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Abstract

Cosmic muon spallation backgrounds are ubiquitous in low-background ex-
periments. For liquid scintillator-based experiments searching for neutrinoless
double-beta decay, the spallation product 10C is an important background in
the region of interest between 2-3 MeV and determines the depth requirement
for the experiment. We have developed an algorithm based on a convolutional
neural network that uses the temporal and spatial correlations in light emissions
to identify 10C background events. With a typical kiloton-scale detector config-
uration like the KamLAND detector, we find that the algorithm is capable of
identifying 61.6% of the 10C at 90% signal acceptance. A detector with perfect
light collection could identify 98.2% at 90% signal acceptance. The algorithm
is independent of vertex and energy reconstruction, so it is complementary to
current methods and can be expanded to other background sources.

Keywords: liquid scintillator, neutrino detector, deep learning, spallation,
neural network, background rejection

1. Introduction

Neutrinoless double-beta decay (0νββ) is a hypothetical decay process by
which a nucleus ejects two electrons and no neutrinos, therefore violating lep-
ton number by two units. The observation of this process would demonstrate
that neutrinos are Majorana fermions, yield valuable insight into the mecha-
nism behind neutrino mass generation, and support a theoretical framework for
matter-antimatter asymmetry in the early universe. Experiments currently be-
ing planned will instrument up to a few tons of isotope aiming for 0νββ half-life
sensitivities between 1027 − 1028 years [1, 2, 3].
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Large liquid scintillator detectors are attractive for these searches because
they offer cost effective scaling to large volumes and effective background re-
duction through self-shielding, spatial and temporal coincidence analyses, and
pulse shape discrimination. The KamLAND-Zen experiment has shown the ef-
fectiveness of this technique by setting the most stringent limit on the 0νββ
half-life independent of isotope T 0ν

1/2 > 1.07 × 1026 for 136Xe [4].

Due to the size of these detectors, the typical 20% photocathode coverage,
and &1 ns timing resolution, all energy depositions are assumed to originate
from a single point in space and in time. However, we know that different par-
ticle species have characteristic topologies which change in time. Even with
current detector performance, these could be used for particle identification and
background reduction in a variety of analyses. Recent advancements in pho-
todetector technology, with the advent of Large Area Picosecond Photodetectors
(LAPPDs) [5, 6], decrease the photon arrival time uncertainty to ≤ 100 ps. This
allows for particle identification by topology [7] and may also permit the recon-
struction of particle direction through the separation directional Cherenkov light
from the abundant isotropic scintillation light [8]. This has been demonstrated
with muons [9, 10, 11] and recently with 90Sr β-decays [12].

One of the primary cost drivers of 0νββ experiments is the depth at which
they must be located in order to minimize backgrounds due to cosmic muon
spallation. In liquid scintillator detectors doped with 0νββ isotopes with end-
points below 3 MeV, such as 136Xe (Q = 2.458 MeV), the critical long-lived light
isotope is 10C (Q = 3.648 MeV, τ1/2 = 19.29 s). In the current KamLAND-Zen
result, the largest background is the two-neutrino double-beta decay (2νββ) of
136Xe, which is only reducible with improved energy resolution. In the absence
of scintillator or photodetector upgrades, the largest reducible background is
10C [4]. Looking at future multi-ton scintillator experiments, the increased size
and shallower depth make 10C the largest background for a 0νββ search with
the JUNO experiment [13, 14]. The 10C background will also inform the choice
of the depth and location of the proposed THEIA experiment [15].

The production of neutrons and light isotopes in muon spallation is an active
area of study [16, 17, 18, 19]. 10C is a relatively common spallation product, pre-
dominantly made through (π+, np) [16]. Results from the Borexino experiment
suggest a three-fold-coincidence of muon, neutron, and 11C decay can be used to
tag the 11C decay relative to the neutron capture vertex and muon track [20, 21].
This three-fold-coincidence, accompanied by a neutron in the final state, is also
used to tag 10C in the KamLAND-Zen analysis [4]. However, muon spallation
is inherently chaotic and the copious number of neutrons produced through this
process lead to frequent periods of detector instability. This is especially true
for the highest energy events, like showering muons, which produce most of
the light isotopes. The problem can be addressed with improved electronics,
but due to the large dynamic range between muon events (volt-level signals)
and neutron events (millivolt-level signals), difficulties remain. The problem
is further amplified by theoretical uncertainty in the fraction of 10C produc-
tion with neutron final states, and the spatial distribution relative to the muon
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track. For these reasons, an independent method of identifying 10C is useful for
both reducing the background and verifying our understanding of the spallation
process.

