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Algebraic Representations for Volumetric Frame Fields
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Fig. 1. Octahedral fields generated with our methods on various models.

Field-guided parameterization methods have proven effective for quad

meshing of surfaces; these methods compute smooth cross fields to guide

the meshing process and then integrate the fields to construct a dis-

crete mesh. A key challenge in extending these methods to three di-

mensions, however, is representation of field values. Whereas cross fields

can be represented by tangent vector fields that form a linear space,

the 3D analog—an octahedral frame field—takes values in a nonlinear

manifold. In this work, we describe the space of octahedral frames in

the language of differential and algebraic geometry. With this under-

standing, we develop geometry-aware tools for optimization of octahe-

dral fields, namely geodesic stepping and exact projection via semidefi-

nite relaxation. Our algebraic approach not only provides an elegant and

mathematically sound description of the space of octahedral frames but

also suggests a generalization to frames whose three axes scale indepen-

dently, better capturing the singular behavior we expect to see in volu-

metric frame fields. These new odeco frames, so called as they are repre-

sented by orthogonally decomposable tensors, also admit a semidefinite

program–based projection operator. Our description of the spaces of oc-

tahedral and odeco frames suggests computing frame fields via manifold-

based optimization algorithms; we show that these algorithms efficiently

produce high-quality fields while maintaining stability and smoothness.
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1 INTRODUCTION

Inspired by the success of field-based approaches to quadrilateral

meshing on surfaces (cf. Vaxman et al. [2016]), recent research

in applied geometry has focused on developing an analogous ap-

proach to hexahedral meshing. Motivated by applications in finite-

element modeling, hexahedral meshing is the problem of dividing

a given volume into hexahedral elements (deformed cubes) with

minimal distortion and such that mesh boundary faces are aligned

to the boundary of the volume.

Hexahedral meshing couples a geometry problem—minimizing

distortion of mesh elements—to a combinatorial problem, placing

mesh elements to achieve a desired connectivity structure. As in

2D, field-based approaches first ignore combinatorial constraints

and solve for a frame field, which represents the local alignment

and singular structure of a mesh (see Figure 1). Then, they inte-

grate that field to guide the placement of hex elements [Nieser

et al. 2011]. So as not to impose unnatural constraints, the space

of frame fields must be expressive enough to represent the range

of possible singularities that may appear in hexahedral meshes.

These singularities are described by gluing relations restricted to

the symmetries of a cube (i.e., the octahedral group).

One might hope that 2D field-based methods would extend

easily to 3D. There are at least two obstructions to transferring

ideas from the 2D case. First, the singular structure of a 3D frame

field can be much more complicated than that of a cross field,
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comprising an embedded graph rather than a set of isolated

points. Second, we must understand the geometry of the space of

frames to measure and optimize smoothness of a frame field.

Complementing the recent results of Liu et al. [2018] on frame

field singularities and necessary conditions for hex meshability, in

the present work we study the second challenge, namely charac-

terizing the geometry of the space of frames. A 3D frame field is,

intuitively, an assignment of three mutually orthogonal directions

to each point in a volume. An orthonormal basis of three vectors—

comprising an orthogonal matrix—is sufficient to specify a frame,

but thanks to octahedral symmetry, multiple orthogonal matri-

ces can specify the same frame. Formally, the space of octahedral

frames can be viewed as the quotient of the group of 3D rotations

SO(3) by the right action of the octahedral group O comprising the

rotational symmetries of a cube (see Section 3). The noncommu-

tativity of 3D rotations makes the geometry of this quotient more

complicated than that of its 2D counterpart. Recent attempts to lift

ideas and techniques from 2D have either ignored the geometry of

the frame space entirely or treated it as a black box for nonlinear

optimization.

Consider perhaps the simplest form of optimization on a space—

projection—finding the closest point in the space to a given point

in an ambient space. Previous work on frame fields has treated this

projection problem as a nonlinear, nonconvex optimization prob-

lem over frames parameterized by Euler angles, with no guaran-

tees on convergence or global optimality. Our description of the

octahedral frame space as an algebraic variety suggests a different

approach to projection based on semidefinite programming, which

yields a certificate of global optimality in polynomial time. Our

semidefinite relaxation of projection is exact in a neighborhood of

the octahedral variety, and we conjecture—with strong empirical

evidence—that it is so universally.

Even when conducting local optimization on the space of octa-

hedral frames, parameterization by Euler angles may not be the

best approach. We show that the map from SO(3) to the octahe-

dral variety is a local isometry, enabling us to compute geodesics

on the octahedral variety in closed form. Manifold-based optimiza-

tion that moves along geodesics can then be used to accelerate lo-

cal optimization dramatically.

Beyond precisely characterizing the space of octahedral frames,

our algebraic approach admits a generalization to frames whose

axes scale independently. This larger space better captures frame

field geometry—for example, allowing for a nonzero direction

aligned to singular arcs even if the directions orthogonal to the

arcs must vanish. We call these new objects odeco frames, thanks to

their construction using orthogonally decomposable tensors, and

we derive relevant projection operators.

Our experiments show how the theoretical objects we study

enable volumetric frame field design in practice. In particular,

we apply standard manifold-based optimization algorithms to

field design, built on our differential and algebraic descriptions

of octahedral and odeco frames (Figure 2). The end result is an

efficient suite of techniques for producing smooth fields that obey

typical constraints for our target application.

Outline. The rest of the article is organized as follows. In Sec-

tion 2, we discuss related work. In Section 3.1, we reintroduce

the spherical harmonic representation of octahedral frames and

Fig. 2. We compute frame fields as maps into the octahedral and odeco

varieties, a projected slice of which is depicted here.

demonstrate how this amounts to an equivariant isometric embed-

ding of the quotient SO(3)/O into R9. In Section 3.2, we introduce

the odeco frames, whose axes can scale independently, and we ex-

hibit the spaces of octahedral and odeco frames as nested varieties

cut out by quadratic equations. In Section 4, we describe essen-

tial primitives for optimization over octahedral and odeco frames,

namely geodesics and projection via semidefinite programming. In

Section 5, we formulate the frame field optimization problem. In

Section 6, we describe two algorithms for optimizing fields. Sec-

tion 7 describes experiments using these algorithms. A discussion

and conclusion follow in Section 8. Further experimental results

are included in the supplemental material. In summary, our con-

tributions are

• a proof of isometric embedding of SO(3)/O in R9;

• descriptions of the spaces of octahedral and more general

odeco frames as nested algebraic varieties; and

• new state-of-the-art optimization techniques for volumetric

frame fields valued in both varieties, featuring geodesics and

semidefinite program (SDP)-based projection as primitives.

2 RELATED WORK

2.1 2D Frame Fields and Quadrilateral Meshing

Cross fields, and their application to quad meshing, have been

studied extensively in geometry processing (cf. Vaxman et al.

[2016]). A useful insight from cross field research is that it is advan-

tageous to replace field values defined up to some symmetry with

a representation vector—that is, some function of the field value in-

variant under the relevant symmetry. In two dimensions, four vec-

tors forming a right-angled cross can be represented in a unified

manner by their common complex fourth power. This amounts to

an embedding of a quotient manifold into a Euclidean space; we

show that the octahedral variety generalizes this idea to 3D in a

natural and isometric manner.

Recently, an effort has been made to unify and formalize the

various algorithmic approaches to cross fields, borrowing from
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the Ginzburg-Landau theory from physics [Beaufort et al. 2017;

Osting and Wang 2017; Viertel and Osting 2019]. This amounts to

replacing an ill-posed unit norm constraint with a penalty term

and taking the limit as the penalty parameter goes to infinity.

Viertel and Osting [2019] show that local optima of such a proce-

dure have isolated singularities with indices ±1/4, as appropriate

for quad meshing. They propose a diffusion-generated algorithm

to compute such local optima. Inspired by the work of Merriman,

Bence, and Osher (MBO) (1992) on mean curvature flow, this algo-

rithm alternates between finite-time diffusion and pointwise nor-

malization. Osting and Wang [2017] study an analogous method

applied to orthogonal matrix–valued fields. Our projection opera-

tors enable us to develop similar MBO diffusion-generated meth-

ods for optimization of octahedral and odeco fields. In Section 7, we

demonstrate that a modified strategy, where the diffusion param-

eter is adjusted on-the-fly, frequently helps to avoid local minima.

