
Adaptive task allocation for multi-UAV
systems based on bacteria foraging behaviour

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published 10.1016/J.ASOC.2019.105643

Publisher Elsevier BV

Version Author's final manuscript

Citable link https://hdl.handle.net/1721.1/136384

Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License

Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/136384
http://creativecommons.org/licenses/by-nc-nd/4.0/

Adaptive Task Allocation for Multi-UAV Systems based1

on Bacteria Foraging Behaviour2

Heba Kurdia,b,, Munierah F. AlDaooda, Shiroq Al-Megrenb,c, Ebtesam3

Aloboudd, Abdulrahman S. Aldawoode, Kamal Youcef-Toumib4

aComputer Science Department, King Saud University, Riyadh 11495, Saudi Arabia5

bMechanical Engineering Department, Massachusetts Institute of Technology, Cambridge,6

MA 02139, USA7

cInformation Technology Department, King Saud University, Riyadh 11495, Saudi Arabia8

dComputer Science Department, Al Imam Mohammad Ibn Saud University, Riyadh9

11432, Saudi Arabia10

eDepartment of Plant Protection, King Saud University, Riyadh 11495, Saudi Arabia11

Abstract12

The foraging behaviour of bacteria in colonies exhibits motility patterns that13

are simple and reasoned by stimuli. Notwithstanding its simplicity, bacteria14

behaviour demonstrates a level of intelligence that can feasibly inspire the15

creation of solutions to address numerous optimisation problems. One such16

challenge is the optimal allocation of tasks across multiple unmanned aerial17

vehicles (multi-UAVs) to perform cooperative tasks for future autonomous18

systems. In light of this, this paper proposes a bacteria-inspired heuristic19

for the efficient distribution of tasks amongst deployed UAVs. The usage of20

multi-UAVs is a promising concept to combat the spread of the red palm21

weevil (RPW) in palm plantations. For that purpose, the proposed bacteria-22

inspired heuristic was utilised to resolve the multi-UAV task allocation prob-23

lem when combatting RPW infestation. The performance of the proposed24

algorithm was benchmarked in simulated detect-and-treat missions against25

three long-standing multi-UAV task allocation strategies, namely opportunis-26

tic task allocation, auction-based scheme, and the max-sum algorithm, and27

a recently introduced locust-inspired algorithm for the allocation of multi-28

UAVs. The experimental results demonstrated the superior performance of29

the proposed algorithm, as it substantially improved the net throughput and30

maintained a steady runtime performance under different scales of fleet sizes31

and number of infestations, thereby expressing the high flexibility, scalability,32

and sustainability of the proposed bacteria-inspired approach.33

Preprint submitted to Applied Soft Computing July 31, 2019

Keywords: Task allocation, unmanned aerial vehicles, distributed systems,34

multi-UAV systems, bacteria inspiration, optimisation problem.35

1. Introduction36

The devastating economical impact of red palm weevil (RPW, Rhyn-37

chophorus ferrugineus - Curculionidae: Coleoptera) infestation is recognised38

globally, as it affects various palm species in 54 countries [1]. Mature beetles39

burrow to a palm’s stem and crown where they lay their eggs. At its larvae40

stage, an RPW is at its most damaging stage, as it prospers within the palm,41

damaging its vascular system [2, 3]. Early detection is difficult due the cryp-42

tic feeding behaviour of the larvae and the palm’s lack of visual symptom of43

infestation. Nevertheless, early detection is crucial to combating the spread44

of the infestation when it can still be treated by pesticides. Several techniques45

are used to ease detecting RPW infestations, including chemo/olfactory sens-46

ing by dogs, X-ray imaging, thermal imaging, and acoustic detection of RPW47

larvae [4, 5, 6]).48

The use of fleets of unmanned aerial vehicles (UAVs) is becoming in-49

creasingly compelling for detect-and-treat (DAT) missions, where they are50

utilised to assist in eradicating agricultural pests (e.g., [7, 8, 9]) and are con-51

tinuously being improved, for instance, in terms of reducing communication52

disturbances and improving synchronisation (e.g., [10, 11]). One of the major53

challenges to this approach is the optimal partitioning of tasks across UAVs54

such that the objective of the DAT mission is optimised. As a special case of55

the NP-hard multi-robot task allocation (MRTA) problem, the multi-UAV56

task allocation (MUTA) problem has attracted notable attention and is of-57

ten approached using heuristics because of their fast development and ease58

of application [12]. However, unlike optimal algorithms, heuristics are best59

assessed empirically under controlled experimental conditions [13].60

NP-hard problems, such as MRTA and MUTA, are typically approached61

using heuristics that suggest ‘good’ solutions such as max-sum, auction-62

based, and bio-inspired algorithms (e.g., [14, 15, 16]). The majority of such63

approaches can be categorised as problem-independent heuristics, i.e., meta-64

heuristics. A metaheuristic starts with a random solution that is iteratively65

optimised until a near-optimal solution is reached. Implementing a meta-66

heuristic is relatively easy because one algorithm can be utilised for every67

agent, where parametrisation and neighbouring strategies can also be used to68

2

reflect different behaviours. However, the iterative nature of metaheuristics69

increases the power and time consumptions, thereby significantly impact-70

ing the overall performance of the algorithm. The solution proposed in this71

paper falls under the second category, i.e., it is a problem-dependent heuris-72

tic. While more difficult to implement (multiple algorithms), a problem-73

dependent heuristic is tailored to the specific problem, and its best-effort74

approach attempts to achieve a good guess sans iterative improvements [17].75

The choice between problem-dependent and problem-independent heuristics76

is dependent on the nature of the optimisation problem and the trade-off77

between the cost of implementation and runtime operation.78

Optimisation problems can grow more difficult in a distributed setting and79

are known as distributed constraint optimisation problems (DCOPs). The80

max-sum metaheuristic is an approach that provides satisfactory approxi-81

mate solutions to challenging decentralised optimisation problems [18]. The82

metaheuristic approaches the optimisation problem by breaking its maximis-83

ing function iteratively into a sum of smaller functions, where agents max-84

imise the global utility based on their variables and constraints [19]. Max-sum85

has been applied to many UAV application domains (e.g., [20, 14]); however,86

the algorithm’s exponential running time, O(mn) (where m is the number87

of agents and n is the number of tasks), and lack of support for situational88

awareness are its main drawbacks. This is because the max-sum algorithm89

does not take the dynamic environment into account nor does it consider90

multiple task allocation objectives; thus, solutions are re-calculated in their91

entirety to account for changes in the environment [21].92

Auction-based heuristics offer a less expensive alternative to DCOPs and93

decentralised decision making [22, 23, 16]. Auction-based heuristics approach94

the MUTA problem by offering tasks for auction, where UAVs bid for allo-95

cation pertaining to the cost of running the task. To solve conflicts and96

determine the winning bid, a consensus approach is often implemented. The97

adoption of auction-based allocation results in numerous issues such as the98

complexity introduced by auctioning off new tasks. The heuristic is also99

reputed to be time and resource consuming, as bids are calculated by each100

UAV and a winning bid is chosen; resulting in quadratic time complexity101

O(n2m), where m is the number of agents and n is the number of tasks [24].102

Bio-inspired algorithms are based on the natural behaviour of simple103

agents as they interact amongst themselves and exhibit favourable features,104

such as self organisation, adaptiveness, and robustness [25]. This natural105

behaviour is governed by simple rules that support their implementation and106

3

economical execution. The majority of bio-inspired algorithms are concrete107

mathematical and probabilistic models that quantify natural features that108

are based on a certain set of predefined assumptions (e.g. [26]). Never-109

theless, there has been a growing interest in utilising problem dependent110

heuristics for overcoming complex optimisation problems. Recently, LIAM111

was presented as a locust-inspired problem-dependent heuristic to optimise112

the allocation of multi-UAVs in SAR missions [27, 17]. Locusts in nature113

dynamically adapt to internal and external stimuli between solitary and gre-114

garious roles. LIAM mimics the adaptive behaviours of locusts, which are115

demonstrated in the system’s fully autonomous UAVs. The performance of116

LIAM was comparatively assessed against auction, max-sum, ant colony op-117

timisation (ACO), and opportunistic task allocation (OTA), where LIAM118

was proven to be superior given the dynamic nature of SAR missions with a119

higher net throughput and a shorter mean rescue time.120

The simple behaviour of bacteria has continually been an inspiration for121

computational practices and optimisation heuristics. Specifically, two heuris-122

tics, bacteria foraging optimisation (BFO) [28] and bacterial chemotaxis (BC)123

[29], have broadened the application scope of bacteria optimisation. The BFO124

algorithm is inspired by the social foraging behaviour of bacteria and was ap-125

plied to the continuous function optimisation problem domains [30]. In the126

same year, the bacterial chemotaxis (BC) heuristic simulated the movement127

of a single bacterium and evolutionary concepts to improve optimisation128

strategies and problem-solving capabilities. Since the development of BFO129

and BC, there has been a growing number of extensions that attempt to130

hybridise the algorithms with other metaheuristics and computational intel-131

ligence algorithms (e.g., [31, 32, 33, 34, 15]).132

The bacterial colony chemotaxis (BCC) algorithm is based on the infor-133

mation interactive model between bacteria via chemo-attractants [35]. Sev-134

eral assumptions are made about bacterial colony correspondence: locomo-135

tion self-regulation based on information from approximate bacteria and mi-136

gration simulations. The algorithm has been applied to solve optimisation137

problems in various fields, e.g., machine learning and inverse air-foil design138

[36]. A scheduling algorithm, the super-bug algorithm (SuA), was similarly139

inspired by bacteria [37], in particular, the antibiotic resistance developed140

from bacterial mutation. SuA was comparatively assessed against other tech-141

niques on the flexible manufacturing scheduling problem, where it performed142

better in most cases. The viral infection process motivated the proposal of143

the viral system algorithm, which consists of replication and infection mech-144

4

anisms [38]. These mechanisms are used to generate meta-heuristics that145

overcome computer security problems and virus elimination.146

Inspired by bacteria-based algorithms, this paper presents a multi-UAV147

task allocation for RPW combat based on bacteria behaviour (UTARB) al-148

gorithm. Its main advantages over other MUTA approaches is the adaptive149

behaviour of the UAVs and the autonomic nature of control and decision150

making. Unlike other approaches, UTARB targets non-clairvoyant tasks and151

is tailored to the particularities of DAT missions and tasks. By adopting a152

problem-dependent heuristic approach, the proposed model ensures that the153

optimization algorithm is easier and quicker to implement and more robust in154

its adaptation. This is made possible by the algorithm as computationally ex-155

pensive parameters are ignored, while simpler parameters that are indirectly156

correlated with system performance are relied upon [39, 13]. Accordingly, the157

proposed approach does not aim to prove a first-order relationship between158

the proposed heuristic and the desired results.159

A simulation model was built for DAT missions to thoroughly assess the160

performance of the proposed algorithm and three long-standing heuristics:161

auction-based, max-sum, and opportunistic coordination schemes, as a well162

as a recently introduced locust-inspired heuristic for multi-UAV task alloca-163

tion in search and rescue missions (LIAM) [17]. The experimental results164

demonstrated the superiority of UTARB over the benchmark algorithms,165

where it yielded a significant increase in the percentage of detected infesta-166

tion at reduced runtimes. This paper extends on previous work [40] that167

highlight the development of UTRAB to further signify its efficiency.168

The main contributions of this paper can be summarised as follows:169

• A new bacteria-inspired heuristic for MUTA problems, UTARB, is pro-170

posed. The proposed algorithm is a problem-specific heuristic inspired171

by the foraging behaviour of bacterial colonies for addressing the special172

challenges of DAT missions.173

• A well-controlled experimental framework for evaluating UTARB in174

DAT missions is developed.175

• A thorough investigation of the performance of UTARB is conducted176

against well-established benchmark algorithms and a problem depen-177

dent bio-inspired algorithm with different numbers of infested palms178

and deployed UAVs.179

5

The remainder of this paper is organised as follows. Section 2 reviews180

existing work regarding the scheduling problem inspired by the behaviour of181

fish and bio-inspired heuristics that were developed to address the problem182

of multi-robot or multi-UAV task allocation. The following section, Section183

3, describes the bacteria inspiration behind this work. Section 4 illustrates184

the system model. Section 5 introduces UTARB’s search algorithms. Section185

6 describes the experimental configuration and procedure for conducting the186

simulations. Section 7 presents and explains the results of the comparative187

evaluations. Finally, Section 8 concludes the paper and briefly discusses188

future work.189

2. Related Work190

The past few decades have seen a shift of focus in the field of robotics191

toward investigating problems of coordinating multiple robots. This is due192

to the increasing complexity of multi-robot and multi-UAV systems as fleets193

expand in size while agents and tasks increase in heterogeneity. As a re-194

sult, the problems of multi-robot and multi-UAV coordination have received195

significant attention. This section reviews numerous works that address the196

MRTA and MUTA problems in various scenarios. The review is not meant197

to be exhaustive, as it focuses on solutions proposed by the benchmark al-198

gorithms (such as auction and max-sum heuristics) and biologically inspired199

heuristics.200

The max-sum algorithm was initially proposed for DCOPs in multi-agent201

systems [41] and has since been utilised to address several other optimisa-202

tion problems such as the allocation of tasks to multi-UAV fleets. Agents203

in max-sum-based approaches can generate a consistent task allocation plan204

by exchanging and adjusting the utility function, thus enabling cooperation205

when performing tasks. A max-sum coordination mechanism was proposed206

for a fleet of autonomous UAVs as they survey a disaster area to provide aerial207

