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New approach to determining radiative capture reaction rates at astrophysical energies
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Radiative capture reactions play a crucial role in stellar nucleosynthesis but have proved challenging to
determine experimentally. In particular, the large uncertainty (≈100%) in the measured rate of the 12C(α, γ )16O
reaction is the largest source of uncertainty in any stellar evolution model. With development of high-current
energy-recovery linear accelerators (ERLs) and high-density gas targets, measurement of the 16O(e, e′α)12C
reaction close to threshold using detailed balance allows a new approach to determine the 12C(α, γ )16O
reaction rate with significantly increased precision (<20%). We present the formalism to relate photo- and
electrodisintegration reactions and consider the design of an optimal experiment to deliver increased precision.
Once the new ERLs come online, an experiment to validate the approach we propose should be carried out. This
approach has broad applicability to radiative capture reactions in astrophysics.

DOI: 10.1103/PhysRevC.100.025804

I. INTRODUCTION

Radiative capture reactions, i.e., nuclear reactions in which
the incident projectile is absorbed by the target nucleus and γ

radiation is then emitted, play a crucial role in nucleosynthesis
processes in stars [1]. For example, knowledge of their reac-
tion rates at stellar energies is essential to understanding the
abundance of the chemical elements in the universe. However,
determination of these reaction rates has proven to be chal-
lenging, principally due to the Coulomb repulsion between
initial-state nuclei and the weakness of the electromagnetic
force. For example, the decay of unbound nuclear states by the
emission of a particle of the same type as that captured, or by
the emission of some other type of particle, is often 103–106

times more probable than decay by γ emission.
In stellar nucleosynthesis, at the completion of the hydro-

gen burning stage, the core of a massive star contracts and
heats up. When the temperature and the density of the core
reach sufficiently high values, the helium starts to burn via the
triple-α → 12C process. Subsequently, the α radiative capture
reaction 12C(α, γ )16O also becomes possible. The helium
burning stage is fully dominated by these two reactions and
their rates determine the relative abundance of 12C and 16O,
after the helium is depleted. At helium burning temperatures,
the rate of the triple-α process is known with an uncertainty
of about ±10%, but the uncertainty of the 12C(α, γ )16O
reaction rate is much larger. In fact, it is the largest source
of uncertainty in any stellar evolution model. Therefore, for
many decades it has been the paramount experimental goal
of nuclear astrophysics to determine the rate of 12C(α, γ )16O
reaction at astrophysical energies with better precision [2].

This task has been proven to be very difficult, not with-
standing heroic experimental efforts for more than half a
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century. For the generic radiative capture reaction

A + B → C → D + γ , (1)

the Coulomb repulsion is characterized by the Gamow factor
(or Coulomb barrier penetration factor) between A and B

Pg = exp −√
Eg/E , (2)

where Eg ≡ 2mrc2(παZAZB)2 is the Gamow energy and mr =
mAmB

mA+mB
is the reduced mass. The cross section σ is then

expressed [3] as a product of Pg and the astrophysical S factor

σ ≡ 1

E
exp[−2πZAZBα/v]S(E ). (3)

σ is further extrapolated to the Gamow energy, which is
representative of stellar energies.

At the helium burning temperature ≈2 × 108 K and corre-
sponding Gamow energy Eg ∼ 300 keV, the cross section for
the 12C + α → γ + 16O reaction is ≈10−5 pb, which makes
the direct measurement at stellar energies impossible. Unfor-
tunately, the extrapolation is not simple, since the structure
of the cross section is complex. It involves interference of
the high-energy tail of the Jπ = 1− subthreshold state in 16O
(see Ref. [4]) at 7.12 MeV and the broad 1− resonance at
9.59 MeV, and interference of the subthreshold state 2+ at
6.92 MeV and the narrow 2+ resonance at 9.85 MeV. Addi-
tionally, cascade transitions to the ground state of 16O need to
be taken into account as well as the direct capture for the E2
amplitude.

Through the years, different experimental approaches have
been used to determine the rate of the 12C(α, γ )16O reaction.
These include measurements of the direct reaction [5–18],
β-delayed α decay of 16N [19–21], and elastic scattering
12C(α, α)12C [22,23]. As described below, we have fit the
world’s data in the region 0.7 � E c.m.

α � 1.7 MeV for both
multipoles, where E c.m.

α is the kinetic energy of the α particle
in the center of mass (c.m.) of the 12C-α system. The resulting
SEJ (E c.m.

α ) dependence was approximated by fitting the data
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FIG. 1. Measured astrophysical SE1 and SE2 factors for Eα < 1.7 MeV from Dyer and Barnes [5], Redder [6], Kremer [7], Ouellet [8],
Roters [9], Kunz [11,12], Gialanella [10], Fey (a) turning table measurement and (b) EUROGAM measurement [13], Assunção (a) two-
parameter fit and (b) three-parameter fit [15], Makii [16], and Plag [18]. An R-matrix fit to the data, represented by the solid line, was
performed using the AZURE2 code [24].

to second-order polynomials, which are represented by the
dashed curves in Fig. 1.

However, due to the rapid decrease of the cross section in
the region where E c.m.

α falls below 2 MeV, the uncertainty
in the S-factor experimental determination is increasingly
dominated by the large statistical uncertainty. Further, as
E c.m.

α decreases, the statistical uncertainties from the different
experiments increase rapidly. A comprehensive review of the
experiments and methods developed so far and the full list
of astrophysical implications of the 12C(α, γ )16O rate can be
found in Ref. [25].

In recent years, there have been other experimental ap-
proaches pursued. One approach is based on a bubble chamber
detector [26], where the number of photodisintegrations is
counted and the total astrophysical S factor could be mea-
sured even at very low energies [27]. However, the isotopic
impurities of 17O and 18O have to be greatly suppressed
[28]. Another 16O photodisintegration experiment is based on
the optical time projection chamber [29] where the angular
distribution of α-particles is measured and the SE1- and SE2

factors can be determined. This approach works well for
higher α-particle energies, but for lower energies the density
of the gas needs to be reduced.

In this paper, we present in some detail a new approach
to the determination of radiative capture reactions at stellar
energies. We consider the inverse reaction initiated by an
electron beam rather than a photon beam. The idea has been
previously proposed [30] but not measured, and was more
recently discussed in Refs. [31,32]. The theoretical formalism
to relate electro- and photodisintegration has been developed
[33]. Most importantly, a new generation of high-intensity
(≈10 mA), low-energy (≈100 MeV) energy-recovery linear
(ERL) electron accelerators is under development [34,35]
which, when used with state-of-the-art gas targets [36], can
deliver luminosities of ≈1036 cm−2 s−1 [37]. In this way, the
weakness of the electromagnetic force can be overcome. Here,
we have chosen to focus specifically on determination of the
reaction rate of 12C(α, γ )16O at stellar energies using this new
approach. However, our approach is generally applicable to all
radiative capture reactions.

To provide a basis for the theory used to make estimations
of event rates for the electrodisintegration reaction, we have

begun by revisiting what is typically done for photodisin-
tegration. In the latter case, shell model or cluster model
approaches have had some degree of success in yielding
the general shape of the cross section but fail to get its
overall magnitude correct. On the one hand, since the elec-
trodisintegration cross section demands even more of any
modeling—specifically, not only the energy dependence of
the cross section but also its momentum transfer behavior
(see the following section)—at present one cannot depend on
typical modeling to provide reliable estimates of the cross
section. On the other hand, our focus is on very low energies
(typically within an MeV or so of threshold) and relatively
low momentum transfers (much smaller than a characteristic
nuclear value of 200–300 MeV/c). This means that the form
of the cross section as a function of the momentum transfer
is tightly constrained. Indeed, as we show in the following
sections, the momentum transfer dependence of the cross
section can be characterized by a small number of constants,
and, importantly, these few constants can be determined ex-
perimentally by making measurements at several values of the
momentum transfer. In effect, at present it is possible to make
reasonable estimates of the electrodisintegration cross section
despite the lack of a satisfactorily detailed model. Of course,
our parametrization of the cross section has been designed to
recover what is presently known about the photodisintegra-
tion cross section, namely, what must be recovered for the
electrodisintegration cross section in the real-photon limit, as
discussed in the next section.

We have considered the optimal experimental kinematics
in terms of the incident electron energy, oxygen gas target,
scattered electron spectrometer, and final-state, low-energy
α-particle detection. We have considered systematic uncer-
tainties such as both isotopic and chemical contamination of
the 16O; energy, angle, and timing constraints of the final-state
particles; and energy loss in the gas jet and radiative correc-
tions. Using realistic experimental assumptions, we propose
an initial measurement of 16O(e, e′α)12C using an ERL with
incident energy of order 100 MeV. The experiment would take
data at higher E c.m.