In this work we demonstrate that an algorithm based on a ten-layer convo-
lutional neural network (CNN) developed for machine vision applications can
effectively separate 10C from 0νββ events in a kilo-ton scale liquid scintillator
detector, like the current KamLAND detector, without relying on muon or
neutron coincidences. Since the technique is spatially invariant, it goes a step
farther and is also independent of vertex reconstruction. We then perform a
series of studies to understand what information the CNN is using in its dis-
crimination and how the performance of the algorithm changes as we improve
the KamLAND-like detector’s performance.

The paper is organized as follows. Section 2 describes the topological differ-
ences between 0νββ-decay and 10C events that allow them to be distinguished
by the algorithm. Section 3 provides the details of the detector Monte Carlo
(MC) simulation and Section 4 provides the details of the algorithm. These are
followed by the results and conclusions in Sections 5 and 6.

2. Topology of 0νββ-decay and 10C Events

In a liquid scintillator detector, charged particles deposit energy which ex-
cites organic molecules. These molecules subsequently de-excite by releasing
photons which are detected by single photon detectors like photomultiplier tubes
(PMTs). The intrinsic timing of these processes is on the order of ns. Neutrino
detectors with large volumes (diameters >10 m) are typically instrumented with
large PMTs with the capability to resolve photon arrival times on the order of
1-5 ns.

Given the similarity between the time scales of the scintillation process and
PMT readout, energy deposits are assumed to be point-like when reconstructing
energies and vertices of physics events. This neglects two effects. Gamma-rays
at these energies scatter multiple times with a mean free path on the order 10 cm
which leads to a smearing of the vertex in time and space. By comparison, elec-
trons travel ∼1 mm at these energies, but they are above Cherenkov threshold.
Therefore, the electrons produce some directional light which is not absorbed by
the scintillation process. This information is encoded in the pattern of photons
arriving at the PMTs and can be used to identify different categories of events.

In a large fraction of 0νββ events, the electrons exit the nucleus roughly
back-to-back evenly dividing the available energy [22]. For 136Xe, this leads to
two electrons each with a kinetic energy of roughly 1.23 MeV. The Cherenkov
threshold for electrons in this liquid scintillator is 0.16 MeV. Examining the path
of these electrons in Monte Carlo, we find that they travel 7.1 ± 0.9 mm with
a total distance from the origin of 5.6 ± 1.0 mm in 26±4 ps and drop below
Cherenkov threshold after 24± 3 ps. We also find that the final direction of the
electron before it stops does not match the initial direction, however, the total
scattering angle is small while Cherenkov light is emitted.
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Figure 1: Decay scheme of 10C [23]. The final state of 10C events consists of a positron and
either one gamma with energy of 718 keV (98.5%) or two gammas with energies of 718 keV
and 1021 keV (1.5%).
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The decay of 10C is more complicated. 10C is a β+ decay that proceeds
through one of two excited states as shown in Fig. 1. The event observed by the
detector is a combination of a positron, the two subsequent 511 keV annihilation
gammas, and either one gamma with energy of 718 keV (98.5%) or two gammas
with energies of 718 keV and 1021 keV (1.5%). In addition, the 718 keV excited
state is long-lived with a lifetime of 1 ns. This is significant on the time scale
of events in liquid scintillator detectors.

The defining feature of the 0νββ is the two electrons above Cherenkov thresh-
old and the ring-like features that algorithms, either traditional algorithms based
on spherical harmonics or those based on machine learning, should pick out.
Since the number of Cherenkov photons is low, the positron from 10C could
mimic some of these features. However, the 10C vertex is significantly smeared
in time and space by the three or more gammas in the final state. In the region
of interest for 136Xe, the positron has an energy of ∼0.7 MeV. Examining the
path of the positron in Monte Carlo, we find that they travel 3.6 ± 0.6 mm for
a total offset from the origin of 2.5 ± 0.6 mm in 13 ± 2 ps. It takes 11 ± 2 ps for
the positron to fall below Cherenkov threshold.