images [42, 43]. The task allocation problem is addressed asynchronously, by208

which a computed utility value is maintained by the UAVs for each task.209

The proposed model was assessed and exhibited promising potential, as it210

provided a favourable trade-off between the quality and quantity of tasks211

performed. Hardware tests were also conducted to assess the coordination212

mechanism proposed using commercial off-the-shelf hexacopter UAVs de-213

ployed in the real world, the results of which confirmed the performance of214

the max-sum algorithm in coordinating UAVs in real-word situations. Nev-215

6

ertheless, the empirical tests were not time constrained and were restricted216

to ten surveying UAVs in a limited disaster area. The traceability of this217

solution increases in difficulty as the number of tasks and agents sufficiently218

increases due to the exponential number of constraints.219

For urban disaster environments, a binary max-sum algorithm was pro-220

posed for clustering-based task allocation [21]. Tasks in the proposed algo-221

rithm are distributed using a distance metric between the agents’ features222

and tasks, along with the benefits of facto graphs with THOPs to optimise223

a global objective function. The modelled heuristic was comparatively as-224

sessed against an optimised multi-team task allocation model. The result225

of the assessment demonstrated the algorithm’s superiority, as it reduced226

communication costs and non-concurrent constraint checks. The max-sum227

algorithm was also adapted for decentralised coordination for the purpose of228

considering constraints imposed by a human operator [44]. The algorithm229

supports accountability for both human- and agent-based decision making230

by providing a fully tracked provenance infrastructure in a disaster manage-231

ment system prototype. Assessments were performed to address the inter-232

action between agent and human operators, where the system demonstrated233

improved performance as strong control is given to the user over autonomy234

when allocating tasks.235

Auction-based algorithms are one class of decentralised combinatorial al-236

gorithms that have been utilised to efficiently produce suboptimal solutions237

for the allocation of tasks over a team of agents. The algorithm is at times238

augmented with a consensus protocol to resolve assignment conflicts among239

agents. One such example is a consensus-based auction algorithm (CBBA)240

that was proposed to negotiate between agents by forming an initial greedy241

task allocation [45]. CBBA utilises an auction approach and a consensus pro-242

cedure for task selection and conflict resolution, respectively. The final task243

allocation is determined by achieving a consensus on the winning bid, thus244

reducing computation costs and improving convergence. Experiment were245

performed to assess the performance of CBBA against an existing sequential246

auction algorithm. The performance of CBBA proved to be superior, showing247

better convergence properties. Clustering-based task allocation was proposed248

as a simulation model involving task priority and balancing in multi-robot249

systems [46]. The model attempts to obtain a balanced exploration path by250

considering the costs of robot travel and idleness, thus minimising the av-251

erage waiting and completion times. The proposed methodology consists of252

K-means clustering and auction-based mechanisms to achieve an appropriate253

7

balance. Increased cluster numbers were found to significantly affect total254

cost, and further studies are required to analyse their effect.255

Several auction-based approaches were compared to assess their perfor-256

mance for the efficient allocation of tasks for multi-robot teams in a dynamic257

environment [22]. The effectiveness of the auction mechanisms in this study258

considered the total distance of travel, cost of task execution, as well as how259

well the task was executed. More recently, a cooperative rescue plan for260

search and rescue missions is devised using an auction-based allocation ap-261

proach [16]. The proposed auction approach is used to best allocate tasks to262

rescue teams for the purpose of enhancing cooperation. A landslide post dis-263

aster environment was built to demonstrate the performance of the proposed264

algorithm with a non-cooperation rescue plan and F-max-sum. Findings265

show that the proposed auction-based approaches increases the ratio of res-266

cued survivors and the probability of survival. Additional evaluations were267

conducted to determine the robustness and sensitivity of the proposed solu-268

tion. Robustness analyses have shown that efficiency is significantly affected269

by the search radius and, thus, that a high level of cooperation should be270

maintained. The sensitivity analysis identified trade-offs between cooper-271

ation, independent rescue searches and search coverage that greatly affect272

rescue efficiency.273

The collective behaviours of social insect colonies and animal groups are274

characterised by self-organised control and collaboration, elastic properties275

and effective interaction schemes [47]. These behaviours analogically align276

themselves with distributed optimisation problems such as task allocation277

and path planning. Bio-inspired algorithms that address the task allocation278

problem considerably diverge depending on the species that they simulate.279

These include, but are not limited to, algorithms inspired by the foraging280

behaviours of locusts [17], ants [26] and honeybees [48] and the brood para-281

sitism of cuckoos [49].282

Locusts exhibit adaptable morphological and behavioural forms as they283

advance through their lifecycle. Their behaviour is dramatically altered in284

response to internal and external stimuli between two main phases: solitari-285

ous and gregarious. Although there are few heuristics inspired by this type of286

behaviour, a locust-inspired algorithm for task allocation in a multi-UAV dis-287

tributed system performing SAR missions was recently proposed [27]. Locust288

behaviour ideally maps to the main roles of SAR missions, search and rescue,289

which behaviourally imitate solitarious and gregarious locusts, respectively.290

The effectiveness of the locust-based algorithm was compared against OTA in291

8

terms of net throughput, survivor rescue time, and runtime performance. The292

findings revealed the proposed algorithm’s superior net throughput compared293

to the benchmark. The work was recently extended to best demonstrate the294

adaptive behaviour of autonomous UAVs in multi-UAV SAR missions [17].295

The locust-inspired task allocation (LIAM) algorithm was extensively tested296

under various conditions of area scale, numbers of survivors, and the size297

of the multi-UAV fleet. The experimental results demonstrated the superi-298

ority of LIAM compared to well-established algorithms, primarily auction,299

max-sum, ACO, and OTA algorithms. The proposed algorithm maintained300

a significantly higher percentage of rescued survivors and reduced task com-301

pletion time.302

ACO is based on the behaviours of ant colonies as they forage for food.303

Ants leave a trail of chemical pheromones to guide other ants to discovered304

food sources; paths with strong concentrations of pheromones are given pri-305

ority to support the search for the shortest path between the colony’s nest306

and the food source [26]. ACO was proposed for MRTA, which utilises two307

ant colony processes that use pheromones to allocate tasks to robots and308

determine each robot’s task processing sequence [50]. A simulation environ-309

ment was built for multi-robots transporting containers at a dock, where the310

proposed ant-inspired algorithm was comparatively tested against another311

algorithm that unified the problems of task allocation and path planning.312

Several comparative scenarios were implemented with a variable number of313

containers. The processing time of the proposed algorithm was comparatively314

short, likely due to its simultaneous scheduling capability.315

The ACO algorithm was also adapted to combat the task allocation316

problem in multi-agent environments, thereby reducing processing times and317

achieving global optimisation [51]. The proposed algorithm, collection path318

ACO (CPACO), extends ACO by modifying the heuristic by establishing a319

3-dimensional pheromone path to resolve the MUTA problem. The perfor-320

mance of CPACO was comparatively assessed against gravitational search321

and the forward optimisation heuristic. Although CPACO consumed more322

time than the forward optimisation heuristic, CPACO’s efficiency was sub-323

stantially better. Nonetheless, the proposed algorithm was sensitive to the324

initial parameters and the number of ants to convergence. The dynamic325

ant colony labour division (DACLC) algorithm was proposed to solve the326

task allocation problem in a dynamic battlefield with a swarm of combat327

multiple UAVs [52]. The proposed algorithm is based on the fixed response328

threshold model (FRTM) that addressed the problem of adapting the system329

9

to various demand levels. The effectiveness of DACLD was determined in330

several simulated scenarios with varying numbers of targets and emerging331

threats. DACLD was found to be robust and flexible in its dynamic alloca-332

tion of tasks with a high degree of self-organisation. DACLD remains to be333

compared against well-established algorithms.334

As prokaryote, bacteria behave simply and in patterns that can easily be335

described and mimicked computationally. The typical behaviours of bacte-336

ria during their lifecycle, i.e., chemotaxis, communication, reproduction, and337

migration, have inspired several general optimisation algorithms (e.g., BFO338

[28] and BC [29]) that have since been applied to multi-robot mission optimi-339

sation. An adapted implementation of BFO was proposed for a multi-robot340

search and mapping of chemical gas concentration [53]. The robots in the341

proposed algorithm perform the search autonomously via bacterial chemo-342

taxis behaviour and send their sensed data to a ground station. In contrast343

to the artificial bacteria behaviour in BFO, robots have continuous dynamics344

and traverse all the paths between its current position towards a different345

location. Therefore, the adapted BFO algorithm generates high-level path346

planning and waypoints, which are used iteratively to compare chemical con-347

centrations. The data received are then combined, interpolated, and filtered348

to form a real-time map of chemical gas concentrations in an environment.349

The performance of the implemented BFO was later evaluated against other350

bio-inspired implementations (ACO and decentralised asynchronous particle351

swarm optimisation), sweeping, and canonical particle swarm optimisation352

[54]. The findings demonstrate the superior performance of the bio-inspired353

implementation for concentration map building, where BFO and ACO were354

able to complete their search.355

A multi-robot path planning algorithm inspired by the original BFO for356

known and unknown targets was developed [55]. A clustering-based method357

was used to divide the area virtually, and bacteria-inspired direction-based358

movement was utilised. The algorithm was tested for simple and complex359

environments, where the results showed that the proposed algorithm was360

able to efficiently perform path planning to the classified targets. Similarly,361

the BFO algorithm was applied to the problem of mobile robot navigation362

to determine the shortest path to a target position in an unknown environ-363

ment with moving obstacles [56]. Particles are randomly distributed around364

a robot, by which the best particle is selected based on the distance to the365

target and a cost function. The selection of the best particle is generated366

using a high-level decision strategy, and the robot proceeds to its target.367

10

The efficiency of the proposed approach was assessed against the standard368

BFO and particle swarm optimisation. The findings showed that the pro-369

posed bacteria- and particle-inspired algorithm produces better solutions and370

optimal paths.371

A self-organisation algorithm inspired by the behaviour of bacteria was372

proposed for multi-robot target search and trapping [57]. Target search and373

trapping tasks were achieved by the robots using bacteria chemotaxis guided374

by the gradient information obtained from the target until the target was375

located. Simulations were conducted to assess the performance, robustness,376

and complexity of the proposed algorithm. The findings demonstrated the377

effectiveness of the algorithm and robustness under unanticipated failures.378

The results also proved the algorithms ability to avoid being trapped in lo-379

cal optima and its computational efficiency. The BFO algorithm was also380

the source of inspiration and improvement for multi-robot cooperation for381

nanarobotics and nanomedicine [58]. Referred to as the improved BFO al-382

gorithm (IBFOA), the proposed methods utilised cooperative learning for383

multiple nanorobots to reach and eradicate cancer cells in a blood vessel.384

The performance of the proposed IBFOA algorithm was compared against385

the standard BFO algorithm. The findings demonstrated the superior perfor-386

mance of IBFOA, as it reduced time complexity and improved global search.387

Previous work, be it based on conventional approaches (e.g., auction and388

max-sum) or swarm intelligence, would often introduce general optimisation389

solutions for the MUTA problem (i.e., problem-independent heuristics and390

metaheuristics) rather than tailored algorithms that consider the particulari-391

ties of the mission or task (i.e., problem-dependent heuristics). Moreover, to392

the best of our knowledge, the behaviour of bacteria has not been previously393

adapted for non-clairvoyant MUTA tasks where job information is unknown394

a priori.395

3. Bacteria Inspiration396

Natural systems consist of simple agents that interact with each other by397

abiding to simple rules. These agents are self-organised and are capable of398

adapting to changing requirements and environments. These properties en-399

able natural systems to solve complex problems that are beyond the abilities400

of current computer systems [59, 60, 61]. The simple agents and rules of natu-401

ral systems of many organisms have been simulated to govern task allocation402

(e.g., [17, 52]), resource management (e.g., [62, 63]), synchronisation (e.g.,403

11

(a) Tumbling (b) Skipping

(c) Swimming (d) Swarming

Figure 1: Bacteria foraging behaviour as a bacterium moves from a starting to an end
position with lines depicting its movement.