α , where the reaction rates are relatively
high and the running time is on the order of a month. This
initial measurement would aim to validate the extrapolation
to photodisintegration and determine the contributions of
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different multipoles. If successful, it would set the stage for a
longer experiment (on the order of 6 months) with the highest
electron intensity available to determine the 12C(α, γ )16O
reaction rate with unprecedented precision in the astrophysical
region.

In Sec. II, the general relationship between electro- and
photoinduced reactions is presented, while in Sec. III, fol-
lowing the general formalism presented in Ref. [33], these
developments are applied to the exclusive 16O(e, e′α)12C(g.s.)
process in which all nuclear species have Jπ = 0+. In Sec. IV,
the multipole decomposition of the response functions in-
volved is discussed, truncating the set of multipoles at the
quadrupole response, and thus including C0, C1/E1, and
C2/E2 multipoles.1 Following this general discussion, in
Sec. V the model adopted for the semi-inclusive electrodisin-
tegration cross section is presented. Specifically, in Sec. V A,
the present knowledge from studies of photodisintegration
and radiative capture reactions is employed in a determina-
tion of the leading-order behavior of the C1/E1 and C2/E2
multipoles. Following this, in Sec. V B our way of treating
the next-to-leading-order coefficients in expansions in q is
discussed, together with the approach taken for the C0 mul-
tipole. Section V C concludes the discussion of the model
with presentations of the electrodisintegration cross section
for typical choices of kinematics in the desired low-ω/low-q
region. Given the model, Sec. VI then continues with the cen-
tral section of this paper in which it is shown that, by making
assumptions concerning the experimental capabilities that are
projected to exist in the not-too-distant future, measurements
of electrodisintegration of 16O appear to be feasible and that
such measurements can be employed to significantly reduce
the statistical uncertainties of the SE1 and SE2 factors in the
E c.m.

α < 2 MeV region. Additionally, in that section a discus-
sion of how a smart choice of observable should allow one
not only to identify the final state α, but also to identify and
remove background events such as α particles from electro-
disintegration of other oxygen isotopes (17O and 18O) or other
ions emerging from electrodisintegration of impurities found
in an oxygen gas target, e.g., protons from 14N(e, e′ p)13C. We
conclude with a summary and a perspective on the future in
Sec. VII.

II. RELATIONSHIPS BETWEEN PHOTO- AND
ELECTRODISINTEGRATION

We begin with a brief discussion of how studies of photo-
disintegration can be extended to those of electrodisintegra-
tion, focusing on the disintegration of 16O into the ground
states of 4He (the α particle) and 12C. For the reader who
is unfamiliar with the basic formalism that relates the two
processes, we can recommend the recent book involving two
of the authors [3], in particular Chapters 7 and 16, including
references therein.

As discussed above, studies aimed at determinations of
the α + carbon capture reaction 12C(α, γ )16O have made

1For completeness, the multipole decompositions of the response
functions up to C3/E3 are given in the Appendix.

FIG. 2. Feynman diagram for the photodisintegration of 16O
involving a real photon, γ , which requires that q = ω = Eγ . The
kinematic variables here will be discussed in more detail in Sec. III.

use of the inverse process, namely the photodisintegration
of oxygen, 16O(γ , α)12C, together with detailed balance. In
the present work, we describe an extension of these ideas by
focusing on the electrodisintegration reaction 16O(e, e′α)12C.
Both photo- and electrodisintegration reactions are assumed
to be exclusive, i.e., to have the α particle in the final state
detected. However, they differ in that the former involves real
photons whose momenta q must be equal to their energies
ω = Eγ , corresponding to so-called real-photon kinematics,
as illustrated in Fig. 2.2 In contrast, as illustrated in Fig. 3, in
the one-photon-exchange approximation, which is generally
good at the percent level for light nuclei, the latter involves
virtual photon exchanges that may be shown to be spacelike,
q > ω. That is, by knowing the electron scattering kinematics,
it is possible to focus on a specific value of the excitation
energy of the final-state α + 12C system, for instance, quite
close to threshold, but to vary the three-momentum transfer
q for any value that keeps the exchanged virtual photon
spacelike. Of course, the real-photon result is recovered by
taking the limit where q → ω.

A sketch of the general landscape is given in Fig. 4, which
illustrates a typical response (see later sections of the present
work for specifics) as a function of q and ω together with
the real-γ line; here, ωT is the threshold value of ω for
the reaction. The strategy in photodisintegration studies is to
perform experiments at values of ω = Eγ , where the cross
section is large enough to be measured and then extrapolate
along the real-γ line to the very low energies of interest for
astrophysics. The electrodisintegration reaction extends these
ideas: Now one can focus on small values of ω but have q
large enough to yield measurable cross sections. The extended
strategy is then to extrapolate in both dimensions, namely, for
the responses as functions of q to approach the real-γ line and
as functions of ω to reach the interesting low-energy region.
As will be discussed in the following sections, an advantage of
having q large enough is that one may work near threshold but
have sufficient three-momentum imparted to the α particles

2In most of this work, we use natural units where h̄ = c = 1,
although later, when writing expressions for the cross sections, we
include them to make the units explicit.
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FIG. 3. First-order Feynman diagram for the electrodisintegra-
tion of 16O involving one virtual photon γ * exchange to be compared
with Fig. 2. Again, the kinematic variables here will be discussed in
more detail in Sec. III.

in the final state that they can emerge from the target and be
detected.

Both photo- and electrodisintegration reactions have in
common that the angular distribution of the α particles in the
final state can be measured. This yields information on the
various multipoles that contribute to the process. We assume
that ω is always quite small compared with a typical energy
scale; in addition, for the electrodisintegration reaction, we
assume that q is smaller than a typical scale for nuclear
momenta, q0, taken to be roughly of order 200–250 MeV/c.
Given this, it is possible to limit the multipoles to a relatively
small number. This is commonly done for the photodisin-
tegration reaction near threshold where only E1 (electric
dipole) and E2 (electric quadrupole) multipoles are assumed,
although one can ask how important electric octupole E3
multipoles might be. Since the nuclear ground states involved
are all 0+ states, only electric multipoles can occur, and
magnetic multipoles are absent. Here we have assumed that
only the ground states of 4He and 12C are involved and that
any excited states can be ignored by using the overdetermined
kinematics of the reaction. The electrodisintegration reaction
is richer, as will be discussed in detail in the following sections
of the paper. Since virtual photons are involved, now one has
Coulomb CJ as well as electric EJ multipoles; in the body
of the paper, we consider C0, C1/E1, and C2/E2 multipoles,
although in an Appendix we give some of the relevant formal-
ism for a larger set that includes C3/E3 contributions.

FIG. 4. Transverse response function RT as function of the pho-
ton energy ω and the three-momentum transfer q, for the real photon
case q = ω (solid line) and virtual photon case q > ω (surface plot),
where ωth denotes the value of the threshold photon energy for the
reaction.

At low values of the momentum transfer, q � q0, each
multipole is dominated by its low-q behavior which enters
as a specific power of q. For instance, later we show that
the CJ mulipole matrix elements go as (q/q0)J at low q.
Accordingly, another advantage of electron scattering where
q may be varied while keeping ω fixed is that the balance
of the multipole contributions can be varied. An example of
this could, for instance, be the potential C3/E3 contributions:
By increasing q (still, of course, staying in the region where
q � q0) one may increase the relative importance of the
octupole effects over the monopole, dipole, and quadrupole
effects to explore whether or not the former need to be taken
into account.

Not only is there a richer set of mutipoles involved in
the electron scattering case, but there are more response
functions to be exploited. For real photons, one has the
transverse response RT at q = ω and potentially the transverse
interference response RT T also at q = ω if linearly polarized
real photons are involved (see Sec. III for more discussion).
For unpolarized electron scattering, there are four types of
responses, RT and RT T as for real photons but now with virtual
photons and thus at q > ω and also RL, the longitudinal-
charge response and an interference between transverse and
longitudinal contributions, RT L, both at q > ω. In the RT

and RT T responses, only EJ multipoles enter, not simply
squared but through interferences. The RL response contains
only CJ multipoles, again with interferences, while the RT L

response has interferences between CJ and EJ mutipoles. All
of this means that potentially one has more information with
which to disentangle the various contributions. The angular
distributions as functions of the α angles θα and φα (see
the next section) will be discussed in detail. These may be
written as expansions in terms of Legendre polynomials where
the expansion coefficients that enter and may be determined
experimentally to contain valuable information on all bilinear
products of the multipole matrix elements.

We now proceed to a summary of the kinematics and basic
form of the semi-inclusive electron scattering cross section in
the following section.