2.2 3D Frame Fields and Hexahedral Meshing

Huang et al. [2011] introduce a representation of frames as

functions over the sphere that exhibit octahedral symmetry,

parameterized by coefficients in the spherical harmonic basis. As

an initialization step, they solve a Laplace equation, resulting in

coefficients in the interior that do not correspond to octahedral

frames. These must be projected via nonconvex optimization over

frames parameterized by Euler angles. They further optimize the

results by minimizing a discrete Dirichlet energy over Euler an-

gles. Ray et al. [2016] refine the three stages of this approach, with

improved boundary constraints in the initialization, an efficient

projection technique, and an L-BFGS optimization algorithm.

Solomon et al. [2017] reformulate the initialization step of Ray

et al. [2016] using the boundary element method (BEM). This pro-

vides a way to harmonically interpolate the boundary conditions

exactly, ignoring the constraints in the interior. Finally, sampled

interior values are approximately projected onto the constraints

as in the previous methods. As the constraints are ignored at the

Dirichlet energy–minimization stage, there is no sense in which

the final frame fields are optimal.

A related but distinct problem is the computation of fields

of symmetric second-order tensors (i.e., symmetric matrices)

[Palacios et al. 2017]. Every symmetric matrix has an orthonormal

basis of eigenvectors, which corresponds to an octahedral frame.

One might thus think symmetric matrix fields can be used to pa-

rametrize octahedral frame fields. Although a symmetric matrix

field corresponds to at least one frame field, the correspondence

is not one-to-one—for example, a field of identity matrices corre-

sponds to all frame fields. Moreover, symmetric matrix fields can

only represent singularities whose indices are multiples of ±1/2,

wherease indices ±1/4 are crucial for hex meshing [Liu et al. 2018].

Our fourth-order octahedral and odeco fields are rich enough to

represent all indices.

The work of Fang et al. [2016] on generalized polycubes imposes

an even-more-extreme restriction that singularities may only ap-

pear on the boundary. After cutting handles, the regular frame field

in the interior of the volume may be represented by a field of rota-

tion (orthogonal) matrices. This is further relaxed to a field of ma-

trices, and orthogonality is approximately enforced via a penalty

term. The resulting field is used to construct a polycube map of the

cut volume, through which a hex mesh is pulled back. By requir-

ing regularity in the interior, this method may exclude fields that

achieve lower distortion overall.

The main driving force for research on 3D frame fields has been

hexahedral mesh generation. For a broader overview, we refer the

reader to the surveys of Armstrong et al. [2015] and Yu et al. [2015],

and we limit the subsequent discussion to techniques involving

frame fields. The idea of such methods is to construct a volumetric

integer-grid map [Liu et al. 2018], through which portions of the

Cartesian integer grid are pulled back to a structure-aligned hex-

ahedral mesh in the input domain. Nieser et al. [2011] introduced

a parameterization technique that turns a given frame field into

an integer-grid map by solving a mixed-integer Poisson problem.

Extraction of the hexahedral mesh from the map is hampered by

degeneracies in the map, motivating the sanitization technique of

Lyon et al. [2016] to improve robustness. Several refinements of the

preceding ideas have been proposed, including different guidance

for the frame field [Li et al. 2012] and heuristics to improve the

singularity structure by decimation or splitting [Jiang et al. 2014;

Li et al. 2012] to avoid degeneracies of the map.

Although robust hexahedral meshing based on frame fields re-

mains an open problem, recently several hex-dominant meshing

algorithms have been proposed [Gao et al. 2017; Sokolov et al.

2016] that also use frame fields but circumvent the problem of non-

meshable singularities. Gao et al. [2017] propose a hierarchical op-

timizer for frame fields that is based on local relaxation.

However, many practical applications demand pure hexahedral

meshes, such as those for the construction of volumetric spline

spaces in isogeometric analysis, and consequently a full under-

standing of meshable field topology is required. To this end, Liu

et al. [2018] enumerate the singular vertex types that may occur in

a hex mesh with bounded edge valence; they also develop a topo-

logical index formula analogous to the Poincaré-Hopf formula for

vector fields on surfaces. These local and global constraints being

established, they propose an algorithm to generate a (meshable)

frame field from a prescribed (meshable) singular structure. The

theoretical portion of our work complements the topological work

of Liu et al. [2018] with a closer study of the geometry of spaces of

frames.

In concurrent work, Corman and Crane [2019] propose an alter-

native approach to computing a frame field with prescribed singu-

lar structure via a discretized connection on a frame bundle. This

approach does not immediately extend to a method for de novo

frame field design. However, the connection associated to a field is

a natural object for the study of such properties as integrability. We

leave to future work the study of connections associated to fields

valued in the octahedral and odeco varieties and the extraction of

such connections directly from the field coefficients.

2.3 Alternative Frame Representations

Complementing the spherical harmonic–based representation in

the preceding works on octahedral frame fields, Chemin et al.

[2018] propose an equivalent representation of octahedral frames

as certain symmetric tensors of order four. They introduce al-

gebraic equations characterizing the octahedral frames among
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Fig. 3. An odeco field on a triangular prism. The norm of the second band

coefficients indicates degree of anisotropy (left). Odeco frames close to the

approximate position of the singular curve, indicated by a dot (right), scale

toward zero in the directions normal to the curve but remain nondegener-

ate in the direction along the curve.

symmetric fourth-order tensors. These equations are equivalent

under a change of basis to our defining equations for the octahedral

variety. However, by using a basis suggested by the structure of

SO(3), we are able to not only present the defining equations of

the octahedral variety but also illuminate how it is an isometric

embedding of the quotient space SO(3)/O, enabling us to compute

geodesics. Additionally, we use our algebraic description of the

octahedral variety to introduce a semidefinite relaxation of pro-

jection and to place it in the context of the more general odeco

variety.

In concurrent work, Golovaty et al. [2019] also represent frames

by fourth-order symmetric tensors subject to some algebraic con-

ditions, and they propose gradient flow on a Ginzburg-Landau-

type energy to optimize for smooth fields.

An additional alternative representation is proposed by Gao

et al. [2017], who use quaternions to encode octahedral frames.

Their representation uses relatively few values, but a matching

procedure has to be embedded in their optimization objective to

account for the fact that 48 quaternions correspond to the same

frame. The concurrent work [Beaufort et al. 2019] uses quaternions

to derive another parameterization of octahedral frames by points

of a variety in three complex dimensions.

All previous work on 3D frame fields has only considered octa-

hedral frames, which do not capture the unidirectional behavior of

frame fields near singular curves (cf. Figure 3). In the algebraic ge-

ometry community, Robeva [2016] and Boralevi et al. [2017] have

completely characterized a family of algebraic varieties of orthog-

onally decomposable (odeco) tensors. We show how the octahedral

variety is embedded in one of the odeco varieties, and we intro-

duce a technique for optimization over the odeco frames. For our

purposes, odeco frames generalize octahedral frames by allowing

independent scaling of the “axes” of a frame, including degenera-

tion to unidirectionality at singular curves and to zero at singular

nodes.

Finally, Shen et al. [2016] consider fields having different local

discrete symmetry groups, such as the tetrahedral and icosahedral

groups. They extend the methods of Huang et al. [2011] and Ray

et al. [2016] to compute such fields.

2.4 Semidefinite Relaxations

Relaxation of algebraic optimization problems to SDPs has been

studied extensively in the field of real algebraic geometry and

optimization. Blekherman et al. [2012] provide an introduction

to this discipline. The efficacy of semidefinite relaxation in com-

puter science was demonstrated dramatically in the seminal paper

of Goemans and Williamson [1995] on the maximum cut prob-

lem. Since then, semidefinite relaxation has continued to be em-

ployed to solve both combinatorial and continuous optimization

problems, such as angular synchronization [Singer 2011]. In ge-

ometry processing and graphics, this machinery has been applied

to problems such as correspondence [Kezurer et al. 2015], con-

sistent mapping [Huang and Guibas 2013], registration [Maron

et al. 2016], camera motion estimation/calibration [Agrawal and

Davis 2003; Ozyesil et al. 2015], and deformation [Kovalsky et al.

2014].

Most relevant to the present work are relaxations of the Eu-

clidean projection problem onto a variety defined by quadratic

equations, an example of a quadratically constrained quadratic

program (QCQP). Cifuentes et al. [2017] have recently shown a sta-

bility result implying that the semidefinite relaxation of Euclidean

projection onto a smooth, quadratically defined variety is exact in

a neighborhood of the variety. Cifuentes et al. [2018] have addi-

tionally shown that the region in which the relaxation is exact is a

semialgebraic set, and they have provided a formula for the degree

of its algebraic boundary. Unfortunately, computing this boundary

is generally intractible for interesting varieties. A deeper theoret-

ical understanding of when semidefinite relaxations of Euclidean

projection are globally exact is still lacking.