[64, 65]), and social differentiation (e.g., [66, 67]). For many swarm organ-404

isms, the foraging process involves the aggregation of organisms into groups405

to search for sustenance by maximising the energy obtained per unit time406

12

spent foraging [68]. The aggregation of organisms into social foraging groups407

is also a key element for avoiding predators and increasing their chances of408

finding profitable food sources [69]. Bacterial colonies exhibiting movement409

during foraging show some intelligence that cannot be simply regarded as410

random or arbitrary [60, 70, 30, 68].411

The mobility of bacteria can be divided into four types, as shown in412

Figure 1: tumbling, skipping, swimming, and swarming. In the absence of413

stimuli, a bacteria cell forages for nutrients in random directions; it moves in414

a straight line for some time, then changes its angle and repeatedly moves in a415

certain pattern for an arbitrary amount of time and as along as no stimulus416

is experienced. This tumbling behaviour serves to randomly reorient the417

bacteria. Bacteria typically alternate periods of tumbling and swimming.418

In the latter instance, the bacteria is in the presence of a stimulus and thus419

moves directly towards it. Tumbling and swimming are collectively known as420

chemotaxis, where bacteria direct their movement based on the presence of421

chemical gradients, i.e., stimuli [69, 71]. As a bacteria cell tumbles for a long422

period of time without encountering a stimulus, it significantly changes its423

direction by skipping towards a new course. Bacteria secrete attracting and424

repelling chemicals into the environment to communicate. If a food source425

is found, a bacterial cell releases attractants for other bacteria to sense and426

swarm around the source. If a stimulus is found to be revolting, the bacteria427

cell releases repellents for others to keep away from the stimulus [72, 60].428

This continuously changing strategy for selecting a search point based on the429

current situation is the source of inspiration for this work.430

4. System Model431

When building a system model, the system is simplified to its main prop-432

erties and functions. Nominally, system models are classified as: (1) mathe-433

matical or analytical models, and (2) simulation models. Mathematical mod-434

els provide an abstraction of the system, which are represented as equations435

that summarise the system performance. Simulation models, on the other436

hand, experimentally mimic events that occur in the real system. Thus,437

allowing experimentation with different parameters and control logic [73].438

Several works that mathematically model the foraging behaviour of bac-439

teria have already been published and reviewed in Section 2. These models440

quantify the features of the foraging behaviour of bacteria colonies based on a441

set of predefined assumptions. The rigidity of these mathematical approaches442

13

are built upon assumptions that are different from the unique characteristics443

of biological systems. For instance, analytical models measure the system444

behaviour using expected values for a predefined set of performance metrics,445

which ignore any changes in the system behaviour over time [74]. This dis-446

regards the flexibility of natural systems that typically employ an adaptive447

control strategy to persevere in a changing world.448

This paper presents a generic model for UTARB that is simulated in449

several representative scenarios. The proposed system is comprised of a finite450

number of UAVs in a multi-UAV fleet and a finite number of infested palms451

in a plantation area. Each UAV is capable of executing one task at a time.452

The goal of UTARB is to assign detect-and-treat tasks to UAVs to maximise453

the overall number of detected and treated infested palms, considering the454

urgency of the infested case and efficiency of the UAVs in conducting the455

task.456

The proposed system is comprised of three main components:457

• The palm plantation is a physical agricultural field that consists of palm458

trees that are to be investigated for RPW infestations.459

• In almost all multi-UAV missions, a ground station is required to con-460

trol and manage the running of the mission. In the case of UTARB,461

the role of the ground station is limited to sending the mission require-462

ments and the variables necessary for initialising the mission. Upon463

mission completion, a mission report detailing the outcome is sent to464

the ground station.465

• The UAVs are a group of agricultural systems with built-in capabilities466

for flying and collision avoidance. The agents are equipped with various467

sensors such as piezo electric microphones, pesticide containers and468

injectors. UAVs are programmed offline and autonomously fly to detect469

infestation and treat palms as needed.470

The simulation environment considers a DAT mission with the number,471

severity level, and locations of infested palms unknown a priori. Each in-472

fested palm is randomly assigned a severity level, which deteriorates as the473

mission time passes. Infested palms are scattered across the plantation area474

arbitrarily, with some hotspots representing areas with a potentially greater475

concentration of infested palms. An infested palm can be in one of two states:476

14

• A palm with a mild infestation that can be remedied using the UAV’s477

built-in pesticide injectors. A mild infestation deteriorates to severe if478

not detected within a certain time period.479

• An infested palm with a severe infestation which requires contact with480

the ground station to call for help.481

The plantation area is divided into logical blocks. Each set of blocks in a482

row is referred to as a region. Each block has a size of a× b, where a and b483

are positive integers. The size of the block is determined during initialisation484

and assumes one palm per block. Each block can be in one of the following485

states:486

• An unchecked block has yet to be checked for infestation by a UAV.487

This is the initial state for all blocks.488

• A healthy block contains a palm that is free of infestation.489

• A treated block is comprised of a mildly infested palms that has since490

been treated by a UAV.491

• A severe blocks has a severely infested palm that has been detected by492

a UAV and the ground station has been contacted for help.493

• A skipped block refers to a block that has been temporarily bypassed494

since a UAV assigned to the region has scanned a certain percentage of495

the region (P%) and no infestations were detected in the other blocks.496

Blocks that are labelled as unchecked or skipped can further be categorised497

based on their level of urgency. The urgency of a block is set by the UAV after498

discovering an infested palm in a neighbouring block. The level of urgency499

for unchecked and skipped blocks are set as follows:500

• An unchecked or skipped block urgency is set to very urgent when a501

severely infested palm is discovered in its vicinity. In other words, if a502

palm is discovered to be severely infested, the the urgency level of its503

direct neighbours (i.e., the eight blocks surrounding the infested block)504

are set to very urgent.505

• An unchecked or skipped block urgency is set to urgent when a mildly506

infested palm is discovered in its vicinity.507

15

Urgency levels are useful, as they allow the UAVs to target the infested region508

mimicking the behaviour of bacterial swarming.509

A region is comprised of a row of blocks and the status of a region is510

dependent on the status of its blocks. The state changes as the UAVs explore511

blocks and regions and act accordingly. A region can be in one of the following512

states:513

• A region’s state is unchecked when all of it blocks are similarly unchecked.514

This is the initial state for all blocks and regions.515

• A region is pending when at least one block in the region is skipped or516

unchecked.517

• A region’s state is checked once all of its blocks have been checked for518

infestation.519

Figure 2 illustrates UTARB’s abstract system architecture. The figure shows520

a plantation area with a number of healthy and infested palms. Region A521

is marked as pending as it contains one skipped block that was skipped by522

the UAV since a consecutive percentage of blocks were labelled as healthy,523

i.e. the palms were not infested. In Region B, a UAV treated three mildly524

infested palms (B1, B3, B4) and one block was labelled as severe and await-525

ing elimination, thus, the region is marked as checked. Since block B2 was526

labelled as severe, all skipped and unchecked neighbouring blocks were tagged527

as very urgent, such as blocks C1 and C2. This indicates that priority should528

be given to blocks marked as very urgent. An unchecked block, C3, in Region529

C contains a mildly infested palm that is about to be treated by the UAV.530

Once the palm is injected with the pesticide, block C3 will be labelled as531

treated. Subsequently, all skipped and unchecked neighbouring blocks to C3532

were tagged as urgent (i.e. D3 and D4 in Region D).533

The wide objective of UTARB is to maximise the net throughput with534

minimal cost to the running time of the algorithm, which ensures the proba-535

bility of halting the spread of RPW infestation. For simplicity, it is assumed536

that several charging and pesticide filling stations are available throughout537

the plantation to ensure infinite battery lifetime and immediate pesticide re-538

fills. These are valid assumptions, as RPW DAT missions are not time critical539

and resources are usually easy to deploy and reach compared to search-and-540

rescue and military missions.541

16

Figure 2: The UTARB system abstract architecture.

5. Proposed Method542

The task allocation algorithm is the core component of the UTARB sys-543

tem. A task allocator component runs in each UAV to allow for autonomous544

distributed decision making when allocating tasks, i.e., which block should545

be assigned to which UAV and when. To achieve this, the mission time is546

divided into two phases: exploratory search and extensive search. The DAT547

mission begins by receiving specifications from the ground station so that548

each UAV can be initialised according to the mission requirements.549

5.1. Exploratory Search Algorithm550

Exploratory search is the first phase in the DAT mission. This phase551

implements the four main procedures that mimic the behaviour of mobile552

bacterial cells as they forage for food (see Section 3). These behaviours can553

be summarised in the exploratory search phase as follows:554

• Tumbling (random selection): The tumbling behaviour of bacteria is555

17

mimicked by UAVs at the start of the mission. In this case, UAVs556

select unchecked regions randomly.557

• Skipping: The skipping bacteria behaviour is mimicked in the algorithm558

by skipping unchecked blocks when a certain consecutive percentage559

(P%) of the blocks was healthy.560

• Swimming: After a region is selected by a UAV, the UAV scans the561

region’s block consecutively from left to right or right to left (depending562

on the block’s location). This procedures is similar to that of the563

swimming behaviour of bacteria as they respond to a stimulus.564

• Swarming: In the exploratory search algorithm, swarming is performed565

implicitly by UAVs without team communication. This is possible with566

the urgency labels attached to blocks. In this case, blocks in close567

vicinity to infested blocks attract UAVs due to the higher probability568

of infestation. This procedure closely mimics the swarming behaviour569

of foraging bacteria.570

These procedures are illustrated in the exploratory search flowchart in Figure571

3 and presented as pseudocode in Algorithm 1.572

As depicted in Figure 3 and Algorithm 1, the exploratory phases of the573

DAT mission commences with each UAV randomly selecting a block to ex-574

plore. The selection is typically based on the urgency level of a block, which575

is not the case when the mission first starts and the urgency is not yet de-576

termined. The UAVs check the infestation level of each block and respond577

accordingly. If a palm is infestation free, then the block is tagged as healthy.578

A mildly infested palm is treated by the UAV and tagged as such. Addi-579

tionally, the urgency level of the neighbouring blocks of the mildly infested580

palm is set to urgent. If a palm seems to be severely infested, then the UAV581

calls the ground station for help, and the block’s state is set to severe. The582

urgency level of all neighbouring blocks is also updated to very urgent.583

The skipping behaviour of bacteria is mirrored early on to determine if a584

certain consecutive percentage (P%) of the region has been scanned without585

infestation. This is because the likelihood of the remainder of the region being586

infestation free is relatively high, and thus, the remainder of the blocks in the587

region are skipped. If this is not the case, the bacterial swimming behaviour588

is adopted to move to the next unchecked block in the region. Once all blocks589

are checked in the region, the UAV will scan an unchecked region if available590

18

Start

Very urgent or urgent blocks?

P% consecutive blocks in current region ==
healthy && state of 100-P% == unchecked?

Next block in current region unchecked?

Unchecked region?

Unchecked blocks?

Change phase to
extensive search

End

Fly to nearest very
urgent or urgent block

State of all unchecked blocks
in the region = skipped

Fly to next block in the region

Fly to first or last
block in the region

Fly to nearest unchecked block

Check palm

Severe infestation?

Mild infestation?

Block state = healthy

Unchecked neighbour
block’s state = very urgent

Call for help
block state = severe

Unchecked neighbour
block’s state = urgent

Treat palm
block state = treated

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

Swarming

Skipping

Swimming

Tumbling

Figure 3: The UTARB system exploratory search flowchart.

