α represents the basal production rate
of the protein, β represents the maximum rate of production,
and n represents the cooperativity of the input protein u.
These functions may be naturally extended to capture multiple
input systems where the additional inputs appear in both the
numerator and denominator if the input is an activator and only
appear in the denominator if the input is a repressor. More
details regarding the modeling of TX/TL process and covalent
modification process are given in Appendices A and C, and
in [5].

As previously mentioned, in a biomolecular network, a
node is defined as a dynamical process, such as TX/TL or
phosphorylation-dephosphorylation, that takes one or more
proteins as inputs and gives one protein as an output. For
example, the input to a TX/TL process may be proteins that
activate or repress the transcription rate of the node (Fig. 1a).
Each node is labeled with its output protein. These nodes
can interact with each other, where the output of one node is
the input to another node, forming the edges of the network.

For example, when an upstream TX/TL node with output
protein y is connected to a downstream TX/TL node, the
protein y reversibly binds with the DNA of the downstream
node [43]. Once bound, the protein-DNA complex either
enhances the production of the downstream node’s protein (in
the case of activation, resulting in the rate of production of
the downstream protein being given by (3)), or weakens it (in
the case of repression, resulting in rate of production of the
downstream protein being given by (4)).

The graph of a genetic circuit (e.g. in Fig. 1b) can be drawn
as follows. Given two proteins yi and yj , if yi is the input
for yj and yi activates the TX of yj , then a positive edge is
drawn from the node representing yi to yj with “→”. If the
interaction is repression, then a negative edge is drawn from yi
to yj , represented by “a”. For example, the oscillator network
in Fig. 1b is a network with two nodes: the first node activates
itself and the second node, while the second node represses
itself and the first node. The graph of a genetic circuit is a
convenient way to represent the topology of the circuit. This
graph can help give insight into the possible behaviors of the
circuit, such as the possibility for multiple equilibria, although
the exact behavior of the system is dependent on both the
parameters and the network topology [5, 44].

The input to a phosphorylation-dephosphorylation process is
usually the kinase that enzymatically catalyzes the phosphory-
lation reaction (Fig. 1c). When an upstream node with output
protein y is connected to a downstream phosphorylation cycle
node, protein y reversibly binds to a protein belonging to the
downstream node to, for example, enzymatically phosphory-
late it. In this way, dynamical processes make up the nodes
of a biomolecular network, and reversible binding reactions
between molecules of the two nodes make up the edges.

In the remainder of this paper, we define a module as any
collection of one or more nodes of a biomolecular system, for
example the oscillator and toggle switch in Fig. 1b. Modules
are connected to form larger circuits through output-to-input
connections, where the output of nodes in the upstream module
(sender) is taken as an input by nodes in the downstream
module (receiver).

III. BIOLOGICAL LOADING AND THE CONCEPT OF
RETROACTIVITY

This section describes the problem of loading in biomolec-
ular circuits and the concept of retroactivity to capture loads
within a formal systems and signals framework. Specifically,
we illustrate how communication of information from an
upstream module to a downstream module always implies
a change in the signal being transmitted [23, 45]. We start
by demonstrating this problem through a brief example. The
activator-repressor clock of [46] is a genetic oscillator built of
two nodes: an activator node with protein A and a repressor
node with protein R. Protein A activates itself and R, and
protein R represses A, as shown in Fig. 2a. An ODE model
of this system can be derived using the modeling tools shown
in Appendix A, which give that the rate of production of A
is HA(A,R) = α1+β1A

n1

1+An1+Rn2
and the rate of production of R

is HR(A,R) = α2+β2A
n1

1+An1
[47, 48]. For certain parameters,
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this clock shows oscillations. However, when the activator is
taken as an input to a downstream TX/TL process (Fig. 2b),
the oscillations of the clock are quenched (Fig. 2c), and the
module fails to communicate the oscillating signal to the
downstream node [48–50]. This failure of the upstream module
is due to the load that the downstream node applies to the
clock, as we demonstrate next by detailing how this molecular
communication occurs.

R A

R A

D

Activator
dynamics

Unloaded module

Loaded module

loaded
unloaded

Downstream
module

(c)

(a)

(b)

Fig. 2. Effect of direct retroactivity on the activator-repressor clock. (a) The
clock in isolation (unloaded module). (b) The clock once its output is used
as an input to a downstream module (loaded module) to either activate or
repress the TX of a protein. (c) The loaded module fails to oscillate. Details
regarding the equations and parameters used in the simulations are given in
Appendix A.

Consider a simple genetic circuit, consisting of an upstream
TX/TL process with output protein y. The rate of production
of y is denoted by α(t) and can, in general, represent any
regulatory function such as HA of node A of the clock
(Fig. 2a), and y may be, for example, protein A of the clock.
The protein y decays with rate γ, and thus the ODE governing
the concentration y of y is

ẏ = α(t)− γy. (5)

This upstream module (sender) is then connected to a down-
stream TX/TL node (receiver) by protein y reversibly binding
to the DNA sites D of the downstream system, as described in
Section II. The reactions for this reversible binding are given
by

y + D
kon−−⇀↽−−
koff

C, (6)

where kon and koff are the binding and unbinding rate con-
stants, respectively, and C is the protein-DNA complex. This
additional binding-unbinding reaction results in an additional
reaction flux on y, which changes the dynamics of y. The
ODE model governing the dynamics of the connected system
is

ẏ = α(t)− γy −konyD + koffC,︸ ︷︷ ︸
s

Ċ = konyD − koffC,

(7)

where the total concentration of DNA sites DT = D + C is
conserved. The additional reaction flux s is named retroac-
tivity [22, 51], effectively representing a signal that enters the
upstream system dynamics (the sender) once this system is

connected with a downstream module (the receiver, with DNA
D).

The above mechanism of reversible binding for communica-
tion between modules provides a physical explanation for why
the oscillations in the clock shown in Fig. 2a may be affected
when the clock is connected to a downstream module. While
in the isolated case, the dynamics of A are only determined by
the regulatory interactions between A and R, once the clock is
connected to the downstream module (Fig. 2b), these dynamics
are influenced by the fact that A must also bind to sites in the
downstream module and is therefore available to the regulatory
interactions constituting the upstream module.

Reversible binding reactions are typically orders of magni-
tude faster than protein dynamics (koff � γ) and, therefore,
timescale separation has been utilized to reduce (7) to a sim-
pler form that allows qualitative conclusions about the effects
of retroactivity s on the transmitted signal y. Specifically,
(7) may be written in standard singular perturbation form
[52], with slow variable z = y + C, and fast variable C
and small parameter ε = γ/koff. Then, the dynamics of the
slow variable are ż = α(t)− γy and the dynamics of the fast
variable are εĊ = γyKD(DT − C) − γC, where KD = koff

kon

is the dissociation constant. By letting ε → 0, we have that
C = DT y

y+KD
. Then, ż = ẏ + Ċ =

(
1 + ∂C

∂y

)
ẏ = α(t) − γy.

Then, solving for ẏ, the reduced dynamics of y become

ẏ =
1

1 + R(y)
(α(t)− γy), (8)

where R(y) = ∂C
∂y = DT /KD

(y/KD+1)2 is a measure of the retroactiv-
ity applied by the downstream module to the upstream module.
Since R(y) > 0, (8) implies that retroactivity slows down
the dynamics of the output y. That is, signal transmission is
slowed down by the presence of the downstream receiver mod-
ule. This explains why the load to the activator of the clock
in Fig. 2 quenches the oscillations. The activator-repressor
clock oscillations rely on having a strong activator and a weak
repressor [48–50]. The retroactivity that the downstream node
applies to the activator slows down its dynamics, making the
effective activation weaker, thus quenching the oscillations of
the clock.