III. KINEMATICS AND THE CROSS SECTION

We start this section with a brief discussion of exclusive-1
electron scattering A(e, e′x), following Ref. [33],3 although,
in contrast to the more general study in Ref. [33], here the
discussion will be limited to the scattering of unpolarized
electrons from an unpolarized target nucleus; i.e., polarization
degrees of freedom will be neglected. We limit our con-
sideration to the one-photon exchange contributions (lowest
order, see Fig. 3), and take the electron wave functions to
be plane waves; namely, we invoke the plane-wave Born ap-
proximation (PWBA). The four-momenta of the incident and
scattered electrons are labeled Kμ

e (Ee,
−→pe) and K′μ

e (E ′
e,

−→p ′
e ),

3An earlier version of the relevant formalism, based on the more
general discussions presented in Ref. [33], was developed by Don-
nelly and Butler for a proposed measurement at the MIT-Bates
Laboratory in 2000 [30]; see also Ref. [38].
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respectively. Ee and E ′
e are their energies, while −→pe and−→p ′

e are their three-momenta. The four-momentum transfer is
defined by Qμ ≡ (ω,−→q ) = Kμ

e − K′μ
e = Pμ

16O − Pμ
12C − Pμ

α ,
where Pμ

16O, Pμ
12C , and Pμ

α are the four-momenta of the target
nucleus 16O, residual nucleus 12C, and exclusive nucleus α.
Also, ω = Ee − E ′

e = Eα + E12C − E16O is the energy trans-
fer and −→q = −→pe − −→p ′

e = −→pα + −→p 12C − −→p 16O is the three-
momentum transfer.

In order to identify the events belonging to the electrodis-
integration of 16O, a scattered electron needs to be detected in
coincidence with a produced α particle and the four-momenta
of both have to be measured. The remaining 12C nucleus
does not need to be detected, since its final state can be
reconstructed by using energy-momentum conservation. The
variables typically used to characterize the semi-inclusive
reaction are the following (see Ref. [3]): The missing momen-
tum −→p miss and missing energy Emiss are given by

−→p miss = −→q − −→p α (4)

Emiss = ω + M16O − Eα, (5)

and then the missing mass

mmiss =
√

E2
miss − −→p 2

miss (6)

may be calculated by subtracting the mass of the unobserved
12C nucleus, M12C . One then obtains the excitation energy of
the 12C,

Eex = mmiss − M12C, (7)

where events which contribute to the astrophysical S factor
are those where one finds the 12C nucleus in its ground state,
that is, Eex = 0. The differential cross section in laboratory
frame [where the target is at rest, Pμ

16O = (M16O, 0)] is given
by Ref. [39]

dσ = me

Ee

1

βe

∑
f i

|M f i|2 me

E ′
e

d3−→p ′
e

(2π )3

Mα

Eα

d3−→pα

(2π )3

M12C

E12C

d3−→p 12C

(2π )3

× (4π )4δ4(Kμ
e + Pμ

16O − K′μ
e − Pμ

α − Pμ
12C

)
, (8)

where βe = |−→p e|/Ee = |−→v e| and
∑

f i represents an average
over initial states and sum over final states, under the as-
sumption that all particle states are normalized to unity. If we
assume the momenta of the scattered electron and α particle
to be measured but not the residual 12C nucleus, we need to
perform an integration over the recoil momentum −→p 12C :

dσ = m2
eMαM12C

Ee

1

(2π )5

∑
f i

|M f i|2 p′2
e d p′

ed�e p2
αd pαd�α

E ′
eEαE12C

× δ(Ee + E16O − E ′
e − Eα − E12C ). (9)

We continue to integrate the energy-conserving δ function
of energy conservation over pα and make use of the following
formula,

δ( f (p)) =
∑

i

δ(p − pi )∣∣ ∂ f (p)
∂ p

∣∣
pi

, (10)

FIG. 5. Kinematics of the exclusive 16O(e, e′α)12C reaction.

where f (pi ) = 0 and

f (pα ) = ω + M16O−
√

|−→pα|2 + M2
α −

√
(−→q − −→pα )2 + M2

12C .

(11)

After the integration, we obtain∫
p2

αd pα

EαE12C
δ(Ee + E16O − E ′

e − Eα − E12C )

= pα

M16O

1∣∣1 + ωpα−Eα |−→q | cos θα

M16O pα

∣∣
= pα

M16O
f −1
rec , (12)

where frec is the hadronic recoil factor and θα is the angle
between −→q and −→p α; see Fig 5. The cross section is now

dσ = m2
eMαM12C

(2π )5M16O

E ′
e pα

Ee
f −1
rec

∑
f i

|M f i|2. (13)

The Lorentz-invariant matrix element M f i is given by

M f i = ie

Q2

(
EeE ′

e

m2
e

) 1
2

je(K′
e,Ke)μJμ(P12C,Pα;P16O) f i, (14)

where je(K′
e,Ke)μ is the electromagnetic electron current,

Jμ(P12C,Pα;P16O) f i is the hadronic electromagnetic transi-
tion current, and the square of the four-momentum transfer
in the extreme relativistic limit (ERL) is given by |Q2| =
4EeE ′

e sin2(θe/2), where θe is the electron scattering angle;
see Fig. 5. When we square M f i, sum over final states and
average over initial states, we end up with∑

f i

|M f i|2 = (4πα)2

(Q2)2
ημνW μν, (15)

where ημν is the leptonic tensor and W μν is the hadronic
tensor. Note that the contraction of the leptonic and hadronic
tensors is Lorentz invariant. Accordingly, it can be evaluated
in any frame and it is given by

ημνW μν = v0

4m2
e

∑
K

vK RK (16)

with v0 = 4EeE ′
e cos2(θe/2). For the unpolarized exclusive

electron scattering, we have four nuclear response functions
RK : the longitudinal RL and transverse RT nuclear electromag-
netic current components (L and T with respect to the direc-
tion of the virtual photon −→q ), and two interference responses,
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namely transverse-longitudinal RT L and transverse-transverse
RT T . In this notation, RK will have dimension of fm3. The
functions vK are electron kinematic factors and in terms of
ERL can be expressed as [33]

vL = ρ2,

vT = 1

2
ρ + tan2 θe/2,

vT L = − 1√
2
ρ

√
ρ + tan2 θe/2,

vT T = −1

2
ρ, (17)

where as usual 0 � ρ ≡ |Q2/q2| = 1 − (ω/q)2 � 1. The
most general discussion concerning the leptonic and hadronic
tensor contraction, which also includes polarization degrees
of freedom, can be found in Refs. [33,40].

It is convenient to group variables to form the ERL Mott
cross section

σMott = α2(h̄c)2E ′
ev0

(Q2)2Ee
=

(
αh̄c cos θe/2

2Ee sin2 θe/2

)2

. (18)

Note that here we include the factor h̄c = 197.327 MeV fm so
that σMott has dimensions of fm2. Finally, the semi-inclusive
electrodisintegration cross section for the reaction of interest
in the laboratory frame takes the form[

dσ

dωd�ed�α

]
(e,e′α)

= MαM12C

8π3M16O

pα f −1
rec σMott

(h̄c)3
(vLRL + vT RT

+ vT LRT L + vT T RT T ). (19)

Often it also very convenient to have an expression for the
cross section in the center-of-mass (c.m.) frame, where the
transformation between the frames involves a Lorentz boost
along −→q . We note that W =

√
(M16O + ω)2 − q2 is the total

invariant mass of the γ + 16O and α + 12C systems, here
evaluated in the incident channel laboratory frame with the
16O target nucleus at rest. Furthermore, pc.m.

α = |−→p c.m.
α | is the

α-particle three-momentum in the c.m. frame, RK now rep-
resent quantities in the c.m. frame, and the lepton kinematic
factors in the c.m. frame are given by the following:

ṽL = (W/M16O)2vL,

ṽT L = (W/M16O)vT ,

ṽT = vT ,

ṽT T = vT T . (20)

Finally, the cross section in the c.m. frame can be written as[
dσ

dωd�ed�c.m.
α

]
(e,e′α)

= MαM12C

8π3W

pc.m.
α σMott

(h̄c)3
(̃vLRL + ṽT RT

+ ṽT LRT L + ṽT T RT T ). (21)

Note that φα = φc.m.
α , although θα 	= θ c.m.

α . Again, we encour-
age the reader who is unfamiliar with these developments
to look at Ref. [3], especially Chapter 7, where the current
matrix elements are discussed, multipole operators are intro-
duced, and the real-photon limit is briefly treated, as well as

Chapter 16, where semi-inclusive electron scattering is the
focus (there one also finds Exercises 16.4, 16.6, and 16.7,
which are relevant for the present purposes, especially
Exercise 16.7, where a problem involving the real-photon
limit of semi-inclusive electron scattering is posed).