19

Algorithm 1: The proposed algorithm’s exploratory search.
1 repeat
2 if there are any very urgent or urgent blocks then
3 Fly to nearest very urgent or urgent block //Swarming

4 else if state of P% consecutive block in current region is healthy and state of 100 − P% of
block is unchecked then

5 State of all unchecked blocks in the region = skipped //Skipping

6 else if there is an unchecked block in current region then
7 Fly to the next block in the region //Swimming

8 else if there is an unchecked region then
9 Fly to first or last block in the region //Tumbling

10 else if there are unchecked blocks then
11 Fly to nearest unchecked block
12 else if there are no unchecked blocks then
13 Change phase to extensive search

14 After selecting a block to detect, check palm
15 if palm is severely infested then
16 Unchecked neighbors’ blocks state = very urgent
17 Call for help
18 Block state = severe

19 else if the palm is mildly infested then
20 Unchecked neighbors’ blocks state = urgent
21 Treat palm
22 Block state = treated

23 else
24 Block state = healthy

25 until no unchecked blocks remain

(i.e., tumbling behaviour), or it randomly selects an unchecked block in other591

regions. This process continues until all blocks have been checked.592

Once a palm is reached via the swarming, skipping, swimming or tum-593

bling behaviour, it is then checked for infestation. This, in turn, determines594

the state of the palms and urgency levels for neighbouring palms. The ex-595

ploratory phase concludes with at least one skipped block. At this time, the596

UAVs switch to the extensive search phase.597

5.2. Extensive Search Algorithm598

In the extensive search cycle, skipped blocks are checked for infestation.599

The task allocation in the extensive search phase is significantly simpler (see600

Figure 4 and Algorithm 2). A greedy approach is utilised, where each UAV601

selects the nearest skipped block to check and tag according to the palm’s602

state.603

20

Start

Skipped blocks?

Fly to skipped block
and check palm

Severe infestation?

Mild infestation?

End

Call for help
block state = severe

Treat palm
block state = treated

yes

yes

no

yes

no

no

Figure 4: The UTARB system extensive search flowchart.

6. Evaluation604

The paper aims to introduce UTARB as a bio-inspired algorithms for DAT605

missions. The primary hypothesis is that relative to the benchmark algo-606

rithms, utilising UTARB in DAT missions will maximise the net throughput607

without cost to the running time of the algorithm at various problem scales608

in terms of the number of UAVs and infestations with a set mission time. A609

well controlled empirical evaluation framework was developed to evaluate the610

performance of the proposed algorithm and test the hypothesis. A flexible611

Java simulator (MASPlanes++) was built based on MASPlanes multi-UAV612

simulator [75] using Java SDK 1.6 and Maven 2.0. MASPlanes++ allows613

for dynamic illustrations of multi-agent missions that are composed of two614

groups of tasks, such as is the case for DAT missions. The simulations were615

conducted on a computer with an Intel Core i7 processor at 2.8 GHZ and616

paired with 16 GB of RAM operating at 1866 MHz.617

The evaluation framework considers the scalability of the proposed and618

benchmark algorithms to a larger number of UAVs, and the algorithms sus-619

tainability under larger number of infestations. For this purpose, two context620

parameters are controlled in the simulations to represent samples of DAT621

21

Algorithm 2: The proposed algorithm’s extensive search.
1 repeat
2 if there is a skipped block then
3 Fly to this block
4 Check palm
5 if palm is severely infested then
6 Call for help
7 Block state = severe

8 else if the palm is mildly infested then
9 Treat palm

10 Block state = treated

11 until all skipped blocks are detected

missions:622

• The number of UAVs was logarithmically increased to the power of 2 to623

illustrate the performance of the algorithms in six different fleet scales:624

2k̂, k = 2, ...7 UAVs.625

• The number of infested palms was similarly logarithmically increased626

to the power of 2 at a larger scales, where 12 values for the number of627

infested palms was considered: 2k̂, k = 1, ...12 infested palms.628

The performance of UTARB was evaluated against a total of three bench-629

mark algorithms (auction-based, max-sum, and LIAM), as well as OTA which630

was used as a baseline. The total number of developed scenarios was 288:631

number of heuristics (4) × number of values for the number of infestations632

(12) × number of values for the number of UAVs (6). Further simulations633

were carried out with the proposed algorithm at a larger plantation scale634

to include 72 additional simulations, with a total of 360 scenarios. Each635

scenario was executed 10 times to reduce the variability of the performance636

metrics.637

The OTA scheme is used as a baseline performance measure, which simply638

allocates UAVs to search the nearest block in the plantation area that has yet639

to be explored. If an infested palm is discovered, the UAV treats the palm640

and then resume its search for more infestations using the same strategy [27].641

A typical auction-based coordination strategy commands all UAVs to642

search the plantation area and report a list of infestations found and their643

locations at the earliest upcoming auction event. A cost function for each644

infested palm, as well as the UAV’s own ongoing tasks, is evaluated to place645

22

a bid. Infested palms are then assigned to the winning bidder by the auc-646

tioneer UAV. Once all infested palms are assigned to bid winners, the UAVs647

commence treating the infested palms and continue to do so until the next648

upcoming auction event occurs or the assigned treat tasks are completed.649

Once the tasks are completed and unchecked blocks still remain in the plan-650

tation area, the UAV will return to detect infestations until the next auction651

event occurs [76, 77].652

The third benchmark algorithm, max-sum coordination, is an alternative653

form of the auction-based strategy. The algorithm performs a detect cycle654

similar to that of the auction algorithm. For the treat cycle, the agents655

perform a specific repetition of a non-greedy distribution algorithm. This656

algorithm uses factoring to allocate all the infested palms between the agents657

in an optimal distribution. The algorithm also depends on specific costs658

such as those associated with the battery, capacity, and infestation level659

factors. After repeating the max-sum algorithm, each infested palm is re-660

assigned if new optimal agents are available to treat these infested palms. As661

with the auction algorithm, the agents then continue to conduct their new662

assignments until the next round of max-sum repetitions, or if no infested663

palm assignments remain, each agent is restored as a detect agent if the664

search area has not been completely explored.665

The last benchmark algorithm is LIAM, a recently proposed heuristic666

that is inspired by the behaviour of locusts. The swarm behaviour of locusts667

is well-known as millions can gather to form huge swarms, while also being668

able to exist in solitary. This role-changing behaviour presents a biological669

example of adaptive control in response to internal and external stimuli [27].670

LIAM was developed to mimic this behaviour and exploit the role changing671

property of locusts [17]. This is similar to the behaviour of agents in UTARB,672

where roles adapt to the environment. In the original paper, searcher UAVs673

start off as scout UAVs that follow a random search strategy at low speed and674

short distances. As all search areas are assigned, scouts change their roles675

to eagle UAVs where a guided search strategy is adopted at a medium speed676

for medium distances. Standby UAVs are not involved in the search process,677

however they are available for on-demand rescue with intermittent flights at678

high speed for long distances.The original LIAM was proposed for search and679

rescue mission and was thus adapted to DAT missions to comparatively assess680

the performance of UTARB. This is possible since LIAM is not limited to681

search and rescue missions and can be applied to other missions that involve682

dynamic allocation of two groups of task in multi-agent systems.683

23

Table 1: Parameter settings of the evaluation environment.

Parameters Settings

Plantation area size
100 × 100 regions
100 blocks per region
8 × 8 meters block size

Hotspots 10; radius: 200 meters, DOF:
2.5

Plane maximum speed 40 miles/hour
Block detect power consumption penalty 5 units of power
Block detect time penalty 10 seconds
Palm treatment power consumption penalty 10 units of power
Palm treatment time penalty 60 seconds
Idle power consumption 1 unit of power/300 millisec-

onds
Standard power consumption 1 unit of power/100 millisec-

onds

Two performance metrics were measured for each scenarios: net through-684

put and algorithm running time. The net throughput is used to measure the685

total number of detected and treated palms in the simulations. The second686

metric, algorithm running time, measures the time from when the simulation687

starts until its end. The latter measure is used to indicate the algorithm’s688

complexity. The standard deviation for both metrics was also calculated to689

indicate the extent of the deviation across the ten trials for each of the 360690

scenarios.691

The simulated plantation area is comprised of a number of infested palms,692

where the locations, infestations level, and scattering were randomised to693

best simulate representative samples in all the experiments. The location694

of the infested palms were randomly generated using multivariate normal695

distributions that simulate hotspots of a specified radius. These hotspots696

showcase infested palms that are clustered together and are more likely to697

support the spread of RPW infestation. Several variables were generated698

and stored as test scenarios to ensure the repeatability of the testing process.699

This includes: number of infested palms, infestations level, palm locations,700

and the number of UAVs. At the start of each simulation, the initial locations701

of the UAVs is randomly generated to introduce variability and imitate real-702

world scenarios.703

24

In the simulation, the plantation area was modelled as an area of size 100704

× 100 regions (with 8 × 8 meter blocks). The maximum UAV speed was705

40 miles/hour. The power consumption was uniform across all UAVs and706

power is assumed infinite for all. However, penalties were applied every time707

a block was explored (5 units of power) and a palm was treated (10 units708

of power). Time penalties of 10 and 60 seconds were also assumed when709

exploring a block and treating an infested palm, respectively. The power710

consumption during idle time and standard operational time was 1 unit of711

power/300 milliseconds and 1 unit of power/100 milliseconds. Hotspots are712

randomised locations simulated with a specific radius using a multivariate713

normal distribution, with a total of ten 200-meter-radius hotspots. Table714

1 displays the parameter settings of the simulation environment that are715

utilised by UTARB and the benchmark algorithms (OTA, auction-based,716

max-sum, and LIAM). Further simulations were carried out for UTARB in717

a plantation area that was modelled as an area of size 1000 × 1000 regions718

with 8 × 8 meter blocks. The rest of the environment’s parameters were719

maintained as presented in Table 1.720

The MASPlanes multi-UAV simulator sustains defaults values for the721

auction-based and max-sum algorithms which were suited to the scenarios722

simulated in this paper. In the auction-based algorithm, auctions were con-723

ducted every 0.5 seconds and bids placed by UAVs are dependent on the724

auctioned task’s cost. For the max-sum algorithms, the number of max-sum725

iterations to the point of reaching a decision was set at 9 iterations. The726

number of iterations between max-sum cycles was set at 10 iterations. Co-727

ordinations between the UAVs in the max-sum algorithm was via workload728

auctions. LIAM maintains several roles to mimic the behaviour of locusts:729

Scouts, Eagles, and Standby UAVs. LIAM introduces penalties for conver-730

sion from one to another, primarily a loss of approximately 44% of the battery731

capacity to convert a Scout UAV to Eagle UAV and approximately 8% to732

convert an Eagle UAV to Standby UAV. These roles and their parameters733

are described in the original paper and were utilised for the simulations [17].734

For each scenario, the experiment was repeated ten times. The results735

were then averaged and presented in lin-log graphs defined by a logarithmic736

base-2 scale, with the number of UAVs on the x-axis, and with a linear scale737

for the performance measures on the y-axis (net throughput and algorithm’s738

running time). Lin-log graphs employing a logarithmic axis allow for simulta-739

neous comparisons of data points drawn from a wide range of UAVs (4-128).740

The standard deviations was also collected for the ten trials to present the741

25

spread out from the computed average.742

7. Results and Discussion743

The performance of UTARB is analysed in this section on DAT mis-744

sions against four benchmark algorithms: OTA strategy, auction algorithm,745

max-sum coordination, and LIAM. The following subsections examine the746

performance of the four algorithms considering the two performance met-747

rics: net throughput and algorithm running time. The analysis is conducted748

separately for each of the metrics.749

7.1. Net Throughput750

The net throughput of the system was computed by collecting the total751

number of detected and treated palms in each scenario. The percentage of752

detected and treated palms is plotted against the number of UAVs as the753

number of infestations is increased exponentially from 2 to 4,096 infestations754

