Permutations with forbidden subsequences; and,
Stack-sortable permutations
by
JULIAN WEST
B.Sc., California Institute of Technology (1985)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1990

(© Massachusetts Institute of Technology 1990

Signature of Author........... ... .o i prr e
Department of Mathematics
3 July 1990

Certified by ....................................... A A e
Richard P. Stayléy
Professor of Appli d/ Mathematics

‘Vhesis. Supervisor

Certified by ... L,
;o Daiiiel J A eitman
Chair, Applied M/at,hema.(ics Committce
Accepted by ....... ...l e T Fovnes e

- Heurdur Ielgason
MESSACHUSETYS ;NS]-Q}}gir, Departmental Graduate Commitice
OF TECHNOI.0GY

0CT 15 1990

L!BRARIES

ARCHIVES



Permutations with forbidden subsequences; and,
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In the first half of this thesis, we consider the problem of counting the number of permuta-
tions of length n which have no subsequence having all the same pairwise comparisons as a
given excluded subsequence of length k. For k = 3, the difficult case is to explain why the
permnutations with no pattern of type 123 are equinumerous with those with no pattern of
type 132. We present three direct bijections explaining this curious fact. The first of these bi-
jections is due to Rodica Simion and Frank Schmidt; the second to Dana Richards; the third,
making use of rooted trees, is introduced here. One extension of the rooted trees approach
provides an asymptotic enumeration of a class of the vexillary permutations. We suggest
some other possible extensions of this technique. We also generalize the Simion-Schmdit
bijection from the forbidden permutation 123 to any forbidden permutation ending with two
fixed elements. We also conjecture that there is a further extension to any permutation
erding with r fixed elements.

In the second half of the thesis, we examine the related question of sorting permu-
tations on a stack. We seek to generalize from the well-understood problem of sorting on
one stack to a problem of sorting on several stacks. We introduce a “sorting function”
which sorts all those permutations which can be sorted on one stack. We use the sorting
function to define the sorting tree T'(n), whose vertices are the permutations of length n,
and whose covering relations are defined by the sorting function. A permutation appears on
the kth level of T'(n) if it requires k applications of the stack-sorting function to be com-
pletely sorted. We examine the structure of the sorting tree, giving conditions which locate
a permutation above, or below, a certain level. We determine the number of permutations
which are children of a given member of one of three classes of permutations. We define the
sorting sequence of a permutation to be the sequence of operations which are performed in
the application of the sorting algorithmi; we then classify the permutations which require a
given sorting sequence. For certain types of sorting sequence, we are able to locate all of the
associated permutations by level in the sorting tree. A main outstanding conjecture regards
the number of permutations which are sortable by two applications of the sorting algorithm:;
we suggest several possible approaches to proving this conjecture.
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1 Introduction to forbidden subsequences

1.1 Basic definitions and overview

We regard a permutation 7 € S, as a sequence of n elements: = = (x(1), 7(2),...,7(n)).
We say that m contains the 3-letter pattern 231 iff there is a triple 1 <i < j < k < n such
that w(k) < w(i) < w(j). Otherwise m avoids the pattern.

We define T-avoiding permutations similarly for every 7 € S.

Definitions 1.1.1 For r = (r(1),7(2),...,7(k)) € Sk, a permutation

® = (m(1),7(2),...,7(n)) € S, is T-avoiding iff there is no 1 < i,y < irg < -+~ <
tr(k) < n such that () < m(i2) < --- < w(ik).

Such a (7(irq)), 7(ir2), - .., 7(irx))) i called a subsequence of (standard) type T.

We can extend these definitions in a straightforward way to any sequence of n distinct
positive integers, m = (7(1),7(2),...,a(n)). Since 7 is not, strictly speaking, a permutation
unless the set {w(1),7(2),...,x(n)} = {1,2,...,n}, we will refer to such a general sequence as
a permutation sequence or simply a sequence.

We may also say, somewhat abusively, that a subsequence p is of type 7 if p and 7
are of the same standard type but 7 is a permutation sequence of some set of integers other
than [n].

Since we will almost aiways wish to refer to standard types, we will usually omit the
qualifier and refer to these simply as types. This should not lead to confusion.

Example 1.1.2 In the permutation = = (4,5,2,3,1), the subsequence (4,2,3) could be said
to be of type (4,2,3), but is of standard type (3,1,2). We will write this as 312 whenever it
is convenient to do so, and say that w contains a subsequence of type 312. In either case,
the subsequence (mw(2),7(3),7(4)) = (5,2,3) is of the same type.

The permutation = also contains four descending subsequences of length three; these
are of type 321. 7 also contains four subsequences of type 231; subsequences of this type are
often referred to as wedges. There are no subsequences of types 123, 132, or 213; 7 is said
te avoid these patterns.

Two permutation sequences, m,p of length n are evidently of the same type ifl they
have the same pairwise comparisons throughout, namely if 7(i) < n(j) < p(¢) < p(j),
forall1 <1z,5 <n.
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We denote by S,(7) the set of all permutations in S, which avoid 7. Also let S(r) =
U2, Sa(7). This is also somewhat abusive notation, as in defining S(7) we are abandoning
any pretense of interest in the group-theoretical aspects of permutations, yet the letter S is
retained because it stands for symmetric group.

Example 1.1.3 The permutation of the above ezample, = = (4,5,2,3,1), does not Selong
to the set S,(321) because it contains descending subsequences of length three. On the other
hand, = avoids 213, so ® € S,(213). Also, € S,(123) N S,(132).

Fundamental questions are to determine |S,(7)| viewed as a function of n, and if
|Sa(a)| = |Sa(7)| for 0 # T to discover an explicit bijection between S,(c) and S,(7). In
the next section, we shall see some straightforward examples of such bijections. In chapter
two, we consider the case of forbidden subsequences of length 3. In particular, we present
three direct bijections between S,,(123) and S,(132). Two of these are due to Rodica Simion
and Frank Schmidt [18] and to Dana Richards [14]; the third, making use of rooted trees, is
introduced here.

In chapter three we seek to extend these bijections to forbidden subsequences of arbi-
trary length. We develop some extensions of the rooted trees approach, and conjecture the
existence of some others. This technique provides a bijection between the permutations with
no ascending subsequence of length 4 and the vezillary permutations of S,(2143). A second
conjecture suggests the possibility of an injection based on the rooted trees approach. We
generalize the Simion-Schmdit bijection from the forbidden permutation 123 to any forbid-
den permutation ending with two fixed elements. (This provides a second correspondence
between Sn(1234) and the vexillary permutations of S,(2143).) We also conjecture that
there is a further extension to any permutation ending with r fixed elements. In section 3.5,
we examine a recurrence relation for S,(1234).

The subject of restricted permutations is closely linked to the question of sorting
permutations on a stack. In fact, we will see in section 2.2 that S,(231) is the set of stack-
sortable permutations. We will return to the topic of sorting on stacks in the second half of
this thesis. We wish to generalize from the well-understood problem of sorting on one stack
to a problem of sorting on several stacks. We choose to do this in the most restrictive way
possible. In chapter four, we introduce the sorting function, and define the sorting sequence
associated to a permutation. We use the sorting function to define the sorting tree T'(n),
whose vertices are the permutations of length n, and whose covering relations are defined
by the sorting function. A permutation appears on the kth level of T'(n) if it requires k
applications of the stack-sorting function to be completely sorted. We give conditions which
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locate a permutation above, or below, a certain level in the sorting tree. The final section
of chapter four details alternative generalizations of the problem of sorting on a stack.

Chapter five is devoted to the study of the sorting tree. We determine the number of
permutations whose sorted form is a given member of one of three classes of permutations.
We then classify the permutations which require a given sorting sequence. For certain types
of sorting sequence, we are able to locate all of the associated permutations by level in the
sorting tree. A main outstanding conjecture regards the number of permutations which
appear on levels 0, 1 and 2 of the sorting tree. In the final section of chapter five we suggest
several possible approaches to proving this conjecture.

1.2 The three standard bijections

We present first three basic lemmata which produce numerous bijections between sets
of the types Sn(¢) and Sn(7), 0,7 € Sk for general k. (Lemma 1 in [18].)
We require the following definitions:

Definitions 1.2.1 For any w € S,,, its reversal 7! € S, is given by 7l(i) = w(n + 1 —i); its
complement 1~ € S, is given by 7~ (i) = n + 1 — x(7).
We use 7! to denote the usual group-theoretic inverse, i.e. 77'(j) =i if n(i) = j.

Notice that the three operations of reversal, complementation and inversion are invo-
lutions; that is, (/) = 7, (77)~ = 7, and (z~1)"! = 7.

For fixed n, the operation of reversing a permutation sequence  of length n amounts
to applying a fixed permutation, depending only on n, to the elements of m. Clearly, the
application of one and the same permutation to two sequences of the same type will yield two
sequences of the same type. As a special case of this observation, two permutation sequences
o and 7 are of the same type if and only if ol and 7! are of the same type.

For 7 of length n, #=(7) = (n + 1) — 7(?), and 7= (j) = (n + 1) — n(). It is clear,
tlerefore, that 7= ({) < 7~(j) if and only if #=(¢) > =~ (j). That is, the operation of
complementation reverses all the pairwise comparisons between elements of a sequence. Since
two sequences are of the same type exactly when they have the same pairwise comparisons,
it is clear that o and 7 are of the same type iff 6~ and 7~ are of the same type.

The observations of the two preceding paragraphs are trivial, but essential to the
following lemmata, which can be considered as generalizations of the above. The lemmata,
in turn, are straightforward but important aspects of the theory of forbidden subsequences.
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Lemma 1.2.2 If n € Su(7), then 7l € S (7).

Proof: Consider an arbitrary subsequence of 7 € Sy, such as o = (7(i1), (i2), ..., 7(ix)),
where 1 <4 < i < .. < i < n. If oisof type 7, then o! = (7(ix), 7(ix=1),..., 7(1)) is of
type 7l. But then o! is a subsequence of !, namely (7l((n+1)—i), 7l((n + 1) —ix_,), ..., xl((n+
1) —t;)). We have observed that 7! contains the subsequence 7! if = contains the subsequence

7. Since the operation of reversal is an involution, the argument works equally in the oppo-
site direction, and we can replace ‘if’ by ‘if and only if’ in the previous sentence. Finally,
since a permutation avoids a pattern 7 exactly when it does not contain a subsequence of
type 7, the proof is complete. O

Lemma 1.2.3 Ifr € S,(7), then 7= € S, (7).

Proof: If, for 1 <7, < i; < ... < < n, a subsequence o = (7(#;), 7(i3), ..., m(2)) is of
type 7, then the subsequence (7~ (i;), 7=(z2),..., ¥~ (¢x)) has all its pairwise comparisons the
reverse of those of 0. That is, it is of type 7~. The remainder of the argument is identical
in its essentials to the previous proof. O

Lemma 1.2.4 Ifr € S,(7), then n~' € S, (v7").

Proof: Suppose 7 has a subsequence of type 7, namely (7(:.1)), 7(i-(2), . . ., *(2(x))), Where
1 <) <irp) < oo+ <ty Snand 7(2;) < w(é2) < --- < w(i). In light of the last set of
inequalities, it is clear that one subsequence of = is (= (7(¢1)), 7~ (7(22)), ..., 7~ (7 (ik))) =

-1 1

contains a sequence of type 7~
! avoids 77! precisely

(?1,%2,...2x). This is a subsequence of type 7~!. Since =
precisely when 7 contains the pattern 7, the inverse permutation 7~
when 7 avoids 7. O

As a further observation of the relation between the three operations of reversal,
complementation and inversion, note that (7~)~! = (x~!)\.

Example 1.2.5 In the permutation = = (n(1),7(2),n(3),7(4),7(5)) = (4,5,2,3,1), the
subsequence (4,5,3) occupying positions 1,2 and 4 is of type T = 231. The subsequence
(3,5,4) 1s correspondingly a subsequence of type ! = 132 of the permutation «! = (1,3,2,5,4).
The subsequence occupying positions 1,2 and 4 of 7~ = (2,1,4,3,5) is of type 7~ = 213.
Finally, the subsequence (4,1,2) occupying positions 3,4 and 5 of =~ = (5,3,4,1,2) is of
type 771 = 312.

Since ™ avoids the subsequences 123, 132, and 213, it follows that ! avoids 321, 231,
and 312, that 7~ avoids 321, 312 and 231, and that 7! avoids 123, 132 and 213.
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In the following chapter, we will restrict our attention to the case of forbidden sub-
sequences T of length three. This is the case considered at length by Simion and Schmidt
in [18]. We reiterate here some of the material of that paper; this will be generalized in
chapter 3. We also introduce some new ideas.

For subsequences of length & = 3, the elementary considerations of lemmas 1.2.2
and 1.2.3 provide that |S,(123)| = |Sa(321)|. Similarly, |S.(231)] is equal to |S,(132)| by
reversal, to |S.(213)| by complementation, and to |S.(312)| by inversion. It follows that
the enumerative probiem for forbidden subsequences of length three is reduced from six to
just two cases. We need only choose one exemplar of each of the classes {123,321} and
{231,132,213,312}. In the first two sections, we count the members of S,,(123) and S, (231).
The enumeration of 5,(123) is found by MacMahon [11], Vol. 1, page 130; see also Knuth
(7], page 64. The members of S,(123) are precisely the permutations with no ascending
subsequence of length 3. A subsequence of type 231 is often referred to as a wedge, and a
231-avoiding permutation is called wedge-free.
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2 Correspondences between 5,(123) and S,,(132)

“Hearing the drums of Catalan beating.”
- The Sugarcubes

2.1 Enumeration of 5,(231)

We begin our study of forbidden subsequences of length 3 by finding a recurrence
relation satisfied by the numbers |S,(231)].

Assume by induction that we have enumerated |S,(231)| = ¢, for m < n, and con-
sider an arbitrary permutation 7 € S,(231). Let j be the position such that 7(j) = n. Then
the substring 7% = (w(1),7(2),...,7(j — 1)) must consist of the elements (1,2,...,j — 1).
For if not, it must contain some element (i) > j, while the substring 7R = (7(j + 1),r(j +
2),...,m(n)) would contain some m(k) < j. But then we would have a forbidden triple
1 < j < k with 7(k) < (i) < 7(j) = n. This is not the case if 7 € 5,(231).

So the elements of the left substring and the right substring are determin<d by the
position of n. But the permutations #L and 7R, being subsequences of x, must themselves
avoid 231. It is also sufficient that they do so, since if all tiie elemer.is of =% are less than all
those of 7R there cannot be any subsequence of type 231 wit! . ierocuts in both the left and
right substrings. But since an admissible left substring is jusi an element of S;_,(231), and
the admissible right substrings are permutations s ;uences Lkewise counted by |S,_;(231),
we can invoke the induction hypothesis.

Using the induction hypothesis and sumining over j, we thus establish that

n-1}

Sncr(231H + 3 (8;-1(231)][Snoi (231)] + Saca(231)] = Yejicnyy (1)

i=2 i=1

|Sa(231)] =

where we set cg = 1.

At this poiw. . we might recognize this as the famous recurrence relation for the
Catalan numbers, and produce its solution from the literature. It is instructive to give
a combinatorial solution, however.

Consider a sequence of length 2n composed of n copies of each of the symbols *(’ and
‘)’. Such a sequence of parentheses will be well-formed if each ‘(’ can be associated uniquely
with a ‘)’ to form nested pairs of parentheses. We will refer to a well-formed sequence of
parentheses as a bracketing sequence. If a bracketing sequence consists of n open and n closed
parentheses, we will say it has length n. Let the set of all bracketing sequences of length n
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be denoted by B,. The members of B, are elsewhere called ballot sequences; this alternative
notation emphasizes the characterization that closed parentheses never outnumber open ones
as we read from left to right. With a little effort, these two characterizatiosn can be seen to
be equivalent

Clearly, the first element of a bracketing sequence must be an open parenthesis;
otherwise if it were a ‘)’ i would not have a mate and the sequence would not be well-
formed. Consider the ‘)’ which is the mate of the initial open ‘(’. This splits the bracketing
sequence into two shorter sequences, each of which must also be well-formed. If the first of
these, which falls within the selected pair of brackets, has length j—1, then the second, which
falls after the selected ‘)’, has length n — j. The bracketing sequences therefore satisfy the
same recurrence as the 231-avoiding permutations, 1. The enumerative problem of counting
the permutations of 5,(231) is thus equivalent to that of counting bracketing sequences of
length n.

To enumerate the well-formed sequences of n open and n closed parentheses, observe
that there is a bijection between all sequences of n — 1 open and n +1 closed parentheses and
those sequences of n open and n closed parentheses which are not well-formed. If a sequence
is not well-formed, there must be a leftmost occurence of a ‘)’ which has equally many ‘(’s
and ‘)’s to its left. Replace each ‘(" to the right of this by a ‘)’ and each ‘)’ to its right by a
‘(’. We thus obtain a sequence of n — 1 open and n +1 closed parentheses. Similarly, given a
sequence of n — 1 open and n + 1 closed parentheses, there must be a leftmost )’ which has
as many ‘(’s as ‘)’s to its left. Invert each parenthesis to the right of this location to obtain
a sequence with n of each type of symbol, which is not well-formed.

The number of well-formed sequences of n open and n closed parentheses is simply
the total number of sequences of n ‘(’s and n ‘)’s, less the number of such sequences which
are not well-formed. This number is

= ()0 )= () @

The numbers c, are the well-known Catalan numbers, named for Eugene Catalan, who
co-authored a series of papers on them in 1838 [2]. Catalan himself called them Segner
numbers; Johann Andreas von Segner’s paper appeared in 1758, with a commentary by
Leonhard Euler.

That the numbers 2 satisfy the recurrence 1 is established in an elegant 1838 paper by
Lamé [9] which considers triangulations of a polygon. Catalan’s paper, which accompanies
Lamé’s, puts them in the modern form of equation 2 and relates them to, among other
things, Legendre polynomials. Segner was, incidentally, also interested in triangulations; his
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results were generalized by Fuss in 1795. The enumeration of bracketings by considering
not-well-formed sequences was presented by D. André in 1878.

We thus have a very simple formula for the number of 231-avoiding permutations of
length n.

We can establish a correspondence between 231-avoiding permutations and bracketing
sequences in another, intriguing, way. Conzider the problem of sorting on a first-in, last-out
stack. Given a permutation = = (p;, p2,...,Pn), We begin by placing p; on the stack. At each
step we have the option of adding an element to the stack or removing one from the stack
to the final output. We require that every p; pass through the stack and if ¢ < j we require
that p; be added to the stack before p;.

Then call a permutation © € S, stack sortable if it can be passed through a stack
so that the elements are removed in ascending order. If a given permutation can be sorted,
then there is a unique procedure for sorting it: if the next element to be added to the stack
is larger than the element on top of the stack, remove the top element from the stack; if it
is smaller, add it to the stack; if the stack is empty, add to it; if p, has been added clear
the stack. Consider the sequence of operations which must be performed to sort a given
permutation, writing ‘(’ if an element is added to the stack and ‘)’ if one is removed.

Then we have a sequence of n open and n closed parentheses, since each p; must
be added to the stack once and removed once. Also this sequence must be well-formed as
defined above, because we can never remove more elements from the stack than have been
added to it. This means that, working from left to right, there will always be a surplus of
open parentheses, so whenever we encounter a ‘)’ we will be able to supply it with a mate
somewhere to its left. We have already determined that the number of such well-lormed
sequences is the Catalan numbers.

But we claim that the stack-sortable permutations are precisely those which have no
subsequences of type 231 (wedges), a result attributed to Knuth [7].

Lemma 2.1.1 A permutation = is stack-sortable iff * € 5(231).

Proof: If : < j and 7(i) < m(3) then 7(i) must be removed from the stack before 7 (7) is
put on. If ¢ < k and n(Z) > m(k) then m(z) must be remain on the stack until after (k) is
added. So if i < j < k and 7(k) < 7(i) < 7(j), m(¢) must be removed before the addition
of 7(j) but 2ter that of (k). But this is impossible, as 7(j) must be added Before 7 (k).
So a stack-sortable permutation cannot have a subsequence of type 231. Conversely, if a
permutation avoids 231, it can be sorted according to the algorithm above. The algorithm
will fail to sort only if it forces us to remove an element from the top of the stack which is
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not the largest element which has yet to be removed. Then the top element of the stack is
smaller than the next element to be added, but larger than some later element. These three
elements constitute a wedge. 0O

Example 2.1.2 The bracketing sequence which is associated to a 231-avoiding permutation
can be found by application of the sorting algorithm.
For instance, the permutation (1,3,2,5,4) corresponds to the sequence ()({))(()).

The unique stack-sortable permutation which is sorted by a given bracketing sequence

most easily found by observing that a matching pair of parentheses correspond to the
insertion and removal of the same element from the stack. Label the closed parentheses in
order with the integers 1 through n, and then assign the same integers to the matching open

parentheses.
Example 2.1.3 The bracketing sequence ()(()(())) corresponds to the permutation (1,5,2,4,3):
1 2 3 45
() C(C) ) ) )

1 5

() ((
2 43

2.2 Enumeration of 5,(123)

To enumerate the elements of S, (123), we appeal to the Robinson-Schensted bijection,
which associates to each permutation in S, an ordered pair of standard Young tableaux on
n elements and having the same shape. It will be useful in the sequel to have revicwed the
Robinson-Schensted correspondence in some detail. Omitted proofs can be found in [17].

Definitions 2.2.1 Given m positive integers ry > 13 > --- > 1, a standard Young tableau
of shape (r1,r2,...,Tm) is an array of ry + 12+ ...+ 1, distinct positive integers arranged in
m left-justified rows with r; entries in the jth row, with the numbers increasing along each

row and down each column.
The order of the tableau is the total number of entries, ry +ro + ... + .

The essential step of the Robinson-Schensted correspondence is given by the following
definition and iemma:
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Definition 2.2.2 Y « z is the array obtained from the standard tableau Y by following the
procedure:

Step 1 Insert z in the first row of Y by displacing the smallest number in the mw which is
larger than z; if no number is larger than z, add = at the end of the row.

Step 2 If a number was displaced from the (t)th row, insert this number in the (t + 1)th row
by displacing the smallest number larger than it or by adding it at the end of the row.
Repeat this step until some number is added at the end of a row.

Lemma 2.2.3 Y « z is a standard tableau.

Proof: omitted. O

The Robinson-Schensted correspondence provides a bijection between the members of
Sa and ordered pairs (P, Q) of standard Young tableaux of order n having the same shape.
The tableaux created by the following construction are called the P-symbol and the Q-
symbol by Craige Schensted, who presented the construction in 1961 [17]. Schensted’s work
is a more formal and complcte presentation of a procedure which was introduced in a different
context by Gilbert deB. Robinson in 1938. In the forward direction, the correspondence is
defined by the following definition. The steps used to obtain the tableaux P and Q can be
inverted to invert the bijection.

Definition 2.2.4 The P-symbol corresponding to = = (py,pa,...,pn) is the array
(---((pr = P2) & p3)... = pn).

The P-symbol is seen to be a standard Young tableau by repeated application of
lemma 2.2.3.

Definition 2.2.5 The Q-symbol corresponding to = is the array obtained by numbering the
positions of the shape of P in the order that they are added.

We omit the proof that the @-symbol is also a standard Young tableau.

We have omitted the proof that the Robinson-Schensted correspondence actually is
a bijection. However, given this, it is evident that each p; inserted, at its turn, into the r-th
box of the first row of P is the largest member of an ascending subsequence of length r in
m, the other members of the subsequence being the occupants of the positions to the left of
position r at the time p; is inserted. It is also straightforward to see that there is no longer
ascending subsequence of 7 which claims p; as its largest member. Following Schensted’s
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notation, we call the set of p; which are inserted into the r-th box of the first row the r-th
basic subsequence of 7. Each basic subsequence is a decreasing subsequence by the nature of
the Robinson-Schensted correspondence.

The permutations we are interested in, the members of S,(123), are precisely those
which have no ascending subsequences of length greater than 2. The Robinson-Schensted
correspondence thus associates to each an ordered pair of standard Young tableaux of the
same shape, that shape laving at most two columns. To this ordered pair (P,Q) we now
associate a rectangular standard Young tableau having n rows and 2 columns, in the following
manner.

Obtain a new tableau Q' by rotating @ by one half-turn, and replacing each entry
r by 2n + 1 — z. The entries of Q' are n + 1,n + 2,...,2n and Q' increases along rows
and columns. Now join P and @’ to obtain the desired tableau of shape 2 by n; call it T.
Clearly, T contains the elements 1,2,3,...,2n. Furthermore, it increases along rows and
columns, since each of the two columns consists first of elements of P, which increase down
columns, and then of elements of @, which increase down columns and are larger. (Similarly
for rows.) Therefore, T is a standard Young tableau.

Now we create a sequence of length 2n from the symbols ‘(" and *)’, letting the j-th
element of the sequence be ‘(’ if j appears in the first column of T, and ‘)’ if in the second
column. This sequence will consist of n open parentheses and n closed parentheses. The
condition that T' be increasing by rows and columns ensures that the sequence of parentheses
will be well-formed in the sense that we will never close more parentheses than we have
opened; this is the alternative characterization of the well-formed bracketing sequences.