M

x

u y

r s

Fig. 3. A module M with input u, output y, and state variable x. The red
dashed arrows denote the retroactivity signals arising from interconnection
to upstream and downstream modules, respectively. Signal s is named
retroactivity to the output and captures the added reaction fluxes that enter
the dynamics of M once it is connected to its downstream systems. Signal r
is called the retroactivity to the input and captures the “load” that module M
is exerting on the upstream system that gives the input u.

Fig. 3 shows a system concept with retroactivity that was
proposed in [22] to more rigorously capture the problem
of loads and to make this problem amenable of theoretical
solutions (Section VI). The retroactivity signal that affects
the output of the module M due to its interconnection with
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downstream modules is called retroactivity to the output,
denoted by s. Due to the retroactivity to the output s, any time
module M (sender) is connected to its intended downstream
systems (receivers), the information communicated to these
systems through y is changed since s affects the dynamics (and
therefore the output y) of M. Similarly, the retroactivity signal
that module M transmits to upstream modules from which it
receives an input u is called retroactivity to the input, denoted
by r. Due to retroactivity to the input r, module M changes
the information it receives from its upstream system (sender).

The effect of retroactivity was experimentally demonstrated
in synthetic genetic circuits in [23] by a theoretical study com-
bined with in vivo experiments. Here, retroactivity s resulted in
a sign sensitive delay in the output y of the upstream system.
Additional combined theoretical and in vitro experimental
studies demonstrated that similar effects of retroactivity are
also seen in signaling systems [24]. Retroactivity was also
shown to affect the steady state and input-output response
curves y(u) of signaling circuits [25, 53, 54] and gene reg-
ulatory networks [55–58].

A plethora of computational studies have investigated the
effects of retroactivity on different circuit topologies [59–
62]. Fig. 4 shows some example topologies discussed here.
For instance, when an upstream module (sender) has multiple
downstream modules (receivers), a perturbation in any one
of these receivers is transmitted to the rest of the receivers
via the retroactivity to the output (Fig. 4a). This has been
shown for signaling cycles where downstream cycles that
share an upstream kinase (input) behave such that when
one cycle is perturbed, the signal is transmitted to the other
cycle via retroactivity to the common upstream system [59].
Conversely, multiple upstream sender modules that transmit
information to a common receiver module can also become
coupled due to the effect of retroactivity [60] (Fig. 4b). Thus,
information can be transmitted between modules that were not
orignally intended to communicate. Furthermore, information
transmission becomes naturally bi-directional since upstream-
to-downstream signal propagation can occur only if there is a
backward flow of information through the retroactivity signals.
This receiver-to-sender backward information flow has been
demonstrated, in particular, in signaling cascades [61–63].

IV. CONSEQUENCES OF RETROACTIVITY IN SYSTEMS
WITH RESOURCE SHARING

All TX/TL processes (Section II), which involve the ex-
pression of a protein from a DNA template, require cellular
enzymes for the TX and TL processes to occur. These en-
zymes, chiefly RNAP for TX and ribosomes for TL [5], are
shared among all TX/TL processes. Therefore, we can view
all genetic modules as having a common upstream system:
the cellular process producing the resources required for gene
expression. This common upstream “sender” module is subject
to retroactivity by its downstream modules according to the
arrangement of Fig. 4a. This implies that the communication
of information that occurs along seemingly uncoupled trans-
mission paths will, in fact, become coupled (Fig. 5).

Σ

u

r1

r2

s

r1
r2

s1

u1

u2

s2

Upstream
module
(sender)

Downstream
module 2
(receiver)

Downstream
module 1
(receiver)

Downstream
module
(receiver)

Upstream
module 1
(sender)

Upstream
module 2
(sender)

(a)

(b)

Fig. 4. Effect of retroactivity on example sender/receiver arrangements. (a)
When an upstream sender module has multiple downstream receiver modules,
a perturbation in one of the receiver modules can be transmitted to the other
receiver modules due to retroactivity r1 and r2 (dashed red signal). (b) When a
downstream receiver module takes inputs from two upstream sender modules,
information transmitted by one of the upstream sender modules is ”sensed”
by the other upstream sender module due to retroactivity to the output s1
and s2 transmitted by the common downstream receiver module (dashed red
signal).

Resource
module

Σ

s

Transmission path 1 Transmission path 2

Sender
(Module 1)

Receiver
(Module 2)

Sender
(Module 3)

Receiver
(Module 4)

y1 y3

Fig. 5. Downstream modules change the dynamics of the upstream module
by retroactivity. Here s denotes the retroactivity to the output of a given
module. When an upstream module, such as a pool of common resources,
drives multiple downstream modules, the downstream modules act in series,
such that the retroactivity to the output of the upstream module is the (scaled)
sum of the retroactivity to the input of each of the downstream modules.

A. Effect of Retroactivity on Networks

We consider the situation shown in Fig. 5, where the “up-
stream” module (resource module) is a system that produces
the pool of cellular resources required for gene expression
such as RNAP or ribosomes. The retroactivity signal from
any downstream module to the resource module affects all
other modules since all modules receive an input from the
resource module. These retroactivity effects may affect the
properties of a communication network in undesirable ways.
We demonstrate this concept by capturing the dynamics of the
resource module using the system in Fig. 5 as an example. We
assume for simplicity that there is one key resource required
for gene expression, which has been shown to be a valid
assumption in E. coli [27]. Let Di represent the DNA of the
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ith node, R represent the resource, Ci the complex formed
by DNA and resource, and yi the protein produced by the
ith module. Then, the reactions describing the system may be
written as

Di + R
ai−⇀↽−
di

Ci
ki−→ Di + R + yi

R
γ−⇀↽−
α
∅, yi

γ−→ ∅, Ci
γ−→ ∅,

where ai and di represent the binding and unbinding rate
constants of the resource with the DNA, and ki represents
the rate of protein production. Using the law of mass action
[5], the set of ODEs describing the dynamics of this system
are given by

Ṙ = α− γR+

n∑
i=1

(di + ki)Ci − aiDiR︸ ︷︷ ︸
s

(10a)

Ċi = aiDiR− (di + ki + γ)Ci (10b)
ẏi = kiCi − γyi, (10c)

where α is the rate of production of the resources and γ is the
dilution of all species due to cell growth. Referring to Fig. 5, s
in (10a) is the retroactivity applied to the resource module by
all its downstream modules. Note that since the terms in the
red box are summed in (10a) to obtain s, the retroactivity to
the resource module behaves in series as shown in Fig. 5. The
retroactivity to the resource module affects the availability of
resources to all modules in the system, which may affect the
system’s overall function, as we illustrate next.