(see Figure 5). The different scenarios are presented using radar graphs,755

where the axis and scale of 0 to 100% represent the net throughput, and756

the UAV fleet size (4-128) is shown on a separate axis. Figure 5 shows 12757

subfigures, each of which displaying the net throughput for the UTARB,758

OTA, auction, max-sum, and LIAM algorithms. Because of the steep in-759

crease in the runtime performance of the auction and max-sum strategies,760

the algorithms halted at an early stage (see subfigures 5i -5l). The standard761

deviation for the 10 trials collected for each algorithm was also computed762

and presented in Table 2.763

With only two infested palms in the first scenario (see subfigures 5a), all764

five algorithms achieved a net throughput of 100% as different UAV fleet765

sizes were deployed (i.e., all infested palms were detected and treated for766

infestation). A similar performance can be observed with only four infesta-767

tions (see subfigure 5a); however, max-sum begins to lag behind, as it was768

only able to discover three of the four infested palms. As more infestations769

are spread throughout the plantation, the superior performance of the pro-770

posed UTARB algorithm becomes apparent. In all scenarios, UTARB was771

able to detect and treat all infested palms within the mission parameters at772

increasing fleet sizes and number of infested palms. Of the four benchmarks,773

the performance of LIAM was closest to that of UTARB with infestations774

spreading to no more than 512 palms (see subfigure 5i). As the number of775

infested palms increases to 1,024 the performance of LIAM falters with only776

26

4 UAVs in its fleet (see subfigure 5j). The performance continues to decline777

with 2,048 and 4,096 UAVs and more UAVs (see subfigures 5k and 5l).778

Although the two benchmark algorithms, auction and max-sum, achieved779

almost identical performances, max-sum proved to be less robust to increas-780

ing number of UAVs in a fleet and number of infestations (see subfigures 5i781

-5l). At 1,024 infestations, the performance of the auction-based algorithm782

begins to deteriorate as the fleet size increase to 128 UAVs. The algorithm783

progressively worsens as the number of infestations increases to 2,048 and784

4,096 and halts with even fewer agents: 32 UAVs. The performance of max-785

sum coordination proved to be even poorer, as it halted earlier than the786

auction algorithm at only 512 infested palms in the plantation area and 32787

UAVs. The algorithm failed to produce more results in subsequent scenarios788

as well, with fewer UAVs in the fleet. The deterioration of the algorithms’789

performances is likely because of the large number of iterations that are per-790

formed by the auction and max-sum algorithms. This, of course, left the791

system unable to handle the increasing number of tasks.792

At only a few infestations, the OTA strategy and LIAM perform well793

compared to the other two benchmark algorithms. Whereas the auction-794

based and max-sum coordinations halted as infestations grew in number,795

OTA and LIAM were able to progress and detect infestations. However, the796

percentage of treated palms clearly diminishes when only a few UAVs are797

deployed for most scenarios for OTA (see subfigures 5d-5l). This was also the798

case for the auction and max-sum algorithms, but to a relatively lower extent,799

as the two algorithms produced better net throughput than OTA. LIAM, on800

the other hand, produced significantly higher net throughput compared to801

the other benchmarks with reasonable runtime performance. At 2,048 and802

4,096 infestations the runtime performance of LIAM lies in contrast to that of803

OTA, where the increasing number of UAVs improved LIAM’s performance.804

Nevertheless, unlike the four benchmark strategies, the proposed UTARB805

algorithm’s net throughput was not affected by the increase in the number806

of UAVs. This demonstrates its ability to conduct the mission efficiently and807

economically with fewer UAVs.808

Additional simulations were carried out with UTARB to inspect its per-809

formance in a larger plantation area (1000 × 1000 regions) with logarithmi-810

cally increasing UAV fleets and infestations. Similar to what was observed811

in the smaller area, the UTARB algorithm was able to detect and treat all812

infestations in this larger plantation. This shows that the performance of813

UTARB is scalable to larger plantations, while still maintaining its economic814

27

advantage.815

7.2. Runtime Performance816

The runtime performances of the UTARB, OTA, auction, max-sum, and817

LIAM algorithms were recorded for each of the simulated scenarios. The re-818

sults of the average runtime performances and standard deviation are shown819

in Table 3 and illustrated in Figure 6 as lin-log graphs as the number of infes-820

tations grew from 2 to 4,096 infested palms against the number of UAVs. The821

dashed lines in the figures represent values and lines that extend sharply be-822

yond the values displayed in the vertical axis. Therefore, Table 3 is included823

to report these values. As previously indicated in the previous section and824

Figure 5, the auction-based and max-sum algorithms halted in scenarios with825

a large number of infested palms because of the large computational over-826

head.827

The results show that UTARB outperformed the other benchmark algo-828

rithms in this performance measure as well. This is especially the case with829

larger infestations and a larger number of UAVs (see subfigures 6j-6l). It is830

important to note that the performance of the proposed algorithm and OTA831

was similar in this metric when only a few UAVs were deployed at lower in-832

festation levels (up to 16 infested palms). However, the runtime performance833

of the OTA algorithm steadily increased with the number of UAVs in the834

fleet and number of infested palms. The number of deployed UAVs in the835

scenarios had minimal impact on the runtime performance of UTARB, where836

only slight variations occurred across the scenarios. This marginal impact837

on the performance of UTARB at the different levels of infestation and fleet838

size demonstrates the algorithm’s capability of economically completing the839

DAT mission with fewer UAVs.840

LIAM’s running time was relatively close to that of UTARB and OTA841

at lower levels of infestations. Similar to what was observed for the OTA842

algorithm, the running time of LIAM steadily grows as the number of in-843

festations was increased from 2 to 4,096 infested palms. At lower levels of844

infestations (2-8 infested palms), the running time of OTA is almost twice as845

fast as that of LIAM. However, this number starts to significantly decrease846

as the number of infestations grow with LIAM outperforming the OTA algo-847

rithm. Similar to UTARB, the variations in running time for LIAM as the848

number of UAVs was increased was relatively small. However, as the running849

time of the UTARB algorithm increased those for LIAM begin to decrease850

as the fleet size grows for higher levels of infestations. This shows that while851

28

UTARB is able to sustain its running time with smaller and larger fleets,852

LIAM’s performance is significantly better with larger fleets of UAVs.853

The auction and max-sum strategy required considerably more time to de-854

tect infestation in the DAT mission than did the proposed algorithm and the855

baseline. The runtime of the auction and max-sum algorithms significantly856

increased, taking up to 16 and 20 hours for 4,096 infestations, respectively.857

For both strategies, the system halted before showing meaningful results858

starting at 512 infestations and above (see subfigures 6i-6l). In subfigure 6g-859

6l, the lines representing the runtime performance of the max-sum algorithm860

extend far beyond the x-axis because of the large disparity between its values861

and those of the other algorithms as the number of infestations increased.862

This was also the case for the auction algorithm as the number of UAVs was863

increased in the scenarios. These large variations for both algorithms are864

likely because of the amplified complexity as more UAVs were introduced.865

The running time of the UTARB algorithm was further examined in a866

larger plantation area of 1000 × 1000 regions (with 8 × 8 meter blocks) as867

the number of UAVs were increased along with the number of infested palms868

(see Figure 7). Table 4 shows UTARB’s running time for a small and a869

large plantation area. The findings show that UTARB’s running time in the870

bigger area is understandably larger than that of the smaller area. UTARB’s871

running time as the number of UAVs increases almost doubles for the larger872

area and variations are slightly bigger than those observed in the smaller873

area. In fact, in a larger area, UTARB appears to perform better with fewer874

UAVs. This finding continues to demonstrate the economic value of UTARB875

as it is able to complete the DAT mission with fewer UAVs.876

8. Conclusions877

In DAT missions, the deployment of multiple UAVs requires the proper al-878

location of tasks to efficiently detect and treat pest infestations. The MUTA879

problem is addressed in this paper with UTARB, a bacteria-inspired problem-880

based heuristic. UTARB’s computational parameters are simple and are mea-881

sured by each UAV locally. This gives each UAV the capability of making882

independent task allocation decisions to ensure autonomy and low running883

times. A simulator was built to thoroughly assess the performance of the884

proposed bio-inspired heuristic against three well-established benchmark al-885

gorithms and a recently proposed problem-dependent bio-inspired algorithm.886

The experimental findings demonstrate that using UTARB for task alloca-887

29

tion in DAT missions considerably increased the percentage of detected and888

treated RPW infested palms and reduced the overall runtime complexity un-889

der different scales of fleet size and number of infestations. The results also890

highlighted the economic value of UTARB, as fewer UAVs were required to891

quickly detect and treat infestations and halt their spread.892

Although UTARB was introduced within the context of DAT missions, it893

is by no means limited to this application domain. The algorithm can poten-894

tially be applied in missions such as search-and-monitor missions for goods895

and items in factories and warehouse and survey-and-treatment missions for896

livestock, crops, and forest protection. The work in this paper opens up897

several interesting research directions. The proposed UTARB algorithm out-898

performed conventional algorithms, and we plan to assess it behaviours when899

compared to well-established bio-inspired algorithms. Additionally, only in-900

dependent tasks were considered; we intend to explore the task allocation901

problem with dependent tasks and workflows. Furthermore, this work was902

done as a part of a national project aimed at combating RPW infestation903

in Saudi Arabia and thus will be deployed in a field setting to assess the904

performance of the algorithm.905

Acknowledgements906

This work was supported by Saudi Aramco, under the ”Saudi Aramco907

Ibn Khaldun Fellowship for Saudi Women,” in partnership with the Center908

for Clean Water and Clean Energy at MIT, and the International Scientific909

Partnership Program ISPP at King Saud University.910

Declarations of interest911

The authors declare no competing interest.912

References913

[1] K. Tofailli, et al., The early detection of red palm weevil: a new method,914

Acta horticulturae 882 (2010) 441–449.915

[2] Ó. Dembilio, J. A. Jaques, Biology and management of red palm weevil,916

in: Sustainable Pest Management in Date Palm: Current Status and917

Emerging Challenges, Springer, 2015, pp. 13–36.918

30

[3] A. Muhammad, Y. Fang, Y. Hou, Z. Shi, The gut entomotype of red919

palm weevil rhynchophorus ferrugineus olivier (coleoptera: Dryophthori-920

dae) and their effect on host nutrition metabolism, Frontiers in micro-921

biology 8 (2017) 2291.922

[4] A. Hetzroni, V. Soroker, Y. Cohen, Toward practical acoustic red palm923

weevil detection, Computers and electronics in agriculture 124 (2016)924

100–106.925

[5] V. Soroker, P. Suma, A. La Pergola, V. N. Llopis, S. Vacas, Y. Cohen,926

Y. Cohen, V. Alchanatis, P. Milonas, O. Golomb, et al., Surveillance927

techniques and detection methods for rhynchophorus ferrugineus and928

paysandisia archon, Handbook of Major Palm Pests: Biology and Man-929

agement (2017) 209–232.930

[6] P. Bilski, P. Bobiński, A. Krajewski, P. Witomski, Detection of wood931

boring insects? larvae based on the acoustic signal analysis and the932

artificial intelligence algorithm, Archives of Acoustics 42 (1) (2017) 61–933

70.934

[7] S. Baena, J. Moat, O. Whaley, D. S. Boyd, Identifying species from the935

air: Uavs and the very high resolution challenge for plant conservation,936

PloS one 12 (11) (2017) e0188714.937

[8] R. Chen, T. Chu, J. A. Landivar, C. Yang, M. M. Maeda, Monitoring938

cotton (gossypium hirsutum l.) germination using ultrahigh-resolution939

uas images, Precision Agriculture 19 (1) (2018) 161–177.940

[9] R. Näsi, E. Honkavaara, M. Blomqvist, P. Lyytikäinen-Saarenmaa,941

T. Hakala, N. Viljanen, T. Kantola, M. Holopainen, Remote sensing942

of bark beetle damage in urban forests at individual tree level using a943

novel hyperspectral camera from uav and aircraft, Urban Forestry &944

Urban Greening 30 (2018) 72–83.945

[10] W. Xiong, D. W. Ho, J. Cao, W. X. Zheng, Backstepping approach to946

a class of hierarchical multi-agent systems with communication distur-947

bance, IET Control Theory & Applications 10 (9) (2016) 981–988.948

[11] F. Ye, W. Zhang, L. Ou, G. Zhang, Optimal disturbance rejection con-949

trollers design for synchronised output regulation of time-delayed multi-950

31

agent systems, IET Control Theory & Applications 11 (7) (2017) 1053–951

1062.952

[12] E. Nunes, M. Manner, H. Mitiche, M. Gini, A taxonomy for task allo-953

cation problems with temporal and ordering constraints, Robotics and954

Autonomous Systems 90 (2017) 55–70.955

[13] J. Y. Leung, Handbook of scheduling: algorithms, models, and perfor-956

mance analysis, CRC Press, 2004.957

[14] M. Pujol-Gonzalez, J. Cerquides, A. Farinelli, P. Meseguer, J. A.958

Rodriguez-Aguilar, Efficient inter-team task allocation in robocup res-959

cue, in: Proceedings of the 2015 International Conference on Au-960

tonomous Agents and Multiagent Systems, International Foundation for961

Autonomous Agents and Multiagent Systems, 2015, pp. 413–421.962

[15] B. Niu, F. T. Chan, T. Xie, Y. Liu, Guided chemotaxis-based bacterial963

colony algorithm for three-echelon supply chain optimisation, Interna-964

tional Journal of Computer Integrated Manufacturing 30 (2-3) (2017)965

305–319.966

[16] J. Tang, K. Zhu, H. Guo, C. Gong, C. Liao, S. Zhang, Using auction-967

based task allocation scheme for simulation optimization of search and968

rescue in disaster relief, Simulation Modelling Practice and Theory 82969

(2018) 132–146.970

[17] H. A. Kurdi, E. Aloboud, M. Alalwan, S. Alhassan, E. Alotaibi,971

G. Bautista, J. P. How, Autonomous task allocation for multi-uav sys-972

tems based on the locust elastic behavior, Applied Soft Computing.973

[18] F. R. Kschischang, B. J. Frey, H.-A. Loeliger, Factor graphs and the974

sum-product algorithm, IEEE Transactions on information theory 47 (2)975

(2001) 498–519.976

[19] M. Pujol-Gonzalez, J. Cerquides, A. Farinelli, P. Meseguer, J. A.977

Rodriguez-Aguilar, Binary max-sum for multi-team task allocation in978

robocup rescue.979

[20] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, N. R. Jennings, Decen-980