We have already enumerated such bracketing sequences in the previous section, and
found the number with n open and n closed parentheses to be the n-th Catalan number,

[ 2n 2n 1 2n
«=(7)-050 ) -ma(T)

More to the point, bracketing sequences of length n are equinumerous with the set
5n(231). The sets S,(123) and S,(231) are thus seen to be have the same cardinality. We
can state this as a theorem. For the statement of the theorem, we prefer to recall that
we have a bijection between 231-avoiding and 132-avoiding permutations; we obtain the
permutations of one set by reversing each member of the other. Therefore also S,(132) = c,.

The reason for this choice is that in the following sections we will find alternative bijective
correspondences between the two sets S,(123) and S,(132).

Theorem 2.2.6 |5,(123)| = |Sa(132)| = cq..
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Proof: O
Recall that the implication of this result is that restricting permutations by forbidding
any subsequence of length k£ = 3 results in the same distribution.

Corollary 2.2.7 |S,(7)| = |Sa(p)| for any =, p € S;.

Proof: O

The method by which we obtained 2.2.6, while it actually produces an explicit bi-
Jection between the two sets by composing the maps which associate a bracketing sequence
with the elements of each, appears to be accidental at best. It provides us with no intuition
about the existence of analogous bijections for 7, p € Si with k£ > 3. This is because it is far
from clear what commonalities between the forbidden permutations (1,2,3) and (1,3,2) we
have appealed to. In the following three sections we will consider three alternative proofs of
2.2.6.

All three of these proofs, which are strikingly different, seem to exploit different
features of the forbidden permutations. One reason to gather together competing proofs
of the same theorem is the hope that some insight might be gained from their alternative
viewpoints. Another is the hope that each might be open to generalization in a different
direction, providing a catalogue of bijections between S,(7) and S,(p) for some selections of
7 and p of length greater than three.

We will obtain some such generalizations in chapter three. It is natural to wonder
whether we will be able to conclude that |S,(7)] = |S.(p)| in all cases. We will also see in
chapter three that this is quite strongly not the case.

2.3 The Simion-Schmidt bijection

Recall that the arguments of the previous two sections do provide one bijection be-
tween S,(123) and S,(132), via well-formed sequences of parentheses. In addition to being
cumbersome, it has the disadvantage of failing to fix the intersection S,,(123)N.S,(132), even
as a set. Rodica Simion and Frank Schmidt [18] introduced a simpler bijective correspon-
dence which fixes each element of S,,(123) N 5,(132). Following their approach, we describe
the correspondence through a pair of mutually inverse algorithms.

Algorithm 2.3.1
Input: o = (ay,4as,...,a,) € S,(123)
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Output: 7 = (¢1,¢2,...,¢n) € S,(132)
Step 1: 7 « 1;

Step 2: ¢ — a;, T + a;;

Step 3: : — 1+ 1;if1 > n, ezit;

Step 4: if £ > a;, then c¢; — a;, go to (3);
else, ¢; — min{k|z < k < n,k # ¢; for all j < 1}, go to (3).

Algorithm 2.3.2

Input: 7 = (¢1,¢2...,¢n) € Sa(132)
Output: o = (ay,az,...,a,) € S,(123)
Step 1: : « 1;

Step 2: a; — ¢i,z — c+1;

Step 3: i1 — 1+ 1; if 1 > n, exit;

Step 4: if £ > ¢, then a; — ¢,z —c;, go to (3);
else, a; — max{k|k < n,k # a; for all j < i}, go to (3).

It is easy to verify that the two constructions produce output of the desired type, by
considering the fourth step in each case. It is likewise easy to see that the algorithms invert
one another, and thus that a bijection has beer: produced. Also notice that if a permutation
is both 123-avoiding and 132-avoiding that it will be invariant under either algorithm.

The fourth step in algorithm 2.3.1 involves a branch, and thus divides the elements of
a 123-avoiding permutation into two types, those for which z > a; and those for which z < ;.
These are precisely the two basic subsequences of the Robinson-Schensted correspondence.
Algorithm 2.3.1 fixes the first basic subsequence. If the permutation o is also 132-avoiding,
then the second basic subsequence will be fixed as well, but in general this is not the case.

We can consider the algorithms as determining analogues to the basic subsequences
in the context of 132-avoiding permutations. The first basic subsequence consists of just
the left-to-right minima of the permutation, as is the case in the 123-avoiding case. Under
this definition, we can execute either algorithm by first identifying and fixing the first basic
subsequence, and second rearranging the elements of the second basic subsequence. In
algorithm 2.3.2 they are arranged into descending order; in algorithm 2.3.1 they are arranged
into ascending order, subject to the restriction of not introducing any new left-to-right-
minima.
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Example 2.3.3 The algorithms 2.3.1 and 2.3.2, applied to all inputs for n = 3, give the
follrwing correspondence. On the left are the 123-avoiding permutations of length 3. On the
right are the 132-avoiding permutations. The middle column shows the members of the first
basic subsequence of the permutations on the left, and likewise of the analogous structure in
the right permutations. Notice how these are fized by the correspondence.

132 1 123
213 — 2 1 — 213
231 2 1 231
312 +— 3 1 — 312
121 3 21 321

Notice also how all permutations ezcept those in the top row are unaltered by the bijection.

2.4 The Richards bijection

In this section we consider an bijection introduced by Dana Richards [14] between the
permutations S,(123) and the bracketing sequences of B,. (Richards refers to the elements
of B, as ballot sequences and writes them with the symbols ‘0’ and ‘1’.) We can combine
this with the results of 2.1 to obtain a bijection between S,(123) and 5,(132). The resulting
correspondence is different from that of the previous section, and fails to fix the intersection

of the two sets.
Like Simion and Schmidt, Richards presents the bijection in the form of two mutually

inverse algorithms. We preserve that approach.

Algorithm 2.4.1

Input: 8 = (b1, b2,...,b2m) € By

Output: 7 = (p1,P2,---,Pn) € Sa(123)

Step 1: Initialize two cursors, 7 —n+1,ce—n+ 1;
Step 2: Setj « 1;

Step 3: Repeat steps ({) and (5) fori =1 ton;
Step 4: Ifb; = ‘(’ do step (C), else do step (R);
Step 5: Increment j «—j + 1.
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Step C: Repeat

c—c—1;
Je—Ji+1
until b; =)}
set p. «—1
Step R: Repeat
re—r—1

until p, is unset;
set p, + 1.

The operation of the algorithm inserts the elements 1,2...n in order. Each insertion
is made as one of the n ‘)’s is read from the bracketing sequence. The elements are divided
into two types: those inserted at the position of cursor ¢ in step C, and those inserted at the
postion of cursor r in step R. These can be seen as two subsequences of the permutation,
C and R. The second type of entry, comprising subsequence R, is always inserted at the
rightmost available position. As each cursor moves always to the left, each of the two types
forms a decreasing subsequence in the final permutation.

That the algorithm produces a valid permutation is a consequence of the fundamental
property of bracketing sequences. Cursor ¢ moves one step to the left every time a ‘(’ is
processesed. An entry is made in the permutation whenever a ‘)’ is processed. Since we
never reach a point where we have processed more closed than open parentheses, there are
always unset entries at or to the right of cursor c. When the algorithm terminates, n open
parentheses have been processed, cursor ¢ has moved all the way to the left, and all positions
are available to be filled.

That the permutation produced is 123-avoiding follows from the fact that the two
subsequences C and R decrease from left to right. Any ascending subsequence of length
three would have to have at least two entries in one or the other subsequence. In fact, in the
terminology of section 2.2, the subsequence C is just the first basic subsequence, namely the
set of left-to-right minima of x. The subsequence R is the second basic subsequence. Let us
state this as a proposition.

Proposition 2.4.2 The elements entered in step C of algorithm 2.4.1 constitule the first
basic subsequence of the permutation m. The elements entered at step R form the second
basic subsequence of .



22 2 CORRESPONDENCES BETWEEN Sn(123) AND Sn(132)

Proof: Suppose the element k is being entered into position p, at step C of the
algorithm. Then we are processing the k-th closed parenthesis from the sequence 3. Since
f is well-formed, at least k open parentheses have already been processed, so cursor ¢ has
moved at least k positions from the right end of the sequence. But only k£ — 1 entries have
already been made, namely all those smaller than element k. Each has been made either
at step C, when cursor ¢ was to the right of where it is now, or at step R, in which case
it was placed in the rightmost available position. In either case, it was placed to the right
of the current position of c. So there are no elements smaller than k to the left of k; k is
therefore a left-to-right minimum. On the other hand, suppose element [ is being entered
into position p, at step R. Since § is well-formed, cursor ¢ has already moved [ steps to the
left. The rightmost available position is therefore to the right of c. But since we are at step
R, an entry has already been made at ¢. Since this entry was made before [, it is smaller
than [, and it is to the left of I. Therefore, [ is not a left-to-right minimum. O

So, like the Simion-Schmidt algorithm, the Richards algorithm makes strong use
of the fact that a 123-avoiding permutation is composed of two interleaved, descending,
basic subsequences. We give next the inverse algorithm, which converts a 123-avoiding
permutation to a bracketing sequence.

Algorithm 2.4.3

Input: = = (p1,p2,...,Pn) € Sa(123)

Output: 8 = (b,b,,...,b;,) € B,

Step 1: Initialize an array, seen[l...n]) « false;
Step 2: Initialize a cursor, c —n + 1;

Step 3: j « 1;

Step 4: Fori =1 ton do (5) and (6);

Step 5: If1 has been seen, do (S); else do (NS).
Step 6: Increment j — 5 + 1.

Step S: Set b; ‘)’

Step NS: Repeat

c+—c—1;

bj —(}
Je=J+1
set p. as seen
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until p. = 1;
set b; )’

The algorithm searches, right-to-left, for the smallest element which has not yet been
seen. In other words, it looks for the left-to-right minimna, starting with the smallest and
rightmost. If it has to move ¢ elements to the left to reach the next such element, t open
parentheses are added at step NS. If an element [ is passed over while scanning for a smaller
one, in other words if ! is not a left-to-right minimum, then an open parenthesis is added for
I when the counter ¢ reaches [, and ! is not searched for.

It should be clear that algorithm 2.4.3 simply inverts the process of algorithm 2.4.1.

Example 2.4.4 The bracketing sequence OWON)) is well-formed. We carry out algorithm
2.4.1 on this input. The positions of the cursors are underscored at each step.

step processed input output

0 (z,z,z,2,2)_
1 () (.T,I,I,I,l)_
2 (00 (z,2,2,2,1)_
3000 (2,2,2,3,1)
4 () (4,2,2,3,1)
5 ()0)0) (4,2,5,3,1)

We nezt carry out the inverse algorithm 2.4.9 on the resulling permutation (4,2,5,3,1).

step cursor seen output
0 (4,2,5.3,1)_
1 (4,2,53,1) 1 0
2 (4,2,53,1) 1,2,3,5 OO
3 (42531 1,235 ()(()
4 (4,2,53,1) 1,2,3,4,5 ()((0))
5 (4253,1) 1,234,5 0(0))

Next we present a recursive algorithm for converting a bracketing sequence to a 132-
avoiding permutation. We make use of the way in which each set satisfies the Catalan
recurrence 1.
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Algorithm 2.4.5

Input: 8= (b,bs,...,b,) € By;
aset Z =1, <z13<---<z, ofn integers

Output: A 132-avoiding permutation sequence * = (py,...,pn)

Step 1: Find the ‘)’ matching b, = ‘(’ by scanning from left to right for the first position at
which the numbers of (’ and ‘)’ scanned is equal. Suppose this is position 2i;

Step 2: Let p; — max{z:: € Z};

Step 3: Fill positions 1,2,...,(i — 1) of m with the integers Zmax = {Tn_it1,.--,Tn-1} by
calling algorithm 2.4.5 with input B = (by, b3,...,bi_1) and Zpyay;

Step 4: Fill positions (1 + 1),(i + 2),...,n of & with the integers Zpmin = {T1,23,...,Tn_;}
by calling algorithm 2.4.5 with input g = (biy1,...,b,) and Zyi,.

The inverse algorithm simply reverses the steps of algorithm 2.4.5. We can form an
algorithm for converting the permutations of $,(123) to those of S,(132) by concatenating
the algorithms 2.4.3 and 2.4.5. This algorithm fails to fix the intersection of the two sets, as
can be seen from the example below. Thus it provides a differet correspondence from that
of the Simion-Schmidt bijection in the previous section.

Example 2.4.6 The algorithms 2.4.8 and 2.4.5, applied to all inputs for n = 3, give the
following results:

13 2 O) 123
2 13 — () — 213
231 00) 312
312 — (0)) — 231
321 060 321

Algorithm 2.4.5 can be modified by working from the back, rather than the front,
of the sequence 3. The reader may verify that the correspondence between S,(123) and
Sn(132) thus produced still differs from the Simion-Schmidt bijection.

2.5 A Catalan tree
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2.5.1 In connection with forbidden subsequences

We define recursively a rooted tree whose vertices are identified with the permutations
in the set 5(123). Let the root be the permutation (1) € $,(123), and let each = € S,(123)
be a child of the permutation =’ € S,_,(123) obtained fror: = by deleting the largest el-
ement, n. (Clearly, deleting elements from a permutation cannot introduce any forbidden
subsequences.) Call this tree T(123). It will also be convenient to label each vertex of T'(123)
with the number of its children. Then the structure of the tree T(123) is characterized by
the following theorem.

Lemma 2.5.1 If m € T(123) has the label t, then its t children are labelled 2,3,... ¢t + 1.

Proof: The number of children of a permutation = = (py,pz,...,pn) is the number
of sites at which n + 1 may be inserted without introducing a subsequence of type 123. If
the leftmost element of 7 which is not a left-to-right minimum of 7 is p;, then n + 1 may
be inserted anywhere to the left of p;, but nowhere to its right. Thus if = has the label ¢
as a vertex of T(123), then p, is the leftmost element of the second basic subsequence of .
(Possibly t = n + 1, in which case 7 is the descending permutation.)

Ifn+1is inserted in the lefimost site, the new permutation 7* = (n + 1, py, ps, . ... yPn)
has ¢ + 1 sites where n + 2 may legitimately be inserted, namely all those to the left of p,.
Therefore 7* receives the label ¢t + 1.

On the other hand, if n is inserted elsewhere to the left of p,, say in position s to
form 7°, n itself becomes the leftmost member of the second basic subsequence of 7*. Hence
7* receives the label s.

Since the children of = in T'(123) will be n2, 3, ... ,x! and =*, and since these receive
the labels 2,3,...,t,t + 1 respectively, the proof is complete. O

We define a second tree with vertex set S(132) analogously, and call it T(132). The
structure theorem for the tree T(132) is identical to the one for T(123), namely:

Lemma 2.5.2 If v € T(132) has the label t, then its t children are labelled 2,3, ... t,t + 1.

Proof: Suppose 7 = (p;,ps,...,p.) € T(132) has the label t. Then there are t sites
in # where n + 1 may be inserted without introducing a forbidden subsequence of type 132.

One of these sites will always be the leftmost position, so first suppose n+1 is inserted
at the left of 7 to form #* = (n+1,py, pa,...,ps). Then n* also has ¢ sites where is is possible
to insert n + 2 to the right of n + 1. So 7* receives the label t + 1.
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Alternatively, for s = 2,3,...t, suppose n + 1 is inserted into the s-th site to obtain
n’. Then n + 2 cannot be inserted anywhere to the left of n + 1 (except to the left of p,)
because the subsequence consisting of the elements (p;,n+2,n+ 1) would be of the forbidden
type 132. However, each of the t — (s — 1) sites to the right of n + 1 is still available, in
addition to the leftmost position, so #* must be labelled t — s + 2.

Since the children of 7 in T(132) will ber*”, 72, #3, ... x*, and since these are labelled
t+1,t,...,3,2 respectively, the proof is conplete. O

In addition to completing a fourth proof of 2.2.6, we have actually proven that 7°(123)
and T'(132) are isomorphic trees with number of vertices on the n-th level being c,, the
Catalan number. Since the children of any vertex receive distinct labels, a vertex can be
uniquely determined in each of the trees by listing the labels of its ancestors along a path
back to the root. Therefore there is a unique isomorphism between T(123) and 7°(132), and
since the vertices on the n-th level of T'(123) are identified with the members of S,(123) (and
similarly for T'(132)), this induces a bijection between S,(123) and S,(132) for every n.
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. . 2
132 ) 4132 23;

—
»
[A]
]

\

(2) 2413 (2)
\s 3.1.2 (3)_/: .2.1.43 (3)
TSNS 4.2.1.3 (49)
e 2431 (2)
\ / e I RS
o~ 3412 (2)
2.1.3 (3) == .3.1.42 (3)
RS T (4)
3.421 (2)
\ 32.1. (@ == 3211 (3)
& 3214 (@)
4.3.2.1. (5)
The tree T(123) with labels showing active sites

123 4. (2)

/'123' @) =T 4132 (3)

3124, (2)

\ 312 (3 =" 3412 (3)

S . 4.3.1 2. (4)

— 213 4. (2)

\ / 213 =_ 4213 (3
o~ 2314.(2)

23.1. (3) T .234.1. (3)

\ TRk @

321 4. (2)

321 (4 = 324.1. (3)

(4)
— 34.2.1. (4)
N i3z (5)

The isomorphic tree T(132)



28 2 CORRESPONDENCES BETWEEN Sy(123) AND Sn(132)

Note that this is not the same as the Simion-Schmidt bijection. The vertex associ-
ated with the permutation (2,3,1) in each tree corresponds to (2,1,3) in the other. Since
(2,3,1) € Sn(123) N 5,(132), it must be fixed by the Simion-Schmidt correspondence.

Example 2.5.3 In each line of the following table we list first an element © € S3(123); in
the middle, the corresponding labels of the ancestors of the node associated to = in T(123),
including the node itself; on the right, the permutation associated with the node of T(132)
reached by following the path with the same labels. It is evident from comparing this small
ezample with 2.3.3 and 2.4.6 that the bijection induced by the tree isomorphism differs from
those of the previous sections.

132 (2,2,2) 123
312 (2,2,3) 312
231 (2,3,2) 213
213 (2,3,3) 231
321 (2,3,4) 321

If a sequence of vertex labels (fi, f2,. .., fa) having the property that 2 < f; < fi_; +1
is converted into a sequence (a;,ay,...,a,) according to a; = :+2— f;, then the new sequence
will be non-decreasing with each a; < 1. Such sequences are a familiar instance of the Catalan
numbers, being naturally associated with lattice paths.

It is straightforward to convert the observations underlying theorems 2.5.1 and 2.5.2
to algorithms for transforming 123-avoiding permutations into 132-avoiding permutations
and vice versa.

2.5.2 In relation to some minimal semiorders

As a final observation, the minimal semiorders introduced by Karen Stellpflug in [20]
are also in correspondence with the nodes of the trees defined above. A partially ordered
set is a semiorder if and only if it can be represented by a set of equal length open intervals
in the real line, with the order relation (a,bd) < (c,d) if and only if b < ¢. A semiorder
has representation number £ if it has a representation in which all intervals have the same
integer length k, but has no such representation with intervals of length & — 1.

A semiorder has representation number 1 if and only if it has no suborder isomorphic
to the following order, which Stellpflug calls Sz ;:
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be
a

The semiorder S 51

Likewise, a semiorder has representation number < 2 if and only if it has no suborder
isomorphic to either of the following semiorders of representation number 3:

C
b be b’
a
X
X
The semiorder S 3’1 The semiorder S 3'2

Stellpflug show how to obtain the minimal 3-representable semiorders from the min-
imal 2-representable semiorder by a process of duplicating a minimal element, and then
adding a new minimal element which distinguishes the minimal node from the duplicate.
The new minimal node is made incomparable to the original, but placed below the dupli-
cate, and the resulting order is extended to be a semiorder. It turns out that the unique way
to do so is 1o place the new minimal element also below all elements which follow the dupli-
cate in the predecessor extension of the semiorder. If a minimal k-representable semiorder
has r minimal elements, then it will give rise to r minimal k + 1-representable semiorders, by
duplicating each of the minimal elements in turn. Because of the way in which the semiorder
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was constructed, these k+ 1-representable semiorders have variously 2,3,4,...,r+1 minimal
elements.

Hence, Stellpflug’s minimal k-representable semiorders can be seen to correspond to
the vertices on the kth level of the Catalan trees examined above. The tree edges correspond
to Stellpflug’s splitting operator for construction of a minimal semiorder As a direct con-
sequence, Stellpflug’s minimai k-representable semiorders are counted by the k-th Catalan
number. Stellpflug reports an alternate solution of this same result.

Interestingly, the total number of n-element semiorders is also given by c,,.
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4 ma diceva molto sul furore combinatorio
con cui Belbo st era avvicinato alla macchina.”

— Umberto Eco, Il Pendolo di Foucault 3

3.1 Generalizations of the Catalan trees

3.1.1 Three trees for k =4

Let a site of a permutation

™ = (P1,P2y-- -1 Pn) (3)

be one of the n + 1 locations preceding, between, or following the elements of 7. Then to
insert n+1 into site i is to form the permutation

7(‘=(P1,P2,---,Pi—l,n+1,P.‘,Pi+l,---,Pn)- (4)

Definition 3.1.1 With respect to a particular forbidden subpattcrn T, we will call site i of a
permutation © € S(7) an active site if the insertion of n+1 into site i creates a permutation

= € S(7).

For definiteness, we take throughout this section T € S4.

Evidently, if site 7 is not active then the insertion of n + 1 into site 7 gives rise to
a subsequence of type T, (Pa(1): Pa(2) Pa(3), Pa(4)) Where a(1) < a(2) < a(3) < a(4), and
pa(k)=n+1iﬁtk=4.

Define recursively a rooted tree, T'(7) whose vertices are identified with the permuta-
tions of the set S(7). Let the root be the permutation (1) € Si(7), and let each 7 € Sns1(7)
be a child of the permutation 7’ € S,(7) obtained from 7 by deleting the largest element,
n+ 1.

The number of children of a node 7 of T(r) is the number of active sites of 7 with
respect to 7.

First consider the tree T(1234). To each permutation 7 € S,(1234), regarded as a
node of T(1234), we associate an ordered pair (z,y) as follows. Let z be one greater than
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the length of the longest initial decreasing subsequence of . That is, z is the index of the
first element of the second basic subsequence, if one exists, and n + 1 otherwise. Let y be
the number of active sites in 7. In this instance, y is the index of the first element of the
third basic subsequence of , if one exists, and n + 1 otherwise. As a node of T'(1234), 7 has
y children. We prove the following theorem.

Theorem 3.1.2 Ifr € 5,(1234) is associated with the ordered pair (z,y) in the tree T'(1234),
then the y children of m in T(1234) are associated with the ordered pairs

(2,y+ 1),y +1),....(z,y + 1), (z,2 + 1), (z,2 + 2),...,(z,y),(z + L,y +1). (5)

Proof: The y active sites of 7 are the first y sites. We verify that inserting n + 1
into site 7 gives rise to a permutation 7' associated in T(1234) with the ordered pair

(z+1,y+1) ifi=1,
(th,y+1) if2<i<z,
(z,2) frz+1<i<y.

If: =1, n+1 is inserted to the left of all elements of the permutation. The elements
of m with were the leftmost members of the second and third basic subsequences remain the
leftmost members of their respective subsequences. Each is displaced one position to the
right by the insertion of n + 1.

If 2 <1 <z, then n +1 is inserted to the left of the first element of the second basic
subsequence. The element n+1 thus itself becomes the leftmost element of this subsequence,
being larger than any element to its left, of which there is at least one as ¢ > 2. On the other
hand, the insertion of n 4+ 1 does not create any new ascending subsequences of length 3, so
the leftmost element of the third basic subsequence is unchanged but moved one position to
the right.

Finally, if ¢ > z + 1, then (p.-1,pz, pi) is a subsequence of type 123. (Note that if
i > z 4 1, it must be the case that z < n, so that p, actually exists.) Hence p; = n + 1
becomes the new leftmost member of the third basic subsequence. The role of the element
p- is unchanged. O

Example 3.1.3 Let 7 be the permutation

5317462



3.1 Generalizations of the Catalan trees 33

has initial decreasing sequence of length 3. Of the 8 sites, the leftmost 6 are active. Therefore
m receives the label (3,6). Inserting the element 8 into each of the 6 active sites in turn from
left to right produces permutations with the labels

(4,7);(2,7);(3,7); (3,4); (3,5); (3,6)

1243 (2,3)

123 é 1423 (24)

g (2,3) 4123 (34)

1342 (2,9)

1324 (24)

12 132<1432 (2,5)
(2,3) (2,4) 4132 (3,5
3412 (2,5

312 3142 (34)

<3124 35

| (3.4) 4312 {4,5;
(2,2) 2341 (2,3)
231 € 2314 24

@89 NS 4231 (3

2413 (2,5)

! TR St
(3,3) (34) 4213 (4.9)
3421 (2,5)

321 < 3241 (35)

(4,4) 3214 (4.5)

4321 (5.5)

The tree T(1234) with the labels (x,y) at each node

Next consider the tree T(1243). We again associate to each node an ordered pair
(z,y). Again let z be one greater than the length of the longest initial decreasing subsequence
of . As in the previous case, 2 <z <n +1.