3 SPACES OF FRAMES

As studied previously in Chemin et al. [2018], Huang et al. [2011],

Ray et al. [2016], and Solomon et al. [2017], the basic unknown

in the volumetric frame field problem is a tuple of three mutually

orthogonal directions at each point in a volume. These directions

may be represented by an orthonormal basis of vectors, but the

signs and order of the vectors are irrelevant thanks to octahedral

symmetry. This redundancy makes detecting smoothness of a field

of tuples difficult. Hence, it pays to use a unified representation

invariant to the symmetries of the frame.

In the following, we apply machinery from differential and

algebraic geometry to derive a succinct description of this basic

octahedral frame and show how it is related to rotations of the

function x4
1 + x

4
2 + x

4
3 on the unit sphere expressed in the spherical

harmonic basis (as used to represent frames in Huang et al. [2011],

Ray et al. [2016], and Solomon et al. [2017]) and to tensorial repre-

sentations (as used in Chemin et al. [2018]). Algebraic language not

only provides a succinct description of previous representations

but also suggests a means of generalizing to frames whose three

axes scale independently (e.g., rotations of the function
∑

i λix
4
i

for varying λ ∈ R3), whereas previous work requires them to

have the same length (λ1 = λ2 = λ3). This broader set better aligns

with the realities of the frame field problem, since singular edges

have nontrivial directionality that cannot be captured by existing

representations. Relevant background material may be found in

Appendix A.
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3.1 Octahedral Variety

Intuitively, an octahedral frame field is a smooth assignment of

(unoriented) orthonormal coordinate axes to each point x in a

region Ω ⊂ R3. Such frames are called octahedral because they ex-

hibit symmetries described by the octahedral group O.1 The space

of such octahedral frames can be identified with the quotient space

F = SO(3)/O —that is, the quotient of the group of oriented rota-

tions by the right action of the octahedral group. Since O is not

a normal subgroup of SO(3) (indeed SO(3) is simple), F is not a

group. However, as O is a finite group acting freely on SO(3), F is

a manifold, and the surjective map SO(3) → F is a covering map.

The universal cover of F is that of SO(3), namely SU(2), and so

its fundamental group π1 (F ) is the lift of O to SU(2), the binary

octahedral group BO. In particular, BO classifies singular curves of

octahedral fields [Mermin 1979].

SO(3) admits a bi-invariant Riemannian metric (23), which

means that the action of O by right multiplication is isometric.

Thus, the Riemannian metric on SO(3) descends to F , making it

a Riemannian manifold. In particular, F has geodesics that lift to

geodesics of SO(3). We will employ these geodesics to compute

optimization substeps on F (cf. Section 4.1).

We have introduced F as an abstract smooth manifold, but

an embedding of F in a Euclidean space is necessary to make

it amenable to computation. Previous works have introduced this

equivariant embedding via the action of SO(3) on polynomials and

spherical harmonic coefficients. For completeness, we reintroduce

it here, although in a slightly different way that highlights the role

of representation theory and the orbit-stabilizer theorem. Later, we

will show that the embedding of F in R9 is an equivariant isomet-

ric embedding (cf. Moore [1976]).

Consider the irreducible representation ρ : SO(3) → SO(9) cor-

responding to the fourth band of spherical harmonics. The 9 × 9

orthogonal matrices ρ (r ) for r ∈ SO(3) are sometimes referred to

as Wigner D-matrices. Form a linear operator H ∈ R9×9 as

H =
1

|O|
∑
o∈O

ρ (o).

This H is a projection operator onto the subspace of R9 invariant

under all octahedral rotations.

Lemma 3.1. For any o′ ∈ O, ρ (o′)H = H .

Proof.

ρ (o′)H =
1

|O|
∑
o∈O

ρ (o′)ρ (o) =
1

|O|
∑
o∈O

ρ (o′o) =
1

|O|
∑
o∈O

ρ (o) = H .

�

Corollary 3.2. For q ∈ R9, ρ (O) · q = q if and only if q ∈
Im(H ).

Proof. The forward implication follows by writingq = Hq. The

reverse implication follows directly from Lemma 3.1. �

Because O is a maximal subgroup of SO(3), we have the follow-

ing corollary. Here, stabq denotes the stabilizer of q—that is, the

subgroup of SO(3) leaving q invariant (see Appendix A).

Corollary 3.3. Let q ∈ Im(H ) and nonzero. Then stab(q) = O.

1Technically, their stabilizers are conjugate to O.

It happens that H ∈ R9×9 has rank one (i.e., its image is 1D),

motivating the following definitions.

Definition 3.4. The canonical octahedral frame is the normalized

vector

q0 = �
�
0, 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12
�
�

�

∈ R9

such that H = q0q
�

0 .

Our canonical frame is the same as the normalized projection of

the polynomial
∑

i x
4
i into the fourth band of spherical harmonics,

such as in Solomon et al. [2017].

Definition 3.5. The octahedral variety is the orbit of q0 under the

action of SO(3),

F = ρ (SO(3))q0 = {ρ (r )q0 | r ∈ SO(3)}.

To summarize, F is the orbit of q0, whose stabilizer is O. A

smooth version of the orbit-stabilizer theorem (Theorem 21.18 of

Lee [2012]) shows that there is an equivariant diffeomorphism

ϕ : F → F .

Next, we will characterize the Riemannian geometry of F by

showing that ϕ is an isometry up to a uniform scale factor. To our

knowledge, this observation has not appeared in previous work.

Proposition 3.6. Let α =
√

3/20 and Fα := αF = {αq : q ∈ F }.
Let πα : R9×9 → R9 denote matrix multiplication by the scaled

canonical octahedral frameqα := αq0. In other words, πα (A) = Aqα .

Then the map

πα ◦ ρ : SO(3) → Fα

is a local isometry, making the induced diffeomorphism ϕα : F →
Fα an isometry.

Proof. Taking the differential of ρ at the identity yields the as-

sociated Lie algebra representation

(Dρ)I : so(3) = TI SO(3) → so(9) ⊂ R9×9.

(Dρ)I is characterized by Li := (Dρ)I (li ), the images of the Lie al-

gebra generators li (see Appendix A for definitions and supple-

mental material for explicit expressions). πα is a linear map, so its

differential is also multiplication by qα .

To see that πα ◦ ρ is a local isometry, first recall that the met-

ric on SO(3) is bi-invariant. In particular, for each д ∈ SO(3), an

orthonormal basis forTдSO(3) is given by the right-translated Lie

algebra generators

{(D Rд )I li }3i=1.

Thus, it suffices to prove that their images under πα ◦ ρ form an

orthonormal basis in Tρ (д)qα
Fα . But

D (πα ◦ ρ)д (D Rд )I li = (Dπα ) (Dρ)д (D Rд )I li

= (Dπα ) (D Rρ (д) )I (Dρ)I li

= (Dπα )Liρ (д)

= Liρ (д)qα ,

(1)
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where the second equality follows by differentiating the represen-

tation property ρ ◦ Rд = Rρ (д) ◦ρ at the identity. Therefore, the

equation we need to prove is

〈Liq,Ljq〉 = δi j ∀q ∈ Fα . (2)

This isometry condition can be checked explicitly at qα :

〈Liqα ,Ljqα 〉 = δi j = 〈li , lj 〉. (3)

For a general q = ρ (д)qα ∈ Fα , we compute

〈Liρ (д)qα ,Ljρ (д)qα 〉 = 〈ρ (д)�Liρ (д)qα , ρ (д)�Ljρ (д)qα 〉

= 〈DρI (д�liд)qα ,DρI (д�ljд)qα 〉.
(4)

The first equality follows because ρ (д) ∈ SO(9), and the second

follows by Lemma A.1. Let aik = aik (д) be the coefficients of the

adjoint representation of SO(3) (see Appendix A)—that is, д�liд �∑
k aik lk ; these coefficients form an orthogonal matrix. Now using

linearity of Dρ along with (3) and (4), we obtain

〈Liρ (д)qα ,Ljρ (д)qα 〉 =
〈∑

r

airLrqα ,
∑

s

ajsLsqα

〉

=
∑
r,s

airajs 〈Lrqα ,Lsqα 〉

=
∑
k

aikajk = δi j

(5)

as required. �

In summary, we have described the octahedral variety as an em-

bedded submanifold in R9 isometric to F = SO(3)/O. This isom-

etry means that we can do manifold optimization over frames by

working in the embedding (cf. Section 6.1). To show that F is re-

ally an algebraic variety, we will need to exhibit equations that cut

it out. We will delay this until Section 3.2.1, when we can give a

unified description of the octahedral and odeco varieties.