tralized coordination in robocup rescue, The Computer Journal 53 (9)981

(2010) 1447–1461.982

32

[21] A. Corrêa, Binary max-sum for clustering-based task allocation in the983

rmasbench platform, in: Evolutionary Computation (CEC), 2016 IEEE984

Congress on, IEEE, 2016, pp. 1046–1053.985

[22] E. Schneider, E. I. Sklar, S. Parsons, A. T. Özgelen, Auction-based task986

allocation for multi-robot teams in dynamic environments, in: Confer-987

ence Towards Autonomous Robotic Systems, Springer, 2015, pp. 246–988

257.989

[23] L. Wang, M. Liu, M. Q.-H. Meng, A hierarchical auction-based mech-990

anism for real-time resource allocation in cloud robotic systems, IEEE991

transactions on cybernetics 47 (2) (2017) 473–484.992

[24] Y. Ma, B. Li, Y. Zhang, J. Zhu, Efficient auction mechanism with group993

price for resource allocation in clouds, in: Advanced Cloud and Big994

Data (CBD), 2014 Second International Conference on, IEEE, 2014, pp.995

85–92.996

[25] P. Li, H. Duan, Bio-inspired computation algorithms, in: Bio-inspired997

Computation in Unmanned Aerial Vehicles, Springer, 2014, pp. 35–69.998

[26] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a999

colony of cooperating agents, IEEE Transactions on Systems, Man, and1000

Cybernetics, Part B (Cybernetics) 26 (1) (1996) 29–41.1001

[27] H. Kurdi, J. How, G. Bautista, Bio-inspired algorithm for task allo-1002

cation in multi-uav search and rescue missions, in: AIAA Guidance,1003

Navigation, and Control Conference, 2016, p. 1377.1004

[28] Y. Liu, K. Passino, Biomimicry of social foraging bacteria for distributed1005

optimization: models, principles, and emergent behaviors, Journal of1006

optimization theory and applications 115 (3) (2002) 603–628.1007

[29] S. D. Muller, J. Marchetto, S. Airaghi, P. Kournoutsakos, Optimiza-1008

tion based on bacterial chemotaxis, IEEE transactions on Evolutionary1009

Computation 6 (1) (2002) 16–29.1010

[30] X. Liu, L. Huang, X. Chang, The bacteria foraging algorithm for global1011

optimization based on pheromone, in: Service Systems and Service Man-1012

agement (ICSSSM), 2015 12th International Conference on, IEEE, 2015,1013

pp. 1–7.1014

33

[31] S. Devi, M. Geethanjali, Application of modified bacterial foraging op-1015

timization algorithm for optimal placement and sizing of distributed1016

generation, Expert Systems with Applications 41 (6) (2014) 2772–2781.1017

[32] S. Abd-Elazim, E. Ali, A hybrid particle swarm optimization and bacte-1018

rial foraging for power system stability enhancement, Complexity 21 (2)1019

(2015) 245–255.1020

[33] A. Nasir, M. O. Tokhi, Novel metaheuristic hybrid spiral-dynamic1021

bacteria-chemotaxis algorithms for global optimisation, Applied Soft1022

Computing 27 (2015) 357–375.1023

[34] B. Turanoğlu, G. Akkaya, A new hybrid heuristic algorithm based on1024

bacterial foraging optimization for the dynamic facility layout problem,1025

Expert Systems with Applications 98 (2018) 93–104.1026

[35] W.-w. Li, H. Wang, Z.-j. Zou, J.-x. QIAN, Function optimization1027

method based on bacterial colony chemotaxis, Journal of Circuits and1028

Systems 10 (1) (2005) 58–63.1029

[36] B. Xing, W.-J. Gao, Bacteria inspired algorithms, in: Innovative Com-1030

putational Intelligence: A Rough Guide to 134 Clever Algorithms,1031

Springer, 2014, pp. 21–38.1032

[37] C. Anandaraman, A. V. M. Sankar, R. Natarajan, A new evolutionary1033

algorithm based on bacterial evolution and its application for scheduling1034

a flexible manufacturing system, Jurnal Teknik Industri 14 (1) (2012)1035

1–12.1036

[38] P. Cortés, J. M. Garćıa, J. Muñuzuri, L. Onieva, Viral systems: A new1037

bio-inspired optimisation approach, Computers & Operations Research1038

35 (9) (2008) 2840–2860.1039

[39] J. J. Bartholdi III, L. K. Platzman, Heuristics based on spacefilling1040

curves for combinatorial problems in euclidean space, Management Sci-1041

ence 34 (3) (1988) 291–305.1042

[40] S. Al-Megren, H. Kurdi, M. F. Aldaood, A multi-uav task allocation1043

algorithm combatting red palm weevil infestation, Procedia Computer1044

Science 141 (2018) 88–95.1045

34

[41] A. Farinelli, A. Rogers, A. Petcu, N. R. Jennings, Decentralised coor-1046

dination of low-power embedded devices using the max-sum algorithm,1047

in: Proceedings of the 7th international joint conference on Autonomous1048

agents and multiagent systems-Volume 2, International Foundation for1049

Autonomous Agents and Multiagent Systems, 2008, pp. 639–646.1050

[42] F. M. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, N. R. Jennings, De-1051

ploying the max-sum algorithm for decentralised coordination and task1052

allocation of unmanned aerial vehicles for live aerial imagery collection,1053

in: Robotics and Automation (ICRA), 2012 IEEE International Confer-1054

ence on, IEEE, 2012, pp. 469–476.1055

[43] F. M. Delle Fave, A. Farinelli, A. Rogers, N. Jennings, A methodology1056

for deploying the max-sum algorithm and a case study on unmanned1057

aerial vehicles.1058

[44] S. D. Ramchurn, T. D. Huynh, F. Wu, Y. Ikuno, J. Flann, L. Moreau,1059

J. E. Fischer, W. Jiang, T. Rodden, E. Simpson, et al., A disaster re-1060

sponse system based on human-agent collectives, Journal of Artificial1061

Intelligence Research 57 (2016) 661–708.1062

[45] H.-L. Choi, L. Brunet, J. P. How, Consensus-based decentralized auc-1063

tions for robust task allocation, IEEE transactions on robotics 25 (4)1064

(2009) 912–926.1065

[46] M. Elango, S. Nachiappan, M. K. Tiwari, Balancing task allocation in1066

multi-robot systems using k-means clustering and auction based mech-1067

anisms, Expert Systems with Applications 38 (6) (2011) 6486–6491.1068

[47] S. Binitha, S. S. Sathya, et al., A survey of bio inspired optimization1069

algorithms, International Journal of Soft Computing and Engineering1070

2 (2) (2012) 137–151.1071

[48] A. Jevtic, A. Gutiérrez, D. Andina, M. Jamshidi, Distributed bees al-1072

gorithm for task allocation in swarm of robots, IEEE Systems Journal1073

6 (2) (2012) 296–304.1074

[49] M. Akbari, H. Rashidi, A multi-objectives scheduling algorithm based on1075

cuckoo optimization for task allocation problem at compile time in het-1076

erogeneous systems, Expert Systems with Applications 60 (2016) 234–1077

248.1078

35

[50] T. Zheng, L. Yang, Optimal ant colony algorithm based multi-robot task1079

allocation and processing sequence scheduling, in: Intelligent Control1080

and Automation, 2008. WCICA 2008. 7th World Congress on, IEEE,1081

2008, pp. 5693–5698.1082

[51] L. Wang, Z. Wang, S. Hu, L. Liu, Ant colony optimization for task1083

allocation in multi-agent systems, China Communications 10 (3) (2013)1084

125–132.1085

[52] H. Wu, H. Li, R. Xiao, J. Liu, Modeling and simulation of dynamic1086

ant colony?s labor division for task allocation of uav swarm, Physica A:1087

Statistical Mechanics and its Applications 491 (2018) 127–141.1088

[53] M. Turduev, M. Kirtay, P. Sousa, V. Gazi, L. Marques, Chemical con-1089

centration map building through bacterial foraging optimization based1090

search algorithm by mobile robots, in: Systems Man and Cybernetics1091

(SMC), 2010 IEEE International Conference on, IEEE, 2010, pp. 3242–1092

3249.1093

[54] M. Turduev, G. Cabrita, M. Kırtay, V. Gazi, L. Marques, Experimental1094

studies on chemical concentration map building by a multi-robot sys-1095

tem using bio-inspired algorithms, Autonomous agents and multi-agent1096

systems 28 (1) (2014) 72–100.1097

[55] S. Sharma, C. Sur, A. Shukla, R. Tiwari, Multi robot path planning for1098

known and unknown target using bacteria foraging algorithm, in: Inter-1099

national Conference on Swarm, Evolutionary, and Memetic Computing,1100

Springer, 2014, pp. 674–685.1101

[56] M. A. Hossain, I. Ferdous, Autonomous robot path planning in dynamic1102

environment using a new optimization technique inspired by bacterial1103

foraging technique, Robotics and Autonomous Systems 64 (2015) 137–1104

141.1105

[57] B. Yang, Y. Ding, Y. Jin, K. Hao, Self-organized swarm robot for tar-1106

get search and trapping inspired by bacterial chemotaxis, Robotics and1107

Autonomous Systems 72 (2015) 83–92.1108

[58] J. Cao, M. Li, H. Wang, L. Huang, Y. Zhao, An improved bacterial1109

foraging algorithm with cooperative learning for eradicating cancer cells1110

36

using nanorobots, in: Robotics and Biomimetics (ROBIO), 2016 IEEE1111

International Conference on, IEEE, 2016, pp. 1141–1146.1112

[59] F. Dressler, O. B. Akan, A survey on bio-inspired networking, Computer1113

Networks 54 (6) (2010) 881–900.1114

[60] R. S. Xavier, N. Omar, L. N. de Castro, Bacterial colony: Information1115

processing and computational behavior, in: Nature and biologically in-1116

spired computing (NaBIC), 2011 Third World Congress on, IEEE, 2011,1117

pp. 439–443.1118

[61] H. Duan, P. Li, Bio-inspired computation in unmanned aerial vehicles,1119

Springer, 2014.1120

[62] A. Afshar, F. Massoumi, A. Afshar, M. A. Mariño, State of the art1121

review of ant colony optimization applications in water resource man-1122

agement, Water resources management 29 (11) (2015) 3891–3904.1123

[63] M. Iqbal, M. Naeem, A. Ahmed, M. Awais, A. Anpalagan, A. Ahmad,1124

Swarm intelligence based resource management for cooperative cognitive1125

radio network in smart hospitals, Wireless Personal Communications1126

98 (1) (2018) 571–592.1127

[64] M. F. Allawi, O. Jaafar, M. Ehteram, F. M. Hamzah, A. El-Shafie,1128

Synchronizing artificial intelligence models for operating the dam and1129

reservoir system, Water Resources Management (2018) 1–17.1130

[65] Y. Chen, M. Hu, A swarm intelligence based distributed decision ap-1131

proach for transactive operation of networked building clusters, Energy1132

and Buildings 169 (2018) 172–184.1133

[66] V. E. Karpov, V. B. Tarassov, Synergetic artificial intelligence and so-1134