Also, again let y be the number of active sites in w. In the previous case, 7 = 1234,
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the y active sites were the y leftmost sites of 7. This is no longer necessarily the case. But
it is still true that as a node of T'(1243), 7 has y children.
In the following theorem, we prove that T'(1243) has the same structure as T(1234).

Theorem 3.1.4 Ifn € 5,(1243) is associated with the ordered pair (z,y) in the tree T(1243),
then the y children of w in T'(1243) are associated with the ordered pairs

(2,y+1),3y+1),...,(z,y + 1), (z, 2+ 1),(z, 2+ 2),...,(z,y), (= + L,y + 1).

Proof: Let the y active sites be numbered from left to right as the first active site,
second active site, ..., tth active site, ...

While the active sites are no longer necessarily the y leftmost sites of r, it is the case
that the first z sites are all active. For if n + 1 is to introduce a subsequence of type 1243,
it must fall in the third position of such a subsequence, and to the right of both elements of
some increasing subsequence of length two.

The remaining y — z active sites fall to the right of position z.

It is helpful to observe that the introduction of a new element, n + 1, creates a
permutation with one extra site.

The key observation is that if the site located in m as defined in 3 between p; and
Pr41 18 not active, then neither is the site between p; and piy; in 7' as defined in 4. For if
the interposition of n + 1 between p; and pi4, gives rise to a forbidden subpattern in 3, then
the interposition of n + 2 in the same location gives rise to essentially the same forbidden
subsequence.

If the site between p;_; and p; is active in m, then both of the new sites (p;—;,n + 1)
and (n + 1, p;) are potentially active in =*.

On the other hand, we may verify that if a site was active in , it remains active in 7'
unless it falls to the right of position z and to the left of position z, where n +1 was inserted.

We thus observe that inserting n-+1 into the ith active site gives rise to a permutation
7 associated in T'(1243) with the ordered pair

(z+1,y+1) ifi=1,
(Ly+1) if2<:<r,
(z,z4+y+1—-2) fz+1<:<y.

If : =1, n+ 1 is inserted to the left of all elements of the permutation. This removes
no active sites, and creates one new one, namely to the left of n + 1 itself.

The firat z active sites are simply the z leftmost sites. If 2 <7 < z, then n 4 1 is
inserted to the left of the first position in which there is an left-to-right increase. Since n + 1
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is larger than all other elements of =*, it is larger than the element to its left, and becomes
the new first marker of a left-to-right increase. Also, all active sites of 7 remain active sites
of m;, and one new one is introduced, to the left of n + 1.

Finally, if ¢ > = + 1, then (p._;,pz,n + 1) is a subsequence of type 123. (Note that if
t > z 41, it must be the case that z < n, so that p, actually exists.) Then all sites between
pr and n + 1 become inactive. The sites which remain active are the initial z sites and the
final (y — z + 1) — (i — z) active sites. (There are y — z active sites to the right of position
z in 7, plus one extra site formed by the introduction of n + 1, less the ¢ — = active sites
eliminated between p, and n+1.) O

1234 (2,3)

123 é 1423 (2,4)

(2,3) 4123 (3,9

1324 (2,3)

s 0 €S 1112 22
(2,3) (2,4) 4132 (3.5)
3412 (2,9)

312 <3142 (3,4)

3124 (3,9)

1 (3.4) 4312 (4,5)
(2,2) 2314 (2,3)
231 < 2341 {23

2431 (2,

(24 4231 (3,9)

2413 (2,9)

! < g
(3.3) (34) 4213 (4.5)
3421 (2,5

321 é 3241 (3,9

4,4 3214 (4,9)

4321 (5,9)

The tree T(1243) with the labels (x,y) at each node
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Thirdly, consider the tree T(2143). We again associate to each node an ordered
pair (z,y). This time, let z be one greater than the length of the longest initial increasing
subsequence of 7. Again let y be the number of active sites in =, i.e. the number of children
of m in T(2143).

In the following theorem, we prove that T'(2143) has the same local structure as the
two previous trees.

Theorem 3.1.5 Ifm € 5,(2143) is associated with the ordered pair (z,y) in the tree T(2143),
then the y children of ™ in T(2143) are associated with the ordered pairs

(2,y+1),3,y+1),....,(z,y + 1), (z,z+ 1), (z, 2 + 2),...,(z,¥y),(z + 1,y + 1).

Proof: Let the y active sites be numbered from left to right as the first active site,
second active site, ..., ith active site, ...

It is again case that the first = sites are all active. For if n + 1 is to introduce a
subsequence of type 2143, it must fall in the third position of such a subsequence, and to
the right of both elements of some decreasing subsequence of length two.

The remaining y — z active sites fall to the right of position z.

Exactly as was the case for T(1243), we check that if a site was active in , it remains
active in 7' unless it falls to the right of pusition z and to the left of position 7, where n + 1
was inserted.

We thus observe that inserting n+1 into the ith active site gives rise to a permutation
7 associated in T/(1243) with the ordered pair

(2,y+1) ifi=1,
(t+1Ly+1) if2<i<r,
(z,z+y+1—1) fz+1<i<y.

Ifi=1,n+1 is inserted to the left of all elements of the permutation. This removes
no active sites, and creates one new one, namely to the left of n + 1 itself. The first position
where a decrease is detected is now in the very first position following n + 1 in the new
permutation.

The first z active sites are simply the z leftmost sites. If 2 < ¢ < z, then n 4 1
is inserted to the left of the first position in which there is an left-to-right decrease. Since
n + 1 is larger than all other elements of 7', it is larger than the element to its right, which
becomes the new first marker of a left-to-right decrease. Also, all active sites of m remain
active sites of m;, and one new one is introduced, to the left of n + 1.
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Finally, if i > = + 1, then (p,_1,ps,n + 1) is a subsequence of type 213. (Again, note
that if 1 > z + 1, it must be the case that z < n, so that p, actually exists.) Then all sites
between p, and n + 1 become inactive. The sites which remain active are the initial z sites
and the final (y —z + 1) — (i — =) active sites. O

2134 (2,3)

213 énla (2,4)

/ (2,3) 2413 (34)

3214 (2,3)

3241 (24)

21 321 4321 (2,9
(2,3) (2,4 3421 (3,9
4231 (2,5

2314 (3,9

i) <2431 (3.5)

, ’ 2341 (4,9
(2,2) 3124 (2,3)
3142 (2,4

o < 4312 (25)

’ 3412 (3,9

4132 (2,9)

12 132 1324 (34)
(3,3) (3,4) 1432 (3,3)
1342 (4,5)

4123 (2,5)

123 1423 (3,9)

(4,4) 1243 (4,5)

1234 (5,9

The tree T(2143) with the 1abels (x,y) at each node

Combining the results of theorems 3.1.2, 3.1.4, and 3.1.5, we can assert that the threc
rooted trees T'(1234), T(1243) and T(2143) are all isomorphic.

Theorem 3.1.6 T(1234) = T(1243) = T(2143), and these isomorphisms are unique.

Proof: In each case, the permutation at the root, (1), is associated with the ordered
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pair (2,2). Applied recursively, the structural theorems 3.1.2, 3.1.4, and 3.1.5 ensure the
isomorphisms.

Since we can verify from the labels (5) assigned to a set of siblings, that no two
siblings anywhere in the tree receive the same ordered pair, the tree has a trivial symmetry
group, and the isomorpbisms are unique. O

Observe that the isomorphism induce bijections between the sets S,(1234), S, (1243)
and S,(2143) for all positive n, these being the nodes on level n of their respective trees. As
a consequence we have the following.

Corollary 3.1.7 [5,(1234)| = |S.(1243)| = |S.(2143)|, for all positive n.

In section 3.5 we will use the observations of this section to create an explicit sum-
mation formula for |$,(1234)|. Regev has shown [13] that |S,(1234)| is asymptotic to ¢ - &
for some constant c. (See also section 3.4.)

This result can now be applied to the sets S,(1243) and S,(2143) as well. The
permutations of S,(2143) in particular have been extensively studied, as these are precisely
the vezillary permutations. For an alternative characterization of the vexillary permutations,
we quote a lemma from section 2 of a paper by Lascoux and Schiitzenberger [10].

Let 7 € S,,, and define I(r) as the inversion vector Z; = |{j > i : m; < m;}|. Let P(x)
be the partition obtained by putting Z(x) in nonincreasing order. Then = is vexillary if and
only if P(r) is the transpose partition of P(r~1).

Example 3.1.8

Ifr=(3,7,6,1,2,4,5), then I(7) = (2,5,4,0,0,0,0) and P(r) = (5,4,2);

and, 77! = (4,5,1,6,7,3,2), so I(r~') = (3,3,0,2,2,1,0) and P(r~') = (3,3,2,2,1).

As the partition (3,3,2,2,1) is the transpose of (5,4,2), the permutations (3,7,6,1,2,4,5)
and (4,5,1,6,7,3,2) are vezillary.

Ifp=(3,6,1,7,2,4,5), then I(x) = (2,4,0,3,0,0,0) and P(r) = (4,3,2);

and, p~' = (3,5,1,6,7,2,4), so I(p—-1) = (2,3,0,2,2,0,0) and P(p~') = (3,2,2,2).

The transpose of (4,3,2) is (3,3,2,1) # (3,2,2,2). Hence, p and p~' are not vezillary. This
can also be seen from the presence of the forbidden subsequence 3174 in p, and 3162 in p~'.

We will establish a second correspondence between the 1234-avoiding permutations
and the vexillary permutations. See section 3.3 for an explicit description of this correspon-
dence.
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3.1.2 Two trees for each k£ > 4

In the above subsection we saw that the two trees T(1234), T'(1243) were isomorphic
to one another. We now generalize this result to forbidden subsequences of length k, namely
we show that the permutations ¢ = (1,2,3,...,k —1,k) and A\, = (1,2,3,...,k, k —1) give
rise tu isomorphic tiees T'(¢x) and T'(Ag).

Since the arguments parallel those of the previous subsection, we present them in
somewhat less detail.

Definitions 3.1.9 For anyk, let the permutation ¢ be the all-ascending permutation, (i) = i
for1 <i<k.

For any k, let the permutation A, be the permutation defined by M\ (i) =1 for1 <i <k —2;
Mk —1) =k, Me(k) =k - 1.

Now, to any permutation 7 € S,(tk), associate the vector (zy,z2,...,Zk-3,y), where
y is the number of active sites of 7 according to definition 3.1.1, and z; is the index of the
leftmost element of the j + 1-th basic subsequence, if one exists, and n + 1 otherwise. That
is, 7(z;) is the final member of an increasing subsequence of length j + 1, but not of length
J +2, and z; is the smallest index having this property.

In this case, y is the index of the leftmost member of the k — 1-th basic subsequence,
every site to the right of this point being active. Therefore the active sites of m are in fact
sites 1,2,3,...,y. One then checks that if = is associated to the vector (z,,z,,...,Ts_3,9),
then 7' is associated to the vector

(zin+Lz2+1,z3+1,...,y+1) ifi=1,
(t,zo+ 1,23+ 1,...,y+1) if2<: <1,
(Il,i,13+l,...,y+l) ifIl <1 S.’L‘Q,

(1) vxrytyZrpr + L,y + 1) if 2, < i < zpy,

(T1) T2y -+ oy The3y 1) ifzeai+1 <t <y.

and 7' ¢ S(u) if i > y. In particular, the set of vectors associated to the children #!,... 7V
of a permutation m depends only on the vector associated to .

Likewise, to any permutation = € S,(\s), associate the vector (z,,z,,...,z_3,¥),
where y is the number of active sites of 7, and z; is the least index such that =(z;) is the
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final member of an increasing subsequence of length j + 1, but not of length j + 2. If there
is no such index, let z; be n 4+ 1. Note that all sites to the left of posiiion z4_3 are active;
the remaining y — Tx-3 active sites are to the right of this position.

It is again not hard to see that if 7 is associated to the vector (z1,Z2,...  Tk=3,Y),
having the y active sites a(1) < ... < a(y), then rl) is associated to the vector

($1+1,$2+1,13+1,...,y+1) lf1=1,

(i,$2+1,33+1,...,y+1) leS'lS.'Dl,
(z1,8,z3+ 1,...,y +1) if z; <1 L 73,
(:rl,...,:c,.,i,a:,H+1,...,y+1) if z, <t < Tpgy

(rl,:rg,...,:ck_;,,y 4+ Troa+ 1 —l) if:‘k_;;-i-l <:<y.

The tables of offset equations above are identical except in the last line. A comparison
of the last lines will reveal that if a node in T(cx) and one in T()\x) are associated with the
same vector, then their y children receive the same y vectors. Also, no two children of the
same permutation receive the same vector in either tree.

Since the root permutation, (1), is associated with the vector (2,2,2,...,2, 2) in each
tree, we conclude that

Theorem 3.1.10 T(cx) = T(Ay), for all k > 3.
We have as an immediate consequence,
Corollary 3.1.11 |Sa(wk)] = [Sa(Ae)], for all k > 3.

In the following section we will cbtain another bijective proof of this fact, as part of
a more general result.

3.2 A generalization of the Simion-Schmidt algorithm

In this section, we generalize ihe result of section 2.3 to obtain further cases in which
1Sa(7)| = |Sn(p)] for all n.

If 7 avoids a sequence T = (ty,...,t), then there is no subsequence 7 (i), 7(22), - - - m(7%)
of type 7. There may however be numerous subsequences of the same type as some prefix
of 7,58y T, = t1,...,ts 10T 8 < k.
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Definition 3.2.1 Let 7 € Sy, 7 = (t;,...,t). Alsolet 7 € S, (1), = = (P1y---yPa). For
1 <5 < n, if r is the largest integer for which there erists a subsequence of the form
Pirs---»Pi, = p;j which is of the same type as t,,...,t,, then let p; be a member of the r-th
basic subsequence of v with respect of T.

Thus there are k — 1 basic subsequences with respect to + € Sy of any 7 € Sa(T),
some of them possibly empty. If 7 = ¢, = 1,2,...,k, definition 3.2.1 coincides with the usual
Schensted definition of basic subsequences (section 2.2).

We can establish a general class of bijections using the notion of basic subsequences.
The permutations which will be involved in these bijections will each have one of two special
forms. Let us zay that a permutation 7 is of type one if 7 = (4;,12,... bk, k — l1,k) and
of type two if 7 = (t1,¢3,...,tk—2,k,k — 1). The statement and proof of the theorem require
two further definitions.

Definitions 3.2.2 Ifr € Sy, let 7 be defined by
7)) =7(j) forj <k -1
F(k —1) = 7(k)
(k) =71(k—1)
Also let T € Sk_, be the standard type of the sequence T(1),7(2),...,7(k —1).

The operation of 7 is clearly an involution. We will only be applying this operation
to permutations of types one and two. We remark that if 7 is of type one, then 7 is of type
two, and vice versa. Also if T is of either of type one or of type two, and p = 7, then 7 = .

Theorem 3.2.3 If 7 € Si is of types one or two, then |S,(7)| = |Sa(7)].
The proof is a generalization of the Simion-Schmidt algorithm presented in 2.3.

Algorithm 3.2.4

Input: 7 € Sp(7) for7 € Sx, 7(k—1) =k - 1,7(k) = k.

Output: 7~ € S5.(7).

Step 1: Let B be the set of w(j) in the (k — 1)st basic subsequence of ™ with respect to r.
Step 2: Setj — 0.

Step 3: j — 5 +1.
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Step 4: Ifm(j) is not in the (k —1)-th basic subsequence with respect to 7: set x*(j) = =(j),
go to step 5.

Otherwise 7(j) is in the (¥ —1)st basic subsequence. Then let b be the smallest member
of B such that there exists 1 < i) < -+ < 4y < j so that 7*(3y),...,7"(ix_q),b is of
type 7. Let m*(j) = b. B = B\ {b}.

Step 5: If j = n, ezxil; otherwise, go to step 3.

Lemma 3.2.5 If r € S.(7) is of type one, let n* be defined by algorithm 3.2.4.
Then 7* € Sp(7).

Proof: First, we check that the algorithm will terminate having produced some
7* € S,. The only possible difficulty would be if there were at some stage no suitable choice
of b remaining in B.

The set B was originally composed of the members of the (k —1)st basic subsequence
of = with respect to 7. This is a descending subsequence. (If 7(j;) and x(j,) are both in the
(k — 1)st basic subsequence and 7(j;) < 7(j2) with j; < j,, then there exists a subsequence
7(t1),...,m(2k-1) = m(7;) of type 7. Then, since 7(k — 1) = k — 1 and 7(k) = k, it follows
that 7(j,) is greater than each of n(i;),...,7(ik-2). As w(j3) is larger still, we see that
7(t1), ..., ®(2k=2), *(J1), 7(j2) is of type 7. This contradicts = € S,(7), so it follows that the
(k — 1)st basic subsequence is a descending subsequence.)

Suppose we are on pass number jo and 7 (jo) is in the (k — 1)st basic subsequence, so
that we seek a suitable candidate for b. Certainly, the element 7(jy) or any larger number
would certainly suffice. But if 7(jo) is the m-th member from the left of the (k — 1)st
basic subsequence, it is also the mth largest, as it is a descending subsequence. Not all of
the m largest members of B can already have been used in the (m — 1) positions already
encountered which belonged to the (k — 1)st basic subsequence. So there will always be a
suitable b remaining in B.

Now suppose that the permutation generated by the algorithm, 7", contains a sub-
sequence of type 7, say 7*(¢;),...,m"(¢x). Then 7*(i4_,) is the largest member of this
subsequence, and 7*(i;) is the next largest.

It cannot be the case that both 7*(zx) and m*(ix—;) were both members of B, because
the minimality conditions would not have allowed the selection of 7*(zx_;) as b while the
smaller 7°(i;) was still remaining in B, and would have sufficed (since n*(i;),..., 7" (tx_2), 7*(i1)
is equally a subsequence of type 7).
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It remains to show that it is impossible that either of 7*(ix) or 7*(ix~;) was initially
a nonmember of B. To do this, we will consider two cases. First note that if either of 7*(i})
or m*(ix—1) was not a member of B, then it was fixed by the algorithm, #*(ix) = 7 (ix) [or
7I'.(2.k_1) = W(ik_l)].

For the first case, suppose each of 7*(,),...,7*(xk-2) was also fixed. In this case the
subsequence m(ty),...,m(tk=2), #(ik) is of type 7, meaning that x(zx) is in the k — 1st basic
subsequence of 7, in other words that it began in B. (The proof for 7*(ix_;) is identical.)

For the remaining case, suppose one of 7*(7;),...,7"(x_2) was also fixed. Suppose
it is 7°(¢,). Then there exists a subsequence of type 7 ending with 7*(z,), and with all its
members < 7°(¢,) < 7"(ix). Each member of this subsequence was fixed or one was not,
and by continuing we must reach a subsequence of type 7 which was entirely fixed, except
for possibly the final element, and which lies entirely to the left of x(ix) [or 7(ix—;)]. Each
of its elements is by construction smaller than 7(z;) [or 7(zx_,)], so replace the final element
by m(ix) [or m(ik-1)] to obtain an entirely fixed subsequence of type 7. The existence of
this subsequence in © would require that x(ix) belong to the (k — 1)st basic subsequence,
contradicting our supposition.

This completes the proof that =* avoids 7. O

The following algorithm can be seen to be the inverse of algorithm 3.2.4, thus estab-
lishing the bijection of 3.2.3.

Algorithm 3.2.6

Input: m € S,(7) fort € S, 7(k—1) = k,7(k) =k — 1.

Output: 7" € S.(7).

Step 1: Let B be the set of ©(j) in the (k — 1)st basic subsequence of  with respect to .

Step 2: Set j « 0.

Step 3: j «—j5+1.

Step 4: If m(j) is not in the (k —1)-st basic subsequence with respect to T, set w*(j) = = (7).
Go to step 5.

Otherwise w(j) is in the (k — 1)st basic subsequence. Then let b be the largest member
of B. Let #*(j) = b. B = B\ {b}.

Step 5: Ifj = n, eril; otherwise, go to step 3.

It is easy to see that in the case k£ = 3 algorithms 3.2.4 and 3.2.6 reduce to the
Simion-Schmidt algorithms of 2.3. As in that case, the algorithms produce bijections from
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one set of restricted permutations, S,,(7), to another, S,(7), while fixing the intersection of
the two sets.

3.3 Tables for k =4,5,6

The tables given on the following pages summarize the present situation for forbidden
subsequences of length k = 4,5,6. In these tables, values of |S,(7)| are given for small n and
all 7 of length < 6, In the tables for 4 and 5, permutations which are related to one another by
the standard operations of conjugation, reversal and inversion are grouped together in boxes.
For k = 6, we have chosen only one exemplar of each class, namely the lexicographically
smallest.

Permautations which have 7(k — 1) = k and 7(k) = k — 1 are marked with asterisks,
and permutations which are related by the application of theorem 3.2.3 have been placed on
the same level.

As an instance of the interplay between the standard operations and the new consid-
erations of theorem 3.2.3, note that we have bijections between S,(1234) and S,(1243) by
3.2.3, between S,(1243) and S,(3421) by reversal, between S,(3421) and S,(2134) by com-
plementations, and between S,(2134) and S,(2143) by 3.2.3. Composing these bijections, we
have a second bijection between S,(1234), the permutations with no ascending subsequence
of length 4, and S,,(2143), the vexillary permutations. This bijection is completely distinct
from the one given in section 3.1, where the vexillary permutations were defined preceding
example 3.1.8.

As can be seen from the proliferation of values at the right of the tables, nearly all
cases in which equality of S,(7) and S,(o) holds for all n have been established. There
are, however, a few outstanding cases. The most obvious of these are the large number of 7
for which the number of 7-avoiding permutations equals the number of permutations which
avoid ¢, the identity. One conjecture would tie together nearly all of these.

Conjecture 3.3.1 |5,(1,2,....,k)| = |Sa((r +1),(r+2),...,k,1,2,...,7)| for all natural
numbers n, k,r.

Those permutations which would be affected by this conjecture are grouped together
by double bars in the tables.
It also remains possible that equality obtains for the first two groups in the table for

k = 4. Let us add this as a conjecture.
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Conjecture 3.3.2 [5,(2,4,3,1)| = |S.(2,4,1,3)| for all positive n.

One approach to conjecture 3.3.2 would be to show an isomorphism between the trees
T(4132) and T(3142). These trees are in fact identical down to depth six.

Finally, there are several groups in the table for k = 6 for which equality obtains
through n = 6, but which are not covered by any of the previous cases. These have been
marked with special symbols in the table. Close inspection of these equivalence classes
or groups of classes shows that each pair is represented by permutations having a similar
form. In particular, all the six permutations of the form abc45G are matched to the six
corresponding permutations abc654 by these marks.

The first pair, marked by diamonds, contains the permutations 231456 and 231654,
as well as their inverses 312456 and 312654.

The second pair, marked by hearts, contains 123456 and 123654. The permutations
213456 and 213654 are related to these by the result of 3.2.3, and so can be found in these
boxes as well.

The third pair, marked by clubs, contains 321456 and 321654. Evidently, a bijection
linking this pair would also establish equality for the pair marked by hearts, if conjecture
3.3.1 had also been established.

The final pair, marked by spades, contains 132456 and 132654.

We collect these four cases into one conjecture.

Conjecture 3.3.3 |S,(a,b,¢,4,5,6)] = |Sa(a,b,¢,6,5,4)| for all positive n.

The establishment of the above conjectures would take care of all the candidates for
bijections involving forbidden subsequences of length less than or equal to 6.

Conjecture 3.3.3 amounts to a generalization of theorem 3.2.3. An eve., more general
form is evident, which we can state even though we have no further data:

Conjecture 3.3.4
|Sn(ay,azy... 8k p k=T + 1L k—r+2,... k—1,k)| =|Sa(ar,a2y. .. @k kyk —1,.... k — 1+ 2,k
for all positive n,r, k.

When r = 2, conjecture 3.3.4 reduces to theorem 3.2.3; a natural way to attack this
conjecture would be to seek to extend the proof of 3.2.3 by fixing all but the last r — 1 basic
subsequences.
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Also observe that conjecture 3.3.4 is stronger than conjecture 3.3.1, as 3.3.1 follows
as a consequence of 3.3.4, lemma 1.2.2 on reversals and lemma 1.2.3 on complements. A
more direct proof of conjecture 3.3.1 would seemingly require an entirely new construction
technique, perhaps again involving basic subsequences.

One approach to conjecture 3.3.2 would be to show an isomorphism between the trees
T(4132) and T'(3142). These trees are in fact identical down to depth six.