3.2 Odeco Variety

The previous section provides more insight into the octahedral

frames used in all previous work. Octahedral frames are suit-

able for representing singularity-free frame fields. However, frame

fields commonly encountered in applications have singularities

comprising an embedded graph. Consider the triangular prism

shown in Figure 3. Near the singular curve, a smooth octahedral

field would rotate infinitely quickly, and it would not have a well-

defined value along the curve. This issue is analogous to the case of

unit cross fields—note that for cross fields, the hairy ball theorem

requires singularities on simply connected surfaces.

One solution to this is to replace the hard constraint that the

field values lie in the octahedral variety with a penalty term, as

motivates the MBO method for octahedral fields detailed in the

following (Section 6.2). Another solution is homogenization—that

is, allowing field values to scale, replacing singularities by zeros, as

is considered for cross fields in Knöppel et al. [2013]. But consider

the triangular prism again: a scaled octahedral field would vanish

completely at the singular curve since all three orthogonal axes

must scale uniformly. This makes the octahedral representation

unable to capture the alignment of the field to the singular curve.

To cope with this problem and to show the value of our algebraic

approach, we now describe a superset of the octahedral frames.

This set allows the axes to scale independently. For instance, as

shown in Figure 3, the frame axes orthogonal to the singular curve

scale toward zero while the axis tangent to the singular curve re-

mains nonzero.

The symmetric orthogonally decomposable (odeco) tensor vari-

eties, introduced in [Robeva 2016], parameterize symmetric ten-

sors T ∈ Symd Rn that can be written as

T =
n∑

i=1

λi (vi )⊗d

for some set ofn orthonormal vectorsvi ∈ Rn , wherev⊗d denotes

the d-wise tensor power of the vector v . In other words, an odeco

tensor encodes a set of orthogonal vectors up to permutation. If d
is even,T is also invariant under sign changes to thevi . Moreover,

an odeco tensor assigns weights λi to the vectorsvi . This property

allows us to encode frames whose axes scale independently.

There is a one-to-one correspondence between symmetric ten-

sors of order d over Rn and homogeneous polynomials of de-

gree d in n variables (cf. Section 1.2 of Robeva [2016]). This cor-

respondence is given in one direction by taking a polynomial

p ∈ R[x1, . . . ,xn] to its tensor of dth derivatives and in the other

direction by symbolic evaluation on the vector of formal variables

x = (x1, . . . ,xn ):

T ∈ Symd Rn → pT (x ) =
1

d!
T (x , . . . ,x ) ∈ R[x].

This is a generalization of the correspondence between symmetric

bilinear forms (i.e., symmetric 2-tensors) and quadratic forms (i.e.,

homogeneous quadratic polynomials). Note that T is odeco if and

only if pT can be written as a sum of dth powers of linear forms

pT (x ) =
∑

i

λi (v�i x )d ,

where the vi are orthonormal as earlier. In this case, we also refer

to pT as an odeco polynomial.

The defining equations of the odeco varieties are quadrics—

homogeneous quadratic equations—in the tensor coefficients (The-

orem 4 of Boralevi et al. [2017]) or equivalently in the coefficients

of the associated polynomial pT . In other words, a homogeneous

polynomial

p (x ) =
∑

d1+· · ·+dn=d

ud1, ...,dn
xd1

1 . . . x
dn
n

is odeco if and only if the coefficients u satisfy

u�Aiu = 0 (6)

for a finite set of symmetric matrices Ai . In the case relevant

to us, where n = 3 and d = 4, there are exactly 27 such defining

equations. Although dimension counting might suggest otherwise,

these equations are not redundant—as can be seen by computing a

Gröbner basis of the ideal they generate. The matricesAi are listed

explicitly in the supplementary material. We will henceforth re-

fer to this particular odeco variety simply as the odeco variety F̃ .

Figure 4 plots several fourth-order odeco polynomials over the unit

sphere.
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Fig. 4. Examples of z -aligned odeco polynomials, plotted over the sphere.

3.2.1 Octahedral Variety as a Subvariety of Odeco Variety. Re-

call that our octahedral frames were represented by coefficients in

an irreducible representation of SO(3), whereas the odeco variety

was defined using monomial or tensor coefficients. To see the re-

lationship between the two varieties, it is beneficial to recast the

odeco variety in the irreducible representation basis. This corre-

sponds to looking at the coefficients of odeco polynomials in the

basis of spherical harmonics.

The quartic polynomials comprising the odeco variety decom-

pose as linear combinations of the spherical harmonics of bands 0,

2, and 4. Consider an odeco polynomial
∑3

i=1 λi (v�i xi )4, and let

q = (q0,q2,q4) ∈ V0 ×V2 ×V4

be its coefficients in this basis of even spherical harmonics. These

15 coefficients give us a different representation of odeco frames

in R15, where each band has a clear meaning. In particular, q0 =

C0
∑

i λi , where C0 is a constant, and similarly

‖q2‖2 = C2
��
�

∑
i

λ2
i −

∑
i<j

λiλj
��
�
.

The parenthesized expression is the squared distance between

(λ1, λ2, λ3) and the line λ1 = λ2 = λ3. Thus, q2 = 0 if and only if

q4 is a scalar multiple of an octahedral frame. The set

{q ∈ F̃ | q2 = 0}

consists of scalar multiples of the octahedral variety indexed by

q0. Fix q2 = 0 and let q0 be a constant such that ‖q4‖ = 1. The oc-

tahedral variety is the intersection of this affine subspace with the

odeco variety. Reducing the Equations (6) of the odeco variety with

respect to this subspace yields 15 inhomogeneous quadratic equa-

tions (
1

q4

)�
Pi

(
1

q4

)
= 0, i = 1, . . . , 15 (7)

cutting out the octahedral variety F . As was the case for the odeco

variety, these equations are not redundant. The symmetric matri-

ces Pi are listed explicitly in the supplementary material.

4 GEODESICS AND PROJECTION

We have introduced two spaces, the octahedral and odeco vari-

eties, that can serve as target sets for frame fields. To compute such

fields, we will have to solve optimization problems over products

of many copies of these varieties. Naively, one might plug the qua-

dratic constraints in (6) and (7) directly into a generic quadratic

optimization solver. However, the Ai or Pi are not positive semi-

definite, nor can their span be rewritten as the span of positive

semidefinite matrices. Thus, the constraints are nonconvex and

challenging to enforce.

As an alternative, we use optimization algorithms that are tai-

lored to the manifold-valued variables in our problem. These algo-

rithms employ substeps such as geodesic traversal and projection.

We derive these operations for a single frame in the following.

4.1 Octahedral Geodesics

By Proposition 3.6, the scaled octahedral variety Fα is locally iso-

metric to SO(3) via the map r → ρ (r ) · qα . It follows that geodesics

of SO(3) push forward to geodesics of Fα . The relation (17) in Ap-

pendix A then allows us to compute geodesics on Fα in closed

form without evaluating the representation map ρ explicitly. Let

v ∈ TqFα . v can be written in a basis induced by the SO(3) action,

v =
∑3

i=1viLiq, Here, the coefficient vector v = (v1,v2,v3) ∈ R3

is the “axis-angle” representation of a rotation, and the SO(3) ex-

ponential maps it to the corresponding rotation matrix. This can

be computed by conjugation with a rotation r taking the unit vec-

tor v/‖v ‖ to (0, 0, 1). Composing with the representation map, we

have

expq (v) = ρ (r� exp(‖v ‖l3)r )q = ρ (r )� exp(‖v ‖L3)ρ (r )q, (8)

where (unsubscripted) exp denotes the ordinary matrix exponen-

tial.

To compute ρ (r ), define spherical coordinates θ ,φ such that

v = ‖v ‖ (cosθ sinφ, sinθ sinφ, cosφ).

Then one possible choice for r is

r = exp(−ϕl2) exp(−θl3) = r�23 exp(−ϕl3)r23 exp(−θl3),

where r23 = exp((π/2)l1). Thus,

ρ (r ) = R�23 exp(−ϕL3)R23 exp(−θL3), (9)

where R23 = exp((π/2)L1). Combining (9) with (8), we can com-

pute geodesics by products of two simple ingredients: R23 and

exp(tL3) for t ∈ R. Closed-form expressions for both appear in

Section 2 of the supplementary material. Note that a formula simi-

lar to (9) is common in the graphics literature, such as for rotating

BRDFs expressed in spherical harmonic coefficients (cf. the appen-

dix in Kautz et al. [2002]).

4.2 Projection via Semidefinite Relaxation

F and F̃ are both varieties defined by quadratic equations. F ⊂ R9

is cut out by 15 inhomogeneous quadratic equations (7), whereas

F̃ ⊂ R15 is cut out by 27 homogeneous quadratic equations (6).