3. Detector Simulation

These studies are performed using a Geant4-based Monte Carlo (MC) with a
simplified 6.5 m radius sphere of liquid scintillator. The properties of the liquid
scintillator are chosen to match those of KamLAND. We record all photons
that reach the outer surface and apply post processing to account for a variety
of light collection configurations. This simulation is the same as those used in
Ref. [7] and Ref. [8] where more details can be found on the modeling of the LS.

Two types of events are generated for this study: 0νββ decay of 136Xe
and the β+ decay of 10C background. The kinematics of 0νββ decay events
are simulated using a custom MC event generator with momentum and angle-
dependent phase space factors from [22]. 10C events are simulated using the
default isotope decay generator in GEANT4 [24, 25]. This correctly accounts
for the long-lived first excited state of 10B, but does not include the formation
of positronium.

The energy spectrum of both event types is shown in Fig. 2 in terms of
detected photo-electrons for a detector with perfect light collection. Since 10C
event has a much broader spectrum comparing to 136Xe signal, an energy cut is
placed at 2.2 MeV to 2.7 MeV prior to training in order to remove background
events outside region of interest.

The simulation of these events are distributed either at the exact center of the
detector, or uniformly within a 3-meter diameter spherical volume located at the
center of the detector1. The latter matches the dimensions of the KamLAND-
Zen mini-balloon, which contains the 136Xe-doped scintillator. Fig. 3 compares

1Unless otherwise specified, the two types of event distributions will be referred as center
and 3m Sphere in this text.
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Figure 2: The detected photoelectrons, assuming 100% photocathode coverage and QE, for
136Xe 0νββ decays and 10C β+ decays generated inside a sphere with 3 m radius. The gray
band indicates the energy region of interest for 0νββ.

10 3

10 2

10 1

No
rm

al
ize

d 
Co

un
ts

136Xe-0  Center
10C Center
136Xe-0  3m Sphere
10C 3m Sphere

0 10 20 30 40
Time Since First Photon(ns)

1
2
3

Ra
tio

136Xe-0 /10C Center
136Xe-0 /10C 3m Sphere

Figure 3: TOP: Timing Profile of incoming photons for signal and background events. BOT-
TOM: Signal/Background ratio of timing profile histograms. Each bin represents a 1.5ns
detector snapshot, taken from the detector’s sampling rate. The grey band indicates the
period of major discrepancy, thus the characteristics of signal/background learned by the
network. The dashed line represents a signal/background ratio equal to unity.

PE arrival times between 0νββ-decay and 10C events. The time smearing has
been included but the PMT quantum efficiency is added in later steps. In the
events at the center, the excess early light from 0νββ and late light from 10C is
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evident. This pattern is repeated in the 3m sphere events but the shift in arrival
time due to the vertex positions washes out some of the features. We note that
the inclusion of positronium in the model would further increase the late light
contribution in 10C decays, improving the results of this study.

3.1. Clock Latching Algorithm

The photon arrival time is an important parameter of the simulation, so we
model the digitization of the signal using a clock latching algorithm. Before
latching, the hit time of each photon is smeared by a Gaussian Probability Den-
sity Function with a 1 ns standard deviation in order to model the performance
of these large PMTs. The sample time of the KamLAND electronics is 1.5 ns.
When the first unsmeared photon reaches the 6.5 m boundary of the simulation,
a clock will start ticking at an 1.5 ns interval. Any photon that arrives after
the current clock tick but prior to next tick will be latched to this tick. A total
of 30 ticks, 45 ns after the first photon, will be used to record the input event.
Furthermore, 4 additional channels are added prior to zero time in order to take
into account the backward time smearing of photon. A 2D image of the detector
is then formed for each tick. We call each of these images a channel. Each event
contains 34 channels, 33 from -6 to 45 ns in 1.5 ns increments and one larger
bin for the remaining late photons. Fig. 4 contains four example channels for
0νββ and 10C. The distinctive double Cherenkov rings from 0νββ decay are
visible in the first channel. The higher light levels from 10C are seen in the
example channels corresponding to later times.