“
N
—~~~

—‘
N

SG(T) S7(T) Sg(T) SQ(T) SIO(T)

1342
1423
2314
2431
3124
3241
4132
4213 103 {512 | 2740 | 15485 | 91 245 | 555 662

2413
3142 103 {512 | 2740 | 15485 | 91 245 | 555 662

1234* | 1243* | 2143*
4321 | 2134* | 3412

3421
4312
1423
2341
3214
4123 103 [513 |[2761 | 15 767 { 94 359 | 586 590
1324

4231 103|513 |2762 |15 793 | 94 776 | 591 950
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e
T [ 3alr) 1 S7(0) [ Sa(0) T 301 | 30070 ]
e 2L
25314 694 4578 33 184 258 757 2 136 978
31524
35142
42813
24153 694 45790 33 216 259 401 2 147 525
23511 11233
25134 31452
41532 23413
43132 35214 094 4579 33 218 259 483 2 149 558
24513 41523
31542 25143
35124 34152
42153 32514 694 4580 33 249 260 092 2 159 381
13542 15243
24531 51423
42138 32418
53124 34251 694 4580 33 252 260 202 2 181 837
14352 15324
25341 51342
41325 24315
32314 42351 894 4580 33 252 260 204 2 161 930
13524 14253
24138 31425
42531 52413
53142 35241 694 4580 33 254 260 285 2 163 930
134235
14235
52431
53241 694 4580 33 256 260 370 2 166 120
13452 15234
25431 51432
41235 23415
53214 43215 694 4581 33 283 260 805 2171 393
14533
32541
34128
52143 694 4581 33 284 260 847 2 172 454
14532 15423
23541 51243
43128 34215
52134 32451 694 4581 33 285 260 886 2173 374
12453 12534 21453 21534
31245° 23145%" 31254" 23154"°
35421 54132 35412 45132
54213 43521 45213 43512 694 4581 33 288 260 927 2 174 398
15342
24351
42318
51324 694 4581 33 287 260 967 2 175 379
12345% 45312 12354° 21345°
543321 21354 45321 54312 894 4582 33 324 261 808 2 190 888
15432
2343)
43215
51234 894 4582 33 324 261 808 2 190 688
21543 12543
32154° 32145*
34512 34521
45123 54123 694 4582 33 324 261 808 2 190 688
12435 132547
13245* 21435
53421 45231
54231 53412 694 4582 33 325 261 853 2 191 902
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KBNS 0N ETON ETONE RO r I Sy{r) | Sa{e) § Solr) 1 Sig(r) |
[ 1

‘ 53 WA I 13 214653 'II'I'!!I"J
253614 3003 39 434 | 344 574 | 3 363 168 IS | %003 WA [ TT |3
t,’;}‘:; TO0Y | 30 434 | a4 375 | 3353 377 ] T3e633 003 | 30 437 | S 733 | S 3ed 2
3553 Wit | SIS [ TATay ] 214038
[XkEY 1803 YO 434 | 374 580 | J I8y TaT | 134536 5003 30637 1 3¢ 135 | 3 308 436 |
354163 3003 39 425 | 344 601 | 3 283 955 134265
363415 || 5003 39 425 | 344 619 | 3 364 117 ~331504 5003 3% 428 | 344 712 | 3 289 163
6314 5003 39 435 | 044 616 | ) 284 348 31845 3003 | 39 428 | 344 172 | 3 389 183
1634 5003 39 425 | 344 619 | O ird 418 56423 5003 30 428 | 344 776 | 3 280 398
1674 5003 39 425 | 344 620 | 3 364 441 33452 5003 30 428 | 344 777 | I3 289 452
336415 || 5003 39 425 | 344 620 | 3 264 457 1563 5003 39 428 | 344 TIT | 3 280 454
51634 5003 39 425 | 344 622 | ) 284 567 214563
235164 5003 39 425 | 344 622 | 3 284 568 456332 1003 30438 | JacTTe 89 499
4613° 3003 39 425 | J44 622 | J 264 871 4562 3003 39 426 | 344 778 | 3 289 300
TS T00T 130 a9L | 344 837 1 T T8¢ -'MG:‘ WY | W |
131653 5003 39 425 | 344 634 | J 164 10 2136834
746351 5001 39 435 | 44 627 | 3 3h4 88 133643 3003 W | eI [ T35
LLYE 1303 Y5 435 | 344 836 | 3 384 341 315643
LRLEYL 553 LR YD) 1 830 [T T54 5571 | 134562 T503 |30 138 | e Ty
134625 5003 39 425 | D44 629 3 265 006 | 156342 5003 J9 428 Jé4 781 ) 289 688
148335 1307 \LEEE <¢ 830 | J 355 040 L) 5003 WA | T |3
RELYIT 5303 I3 445 34 831 | 3 485 118 216453
38245 5003 39 425 | 344 633 | 3 385 22¢ 184533 3003 30 438 | J44 107 Tﬂrm__—_
36145 5003 39 926 | J44 66) 3 285 508 156432 5003 39 426 | J44 783 | 3 289 800
36514 35003 9 §26 344 662 3 285 550 123364 O 5002 30 428 344 T8¢ 3 269 883
1516 5003 390 436 | 344 666 | 3 285 746 211364
581 4. 5002 39 426 344 667 3 265 813 ) 343165%¢ O 5003 J 428 a4 T84 3 289 86) |
35614 003 30426 | 344 666 | 3 185 874 132384 3003 30 478} 344 Yaq | 3760 475 ]
756413 ]| 5003 ] 39 426 | 344 668 | 3 285 891 5003 | 39 429 | 344 83T [ 3291 590
54613 || 5003 | 39 436 | 344 665 | 3 385 936 ;3::::
36134 $00) 39 426 | 44 669 | 3 205 936 . —e
36154 | 5003 | 30 436 | 344 671 | 3 286 054 123634 5003 139 420 [ 344 837 | 3201 380
16513 ]| 5003 30476 | 344 673 1 3 386 088 ; '"‘:“ L S nT TR
243615 ]| 5003 | 39 426 | 344 672 | 3 286 113 | 210543
LYLE H TN SELXT L BETTICLE NN A ETTNE D ! LEYEY] 853 ] 36 439 | 344 837 | 3 101 380 |
«‘u I s003 30 426 44 675 | 3 286 173 ' 341934 & H 3003 LAY SECCUELM BRI
3624 5009 39 426 | 344 675 | 3 286 393 :::::; . 3003 39420 | 348 | 33162
5387175003 139436 [ i 676 173386 337 3654 & || 5603 | 39 430 | Sa¢ 838 | 3 293 637
64 5003 19 426 44 678 286 444 734358 5003 390 429 344 838 3 391 656
3645 5003 39 476 14 678 786 445 126365
625 || 3003 | 30 426 | 344 078 266 45 214368
64352 5003 39 42¢ [ 3447679 [ 3286 571 34336 5003 39 429 | 344 838 | 3 201 662 |
] 03 39 426 | 344 680 | 3 286 bT6 25436 5003 30 429 | 344 838 | 3 291 666
46352 003 39 42¢ | 344 680 | 3 286 SA6 143265
36254 003 19 426 | )44 68) 1 286 660 133546 5003 30 429 | 344 839 | 3 291 115 |
163562 || 5003 39 426 | 344 682 | 3 266 686 e 4
135436 || 5003 30 426 | 344 687 | 3 286 719
3346 ]| 5003 39 426 | 344 686 | 3 28¢ 953
EX) T35 IS AT | 3ed T34 | T IRT 748
Y] TO0N | 30 447 ] 344 V36 | 3 36: 143 ]
746523 || 5003 39 427 | 344 T34 | 3 287 751
853 || 5003 IS AI7 ; 344 T35 | 3 3R
353C || 5008 | 33437 | 544 VoL | 5 kT KiD
1653 ]| 5003 39 437 | 344 T2€ | 3 287 851
43563 || 5001 39 427 | 344 T2€ | 3 3A7 A6D
16532 || 5003 39 437 | Ja4 726 | 3 367 81
45613 007 30 427 | 344 27 ] 3 26: 904 |
54767 003 39 427 | 344 727 | 3 37 979
T163 003 39 437 | 48 73T | 3 K7 971
1:523¢ ]| 5003 39 427 | 244 T2k ] 3 367 974
154632 ]| 5003 39 427 | 344 728 757 993
136542 || s00° 39 427 | 344 728 ] 3 3AT 995
745326 (| s003 39 427 | 344 729 366 07K
135463 || 5003 39 437 | 344 731 [ 3 266 165
2154623




3.4 Future directions 49

3.4 Future directions

Beyond the two conjectures of the previous section, future directious are not as easy
to see. On the one hand, it would obviously be nice to be able to enumerate S,(r) for
every n and every 7, but the discouragingly chaotic proliferation of values in the above
tables suggests that this will not be possible. Ira Gessel asks, in the final paragraph of [6],
whether each of these functions of n is P-recursive, meaning that the function satisfies a
linear homogeneous recurrence with polynomial coefficients.

We pose a further series of questions, the settling of which would constitute an ac-
ceptable assault on the problem of forbidden subsequences.

Question 3.4.1 When is it true that |S,(7)| = |Sa(p)| for all n? In particular, are there
any cases other than those which can be established by repeated application of lemmas 1.2.2,
1.2.3 and 1.2.4, theorem 3.2.8 and conjectures 3.3.4 and 3.3.27

Question 3.4.2 If |Sn(7)| < [Sn(p)| for some N, will it be true that |S.(7)| < |Su(p)| for
alin > N? Given two permuations T and p of the same length, how can we decide which of

the sets S,(1) and S, (p) will be the larger?

Question 3.4.3 [s it true that for any k and for any 7,p € Sk, the values of |S.(7)| are
asymptotically equal as n increases?

If the answer to question 3.4.3 is affirmative, then the work of Regev [13] provides
a nice asymptotic formula. For every k£ > 2, Regev provides an asymptotic analysis of the
values |S,(:k)|, where ¢ is the ascending permutation of length k. Specifically, he shows
that (k — 1y
S (el ~ ex * —m=zzr
where c; is an explicitly determined constant involving a multiple integral. Regev’s analysis
exploits the Robinson-Schensted corresponidence. A permutation of S,(¢x) has at most k —1
basic subsequences and thus no more than £ —1 columns in the associated P and Q tableaux.
The number of such permutations is thus the square of the number of tableaux of a given
shape, summed over all shaps with no more than £ — 1 columns. Regev determines those
shapes of tableaux which dominate the sum as n — oo.
It seems that the most promising proof technique for the three above questions,
especially for 3.4.2, would be to generalize the tree construction techniques of sections 2.5.1
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and 3.1. At this point, there is no example of a pair of permutations of the same length for
which it is known that |Sp(7)] < |Sa(p)] for all n sufficiently large. It would be good to find
an injection proving such a result, and one approach might be to consider the stronger case
that the tree associated to T be a subtree of the tree associated to p.

In particular, we propose the following pairs of trees as candidates.

Question 3.4.4 Is it true that T(1342) is a proper subtree of T(1432)?
Is it true that T(1423) is a proper subtree of 7T(1324)7

Note that none of these four trees has had its structure properly elucidated.

3.5 A recurrence for k =4

The observations about the structure of the trees of section 3.1.1 lead directly to
recurrence formula, which make it relatively easy to calculate the exact size of 5,(1234).
As remarked at the end of section 3.1, the asymptotic analysis of this case has already been
carried out by Regev [13]. Gessel [6] also finds an explicit formula for |S,(1234)], involving
a summation over a product of binomial coéfficients and a rational function.

The recurrence derived from the trees in chapter 3 remains a reasonable efficient
way of calculating the sizes of Sn(1234). The coéfficients arising in this recurrence are of
independent interest; we discuss them here.

Definition 3.5.1 Let P(n;r,s) denote the number of permutations of 1,2,...,n avoiding
the pattern 1234 with length of initial decreasing sequence equal to r—1 (or, with first increase
in position r) and with s active sites.

Corresponding to each n, then, we have a matrix of order n + 1, which we can call
P(n), with the coefficient P(n;r,s) counting the number of permutations on level n of the
tree T(1234) having the label (r, s). Theorem 3.1.2 associates to each child of a permutation
a different ordered pair in a prescribed manner. The set of labels of the children depend
only on the label of the permutation. The P(n;r,s) permutations on level n having the
label (r,s) therefore each contributes one to the value of certain coefficients in the matrix
P(n +1).

Therefore, in computing the coefficients of P(n + 1) we increment each of the coefli-
cients

P(n+1;2,y+ 1), P(n+ 153,y + 1),...,P(n+ Liz,y + 1),P(n+1;z,z + 1),
P(n + 1;z,z+2),...,P(n+ Lz,y),Pn+Lz+1,y+1) (6)
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by the value P(n;z,y) as a result of the coefficient P(n;z,y) in the previous matrix.
Collecting together the contributions made to each position in P(n + 1), we have the

following recursive formula.

Theorem 3.5.2 The coefficient P(n + 1;r,3) is equal to

0 ifr=1, (7)
0 ifs<r<n+l, (8)
1 ifs=r=n+1, (9)
-2 n+1
Y. P(n;i,s—1)+ Y. P(n;r,j) ifs>r. (10)
i=r-1 Jj=s

Proof: The summation formula (10) for the entries above the main diagonal can
be checked by examining (6) to see exactly which entries of P(n) contribute to P(n +
1;7,8). That is, for which (z,y) does (r,s) have one of the forms listed in (6)? As thisis a
straightforward exercise, we dispense with formalities, and include the following illustration
which may be illustrative. A box has been drawn around entry in position (5,6) of P(6).
The entries of P(6) which contribute to P(7;5,6) are shaded. Actually, we have truncated
the first sum in expression (10) at the last nonzero term, while in the diagram we have
included the zero terms on and below the main diagonal, in effect extending the sum to
n + 1. Summing the entries in the shaded shapc we obtain P(7;5,6) = 50.

r0000000
0 0 47 47 47 42 42
0 0 0 47 47 42 42
0 0 O
0 0 0O
0 0 O
0 0 O

None of the forms listed in (6) has r = 1, so it is especially easy to see that P(n+1;0,s) = 0.

Also, only the form (z + 1,y + 1) has the first index greater than or equal to the second
index, so (8) and (9) follow readily.
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The value 1 given for the coefficient P(n + 1;n 4+ 1,n 4+ 1) in (9) is actually just a
special case of (10). O

Note that the coefficients P(n;r,s) have alternative interpretations in terms of the
trees T'(1243) and T'(2143). Thus, P(n;r, s) is the number of 1243-avoiding permutations of
1,2,3,...,n with initial decreasing sequence of lengtl: r — 1 and with s active sites. Also,
P(n;r,s) is the number of 2143-avoiding permutations with initial increasing sequence of
length r — 1 and with s active sites. Other interpretations can be obtained by considering
the action of the operations of reversal, complementation, and inversion on permutations.

The matrices P(n) for n < 8 are appended. By summing over all entries in P(n),
we can determine the number of 1234-avoiding permutations in an efficient manner. These
totals are appended, and can be compared with those given in the table for n = 4 in section
3.3. In addition, we list the row and column sums for each matrix. These have natural
interpretations; let us give them names.

Definition 3.5.3 R(n;r) = 72 P(n;r,j)

]=

Definition 3.5.4 C(n;s) = ¥ P(n;1,s)

R(n;r), the rth row sum of matrix P(n), is the number of permutationsof 1,2,3,...,n
which avoid the pattern 1234 and have initial decreasing sequence of length r — 1. C(n;s),
the sth column sum, is the number of permutations of length n which avoid 1234 and have

s active sites.
It would be nice to have asymptotic formulas, depending on n,r and s, for the indi-

vidual matrix entries or for the row and column sums. We do not know of any such formulas

in a simple form.
We are able, however, to express all the entries in the last column in a closed form.

Theorem 3.5.5 The number of permutations of 1,2,3,...,n having no pattern 1234, an
initial decreasing sequence of length i — 1 and all sites active, namely P(n;i,n + 1), is

(2e0)-(2)

Proof: The coefficients in the righthand column of P(n) depend only on the coeffi-
cients in the righthand column of P(n — 1). That is to say, the second sum in (10) can be
seen to be empty. So in this case, we have a particularly simple recurrence for the numbers

P(n;r,n + 1), namely
P(nir,n+1)= Y P(n-1;i,n) (12)

i=r—1
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where n is a positive integer and 2 <r <n+ 1.
We then check that the numbers (11) obey the same recurrence.
First note the agreement of the two for n = 2 and r = 2:

(270)~(37)-()-(2) e

™: L'[v]=

| =
- |l

and forn=2,r=3:
2n —r 2n —r 2 2
(n—r+l)_( n—r )_(0)_(—1 ) =1-0=1=P(23,3)
Then observc that, forn >2and 2 <r <n+1,
2n — 2 -—i 2n—-2—1 = 2n ~ 2 —z' 2n —2 —1
220 ) - 2 () 2000
_ "_z:'“ n—2+:\) " YWr—2+41
B i=0 z 0 1—1
_ " n—241 N n—1+1
B =0 : 1=0 2
_ 2n —r [ 2n—r
T \n—-r+1 n—r
The last line follows from the application to each sum of the binomial cocfficient
identity
i(a+k)_<a+b+l)
k=0 k b
which itself foilows from the standard Pascal triangle recurrence by telescoping.
Since the terms of (11) obey the desired recurrence, they give the coefficients in the
rightmost column of the matrices P(n). O
Setting : = 2 in the above theorem gives us a familiar formula.
Corollary 3.5.6 The number of permutations of 1,2,3,...,n having no pattern 1234, an
initial decreasing sequence of length 1 and all sites active, namely P(n;2,n + 1), is

(o))
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We recognize this to be the Catalan number c,_,. We also have another interpretation
for the coefficient P(n;2,n + 1), as substituting r = 2 and s = n + 1 into (10) shows.

P(n;2,n +1) =iP(n —1;i4,n) =C(n — 1;n)

Thus the final column sum of matrix P(n — 1) is also c,—;. But this is no surprise!
The entries of the final column count the 1234-avoiding permutations with all sites active.
But these are just the 123-avoiding permutations. Similar interpretations for the coefficents
P(n;r,s) in terms of 1243-avoiding permutations, and so on, reduce to similarly familiar
results when we consider the final column sum and the top right entry. But the more general
results of theorem 3.5.5 are new to us.

. 0 01 5
0 1 g g (2] 0 0 0 0]0
0 0 00 1 0 01 2]3
0 111 00 1 0 0 0 2)2
n=1 Yy =1 =2 > =2 0 0 0 11
"= B n—3 Zra=6
00 3 6 14 0 0 11 22 28 42
00 0 0 ol o 600 0 0 O 0] O
0 0 11 11 11 1447
0 03 3 5|11
0 0 0 11 11 1436
0 003 518
60 0 0 0 6 9|15
0 00 0 3(3
00 0 0 0 44 4
0 000 1]1
S ST 00 0 0 0 1f°1
n= re n=5 Y, P(n;r,s) =103
0 0 47 94 120 120 132
00 0 O 0 0 0 0
0 0 47 47 47 42 42225
0 0 O 47 4T 42 421178
0 0 0 0 26 26 28| 80
0 0 0 O 0 10 14| 24
0 0 0 O 0 0 5 5
00 0 0 0 0 1 1
n==6 ¥, P(n;r,s) =513
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0 0 225 450 577 585 495 429
0 0 0 0 0 0 0 0 0
0 0 225 225 225 204 162 132 | 1173
0 0 0 225 225 204 162 132 | 948
0 0 0 0 127 127 106 90| 450
0 0 0 0 0 50 50 48| 148
0 0 0 0 0 0 15 20 35
0 0 0 0 0 0 0 6 6
0 0 0 0 0 0 0 1 1
n=71 Y, P(n;r,s) = 2761
0 0 1173 2346 3021 3100 2695 2002 1430
0 0 0 0 0 0 0 0 0 0
0 0 1173 1173 1173 1075 879 627 429 | 6529
0 0 0 1173 1173 1075 879 627 429 | 5356
0 0 0 0 675 675 577 423 297 | 2647
0 0 0 0 0 275 275 219 165 | 934
0 0 0 0 0 0 85 85 75| 245
0 0 0 0 0 0 0 21 27 48
0 0 0 0 0 0 0 0 7 7
0 0 0 0 0 0 0 0 1 1
n=_§ Y, P(n;r,s) = 15767
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In addition to the coefficients in the rightmost column, explicitly determined in the-
orem 3.5.5, we can determine the single coefficient P(n;n — 1,n). The result is trivial, but
the technique is illustrative.

Proposition 3.5.7 The number of permutations of length n with no subsequence of type

1234, initial decreasing subsequence of length n — 2 and all sites active ezcept one, namely

P(n;n —1,n), is(

Proof:

n—1
2

Let us abbreviate the desired one-parameter variable P(n;n — 1,n) by a,.
Then taking the recurrence from theorem 3.5.2 and substituting the appropriate value from
3.5.5 shows that a, satisfies a first-order linear recurrence.
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=an+(';)-(g)

= ap+(n—-1) (13)
The general solution to this recurrence is a, = a; + Yp2) k — 1. Since a; = 0, a, is
just the n — 1th triangular number, ( n ; 1 .0

We can achieve the same result combinatorially. A permutation with initial decreasing
sequence of length n — 2 has its first increase in position n — 1. If it is a 1234-avoiding
permutation, with one inactive site, then the inactive site is the last one, and element
in position n is larger than the one in position n — 1. But any permutation 7 having
m(l) > 7(2) > --- > m(n — 2) < 7(n — 1) < w(n) will be 1234-avoiding. To count these,
we need only assign m(n — 2), the smallest element, to be 1, and select two elements to be

2

The approach used in the proof of proposition 3.5.7 can also be exploited to give
successive terms of the rest of the second column from the right, working from the bottom
up. For a taste, we calculate one more term.

m(n — 1) and n(n). There are ways to select two elements from the set 2,3,....n

Proposition 3.5.8 P(n;n —2,n) = ( g ) + ( " ;1 ) —(n-2)

Proof: Let b, stand in for P(n;n — 2,n). We check that b, satisfies the following
recurrence. Here the first driving term comes from the rightmost column; the second comes
from the bottom element in the second column, which we have just determined.

a1 (7 e (77

We start with the intial value b3 = 0, and obtain the following solution for n > 4.

_ (2<( ))—4) ( ) o)+ (5)

.m.
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E()-- BT )
CORCORENED

S ORGNORGENED

- (3)en(3)

This procedure can be repeated to determine all the entries of the nth column. But
it turns out that the nth column sum, C(n;n), is considerably easier to determine than the
individual coéfficients of the nth column. We give a cocmbinatorial proof.

O

n—3

Theorem 3.5.9 C(n;n) = ( 2(n—1) )

Proof: We wish to count the number of 1234-avoiding permutations which have all sites
active except for the rightmost. We count instead the 1234-avoiding peirautations which
have the first n sites active, and which may or may not have an active rightmost site. These
are obtained by first choosing any element to be the rightmost element, and then arranging
the remaining elements into a 1234-avoiding permutation of length n —1 with all sites active.

n-cnoy =C(nin) +C(n;n +1)

Here the term on the left comes from choosing a rightmost element in onz of n ways, and
choosing a 123-avoiding permutation of length n — 1 in one of c,_; ways. The first term
on the right is the number we seek, and the second term on the right is the number of
permutations with all sites active.

n-cpmy = C(nyn)+C(n;n+1)
1 {20 -2 1 2n
n.;(n_l) = C'(nn)-i-T( )
(2n - 2)! 2n!
(n=Di(n=1)! (n+1)(n)!
(n 4+ 1)(n)(n)(2n — 2)! = (2n)(2n — 1)(2n — 2)!
(n+1)In!

C(n;n) =
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[(n® 4+ n?) — (4n? — 2n)] - (22 - 2)!

(n+1)!n!
[n® — 3n? + 2n} - (2n — 2)!
(n+1)n!
_ (r)(n —1)(n —2)(2n —2)!
(n+1)n!
(2n - 2)!
(n+1)(n - 3)!

=y

Inspection of the matrices P(n) reveals that the first two nonzero rows have all entries
equal, as do the lowest two nonzero diagonals. These are both straightforward consequences
of theorem 3.5.2, especially in regard to the disposition of zero coefficients.

a

Proposition 3.5.10 P(n;2,s) = P(n;3,s), foralls=14,...,n+1.