Consider the problem of finding the closest point in F to a given

point y ∈ R9:

ΠF (y) = arg min
q∈F

‖q − y‖2. (PF )

This problem is referred to as Euclidean projection onto a qua-

dratic variety. It is an example of a QCQP, and the general recipe

for semidefinite relaxation detailed in Section A.2 automatically

applies. The SDP will have the form

arg min
Q ∈R10×10

〈Y ,Q〉

subject to Q11 = 1

〈Pi ,Q〉 = 0, i = 1, . . . , 15

Q � 0,

(SDPF )
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where Pi are the symmetric matrices from (7), and

Y = �
�
‖y‖2 −y�
−y I9×9

�
�
.

Let Q∗ be an optimal solution to (SDPF ). Since (SDPF ) is a re-

laxation of (PF ), 〈Y ,Q∗〉 is a lower bound on the objective value of

(PF ). If it happens that rank(Q∗) = 1, thenQ∗ can be written in the

form

Q∗ =

(
1

q∗

) (
1

q∗

)�
,

from which it follows that(
1

q∗

)�
Pi

(
1

q∗

)
= 0, i = 1, . . . , 15

(i.e., q∗ ∈ F ). In this case, q∗ is the globally optimal solution to (PF ).

This situation is called exact recovery. The foregoing discussion

also applies, mutatis mutandis, to F̃ .

In our MBO algorithm presented in the following (cf. Section

6.2), we alternate projection with stepping off the variety. We refer

to the following theorem, which suggests that when taking small

enough steps from smooth points of a variety, projection will be

generically exact.

Theorem 4.1 (Cifuentes et al. [2017], Theorem 1.2). Consider

the Euclidean projection problem

arg minq∈V ‖q − y‖, y ∈ Rn ,

where V ⊂ Rn is a real variety defined by quadratic equations

f1 (q) = · · · = fm (q) = 0. Let ȳ ∈ V be a point at which the rank

of the Jacobian ∇f (ȳ) is equal to the codimension of V . Then the

semidefinite relaxation of projection is exact for y ∈ Rn sufficiently

close to ȳ.

In addition to this theoretical motivation, we have ample empir-

ical evidence that our relaxations are exact under much more gen-

eral conditions. The blue histogram in Figure 5 shows the results

of attempting to project 106 random points onto F via semidefi-

nite relaxation. We use the ratio of the second largest eigenvalue

λ2 (Q∗) to the largest eigenvalue λ1 (Q∗) as a proxy for exactness,

as it indicates whether Q∗ was rank-one up to machine precision.

For all octahedral projections, λ2 (Q∗)/λ1 (Q∗) was ≈ 10−8 or less.

Based on these results, we make the following conjecture.

Conjecture 4.2. For a generic point q0 ∈ R9, the solution to

(SDPF ) has rank one and therefore yields the exact projection

ΠF (q0).

We also tried projecting 106 random quartic polynomials onto

the odeco variety, as shown in the red histogram in Figure 5. Most

of the odeco projections were also exact up to numerical precision:

out of 106 solutions, only 60 had an eigenvalue ratio greater than

10−8. Theorem 4.1 gives us some intuition as to why this might

happen. The stability result only holds near smooth points of the

variety, but whereas the octahedral variety is a smooth manifold,

the odeco variety has a singularity at the origin, separating poly-

nomials of different signs.

Conjecture 4.3. For a generic point q0 ∈ R15 representing a

positive polynomial, the SDP relaxation yields the exact projection

Π
F̃

(q0).

Fig. 5. Histogram of eigenvalue ratio λ2 (Q∗)/λ1 (Q∗) for solutions to the

SDP relaxations of Euclidean projection onto F and F̃ . Projections of 106

random points were tested for each. The maximum ratio for octahedral

projection was 2.41 × 10−8. The maximum ratio for odeco projection of

positive quartic polynomials was 1.54 × 10−9. See Section 4.2.

Fig. 6. For some query polynomials, our globally optimal SDP-based pro-

jection onto the octahedral variety (blue) yields dramatically different

results from the approximate projection of Ray et al. [2016] (red). Our

projections are closer to the query points y (distances shown in blue) com-

pared to theirs (distances in red). The query polynomials are plotted on the

sphere, with color and distance from the center proportional to magnitude.

Indeed, the green histogram in Figure 5 shows the results of

odeco projection on 106 random positive quartic polynomials, gen-

erated as sums of squares of random quadratic polynomials. For all

such positive initial points, the SDP solution had λ2 (Q∗)/λ1 (Q∗) <
10−8, supporting Conjecture 4.3.

For octahedral frames, we also compare our SDP-based projec-

tion to the previous state-of-the-art method proposed by Ray et al.

[2016]. Because their method is based on nonconvex optimization,

we would expect it to get stuck in local minima. Indeed, out of

100,000 trials, we found 600 cases for which the result of their

method was at least 10−3 further from the initial point than our

projection—a nearly 1% error rate. Moreover, the difference be-

tween the computed projections can be substantial, as illustrated

in Figure 6.

5 FROM FRAMES TO FRAME FIELDS

The overall aspiration of this work is to compute smooth frame

fields in a region Ω ⊆ R3 aligned to the normal n on its bound-

ary ∂Ω. We assume Ω to be compact with ∂Ω a union of smooth,
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embedded surfaces. We think of a frame field as a map ϕ : Ω →V
into some space of framesV satisfying alignment boundary con-

ditions.

We have examined the geometry of two candidates for the fiber

V—the octahedral variety F and the odeco variety F̃ .2 It remains

to describe the boundary conditions and to define an energy we

want ϕ to minimize.

5.1 Boundary Conditions

In either F or F̃ , the frames aligned to a given direction n ∈ R3

form the intersection of an affine subspace with the respective

variety. In each case, this intersection is a lower-dimensional

variety defined by a different set of quadratic equations. We can

impose alignment boundary conditions by working over this

lower-dimensional variety. For boundaries with sharp creases,

we can optionally exclude creased vertices, where the normal

direction is ill defined, from the alignment constraint. Other con-

straints can also be imposed at creases—for example, alignment

to the crease tangent.

5.1.1 Octahedral Boundary Conditions. Let ρ : SO(3) → SO(9)
be the irreducible representation as in Section 3. First consider the

octahedral frames aligned to the vertical z = (0, 0, 1)�. The space

of vertical-aligned frames Fz � ρ (Az )q0, where Az is the coaxial

subgroup consisting of all rotations about z—for instance,

Az = {exp(tl3) | t ∈ R},
andq0 is the canonical octahedral frame. As derived in Huang et al.

[2011] and Ray et al. [2016], such frames have the form

exp(tL3)q0 = �
�

√
5

12
sin(4t ), 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12
cos(4t )�

�

�

= qz + Bsz ,

(10)

where qz = (0, 0, 0, 0,
√

7/12, 0, 0, 0, 0)�, sz = (cos(4t ), sin(4t ))�,

and Bz is the obvious 9 × 2 matrix. Given q ∈ R9, the closest

vertical-aligned frame is

ΠFz (q) = qz + Bz
B
�
zq

‖B
�
zq‖
.

For a general unit normal n, the aligned frames can be written

as

ρ (rn ) (qz + Bzsz ), (11)

where rn ∈ SO(3) is any rotation taking z to n. The projection of

q ∈ R9 onto the n-aligned frames is then

ΠFn = ρ (rn )ΠFz (ρ (rn )�q). (12)

During optimization, this projection is used for boundary-aligned

frames.

2The term fiber is intended to be suggestive. It may be fruitful to consider a bundle
π : P → Ω with fiber V , whose restriction ∂P → ∂Ω is nontrivial and encodes the
boundary alignment condition. The map ϕ would be replaced with a section of P .

5.1.2 Odeco Boundary Conditions. Consider the standard

odeco frame
∑

i λix
4
i rotated by some r ∈ Az , and fix λ3 = 1. As

described in Section 3.2.1, it has coefficients in the even-numbered

irreducible representations (bands of spherical harmonics)

q = (q0,q2,q4) ∈ V0 ×V2 ×V4 = R ×R5 ×R9.

Just as in the octahedral case,q can be decomposed into a fixed part

and a rotating part parameterized by a lower-dimensional vector

q = qz + Bzsz , (13)

where now sz ∈ R5 and Bz ∈ R15×5. The Equations (6) reduce to

three quadratic equations in the coefficients of sz , which can be

used to construct an SDP to project onto the vertical-aligned odeco

frames, as in Section 4.2. The details are given in the supplemen-

tary material. For frames aligned to a direction n,

q = ρ (rn ) (qz + Bzsz ),

where ρ is now the direct sum representation onV0 ×V2 ×V4. Pro-

jection onto the n-aligned odeco frames can be constructed from

projection onto the z-aligned odeco frames as in (12).