The system of equations (10) may be reduced by taking into
account that the binding and unbinding of Di with R occurs
much faster than the other processes, so timescale separation
may be used [5]. Additionally, since we are interested in the
behavior of the modules (transmission paths 1 and 2) and not
in the specific effects of retroactivity on the resource module,
we can reduce the set of ODEs (10) by replacing the ODE for
R in (10a) with the algebraic conservation law [5] given by

Rtot = R+

n∑
j=1

Cj , (11)

where Rtot is the total concentration of the resource given by
α/γ. Now, since the rate of binding and unbinding is much
faster than the dynamics of the other proteins, we find the
quasi-steady state of Cj as

Cj = R
Dj

Kj
, (12)

where Kj =
aj

dj+kj+γ is the effective binding constant of DNA
with the resource. Substituting (12) into (11) for each Cj , we
solve for the free concentration of resources as

R =
Rtot

1 +
∑n
j=1

Dj

Kj

. (13)

Thus, the availability of free resources depends on the DNA,
Dj , from each module. In turn, the effective rate of production
kiCi of the module’s output yi given in (10c) depends on
the availability of free resources given in (13). Therefore,

the rate of production of gene expression–the method of
information processing–in every module depends on every
other module in the network. This may be generalized to
include external inputs and connections between modules such
as in the sender/receiver configuration in Fig. 5, which gives
the general module output dynamics as

ẏi =

gi(u,y)︷ ︸︸ ︷
Fi(u,y)

1 +

n∑
k=1

JkFk(u,y)

−γyi (14)

as derived in [64] and experimentally verified in [26]. Here Fi
is the intended regulatory function and, for example, may be
given by either (3) or (4) for each module i, y is the set of all
outputs of the modules in the system, u is the set of external
inputs to the system, and Jk is the resource demand coefficient
for each module. The resource sharing term is defined as

R(u,y) =
n∑
k=1

JkFk(u,y), boxed in red in (14).

From (14), and shown in detail in [26, 64], ‘hidden’ indi-
rect interactions appear among the system’s modules due to
retroactivity to the resource module. Specifically, as the output
of one module increases (increasing the value of R(u,y)),
this decreases the available quantity of resources to other
modules through sequestration of the resource. This decrease
in availability of resources slows the rate of protein production
of all other modules which decreases the output of each
module. This effect is demonstrated in Fig. 6 where two
unconnected modules, depicted as nodes, are shown. As the
input to y1 is increased, the output of y2 decreases since y1

sequesters the available resources, leaving less for y2. This has
been shown to cause more than a 60% decrease in the output
of any node experimentally in bacterial circuits [27].

y1 y2
u

Fig. 6. Changes in one node affect other nodes due to resource sharing
even if the nodes are not connected through regulatory links. As the input
to the first node is increased, the output of the second node decreases (red)
compared to the expected output if there were no resource sharing between
the two nodes (black). The output y2 is normalized as a percentage of its
concentration without resource sharing. Details regarding the equations and
parameters used in this simulation are given in Appendix A.
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Resource

=

(a)

(b)

Fig. 7. Hidden interactions due to resource sharing. (a) The cellular resource is
an input to all nodes in the network. Due to retroactivity between the resource
and the other nodes (red arrows), the availability of the resource depends
on all nodes in the network. Retroactivity arrows between node within the
module not shown. (b) When the dynamics of the resource are replaced with
its conservation law, a hidden interaction network due to interactions between
each node and the resource arises (yellow arrows).

B. Effect of Resource Sharing on a Network

The consequences of these hidden interactions can be for-
mally captured by constructing the hidden interaction graph
[64] (Fig. 7). Specifically, given an intended regulatory net-
work as illustrated in the box in Fig. 7a, and accounting for
the fact that the interactions with the resource node are fast
compared to the dynamics of the network (from Section IVA),
we obtain an equivalent network, whose graph is given by the
superposition of intended regulatory interactions and hidden
interactions (Fig. 7b).

We now describe how a network graph of a genetic circuit
with resource sharing may be drawn given the ODE model
of the system. We create a signed, weighted, directed graph
using the Jacobian matrix of (14) as follows. The intended
regulatory interaction graph is determined by the function
Fi(u,y). Specifically, considering (14), an edge is drawn from
node yj to yi according to sign

(
∂Fi

∂yj

)
: if sign

(
∂Fi

∂yj

)
> 0,

the edge is positive from yj to yi (activation, represented by
“→”), and if sign

(
∂Fi

∂yj

)
< 0, the edge is negative (repression,

represented by “a”).
Due to resource sharing, ‘hidden’ interactions arise, creating

a hidden interaction graph. The hidden interaction graph is
determined by sign

(
∂R(u,y)
∂yj

)
, which arises due to unintended

interactions from resource sharing effects. Specifically, since
R(u,y) appears in the denominator of (14), a positive edge
is drawn from yj to all other nodes if sign

(
∂R(u,y)
∂yj

)
< 0,

and a negative edge is drawn from yj to all other nodes if
sign

(
∂R(u,y)
∂yj

)
> 0. Since R(u,y) depends on all nodes

in the network, the hidden interaction graph is a complete
graph. The effective interaction graph is determined by the sum
of the intended regulatory interaction graph and the hidden
interaction graph, and may be computed using sign

(
∂gi
∂yj

)
[65].

Graphical rules for drawing the effective interactions are
given in Fig. 8. In general, the hidden interactions have

the effect of decreasing the strength of effective interactions
throughout the network by making positive interactions less
positive (or possibly negative), and negative interactions less
negative (or possibly positive). Specifically, for an upstream
node with only one downstream node, the hidden interactions
do not change the sign of the intended regulatory interaction,
but they weaken it (Fig. 8a). Additionally, as one node is
activated, it sequesters more resources, leaving less for other
nodes. Therefore, this creates a hidden repression on all other
nodes (Fig. 8b). The situation is similar for repression, which
creates hidden activations. Finally, if an upstream node has
multiple downstream nodes, the effective interactions may
be either positive or negative, depending on the specific
parameters and the rest of the network (Fig. 8c).

(a) (b)

=
=

(c)

=

1

3

3

1

4

4

2

2 2

54

1 3

6
1

1 2

3

2

3

Fig. 8. Rules for drawing hidden and effective interactions. (a) For a
system consisting of only two nodes with activation (black arrows) between
them (node 1 activates node 2), the hidden interactions (yellow arrows) are
repression from the upstream node (node 1) to itself and the downstream node
(node 2), but the superposition of the hidden and intended interaction remains
activation. For a two-node system with repression between them (nodes 3 and
4), the hidden interactions are activation, similarly, but the superposition of
the hidden and intended interaction remains repression. (b) For three nodes
with one intended activation (node 1 activates node 2), the hidden interactions
are repression from the upstream node (node 1) to all other nodes (nodes 2
and 3). For three nodes with one intended repression (node 4 represses node
5), the hidden interactions are activation from the upstream node (node 4)
to all other nodes (nodes 5 and 6). (c) For nodes with multiple downstream
targets (node 1), the effective interactions are undetermined and may be either
positive or negative, depending on the specific parameters and the rest of the
network. When the strength of one of the repressive arrows is much stronger
than the other, the change due to resource sharing effects on the other, may
be stronger than the TX regulation effect, resulting in a possible sign change
due to resource sharing.