An analysis similar to the one in Ref. [33] can be performed
both for the photodisintegration process 16O(γ , α)12C and for
the radiative capture reaction 12C(α, γ )16O, where here for
simplicity we take the real photons to be unpolarized (see
the comment regarding linearly polarized photons in the next
section). For the former reaction, the differential cross section
is given by[

dσ

d�c.m.
α

]
(γ ,α)

=
(

MαM12C

4πW

)
pc.m.

α

h̄c

(
α

Eγ

)
R(γ ,α), (22)

where W = √
M16O(M16O + 2Eγ ) (that is, q = ω = Eγ above)

and R(γ ,α) is transverse response function having dimension
of fm3. Namely, one has the real-photon limit of the electro-
disintegration result summarized above. The radiative capture
cross section is then related by detailed balance and may be
written in the form[

dσ

d�c.m.
γ

]
(α,γ )

=
(

MαM12C

2πW

)
Eγ

h̄c

(
α

pc.m.
α

)
R(α,γ ), (23)

where W is the invariant mass above, which, in the incident
channel laboratory frame where the 12C target is at rest, is

equal to W =
√

M2
α + M2

12C + 2M12CELab
α . As above, R(α,γ ) is

the transverse response function, where for real photons to be
evaluated at q = ω = Eγ , it has dimensions of fm3.

IV. MULTIPOLE DECOMPOSITION OF RESPONSE
FUNCTIONS INVOLVING SPIN-0 NUCLEI

Let us discuss the longitudinal-transverse decomposition a
little further. For the specific initial and final nuclear states
involved, there are three independent current matrix elements,
ρ(−→q ), Jx(−→q ), and Jy(−→q ), with Jz(−→q ) = (ω/q)ρ(−→q ) as
required by current conservation. From them, we can obtain
three independent quantities, which transform as a rank-1
spherical tensor under rotations

J (0)(−→q ) ≡ Jz(−→q ) = (ω/q)ρ(−→q ), (24)

J (±1)(−→q ) ≡ ∓[Jx(−→q ) ± iJy(−→q )]/
√

2. (25)

The inverse relationships for Cartesian transverse projec-
tions are then given by Jx

f i = −(J (+1)
f i − J (−1)

f i )/
√

2 and Jy
f i =

i(J (+1)
f i − J (−1)

f i )/
√

2. Following Ref. [33], we define the
generic quantity

X λ′λ = Jλ′∗Jλ (26)

and each structure function can be written in terms of the
X λ′,λ. Furthermore,

J (0)(−→q ) = ω

q

√
4π

∑
J�0

[J]iJ〈α,12 C|T̂J,0|16O〉, (27)

J (±1)(−→q ) = −
√

2π
∑
J�0

[J]iJ〈α,12 C|T̂J,±1|16O〉, (28)
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with notation [J] ≡ √
2J + 1 and the general form of structure

functions can be now written as

X λ′λ = 4π
∑
J ′,J

[J ′][J](−i)J ′
(i)J〈α,12 C|T̂J ′,λ′ |16O〉∗

× 〈α,12 C|T̂J,λ|16O〉. (29)

Specifically, one has

RL ≡ X 00, (30)

RT ≡ X 11 + X −1−1, (31)

RT T ≡ X 1−1 + X −11, (32)

RT L ≡ −2Re{X 01 − X 0−1}, (33)

where the transverse cases are labeled by the polarization that
a photon would have in the real-γ limit. In particular, it is

clear that the RT response involves transverse projections of
the current in a form corresponding to unpolarized photon
exchange, while the RT T response enters when the photon
is linearly polarized. Indeed, in the previous section where
expressions for the real-γ photodisintegration and radiative
capture reactions were given, we could have extended the
analysis to include both RT and RT T contributions at q = ω =
Eγ and thereby obtained expressions for linearly polarized
real-γ processes.

The responses are calculated from most general expres-
sions Eqs. (2.54)–(2.58) in Ref. [33]. For the initial and
final states 16O and α + 12C, we have J16O = Jα = J12C = 0,
which implies that I16O = Iα = I12C = 0. We have S′ = S = 0,
which yields J = J = L and J ′ = J ′ = L′. In the case of
the completely unpolarized situation, Eqs. (2.79)–(2.81) in
Ref. [33] yield

F̃ ∼ 1, (34)

D̃ ∼ D(�)∗
−�,0

(−φx, θ
c
x , φx

) = (−1)�
√

4π

2� + 1
Y �

�

(
θ c

x ,−φx
)
, (35)

W̃ λ′λ ∼ (−1)J ′+J+�+λ′
[J][J ′][�]2

(
J J ′ �

0 0 0

)(
J J ′ �

−λ λ′ −�

)
, (36)

where here the 6- j symbols in Ref. [33] have been evaluated. The response functions will then involve sums of products of these
elements:

W λ′λ =
∑
J ′J

W̃ λ′λt∗
J ′(λ′ )tJ (λ), (37)

X λ′λ
f i =

∑
�

(−1)�
√

4π

2� + 1
Y �

�

(
θ c

x ,−φx
)
W λ′λ, (38)

where tJ (λ) are reduced matrix elements defined by

tJ,λ ≡ iJ〈J||T̂J,λ||Ji = 0〉 (39)

=
{

tCJ λ = 0
1√
2
(tEJ,λ + λtMJ,λ) λ = ±1

, (40)

with the initial 16O state being Ji = 0, and J represents the total angular momentum of the partial wave of the final-state α

particle plus 12C system. We note that this result is simplified enormously when the final state of 12C is the ground state and not
an excited state, and we shall assume that the kinematics of the reaction are sufficiently determined for this to be the case—not an
especially stringent requirement since the 2+ first excited state of 12C lies at 4.4389 MeV. This prevents excitation to unnatural
parity states, in turn restricting the study to natural-parity CJ and EJ multipoles.

Following the developments in Ref. [33], we can now describe the nature of the angular distributions themselves, accounting
for both relative phases and magnitudes. In terms of the Coulomb and electric multipoles up to the quadrupole contribution
J = 2,4 the responses may be written in terms of Legendre polynomials

RL = P0(cos θα )(|tC0|2 + |tC1|2 + |tC2|2) + P1(cos θα )

(
2
√

3|tC0||tC1| cos(δC1 − δC0) + 4

√
3

5
|tC1||tC2| cos(δC2 − δC1)

)
+ P2(cos θα )

(
2|tC1|2 + 10

7
|tC2|2 + 2

√
5|tC0||tC2| cos(δC2 − δC0)

)

+ P3(cos θα )

(
6

√
3

5
|tC1||tC2| cos(δC2 − δC1)

)
+ P4(cos θα )

(
18

7
|tC2|2

)
, (41)

4For clarity, we restrict our attention in the body of the paper to C0, C1/E1, and C2/E2 multipoles; however, in the Appendix, we extend
the analysis to include C3/E3 octupole multipoles. Additionally, for completeness there we also re-express the angular distributions in terms
of sines and cosines of the angles involved, rather than in terms of Legendre polynomials as here.
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RT = P0(cos θα )(|tE1|2 + |tE2|2) + P1(cos θα )

(
6√
5
|tE1||tE2| cos(δE2 − δE1)

)
+ P2(cos θα )

(
− |tE1|2 + 5

7
|tE2|2

)
+ P3(cos θα )

(
− 6√

5
|tE1||tE2| cos(δE2 − δE1)

)
+ P4(cos θα )

(
− 12

7
|tE2|2

)
, (42)

RT L = cos φα ·
{

P1
1 (cos θα )

(
2
√

3|tC0||tE1| cos(δE1 − δC0) − 2

√
3

5
|tC2||tE1| cos(δC2 − δE1) + 6√

5
|tC1||tE2| cos(δC1 − δE2)

)

+ P1
2 (cos θα )

(
2|tC1||tE1| cos(δC1 − δE1) + 2

√
5

3
|tC0||tE2| cos(δE2 − δC0) + 10

7
√

3
|tC2||tE2| cos(δC2 − δE2)

)

+ P1
3 (cos θα )

(
2

√
3

5
|tC2||tE1| cos(δC2 − δE1) + 4√

5
|tC1||tE2| cos(δC1 − δE2)

)

+ P1
4 (cos θα )

(
6
√

3

7
|tC2||tE2| cos(δC2 − δE2)

)}
, (43)

RT T = −RT cos(2φα ). (44)

The t(C,E )J represent the Coulomb and electric reduced
matrix elements and are functions of q and ω. Similarly,
the functions δ(C,E )J represent the phases of the (in general
complex) reduced matrix elements of each multipole current
operator, and these too can be functions of q and ω. As
expected, only phase differences occur, and one overall phase
may be chosen by establishing some specific phase conven-
tion.