Proof: The proof is by induction. The statement is true for n < 8 by inspection. Assume
the truth of the theorem for n. Let s > 4. The coefficieni P(n + 1;2,s) is equal to

s—1 n+1
d_P(nii,s —1)+ 3 P(n;2,5)
=1 Jj=s

s—1 n+1
=0+ZP(n;i,s—l)+ZP(n;2,j) (14)
=2 j=s
while P(n +1;3,3) is
s-1 n+1
Z P(n;i,s - 1)+ Z P(n;3,;).
=2 j=s

In these two formula, the first sums can be seen to be identical, while the second sums are
termwise equivalent by the induction hypothesis. O

Proposition 3.5.11 P(n;r,r +1) = P(n;r,r +2), forallr =2,...,n — 1.
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Proof: The proof is by induction. The statement is true for n < 8 by inspection. Assume
the truth of the theorem for n. The coefficient P(n + 1;r,7 + 1) is equal to

r n+1
> P(nji,r)+ ) P(n;r,j)
i=r—1 j=r+1
n+l
= P(n;r = 1,r) 4+ 0+ P{n;r,r+ 1)+ > P(n;r,j)
j=r+2
while P(n 4+ 1;r,r + 2) is
r41 n+41
Y P(nji,r+1)+ Y. P(n;r,j)
i=r—1 j=r+2
n+1
= (P(njr = Lr +1) + P(mir,r + 1) +0) 4+ Y P(mir, )
J=r+2

In these two formulae, the sums can be seen to be identical, while the terms P(n;r —1,r+1)
and P(n;r — 1,7 + 1) are equal by the induction hypothesis, since if 2 < r < n then
1 <r—-1<n-—1. We apply the induction hypothesis unless r ~1 =1, in which case both
terms are 0. O

We thus establish thal the first two terms to the right of the diagonal are equal in
every row except the nth. For row n, we have determined the values of each of the two terms
explicitly in 3.5.5 and 3.5.7.

The two nonzero terms of row n also break another pattern which can be observed
in the matrices P(n) for n > 5. Every row except the nth is weakly decreasing from left
to right. Likewise, every column is weakly decreasing. Actually, the rows and columns are
strictly decreasing, except for the cases of equality treated in the two above propositions.
We can establish by induction that once this pattern is established, it persists.

Theorem 3.5.12 Forn > 5, the above-diagonal elements of P(n;r,s) are weakly decreasing
along rowr for 2 <r < n — 1. Ezcept for the first row of zeros, the elements of P(n;r,s)
are weakly decreasing down each column.

Proof: We give a proof by irduction. We have already observed the truth of the
theorem for n = 5. Next, assume the theorem holds for n. We check first that the columns of
P(n+1) are decreasing, by showing that P(n+1;7,3) < P(n+1;r—1,5)if3 <r <s < n+l.
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Appealing to the recursion formula of equation (10), we have

-2 n+1

P(n+1;r,8) = Y P(nji,s—1)+ Y P(njr,j)
i=r—1 j=s
-2 n+l
Pn+1;r-1,38) = Z P(n;i,3—1)+ZP(n;r—l,j)

i=r—2 j=s

-2 n41
= P(n;r—2,s—1)+ Y P(n;i,s=1)+ Y P(n;r —1,j)

i=r—-1 j=s

Comparing the two righthand sides, we find that the second begins with an extra nonnegative
term, that the first sums are identical, and that each term of the second sum is greater than
or equal to the corresponding term of the first sum, by the inductive hypothesis. This
completes the first induction, in which we made use only of the decreasing columns of P(n).

It remains to show that the rows of P(n + 1) decrease. In this induction, we will
make use of both the decreasing rows and the decreasing columns of P(n). We will show
that P(n + 1;7,8) < P(n+ 13,8+ 1) if 2 <r < s <n+ 1. We again appeal to equation
(10).

-2 n+1
P(n+1;r,s) = P(n;i,s — 1) + Y_ P(n;r,j)

i=r—-1 Jj=s
-2 n+1

= Y P(mi,s—1)4 P(nsr,s)+ S P(njr,j) (15)
i=r—1 Jj=3+1
s—1 n+1

P(n+Lir,s+1) = > P(n;i,s)+ Y P(n;r,j)

i=r—1 J=a+1
-2 n+l

= Y P(nii,s)+ P(n;s —1,8)+ Y P(njr,j) (16)
i=r-1 =841

Again comparing the righthand sides (15) and (16), we see that the final sums are identical.
Also, that each term of the first sum in (15) is at least as great as the corresponding term
of the first sum in (16), as the rows of P(n) are known to decrease by induction. And,
P(n;r,8) > P(n;s — 1,s) by the induction hypothesis for the columns of P(n). O

The statement about the rows in theorem 3.5.12 enables us to give a lower bound on
the row sums R(n;r), since the smallest entry in row r will be the one on the right, which
we have determined in theorem 3.5.5. We multiply the least entry by the number of nonzero
entries in row r.
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Corollary 3.5.13 The number of 1234-avoiding permutations of 1,2,...,n with initial de-
creasing subsequence of length r — 1, namely R(n;r), is at least

2n —r 2n —r
== |25 )= (55
The determination of the entries on the first nonzero diagonal would enable us to give
a corresponding upper bound, as well as a lower bound for the column sums C(n; s).
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4 Introduction to stack-sortable permutations

4.1 The sorting algorithm

In the remainder of this thesis we shall be concerned with the operation of sorting
permutations by passing them through a first in, last out stack. The numbers enter the stack
in the order in which they occur in the input permutation, r = (p1,p2,...,pn). We would
like the output permutation to be the identity, ¢ = (1,2,3,...,n).

The nature of the stack imposes certain restrictions. Namely, if 7 < j then p; is added
to the stack before p;; furthermore, p; is removed from the stack either before p; is added or
after p; is removed, but not between these two events.

If, then, we think of writing an open parenthesis every time an element is added to
the stack, and a closed parenthesis every time one is removed, it is evident that the resulting
sequence of parentheses is well-formed. For consider the pair of brackets belonging to p; and
the pair belonging to p;; either the two pairs do not overlap, or one encloses the other.

Conversely, a well-formed sequence can be characterized by the property that closed
parentheses never outnumber open parentheses counting from left to right. This property
implies that the sequence of sorting operations indicated by a well-formed sequence can
always be applied to a permutation, for we will never attempt to remove from the stack
more elements than have yet been placed on it.

In section 2.1, we called a well-formed sequence of parentheses a bracketing sequence,
and denoted the set of all bracketing sequences with n open and n closed parentheses by B,.

To each element b € B,, we can associate a unique element of S, which is put in
order by the action of the bracketing sequence b. To find it, we label the closed parentheses
in order 1,2,...,n. These correspond to removing the elements 1,2,...,n in order from the
stack. But if an element k is removed from the stack when a certain ) is processed, then it
must have been placed on the stack when the matching ( was encountered. So we can also
label the open parentheses; reading these off in order from left to right tells us the order in
which the elements were placed on the stack.

For reference, we repeat the example from the end of section 2.1.

Example 4.1.1 The bracketing sequence ()(()(())) sorts the permutation (1,5,2,4,3):
2 3 45
) ) ) )

( () C(
52 43
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In section 2.1 we remarked that a permutation is stack-sortable if and only if it belongs
to 5(231), i.e. if it avoids the pattern 231. From here on, it will be more convenient to refer
to the set S,(231) as 1S5S, the set of one-stack sortable permutations of length n.

Definition 4.1.2 If a permutation # € 1SS, we say the element of B, to which it is
uniquely associated is its sorting sequence, b(r).

We can determine the sorting sequence associated to # € 1SS, by inverting the
process of example 4.1.1 above. Inspection of that example suggests the procedure. First,
write an open parenthesis for each element of 7 in order from left to right. Second, process
each from left to right. When an open parenthesis is processed, close all lower-numbered
parentheses which are presently open, begininning with the leftmost. (In the example, when
4 is processed, 2 is closed, but 5 is not.) Third, when the final open parenthesis has been
processed, close all remaining open parentheses, again beginning with the leftmost.

This interpretation characterizes stack-sorting in terms of bracketing sequences. In
terms of a first-in, last-out stack, this process converts to the following. At each stage,
compare the element presently on top of the stack to the next element to be added. If the
element to be added is larger than the element on top of the stack, remove the top elemen.;
if it is smaller, add it to the stack. If the stack is empty, add to it; if the input is empty, clear
the stack. The final condition of empty input corresponds to the third step in the preceding
paragraph.

If an element k is removed from the stack as a consequence of a comparison with a
larger element h being processed as input, we say that k is removed by h.

The sorting algorithm we have described in the two previous paragraphs is in essence
a greedy algorithm. When the algorithm is presented in this way, it can readily be applied
to arbitrary permutations in S,, not merely to those in 1S5S, = S,(231). Since we apply our
greedy sorting algorithm to a permutation in an online fashion, we will not know whether
the permutation is indeed one-stack sortable until we are finished, or forced to remove two
elements out of order. So it makes sense to think of applying the algorithm to an arbitrary
permutation and then examining the output. In fact, the input could be an arbitrary per-
mulation sequence, i.e. an ordered list of n distinct integers, not necessarily the integers
1,2,3,...,n.

We can consider the operation of sorting, then, to be a function mapping an input
permutation to an output permutation, [l : S, — S,. In this interpretation, the set 155, is
just the preimage of the identity, ¢,, in S,. If o is an arbitrary permutation sequence, then
[I(o) is well defined, and is a permutation sequence comprised of the same elements as o.
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The definition of sorting sequence, definition 4.1.2, also carries over to arbitrary per-
mutation sequences.

Example 4.1.3 Ifr = (1,5,2,4,3), then II(7) = (1,2, 3,4, 5).
Therefore, # € 15Ss. The sorting sequence b(m) = ()(()(()))-

If p=(3,5,2,4,1), then I(p) = (3,2, 1,4,5).
Therefore, p ¢ 15Ss. The sorting sequence b(p) = ()(()(()))-

If o =(4,2,6,7,1), then Il(c) = (2,4,6,1,7).
The sorting sequence b(a) = (())()(()).

The idea of a sorting function, II, is a useful one, but should be considered with a
grain of salt. There is no easier way to determine the action of Il on an arbitrary permutation
in S, than to execute the steps of the sorting algorithm.

One reason for considering the function II, is the facility it gives us for making the
following definition. We say that a permutation 7 is two-stack sortable if and only if I1*(7) =
[I(II(7)) = «. That is, we pass the permutation through the stack, executing the greedy
sorting algorithm. Then we take the output and pass it through the stack, again executing
the same algorithm. Since II(¢) = ¢, every one-stack sortable permutation is also two-stack
sortable.

We can extend the definition to k passes through a stack.

Definition 4.1.4 The set of k-stack sortable permutations is defined as follows.
kSS, = {r € S, : ¥(7) = 1}

Every permutation which is (k—1)-stack sortable is k-stack sortable; that is, (k — 1)SS, C kSS
Fundamental problems in this area are to characterize the members of kSS, and
to enumerate the k-stack sortable permutations. We might also ask which and how many
permutations are k-stack sortable but not (k — 1)-stack sortable; to this end we make the
following definition.

Definition 4.1.5 The set of exactly k-stack sortable permutations is defined as follows.

AkSS, = £S5S,\ (k= 1)8S, = {r € S, : I¥"' €155, \ ¢}
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Ifr € Sqisgiven by 7 = (ay,a3,...,8k_1,7,by,bs,...,b,_), and @ = (ay,4ay,...,a,_,),
B = (by,bs,...,ba_i), then we write 7 = anfB. In abbreviating a permutations in this fash-
ion, we use greek letters for permutations and permutation sequences, and reserve roman
letters and arabic numerals for individual elements of a permutation.

Lemma 4.1.€ If for v € S;, # = anpB, then II(7) = I(a)I(8)n.

Proof: Consider the application of the sorting algorithm to 7. When the element n
is reached, all the elements of a and none of 8 have been processed. Some may remain on the
stack. The element n is larger than every element on the stack, and so the stack is cleared.
Thus the elements of a are output as II(a), exactly as though an end-of-input had been
reached. Next the element n is entered onto the stack. As it is larger than every element
of B, n remains on the stack until the end-of-input is reached. So n does not interfere with
the processing of 3, which is output as II(3). Finally, an end-of-input is reached, and n is
removed from the stack. O

Porism 4.1.7 If p = II(x) for any = € S,, then p(n) = n.

Proof: Since n appears at some position in 7, 7 can always be written in the form 7 = anf
for some a,3. O

Since after one pass, the largest elemient has been shifted to the end, two passes will
shift the largest two elements to the end, and so on. We thus give a more general version of
the porism.

Porism 4.1.8 If p = I¥(7) for any 7 € S,, then p(j) =7, forn —k+1<j <n.

Proof: The proof is by induction. The statement is vacuously true for k£ = 0, and true for
k =1 by porism 4.1.7.

If p = MT**'(x), then p = TI(IT*(r)). By the induction hypothesis, II¥(r) has its k
largest elements in order in the final k positions. When the first of these is encountered,
it will clear the stack, being larger than any previous input. The rest of the elements are
encountered in increasing order, and so are simply passed through.

So if [1*(x) = (ay,a2,...,84_k,n —k +1,...,n), we can take a = (a;, as, ceey@pok) €
Sa-k- By the remarks of the previous paragraph, 11¥*!(r) = I(IT%(x)) = M(a(n — k +
1)...(n=1)(n)) = (a)(n —k +1)...(n — 1)(n). By porism 4.1.7, TI(a) has n — k for its
final element. Hence [T¥*!(r) has (n — k,n — k + 1,...,n — 1,n) for its final elements. O

These observations lead to one important result, namely that the sorting process
always terminates.
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Theorem 4.1.9 II*(x) =, for allw € S,.

Proof: This is simply porism 4.1.8 with k =n. O

Actually, n — 1 iterations will do, for if the last n — 1 positions of a permutation of
length n are occupied by 2,3,...,n, then clearly the first element is 1.

Since the sorting algorithm requires 2n steps to process a permutation of length n,
namely one step to put each element on the stack, and one step to take each off, with a
comparison performed at each step, the algorithm requires O(n) steps. In theorem 4.1.9, we

have just seen that O(n) repeated applications of the algorithm suffice to sort any sequence.
Corollary 4.1.10 The stack-sorting algorithm is an O(n?) sorting algorithm.

We will see in the following section that 2(n?) steps are actually required in the worst
case.

We make one further remark about the function II, which amounts to an alternate
proof that the sorting procedure terminates.

Definition 4.1.11 Let <, denote the lericographic order on S,. That is, 0 < 7 if and
only if there ezists a k for which o(3) = 7(j) for 7 =1,2,...,k —1 and o(k) < 7(k).

Proposition 4.1.12 Ifr € S,, ® # ¢, then [I(7) <, 7.

Proof: First suppose that II(x) = x. Then, since I[I(7)(n) = n, 7(n) = n. By the same
token, m1(n — 1) = n — 1, etc. So it is easy to see that [I(r) = = if and only if # = «. That
is, the identity is the only permutation fixed by the function II.

Now take 7 # ¢, and let p = I[I(x). Then p # 7. Let k be the first index for which
p(k) # w(k). Denote p(k) by r and x(k) by p. Evidently r has left the stack before p, since
the element p has not yet appeared in p. But p was placed on the stack first, as the element
r has not yet appeared in 7. So r was placed on the stack on top of p. This would not have
happened unless r < p.

Herce p<,x. O

As the elements of S, are totally ordered by <, it follows that the sequence =, II(7),
[13(x),... is strictly decreasing until [1¥(x) = ¢ for some k.

This approach does not, however, give us the stronger result of theorem 4.1.9, namely
that n passes will suffice.

Example 4.1.13 If p = (3,5,2,4,1), then I1(p) = (3,2,1,4,5). p and Il(p) differ in their
second position, and 2 < 3, so Il(p) <, p.

If o = (3,2,1,4,5), then Il(o) = (1,2,3,4,5). Il(o) is the lexicographically least
permulation, the identity. Therefore Il(c) < 0.



4.2 The sorting tree 67

4.2 The sorting tree

In this section, we introduce a rooted tree whose covering relations are defined by
the sorting function II. This model facilitates the formulation of questions about the sorting
function.

For every n, we define a directed graph with n! nodes, labelled by the elements of S,.
For each € S,,, we place an edge from x to II(7). Since the function Il is well defined, every
node has outdegree 1. If we delete the edge which runs from ¢, to ¢, = I1(s,), consideration
of either 4.1.9 or 4.1.12 makes it clear that there are no cycles in the remaining graph.

It follows that the graph is actually a tree, with all edges directed towards a root,
labelled by the identity permutation, ¢,. We denote this tree by T'(n). We consider the root
to be on level 0, and a node whose unique path to the root has length k to be on level k.

The one-stack sortable permutations are just those which label nodes connected di-
rectly to the root, namely the nodes on level one. Similarly, 7 is eractly k-stack sortable,
m € AkSS,, precisely when m appears on level k. The k-stack sortable permutations are
those that appear on or above level k.

Thus our fundamental questions about the stack-sorting operation transfer naturally
to questions about the sorting tree T(n). When does a permutation appear on or above the
k-th level? What are the level sums of the tree? What is the depth of the tree? &c.

It is also convenient to think of the edges of T'(n) as being labelled with bracketing
sequences. Label the edge connecting 7 to its parent II(7) with the sorting sequence b(r).

The trees T(3) and T(4) are depicted in the accompanying figure. It might be re-
marked that T(n) has depth n — 1 at least for n = 3,4. Theorem 4.1.9 guarantees that the
depth is at most n — 1 for all n; in these cases the bound is obtained.

Notice that if 7 € S, has the form = = n"n for some 7* € S,_y, then II(r) = [I(x*)n
and b(w) = b(x*)().

Therefore, a structure isomorphic to T(n — 1) can be found embedded in T'(n), as the
elements with m(n) = n. The nodes in question in T(4) have been underlined in the figure,
and can be seen to form a copy of T(3).

Indeed, we can regard every finite permutation belonging to U S, as an infinite
permutation in an obvious way. If ¥ € S,, let m(k) = k for k > n. In this sense, every tree
T(n) is a restrictien of an ideal infinite tree T'(co) whose nodes are labelled by the infinite
permutations. But since our questions involve describing the structure of the finite trees
T(n), this does not seem to be a particularly helpful point of view.
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132

(())()213 ()(())
(00)

231

123

312

321

The sorting tree T(3)

1342
1243 /3142
/4 1324 2341
1423 2314 ~<__ 3541
1432 2473
2134 2431
1234 2143 4231
3124
3214
~ 4123 3412
4132 3421
4213
4312
4321
The sorting tree T(4), with elements of T(3) underlined

4.2.1 Some basic lemmata

In this section we settle for certain cases one of the fundamental questions raised in
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section 4.1 and reformulated in the preceding section. When does a permutation = € S,
appear on the k-th level of the tree T'(n)?

We give a characterization reminiscent of the forbidden subsequences discussed in the
first half of this thesis.

Recall from chapter 1 that a wedge in a permutation © € S,, is a subsequence of length
three indexed by j2 < j3 < 7, with 7(j1) < 7(j2) < 7(ja). For instance, in the permutation
r = (3,5,2,4,1), the elements 3, 4 and 1 form a wedge. In this case, j, = 1, j3 = 4, and
J1 = 5. We check that x(5) < x(1) < =(4).

As remarked in section 2.1, the one stack sortable permutations are precisely thcse
which contain no wedges. Hence, a permutation appears below level one in T'(n) if and only
if it contains a wedge.

The results of this section will generalize this characterization. Before proceding, we
prove two basic lemmata.

We will say that ap element p precedes an element ¢ in a permutation p if p~!(p) <
p~'(q). For instance, in p = (3,5,2,4,1), the element 5 precedes 4 because p~'(5) = 2 and
p1(4) = 4.

Lemma 4.2.1 [fr € S,, and 1 <a < b < n, and if a precedes b in = then a precedes b in
(r).

Proof: Since a precedes b in 7, a enters the stack before b. When b is processed, either a
has already been removed from the stack, in which case a will precede b in Ii(7), or a must
be removed from the stack to accomodate the larger element 6. O

Lemma 4.2.2 Ifn € S,, and 1 <a < b <n, and if b precedes a in «, then b precedes a in
[I(7) if there ezists ¢ > b such that b precedes c and c precedes a in w. If there is no such c,
a precedes b in TI(r).

1 ~

id a form a wedge. In this

Q

Proof: [f theic is a ¢ salislying ihe given condiiions, ihen §, ¢
case, b must be removed from the stack before ¢ is placed on. Since c is placed on the stack
before a, this will cause b to precede a in II(r).

On the other hand, if there is no c satisfying the given conditions, then b remains on
the stack until a is processed. Since a < b, a will be placed on the stack above b, and so a

precedes b in II(x). O

-

Porism 4.2.3 [fb and a form an inversion in [I(x), that is if b precedes a in [I(x) but b > a
then there is a wedge b,c,a in © for some c > b.
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Proof: An easy consequence of the two lemmata. If b > «, either b precedes a in 7 or vice
versa. Only in the case that b precedes a and a larger element c is interposed between the
two might b precede a in [I(x). O

4.2.2 Tree depth and the bottom levelsum

In theorem 4.1.9 we observed that every permutation in S, was fully sorted by n — 1
applications of the sorting algorithm. In this section, we prove that for every n there are
some permutations which actually require n —1 passes through the stack. At the same time,
we find the number of these permutations.

Recall the notation of section 4.1 in which we write permutations as concatenated
strings, using greek letters for permutation sequences and roman letters and arabic numerals
for individual elements. For instance, we observed in a porisn: that for all # € S, it is the
case that [I(r) = an for some a € S,_;. Since then II¥(r) = [I*"Y(I(r)) = MI*"!(an) =
I*='(a)n, it is true that 7 is exactly k-stack sortable if and only if a is exactly (k — 1)-stack
sortable.

We use this observation in the following inductive proof.

Theorem 4.2.4 © € A(n — 1)SS, if and only if * = pnl for some p € S,_,.

Proof: The statement is true for n = 3 as A25S; = {231}. (It is also true for
n=2)

Now assume the truth of the given statement for n — 1. A permutation 7 € S, is
exactly (n — 1)-stack sortable if and only iff II(r) = an where a € S, _; is exactly (n — 2)-
stack sortable. We check that likewise m has the form pnl if and only if @ has the form
ﬂ1 (n - 1)7 1.

The proof will then follow by induction. The two classes, of permutations having
the given form, and of permutations requiring the maximum number of passes to sort, are
equivalent for n — 1 by the induction hypothesis. The arguments of the previous paragraph
will show them also to be equivalent for n.

First let # = pnl. Then II(7) = I1(p)1n. Since [1(p) will have the form o,n — 1, we
can write [I(7) = an, where a = o,n — 1, 1. This is the desired form.

Conversely, suppose

(r)=0,n—11n
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Write 7 in the form wynwpg, so that
(r) = (7 )[(7r)n

Since both II(.) and II(rg) must end with an ascent if they have length greater than 1, a
comparison of the forms 4.2.2 and 4.2.2 reveals that [I(xg) = 1. Then 7 = wrnl, the desired
form. O

Corollary 4.2.5 |A(n —1)8S,|= (n —2)!

Proof:  This is an immediate consequence of the above characterization of the
elements of A(n —1)5S,. O

Corollary 4.2.6 Forn > 1, the tree T(n) has depthn — 1.

Proof: =~ We know from theorem 4.1.9 that the depth is at most n — 1. Since
A(n —1)SS, is never empty for n > 1, there are in fact elements on level n — 1. O

Corollary 4.2.7 Sorting according to the greedy stacksorting algorithm requires )(n?) time
in the worst case.

Proof: In theorem 4.1.9 we observed that n —1 passes sufficed in all cases. Now, conversely,
we have established that n — 1 passes are sometimes necessary. 0O

Having succeeded in characterizing the permutations on the bottom level of the sort-
ing tree T'(n), we next seek to generalize this to other levels. We will give a necessary
condition for a permutation to be below the kth level, and another condition which is suf-
ficient. These will lead to a precise characterization of the elements on the next-to-bottom
level, and to a determination of the levelsum for the penultimate level.

4.2.3 A necessary, and a sufficient, condition

Definition 4.2.8 A forbidden pattern of order k in a permutation 7 is a pair of elements

Ja < Jr, with w(51) < 7w(j2), together with a set A of k elements, with 7~'(a) < j; and
7(j1) < a < w(j2) for each a € A.
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Example 4.2.9 A forbidden pattern of order 1 is simply a wedge.
The pair of elements (4,1), together with the set {2,3}, forms a forbidden patter- of
order 2 in each of the permutations (2,3,4,1) and (3,2,4,1).

We first prove that if a permutation contains no forbidden pattern of order k, then
it appears on or above level k in the sorting tree. Therefore, every permutation appearing
below the kth level contains a forbidden pattern of order k.

Theorem 4.2.10 If v € S, conlains no forbidden pattern of order k, then I1¥(w) = ¢,,.

Proof: The proof is by induction on k. As a forbidden pattern of order 1 is simply
a wedge, and since the wedge-free patterns are exactly those appearing on levels 0 and 1 of
T(n), the theorem holds for & = 1.

It will suffice to show that if 7 € S, contains no forbidden pattern of order k, then
II(r) contains no forbidden pattern of order k — 1. The proof will then follow by induction.
We prove the contrapositive statement, that if II(n) does contain a forbidden pattern of order
k —1, then 7 contains a forbidden pattern of order k.