3.2. Gray Disk PMT Model

The photo-coverage of the detector is introduced by circumscribing a circular
region around each PMT location, known as a gray disk. We used the Kam-
LAND PMT locations for the 1,325 17-inch PMTs as a representative PMT
layout[26]. The total gray disk area was adjusted to yield the desired photo-
coverage. When a photon is produced in the MC, it is associated to the closest
PMT. If this photon passes through the gray disk region of the associated PMT,
one photon hit is recorded for that PMT position; otherwise, the photon is re-
jected. This method limits the total photocathode coverage to 40%, since at
that point the PMTs start overlapping.

3.3. Quantum Efficiency

The PMT quantum efficiency (QE) is wavelength dependent and is another
important simulation input. The QE dependence is accounted for during the
event generation. In GEANT4, a QE bit associated with each photon is in-
troduced to indicate whether or not it was recorded by the PMT. However, in
this study, we need a varying QE to act as a pressure2 parameter in order to
demonstrate the neural network’s performance. A stepwise QE cut is introduced

2In this context, the term pressure refers to the level of difficulty for a neural network to
classify events. See also Sec. 4.2
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Figure 4: Time evolution of the PMT hit-map over four example time bins for a 0νββ event
and a 10C event at the center of the detector.

to accommodate this requirement. If the QE bit indicates that a photon was
detected, then the photon always passes the QE cut. Otherwise, photons are
randomly rejected based on the desired QE pressure. In the ideal situation the
QE is 100% and all photons will be indiscriminately recorded.

For our baseline KamLAND-like detector model, the current model, we as-
sume a QE of 23% and photocathode coverage of 19.6%. We define an example
upgrade scenario where these parameters are roughly doubled to a QE of 36.2%
and photocathode coverage of 42%. This is close to what is being proposed for
the JUNO and upgraded KamLAND experiments.

4. Event Classification Algorithm

CNNs are a type of deep neural networks commonly used in the field of com-
puter vision. To perform classification tasks using CNNs, a pixelized image is
processed through several so-called layers, each containing a linear transforma-
tion step, followed by a non-linear activation. Among these layers, convolutional
layers play the most important role. As the name implies they involve the ap-
plication of a convolution operation between two functions. For continuous
functions, it represents the Fourier transform of the products. Applying this
procedure to a 2D discrete surface gives rise to the convolutional layer.
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The convolutional filter, the kernel for the convolutional layer, is a fix-sized
grid with specific values assigned to each block. The filter is scanned throughout
the image body, and each image pixel is multiplied by a filter weight. Finally,
the convolution operation is completed by summing the element-wise multipli-
cations.

The convolutional layer is also capable of taking information from multiple
channels. In this case, the convolution operation is conducted separately over
each channel, and the output values are summed and fed into the next layer.
For example, when a CNN is used to classify photographs, the input contains
four channels: Red(R), Green(G), Blue(B), and Grey Scale. For this work, we
have 34 time-based channels as described in Section 3.1.

The output of the convolutional layer contains features that are fed into the
fully connected layer. This layer is where the high level decisions are made,
ending with an image being classified into one of several categories with an
assigned probability. Other layers in the network structure include pooling
layers and dropout layers. A pooling layer reduces the image dimensionality
by extracting only the maximum value from each pooling filter to represent the
image. It significantly increases the processing speed with almost no sacrifice
of classification accuracy. The dropout layer prevents overfitting by randomly
disabling neurons in the hidden layer with a predefined dropout rate [27]. For
extensive details on the functionality of CNNs, we refer the reader to Ref. [28].

4.1. Network Design

The CNN used in this work is implemented in Keras [29] with a Tensorflow
backend [30]. The general outline of the network is shown in Fig. 5. It can be
divided into a convolutional part and a fully connected part.

The convolutional part contains 5 sets of layers where each set includes a
convolutional layer, a batch normalization layer, a pooling layer, and a dropout
layer. For simplicity, one such set of layers is often simply referred to as a
convolutional layer. Each time a pooling layer is introduced, the image reduces
to 25% of it’s original size. Therefore, the convolution part is confined to five
iterations.