Now, we review some experimental results demonstrating
the effects of resource sharing in genetic circuits. In [66], the
authors have shown parallels between the steady state of a
network with resource sharing and Ohm’s law of a circuit
with resistors in series. As nodes are added to the network,
the system acts as a voltage divider with the output of each
node being proportional to the resource usage divided by the
total resource usage of the circuit. Gyorgy et. al considered
a network with two unconnected nodes and demonstrated
that as the input of one node is changed, the output of the
other node changes by more than 60% [27]. Specifically, the
authors show that as the input of the first node is increased,
the output of the second node decreases and approximately
follows a line in the x1–x2 plane where x1 and x2 are the
concentrations of the proteins in the two nodes. From this,
they derive fundamental limitations on the realizable region
of the possible outputs for any network [67]. In [26], the
authors demonstrate that resource sharing effects may cause
unexpected, destructive behavior of circuit components. They
consider a three-node activation cascade where every pair of
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interactions is activation. This circuit should give an increasing
input-output response curve; however, they observe that the
actual behavior is such that the output decreases as the input
to the cascade is increased. This unexpected behavior is due
to resource sharing effects where the middle node in the
cascade imparts a large retroactivity flux to the resources,
leaving few available resources for the output node to function.
This demonstrates that the expected behavior of even simple
systems may be destroyed due to resource sharing. As genetic
networks become larger and more complex, resource sharing
is an increasingly important aspect to consider in design of
circuits to build larger, more sophisticated networks.

V. MODULAR COMPOSITION IN THE FACE OF
RETROACTIVITY

The previous section described the causes and effects of
retroactivity and its implications in a resource sharing context.
This section describes the tools developed in order to allow
predictable composition of systems, despite the presence of
retroactivity.

Modular composition of subsystems to form larger, more
complex circuits is central to design in many engineering dis-
ciplines. However, modules connected to others rarely behave
as they did in isolation. In electrical circuits, impedance effects
are one of the chief causes of this lack of modularity. Several
tools have been developed to help characterize the behavior of
connected modules by considering appropriate descriptions in
isolation. One such tool is Thévenin’s theorem (and its dual,
Norton’s theorem), which states that any electrical circuit can
be replaced by an equivalent circuit consisting of a voltage
source (current source in the case of Norton) and an impedance
[68–70]. This allows one to easily predict the output voltage
of an electrical network once it has been connected to another
(possibly complex) electrical network (Fig. 9).

In [60], Gyorgy and Del Vecchio provide a theorem for gene
transcription networks conceptually analogous to Thévenin’s.
This theorem allows for the determination of the dynamics of
connected modules by considering their models in isolation,
shown in Fig. 10. The system in this figure is composed of
module A, which has state xA, takes input uA, and has an
output yA, with dynamics ẋA = fA0 (xA, uA) in isolation.
This module is connected to downstream module B, with state
xB , which takes the output yA of module A as input and has
dynamics ẋB = fB0 (xB , yA). Then, the following sources of
retroactivity affect the isolated dynamics of these modules, as
shown in Fig. 10. Internal retroactivity R arises for modules
composed of more than one node, where “child” nodes impart
a signal to “parent” nodes due to retroactivity, shown by
the pink arrow in Fig. 10. Scaling and mixing retroactivity
arise when modules are interconnected, and are shown by the
magenta and yellow arrows, respectively, in Fig. 10. Denoting
the internal retroactivity matrix of module A by RA, and
SB and MB as the scaling and mixing retroactivity matrices,
respectively, of module B, the modified dynamics of module
A can be written as
ẋA =(I + (I +RA)−1SB)−1fA0 (xA, uA)

− (I + (I +RA)−1SB)−1(I +RA)−1MBfB0 (xB , yA).
(15)

Scaling retroactivity SB (magenta arrow in Fig. 10) is im-
parted to the module A by module B due to the reversible
binding of the output of module A to its target in module B.
It is so named because it adds a scaling term to the dynamics of
module A, as seen in (15). When a target node of module A in
module B also has a parent node in module B, this parent node
can affect the retroactivity flux to the output of module A. This
occurs, for example, if the output protein of the parent node
competes with the output protein of module A to bind to the
target. This is called mixing retroactivity MB (yellow arrow
in Fig. 10), so named because it adds (mixes) the dynamics
of the downstream module to the dynamics of the upstream
module, as seen in (15).

ZA ZB

BA

f0A f0B

(a) (b)

ZA ZB

BA

fA

Fig. 9. Demonstration of Thévenin’s theorem for electrical circuits. (a) An
electrical circuit module may be replaced with an equivalent voltage source
and impedance. The voltage across both modules in isolation are f0A and
f0B . (b) When two circuit modules are connected, the voltage across the
connected modules changes compared to that of the modules in isolation
according to the impedances ZA and ZB as in the equation.

The work by Gyorgy and Del Vecchio gives explicit formu-
lae for these matrices in terms of the reaction-rate coefficients
of gene regulatory modules and the network interaction graph.
For example, consider a system with one upstream node
x1, with promoter concentration D1, that undergoes negative
autoregulation. The isolated ODE for the dynamics of x1,
ignoring the retroactivity due to the load of its own promoter,
is written in the form of (4), specifically, ẋ1 = f(x1) =
β

1+xn
1
− γx1. Now, suppose that this node is connected to

downstream sites with promoter concentration D2 such that
x1 activates these sites. Upon interconnection and considering
the effect of internal retroactivity, the dynamics of x1 change
to become

ẋ1 =
1 +R(x1)

1 +R(x1) + S(x1)
f(x1),

where R(x1) = D1
n2xn−1

1

k1

(
1 +

xn
1

k1

)−2

is the internal retroac-
tivity due to the binding of x1 with its own promoters for au-
toregulation and k1 is the dissociation constant of this binding.

S(x1) = D2
n2xn−1

1

k1

(
1 +

xn
1

k1

)−2

is the scaling retroactivity
due to the binding of x1 to the downstream promoters. Note
that increasing the internal retroactivity for a system makes it
more robust to interconnections, at the expense of response
speed. Such a characterization of retroactivity, in terms of
R, M , and S, for each module allows for the determination
of the module’s behavior when connected to another module
described by (15).

Other works that assist in modular circuit design in the
presence of retroactivity are [71–73]. Similar to the concept of
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internal retroactivity

Module A Module B

Module A Module B scaling retroactivity
mixing retroactivity

uA yA

xA xB

RA

MB

SB RB

Fig. 10. Internal, scaling and mixing retroactivity. Module A, with state
xA, input uA and output yA is connected to downstream module B with
state xB . Internal retroactivity (RA, RB) of a module is the effect of the
retroactivity signals among nodes within the same module. Scaling and mixing
retroactivities SB and MB are the effects of the retroactivity signals from
nodes in the downstream module B onto nodes of the upstream module A.

fan out in electrical circuits (the number of logic gate inputs a
given logic gate output can drive), fan out is defined for gene
regulatory networks [71, 72] as “a measure of the maximum
number of promoter sites that the output transcription factors
of the upstream module can regulate without significant slow-
down in the kinetics of the output”, and an experimental
method to estimate fan-out is proposed. Fan out thus provides
a method to quantify the robustness of an upstream system to
a downstream load.