Let a forbidden pattern of order k — 1 in II(7) be comprised of the pair ¢ > a (where
c precedes a) with theset A = {b,...,b_1}. Since c is greater than and precedes a in II(r),
there must be some wedge (c,z,a) in 7, where > ¢. Now, if any §; fell to the right of z in
m, then (c, z,b;) would also be a wedge in =, so that ¢ would precede b; in [I(r). As this is
not the case, each member of A, as well as ¢, must precede z in =. Therefore the pair z > a,
together with the set A U ¢, forms the required forbidden pattern of order k in r. O

Example 4.2.11 The permutation © = (2,5,3,4,1) contains no forbidden pattern of order
3. It appears on level 3 of T(5), as II(r) = (2.3,1,4,5); II¥(x) = (2,1,3,4,5); and I13(7) =
(1,2,3,4,5).

The permutation p = (3,5,2,4,1) contains no forbidden pattern of order 3. It appears
o7 level 2 of T(5), as II(7) = (3,2,1,4,5); and [1%(r) = (1,2,2,4,5).

The first permutation in this example appears below level 2, thus the contrapositive
statement to the theorem says that it must contain a forbidden pattern of order 2, as it
does: the pair (4,1) and the set {2,3} form such a pattern. This pair and this set. also form
a pattern of order 2 in the permutation of the second example, which serves to show that
having a forhidden pattern of order k is not sufficient to consign a permutation to a position
below the ktn level.

Having thus given a condition which is necessary but not sufficient to locate a per-
mutation below level k, we next give a sufficient condition.
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Definition 4.2.12 A forbidden pattern of order k, comprised of a pair ¢ > a and a set of
elements B preceding ¢ will be called uninterrupted if there is no subsequence (b,,z,by) in ,
where > ¢, for any b, b, € B.

Definition 4.2.13 A forbidden pattern of order k, comprised of a pair ¢ > a and a set of
elements B preceding ¢ will be called pure if there is no subsequence {b;,z,b;) in 7, where
T > mazyegh, for any b,,b; € B.

If a permutation contains an uninterrupted forbidden pattern of order k& which is not
pure, then there exists a subsequence of the form (b;,z,5;) in 7, where maz,epb < z < c.
Then r can be appended to the set B to form an uninterrupted forbidden pattern of one
higher order. The uninterrupted forbidden pattern of maximal order in 7 is therefore always
pure. We shall be concerned precisely with this highest-order pattern.

Theorem 4.2.14 If v € S, contains an uninterrupted forbidden pattern of order k, then =
appears below level k in the sorting tree T(n). That is, I1*(w) # ¢,,.

Proof: As in the proof of the previous theorem, we fix n and offer an induction
on k. The theorem is true for k = 1, as any permutation containing a pure uninterrupted
forbidden pattern of order 1, in other words a wedge, is not one-stack sortable and so appears
below level 1.

Now suppose that # € S, contains an uninterrupted forbidden pattern of order k,
and therefore a pure uninterrupted forbidden pattern of order A > k. We claim that II(r)
contains an uninterrupted forbidden pattern of order h — 1; therefore, by the induction
hypothesis, II(r) requires at least h passes to sort, so 7 requires at least h + 1.

Let the pure forbidden pattern of order k in = be composed of the pair ¢ > a and
the set B. Consider the application of the sorting procedure Il to #. By the purity of the
forbidden pattern, no member of the set B will be removed until all members of B have been
placed on the stack. Then, when an element larger than b,., = maxycp b is encountered, all
members of B remaining on the stack are removed before the larger element is placed on.
Only this larger element can remove bmax, 50 that bnax will be the rightmost member of B
in the sorted permutation II(7). Also, since (byax,c,a) is a wedge in T, by, precedes a in
().

Therefore the pair bnax > a and the set B\ {bnax} form an uninterrupted forbidden
pattern in II(x). O
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Example 4.2.15 Each of the (n —2)! permutations on level n — 1 of the tree T(n) contains
a forbidden pattern of order n — 2. In this extreme case, each element in the permutation
contributes to the forbidden pattern. There are no other permutations containing such a
forbidden pattern; accordingly, all other permutations appear above leveln — 1.

Example 4.2.18 Each of the forbidden patterns of order n — 2 seen in ezample 4.2.15 to
appear in the permutations on the bottom level of T(n), level n — 1, is pure. Accordingly,
these permutations appear below level n — 2.

We can also use these two theorems to characterize, and so enumerate, the permu-
tations of the bottom two levels; that is, those permutations 7 € A(n — 2)SS(n) U A(n —
1)SS(n). By theorem 4.2.10, if a permutation has no forbidden subpattern of order n — 3,
then it appears on or above level n — 3. Hence the permutatiocns we seek all have forbidden
subpatterns of order n — 3. Such a pattern, comprised of a pair ¢ > a and a set B, is pure
unlessc=n—1,a =1, B = {2,...,2—2}. Therefore, every permutation having a forbidden
pattern of order n — 3 actually appears on level n — 2 or below, with the possible exception
of permutations having the form = = (...,n —1,1). We examine these permutations more
closely.

Ifr=(...,n—1,1) and 7 contains a wedge of the form (n —2,n, z), then the element
(n — 2) will precede z in II(7). Since (z,n —1,1) is also a wedge in 7, it is also the case
that the element z will precede the element 1 in II(7r). Also, the rightmost two elements of
[I(7) will be (n — 1,n) as neither n nor n — 1 is removed from the stack until the end of
the permutation is reached. As at least the four elements z,1,n — 1,n all succced n — 2 in
[I(r), no more than n — 5 elements might precede n — 2. Therefore n — 2 cannot be the
element c in a forbidden pattern of order n —4 in the permutation II(7). Also, as no smaller
element succeeds n — 1 or n, neither can participate in a forbidden pattern of order n — 4.
Therefore, II(7) is free of patterns of order n —4, and so is (n —4)-stack sortable. Since then
7 is (n — 3)-stack sortable, r does not lie on the bottom two levels of T'(n).

On the other hand, suppose m contains no wedge of the form (n — 2,n,z). Then
n — 2 is removed from the stack by n — 1. The sorted permutation [I(7) therefore has
the form (...,n — 2,1,n — 1,n). By inspection, this contains a pure forbidden pattern of
order n — 3, and so II(x) appears on or below level n — 3. But, also by inspection, II(r)
contains no forbidden pattern of order n — 2, and so appears above level n — 2. Clearly,
[I(r) € A(n —3)SS,, and so 7 € A(n — 2)SS,.

We can thus characterize the permutations of the bottom two levels as being all those
containing a forbidden pattern of order n — 3, with the exception of permutations of the form
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(...,n=2,...,n,...,z,...,n—1,1). (We have already determined those on the bottom level
to be just the permutations of the form (...,n, 1), in the previous subsection.) We next use
this characterization to enumerate the permutations of level n — 2.

Theorem 4.2.17 The number of permutations in A(n —2)SS(n) is Z(n — 2)! + (n — 3)!

Proof: A permutation containing a forbidden pattern of order n — 3 has one of the
following forms, where the z’s represent arbitrary elements:

(py--- --- pyn,1)
(py--- ... pyn—1,1) (17)
(py--- p, n,1,p)
(p-.. P myp,1) (18)
(py... ... pyn,2)

(P,--- P n_lI]'?n')

Permutations of the first form also contain a forbidden pattern of order n — 2, and are the
(n —2)! permutations of A(n —1)S5S5(n). We are interested in permutations of the other five
forms. The last of these has n —3 undetermined elements p and so corresponds to the (n —3)!
permutations. The other four have n — 2 undetermined elements, and so there are (n — 2}!
permutations of each of these forms. Only a permutation of the form (17) might be of the
exceptional form In exactly half of the permutations of form (17), the element n will precede
the element n —2. These do not have the exceptional form and so belong to A(n —2)SS(n).
In the other half, n — 2 precedes n. These permutations have the exceptional form, except
for permutations of the form (...,n —2,...,n,n — 1,1). These have already been counted
among the permutations of form 18. So exactly half of the permutations of form (17) are
to be counted. We obtain a total of 3(n —2)! + (n = 2)! + (n = 2)! + (n — 2)! + (n - 3)
permutations. O

This formula, and the formula for the bottom levelsum, can be compared to the data
in the following table, which give AkSS(n) for all n < 11:
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5] 6] 17 8 9 10 11
I 1] 1 I 1 I T

41| 131 | 428 | 1420 | 4860 | 16794 | 58784
49 [ 276 | 1500 | 8184 | 44 473 | 243 334 | 1 343 654
23 [ 198 | 1556 | 11 812 | 88 566 | 662 732 | 4 975 378
6| 90| 982 9678 | 91959 | 863 296 | 8 093 662
24 | 444 | 5856 | 68 820 | 775 134 | 8 618 740
120 | 2640 | 40 800 | 555 828 | 7 201 188
720 | 18 360 | 325 200 | 5 033 952
5040 | 1461 60 | 2 918 160
40 320 [ 1 310 400
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4.2.4 A conjecture about level 2

We give a characterization, similar to those of the previous subsection, for the two-
stack sortable permutations.

Theorem 4.2.18 A permutation © € S, fails to be two-stack sortable if it contains a sub-
sequence of type 2341, or a subsequence of type 3241 which is not part of a subsequence of
type 35241. If it contains no such subsequence, 7 is two-stack sortable.

Proof: The proof is an exercise in the application of the basic lemmata 4.2.1 and
4.2.2.

First suppose 7 has a subsequence of either of the given forms, and consider II(7).
First consider a subsequence of type 2341, consisting of the elements b, c,d, a where a < b <
c < d. Since b precedes c in m and b < ¢, it follows that b will precede c in II(7), regardless
of the other elements of 7. Also, because c,d,a form a wedge in 7, ¢ will precede a in II(7).
Therefore, the elements b, c,a appear in that order in II(7), where they form a wedge. Since
therefore TI(7) is not one-stack sortable, it follows that 7 is not two-stack sortable.

Second, consider a subsequence of type 3241, say consisting of the elements c, b, d, a,
where there is no element larger than d which follows ¢ but precedes b. There are two cases:
either there is an element £ > ¢ which follows ¢ but precedes b, or there is no such element.
If there is such an z, by assumption ¢ < £ < d, and consequently ¢, z,d, a is of type 2341 and
we are back in the case of the preceding paragraph. Otherwise, if there is no such element
z > ¢, then b precedes c in II(r). And since c,d,a is a wedge in m, ¢ precedes a in II(m).
Once again, b,c,a form a wedge in II(7).



4.2 The sorting tree 7

It follows that if = has one of the forbidden subsequences, then 7 fails to be two-stack
sortable.

Conversely, we can show that if II(r) fails to be one-stack sortable; that is, if it
contains a wedge, then 7 must contain one of the two forbidden subsequences.

Suppose that b,c,a form a wedge in II(x). We look at two cases; either & precedes ¢
in T or vice versa.

If b precedes ¢ in 7, then porism 4.2.3 guarantees a wedge c,z,a in m. But then
b,c,z,a is a subsequence of type 2341.

If c precedes b in 7, then there can be no z > ¢ such that ¢ precedes z and z precedes
bin 7. But since c precedes a in II(7), there is some wedge ¢,y, a in 7. Since y > ¢, y cannot
precede b in 7, by the remark in the first sentence of this paragraph. Therefore b precedes
y, and ¢, b,y,a is a sequence of type 3241. Again by the remark in the first sentence, this
subsequence is not part of a subsequence of type 35241.

Thus if b,c,a is a wedge in II(r), we see that = has a subsequence of one of the two
forms given in the statement of the theorem. So if 7 is not two-stack sortable, it has one of
the forbidden subsequences. O

The above theorem does not, strictly speaking, give a characterization in terms of
forbidden subsequences. It does not permit us to write the class 2SS, as an intersection of
sets of the form S,(7), because of the unfamiliar restriction that “forbidden” subsequences
of type 3241 are permitted if each is mitigated by being part of a 35241. Nevertheless, it has
much the same flavour of our characterization of 1S5S, as S,(231).

We should like to exploit this knowledge about 255, to enumerate this class of per-
mutations. An equivalent problem would be to count A2SS, = 255, \ 1S5S, as we know
that [15S,| = |Sa(()|231) = ¢,, the Catalan number. Unfortunately, we do not know of a
method which would permit this calculation. Several possibilities are explored in the sequel.
But the data in the table given in the previous subsection suggest a simple closed form.

Conjecture 4.2.19 |255,| = —("+l)(22n+1)( 3: )

Comparing the form of this conjecture with the expression for the Catalan numbers,

L 2: ) would suggest that an expression could be found for 35S, of the form ﬁ( 4: )’

where P(n) is a low degree polynomial in n. But the data in the table above o not support
such a conjecture for any P(n) of degree less than 7.
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4.3 Unasked questions

The sorting function II and the trees T'(n) derived from it arise from an attempt to
model the problem of sorting by passage through a series of stacks. The algorithm which
generates the sorting function II has considerable advantages. It is very simple to implement,
and is independent of the length of the input, so that it is not even necessary to know how
many, or which, elements are in the input. It might, however, be fairly objected that the
function II is a very naive sorting algorithm, and some less rigid model of sorting on a stack
might be considered. In this thesis, we have rnot considered allowing any more powerful
operation than the naive, greedy algorithm.

But in the interest of equal time, we present a series of alternative formulations of the
stack-sorting question. None of these questions has, to the best of our knowledge, received
serious attention.

Question 4.3.1 Can a better algorithm be designed for stacks which are not the last in a
series?

If we have ~nly one stack, then the best sorting algorithm, in the sense of the one
which achieves success for the greatest number of inputs, is the greedy algorithm. But if the
output from a stack is to be sorted again, a better algorithm can be devised. For instance,
suppose we have two stacks and we know that the input is of length 4. If both stack operate
according to the greedy algorithm, the two inputs (3,2,4,1) and (2, 3,4, 1) will not be sorted
after passing through the second stack. But suppose the first stack implements a different
algorithm, so that if the first two elements to be input are 3 and 2, the larger is output first
(and otherwise operates as the greedy algorithm). Then the stacks will sort as follows:

input  output from first stack output from second stack

2,3,1,4 3,1,2,4 1,2,3,4
2,3,4,1 3,2,1,4 1,2,3,4
3,2,1,4 3,1,2,4 1,2,3,4
3,2,4,1 3,2,1,4 1,2,3,4

So this implementation of a two-stack system is more successful than using two copies of

the greedy algorithm. But we have made use of a foreknowledge of a length of the input, as
well as which elements are in the input permutation. If the first stack sees that the first two
inputs are 2 and 3 (in some order), then it also knows that the inputs to follow are 4 and 1.
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If a stack knows where it is located in a series of stacks, it can exploit this knowledge,
without any further communication with the other stacks, as we have just seen. As well as
using the information that the output will be sent on to more stacks, a stack could use the
fact that its input has already been passed through one or more stacks, as the output from a
stack has a special form, being already sorted. For instance, if a stack is the rth in a series,
it might be able to assume that it is operating on an input of length n — r, if the stacks
which precede it are each using an algorithm that sends one more large element to the end
of the permutation.

Perhaps even more information than this can be used. For instance, if the first
stack in a series runs the greedy algorithm on an input of length 6, there are only 68 possible
outputs, down from 6! = 720 inputs. This is even considerably smaller than the upper bound
of 5! = 120 obtained from the fact that the largest element has been sent to the end.The
second stack thus has relatively few possible inputs with which to contend. If a stack knew
that it was following a stack operating the greedy algorithm, it would be forewarned to
expect one of these 68 permutations as input.

Question 4.3.2 [s there an efficient algorithm which makes use of the all the data which
has already been passed?

The variant of the greedy algorithm which was described above suggested deviating
from the greedy algorithm if two specific elements, 2 and 3, were being compared as the
top element on the stack and the next element of the input. However, this deviation was
only planned if this was the first comparison being made. We could imagine an algorithm
which made use, not only of how much input has already been seen, but of what that input
was (and, since the algorithm is deterministic, it would also implicitly know what output
has resulted). Again, the situation breaks into two cases, depending on whether or not the
stack has been forewarned about which elements are in the input. If so, it would also have
knowledge about what elements remained, although not about the order in which they were
to appear.

Although this algorithm is considerably more sophisticated than the naive algorithm,
it still operates in an online fashion. We could abandon this requirement, as in the following
question.

Question 4.3.3 How well can we do if the entire input is studied before sorting begins?

If the algorithm controlling a stack were allowed to scan the entire input permutation
before making any decisions, it would become very powerful indeed. In effect, this amounts
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to the non-deterministic version of the naive algorithm. Rather than try to select the most
efficient way to process an input, we just try all possible ways of processing the input at
each stack, and declare the operation to be successful if any one of the possibe outputs from
the final stack is fully sorted. (The final stack in a series can continue to run the greedy
algorithm, as we know that this is the most efficient in this special case.)

Rather than one option at each stack, as in the naive, deterministic case, we have ¢,
possible ways to process an input of length n. Therefore, the simple upper bound on the
number of permutations of length n sortable by a series of k nondeterministic stacks is (c,)*,
which is asymptotically equal to 4™* = (4*)*. Although this is eventually outstripped by n!
for any k, it happens quite slowly. For instance, for 2 nondeterministic stacks, the simplistic
upper bound only guarantees that some permutation of length n = 41 is not sortable. (As
16% = 1.5 x 10*® and 40! = 8.2 x 10%7).

However, running a nondeterministic algorithm on an input of this length clearly
requires absurd amounts of time and storage. Even the idea of scanning a permutation of
length 40 and making a decision about how to sort it requires a significant amount of memory
compared to the very simple, memoryless action of the naive sorting algorithm. Although
we have not been concerned about efficient computation in this thesis, it might still be of
interest to ask how well we can do with a prescribed finite amount of memory attached to
each stack. For instance, we might be able to remember, and make decisions based on, all
of the elements presently in the stack, instead of just the topmost.

Another arrangement halfway between working online and nondeterminism would be
to make the first stack operated online, but allow the remainder full knowledge of their input,
the permutation having already been scanned once.

Question 4.3.4 Is there any advantage to occasional random deviation from the greedy
algorithm?

If we think of all the permutations of length n as being arrayed in the sorting tree
T(n), then the sorting algorithm [I steps resolutely up the tree from child to parent. It seems
possible that by occasionally making random transitions we might have more likelihood of
making a sudden advance up the tree than of suffering a sudden setback. This would amount
to shaking out a knot in a permutation all at once, instead of letting a small element progress
forwards through a permutation one step at a time.

We suggest two ways in which we could make random transitions. First, we could
decide with some small probability to apply a random bracketing sequence to an input
permutation, rather than the specific one prescribed by the sorting algorithm. This random
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bracketing sequence could be chosen either with uniform probability, or according to the
some function of how commonly it appears in the sorting tree. (The question of how many
Sequences require a given bracketing sequence in the operation of the greedy algorithm is
taken up in section 95.4.) Secondly, we could operate the naive algorithm, but each time
a comparison is made between a stack element and an input, to obey the algorithm with

two cases, it seems possible that there is some nonzero probability which would confer the
greatest advantage.
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5 More about the sorting tree

Fleurs sorties des parenthéses d’un pas
- Louise de Vilmorin,
Fianqailles pour rire

5.1 The average depth

We would like to determine the average depth of the sorting tree T'(n). That is,
given a uniformly selected random permutation of S,, how many times docs the sorting
algorithm have to be applied before the permutation is completely sorted? We make use of
the characterizations of subsection 4.2.3, and ask what is the highest order forbidden pattern
which can be expected in a permutation of length n? We will prove the following, not very
ambitious, result.

Theorem 5.1.1 For large n, the sorting tree T(n + ) has average depth of al least .23n —

62/,

Proof: Recall from subsection 4.2.3 that a permutation falls below level k if it
contains an uninterrupted forbidden pattern of order .

We consider all permutations in S, and the depth in T'(n + 1) of each one. First,
we throw out any contribution from half the permutations, and retain that half which in
which the largest element, n + 1, falls between positions n/2 — \/n and n — \/n. If the largest
element of a permutation is serving as the element c in a forbidden pattern of order k, that
pattern will always be uninterrupted. We therefore look for a high order forbidden pattern
using n + 1 as the element c.

If the element n + 1 falls in the given range, then there are at least \/n positions
to its right. The chances are high that one of the elements 1,2,...,,/n appears in one
of these positions. Consider filling a permutation of length n in such a way that none of
1,2,...,/n appears in one of the rightmost /n positions. Place the small elements first, in
(n—=yn)(n—-\m—1)---(n—2y/n+ 1) ways. Then place the remaining elements in the
(n — \/n) open positions. This gives in total

(n=vh)(n—vn-1)-(n=2y/n+1)-(n~n)
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permutations. How does this number compare to the total number n! of permutations of
length n? The ratio is

(5 () - (22620 (£=0)
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Thus, the majority of these permutations, at least (1 — %) > .63 of them, have an
element of size at most \/n which can act as the element a in a forbidden pattern. We
consider now only these permutations, which make up 2(l --1) > .31 of the total. Since the
element n + 1, acting as c, is preceded by, on average, (— — /n) elements, and since all but
at most \/n of these elements are larger than the element acting as a, there is a forbidden
pattern of average order (37" — 2,/n) for these permutations.

We use only that each of the other .69 of the permutations has depth greater than or
equal to zero. This gives an average depth for the tree of at least

3

<

(31)(—-—2\/_) { 23n) — (.62y/n)

O

Clearly, we have cut corners in order to simplify the proof. In particular, by taking
the last ¢ - /n for some ¢ > 1, we can increase the coéfficient on the dominant linear term
at the expense of the squareroot term. This should bring the leading term arbitrarily close
to gn. Also, wher. n + 1 is near the middle of the permutation, we have not made use of
the fact that it is followed by considerably more than \/n positions. And we have drawn
no advantage at all from fully half the permutations. For those permutations where n + 1
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is very close to the front of the permutation, we might choose to let n take its place as the
element c in the forbidden pattern.

However, the theorem we have just proved does give a lower bound with a linear term,
and so is sufficient for the purpose of the following corollary.

Corollary 5.1.2 Sorting according to the greedy stacksorting algorithm requires Q(n?) time
in the average case.

Proof: In corollary 4.2.7 we concluded a worst case time of (n?) from the fact
that the total depth of the tree was linear. We have now concluded that a linear number of
passes is required on average to sort a permutation. O

This establishes conclusively that the naive sorting algorithm is not computationally
efficient. There are many familiar algorithms which sort in O(nlogn) time.

V/e speculate that the bound of the above theorem can be improved to % — ¢ - \/n,
by using the result on uninterrupted forbidden patterns; to do any better, we would have
to use a more precise characterization of the permutations on the kth level. We would like
to complement this result with an upper bound on the average depth, derived from the
complementary result of theorem 4.2.10 on (ordinary) forbidden patterns. Unfortunately,
this will not get us near 2, as forbidden patterns are far more common if we drop the
requirement that they be uninterrupted.

We have seen that a larger proportion, (1 — 1), of all permutations of length n are
such that one of the /n smallest elements falls somewhere in the rightmost \/n places.
More generally, if ¢ > 1 is a parameter, then (1 — elc) of all permutations have one of the
¢ - /n smallest elements in one of the rightmost \/n places. Furthermore, of these the same
proportion (1 — =) will have one of the largest c- \/n elements in one of the next \/n places
from the right. This small element and tlis large element form the clements a and c in a
forbidden pattern of order at least n —(2c+2),/n. This is so as there are n —2,/n positions to
the left of our large element ¢ > n — ¢ /n, and at most 2¢,/n of these positions are occupied
by an element either larger than c or smaller than a < ¢\/n.

It follows that the average depth of the tree cannot be shown by avoidance of forbidden

patterns of order k£ to be any less than

(1= %) (1= 2)-(n — (2c+2)VR)

Here by taking a large value of the parameter ¢ we can make the coéfficient of n
arbitrarily close to ! at the cost of making the coéfficient of the squareroot term prohibitively



5.2 Results on fertility 85

large. The actual average depth lies somewhere between the two bounds of .23n — .62\/n
and n —¢, - /n. We speculate that it is nearer to the latter than the former, and that in fact
the correct average depth is probably of the form (1 —€)n — ¢; - \/n, for some constant ¢;. To
determine this, it will be necessary to use a more precise argument than the characterizations
in terms of forbidden patterns and of uninterrupted forbidden patterns, which are far apart.
In addition to showing the average depth to be of the form ¢; - n — ¢, - \/n and explicitly
determining c;, it would be good to determine what fraction of the nodes in the tree lies
below level ¢; - n — ¢, - /n, where the parameter ¢, is allowed to vary.

5.2 Results on fertility

In this section, we concern ourselves further with the structure of the sorting trees
T(n) introduced in chapter 4. In particular, we are concerned with the number of children
of a given node.

Definition 5.2.1 Let Ch(r) denote the set of children of a the node labelled x in T(n). The
fertility of the node m, f(x), is the number of children of the node. That is,
Ch(r) = {p€S,:1(p) =7}
f(x) = |Ch(=)]|
We will also be interested in certain subtrees of T'(n). Let T(p) denote the subtree of
T(n) consisting of the node labelled p together with all its descendents. Thus T'(t,) = T(n).
Also, if p € Sn and p(n) # n, then, in view of porism 4.1.7, T(p) consists of the single node

labelled by p.
Recall that the Catalan numbers are specified by ¢g = 1 and the recurrence 1:

n
Cp = ch—lcn—ja (19)
j=1
which has the solution given in equation 2:

«=(7)-(20)=m (%) ®

We use the Catalan numbers to define the following two-parameter family:
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Definition 5.2.2 Forn >3 and2 < k <n — 1, define

k
dok =) Cj-1Cn-; (21)

j=2
Letting £ = 2 in definition 5.2.2, we obtain the identity
dn.2 = Cp-2.
The following basic relation also follows directly from the definition.
dok =dpk—y + Croy - Cnik 3<k<n-1)
And by comparison of equations (19) and (21), observe that
dppnor =€ —2:Cpy.