5.2 Objective Function

As we are searching for smoothest fields, a natural choice for the

energy is Dirichlet energy 1
2

∫
Ω
‖∇ϕ‖2 dx , where the norm is taken

with respect to a metric on V . There are multiple problems that

this formulation will need to confront. As we have seen, F is a

smooth manifold. But being a quotient of the 3-sphere, it has posi-

tive curvature, making mere existence of harmonic maps Ω → F a

hard problem. Even more fundamentally, it is not clear how to rep-

resent singularities of ϕ—the map cannot be consistently defined

along singular curves. F̃ attempts to solve this problem by repre-

senting singular frames with only one direction while allowing the

other two to vanish. Along a singular curve, we would expect an

odeco field to take rank-one values of the form λv⊗4, where v is

tangent to the singular curve.

5.3 Discretization

Let T = (V ,T ) be a tetrahedral mesh of Ω with vertices V and

tetrahedraT . The set of boundary vertices will be denoted by ∂V . A

discrete octahedral frame field on T is specified by a map q : V →
V = F or F̃ , giving a frame qi for each vertex i . As the octahedral

variety F ⊂ R9 and the odeco variety F̃ ⊂ R15, we can think of q
as a d × n matrix, where n = |V | and d = 9 or 15, respectively.

We then define a discretized Dirichlet energy using the Eu-

clidean metric in the spherical harmonic basis to compare elements

ofV . This is equivalent to measuring L2 distance between the cor-

responding polynomials over the sphere, as employed in Huang

et al. [2011], Ray et al. [2016], and Solomon et al. [2017]. Note that

this would not be the case if we compared odeco frames in the

monomial basis. The discrete energy is

E (q) =
1

2
tr

(
qLq�

)
,

where L is the linear finite element Laplacian on T , with the usual

cotangent weights.
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6 ALGORITHMS

We now have two variety-constrained optimization problems of the

form

min
1

2
tr

(
qLq�

)
s.t. qi ∈ V, ∀i ∈ V

qi ∈ Vni , ∀i ∈ ∂V ,

(14)

where the varietyV is either F or F̃ ,qi are the columns ofq, ∂V de-

notes the set of boundary vertices, andVni is the variety of frames

aligned to the normal at boundary vertex i .

6.1 Manifold Optimization Methods

In the case V = F , (14) becomes a

manifold-constrained optimization prob-

lem. The octahedral variety is a Rie-

mannian manifold, and we can compute

geodesics on it as described in Section 4.1. Thus, we can apply

the standard Riemannian trust-region (RTR) algorithm [Absil

et al. 2007] as implemented in the Manopt toolbox for MATLAB

[Boumal et al. 2014]. We consider the field to be a point in the

product manifold

q ∈
∏

i ∈V \∂V

F ×
∏

i ∈∂V

Fni .

In addition to the geodesics computed in Section 4.1, we also need

a way to project vectors (e.g., gradients) in the ambient space R9

into the tangent space at a point q, projq : R9 → TqF . The vectors

{Liq}3i=1 form an orthogonal basis for this tangent space (cf. Propo-

sition 3.6), so projection is just given by taking the inner product

with each of these vectors.

The odeco variety F̃ is not a manifold, but it is smooth almost

everywhere. We know of no way to compute exact geodesics on

F̃ , but we can implement a version of RTR by replacing the exact

exponential map with a retraction—that is, a first-order approxi-

mation (cf. [Absil et al. 2007, Definition 2.1]). In doing so, we give

up the superlinear local convergence guarantees of RTR (cf. [Absil

et al. 2007, Theorem 4.12]) but retain a global convergence guaran-

tee. In practice, we find that odeco RTR converges at a reasonable

rate.

At a smooth point of F̃ , it is easy to project vectors onto the

tangent space using the fact that F̃ is defined by quadratic equa-

tions. Let q ∈ F̃ , and assume the coefficients of q are expressed in

spherical harmonic coefficients. Then differentiating the equations

q�Ãiq = 0 shows that the normal space at q is

Nq F̃ = span{Ãiq},

where Ãi are expressed in the spherical harmonic basis. Then

Tq F̃ = (Nq F̃ )⊥, where the orthogonal complement is taken with

respect to the standard metric under which the spherical harmonic

functions are orthonormal.

We compute retractions as follows. The tangent space to the

odeco variety decomposes into a rotational part and a scaling part:

T r
q F̃ = span{L̃iq}3i=1, T s

q F̃ = (T r
q F̃ )⊥,

Fig. 7. Convergence behavior of octahedral RTR and the method of Ray

et al. [2016] on various models, starting from their initialization and using

the combinatorial Laplacian.

where the orthogonal complement is taken within Tq F̃ . We then

set

retrq (v ) = evr ·L̃ (q +vs ),

where vs is the component of v in T s
q F̃ , vr is the component of v

in T r
q F̃ , and

vr · L̃ :=
∑

j

(vr )j L̃j ,

wherevr =
∑

j (vr )j L̃jq. It is simple to verify that retrq (v ) ∈ F̃ and

that

∂

∂t
retrq (tv )

�����t=0

= v .

We compare the convergence behavior of octahedral RTR to that

of the method of Ray et al. [2016] under two sets of conditions—

their initialization and combinatorial Laplacian (Figure 7), and our

random initialization and linear finite element Laplacian (Figure 8).

The quadratic local convergence of RTR stands in stark contrast

to the slower linear convergence behavior of their method. RTR

converges faster but finds solutions of similar Dirichlet energy to

previous work (see Table 1 in the supplementary material).

6.2 Generalized MBO Methods

As we have observed, it is possible to do optimization on the octa-

hedral and odeco varieties by moving along curves that stay on the

varieties exactly. However, this hard constraint sometimes causes

pure manifold optimization to get stuck in local minima. To avoid

such local minima, an approach that allows “tunneling” is required.

The MBO method (1992) is a

diffusion-generated method for com-

puting (possibly singular) maps into a

target space embedded in a Euclidean

space. Following Osting and Wang

[2017] and Viertel and Osting [2019], we first replace the hard

constraint that the field values lie in the variety with a penalty
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Fig. 8. Convergence behavior of octahedral RTR and the method of Ray

et al. [2016] on various models, starting from random initialization and

using the geometric Laplacian.

term, yielding an energy of Ginzburg-Landau type,

Eϵ (q) =
1

2

∫
Ω
‖∇q‖2 dx + 1

2ϵ2

∫
Ω

dist(q,V )2 dx , (15)

whereV is our variety. Consider this energy in the limit ϵ → 0, as

in Section 4 of Viertel and Osting [2019]. The MBO method consists

of alternating descent on the two terms of Eϵ . Gradient flow on the

first term—Dirichlet energy—yields componentwise heat diffusion,

∂tq(x , t ) = Δq(x , t )

q(x , 0) = qk−1,
(16)

with the boundary constraints given in Section 5.1. In practice,

we do one step of implicit Euler integration per overall algorithm

step. Gradient flow on the second term of (15) in the limit ϵ → 0

amounts to projection onto the variety. The overall algorithm is

shown in Algorithm 1.

We follow the suggestion of van Gennip et al. [2014] and Viertel

and Osting [2019] to set τ0 relative to the inverse of the smallest

nonzero eigenvalue of the Laplacian. In ordinary MBO, β (k ) = 1—

that is, τ does not change over the course of the algorithm. In Fig-

ure 9, we test the effects of different values of τ . As we decrease

τ , the field is able to relax more and reduce the Dirichlet energy.

However, larger values of τ allow more tunneling so that the field

can escape local minima. This suggests a modified MBO scheme

(mMBO) in which we start with a large τ and progressively reduce

it over the course of optimization—analogously to what happens to

the temperature in simulated annealing. Our mMBO uses an opti-

mization schedule β (k ) = 50k−3. This optimization schedule starts

with a large diffusion time for robustness to random initialization,

then sweeps τ through various orders of magnitude quickly. We

have found that this heuristic produces a good balance between

quick convergence and field quality.

Figure 10 depicts the convergence behavior of RTR, MBO with

various τ values, and mMBO starting from a projection of an ap-

proximately harmonic field. The energy value achieved by ordi-

nary MBO is limited for each τ ; however, mMBO achieves a lower

Fig. 9. Results of octahedral MBO on a torus. With a relatively large dif-

fusion time τ , MBO produces a field with tightly packed singular regions

(left). At a smaller value of τ , singular curves relax toward the boundary,

reducing the Dirichlet energy (center). RTR reduces the energy even fur-

ther (right), pushing the singular curves to the boundary.