It is now straightforward to obtain expressions for the
angular distributions for specific choices of kinematics. For
instance, assume that θα = 0◦, 180◦. In this case, cos θα =
±1, so let β = ±1 present these two possibilities. First, RT =
RT L = RT T = 0 in this case, and one has

RL = |tC0|2 + 3|tC1|2 + 5|tC2|2

+2
√

5|tC0||tC2| cos(δC2 − δC0)

+β[2
√

3|tC0||tC1| cos(δC1 − δC0)

+2
√

15|tC1||tC2| cos(δC2 − δC1)]. (45)

Or, consider the case where θα = 90◦. Here,

RL = |tC0|2 + 5
4 |tC2|2 −

√
5|tC0||tC2| cos(δC2 − δC0), (46)

RT = 3
2 |tE1|2, (47)

RT L = cos φx{−2
√

3|tC0||tE1| cos(δE1 − δC0)

+
√

14|tC2||tE1| cos(δC2 − δE1)}, (48)

RT T = −RT cos 2φx. (49)

If we assume that the cross section is completely dom-
inated by RL, as is likely (see below), then there are as
many unknowns as there are linearly independent Legendre
polynomials in the expansion. One should also remember
as noted above that, while we have stopped at J = 2 partial
waves, there can be higher partial waves present. While these
are likely small for the kinematics of interest, any fit should

test the convergence of these expansions by looking for higher
order Legendre polynomials.

We end this section with a discussion of our chosen
parametrizations of the multipole matrix elements. These all
depend on both q and ω (which then determine the c.m.

energy of the final state); here we suppress the ω dependence,
although one should remember that all functions written be-
low should be taken to vary with ω. Our focus is placed on
kinematics where the excitation energies are near threshold
and hence where ω is small, typically below a few MeV,
and where q is taken to be small compared with the typ-
ical nuclear scale for three-momentum denoted q0. For q0,
we can use something like 2/b, where b is the oscillator
parameter (roughly 1.7 fm for our case, which yields q0

∼=
1.2 fm−1 ∼= 230 MeV/c). Accordingly, we can make use of
the low-q limits of the spherical Bessel functions involved in
the definitions of the multipole operators, namely the fact that
jJ (qr) → (qr)J when qr becomes small compared with unity.
We may then with no loss of generality write the multipole
matrix elements in a way that exposes the low-q behavior,
which goes as (q/q0)K , where K is some constant determined
by the multipolarity of the transition (see below). For instance,
the Coulomb multipole matrix elements may be parametrized
in the form

tCJ (q) ≡
(

q

q0

)J

a′
CJ

[
1 +

(
q

q0

)2

b′
CJ (q)

]
e−(q/q0 )2

(50)

with J � 0. Here, a′
CJ is independent of q while b′

CJ (q)
depends on q; as noted above, they both depend on ω. The
powers of q/q0 in the polynomial come from the nature of
the spherical Bessel functions insofar as the leading power
is fixed [the factor (q/q0)J ] and the next term must begin
two powers of q/q0 higher, but otherwise, since b′ remains
a general function of q, the expression is still completely
general. The Gaussian factor is included to allow the results
to have better behavior at high q and may just as well be
omitted if one wishes, since the entire focus here is on low-
q kinematics. Since we are assuming that (q/q0) � 1, the
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multipoles are less important as the multipolarity J increases,
in fact by (q/q0)2 for each additional increase in mutipolarity.
This is a familiar result that leads one to characterize low-q
processes including real-γ reactions by degrees of forbidden-
ness (see, for instance, Ref. [41]). The converse is also true: If
(q/q0) ∼ 1 or larger, then one cannot order the multipoles by
forbiddeness. A very old example—from more than 50 years
ago—of this is provided by the first study of high-spin states
in the giant resonance region where at values of q of order q0

M4 multipoles dominate over E1 multipoles [42].
It also proves useful to rewrite these expressions by letting

aCJ ≡ a′
CJ [1 + (ω/q0)2b′

CJ (q)]e−(ω/q0 )2
, (51)

bCJ (q) ≡ b′
CJ (q)e−(ω/q0 )2

, (52)

and then the parametrizations become

tCJ (q) ≡
(

q

q0

)J

aCJ

[
1 +

( |Q|2
q2

0

)
bCJ (q)

]
e−|Q|2/q2

0 . (53)

The electric multipole parametrizations may be written simi-
larly:

tEJ (q) ≡
(

ω

q

)(
q

q0

)J

a′
EJ

[
1 +

(
q

q0

)2

b′
EJ (q)

]
e−(q/q0 )2

(54)

≡
(

ω

q

)(
q

q0

)J

aEJ

[
1 +

( |Q|2
q2

0

)
bEJ (q)

]
e−|Q|2/q2

0 , (55)

where now J � 1 since there are no monopole electric multi-
poles, and where

aEJ ≡ a′
EJ [1 + (ω/q0)2b′

EJ (q)]e−(ω/q0 )2
, (56)

bEJ (q) ≡ b′
EJ (q)e−(ω/q0 )2

. (57)

From the continuity equation, the long wavelength limit
(q � q0) requires that

lim
q�q0

√
J

J + 1
tEJ (q) = −

(
ω

q

)
tCJ (q), (58)

for J � 1, implying that

a′
EJ = −

√
J + 1

J
a′

CJ , (59)

from which relationships involving the unprimed coefficients
may be established.

For real photons, all of the above parametrizations are to be
evaluated at q = ω = Eγ and usually one invokes the above
relationship between electric and Coulomb multipoles to em-
ploy the latter in real-γ studies (see, for example, Ref. [41]),
although this is actually an approximation.

V. DEVELOPMENT OF A MODEL FOR THE
ELECTRODISINTEGRATION CROSS SECTION

Having developed general expressions for the cross sec-
tions in Sec. III and for the leading contributions to the
angular distributions as functions of θα in Sec. IV, here we
proceed to make use of the still general parametrizations of
the multipoles presented in Sec. IV and discuss our model for
the electromagnetic response. We do this in two steps: First,
we use the present knowledge of the real-γ cross sections
to constrain the leading-order behavior (i.e., as functions of
q) of the E1 and E2 multipoles. In the low-q limit, current
conservation then yields the leading-order behavior of the C1
and C2 multipoles. Second, we invoke “naturalness”—to be
explained below—to model the next-to-leading-order (NLO)
dependences on q in the C1/E1 and C2/E2 multipoles,
which are not simply related by current conservation, as
well as make an assumption concerning the behavior of the
C0 multipole. Our goal is to develop a “reasonable” model
and, using this model, to explore the feasibility of making
electrodisintegration measurements in the interesting low-ω,
low-q region. We emphasize that the model is used only to
determine the feasibility of such experiments; in undertaking
them, the actual higher order q dependences will be measured
and the region where the parametrizations are operative will
be determined.

A. Using photodisintegration to limit the leading-order behavior

The first step is to use the fact that the transverse response
function RT in electrodisintegration at q = ω is the same as
the one in the real-γ reactions and to establish the connec-
tion between our parametrization of electric multipole matrix
elements and the E1 and E2 astrophysical S factors. In the
capture reaction 12C(α, γ )16O, the radial distribution of the γ

rays is measured as a function of the α-particle beam energy.
The cross sections of the E1 and E2 components, σE1 and
σE2, are then extracted by fitting the data obtained to the
differential cross-section formula given in Ref. [5]:

[
dσ

d�c.m.
γ

]
(α,γ )

= σE1

4π
[Q0P0 − Q2P2(cos θ )] + σE2

4π

[
Q0P0 + Q2

5

7
P2(cos θ ) − Q4

12

7
P4(cos θ )

]
(60)

+
√

σE1σE2

4π
cos(φ12)

6√
5

[Q1P1(cos θ ) − Q3P3(cos θ )],

where Ql are attenuation factors [43] determined by the
geometry of γ detectors. This is just a rewriting of Eq. (42).
Furthermore, φ12 = δE2 − δE1 is the phase between the E1
and E2 components (sometimes also used as a third fitting
parameter). From multilevel R-matrix theory [44], the phase

φ12 can be expressed as

φ12 = δd − δp + arctan η/2;

η = e2ZαZ12C

h̄c

√
MαM12C

Mα + M12C

1

2E c.m.
α

, (61)
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FIG. 6. The dependences of the invariant mass above threshold W − Wth (a), of the transferred three-momentum q (b), of the ratio of the
transferred energy to the transferred three-momentum ω/q (c), and of the virtuality of the exchanged photon ρ ≡ |Q2/q2| (d) on the scattered
electron energy E ′

e for kinematics corresponding to within 2 MeV above threshold.

where η is the Sommerfeld parameter, while δp and δd are p-
and d-wave phase shifts from elastic α scattering on carbon.
Barker derived first Eq. (61) for single-level R matrix [45],
and later Barker and Kajino for multilevel R matrix [44]. For
the general case, Knutson [46] used Watson’s theorem [47]
to show that the phase shifts of the radiative capture data at
low energy can be related to elastic scattering phase shifts.
This also holds for elastic 12C(α, α)12C and radiative capture
12C(α, γ )16O phase shifts. The final step is to convert the ex-
tracted σE1 and σE2 into S factors SEJ (E c.m.