The values of d, , for n <7 are given in the following table.

l " dn.2 ] dn.S l dn.4 | dn..S dn.6

1
2 4
)

14
14 |14 |34 |48
42 |70 |95 |123|165

"wcam-:-u:

Definitions 5.2.3 Forn > 3 and?2 < k < n-—1, we define three permutations, jip k, Vn ky€nk €
Sy as follows.

ok = (2,3,..., k1, k+1,...,n)

v = (1,2,...,k=2,k,k—1,k+1,...,n)
E"-k = (k!lv21"'9k_lsk+lv"vn)
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We remark that un; = vn2 = €a2 = (2,1,3,4,...,n). We also remark, although we
will not make use of, the facts that p, ! = €, 4 and v, 17" = vy
Notice the following relations which serve to locate each u, v and £ in the sorting tree

T(n).

n(ﬂn.k) = MHnk-1

M(paz) = tn
H(V,.'k) = iy
n(fn.k) = In

The first result we prove is the following:
Theorem 5.2.4 f(énnt1-k) =dnk, foralln >3,2<k<n-—1.

Proof: The proof is by induction on k. For the base case, we check that f({,n-1) =
dn2 = Cn—3. Suppose that II(p) = £,.—1. Write p in the form p = anf, and note that
M(a)II(B) = (n —1,1,2,...,n —2). Since the largest element in this permutation sequence
is (n — 1), and since both II(a) and II(#) must end with their largest elements, it follows
that II(a) = (n — 1) and II(B) = (1,2,...,n — 2). There is thus only one possibility for a,
and as the requirement for f is precisely that 8 € 1S5S, _,, there c, possibilities for 3. The
permutation £, a1 thus has ¢, children in T'(n).

To complete the induction, we wish to show that forall 3 < k < n—1,if f(£nns1-k-1) =
dn,k-h then

f(En,n-H—k) = dn,k = dn.k-l + Ck—1 * Cn—k-

We will partition Ch(&, n41-£) into two sets, one counted by d, ,_, and the other by cx_;-c,_.
The first set will be the set of all p € Ch(£, n41-x) such that the element n —k+1 is removed
by n — k42 when p is sorted. For permutations in the second set, n — k 4+ 1 will be removed
by some larger element.

Note that En,n+l-k(1) = €n.n+2—k(n +2- k) =n+l- k’ that En.n+l—k(n’ +2- k) =
€nnt2-k(1) = n +2 — k, and that &, n41-k(j) = €nnsa-x(J) for all other indices 5. In other
words, €, n41-k can be obtained from €, n42-x by interchanging the positions of the elements
(n+1—k)and (n+2-k).

We now claim that if p € Ch(£, n+2-4), and if o is obtained from p by interchanging
the positions of the two elements (n+1—k) and (n+2—k), then 0 € Ch(£, ny1-k). Moreover,
n + 1 — k is not removed by n + 2 — k when ¢ is sorted. The key observation is that since
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n+1 —k and n + 2 — k differ by one, they interact identically with all other elements, both
the larger and the smaller.

In I1(p) = €nnt+2—k, the element (n4-2—k) precedes the element (n+1—~k). Therefore,
(n+2 — k) must have been removed from the stack before (n+1—k) was encountered. Hence
the two elements do not interact at all. But they interact identically with all other elements.
Therefore, if their positions are interchanged to form the permutation o, then ¢ and p are
associated to the same bracketing sequence by the application of the sorting algorithm.

Thus II(o) is obtained from o by precisely the same permutation by which II(p) is
obtained from p. It follows that II(o) differs from II(p) only in that the elements (n +2 — k)
and (n + 1 — k) are interchanged. That is, 0 € Ch(énns1-k)-

On the other hand, if o is a permutation such that I1(¢) = £, n41-k and if n+1—k is
not removed by n+2—k, then we can interchange these two elements to obtain a permutation
p such that TI(p) = &n ny2—k-

The remaining elements of of Ch({n n+1-%) will be those for which n+1—k is removed
by the element n+2—k&. Aninspection of {p 41—k = (n+1-k,1,2,...,n—k,n4+2—-4k,...,n)
will reveal certain restrictions on a permutation = having this property. First, obviously
n+ 1 — k must precede n + 2 — k in 7. Second, if j > n + 2 — k then j cannot fall between
n+l—kand n+2—kinm, for then n + 1 — k would not be removed by n + 2 — k.

Now consider an element h <n + 1 —k, h cannot precede n +1 — k in =, for then A
would have to precede n + 1 — k in II(x), which is not the case. In fact, h could not fall after
n+ 1 — k and precede n + 2 — k, for then there would be no element larger than n + 1 — &
between n + 1 — k and h, so h would again precede n + 1 — k in II(7). It follows that the
elements n + 1 — k and n + 2 — k are in fact adjacent in m. Moreover, they are followed
immediately by all of the n — k elements smaller than n 4+ 1 — k. For each of these elements
is to the right of n +2 — k in 7. If any element z larger than n + 2 — k preceded any clement
h smaller than n + 2 — k, then the three elements (n +2 — k, z, h) would form a wedge in ,
and so n + 2 — k would precede h in II(7), which it does not.

These n — k smallest elements must be arranged in the order of a stack-sortable
permutation, as they appear in exact ascending order in €, n+1-k. They can be so arranged in
cn-k Ways. So arranged, the elements 1,2,...,n+1—k,n+2—k form a block in . That block
will be processed as a unit and lead to the output substring (n+1—+k,1,2,...,n—k,n+2—4).
This must be the first substring of the output £, ,41-. If we replace this block of the n+2—k
smallest elements by a single element 0, we obtain a permutation sequence comprised of the
k —1 elements 0,n +3 — k,...,n.

It must be the case that when this permutation sequence is sorted the elements are
output in ascending order: the block 0 first, followed by the rest in ascending order, just as
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they appear in £, n41-x. There are c,_; ways to make this arrangement.

Since for each of the c,_, arrangements of the smallest elements there are c;_, arrange-
ments of the rest of the elements, there are in total c,_ - ck—, permutations in Ch(€, ny1-1)
such that n 4+ 1 — k is removed by n + 2 — k. This completes the induction step. O

Example 5.2.5 In T(5)the children of the node €54 = (4,1,2,3,5) are labelled by the d,, , =
5 permutations:

o B
v v Ov O On
LW N = =
N — = W
0 N W

The node {53 = (3,1,2,4,5) hasd,3 =dna+c2-¢c2=5+2-2=09 children. Five of
these are obtained from the children of (4,1,2,3,5) by interchanging the positions of elements
3 and 4:

3 512 4
3 51 42
3 521 4
J 5 41 2
3 5 4 21

The rest are obtained by forming the c; = 2 blocks (3,4,1,2) and (3,4,2,1), and
combining each with the remaining element 5 in c; ways:

(3412)5
(3421)5
5(3412)
5(3421)

We next prove a parallel result for p, 4.
Theorem 5.2.6 f(unx) =dnpni41 foralln >3 and2 <k <n-—-1.

Proof:
Recall the form of u, x:

ok = (23, ..k 1Lk+1,...,n).
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Let 7 € Ch(pnx) so that II(x) = pa4. It is evident by the observations of section
4.2.1 that if s is one of the elements 2,3,...,k, then s precedes the element 1 in 7, and
furthermore there is a wedge of the form (s,z,1) in .

Now, define t = = (j) to be the largest (equivalently, leftmost) element so that ¢ =
() >7x(3+1)>--->n(h)=1.

Clearly, there is such a t, or 1 would be the first element of II(x). Furthermore,
t > k+1, as if t were one of the elements 2,3,..., k there would be no wedge (t,z,1) in =.

We form the partition

Ch(#n.k) = Pk-f—l U Pk+2 U---u Pn

where 7 € P, if t is the largest element so that t =x(3) > nr(j +1) > --- > w(h) = 1.

We proceeded to characterize, and so enu.nerate, the sets P,. In what follows, in
addition to n and k we can regard ¢ as being fixed.

We now consider sorting a permutatiion 7 € P;. Because of the way in which we have
sclected t, all of the elements between ¢ and 1 follow the element ¢ onto the stack before
any element is removed. The element 1 is of course removed from the stack immediately.
Since 1 follows each of the elements 2,3, ...,k in [I(7r) = un, k, this means that each of these
elements precedes ¢ in .

Now let s be any of the elements k + 1,k + 2,...,t — 1. The element s must not
precede t in 7, otherwise (s,t,1) would form a wedge, and s would precede 1 in II(7), which
is not the case. But there can be no element z > t forming a wedge (¢, z,s) in (), for then s
would succeed ¢ in II(7), which is neither the case. And since the smaller elements 2,3,...,k
all precede t, it must be the case that the t —k elements 1 and k+1,k+2,...,t—1 together
form a block which immediately succeeds ¢t in 7. The next element that follows this block
is larger than ¢t and so will have the effect of clearing the stack at least down to the level of
the element ¢t. The elements of the block are to appear in ascending order in (%) = jtp 4,
and consequently can appear in exactly ¢,_; ways within the block.

The elements outside this block, excepting ¢, nuraber n — (¢ -- k) — 1. They are
2,3,...,kand t +1,t + 2....,n. These elements are also to appear in ascending order in
. Consequently they can be arranged into a list in any of exactly c,_4x—1 ways. It only
remains to insert the element t and its trailing block into this list. But we know exactly where
¢ must be located. The element immediately preceding t cannot be any of t +1,t +2,...,n,
because these elements are larger than ¢ and would contradict the maximality of t. So it
must be one of 2,3,...,k. To be precise, it must be the rightmost of these, because we know
that each of these elements precedes t in .
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So we are able to obtain the elements of P, by following these steps: divide the
elements into the sets {1,k+1,k+2,...,t~1} and {2,3,...,k,t+1,t+2,...,n}. Form the
first of these into a block in one of ¢;—x ways, and the second into a list in one of ¢,_4x_;
ways. Insert each of the blocks, together with the element ¢, into each of the lists in a unique

way. It follows that

|P:| = Ct—k ' Cn—t4k-1-

As Ch(pn ) is precisely the disjoint union Up_,,, P:, we calculate

f(uni) = |Ch(pni)l

a

Example 5.2.7 We list the dg 4 = 34 children of ps3 = (2,3,1,4,5,6). The members of P,
are in the first column, those of Ps are in the second, and those of Pg are in the third. The

n

Z Ct—k " Cn—t+k-1

t=k+1
n—-k+1

Z Clt+k-1)=k * Cn—(t+k=1)+k-1

t=2
n—-k+1

z Ct—1 ' Cn—t
t=2

dnm—k+l

block trailing the element t is bracketed in each case.

23(41)56
23(41)65
253(41)6
263(41)5
2653(41)
32(41)56
32(41)65
523(41)6
532(41)6
623(41)5
6253(41)
632(41)5
6523(41)
6532(41)

23(514)6
23(541)6

263(514)
263(541)

732(514)6

32(541)6

623(514)
623(541)

632(514)
632(541)

23(6145)
23(6154)
23(6415)
23(6514)
23(6541)

32(6145)
32(6154)
32(6415)
32(6514)
32(6541)
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A comparison of theorems 5.2.4 and 5.2.6 reveals the following.

Corollary 5.2.8 f(pnx) = f(€nx) foralln >3 and2 <k <n-—1.

Having succeeded in determining f(£,4) and f(gnx), and finding them to be equal
for all appropriate choices for n and k, we turn naturally to the enumeration of f(v, ). The
reader may not be surprised to find that f(v,x) = dpns1-k as well. In the following section
we prove a stronger result, and obtain the desired enumeration as a corollary.

5.3 A subtree isomorphism

The goal of this section is to determine f(vnx), where v, = (1,2,...,k=2,k, k—1,k+
1,...,n). Since we have already determined f(u,x), where p,x = (2,3,...,k, 1,k+1,...,n),
it will suffice to prove the following theorem.

Theorem 5.3.1 Foralln >3 and 2 <k <n —1, we have the subtree isomorphism

T(#n.2) = T(Vn,k)

Proof: We construct an explicit isomorphism.

Notice that p,x = (2,3,...,k,1,k+1,...,n) can be obtained from v, , = (1,2,...,k—
2,k,k — 1,k +1,...,n) by permuting the elements in the following way: add one to each
element of value less than k£ — 1, and replace k — 1 by 1. We will prove that the same
operation can be performed on each node of the subtree T'(v, ) to obtain the nodes of the
subtree T'(pn k).

More formally, if 7 € S,,, define the permutation p = M2 (7) by p(v7'(j)) = ¢(J)
where

() =5+1 for1 <j<k-2
$(k—1) =1 (22)
() =J fork<j;j<n

As already remarked, pn & = M (v, k). We deline the inverse mapping N similarly;
if * € S,, define the permutation p = N2 () by p(7~1(5)) = ¥(5) where

P(l) =k-1
bG) =j-1 for2<j<k-—1 (23)
bG)  =j for k< j<n
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Since the permutations ¢ and 3, acting on the elements, «.re mutually inverse, the
two mappings M[* and N are easily seen to be inverse for all choices o n and k it follows
a fortiori that vp . = N2 (ptn k).

Now fix n and k and let v* be any node in the subtree T'(v, ). That is, there exists
a unique positive integer r such that

II"(v®) = vnk.
We claim that then
(M (v7)) = ME(TI(v7)). (24)
Conversely, if u* is a node of the subtree T'(¢n ), and if
[ (4”) = pnk
for some r > 1, we claim that
II(NZ(p7)) = NZ(TI(p7)). (25)

From these two claims, it will follow directly that the mapping M induces an isomor-
phism from the subtree T'(v,, ) to the subtree T(u, ). This can be confirmed by straight-
forward induction on r.

Notice that if v* is a node of T(v, ) other than the root v, 4, then v = [I(¢") is also
a node of T'(vy, k). Thus from the claim of equation 24 we derive

MMP(v) = M(I(v))
MME(I(v))) = M(I(TI(v7)))
MM (v7))) = ME(I(TI(v7)))

(MR (v) = MR(II*(v*)).

Likewise, II*(M7(v*)) = MZ(I1°(v*)) for all s, in particular for s = r, so that II"(Mp(v*)) =
MR(II"(v")) = M (Vax) = pnk. Therefore, the image under MJ of a node on the rth level
of T(vak) is a node on the rth level of T(u,:). It is no harder to see that the ancestry
relations hold throughout, and the two trees are isomorphic.

It remains to verify the claims of (24) and (25). We first check (24).

For fixed n and k, let v* = (a,),a;,...,a,) be some node of T(v,;), and let ¢
be the permutation (depending on n and k) defined in (22). By definition, M2(v*) =
(¢(ar),...,¢(an)). We claim that v* and M7 (v") are associated to the same bracketing
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sequence by the action of the sorting algorithm. This can be seen to be identical to the
condition that we seek to prove, namely that MZ(II(v")) = [I(MP(v")).

The permutation ¢ preserves all pairwise comparisons except that ¢(1) > (5) if
2 < j £ k — 1. Therefore, when v* and M7 (v") are sorted, exactly the same steps will be
taken unless the element 1 is ever compared Lo any element j (2 < j < k —1) in the sorting
of v*. But this can never happen. If 1 were ever compared to such an element j, then 1
would precede j in II(v*) and consequently in I1*(»*) for all s > 1. In particular, 1 would
precede j in [I"(v*) = vnx. Inspection of v, s shows that this is not the case. Hence v* and
M} (v*) are associated with the same bracketing sequence.

We next check the assertion of (25).

For fixed n and k, let u* = (b,b;,...,b,) be some node of T(un4), and let 3
be the permutation (depending on n and k) defined in (23). By definition, NP(p") =
(¥(a1),...,¥(a,)). As above, we claim that u* and N?(u") are associated to the same
bracketing sequence by the action of the sorting algorithm.

The permutation ¥ preserves all pairwise comparisons except that y(k — 1) < ¥(j)
if 1 <j <k —2. Therefore, when u* and N7(u*) are sorted, exactly the same steps will be
taken unless the element k£ — 1 is ever compared to any element j (1 < j < k —2) in the
sorting of u*. But this can never happen. If k — 1 were ever compared to such an element
J, then either j would be placed above k — 1 on the stack, or j would be removed to output
at the time £ — 1 was input. In this case, possibly some other elements, also smaller than
k — 1, are also removed at the same time. But in either case, not element larger than k — 1
will be removed after j but before £ — 1. That is, all elements lying after j but before k — 1
in II(4*) are smaller than k — 1. This pattern must then persist in I1*(u*) for all s > 1, and,
in particular, in II"(4") = p,x. Inspection of p,x shows that this is not the case: in u,, k,
which is larger than k — 1, precedes k — 1 but follows every j for 1 <j < k —2.

Hence u* and M (u") are associated with the same bracketing sequence. 0O

Since if two nodes have isomorphic subtrees they certainly have the same number of
children, an immediate consequence of the preceding theorem is the following.

Corollary 5.3.2 f(pnk) = f(vnx) foralln >23,2<k<n-1.
Combining corollary 5.3.2 with theorem 5.2.6 provides the desired result:

Corollary 5.3.3 f(pnnt1-k) = f(Vnnt1-k) =dni foralln 23,2<k<n-1
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5.4 Two questions about bracketing sequences

Recall that we consider the sorting tree T'(n) = T'(¢,) to have labels on its edges, so
that the edge from the child © € S, to its parent II(r) is labelled by the bracketing sequence
b € B, associated to 7 by the sorting operation. It may help to think of this bracketing
sequence as being associated to = by a function b : S, — By, so that b(r) is really associated
to the node labelled by 7 rather than o the edge —II(r).

An alternative way to think about the bracketing sequence b(w) is to think of the
permutation which must be applied to 7 to obtain II(x). If II(r) = o(x), then there exists
a unique permutation p on the first level of T'(n) such that o(p) = II(p) = ¢n. If p is this
permutation, then clearly o = p~!. One has the option of thinking about the bracketing
sequence b or, equivalently, about the permutation o, but on the whole the interpretation
in terms of bracketing sequences seems to cause less confusion. One observation which is
facilitated by considering the permutation corresponding to a bracketing sequence is the
following.

Proposition 5.4.1 IfII(x) = II(p) but = # p, then b(x) # b(p).

Proof: Since 7 # p, a different permutation must be applied to each to obtain IT(7). These
different permutations correspond to different bracketing sequences. O

The proposition states that siblings in the tree T'(n) are associated to different brack-
eting sequences. The root node, ¢y, has one child for each of the ¢, — 1 bracketing sequences
other than one corresponding to the identity permutation, namely ()()()...(). Any other node,
7, has f(=) children, and these correspond to f(x) different bracketing sequences, forming
a subset of B,,. Instead of calculating f(=) by characterizing the children of x, therefore, we
could characterize the bracketing sequences which label the children.

The following questions about bracketing sequences and the tree T'(n) were suggested
by Lauren Rose.

Question 5.4.2 For a given b € B,, how many limes does the bracketing sequence b
appear as an edge-label in the tree T(n)? That is, for how many © € S, is b° associated to
7 by the sorting algorithm?

Question 5.4.3 For a given b* € B,, how often does b* appear as an label on the kth level
of T(n)? That is, for how many © € AkSS, is b* associated to w by the sorting algorithm?
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An alternate formulation for the second question would ask “for a given o € S, for
how many © € AkSS, is [I(x) = 67!(x)?” Another alternate formulation would ask “for a
given b € B,, for how many = € A(k -- 1)SS, does b label one of the children of #?” Qur
approach, which will answer the first question for all * and the second for some, will make
strong use of the structure of the bracketing sequences. We first provide a recursive answer
to Rose’s first question.

Definition 5.4.4 For b € B,, let Z(b) be the number of * € S, such that 7 is associated to
b by the sorting algorithm. If b € B, is the void bracketing sequence then Z(b®) = 1.

Theorem 5.4.5 For any b € B,, if b = b (bg) where by, € By, and bp € B,_,_,., then
, -1
Z(b) = ( "m ) - Z(bL)Z(bg).

Proof: If r € 5, is associated with b € B, by the sorting algorithm, and b is written
in the form by (bgr), the final closed parenthesis corresponds to the removal of the largest
element, n, from the stack. Therefore its mate, namely the open parenthesis separating the
two substrings by, and bg marks the point where n was placed on the stack.

If by € B, this locates n at the (m + 1)th position of 7. We can write 7 as 7 nnpg,
where m;, € Sm. When n is processed, it clears the stack. Therefore, none of the elements

occupying the first m positions will interact with any of the elements in the finaln — 1 —m
positions. We are free to chcose these elements, in any of n; ! ways.

Once the elements to fill the first m positions have been chosen, they are to be formed
into the permutation sequence . Clearly, 7, must be associated with the bracketing
sequence b,. But we know recursively how many permutations of length m are associated
with this bracketing sequence, namely Z(b.). This also counts the number of permutation
sequences on a given set of m elements which are associated with bg.

The formation of the remainining n — 1 — m elements into a permutation sequence
associated with the bracketing sequence b € B,_,_,, can be performed independently in
Z(br) ways, in light of the fact that none of the elements of 7 interacts with any element
of TR

After making the initial division of elements into a left and a right set and then
independently forming the left and right subsequences, we have counted all the permutations
associated with §. O

This essentially settles Rose’s first question in a satisfactory manner. The second
question is considerably more involved, and will be taken up in the following section.
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Note that for a given b* € B,, the unique permutation p € 155(n) such that b(p) = b
s the lexicographically least of all the permutations associated to b". Suppose we construct
all the permutations associated to b° in the manner of the above proof. The lexicographically
least will be obtained if, whenever we have a choice, we always elect to place the smallest
available elements on the left and the largest on the right. The permutation we determine
will then have no subsequence of type 231. But this is exacily the property of p.

5.5 The spectrum of a bracketing sequence

In this section we begin our investigation of the second question of Lauren Rose.
Given a bracketing sequence b € B,, how many times does b appear as a label on each
level of the sorting tree T(n)? To further discussion of this problem, we make the following
definition.

Definition 5.5.1 The spectrum of a bracketing sequence S[b] = (80, 81,825+ ,8p—1) Tecords
the number of times b appears as a label on each level of the tree T(n). That ts, Sk is the
number of permutations T € AkSS,. associated to b.

Note that the spectrum is defined relative to a given permutation length n. So we
should more properly write S,, but we omit the subscript for clarity. This should not cause
confusion.

Let 5= = ()0 0- We observe immediately that b= labels only the identity permu-
tation tn, so that S[b=} = (1,9,...,0). On the other hand, if b # b=, we know that b labels a
unique permutation on the first level of T(n), so that if S[b] = (S0s 815+ , 1) then 30 = 0
and s, = 1. Of course, the sum of the terms of the spectrum, Z:',:;(‘, s = Z(b), where Z is
the function of definition 5.4.4.

Our first result will characterize recursively those bracketing sequences which have
spectrum S{b] = (0,1,0,...,0) or S[) = (1,0,0,...,0). Since bracketing sequences always
begin (0,1, -- Jor(1,0,.. .), the bracketing sequence b will have one of these spectra precisely
when Z(b) = 1.

"Theorem 5.5.2 Ifb € B, Z(b) =11if and only if b can be written in either of the forms
(b') or b() where Z(b') = 1.

Proof: By theorem 5.4.5, if b= b (bg) then Z(b) = ( n;l ) . Z(bp)Z(bR)- The product
Z(b) will be equal to 1 precisely if each term of the product is equal to 1. The binomial
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coefficient n; 1 will be 1 only if either by or bg is void. Therefore b must be of either
of the forms by() where Z(b.) = 1; or (br) where Z(bg) =1. O
Corollary 5.5.3 The number of b € B, with Z(b) =1 is 2".

Proof: The proof is by induction on n. For n = 1, the unique bracketing sequence () has
spectrum S[()] = (1). By the preceding theorem, each bracketing sequence in b € B,_; with
Z(h) = 1 can be extended to two such sequences in B,. Since no well-formed sequence of
the form b() is also of the form (¥) for nonvoid b, none of these sequences are the same. O

Example 5.5.4 We may now refer to the function Z as the spectrum sum when it seems
appropriate to do so. It may help to refer to the sorting tree for n = 3 pictured in chapter 4.
Of the c3 = 5 bracketing sequences of length 3, the number with spectrum sum 1 is 23-1 =4,
Their spectra are

S(O001 = (1,0,0)
S[(OMI = (0,1,0)
SOl = (0,1,0)
S[ONY = (0,1,0)

As always, the special sequence b= = ()()() has spectrum S[b=] = (1,0,...,0). All other
spectra begin (0,1,...), including the spectrum of the fifth and final bracketing sequence:

S[O(0) = (0,1,1)

Since there is always exactly oue sequence 5= = ()() -+ - () with spectrum (1,0,...,0),
the corollary states that the number of sequences b € B, with Z(b) = (0,1,0,...,0) is
2» -1,

Definition 5.5.5 Ifb € B, is a bracketing sequence, the choose-tree associated with b, 'i'(b)
is a rooted binary tree, with nodes labelled with binomial coéfficients, defined recursively as
follows. For the unique sequence b* € By, namely the sequence (), T(b') is a single node

labelled by ( 000 ) Otherwise, if b = by (bg) where by, € By, and bp € By_1-m, then the
t of T is labelled b n-l
T00 s y mon—1—m

subtree of the root is T(bg).