cial robotics, in: International Conference on Intelligent Information1135

Technologies for Industry, Springer, 2017, pp. 3–15.1136

[67] D. Hein, A. Hentschel, T. A. Runkler, S. Udluft, Particle swarm op-1137

timization for model predictive control in reinforcement learning envi-1138

ronments, in: Critical Developments and Applications of Swarm Intelli-1139

gence, IGI Global, 2018, pp. 401–427.1140

37

[68] I. BoussäıD, J. Lepagnot, P. Siarry, A survey on optimization meta-1141

heuristics, Information Sciences 237 (2013) 82–117.1142

[69] K. M. Passino, Bacterial foraging optimization, in: Innovations and1143

Developments of Swarm Intelligence Applications, IGI Global, 2012, pp.1144

219–234.1145

[70] M. A. Munoz, S. K. Halgamuge, W. Alfonso, E. F. Caicedo, Simplifying1146

the bacteria foraging optimization algorithm, in: Evolutionary Compu-1147

tation (CEC), 2010 IEEE Congress on, IEEE, 2010, pp. 1–7.1148

[71] Q.-Y. Zhao, M. Li, J. Luo, Y. Li, L. Dou, A nanorobot swarming algo-1149

rithm based on bacteria foraging optimization to eradicate cancer cells,1150

in: Robotics and Biomimetics (ROBIO), 2014 IEEE International Con-1151

ference on, IEEE, 2014, pp. 2599–2604.1152

[72] D. B. Kearns, A field guide to bacterial swarming motility, Nature Re-1153

views Microbiology 8 (9) (2010) 634.1154

[73] H. A. Kurdi, Personal mobile grids with a honeybee inspired resource1155

scheduler, Ph.D. thesis, Brunel University School of Engineering and1156

Design PhD Theses (2010).1157

[74] R. G. Askin, C. R. Standridge, Modeling and analysis of manufacturing1158

systems, Vol. 29, Wiley New York, 1993.1159

[75] M. Pujol-Gonzalez, J. Cerquides, P. Meseguer, Mas-planes: a multi-1160

agent simulation environment to investigate decentralised coordination1161

for teams of uavs, in: Proceedings of the 2014 international conference on1162

Autonomous agents and multi-agent systems, International Foundation1163

for Autonomous Agents and Multiagent Systems, 2014, pp. 1695–1696.1164

[76] P. Segui-Gasco, H.-S. Shin, A. Tsourdos, V. Segui, A combinatorial auc-1165

tion framework for decentralised task allocation, in: Globecom Work-1166

shops (GC Wkshps), 2014, IEEE, 2014, pp. 1445–1450.1167

[77] L. Johnson, H.-L. Choi, J. P. How, The hybrid information and plan con-1168

sensus algorithm with imperfect situational awareness, in: Distributed1169

Autonomous Robotic Systems, Springer, 2016, pp. 221–233.1170

38

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(a) 2 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(b) 4 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(c) 8 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(d) 16 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(e) 32 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(f) 64 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(g) 128 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(h) 256 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(i) 512 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(j) 1,024 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(k) 2,048 infested palms.

4

816

32

64

128

UTARB

OTA

Auction

Max-Sum

LIAM

 0 20 40 60 80 100

(l) 4,096 infested palms.

Figure 5: Net throughput as the number of infested palms increases from 2 to 4,096 in the
plantation area.

39

Table 2: Net throughput standard deviation for total number of detected and treated
palms (presented as a percentage %) trials as the number of infestations increases from 2
to 4,096 in the plantation area.

Infestations UAVs UTARB OTA Auction Max-Sum LIAM

2

4 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
32 0.00 0.00 0.00 0.00 0.00
64 0.00 0.00 0.00 0.00 0.00
128 0.00 0.00 0.00 0.00 0.00

4

4 0.00 0.00 0.00 3.14 0.00
8 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
32 0.00 0.00 0.00 0.00 0.00
64 0.00 0.00 0.00 0.00 0.00
128 0.00 0.00 0.00 0.00 0.00

8

4 0.00 3.70 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
32 0.00 0.00 0.00 0.00 0.00
64 0.00 0.00 0.00 0.00 0.00
128 0.00 0.00 0.00 0.00 0.00

16

4 0.00 3.21 4.85 5.43 0.00
8 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
32 0.00 0.00 0.00 0.00 0.00
64 0.00 0.00 0.00 0.00 0.00
128 0.00 0.00 0.00 0.00 0.00

32

4 0.00 4.10 1.81 3.89 0.00
8 0.00 1.21 2.99 2.29 0.00
16 0.00 0.00 0.00 0.00 0.00
32 0.00 0.00 0.98 0.00 0.00
64 0.00 0.00 0.00 0.00 0.00
128 0.00 0.00 2.41 0.00 0.00

64

4 0.00 5.66 4.34 5.96 0.00
8 0.00 0.96 4.71 5.57 0.00
16 0.00 0.00 2.05 2.21 0.00
32 0.00 0.00 5.82 1.83 0.00
64 0.00 0.00 3.32 5.61 0.00
128 0.00 0.00 2.57 0.00 0.00

128

4 0.00 5.92 3.09 0.58 0.00
8 0.00 1.15 3.27 1.99 0.00
16 0.00 5.70 5.48 4.46 0.00
32 0.00 0.00 0.96 4.04 0.00
64 0.00 0.00 3.39 1.72 0.00
128 0.00 0.00 1.73 2.26 0.00

256

4 0.00 3.20 2.18 2.35 1.00
8 0.00 0.31 3.10 2.35 0.00
16 0.00 1.60 1.97 4.94 0.00
32 0.00 4.48 5.71 1.83 0.00
64 0.00 3.03 2.16 0.38 0.00
128 0.00 1.63 0.00 0.00 0.00

512

4 0.00 2.03 0.17 2.16 1.60
8 0.00 4.84 3.48 0.60 0.00
16 0.00 5.69 4.92 2.29 0.00
32 0.00 4.96 2.14 / 0.00
64 0.00 5.67 0.00 / 0.00
128 0.00 4.70 0.00 / 0.50

1,024

4 0.00 2.89 4.67 1.92 2.10
8 0.00 2.05 2.16 3.33 1.10
16 0.00 2.38 5.47 / 0.00
32 0.00 1.66 0.77 / 0.00
64 0.00 5.89 0.00 / 0.00
128 0.00 2.07 / / 0.00

2,048

4 0.00 3.55 0.33 3.72 2.31
8 0.00 2.61 1.47 2.19 1.20
16 0.00 2.19 0.67 / 0.00
32 0.00 3.34 / / 0.00
64 0.00 2.92 / / 0.00
128 0.00 3.18 / / 0.00

4,096

4 0.00 2.29 3.22 0.72 2.80
8 0.00 1.61 3.62 / 3.11
16 0.00 2.21 2.25 / 0.90
32 0.00 5.23 / / 1.20
64 0.00 1.42 / / 1.31
128 0.00 0.35 / / 0.00

40

Table 3: Average runtime performance and standard deviation (h:mm:ss) as the number
of infestations increases from 2 to 4,096 in the plantation area.

Infestations UAVs UTARB OTA Auction Max-Sum LIAM

2

4 0:00:15 (0:00:03) 0:00:26 (0:00:11) 0:02:07 (0:00:47) 0:02:58 (0:00:09) 0:01:01 (0:00:17)
8 0:00:16 (0:00:02) 0:00:42 (0:00:15) 0:08:18 (0:01:43) 0:11:27 (0:01:43) 0:01:17 (0:00:17)
16 0:00:15 (0:00:04) 0:00:50 (0:00:08) 0:12:36 (0:07:21) 0:13:40 (0:00:54) 0:00:50 (0:00:08)
32 0:00:16 (0:00:13) 0:00:53 (0:00:12) 0:30:11 (0:10:34) 0:47:29 (0:03:40) 0:00:56 (0:00:19)
64 0:00:17 (0:00:05) 0:00:56 (0:00:04) 1:06:08 (0:21:50) 1:29:06 (0:04:29) 0:00:59 (0:00:20)
128 0:00:18 (0:00:08) 0:01:00 (0:00:05) 1:33:06 (0:11:40) 2:10:43 (0:17:17) 0:01:07 (0:00:17)

4

4 0:00:15 (0:00:03) 0:00:47 (0:00:10) 0:06:52 (0:02:09) 0:10:31 (0:01:21) 0:01:15 (0:00:17)
8 0:00:15 (0:00:04) 0:00:56 (0:00:12) 0:09:05 (0:00:37) 0:17:53 (0:01:06) 0:01:19 (0:00:05)
16 0:00:19 (0:00:03) 0:01:00 (0:00:05) 0:15:34 (0:06:27) 0:24:19 (0:02:53) 0:01:15 (0:00:11)
32 0:00:20 (0:00:09) 0:01:07 (0:00:06) 0:41:16 (0:11:08) 0:54:39 (0:02:26) 0:01:02 (0:00:06)
64 0:00:27 (0:00:07) 0:01:16 (0:00:08) 0:56:27 (0:11:52) 2:53:41 (0:09:27) 0:01:11 (0:00:16)
128 0:00:31 (0:00:05) 0:01:17 (0:00:12) 2:32:58 (0:23:58) 4:06:43 (0:12:20) 0:01:18 (0:00:16)

8

4 0:00:18 (0:00:04) 0:00:36 (0:00:09) 0:07:50 (0:01:45) 0:07:25 (0:01:17) 0:01:14 (0:00:03)
8 0:00:19 (0:00:06) 0:00:44 (0:00:06) 0:11:33 (0:03:46) 0:16:55 (0:00:41) 0:01:25 (0:00:12)
16 0:00:20 (0:00:03) 0:00:57 (0:00:08) 0:15:27 (0:02:49) 0:36:22 (0:03:23) 0:01:19 (0:00:06)
32 0:00:21 (0:00:02) 0:01:04 (0:00:10) 0:41:33 (0:06:54) 1:16:31 (0:05:40) 0:01:25 (0:00:16)
64 0:00:22 (0:00:08) 0:01:19 (0:00:11) 1:14:47 (0:10:44) 2:29:53 (0:10:33) 0:01:17 (0:00:20)
128 0:00:23 (0:00:04) 0:01:21 (0:00:19) 3:14:08 (0:11:06) 5:22:56 (0:22:23) 0:01:23 (0:00:10)

16

4 0:00:19 (0:00:05) 0:01:37 (0:00:11) 0:10:23 (0:01:13) 0:13:34 (0:02:48) 0:01:28 (0:00:08)
8 0:00:19 (0:00:05) 0:01:39 (0:00:07) 0:25:20 (0:07:34) 0:23:07 (0:05:27) 0:01:22 (0:00:17)
16 0:00:22 (0:00:02) 0:01:43 (0:00:04) 0:56:11 (0:10:09) 0:52:39 (0:04:19) 0:01:25 (0:00:11)
32 0:00:29 (0:00:08) 0:01:58 (0:00:14) 1:06:20 (0:06:45) 1:38:41 (0:11:35) 0:01:24 (0:00:09)
64 0:00:31 (0:00:03) 0:03:02 (0:00:14) 1:15:16 (0:20:27) 3:51:22 (0:28:46) 0:01:27 (0:00:06)
128 0:00:46 (0:00:06) 0:02:30 (0:00:19) 2:35:49 (0:13:50) 6:37:45 (1:02:23) 0:01:32 (0:00:05)

32

4 0:00:21 (0:00:03) 0:01:01 (0:00:03) 0:16:44 (0:02:07) 0:21:41(0:01:30) 0:01:31 (0:00:08)
8 0:00:18 (0:00:03) 0:01:05 (0:00:10) 0:27:39 (0:02:41) 0:43:48 (0:03:35) 0:01:32 (0:00:14)
16 0:00:25 (0:00:06) 0:01:13 (0:00:11) 0:29:41 (0:06:27) 1:30:38 (0:05:20) 0:01:36 (0:00:12)
32 0:00:31 (0:00:05) 0:01:19 (0:00:13) 1:10:33 (0:10:50) 3:07:49 (0:07:46) 0:01:30 (0:00:17)
64 0:00:47 (0:00:04) 0:01:26 (0:00:04) 1:49:08 (0:10:44) 6:46:00 (0:10:42) 0:01:32 (0:00:15)
128 0:00:48 (0:00:03) 0:01:32 (0:00:11) 3:37:57 (0:14:21) 10:43:39 (0:12:47) 0:01:43 (0:00:09)

64

4 0:00:28 (0:00:02) 0:01:15 (0:00:11) 0:18:07 (0:02:21) 0:32:00 (0:03:45) 0:01:28 (0:00:17)
8 0:00:31 (0:00:04) 0:01:24 (0:00:12) 0:30:35 (0:01:34) 1:31:25 (0:08:16) 0:01:40 (0:00:08)
16 0:00:32 (0:00:05) 0:01:36 (0:00:03) 0:38:13 (0:01:08) 2:48:14 (0:10:32) 0:01:36 (0:00:06)
32 0:00:32 (0:00:06) 0:01:43 (0:00:13) 1:25:04 (0:10:33) 5:38:01 (0:13:48) 0:01:34 (0:00:10)
64 0:00:30 (0:00:06) 0:01:56 (0:00:13) 3:17:19 (0:12:51) 10:44:42 (0:07:52) 0:01:53 (0:00:09)
128 0:00:38 (0:00:04) 0:01:59 (0:00:06) 5:24:07 (0:11:36) 15:14:11 (0:20:06) 0:01:58 (0:00:16)