α ) = E c.m.
α σEJe2πη

as shown in Fig. 1. Note that here and below, following
common practice in studies of photodisintegration, we assume
that the nuclear phase difference is small and therefore that
the complete phase difference arises largely from the term
containing the Sommerfeld parameter. However, a word of
caution should be inserted here: The result above either may
be as written or could be π minus that result. Said another
way, the E1/E2 interference term may have the sign as
written or might have the opposite sign. Upon fitting the
angular distributions in photodisintegration, it was found that
typically in the kinematic region of interest the sign is as
written above [48]. We shall discuss this in more depth below
for the case of electrodisintegration.

We will go in opposite direction: By using earlier obtained
differential cross sections for the real-γ reaction, Eq. (23), and
parametrization of the electric multipole matrix elements in
the real-photon limit, tEJ (ω) = (ω/q0)Ja′

EJ , we can express
the leading coefficients a′

E1 and a′
E2 in terms of S-factor data:

a′
EJ =

(
q0

ω

)J
√

h̄c pc.m.
α W

2α ω MαM12C

SEJ
(
E c.m.

α

)
e−2πη(E c.m.

α )

E c.m.
α

;

J = 1, 2. (62)

For the sake of simplicity, we did not perform an R-matrix
fit on the S-factor data. Instead, for both multipoles, the
SEJ (E c.m.

α ) dependence was approximated by fitting the data
to second-order polynomials, which are represented by the
dashed curves in Fig. 1.

The feasibility of performing measurements will be dis-
cussed in detail in the next section. For the present purposes,
we assume typical values for the kinematics of interest and
postpone their justification for later. In this section, we shall
assume an electron beam energy of Ee = 114 MeV and work
in the region 0.7 � E c.m.

α � 1.7 MeV. Accordingly, the other
kinematic variables must lie in relatively narrow ranges.
Specifically, the scattered electron energy is found to lie
roughly in the range 105 < E ′

e < 107 MeV for the assumed
value of Ee and the electron scattering energy loss ω =
Ee − E ′

e then falls in the range 7 < ω < 9 MeV. The electron
three-momenta are, as usual, given by pe = √

E2
e + m2

e and

p′
e =

√
E ′2

e + m2
e (see Fig. 3), from which one can obtain the

square of the three-momentum transfer

q2 = p2
e + p′2

e − 2pe p′
e cos θe. (63)

In Fig. 6(a), we show W − Wth versus E ′
e for the range

discussed here for three typical values of the electron scat-
tering angle, from which we see that E ′

e goes from about 105
to 107 MeV when W − Wth goes from 0 to 2 MeV, as stated
above. Within this range, one finds that q behaves as shown
in Fig. 6(b). Clearly, q is nearly, but not exactly, constant
as a function of E ′

e for the chosen kinematics. The two
lower panels illustrate the virtuality of the electron scattering
reaction, showing the ratio ω/q in Fig. 6(c) and ρ ≡ |Q2/q2|
in Fig. 6(d). Each varies both as a function of E ′

e and θe,
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Eαc.m. = 0.7 MeV
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FIG. 7. Leading-order coefficients a′
E1 and a′

E2 as functions of electron scattering angle θe at a beam energy Ee of 114 MeV.

as shown. As is clearly seen in the ω/q ratio plot, one can
go from rather virtual photons (q significantly larger than
ω; larger angles) toward real-γ kinematics (q comparable
to ω; smaller angles). The invariant mass above threshold
(effectively the excitation energy of the α + 12C system) has
a nearly linear relationship with E ′

e.
Given these choices of kinematics, in Fig. 7 we then

present the leading-order E1 and E2 coefficients, a′
E1 and

a′
E2, as functions of θe for two values of the α-particle c.m.

kinetic energy E c.m.
α , 0.7 and 1.7 MeV (one should remember

that these coefficients are constants as functions of q but still
depend on ω). One sees that the values of both leading-order
coefficients decrease over almost two orders of magnitude
when E c.m.

α changes from 1.7 to 0.7 MeV, reflecting the steep
falloff of the cross section when approaching threshold.

Note that, in the case of the radiative capture reaction, E c.m.
α

denotes the kinetic energy in the center-of-mass frame of the
relative motion of the α and 12C pair in the incident channel
and can be expressed as ELab

α M12C/(Mα + M12C ), where ELab
α

is the α-particle kinetic energy in the laboratory frame. For the
electrodisintegration of 16O, E c.m.

α is the difference between
the invariant mass W and its value Wth at threshold.

Finally, from the continuity equation and in the long wave-
length limit (q � q0), we know how to relate electric a′

EJ and
Coulomb a′

CJ coefficients [Eq. (59)]:

a′
CJ = −

√
J

J + 1
a′

EJ . (64)

B. Next-to-leading-order q dependences

Presently, we have no information concerning the next-to-
leading-order contributions in our general parametrization of
the multipoles, b′

CJ,EJ (q) with J = 1, 2. These are indepen-
dent functions of q, i.e., cannot be related via current con-
servation as can the leading-order contributions. It should be
remembered that at this higher order in q, even the way real-γ
processes are traditionally treated is an approximation, since
the electric multipole matrix elements are typically computed
as Coulomb matrix elements using the current conservation
assumption. Since ω/q0 = Eγ /q0 is not zero but is small,
one is actually making an assumption when following this
procedure. In the virtual-γ case that occurs with electron
scattering, the expansion is via higher order contributions in
q/q0, and, since q can take on any value where the virtual

photon is spacelike, q > ω, as stated earlier, one now has a
different situation where when q � q0 these NLO terms are
likely safely negligible; however, if q is allowed to become
too large compared with the scale q0, then the form taken by
these NLO functions may not be simple.

Accordingly, we now make the basic assumption involved
in our parametrization of the C1/E1 and C2/E2 multipoles;
namely, we shall assume that the general functions of q,
b′

CJ,EJ (q), are in fact constants. When measurements are
made, these constants will be determined experimentally us-
ing the q dependences inherent in the semi-inclusive cross
sections. And, with fine enough measurements, one may look
for evidence of q dependences that involve even higher powers
of (q/q0)2 to validate the truncations of the expansions.

This strategy is what can be followed when making mea-
surements of the semi-inclusive electrodisintegration cross
section as a function of both q and ω. For the present, lacking
such measurements, our approach is to make “reasonable”
assumptions for these NLO coefficients. Since the multipole
matrix elements were parameterized to reflect the nature of
spherical Bessel functions, it is reasonable to expect that they
are of order unity and accordingly the simplest approximation
at present is to assume that |b′

CJ,EJ | ≈ 1 for J = 1, 2, and
thus the C1/E1 and C2/E2 multipole matrix elements will
be parametrized as

tCJ (q) ≈ −
√

J

J + 1

(
q

q0

)J

a′
EJ

[
1 ±

(
q

q0

)2]
e−(q/q0 )2

;

tEJ (q) ≈
(

ω

q

)(
q

q0

)J

a′
EJ

[
1 ±

(
q

q0

)2]
e−(q/q0 )2

. (65)

A special case involves the monopole Coulomb matrix
element tC0: There, the leading dependence, which from above
would appear to be (q/q0)J with J = 0, cannot occur due
to the orthogonality of the initial and final nuclear wave
functions and in fact the leading behavior of tC0(q) at low q is
proportional to (q/q0)2. Again, there are no experimental data
which would fix the value of the product c′

C0 ≡ a′
C0b′

C0. There-
fore, in our feasibility study we investigated the contribution
of the tC0 to the rate of the 16O(e, e′α)12C reaction by setting
the |b′

C0| = 1 and replacing a′
C0 first with a′

E2, denoted case
A, and then with 0.5a′

E2, denoted case B. In general, when
dealing with experimental data from electrodisintegration of
16O, c′

C0 needs to be handled as a fit parameter, as with the
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FIG. 8. The semi-inclusive electrodisintegration differential cross section as a function of θ c.m.
α at a beam energy Ee of 114 MeV and an

electron scattering angle θe of 15◦, for E c.m.
α = 0.7 MeV (a) and E c.m.