ALGORITHM 1: MBO over a variety V ⊂ Rd

input: initial d × n field q0, diffusion parameter τ0, optimization

schedule β (k )
result: qk

k ← 1

repeat

τk ← β (k )τ0

Diffusion step: Solve the linear system (M − τk L)q
�
k
= Mq

�
k−1

with

columns (qk )i constrained to be in the affine span (11) or (13) for

each i ∈ ∂V .

Projection step: Project qk into the variety:

(qk )i ←
⎧⎪⎨⎪⎩

ΠV ((qk )i ) i � ∂V

ΠVni
((qk )i ) i ∈ ∂V .

Δk ←
tr((qk−qk−1 )M (qk−qk−1 )� )

tr(qk Mq
�
k

)

Ek ← tr(qk Lq
�
k

)

ΔEk ← Ek − Ek−1

k ← k + 1
until ΔEk /Ek < δ or Δk < δ

value by sweeping through various values of τ . Note that the it-

eration counts shown do not reflect wall-clock time; in particular,

RTR runs at least an order of magnitude faster than the other al-

gorithms.

7 EXPERIMENTS

We initialize our algorithms with vertexwise random octahedral

fields, generated by—separately for each vertex—starting with the

canonical frame, rotating it by a random angle between 0 and 2π
about the positive z-axis, and then rotating the positive z-axis to a

random direction. We do this even for optimization of odeco fields

to avoid encountering odeco frames that have negative weights λi

(cf. Conjecture 4.3). When starting from octahedral initialization,

the odeco frames we compute always have nonnegative weights.

In Figure 11, we demonstrate the robustness of MBO to ran-

dom initialization. On the sphere, global rotations of a field do

not change the objective value. Initializing odeco MBO with
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Fig. 10. Energy convergence on the rockerarm_91k model. MBO’s con-

vergence to lower energies is limited by the diffusion time τ . Decreasing τ

according to the optimization schedule used in mMBO achieves the best

results overall.

Fig. 11. Robustness to random initialization. Odeco MBO transforms ver-

texwise random initial fields into qualitatively identical results up to the

symmetry of the sphere. All results were computed on a sphere with 48950

vertices. Integral curves are depicted in regions of rapid rotation (i.e., in

proximity to singularities).

different fields of vertexwise random frames, we find that it con-

verges to randomly rotated copies of a qualitatively identical, sym-

metric field.

Figure 12 illustrates the behavior of octahedral and odeco fields

as the density of the underlying tetrahedral mesh increases. Due

to the unit-norm constraint, the gradient of an octahedral field be-

comes unbounded close to its singularities. This leads to logarith-

mic divergence of the total energy as the tet mesh becomes finer.

Fig. 12. Energy density diverges for octahedral fields, but plateaus for

odeco fields, as mesh density increases. Also notice the higher variance

for octahedral fields. Ten fields of each type were computed by RTR on

each of 13 tetrahedral meshes of the unit sphere of various densities.

Fig. 13. The energy density at singularities of an octahedral field dom-

inates the total energy (left). In contrast, an odeco field’s energy is dis-

tributed more uniformly (right). Results computed using MBO + RTR.

In contrast, the additional scaling degrees of freedom available to

odeco fields allow renormalization of singularities, as shown in

Figure 13. Thus, odeco field energy plateaus as mesh density in-

creases. Note also the much smaller variance in energy between

runs for odeco fields, quantitatively illustrating robustness to ran-

dom initialization.

Table 1 (in the supplementary material) compares timings and

energy values for our methods and the method of Ray et al. [2016],

comprising 18 types of experiments on 15 different models, for

270 total runs. Direct comparison of energy values with Ray et al.

[2016] is not possible, as their method uses the graph Laplacian and

initializes by solving a linear system, whereas our method uses the

geometric (finite element) Laplacian and random initialization. To

attempt a fair comparison, we report results of their method alone,

their method followed by RTR with the geometric Laplacian, and

their method substituted with the geometric Laplacian and random

initialization. All experiments in the table were conducted on an

Ubuntu workstation with a four-core, 3.6-GHz Intel Core i7-7700
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Fig. 14. Twisted singular curves on the handle of the cup in the result of

Ray et al. [2016] lead to twisting in the resulting mesh (top). Our field

yields a mesh with a more regular structure throughout (bottom).

Fig. 15. On the bone model, twisted singular curves in a field computed by

the method of Ray et al. [2016] lead to a degenerate integer grid map, pro-

ducing highly distorted hexahedra (left). Our field yields a mesh without

this degeneracy (right).

and 32 GB of RAM. A MATLAB implementation of our algorithms

accompanies this article and also includes our implementation of

Ray et al. [2016].

The results in Table 1 show that RTR converges very quickly but,

like previous work, easily gets stuck in local minima. In contrast,

mMBO takes longer to converge but produces higher-quality fields

that reflect the symmetries of the volume. Running RTR to polish

the results of mMBO produces the best energies.

Despite sometimes getting stuck in local minima (see Figure 6),

we observe that the approximation of projection by Ray et al.

[2016] can be useful in practice. Table 1 (in the supplementary

material) includes experiments with MBO and mMBO (see Sec-

tion 6.2) substituting the projection of Ray et al. [2016] for the true

projection. In most cases, the resulting energy is very similar, sug-

gesting that the diffusion iterations in MBO smooth out any errors

resulting from incorrect projection. This hybrid MBO can be a use-

ful tradeoff between correctness and speed.

In Figures 14 through 17, we compare fields computed by oc-

tahedral mMBO + RTR to those computed by the method of Ray

et al. [2016]. Our fields not only have lower Dirichlet energy but

also better singular structures. To visualize singular structures, we

use the visualization technique of Liu et al. [2018]. To illustrate

the importance of singular structure, we have generated hexahe-

Fig. 16. Due to the twisting of singular curves in the field generated by the

method or Ray et al. [2016] (top), the mesh is highly distorted on the right

arm. In contrast, our field (bottom) has a regular cubic singular structure,

leading to fewer mesh degeneracies.

Fig. 17. Note the simpler, more regular singular curves in our result as

compared to the result of Ray et al. [2016]—especially on the bunny’s nose.

The degeneracy in their result leads to a collapse of the integer grid map

on the head.

dral meshes from both sets of fields, following the methods laid

out in Nieser et al. [2011] and Lyon et al. [2016]. The meshes are

computed from the raw field data, with no preprocessing other

than tetrahedral mesh refinement to resolve and localize singular

curves. In particular, we do not “correct” singularities—thus, both

sets of meshes show some degeneracies resulting from collapsed

or flipped tetrahedra during the parameterization step. However,

our fields yield meshes with fewer and smaller degeneracies, less

distortion, and more regular structure.

Figures 18 and 19 compare fields produced by mMBO + RTR

to fields produced by the method of Gao et al. [2017]. Our fields
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Fig. 18. Comparison of octahedral field algorithms on the gear model. A

field produced with mMBO + RTR (right) exhibits lower energy and greater

symmetry than one produced by the method of Gao et al. [2017] (left).

Fig. 19. Comparison of octahedral field algorithms on the space-filling

torus model. A field produced with mMBO + RTR (right) exhibits lower

energy and greater symmetry than one produced by the method of Gao

et al. [2017] (left).

better respect the symmetries of the underlying models. We note

that mMBO + RTR yields a higher-quality result without requiring

a multiscale method like the one Gao et al. [2017] employ.

8 DISCUSSION AND FUTURE WORK

A stronger understanding of the unknowns in the volumetric

frame field problem enables both theoretical and practical devel-

opments. On the theoretical side, our reexamination of the typical

representation of octahedral frames not only yields useful geodesic

formulas and projection operators but also suggests generalization

to odeco frames. For both frame representations, optimization al-

gorithms designed explicitly to traverse the manifold of unknowns

yield gains in efficiency and in the quality of computed results.

Our work is intended not only to improve on existing frame field

computation algorithms but also to inspire additional research into

the structure of spaces of frames and to highlight the significance

of this structure to practical aspects of field computation and mesh-

ing. Most immediately, a few open questions are left from our dis-

cussion. On the theoretical side, conjectures 4.2 and 4.3 remain to

be proven. We anticipate that both can be embedded in a more gen-

eral framework explaining when relaxations of projection prob-

lems are exact. On the algorithmic side, RTR seems to get stuck

in local minima much more often than MBO, especially on denser

Fig. 20. A field of lower Dirichlet energy (bottom) may still result in more

mesh degeneracies than a field of higher Dirichlet energy (top) due to

topological impediments to meshability, namely the presence of an ad-

ditional valence 3–5 junction.

meshes. We hypothesize that this is because RTR strictly moves

along the manifold, whereas MBO is free to tunnel through the

ambient space. However, RTR converges much faster and yields

high-quality fields on coarse meshes. Given these observations,

we anticipate that it may be possible to incorporate RTR into a

multiscale method that leverages its efficiency while avoiding lo-

cal minima that appear at the finest scales.