128

4 0:00:40 (0:00:04) 0:02:31 (0:00:11) 0:19:56 (0:01:40) 1:37:42 (0:10:25) 0:03:47 (0:00:12)
8 0:00:40 (0:00:03) 0:02:57 (0:00:19) 0:42:24 (0:04:19) 3:24:23 (0:12:10) 0:03:37 (0:00:13)
16 0:00:40 (0:00:03) 0:03:00 (0:00:09) 1:20:40 (0:10:27) 6:22:08 (0:12:44) 0:03:36 (0:00:16)
32 0:00:42 (0:00:05) 0:03:07 (0:00:03) 2:16:51 (0:10:08) 10:53:39 (0:20:22) 0:03:44 (0:00:11)
64 0:00:49 (0:00:03) 0:03:11 (0:00:14) 4:50:09 (0:20:10) 11:52:16 (0:15:53) 0:04:13 (0:00:19)
128 0:01:06 (0:00:06) 0:03:05 (0:00:21) 9:00:00 (0:15:15) 16:09:45 (0:14:38) 0:04:41 (0:00:20)

256

4 0:00:35 (0:00:07) 0:03:48 (0:00:04) 0:25:56 (0:00:10) 1:53:39 (0:09:50) 0:02:16 (0:00:16)
8 0:00:31 (0:00:04) 0:03:57 (0:00:14) 0:52:37 (0:04:14) 4:43:37 (0:10:27) 0:02:14 (0:00:15)
16 0:00:30 (0:00:03) 0:04:59 (0:00:12) 2:44:45 (0:09:22) 5:37:14 (0:12:18) 0:02:06 (0:00:14)
32 0:00:41 (0:00:07) 0:04:57 (0:00:17) 4:05:03 (0:10:26) 9:24:15 (0:20:27) 0:02:07 (0:00:06)
64 0:00:50 (0:00:04) 0:04:41 (0:00:21) 9:28:56 (0:14:12) 12:55:11 (0:19:12) 0:02:31 (0:00:13)
128 0:01:07 (0:00:04) 0:04:36 (0:00:15) 12:50:44 (0:21:14) 18:17:59 (0:22:47) 0:02:45 (0:00:16)

512

4 0:00:46 (0:00:02) 0:05:20 (0:00:23) 0:34:24 (0:07:17) 2:20:52 (0:09:08) 0:04:16 (0:00:08)
8 0:00:46 (0:00:12) 0:04:56 (0:00:18) 1:28:01 (0:05:29) 10:55:35 (0:10:32) 0:03:11 (0:00:16)
16 0:00:53 (0:00:08) 0:06:41 (0:01:13) 6:15:58 (0:11:42) 19:27:41 (0:30:33) 0:02:39 (0:00:19)
32 0:00:57 (0:00:03) 0:06:58 (0:00:56) 7:50:30 (0:20:18) / 0:02:38 (0:00:12)
64 0:01:06 (0:00:10) 0:08:19 (0:02:14) 10:51:19 (0:31:23) / 0:03:05 (0:00:16)
128 0:01:10 (0:00:04) 0:10:29 (0:01:03) 13:50:45 (0:24:49) / 0:03:19 (0:00:16)

1,024

4 0:01:07 (0:00:03) 0:07:34 (0:01:07) 0:32:54 (0:03:22) 3:40:49 (0:11:48) 0:07:27 (0:01:04)
8 0:01:06 (0:00:10) 0:08:35 (0:00:03) 2:43:18 (0:09:22) 19:37:23 (0:31:06) 0:05:18 (0:00:18)
16 0:00:56 (0:00:08) 0:09:58 (0:01:11) 6:35:20 (0:13:48) / 0:04:16 (0:00:14)
32 0:00:51 (0:00:09) 0:11:23 (0:01:05) 10:15:06 (0:22:22) / 0:03:54 (0:00:14)
64 0:01:07 (0:00:04) 0:19:48 (0:03:13) 14:26:26 (0:31:40) / 0:03:55 (0:00:13)
128 0:01:33 (0:00:08) 0:21:16 (0:02:14) / / 0:04:04 (0:00:16)

2,048

4 0:01:51 (0:00:11) 0:12:48 (0:00:34) 0:36:33 (0:06:20) 11:06:41 (0:19:32) 0:14:32 (0:02:16)
8 0:01:56 (0:00:08) 0:14:55 (0:02:04) 3:05:18 (0:10:07) 19:24:39 (0:42:49) 0:10:57 (0:00:28)
16 0:01:37 (0:00:12) 0:15:19 (0:01:06) 10:53:13 (0:13:24) / 0:07:28 (0:00:15)
32 0:01:15 (0:00:05) 0:17:42 (0:03:07) / / 0:06:46 (0:00:04)
64 0:01:42 (0:00:06) 0:24:30 (0:02:13) / / 0:05:50 (0:00:13)
128 0:01:56 (0:00:05) 0:27:18 (0:03:09) / / 0:06:03 (0:00:15)

4,096

4 0:02:43 (0:00:09) 0:26:37 (0:02:04) 0:46:35 (0:09:46) 20:00:14 (0:19:52) 0:42:32 (0:02:11)
8 0:02:25 (0:00:03) 0:27:41 (0:02:14) 4:27:07 (0:14:06) / 0:33:27 (0:04:09)
16 0:02:24 (0:00:04) 0:36:05 (0:03:09) 16:49:03 (0:28:27) / 0:22:24 (0:01:15)
32 0:02:18 (0:00:13) 0:37:51 (0:02:03) / / 0:22:00 (0:02:13)
64 0:02:30 (0:00:08) 0:41:14 (0:02:04) / / 0:21:36 (0:01:51)
128 0:02:44 (0:00:09) 0:52:39 (0:04:09) / / 0:10:54 (0:01:03)

41

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(a) 2 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(b) 4 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(c) 8 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(d) 16 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(e) 32 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(f) 64 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(g) 128 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(h) 256 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM
A

lg
o

ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(i) 512 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(j) 1,024 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(k) 2,048 infested palms.

UTARB

OTA

Auction

Max-Sum

LIAM

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

h
:m

m
)

0:00

0:15

0:30

0:45

Number of UAVs

4 8 16 32 64 128

(l) 4,096 infested palms.

Figure 6: Runtime performance as the number of infested palms increases from 2 to 4,096
in the plantation area.

42

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(a) 2 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(b) 4 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(c) 8 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(d) 16 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(e) 32 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(f) 64 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(g) 128 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(h) 256 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(i) 512 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(j) 1,024 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(k) 2,048 infested palms.

A
lg

o
ri
th

m
's

 R
u

n
ti
m

e
 (

m
:s

s
)

0:00

1:00

2:00

3:00

4:00

5:00

Number of UAVs

4 8 16 32 64 128

(l) 4,096 infested palms.

Figure 7: Runtime performance of UTARB as the number of infested palms increases from
2 to 4,096 in a large plantation area.

43

Table 4: Average runtime performance and standard deviation (h:mm:ss) of UTARB in
a small and a large area as the number of infestations increases from 2 to 4,096 infested
palms.

Infestations UAVs UTARB (small area) UTARB (large area)

2

4 0:00:15 (0:00:03) 0:00:17 (0:00:08)
8 0:00:16 (0:00:02) 0:00:18 (0:00:13)
16 0:00:15 (0:00:04) 0:00:19 (0:00:12)
32 0:00:16 (0:00:13) 0:00:25 (0:00:09)
64 0:00:17 (0:00:05) 0:00:34 (0:00:13)
128 0:00:18 (0:00:08) 0:00:48 (0:00:15)

4

4 0:00:15 (0:00:03) 0:00:25 (0:00:09)
8 0:00:15 (0:00:04) 0:00:25 (0:00:03)
16 0:00:19 (0:00:03) 0:00:25 (0:00:04)
32 0:00:20 (0:00:09) 0:00:25 (0:00:03)
64 0:00:27 (0:00:07) 0:00:37 (0:00:12)
128 0:00:31 (0:00:05) 0:00:46 (0:00:15)

8

4 0:00:18 (0:00:04) 0:00:29 (0:00:10)
8 0:00:19 (0:00:06) 0:00:29 (0:00:09)
16 0:00:20 (0:00:03) 0:00:29 (0:00:14)
32 0:00:21 (0:00:02) 0:00:34 (0:00:05)
64 0:00:22 (0:00:08) 0:00:34 (0:00:14)
128 0:00:23 (0:00:04) 0:00:58 (0:00:25)

16

4 0:00:19 (0:00:05) 0:00:22 (0:00:03)
8 0:00:19 (0:00:05) 0:00:29 (0:00:08)
16 0:00:22 (0:00:02) 0:00:35 (0:00:04)
32 0:00:29 (0:00:08) 0:00:32 (0:00:12)
64 0:00:31 (0:00:03) 0:00:54 (0:00:11)
128 0:00:46 (0:00:06) 0:01:06 (0:00:05)

32

4 0:00:21 (0:00:03) 0:00:34 (0:00:06)
8 0:00:18 (0:00:03) 0:00:35 (0:00:09)
16 0:00:25 (0:00:06) 0:00:35 (0:00:07)
32 0:00:31 (0:00:05) 0:00:43 (0:00:14)
64 0:00:47 (0:00:04) 0:01:01 (0:00:16)
128 0:00:48 (0:00:03) 0:01:09 (0:00:15)

64

4 0:00:28 (0:00:02) 0:00:32 (0:00:04)
8 0:00:31 (0:00:04) 0:00:33 (0:00:04)
16 0:00:32 (0:00:05) 0:00:34 (0:00:07)
32 0:00:32 (0:00:06) 0:00:45 (0:00:05)
64 0:00:30 (0:00:06) 0:00:57 (0:00:08)
128 0:00:38 (0:00:04) 0:01:14 (0:00:15)

128

4 0:00:40 (0:00:04) 0:00:52 (0:00:02)
8 0:00:40 (0:00:03) 0:00:55 (0:00:15)
16 0:00:40 (0:00:03) 0:01:06 (0:00:11)
32 0:00:42 (0:00:05) 0:01:08 (0:00:12)
64 0:00:49 (0:00:03) 0:01:52 (0:00:06)
128 0:01:06 (0:00:06) 0:02:10 (0:00:12)

256

4 0:00:35 (0:00:07) 0:00:52 (0:00:10)
8 0:00:31 (0:00:04) 0:00:55 (0:00:11)
16 0:00:30 (0:00:03) 0:01:00 (0:00:08)
32 0:00:41 (0:00:07) 0:01:08 (0:00:06)
64 0:00:50 (0:00:04) 0:01:52 (0:00:17)
128 0:01:07 (0:00:04) 0:02:10 (0:00:08)

512

4 0:00:46 (0:00:02) 0:01:27 (0:00:08)
8 0:00:46 (0:00:12) 0:01:27 (0:00:12)
16 0:00:53 (0:00:08) 0:01:33 (0:00:09)
32 0:00:57 (0:00:03) 0:01:33 (0:00:07)
64 0:01:06 (0:00:10) 0:03:30 (0:00:18)
128 0:01:10 (0:00:04) 0:04:36 (0:00:21)

1,024

4 0:01:07 (0:00:03) 0:01:31 (0:00:15)
8 0:01:06 (0:00:10) 0:01:32 (0:00:16)
16 0:00:56 (0:00:08) 0:01:33 (0:00:16)
32 0:00:51 (0:00:09) 0:01:50 (0:00:17)
64 0:01:07 (0:00:04) 0:03:39 (0:00:12)
128 0:01:33 (0:00:08) 0:05:07 (0:00:20)

2,048

4 0:01:51 (0:00:11) 0:01:43 (0:00:17)
8 0:01:56 (0:00:08) 0:01:45 (0:00:09)
16 0:01:37 (0:00:12) 0:01:59 (0:00:18)
32 0:01:15 (0:00:05) 0:02:04 (0:00:11)
64 0:01:42 (0:00:06) 0:04:27 (0:00:21)
128 0:01:56 (0:00:05) 0:05:08 (0:00:26)

4,096

4 0:02:43 (0:00:09) 0:01:53 (0:00:14)
8 0:02:25 (0:00:03) 0:02:12 (0:00:16)
16 0:02:24 (0:00:04) 0:02:39 (0:00:11)
32 0:02:18 (0:00:13) 0:02:50 (0:00:18)
64 0:02:30 (0:00:08) 0:04:06 (0:00:23)
128 0:02:44 (0:00:09) 0:05:20 (0:00:18)

44

View publication statsView publication stats

https://www.researchgate.net/publication/334551642