The fully connected part also contains 5 sets of layers. Each set includes a
fully connected layer, a batch normalization layer and a dropout layer. Again,
this set of layers is often collectively referred to as a fully connected layer. With
respect to the overall depth, the fully connected part is not limited by the image
size or pooling layers. However, going too deep with the fully connected part
will complicate the model and lead to overfitting. Dropout layers are inserted
throughout the network in order to prevent this effect while decreasing the
processing time [27].

Normalization of data plays an important role in classification tasks. With-
out normalization, the neural network will reveal some anomalous behavior,
including non-convergance and high probability of misclassification. During a
pre-training stage, each pixel is scaled to a value below unity. During the net-
work design stage, several different normalization schemes were considered, in-
cluding vector normalization, channel-wise standard scalar normalization, and
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batch normalization. For this work, batch normalization was chosen. This

Input Image
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Optimizer

Output Event Type

Dropout

Max Pooling

Batch Normalization

Convolutional

Dropout

Batch NormalizationF.C. Part:
x5

Conv. Part:
x5

Figure 5: Flow Diagram of the CNN.The Network is composed of Convolutional Part(Bottom)
and Fully Connected Part(Top).
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means that the normalization is performed for each incoming batch, transform-
ing the input data such that the mean is zero with a standard deviation of
one.

Hyperparameters refer to parameters in the network that are predefined
before training, and stay constant throughout the training stage. Hyperparam-
eters of neural networks define the structure of the network, and changing these
parameters turns the neural network into a different model. Typical hyperpa-
rameters include, but are not limited to, the number of layers in the network,
the number of nodes in each layers, the size of the filters, and the dropout rate.

A hyperparameter search can result in a significant improvement of perfor-
mance [31]. For our model, we performed the search with hyperopt [32]. Three
hyperparameters are tuned to achieve the best performance, including number
of nodes, number of fully connected layers, and dropout rate. We selected a pre-
liminary training data set of 20,000 3m sphere events with the current detector
configuration. We then search across a continuous range for the dropout rate
between 0 and 1 and several discrete values for the number of fully connected
layers and nodes. A random search [31] of 50 attempts is executed to deter-
mine the best result. The 50 trials are evaluated and compared for the best
background rejection capability. After tuning, the validation accuracy increases
from 49.7% to 77.3%.

4.2. Training

The algorithm is trained and validated on MC data sets, generated according
to Section 3. We study two different data sets: 70,000 centered events, and
50,000 3m sphere events. All events are stored in an 6 dimensional numpy
array. The six dimensions are correspondingly: photocoverage pressure, QE
pressure, event index, time channel, polar angle and azimuthal angle. The
algorithm is trained and validated independently for each data set and each
category contains equal amounts of 0νββ signal and 10C background events.

The data sets are separated into training and validation subsets with a 3:1
ratio. The network is trained on batches of 10 events over 30 training cycles. An
RMSProp optimizer [30] is used to apply backward propagation optimization
based on binary cross entropy [33]. Due to the large data volume, sparse ma-
trix and batch generator technology is applied to reduce memory consumption.
During training stage, a learning rate decay scheduler is incorporated to reduce
systematic fluctuation. After training, the CNN is applied to the validation
data set to study the out-of-sample performance. A bad validation rate in the
presence of good training accuracy is indicative of overfitting and we do not see
this effect.

While training the CNN on each event category, the photo-coverage and
PMT QE were scanned over a wide range of values to better understand the
CNN performance under different levels of classification difficulty. These levels
of difficulty are referred to as pressure. The photo-coverage was allowed to vary
from 20% to 40% and QE from 23% to 56%. A total of 99 CNN models were
trained and evaluated for the pressure maps.
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5. Results

The well-trained neural network outputs a single floating point number be-
tween 0 and 1 for every input event. This number is the sigmoid output, since
it comes out of a sigmoid activation function. The sigmoid output serves as the
probability or metric for event classification. If the sigmoid output of a given
event is close to 1, it means the event is likely to be a signal event. The value of
the sigmoid output used for the classification can be more or less stringent de-
pending on the required signal purity versus signal acceptance. Fig. 6 shows the
sigmoid output for the current configuration and a possible upgrade scenario.

0.00 0.25 0.50 0.75 1.00
Sigmoid Output

0

500

1000

1500

2000

2500 10C Upgrade
136Xe-0  Upgrade
10C Current
136Xe-0  Current

Figure 6: Sigmoid output from simulated events isotropically distributed within a 3m-diameter
balloon.