In the specific case of genetic circuits with resource sharing,
the problem of modular composition has been addressed in
[74], where metrics were introduced for quantifying resource
sharing: Q, the quantity of resources used by a module, and
S′, the sensitivity of the output of the module to disturbances
in the availability of resources. By appending information of
Q and S′ to a module’s description characterized in isolation,
we can predict the steady state behavior of any module i when
its context changes due to the presence of other modules.
Specifically, let yi be the steady state output of the module
of interest (module i) in isolation, and let S′j and Qj be
the resource sharing metrics for any module j. Then the
relative change in the output of module i with respect to the
output of the module in isolation is given by the product
of the sensitivity of module i (S′i) with the total resource
sharing disturbance from the other modules (

∑
j 6=iQj), i.e.

y∗i−yi
yi

= S′i
∑
j 6=iQj where y∗i is the output of the module

when perturbed. This may be solved to give the steady state
output y∗i when module i shares resources with other modules
(j 6= i) as

y∗i = yi

1 + S′i
∑
j 6=i

Qj

 . (16)

This allows us to replace any collection of nodes in a circuit
with a black box that has the same input-output behavior
in isolation and particular values of Q and S′. Then, it is
guaranteed that the input-output behavior of the system when
composed with other circuits is predicted by (16), which
is conceptually similar to Thévenin’s theorem in electrical
circuits (Fig. 9). The authors additionally show that the metrics

Q and S′ may be measured through a systematic experimental
procedure. These metrics allow for the prediction of the be-
havior of genetic circuits when composed with other modules
that share the same resource pool. For example, suppose one
module has a large Q, and another has a large S′. If they are
placed in the same cell, then it is likely that the latter module
will not behave as it did when tested without the presence of
the first module.

VI. USING FEEDBACK CONTROL TO ATTENUATE
RETROACTIVITY AND ENFORCE CIRCUIT MODULARITY

One approach to handle retroactivity during circuit design
is to engineer circuit modules such that their input-output
behavior is robust to retroactivity, effectively enforcing modu-
larity by design. In this case, one can compose modules safely
assuming that their input-output behavior stays unchanged
upon composition. Feedback control in electrical circuits has
been pivotal in achieving effectively modular behavior in the
face of disturbances thus allowing a designer to “forget”
about the complexities within each module and to regard
each module as a simple input-output transfer function. In
the case of biomolecular circuits, retroactivity arising from
loads and perturbations in resource availability can be viewed
as disturbances. This section describes the use of feedback
control to attenuate the effects of these disturbances on a
circuit’s function, effectively enforcing unidirectional signal
transmission.

A. Insulation Devices: Enforcing Unidirectional Signal Trans-
mission in Biomolecular Networks

Consider the system in Fig. 11a, where module 1 (sender) is
connected to module 2 (receiver). The problem of connecting
these modules without having the transmitted information u
be affected by retroactivity, s, can be addressed by placing an
insulation device between these two modules. An insulation
device is a system that, when connected between an upstream
sender and a downstream receiver, imparts a low retroactivity
to the input (i.e., r ≈ 0) and attenuates the effect of the
retroactivity to the output s on y [22], therefore allowing
unidirectional transmission of information (from upstream
module 1 to downstream module 2). The retroactivity signal,
s, can be treated as a disturbance acting on the insulation
device, and, drawing from solutions in classical controls for
disturbance attenuation [52], high-gain feedback can be used
to attenuate s. This concept is illustrated in Fig. 11b, where G
is a large gain that multiplies the error, ū−Ky, between the
reference input ū and a scaled (by K) version of the output
y, which is affected by the disturbance s. This block diagram
leads to

y = G(ū−Ky) + s,

which can be rearranged as

y =
G

1 +KG
ū+

s

1 +KG
.

Then, as G grows, the output y tends to ū
K , which is indepen-

dent of the retroactivity signal s, thus achieving retroactivity
attenuation.
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Fig. 11. Concept and biological realization of an insulation device. (a) Module
1 is subject to retroactivity (red arrow) when directly connected to Module 2.
(b) An insulation device consisting of a buffer stage B that imparts a small
retroactivity r to its input, and a high-gain (G) negative feedback (K) stage
F that attenuates the effect of the retroactivity signal s on its output. (c)
A biomolecular realization of an insulation device consisting of a two-stage
phosphorylation cycle cascade, where the first cycle plays the role of the buffer
system B by having a low concentration of X1 and the second cycle attenuates
retroactivity to the output through high-gain feedback - achieved by a high
concentration of X2 and M2 [29, 75]. (d) The two-stage phosphorylation cycle
based insulation device is connected between the clock of Fig. 2 and its
downstream system. In the presence of the insulation device, the oscillations of
the clock are restored (black plot) and faithfully transmitted to the downstream
module (blue dash-dotted plot). Details regarding the equations and parameters
used in the simulations are given in Appendix C.

Insulation devices that use this general mechanism for atten-
uation of the retroactivity to the output s have been designed
and implemented through appropriate biomolecular processes
[22, 29, 32, 75–79]. Signaling circuits, such as phosphorylation
and phosphotransfer cycles, consist of two processes: one
process that upregulates the output, (such as phosphorylation)
and one process that downregulates the output (such as de-
phosphorylation). These processes form a cycle that can act
as a high-gain negative feedback system where the high gain,
G, can be achieved by increasing together the total substrate

and phosphatase concentrations, XT and MT , and the negative
feedback factor, K, can be tuned by changing the ratio of
the substrate to the phosphatase XT

MT
[22]. In such a way,

one-stage signaling cycles have been shown to use high-gain
negative feedback to attenuate the effects of the retroactivity to
the output, s, both theoretically [22, 77], and through in vivo
experiments in bacterial circuits [32]. However, the devices
built with a single stage signaling cycle show a design trade-
off where the high-gain feedback design (while attenuating s)
leads to a high retroactivity to the input, r, due to the large
substrate concentration [22, 32, 77, 78].

In [79], it was shown that a cascade of signaling cycle
stages (such as the one shown in Fig. 11c) can overcome
the aforementioned trade-off, where the last cycle attenuates
the effects of the retroactivity to the output s through high-
gain feedback, and the first cycle imparts a low retroactivity
to input, r. Thus, an insulation device designed where the
first stage is a cycle with low substrate concentration (buffer
stage B), and the second and last stage is a cycle with high
substrate concentration (high-gain negative feedback stage F),
can impart a low retroactivity to the input, r, and attenuate
the effects of the retroactivity to the output, s, as shown in
Fig. 11c. Such a two-stage insulation device was built in vivo
in eukaryotic cells in [29] and was shown to completely restore
the performance of the circuit in the presence of load.

We illustrate the operation of this insulation device in
Fig. 11d, in which it is used between the clock of Fig. 2 and
its downstream system. Simulations in Fig. 11d show that, due
to the low retroactivity to the input, r, the oscillations of the
clock are restored (black line), and due to the attenuation of the
retroactivity to the output, s, these oscillations are transmitted
faithfully to the downstream load (blue dash-dotted line).

In [75], an analytical framework was provided for evaluating
the ability of natural signaling circuits to act as insulation
devices. This framework was applied to evaluate frequently
occurring signaling cycle cascades to develop a library of well-
characterized insulation devices.

B. Decentralized Feedback Control: Attenuation of Effects of
Hidden Interactions due to Resource Sharing

We now wish to decrease the effects of the hidden interac-
tions due to resource sharing (Fig. 7) and recover the intended
interaction graph of the network. At a high level, we seek to
design a local feedback controller within each node of the
network such that, with this feedback in place, the hidden
interactions have little or no effect on the network’s behavior,
leaving only the network created by the intended regulatory
interactions (Fig. 12).