), the left subtree of the root is T(by), and the right
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It follows immediately from the definition that if b € B, then 7(b) has n nodes. It
should also be clear that the bracketing sequence b can be reconstructed from 7 (b), so that
T (b)) = T(by) = by = by. The choose-tree T amounts to a visual record of the application
of theorem 5.4.5 to calculate the spectrum sum Z(b). Indeed, Z(b) is just the product over
the entire tree 7 of the values of the labelling binomial coéfficients. Note, however, that
the labels are the actual symbols of the binomial coéfficients, and not their values. We have
included two arguments on the bottom of each coéfficient in order to stress the symmetry
of the situation, and to recall which is associated with the left subtree, and which with the

right. Note also that all leaves of the choose-tree are labelled ( 000 )

Example 5.5.6 The permutation (3,6,5,2,4,1) corresponds to the following bracketing se-
quence

3 2
)

\
J

4 5 6
( ) ) )

1
C(( ()
3 652 1

(
4
The choose tree associated to this bracketing sequence is
(124)
N

(0)0)  (o%)
/(

000) (0?0)

If we were actually to calculate the valae of the symbols at each node, we would find
that any binomial coéfficient with a 0 as one of its bottom arguments contributed only a
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trivial factor of i to the product Z(b). The the choose-symbols ( nn——l L 0 ) and ( Onn— 11 )

do not offer any practical ‘choice’ at all. We may wish to leave them out of our tree, as in
the following definition.

Definition 5.5.7 The reduced tree of b € B, T(b) is obtained from the choose-tree T(b) by
suppressing all nodes whose labelling binomial coéfficient has value 1. Thus, all leaves are
deleted. Any remaining node, =, which is labelled by a symbol of value 1 has at most one
nonempty sublree. Thus if c is ihe left (right) subtree of y, T can be deleted, and its child (if
any) made to replace x as the left (right) chiid of y.

Example 5.5.8 The brackeiing sequence b = ()((()(()))) of the previous example has the
following reduced tree T (b)

5 2
1 1
Se corresponding to this bracketing sequence; *"~t is that Z(b) = 10. These permutations are

We can see from the reduced tree that there are = 10 permutations in

165243 165342
265143 265341
365142 365241
465132 465231
564132 564231

Notice that in constructing these permutations from the bracketing sequence b =
O0(O((0)))), the elements which are entered when the nontrivial nodes of the reduced tree are
processed, in this example those elements falling in positions 2 and 5 of the permutations, are
exactly the peaks of the permutation. That is, they are those elements which fall immediately
between two smaller elements.
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Example 5.5.9 Ifbe B, is one of the 2"~ bracketing sequences of length n with Z(b) = 1,
every node in the choose-tree T(b) has a label of value 1. Consequently, such a b will have
an empty reduced choose-tree T (b)

This example demonstrates the loss of information involved in considering only the
reduced tree. Whereas the unique bracketing sequence associated with a full sorting tree
can easily be determined, there may be many bracketing sequences associated to a given
reduced tree. For instance, the choose-tree with no nodes is associated with 2"~! bracketing
sequences. We give the general result in the following theorem, after first defining a symbol
which counts the number of bracketing sequences of length n associated to a given reduced
tree.

Definition 5.5.10 For a given n € Z%, if T* is a reduced choose-tree whose root has the

m
label ( m— k. k ) for some m < n, then

W.(T*) = |{b€ B, : T(b) = T*}|

Theorem 5.5.11 For a given n € Z%, if T* is a reduced choose-tree whose root has the

label ( m —mk,k ) for some m < n and if T* has v nodes, then

Wn(T‘-) — 2n—l—2u

Proof: We wish to determine all of the bracketing sequences associated with a
given reduced tree. Perhaps the easiest way to think about this result is to consider a
canonical permutation associated to each bracketing sequence. A convenient one is the
lexicographically least, which is, as we observed at the end of section 5.4, also the unique
permutation which is completely sorted by the bracketing sequence.

If the given reduced tree T has no nodes, then it corresponds to 2"~! bracketing
sequences, as we saw above. Each of these bracketing sequences is associated with only the
canonical permutation. These 2"~! permutations are built up by inserting the n elements
into the permutaticn in decreasing order, beginning with n, and never inserting an element
in such a way that the remaining elements are divided in a nontrivial manner. Thus, n is
placed in either the first position [corresponding to a pair of brackets on the outside of the
bracketing sequence, b® = (bg)] or in the last position [corresponding to pair of brackets at
the end of the bracketing sequence, b* = b;()]. The element n — 1 is placed in either the
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leftmost or rightmost of the remaining positions, and so forth. This procedure corresponds
to n—1 independent choices between leftmost and rightmost positions. (There are only n—1
choices, rather than n, because there is only one position remaining to be occupied by the
smallest element, 1.)

To this point in the proof, we have said nothing new, yet we have suggested the form

of proof of the general result. If the root node in the reduced tree 7° is labelled ( m flk r )

with m = n — 1, then the position occupied by the element n is determined. (It is position
m — k + 1.) Otherwise, n might be located in either the rightmost or leftmost position, as
neither offers a nontrivial choice. We continue to insert elements up to element m + 1, each
time making an either-or choice. When we insert element m + 1, we process a node from the
reduced tree, but lose two choices. One is lost because the position of element m +1 is fixed,
and not free. The other is lost because, rather than having one element whose position will
be forced at the end, we now have two, one on the right and the other on the left. Thus our
total number of options is reduced by a factor of 22" if there are v nontrivial choices to be
made. O

Example 5.5.12 Consider the tree of ezample 5.5.8:

(1%)
\
(i%)

This tree is associated witk 2671=%? = 2 bracketing sequences of length 6. Each of
these bracketing sequences is assoctated with 10 permutations. We list the 2 bracketing se-
quences, and the lexicographically least permutation associated with each, below.

(

)(((I()))) 165243
-

()
0(0)0) 162435

Example 5.5.9 may also prepare us somewhat for the following theorem, the major
result of this section.
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Theorem 5.5.13 The spectrum of a bracketing sequence is an invariant of the reduced tree
associated to the sequence. In other words, if b,b' € B, are such that T(b) = T(V'), then
S(b) = S(¥)

Proof: Suppose that T(b) = T(¥), so that in particular Z(b) = Z(¥). The Z(b)
permutations associated to b and the Z(b) permutations associated to 4’ can be put into
one-to-one correspondence in an obvious manner: every a nontrivial choice is made on the
one hand, make the same choice on the other.

More formally, given a permutation 7 associated to b, we obtain a permutation =’

m—1
m—1—kk ) Then
the elements n,n — 1,...,m + 1 must be entered into both permutations in a fixed manner,
determined by the respective bracketing sequences. The element m is also entered in a
prescribed position, and the m — 1 elements 1,2,...,m — 1 are in each case divided into a
set of m — k — 1 elements on the left and k on the right. Choose the same m — k — 1 of these
elements to precede the element m in 7’ as precede m in w. Procede recursively to fill the
space of length m — k — 1 on the left according to the left subtree of the root, and the space
of length k on the right according to the right subtree.

We claim that the permutation 7 obtained from = in this {ashion is on the same level
of the sorting tree T'(n). More strongly, we claim that Ii(r) = II(#'). The proof (which
will actually be for general permutation sequences, rather than for permutations) will be by
induction on the length of .

Let w be a permutation sequence of length n assnciated with the bracketing sequence
b, and let 7’ associated with ¥’ be obtained according to the above procedure. (In particular,
7' is built up out of the same set of elements as 7). If = has length 1, it is clear that ' = .

Otherwise, 7 may be written in the form # = ppamBpgr, where the elements of p;, and
of pp are each greater than m, and the elements of @ and 3 are each smaller than m. The
elements of p; and of pg have been entered in decreasing order, beginning at the extremities
of the permutation and working inwards. Observe that II(r) = I[I(a)II(3)m,m + 1,...,n.

Then if 7’ is obtained from 7 according to the procedure above, write 7/ = p}a'mp’ph.
Because of the nature of the procedure by which #’ is obtained, o consists of the same choice
of elements as a. Also, because o’ is obtained from « by the recursive application of the same
procedure, the induction hypothesis states that I[I(a) = II('). Similarly, TI(3) = TI(F'). It
only remains to compare the two forms

() = M(a)II(B)m,m +1,...,n
(=Y = M) )Ym,m+1,...,n

associated to ¥/, as follows. Suppose the root of 7(b) is labelled



104 5 MORE ABOUT THE SORTING TREE

to conclude inductively that II(x) = I(x’). O
This theorem allows us to write the spectrum of a bracketing sequence as a function
of its associated reduced tree. Thus if 7* = T[], we may write S[T*] = S[b].

Example 5.5.14 The two bracketing sequences of the previous ezxamples, ()((()(()))) and
OOD)), have the same reduced tree and consequently the same spectrum.

In fact, S[)((OOM] = SIOWOWO)O))] = (0,1,8,1,0,0), which can be verified by writing
the 10 permutations corresponding to each bracketing sequence, and applying the sorting
algorithm.

We thus have a convenient formula for the number of bracketing sequences associated
with a given reduced tree, W,(7'), and understand that each of these has the same spectrum.
The next natural step would be to determine a way to read off these spectra from the reduced
tree. Unfortunately, this still seems to be difficult. In the following section we will have some
success in determining the third term of the spectrum, the one counting the number of two-
stack sortable permutations, from the reduced tree. For now, we leave ore special case in
which the spectrum can be read off directly.

We already know that if T[] is the empty tree, which we can call 7°, then S[b] =
(0,1,0,...,0), except for the special case S[b=] = (1,0,0,...,0). [This is the one exception
to the above theorem about spectral invariance, which we finessed in the proof.] For this
reason, let us agree that S[T°] = (0,1,0,...,0).

We turn from the empty tree to a tree with a single node.

Theorem 5.5.15 If 7" is the reduced tree consisting of the single nodz (m— lm—lc k)
then
o _ k—1 k k+1 m— 1
= 0 (A7) (G () ()

m—-k+1

Proof: The proof relies on theorems 4.2.10 and 4.2.14, which give conditions locating
a permutation 7 € S, within the sorting tiee T'(n). First note that (in the language of these
theorems) if T[b(r)] = T*, then every forbidden pattern, of any order, in 7 is pure. This
follows from the observation following example 5.5.8 that the elements in the permutation
corresponding to the nodes of the reduced tree are exactly the peaks of the permutation.
Since 7" has only one node, there is only one peak in the interior of x. In the definition of
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a pure forbidden pattern, 4.2.13, the pattern of increases and decreases in the subsequence
(b1, z, by, ¢, @) ensures that an impure pattern (i.e., one containing such a subsequence) must
have at least. twin peaks.

If the highest order forbidden pattern in our permutation 7 is of order r, then theorem
4.2.10 asserts that m appears on or above level r + 1 of the sorting tree T(n). On the other
hand, since our the forbidden patterns in our permutation 7 are all pure, theorem 4.2.14
asserts that = appears below level r. Therefore, 7 € A(r + 1)SS,. It remains to find the
highest order forbidden paitern in =, for each of the Z(b) permutations associated to any of
the bracketing sequences b having reduced tree 7*.

As such a 7 has only one peak, namely the element m + 1, there will be a maximal
order forbidden pattern having ¢ = m + 1. The order of this pattern will be determined by
the smaliest element which is chosen to follow the element m 41 in 7. Consider the selection
of k of the elements {1,2,...,m} to fall to the right of element m + 1. If the least of these is
m — (k —1) — s for some s > 0, then of the k — 1 + s greater elements, k —1 will also follow
the element m + 1 but s will precede this element. This set of s elements, together with the
piir m+1 > m — k — s, will be the maximal order forbidden pattern in 7, a pattern of order
s. There are k ;i-{- 3 ways to choose the k£ — 1 elements larger than m — (k — 1) — s
which are also to follow the element m + 1.

Hence, the number of 7 associated with b which are exactly s + 1-stack sortable is
( (k ;1)1+ 3 ), for all s > 0. This is precisely the statement of the theorem. 0O

Note that each of the components of the spectrum S[T*] given in the above theorem
depends only on the variable k. The other variable appearing in the reduced tree 7*, namely
m, only determines the number of nonzero terms appearing in the spectrum.

5.6 What the spectra say about level 2

In the previous section, we argued that the spectrum of a bracketing sequence was an
invariant of the associated reduced tree. We next prove a stronger statement about the first
nontrivial coéfficient of the spectrum, namely the one which counts the number of exactly
2-stack sortable permutations associated with a given bracketing sequence. Let us use ¢, [b] to
denote the number of permutations = € rSS, associated to a bracketing sequence b, so that
if S{b] = (s0, 91,82, ---,50-1), then ¢,[b] = Y"T_, s;. In particular, t;[b] = s+ 31+ 32 = 52+ 1.

Also recall that the reduced tree of a bracketing sequence b is a rooted binary tree,



106 5 MORE ABOUT THE SORTING TREE

Mg
my — km k::
tree T[b] we define the k-tree T*[b] to be an isomorphic tree with the node corresponding to
r labelled by k.. We prove the following result.

with each node z labelled with a binomial coéfficient, ( ) From the reduced

Theorem 5.6.1 Given a bracketing sequence b € B, the number of 2-stack sortable per-
mutations in S, associated to b is an invariant of the k-tree T*[b].

Proof: We use the characterization of theorem 4.2.18. That is, a permutatioa 7 is two-
stack sortable unless it contains a subsequence of type 2341, or a subsequence of type 3241
which is not part of a subsequence of type 35241.

When a permutation is created in accordance with bracketing sequence b having
reduced tree T[b], then the elements which are peaks in the permutation are precisely those
which are entered when a node of the reduced tree is processed. Clearly, if any element
serves as the largest element of a forbidden subsequence of type 2341 or 3241, then a peak
does so. We enter elements in such a2 way as to ensure that they do not.

me

My — kza k::
selecting, among the elements to be filled into a contiguous region of the permutation, those
k. which are to fall to the right of, and those m,; — k. which are to fall to the left of, the
largest element. If any two of those selected to fall to the left are larger than the least
of those selected to fall to the right, then a forbidden subsequence of type 2341 or 3241
will necessarily be introduced. (f it were to turn out eventually to be of type 3241, then it
would not be part of a subsequence of type 35241, as the elements on the right are to be
entered contiguously, and all are smaller than the largest of the m, elements.) Hence, to
avoid introducing one of these forbidden subsequences, the k. elements chose to fall on the
right must be selected from among the largest %, + 1 elements available. This number is
independent of the number of elements falling to the left.

We next check that the selection of k; of these k; + 1 elements to fall on the right
(or equivalently, of one to fall on the left) imposes the same restrictions on processing the
subtrees of z, regardless of the number m,. It certainly makes no difference to the way
the elements can be entered in the substring on the left; so long as these are entered in
such a way as to avoid the forbidden subsequences they cannot interact negatively with any
elements outside this substring.

On the right, we must proceed with more care, as it is possible to introduce a forbidden
subsequence of type 2341 in the following manner. A node z is processed, meaning that a

Processing a node z of the reduced tree labelled corresponds to
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large element, say ¢, is entered at a fixed spot and some elements are selected to be placed
to its left, some to the right. At most one of the elements on the left, say b,, is permitted to
be larger than any of the clements on the right. Say the minimum element on the right is
a,. Later, we process a node y in the right subtree of z. A large element, c; is fixed, and of
the elements then placed to the left of c,, one b, is permitted to be larger than the minimum
element on the right, a;. Since, alone among the elements to the left of and smaller than
¢;, b; may be larger than some elements to the right of ¢;, it might well be the case that b
is larger than either or both of the elements b, and a,, but smaller than ¢,. If it is larger
than a, but smaller than b,, then (b, b, ¢, @) is a forbidden subsequence of type 2341. If,
however, b, is larger than b,, but smaller than ¢;, then (b;, bs, c2,az) is of type 3241 but
is part of the subsequence (b,, ¢y, b2, c2,a2) and so not forbidden by the characterization of
258S,.

None of this, however, makes any use of the size of the set on the left to which the
elements 6, and b, belong. Knowing how many elements to the right of ¢; are smaller than
b; is sufficient. 0O

The form of this proof suggests a technique for gaining information about the number
of two-stack sortable permutations. A starting point would be to find a way to determine
the number ¢,[b] as a function of the k-tree T*[b]. Experimentation suggests that to each
rooted binary tree T there is associated a polynomial function of the nodes, and that s;(b],
for each & associated with a k-tree T*[b] of shape T, can be found by evaluating this poly-
nomial at the specific values of the labels on 7*%. These functions appear to be products
of binomial coéfficients with integer coéfficients +1 and —1, suggesting inclusion-exclusion
formulze. Furthermore, the polynomials are homogeneous products of binomial coéfficients in
that the sum over the lower terms in the binomial coéfficients of each monomial is constant,
and equal to the depth of the binary tree.

Although it is not difficult to compile a table of such formule, we shall not attempt
to do so here, as it does not seem useful to accumulate such results in an ad hoc fashion
without developing a general framework. We will content ourselves with one observation,
based directly on the above proof of theorem 5.6.1. If T® is a k-tree whose root has an
empty left subtree, and 7" is another k-tree, let 7* be the k-tree formed by making 7* the
left subtree of the root of T7®. Then if TR = T*[b,], and T* = T*[b,], and 7% = T*[b,],
then t,[by] = t2[b;] X t2[b;]. This is a direct result of the observation in the proof of theorem
5.6.1 that the decision made at the root does not affect any of the decisions made while
processing the left subtree.

If we could develop enough similar results to be able to read off the value of 3[b] from
any k-tree T*[b], we might be able to find a clever way to sum t,[b] over all reduced trees,
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using theorem 5.5.11 on the number of bracketing sequences associated to a given reduced
tree, to find the total value |255,|. Alternatively, we might at least find a computationally
efficient way to calculate |255,|, and so establish whether there is a small counterexample
to conjecture 4.2.19.

In tghe following subsection, we suggest other approaches to proving the conjecture
of 4.2.19.

5.7 Other attempts to prove the level 2 conjecture

5.7.1 Appeal to forbidden subsequences

We have a characterization of the two-stack sortable permutations in terms of for-
bidden subsequences, which was given in theorem 4.2.18. We could try to use any of the
techniques of chapters 2 and 3 to enumerate 25S5,,.

In [18], Simion and Schmidt have had considerable success in enumerating intersec-
tions of the form N{_,S.(7;) where 1; € S3. Unfortunately, we have not quite written 255,
in the form S,(7) N S,(p) for 7,p € S,4, because of the unusual condition that subsequences
of type 3241 are only excluded if they do not form part of a subsequence of type 35241.
Although this may not make the enumerative problem harder, and indeed the data for 255,
seem to fit a more attractive form than, for instance, S,(2341) N 5,(3241), it probably does
make the problem harder from a forbidden subsequences approach. In any case, forbid-
den subsequence problems have proven to be difficult, and this is probably not the most

promising approach.

5.7.2 A set of recurrence equations

One way, and perhaps the simplest way, in which we showed that 155, was counted by
the Catalan numbers was using the characterization S,(231), and showing, at the beginning
of section 2.1, that these numbers satisfied the Catalan recurrence (1). We could try a similar
approach to find a recurrence satisfied by the numbers d, = |255,|.

We will fix the position of the largest element, n, and sum over all possible positions.
Suppose n appears in position j. Write a permutation 7 € 2SS, in the form = = anp,
where a € Sj-; and 3 € S,-;. Then II(7) = I[I(a)II(B)%. In order for the permutation 7 to
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be two-stack sortable, we want this once-sorted permutation II(r) to be one-stack sortable.
That is, we want II(7) € S,(231). This means, among other things, that II(a) € S;_,(231)
and II(B) € S.—;(231), so that a € 255;_, and B € 25S,_;. How else could a forbidden
subsequence of type 231 appear in [I(7)? We have dealt with the cases where all three terms
of the forbidden subsequence appear in II(a), and where all three terms appear in II(f3).
One remaining case has the first two terms in II(a) and the third in II(3); the other has the
first term in II(a) and the second and third in II(3).

We deal first with the first of these two cases. Since II(«) is a sorted permutation, its
largest element appears on the right, and so its largest two elements are in increasing order.
Therefore, if any two elements of a are larger than the smallest eleinent of 3, a forbidden
subsequence of type 231 will appear under the first case. If at most one element of a is larger
than the smallest element of £, no such forbidden subsequence will appear. This takes care
of the first outstanding case. In addition to summing over the posi‘ion of n, we will have
a second nested sum, in which the large element of « is allowed to range. Otherwise, the
elements of a are all the small elements, the elements of 3 all the large ones.

The other outstanding case is where the difficulty arises. How could a forbidden
subsequence of type 231 appear with its first term in II{a) and its other two terms in II(3)?
Since the second and third terms will be decreasing in a once-sorted permutation, a result
of subsection 4.2.1 states that these terms must have appeared as the elements b and a
of a wedge (b,z,a) in B. We need to count, then, not only the number of permutations
f € 25S5,—;, but the number of these permutations which have no wedge (b, z,a) so that
b > y > a for a specified y, that value of y corresponding to the element selected to be the
free-ranging maximum element of a. If the number of these is d},_;, then the recurrence we
seek is actually of the form

n n-j

do=3 3 dja-d;_;

j=1y=1
. To complete this argument, we would have to find appropriate recurrences for the numbers
d;,_;, presumably each involving numbers of a similar form, and solve the set of recurrences.
Note the similarity in these arguments to the work with k-trees in section 5.6. Perhaps
we are repeating the same argument in a different guise, or perhaps there is an idea in one
approach which has been overlooked but which might usefully contribute to the other.

5.7.3 Generalized bracketing sequences



110 5 MORE ABOUT THE SORTING TREE

Another way to think about the members of 1S5S, was to consider the bracketing
sequence uniquely associated with each one-stack sortable permutation. In the literature,
these sequences have frequently been written with the letters S and X representing pushes
and pops from the stack, rather than the symbols ‘(’ and ‘)’. We have preferred the latter,
because they suggest naturally the characterization of a well-formed bracketing sequence in
terms of matching pairs of parentheses. But let us consider generalizing the sequences of
S’s and X'’s, representing pushes and pops, to two stacke. We use sequences of S’s, T’s and
X's, where an S represents placing an element on the first stack, a T represents a transfer
between stacks, and an X represents removing an element from the final stack. We only
need three letters, not four, because once an element p is removed from the first stack it
might as wzll be placed directly on the second one. If we wished to remove some elements
from the second stack first, we could have removed these before p was taken from the first
stack.

We wish to count sequences in which each operation S, T and X is performed n
times, one for each element of an input permutation. Note that two such sequences of letters
are equivalent if an adjacent pair SX is replaced by XS. This is because if there is no
intervening T, the operations of placing an input on the first stack and removing an output
from the second can be performed equivalently in either order. So we might as well assume
that between each consecutive pair of T's we have a string of S’s followed by a string of X's.

As a first step, we might locate all the T’s, in 3: ) ways. This seems promising, as a

factor of this form appears in our conjectured expression in 4.2.19.

But we need to restrict our attention not only to sequences which are well-formed
in the sense that we never try to remove from either stack more elements than are actually
there, but further to well-formed sequences which are inequivalent, in terms of producing
the same effect when performed on an input permutation. This seems difficult, as not only
are, for instance, the sequences STXSTX and STSXTX equivalent, but the sequences
STSTXX and SSTXTX are as well.

5.7.4 A paper of Tutte’s

The first 11 terms of the sequence of |25S,]| are 1, 2, 6, 22, 91, 408, 1938, 9614, 49
335, 260 130, 1 402 440. In our conjecture 4.2.19 we noted that thiese numbers fit the formula

WTIW;TI)( 3: ) Taking this sequence to Sloane’s book of integer sequences [19] turns up
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two references. The second of these is glancing, but the first, one of Tutte’s “census” papers

3n

[22] derives at some length the formula o ) for the number of nonseparable

I
planar graphs counted by edges.

Tutte’s argument, which is involved and relies on results from a previous vaper,
uses generating functions and Lagrange inversion. This seems to be a promising technique.
Can the objects we wish to count, namely the two-stack sortable permutaticns, be shown
to obey Tutte’s generating functiuns, and his arguments reproduced in this new setting?
Presumably, one of the approaches to the enumerative problem considered above would be
used in accomplishing this. Alternatively, can the two-stack sortable permutations be placed
in direct correspondence with Tutte’s non-separable planar maps?
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