α = 1.7 MeV (b). There are 16 curves on each plot corresponding to + and
− sign choices for each of the four next-to-leading-order coefficients b′

C1, b′
C2, b′

E1, and b′
E2. The difference introduced by the change of the

sign is so small that the most of the lines are overlapping. At each of the local maxima, it is possible to distinguish two groups of lines which
correspond to +b′

C2 and −b′
C2 contributions. Here all interferences involving the C0 multipole have been taken to have a plus sign together

with the choices of phase differences discussed in the text. Alternatively, all such inteferences could enter with a minus sign.

coefficients b′
CJ,EJ for J = 1, 2 discussed above. As noted

above, we do not know the sign of the C0 multipole (i.e.,
with respect to the other multipoles) and so could have
either choice of sign for all interferences between C0 and
the other multipoles (see below). When presenting results
in the following, for the sake of simplicity we have usually
chosen the sign to be positive, although both sign choices
have been investigated. The detailed angular distributions that
result from changing the sign of the C0 multipole are found
to be comparable but clearly different and accordingly the
sign can be determined from the data, as was the case for the
E1/E2 interference contribution in photodisintegration (see
above).

In Figs. 8(a) and 8(b), we show the semi-inclusive elec-
trodisintegration cross section as a function of θ c.m.

α for two
values of E c.m.

α , at a beam energy Ee of 114 MeV and
an electron scattering angle θe of 15◦. In each case, there
are 16 curves corresponding to the two sign choices for
each of the next-to-leading-order coefficients. Clearly, for
the selected kinematics, these higher-order effects are quite
small, typically less that 6.4%. We again stress that this is
not the limiting factor in making such measurements, since,
in any actual experiment, the slight extra dependence on q
will be determined by varying the kinematics. Having found
that the next-to-leading-order effects are small, for simplicity
henceforth we make the choice b′

CJ,EJ = +1 for J = 1, 2, and,
given this choice, Fig. 9 then shows the θe dependence of the
electric tEJ and Coulomb |tCJ | multipole matrix elements for
the selected kinematics.

Finally, we note that in the region of interest 0.7 � E c.m.
α �

1.7 MeV, the elastic phase shifts of the s, p, and d waves
are almost equal to zero [22,23] and therefore we neglected
them in our calculation of the rate. The only contribution to
the phase shift then comes from the Coulomb field, which
is equal to the difference of the Coulomb phase shift σl =
arg �(1 + l + iη) of partial wave l and the phase shift of the
Coulomb monopole σ0 = arg �(1 + iη) [49]:

ωl ≡ σl − σ0 =
l∑

n=1

arctan
η

l
. (66)

We see that the last term in φ12, Eq. (61), follows from the gen-
eral expression, Eq. (66). At the end, we will assume that the
phase-shift differences that occur in the electrodisintegration
response functions written above, δCl − δC0 and δEl − δE0, are
both equal to ωl for the corresponding partial wave l .

Having chosen to use these for the phase-shift differences,
as noted above, we must allow for either plus or minus signs
to enter for the interferences between the various mutipoles.
For the E1 and E2 cases, we follow the lead from photodisin-
tegration and choose the relative sign to be positive. The low-q
relationships between CJ and EJ multipoles and then fix the
signs of the C1 and C2 multipoles relative to the E1 and hence
E2 multipoles. However, we do not have any information con-
cerning the relative sign of the C0 multipole compared with
the C1, C2, E1, and E2 multipoles. Hence, all terms involving
interference with the C0 multipole could occur with either
sign. During the rest of what is presented in this study, usually
we arbitrarily choose the sign to be positive, although we
have examined what happens when the opposite sign choice
is made: The detailed angular distributions change, although
they are roughly of similar sizes. When measurements are
made, the appropriate sign choice should be clear following
what was done in studies of photodisintegration.

C. Electrodisintegration cross-section predictions

Having specified the model, we employ this to make
projections of the electrodisintegration cross sections in the
low-ω and low-q region and to explore these projections
for a range of kinematics, and, in the following section, to
provide estimates for the uncertainties that might be expected
in practical experiments in extrapolating towards the real-γ
line and toward threshold. These estimates will then be used
to make projections for the desired astrophysical S factors.

Figure 10 shows polar plots of the differential cross section
for 16O electrodisintegration as a function of the α-particle
c.m. production angle θ c.m.

α with respect to the direction of
the virtual photon for A [Fig. 10(a)] and B [Fig. 10(b)] cases
for the choice of tC0 discussed above. A very rapid fall-off
of the differential cross section can be observed as the c.m.
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FIG. 9. Electric (tE1, tE2) and Coulomb (|tC1|, |tC2|) multipole matrix elements as functions of the electron scattering angle θe at a beam
energy Ee of 114 MeV.

kinetic energy of the α-particle decreases. By comparing
Figs. 10(a) and 10(b), we see that the choice of the C0
coefficient influences to some extent the shape of the differ-
ential cross section around the virtual photon direction and
its contribution is more important around ±90◦ with respect
to the virtual photon direction (see later discussion of what
impact the monopole contributions have on the extraction of
the astrophysical S factors).

Figure 11 shows the product of the differential cross sec-
tion and the electron’s solid angle factor sin θe as a function
of α production angle θ c.m.

α for several values of electron

scattering angle θe. The plots suggest that there is no ad-
vantage to reaching very low values of θe, since the product
saturates and only increases in magnitude when increasing
the electron scattering angle θe. The increase in magnitude
comes from the response functions—at fixed beam energy Ee

larger θe means larger q, that is, larger values of the response
functions. In addition, one needs to keep in mind that a finite-
sized collimator in a typical electron spectrometer accepts
larger angular phase space (sin θedθedφe) at smaller electron
scattering angle θe. Later, we will make clear that these
two competing effects, for specific experimental conditions,

FIG. 10. Angular distribution of the 16O(e, e′α)12C differential cross section for beam energy of Ee = 114 MeV, electron scattering angle
θe = 15◦, and α-particle c.m. kinetic energies E c.m.

α = 1.3, 1.4, and 1.5 MeV. The electron beam lies on a ray from 180◦ to 0◦, the direction
of the scattered electron is represented by a dashed line, and the direction of the virtual photon is shown by a solid line. The results were
calculated as a function of α-particle c.m. production angle θ c.m.

α , but plotted with respect to the direction that the virtual photon has in the
laboratory system. Panel (a) shows tC0 case A and (b) case B.
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FIG. 11. Angular distribution of the 16O(e, e′α)12C differential cross section multiplied by sin θe for beam energy of Ee = 114 MeV,
E c.m.

α = 1.5 MeV, for different electron scattering angles θe = 5◦, 7.5◦, 10◦(a); 15◦, 25◦, 35◦(b). The electron beam lies on a ray from 180◦

to 0◦, the directions of the scattered electrons are represented by dashed lines, and the other type of lines on the positive angle side represents
the direction of the virtual photon in the laboratory system.

influence the final coincidence rate and, consequently, the
statistical uncertainty.

The polar plot of the product of the differential cross
section and the solid angle factor sin θe sin θ c.m.

α , shown in
Fig. 12, indicates the values of θ c.m.

α for which we can expect
the maximum rate of α-particle production. For θe � 15◦, the
maximum rate is around ±90◦ with respect to the direction
of the virtual photon. At energies ELab

α � 2 MeV, this can be
a good guide to where to place an α-particle detector, but at
lower energies the placement of the α-particle detector will
be governed by the minimization of the energy loss and the
angular spread of the α particles when traveling through the
target material.

Figure 13 shows the product of the differential cross
section and the solid angle factors sin θe and sin θe sin θ c.m.

α

and illustrates that at fixed electron scattering angle θe one
can increase the magnitude of the product by increasing the
electron beam energy Ee.

VI. CONSIDERATION OF AN EXPERIMENT TO
MEASURE THE 16O(e, e′α)12C REACTION IN THE

ASTROPHYSICALLY INTERESTING REGION

α-cluster knockout in the 16O(e, e′α)12C reaction has been
previously studied [50] at 615- and 639-MeV incident elec-
tron energy. The shape of the measured missing-momentum
distribution is reasonably well described by shell-model
and cluster-model calculations, but the theoretical curves
overpredict the data by a factor of 3 to 4. However, at
present, there exists no dedicated setup for measuring the

FIG. 12. Angular distribution of the 16O(e, e′α)12C differential cross section multiplied by sin θe sin θ c.m.
α for beam energy of Ee =

114 MeV, E c.m.
α = 1.5 MeV, for different electron scattering angles θe = 5◦, 7.5◦, 10◦(a); 15◦, 25◦, 35◦(b). The electron beam lies on a ray

from 180◦ to 0◦, the directions of the scattered electrons are represented by dashed lines, and the other type of lines on the positive angle side
represents the direction of the virtual photon in the laboratory system.
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FIG. 13. Angular distribution of the 16O(e, e′α)12C differential cross section multiplied by sin θe (a) and sin θe sin θ c.m.
α , (b) for beam

energies of Ee = 78, 114, and 150 MeV, E c.m.
α = 1.5 MeV, and electron scattering angle of θe = 15◦. The electron beam lies on a ray from 180◦

to 0◦, the directions of the scattered electrons are represented by dashed lines, and the other type of lines on the positive angle side represents
the direction of the virtual photon in the laboratory system.

electrodisintegration of 16O at lower energies with the as-
trophysical goals above in mind. Assuming the availability
of high-intensity energy-recovery linacs (ERLs) in the near
future [34,35], we here develop a conceptual experiment
based on these advanced accelerator technologies. In doing so,
there are nevertheless practical constraints on what is likely to
be possible, and these are discussed below.