As with most existing frame field computation algorithms, even

when mMBO+RTR converges to a smooth field, the topology of

the field is not always hex meshable. Figure 20 shows a case where

the method of Ray et al. [2016] yields a field of higher Dirichlet en-

ergy but leads to fewer degeneracies than our field. In particular,

the presence of a singular curve whose type changes from valence

3 to 5 leads to a degeneracy in the integer-grid map. Although our

method succeeds at finding fields of lower Dirichlet energy—the

objective function of our method and that of Ray et al. [2016]—

minimizing this energy is an incomplete proxy for our ultimate

goal, namely to obtain smooth, meshable fields. We would like to

investigate additional metrics, such as integrability of frame fields,

that might make it possible to express meshability constraints rig-

orously.

To define such additional metrics, it might be fruitful to consider

further alternative frame field representations. For example, given

our use of Lie algebra representations, a logical next step might be

to introduce an SO(3)-principal bundle and work with connections

on that bundle as variables. In this theory, quantities such as cur-

vature, torsion, or the Chern-Simons functional might encode im-

portant features of frame fields. The discretization of connections

in Corman and Crane [2019] represents a promising first step.

Finally, although our algorithms do not explicitly take account

of symmetry, we find that fields computed by MBO consistently

reproduce the symmetries of the volume. It would be interesting to

develop a better theoretical understanding of this behavior and to

develop machinery for explicitly promoting conformation to near-

symmetry in deformed domains.

These and other challenges appear when extending well-known

machinery from geometry processing on surfaces to volumetric

domains, as demanded by applications in engineering, simulation,
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and other disciplines. Over the longer term, careful consideration

of problems like the ones we consider in this article will lead to a

versatile and generalizable approach to geometry processing.

APPENDIX

A MATHEMATICAL BACKGROUND

Representation theory and algebraic geometry provide a concise

language for the discussion of the preceding octahedral and odeco

varieties. We begin with definitions of a few terms used throughout

the article. A detailed introduction to either of these subjects is

outside the scope of our discussion; however, we refer the reader

to Stillwell [2008] for an introduction to matrix Lie groups and to

Blekherman et al. [2012] for a primer on real algebraic geometry

and optimization.

A.1 Lie Groups and Representations

A Lie group is a group G that is also a smooth manifold, and such

that the multiplication · : G ×G → G and inversion −1 : G → G
are smooth maps. A matrix Lie group is a subgroup of the invert-

ible matrices GL(n) ⊂ Rn×n that is simultaneously a submanifold.

Examples include the orthogonal groups O(n) and the special or-

thogonal groups SO(n). The primary Lie group of interest to us in

this work will be SO(3).
For a matrix Lie groupG ⊂ Rn×n , the Lie algebra is a linear sub-

space ofRn×n identified with the tangent space toG at the identity

I , denoted g = TIG. The inner automorphism Adд : G → G taking

h → дhд−1 preserves the identity, and its derivative at the identity

induces the Lie bracket[·, ·] : g × g → g. In the case of a matrix Lie

group, this is just the matrix commutator.

As left translation Lд : h → дh is a diffeomorphism, every ele-

ment of g is also associated to a left-invariant vector field onG. The

exponential map exp : g → G is given by starting at I and integrat-

ing this vector field for one unit of time. For a matrix Lie group,

exp is the ordinary matrix exponential.

A representation of a matrix Lie group G is a smooth group ho-

momorphism ρ : G → GL(n) for some n. A representation ofG in-

duces a representation of each subgroup H ⊂ G. A Lie group rep-

resentation comes with a Lie algebra representation (Dρ)I : g →
Rn×n , which preserves the Lie bracket. Moreover, representations

commute with exponentials:

ρ ◦ exp = exp ◦(Dρ)I . (17)

An irreducible representation is one that cannot be decomposed as

a direct sum of subrepresentations. The irreducible representations

of compact Lie groups such as SO(3) are finite dimensional. The

adjoint representation is the irreducible representation of G on its

own Lie algebra given by conjugation:

Ad : G → Aut(g)

Ad(д)a := д−1aд.
(18)

Lemma A.1. Ad commutes with representations of G:

(Dρ)I (д−1aд) = ρ (д)−1 ((Dρ)Ia)ρ (д). (19)

Proof. Using (17) and conjugating by д, we obtain

ρ (д−1 exp(ta)д) = ρ (д)−1 exp(t (Dρ)Ia)ρ (д). (20)

Differentiating in t at t = 0 yields the result. �

The stabilizer stab(v ) of a vectorv is the subgroup consisting of

all elements д ∈ G that preserve v—that is, such that ρ (д)v = v .

The Lie algebra so(3) associated to SO(3) consists of the skew-

symmetric 3 × 3 matrices. so(3) has a basis consisting of infinites-

imal rotations about the three coordinate axes:

l1 =
��
�

0 0 0

0 0 1

0 −1 0

��
�

l2 =
��
�

0 0 1

0 0 0

−1 0 0

��
�

l3 =
��
�

0 1 0

−1 0 0

0 0 0

��
�
.

Their Lie brackets are

[li , li ] = 0 [l1, l2] = l3 [l2, l3] = l1 [l3, l1] = l2. (21)

These generators might be familiar as the angular momentum

operators from quantum mechanics. Indeed, SO(3) acts on func-

tions on the sphere by rotating them, and its Lie algebra elements

act as rotational derivatives. This action decomposes into irre-

ducible representations. A basis for each irreducible representa-

tion of SO(3) is provided by spherical harmonics; each irreducible

representation is called a band of spherical harmonics. The real

representations are odd-dimensional vector spaces, and the repre-

sentation matrices ρ (·) are also referred to as Wigner D-Matrices.

SO(3) admits a bi-invariant Riemannian metric whose value at

the identity is given by

〈u,v〉 = 1

2

∑
i, j

ui jvi j . (22)

Note that the generators li form an orthonormal basis under this

metric. Bi-invariance means that

〈(D Lд )Iv, (D Lд )Iw〉 = 〈v,w〉 = 〈(D Rд )Iv, (D Rд )Iw〉, (23)

where v,w ∈ so(3) and Rд is right translation by д ∈ SO (3), de-

fined analogously to left translation. In addition, (23) completely

describes the Riemannian metric on SO(3). Under this metric, the

matrix exponential is also the Riemannian exponential map at the

identity, giving rise to geodesics.

The octahedral group O is a discrete subgroup of SO(3) generated

by right-angle rotations about the three axes,{
ri = exp

(π
2
li

)}3

i=1
.

O has 24 elements comprising all symmetries of the cube or, equiv-

alently, of its dual, the octahedron.

A.2 Semidefinite Relaxations

A (real) algebraic variety is the set of solutions of a system of poly-

nomial equations over n real variables:

V (p1, . . . ,pk ) = {x ∈ Rn | pi (x ) = 0, i = 1, . . . ,k },

where p1, . . . ,pk are polynomials.

If p1, . . . ,pk are quadratic in x , they may be written as

pi (x ) = (1 x�)Ai

(
1

x

)
= 〈Ai ,X 〉,

whereAi are symmetric matrices, 〈, 〉 denotes the usual inner prod-

uct on matrices inducing the Frobenius norm, and

X =

(
1

x

)
(1 x�) = ��

�
1 x�

x xx�
��
�
.
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A quadratically constrained quadratic program (QCQP) is of the

form

arg min{ f (x ) | x ∈ V (p1, . . . ,pk )},
where f ,p1, . . . ,pk are all quadratic. A QCQP may be rewritten in

the more illuminating form

arg min
X

〈C,X 〉

s.t. X11 = 1

〈Ai ,X 〉 = 0, i = 1, . . . ,k

X � 0

rank(X ) = 1.

(24)

Absent the rank constraint, (24) would be a semidefinite program

(SDP). SDPs may be solved in polynomial time by interior point

methods, implemented in common optimization software pack-

ages like MOSEK (2019). Thus, it is natural to ignore the rank con-

straint and solve the associated SDP; this technique is called semi-

definite relaxation. The optimal objective value of the relaxed prob-

lem is a lower bound for the globally optimal value of the QCQP

(24), and if the recovered solution to the SDP has rank one, the so-

lution is said to be exact, as it is the globally optimal solution of (24).
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