After the CNN is applied to the validation data set, the value of the sigmoid
output cut can be varied to generate a Receiver Operating Characteristic (ROC)
curve. For our application, the result is simply the signal acceptance as a
function of the background rejection. Fig. 7 shows the ROC curves for the
current configuration and the upgrade scenario. We find that at 90% signal
acceptance we can reject 61.6% of the 10C. For the scenario with increased
coverage and QE this increases to 81.3%. The central events with the standard
KamLAND configuration have a 97.7% rejection at 90% signal acceptance.

Fig. 8 shows the pressure maps which scan different QE and photo-coverage
configurations for both the central and the 3m sphere events. As expected, the
CNN performs best for centrally located events and for higher QE and photo-
coverage. The results also indicate that increasing the total light collected,
whether by increasing in QE or photocathode coverage, leads to improved per-
formance.

Within the parameters of this study, we find that it is possible to reach
>99.98% discrimination for central events. This indicates that higher isotope
concentrations that lead to more centrally distributed 0νββ events are advan-
tageous and this motivates future design studies. We also studied the algorithm
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Figure 7: ROC curves from simulated events isotropically distributed within a 3m-diameter
balloon. The quoted background rejection assumes 90% signal acceptance.

with the 3m sphere events and perfect light collection and find 98.2% rejection
at 90% signal acceptance.

We use the fluctuations observed Fig. 8 to understand the uncertainty in
the algorithm. This is estimated by calculating at each point in the grid the
standard deviation relative to the 4 adjacent neighbors and averaging this value
over the pressure map. For central events, the uncertainty is 0.16%, while the
3m Sphere events give an 1.9%.

In order to understand what feature the CNN is using to discriminate, we
produced a data set where the Cherenkov light was removed. The results for
central events with the standard KamLAND detector configuration indicated a
4% decrease in the rejection. The 3m sphere events show a 2% increase in the
rejection. This could indicate that Cherenkov light is interfering with the net-
works interpretation of the rise-time of the scintillation light, however this is also
within our estimated uncertainty for the algorithm. As a whole, we find that
the Cherenkov signal is not the dominant feature and that the scintillation light
topology is driving the event separation. Within the scintillation light topol-
ogy the photon timing information contains significant discriminating power.
Removing spatial information and using a one-dimensional fully connected net-
work with timing as an input we found background rejection drops from 61.6%
to 55.0% at 90% signal acceptance.

6. Conclusion

Liquid scintillator detectors have been at the heart of many of the great
discoveries in neutrino physics and have been a leading technology in the search
for 0νββ. However, the algorithms used to analyze their data have remained
relatively unchanged for decades. In this work, we apply an algorithm from
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events within a 3m diameter sphere (Bottom). The value in each grid is the Background
Rejection Percentage assuming 90% Signal Acceptance. The dashed box indicates the current
KamLAND-Zen PMT efficiency.

computer vision based on a CNN to extract the fundamentally different physics
processes that take place in 10C background events and 0νββ signal events.
With a standard detector configuration similar to the current KamLAND de-
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tector, we find we can reject 61.6% of the 10C background with 90% acceptance
of the 0νββ signal. A detector with the same geometry and perfect light col-
lection could achieve 98.2% rejection. We also find that the performance can
be increased to better than 99.98% for centrally located events. The overall
uncertainty of the algorithm is 1.9%.

These results are a basis for future studies combining machine learning tech-
niques based on CNNs with liquid scintillator detectors. In short order, we
intend to move to a spherically symmetric CNN [34] and a Bayesian classifi-
cation that provides a posterior distribution for the classification. In future
studies, this algorithm will be applied to other backgrounds with topologies dis-
tinct from 0νββ decay. These include 214Bi decays on KamLAND 3m balloon
and elastic scattering of 8B solar neutrinos. Solar neutrinos are expected to
be the dominant background in SNO+ [35]. We are also exploring algorithms
which could move beyond simple classification to particle position and direction
reconstruction. These studies are benefiting from an abundance of work be-
ing done for other applications both inside and outside of particle and nuclear
physics and there are many new avenues to explore.
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