Specifically, by focusing on the signals that pass through
each node, we have the situation in Fig. 13a [30, 65]. Each
node may be considered as a two-input two-output system
that takes a reference signal, ui, and a disturbance signal, wi,
as input and gives an output, yi, and a disturbance output, di,
due to the perturbation on the availability of resources. Thus,
we wish to design a feedback controller around each node to
decouple it from the disturbances (Fig. 13b). The problem of
making an output of interest yi dependent only on a reference
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Fig. 12. Decentralized feedback control to attenuate hidden interactions due
to resource sharing. The goal of decentralized feedback control in genetic
networks to attenuate resource sharing is to recover the intended interactions
graph (black arrows) while attenuating the unintended hidden interactions
due to resource sharing (yellow dashed arrows). By implementing a negative
feedback controller at each node, it is possible to decouple the intended
interactions and the hidden interactions.

input while making it independent of a disturbance input, wi,
is a classical disturbance attenuation problem [52].

di

yiui

wi

Local

Node i

Rest of

di

yiui

wi

feedback

network

(a) (b)

Node i

Rest of
network

Fig. 13. Local feedback controller to decouple node behavior from hidden
interactions (yellow arrows). (a) A node in a genetic network where an input
disturbance wi comes from perturbations in the availability of resources
imparted by the rest of the network and the output disturbance di contributes
to these perturbations to the rest of the network. The intended input is ui
and output is yi. (b) We wish to design a local control system around each
node to decouple the input-output behavior of the node from the undesired
interactions.

To solve the problem of network disturbance decoupling,
we must solve two sub-problems. First, if we assume that wi
does not come from the network, we need to solve a standard
disturbance attenuation problem. Second, assuming we have
solved this problem, we must guarantee that the network
with these feedback controllers in place remains stable. In
fact, referring to Fig. 13b, due to the loop created by the
hidden, yellow interactions between the input disturbance wi
and output disturbance di, the network may lose stability in the
presence of the local feedback controllers. Specifically, when a
controller is implemented around each node as in Fig. 13b, the
output disturbance di may become amplified with respect to
the input disturbance wi. Since the output disturbance di then
affects other nodes in the network as their input disturbance,
this may cause the disturbance signals to grow indefinitely,
leading to the system’s instability. Therefore, we must also
solve a second problem of network stability to guarantee that
the local disturbance attenuation is globally successful.

First, to solve the local disturbance attenuation problem,
a feedback controller can be used to attenuate the effect of
the resource disturbance at each node. This controller may be

implemented through sRNA-enabled silencing of mRNA [30,
33]. In related works, this negative feedback control scheme
has been called an anthitetic feedback controller [31, 80]. An
sRNA is a species that is found in bacterial cells, which binds
to a complementary mRNA and degrades it rapidly [81]. Since
the sRNA does not use ribosomes in its production, it is not
affected by the disturbance due to resource sharing, which is
dominated by the limitations in the pool of ribosomes [27].
Specifically, it was theoretically shown that sRNA-mediated
negative feedback on each node changes the node dynamics
to create a quasi-integral controller [82]. This quasi-integral
controller rejects disturbances asymptotically as the gain, G,
of the controller becomes large. The gain of the controller,
G, physically corresponds to the lumped rate of degradation
of mRNA via sRNA, so that when the mRNA degrades very
quickly, G is large.

To solve the second problem of network stability, we can ap-
ply a line of reasoning similar to that of the small gain theorem
for networks [83] as follows. Here, we explain the qualitative
reasoning, and our arguments are not mathematically rigorous.
For a detailed mathematical treatment, the reader is referred
to [30, 65]. Referring to Fig. 13b, let the steady-state input-
output map for the output disturbance, di, of node i as the
feedback gain G becomes large be

lim
G→∞

di(ui, wi, G) = gi(ui) + ĝi(ui)wi, (17)

and let wi =
∑
j 6=i di. Then the disturbance interconnection

matrix is

Aij =

{
1 if i = j

−ĝj(uj) if i 6= j,
(18)

which describes the interactions of the nodes through the
disturbances di and is found by substituting wi =

∑
j 6=i di in

(17) and solving for every di as G→∞. If Aij is diagonally
dominant, i.e., the sum of the elements of A in each row
is less than the magnitude of the element on the diagonal,
then the network is guaranteed not to amplify the steady state
signals through the yellow, hidden interactions (Fig. 13b) after
implementing feedback [30, 65]. Qualitatively, if the total sum
of disturbances to the network ĝi(ui) is small enough such that
the disturbance signal, di, of each node becomes “smaller”
than the input disturbance, wi, then the network is guaranteed
to have a bounded steady state solution. We note that this
result applies only to steady state behavior, and its extension
to dynamic behavior and system stability is still a subject of
investigation.

In Fig. 14, we revisit the illustrative example in Fig. 6
and show that the local feedback controller attenuates the
disturbance due to resource sharing for different values of
the feedback gain, G. Again, we consider a system of two
unconnected nodes y1 and y2, where y1 has an external input
u. As the value of the input u is changed, we observe the
effect on the steady state of y2. Comparing the systems without
feedback (Fig. 14a) to the systems with feedback (Fig. 14b),
the effect of the resource disturbance on the steady state of y2

is attenuated when the local feedback controller is added.
Along these lines, a variety of controller designs have

been proposed and shown to achieve the goal of attenuating
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y1 y2
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Fig. 14. The effect of the local feedback on decoupling resource disturbances
in a two-node system. (a) The steady state response for the system without
local feedback. Due to resource sharing the output of y2 with resource sharing
(red line) is decreased by more than 60% compared to the system without
resource sharing (black dashed line) as the input to y1 is increased. (b) The
steady state response for the system with local feedback for different values
of feedback gain, G, compared to the system without resource sharing (black
dashed line). The low gain case is with G = 1 (blue dash-dot line) and high
gain case is with G = 10 (red line). The effect of resource sharing on the
steady state of y2 due to resource sharing is decreased through the use of
the feedback compared to without feedback and improves with higher gain.
Details regarding the equations and parameters used in this simulation are
given in Appendix A and B.

disturbance due to resource sharing. This includes the creation
of decentralized high-gain negative feedback quasi-integral
controllers in genetic circuits [31, 33, 65, 80, 82, 84, 85]. These
controllers are robust, that is, they can decouple the network,
independent of the specific parameters of each node. This is
especially beneficial in genetic networks where the dynamics
of each node are highly uncertain. An orthogonal line of work
considers attenuating the retroactivity s in Fig. 5 through a
centralized feedback controller on the resource module [86].

VII. CONCLUSIONS

Modularity of functional components plays a crucial role in
the bottom-up design of synthetic biomolecular circuits. This
review has focused on two main causes of loss of modularity:
loads due to direct connectivity, and indirect connectivity
arising from loads applied to shared cellular resources. We
reviewed the concept of retroactivity, which was introduced
to capture the problem of loads within a formal signals and
systems formulation, making the load problem amenable to
mathematical study and engineering solutions. Specifically, we
summarized the theoretical developments and the experimental
validation for the characterization of retroactivity effects, and
reviewed engineering solutions that aim to make biomolec-
ular circuits modular. Motivated by the success of feedback
control in aiding modular design in traditional engineering
disciplines, feedback control has been used to overcome effects
of retroactivity. This has been performed through the design
of insulation devices to attenuate the effects of loads due to
direct connectivity, and through the design of decentralized
feedback controllers to overcome effects of indirect connectiv-
ity due to resource sharing. Although these solutions broadly
use standard problem formulations from control theory, the
solutions to these problems are often non-standard and require

the development of new theory due to the unique nature of the
physical processes that transmit information in biomolecular
systems.

Although much progress has been made on this front, a
number of remarkable challenges still exist to make modular
design practically possible. Many of these challenges fall
within the fields of communications, signal processing, dy-
namical systems, and feedback control as they require a deeper
understanding of the dynamical interactions among processes
that transmit and receive information [21, 87]. Major issues
include noise and stochastic behavior, parameter uncertainty,
fragility to perturbations in environmental conditions, and un-
wanted interactions with endogenous circuitry components. It
is likely that the merging of a number of well-established fields
including control theory, signal processing, communications,
dynamical systems, and stochastic processes will be required
to address these problems.
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[27] A. Gyorgy, J. I. Jiménez, J. Yazbek, H.-H. Huang, H. Chung, R. Weiss,
and D. Del Vecchio, “Isocost lines describe the cellular economy of
genetic circuits,” Biophysical Journal, vol. 109, pp. 639–646, Aug. 2015.

[28] D. L. Schilling and C. Belove, Electronic Circuits: Discrete and Inte-
grated. McGraw-Hill Education, 1968. Google-Books-ID: 4RojAAAA-
MAAJ.

[29] D. Mishra, P. M. Rivera, A. Lin, D. Del Vecchio, and R. Weiss, “A load
driver device for engineering modularity in biological networks,” Nature
biotechnology, vol. 32, no. 12, p. 1268, 2014.

[30] Y. Qian and D. D. Vecchio, “Mitigation of ribosome competition through
distributed sRNA feedback,” in 2016 IEEE 55th Conference on Decision
and Control (CDC), pp. 758–763, Dec. 2016.

[31] C. Briat, C. Zechner, and M. Khammash, “Design of a synthetic integral
feedback circuit: Dynamic analysis and DNA implementation,” ACS
Synth. Biol., vol. 5, pp. 1108–1116, Oct. 2016.
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Shvartsman, “Substrate-dependent control of MAPK phosphorylation in
vivo,” Molecular systems biology, vol. 7, no. 1, p. 467, 2011.

[55] R. C. Brewster, F. M. Weinert, H. G. Garcia, D. Song, M. Rydenfelt,
and R. Phillips, “The transcription factor titration effect dictates level of
gene expression,” Cell, vol. 156, no. 6, pp. 1312–1323, 2014.

[56] N. E. Buchler and M. Louis, “Molecular titration and ultrasensitivity
in regulatory networks,” Journal of molecular biology, vol. 384, no. 5,
pp. 1106–1119, 2008.

[57] N. E. Buchler and F. R. Cross, “Protein sequestration generates a flexible
ultrasensitive response in a genetic network,” Molecular systems biology,
vol. 5, no. 1, p. 272, 2009.

[58] T.-H. Lee and N. Maheshri, “A regulatory role for repeated decoy
transcription factor binding sites in target gene expression,” Molecular
systems biology, vol. 8, no. 1, p. 576, 2012.

[59] M. L. Wynn, A. C. Ventura, J. A. Sepulchre, H. J. Garcı́a, and S. D.
Merajver, “Kinase inhibitors can produce off-target effects and activate
linked pathways by retroactivity,” BMC systems biology, vol. 5, no. 1,
p. 156, 2011.

[60] A. Gyorgy and D. Del Vecchio, “Modular composition of gene transcrip-
tion networks,” PLoS computational biology, vol. 10, no. 3, p. e1003486,
2014.

[61] A. C. Ventura, J.-A. Sepulchre, and S. D. Merajver, “A hidden feedback
in signaling cascades is revealed,” PLoS computational biology, vol. 4,
no. 3, p. e1000041, 2008.

[62] J.-A. Sepulchre and A. C. Ventura, “Intrinsic feedbacks in MAPK sig-
naling cascades lead to bistability and oscillations,” Acta biotheoretica,
vol. 61, no. 1, pp. 59–78, 2013.

[63] H. R. Ossareh, A. C. Ventura, S. D. Merajver, and D. Del Vecchio,
“Long signaling cascades tend to attenuate retroactivity,” Biophysical
journal, vol. 100, no. 7, pp. 1617–1626, 2011.

[64] Y. Qian and D. Del Vecchio, “Effective interaction graphs arising
from resource limitations in gene networks,” in 2015 American Control
Conference (ACC), pp. 4417–4423, July 2015.

[65] Y. Qian and D. D. Vecchio, “The “power network” of genetic circuits,” in
Emerging Applications of Control and Systems Theory, Lecture Notes in
Control and Information Sciences - Proceedings, pp. 109–121, Springer,
Cham, 2018.

[66] M. Carbonell-Ballestero, E. Garcia-Ramallo, R. Montañez,
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APPENDIX

A. Modeling transcription-translation (TX/TL) processes

Here we describe the standard ODE models derived from
first principles for the TX/TL process in more detail. As in
Fig. 1a, DNA makes an mRNA template through transcription

(TX) and the mRNA template makes a protein through trans-
lation (TL). This situation is described by the set of reactions

Di + RNAP + u
d1i−−⇀↽−−
a1i

C1i
k1i−−→ mi + Di + RNAP + ui

mi + Ribo
d2i−−⇀↽−−
a1i

C2i
k2i−−→ xi + mi + Ribo

mi
δ−→ ∅ xi

γ−→ ∅.
(19)

Then, using the law of mass action, the set of ODEs describing
the TX/TL node dynamics is given as

Ċ1i = a1iDiuRNAP − (d1i + k1i)C1i (20a)
ṁi = k1iC1i − δmi (20b)

Ċ2i = a2imiRibo− (d2i + k2i)C2i (20c)
ẋi = k2iC2i − γxi. (20d)

It can be shown that the species Di, and Ribo obey the
conservation laws

Dtoti = Di + C1i (21a)

Ribotot = Ribo+
∑
i

C2i (21b)

where Dtoti is the total concentration of DNA for the ith node,
Ribotot is the total concentration of the ribosomes. We assume
that the RNAP resource is non-limiting, which has been shown
to be a valid assumption in E. coli [27], so we assume that
RNAP is a constant. These conservation laws may be used
to substitute into (20). Timescale separation may be applied to
reduce the model since the dynamics of C1i and C2i are much
faster than the dynamics of xi or mi for all i. Then, (20) may
be reduced two states for each TX/TL process. Specifically,
the set of ODEs describing the two nodes in Fig. 6 is given
as

ṁ1 = T1
β + (u/K)n

1 + (u/K)n
− δm1 (22a)

ẋ1 = R1
m1/κ1

1 + α(m1/κ1 +m2/κ2)
− γx1 (22b)

ṁ2 = T2 − δm2 (22c)

ẋ2 = R2
m2/κ2

1 + α(m1/κ1 +m2/κ2)
− γx2 (22d)

with the outputs of each node given as y1 = x1 and y2 = x2.
Here, Ti = k1iRNAP represents the maximum rate of mRNA
production, β represents the leaky transcription of the DNA,
K = d1i+k1i

a1i
represents the binding constant between the

input u and the DNA, n represents the cooperativity of the
input u, Ri = k2iRibotot represents the maximum rate of
protein production, and κi = d2i+k2i

a2i
represents the binding

constant between mRNA and ribosomes. The system in (22)
was simulated by observing the steady state for different values
of the input u, shown in Fig. 6. The parameters used in
this simulation are given in Table I. For the system without
resource sharing, α = 0 and for the system with resource
sharing, α = 1.
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TABLE I
PARAMETERS USED IN THE SIMULATIONS OF (22) IN FIG. 6.

T1 T2 β K n R1 R2 κ1, κ2 δ γ
1000 100 0.001 1 2 100 1000 1000 5 1

Similar modeling techniques are used when a given TX/TL
node takes two inputs, for example an activator and a repres-
sor. For details, the reader is referred to [5]. The equations
governing the activator-repressor clock in Fig. 2 are

Ȧ =
α1 + β1A

n

1 +An +Rn
− δAA− konA(pT − C) + koffC,

Ṙ =
α2 + β2A

n

1 +An
− δRR,

Ċ = konA(pT − C)− koffC.

(23)

Here, A is the concentration of the activator, R is the con-
centration of the repressor, and C is the concentration of the
complex formed by the activator and the downstream DNA
sites. The parameters used for the simulations of the clock
are given in Table A. For the unloaded clock pT = 0, and
pT = 150 for the loaded clock.

TABLE II
PARAMETERS USED IN THE SIMULATIONS OF (23) IN FIG. 2

α1 β1 α2 β2 n δA δR kon koff
0.04 300 0.004 300 2 1 0.5 10 100

B. Modeling sRNA dynamics
The chemical reactions governing sRNA degradation of

mRNA is given as

si + mi
dsi−−⇀↽−−
asi

Ci
ksi−−→ ∅

si
δ−→ ∅.

(24)

These reactions may augment the reactions for the rest of
the network such as those given in (19). Using techniques
presented in Appendix A, a set of ODEs may be used to model
the system. The reduced set of ODEs that describe the sRNA
feedback controller around each node for two unconnected
nodes as in Fig. 14 are

ṁ1 = GT1
β + (u/K)n

1 + (u/K)n
−Gm1s1 − δm1

ṡ1 = GTs1
x1/Ks1

1 + x1/Ks1
−Gm1s1 − δs1

ẋ1 = R1
m1/κ1

1 + α(m1/κ1 +m2/κ2)
− γx1

ṁ2 = GT2 −Gm2s2 − δm2

ṡ2 = GTs2
x2/Ks2

1 + x2/Ks2
−Gm2s2 − δs2

ẋ2 = R2
m2/κ1

1 + α(m1/κ1 +m2/κ2)
− γx2

where G = ksi
dsi/asi

, which is assumed to be the same for all i.
For a detailed derivation of this model, the reader is referred
to [30]. Parameters used to simulate this system are given in
Tables I and III.

TABLE III
PARAMETERS USED IN THE SIMULATION OF (25) SHOWN IN FIG. 14B

ALONG WITH THE PARAMETERS IN TABLE I.

Ts1, Ts2 Ks1,Ks2

1200 10

C. Modeling phosphorylation-dephosphorylation cycles

In this section, we describe the reactions that make up
a single phosphorylation-dephosphorylation cycle (Fig. 15),
and explain how these reactions can be used to develop the
ordinary differential equation (ODE) model for the cycle based
on reaction-rate equations. Models of multi-stage cycles can
be developed by composing many models of the single cycle,
and the procedure for doing so is described in brief.

Consider a single phosphorylation cycle with kinase Z,
substrate X, and phosphatase M, as shown in Fig. 15. Kinase Z
enzymatically converts substrate X to phosphorylated protein
X∗ by means of a two-strep reaction with an intermediate
complex C1, as follows:

Z + X
a1−⇀↽−
d1

C1
k1−→ X∗ + Z. (26)

Here, a1 is the binding rate of Z and X, d1 is the unbinding
rate of Z and X, and k1 is the rate of production of the
phosphorylated protein X∗ from the complex C1.

Similarly, the phosphatase M enzymatically converts the
phosphorylated protein X∗ back to the dephosphorylated sub-
strate X by means of the two-step reaction

M + X∗
a2−⇀↽−
d2

C2
k2−→ X + M. (27)

The cycle can then be modeled in the form of a set of ODEs,

X X∗

M

Z

Fig. 15. A single phosphorylation cycle with kinase Z, substrate X, phos-
phorylated substrate X∗, and phosphatase M.

where the state variables are the concentrations Z, X , X∗,
M , C1 and C2 of the species Z, X, X∗, M, C1 and C2,
respectively. The set of ODEs for this cycle are then:

Ż = −a1ZX + (d1 + k1)C1,

Ẋ = −a1ZX + d1C1 + k2C2,

Ẋ∗ = k1C1 − a2MX∗ + d2C2,

Ṁ = −a2MX∗ + (d2 + k2)C2,

Ċ1 = a1ZX − (d1 + k1)C1,

Ċ2 = a2MX∗ − (d2 + k2)C2,

(28)
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where the parameters are the reaction-rate constants
a1, d1, k1, a2, d2, k2. Note that these dynamics are added to
any other terms arising from other reactions the species might
participate in, as well as any production or decay terms. For
example, if kinase Z is produced by a TX/TL process with
production rate given by the Hill function H(u) and decays
with rate δ, then the ODE governing the dynamics of Z
become:

Ż = H(u)− δZ − a1ZX + (d1 + k1)C1.

The set of ODEs in (28) can be reduced by conservation
laws. For example, the total concentration of the phosphatase
can be assumed to be constant, that is, MT = M +C2 where
MT represents the total concentration of phosphatase and is
constant. Then, the dynamics of M can be eliminated by re-
placing M = MT −C2 in the system of equations. Models for
multi-stage phosphorylation cycles can be constructed by com-
posing models of single phosphorylation cycles. For example,
the cycle described in (28) can drive another phosphorylation
cycle where X∗ acts as the kinase for the phosphorylation of
the substrate of the second cycle Y. The dynamics of species
shared by both cycles (in this case, for example X∗) consist
all the reaction-rate terms from the reactions they participate
in across both the cycles.

For the two-stage phosphorylation cycle insulation device
connected between the clock and the downstream TX/TL node,
the set of ODEs describing the model are

Ȧ =
α1 + β1A

n

1 +An +Rn
− δAA− a1X1A+ (d1 + k1)C1,

Ṙ =
α2 + β2A

n

1 +An
− δRR,

Ẋ∗1 = k1C1 − a2M1X
∗
1 + d2C2,

Ṁ1 = −a2M1X
∗
1 + (d2 + k2)C2,

Ċ1 = a1AX1 − (d1 + k1)C1,

Ċ2 = a2M1X
∗
1 − (d2 + k2)C2,

Ċ3 = a3X
∗
1X2 − (d3 + k3)C3,

Ċ4 = a4X
∗
2M2 − (d4 + k4)C4,

Ẋ∗2 = k3C3 − a4X
∗
2M2 + d4C4 − konX

∗
2 (pT − C) + koffC,

Ċ = konX
∗
2 (pT − C)− koffC,

X1 = XT1 − C1 −X∗1 − C2 − C3,

X2 = XT2 −X∗2 − C3 − C4 − C,
M1 = MT1 − C2,

M2 = MT2 − C4.
(29)

The parameters used for the insulation device in Fig. 11 are
given in Table C.

TABLE IV
PARAMETERS USED IN THE SIMULATIONS OF (29) SHOWN IN FIG. 11

ALONG WITH THE PARAMETERS GIVEN IN TABLE A.

XT1 MT1 XT2 MT2 ai di ki
3 100 1000 30 18 2400 600