A. Experimental considerations

1. Electron detection

The detector system suitable for measuring the four-
momentum of the scattered electron is a high-precision, fo-
cusing magnetic spectrometer, equipped with focal plane de-
tectors, capable of achieving a momentum resolution �pe/pe

of better than �10−4 and an in-plane scattering angle reso-
lution �θe of better than �0.5◦. Spectrometers of this type
are standard in electron-scattering nuclear research, but they
differ in angular and momentum acceptance ranges and in the
type of focal plane detector systems used.

2. Isotopic and chemical contamination

When dealing with the photodisintegration of 16O into an
α particle and 12C, one needs to take into account a large
background coming from α particles produced on 17O and
18O. The average isotopic abundances of the oxygen isotopes
are 99.7570% for 16O, 0.03835% for 17O, and 0.2045% for
18O [51]. The cross sections for photodisintegration of 17O
and 18O into an α particle and corresponding carbon isotope
are several orders of magnitude larger than for the case of
photodisintegration of 16O; see Fig. 14(a). Further, there is
always some finite amount of nitrogen present in the oxygen
gas (depending on the vendor usually 5 ppmv or less). This
will give rise to protons from the photodisintegration reaction
14N(γ , p)13C and also contribute to the background. Even if
one depletes the 17O and 18O by a factor of 1000 and nor-
malizes the cross sections accordingly as shown in Fig. 14(b),

in the region of interest (Eγ = E c.m.
α + 7.162 MeV) Eγ �

8.5 MeV, photodisintegration of 17O significantly contributes
to the background and the contributions of 18O and 14N are
comparable or at some energies even larger. The same prob-
lem can also be expected in the case of electrodisintegration.

The modern photodisintegration experiments,
Refs. [26,28,29], address these isotopic and chemical
contamination issues. Here, we investigate how the back-
ground problems can be mitigated in an electrodisintegration
experiment with a gas jet target.

In the presented study, SRIM-2013 simulation software
[53,54] was used for calculation of the average energy loss
of the α particle or proton at a given kinetic energy in a 2-
mm-wide 16O gas jet having a density of 6.65 × 10−4 g/cm3.
The full electrodisintegration kinematics calculation was per-
formed for oxygen isotopes and 14N target nuclei, and the
data were sorted by selecting the electrons having momenta
capable of producing α particles on 16O in a given E c.m.

α range.
The kinetic energy of selected α particles and protons was
corrected for the energy loss assuming that these particles are
created at different positions inside the gas jet. The maximum
correction was applied when the particle is created at the
edge of the jet and needs to travel through the full extension
of the gas jet. In this way, the corrected kinetic energies
where converted to time of flight (ToF), assuming a flight
path of 30 cm between the gas jet and the ion detectors.
Figure 15 shows the energy-loss-corrected kinetic energies
and ToF of the α particles and protons for two E c.m.

α ranges.
In both cases, we see that the kinetic energy can be used
to distinguish the signal from the background α particles.
However, to distinguish between protons and α particles from
16O, the ToF observable is the most effective. It allows a clear
background identification and removal from the collected
events for all E c.m.

α of interest. Furthermore, it is easier to
determine the final state of low-energy ions by measuring the
ToF and not their kinetic energy—this method is very well
known in experimental nuclear physics. Most importantly,
such detectors can be designed to be electron blind.
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FIG. 14. (a) The theoretical photo-nuclear cross section σγ N as a function of the γ energy Eγ for the signal reaction 16O(γ , α)12C, and
background reactions 17O(γ , α)13C, 18O(γ , α)14C, and 14N(γ , p)13C, from Ref. [52]. The same curves are shown on panel (b), but now the
cross sections of the oxygen isotopes were normalized under the assumption that the natural abundances of 17O and 18O were depleted by a
factor of 1000, and that oxygen gas is contaminated with 5 ppmv of 14N.

Very close to the reaction threshold, one has to deal with α

particles having very small kinetic energies, i.e., so small that
the target material itself can smear their angular resolution
significantly. To quantify the angular smearing by the target
material, we used data obtained from a SRIM-2013 simulation
to calculate the standard deviation of the α-production angle
�θLab

α as a function of the α-particle kinetic energy ELab
α ;

see Fig. 16. At kinetic energy of ELab
α = 0.7 MeV, the stan-

dard deviation of the α-production angle is already equal to
�θLab

α = 2.1◦ and, with deceasing ELab
α , the �θLab

α starts to
increase even faster.

The circular profile of the jet can be easily changed to
a different one, as demonstrated in Ref. [55]. For the fixed
luminosity, the problem of the multiple scattering inside the
jet can be minimized by extending the jet in the direction

of the beam. But in this case, the electron spectrometer will
need to have good spatial resolution to be able to reconstruct
the position of the vertex along the extended gas jet. Another
option, to partially solve this problem, is to make use of the
virtual photon properties: At fixed ω, one can independently
dial the value of the transferred 3-momentum q. Figure 17
shows examples of angular distributions of the α-particle
kinetic energy for fixed ω but for two different values of
q. For larger q, around the direction of the virtual photon
(≈ − 67◦), the kinetic energy of the α particles is larger
compared with the lower-q case. In the opposite direction,
the larger-q ELab

α is decreased. Ultimately, the measurement
close to threshold will need to be performed at an optimized
value of q, with a gas jet having an optimized density and
shape.

FIG. 15. Energy-loss corrected kinetic energy ELab
k and time-of-flight ToF as functions of laboratory ion production angle θLab

ion assuming
that the ions were produced by electrons involved in the electrodisintegration of 16O, at Ee = 114 MeV and θe = 15◦: panels (a) and (b) cut on
0.7 � E c.m.

α � 0.8 MeV and panels (c) and (d) cut on 1.0 � E c.m.
α � 1.1 MeV.
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FIG. 16. Standard deviation of the α-production angle �θLab
α

as a function of α-particle kinetic energy ELab
α for an α particle

passing through a 2-mm-wide 16O gas jet with a density of 6.65 ×
10−4 g/cm3.

3. α-particle detection

The α-particle detector system has to be able to cover
the maximum possible solid angle around the beam-target
interaction. Further, the detectors have to be blind to elec-
trons, positrons, and γ rays, due to high rates from elastic,
inelastic, and Møller electrons, γ s from radiative processes,
and positrons and electrons from radiative pair production. In
the region of interest (0.7 � E c.m.

α � 1.7 MeV), it is straight-
forward to measure the time of flight of the α particle to obtain
its energy. Thus, these detectors should have a good timing
resolution.

Measuring the time of flight has a crucial advantage since
it can be used for ion identification purposes, as well as for
distinguishing the α particles coming from different oxygen
isotopes.

We have given some consideration to the choice of α-
particle detector, which is required to detect ions with kinetic
energies of about 1 MeV. At 1-MeV kinetic energy, the
range in silicon is about 1 mg/cm2. Silicon has a density
of 2.33 g cm−2 and so this corresponds to a thickness of
4.3 microns. The count rate for the (e, e′α) process is low,
≈1–10 Hz. It is required for these purposes:

(1) to measure the total energy of the α to about ≈±10%;
(2) to distinguish between protons, α particles, and 12C;

(3) to measure the position to within millimeters and the
timing to within a few nanoseconds; and

(4) so that the ion detection system be blind to scattered
electrons and photons.

There are a several different detector possibilities:

(1) Silicon detector [56]: Silicon detectors have a high
position resolution in tracking charged particles but
are expensive and require cooling to reduce leakage
currents. They also suffer degradation over time from
radiation; however, by cooling them to low tempera-
tures, this effect can be significantly reversed.

(2) Microchannel-plate electron (MCP) detector [57]. A
microchannel plate is a slab made from highly re-
sistive material typically 2 mm thick with a regular
array of tiny tubes or slots (microchannels) leading
from one face to the opposite, densely distributed over
the whole surface. The microchannels are typically
approximately 10 μm in diameter (6 μm in high-
resolution MCPs) and spaced apart by approximately
15 μm; they are parallel to each other and often enter
the plate at a small angle to the surface (≈8◦ from
normal).

The gain of an MCP is very noisy, meaning that
two identical particles detected in succession will often
produce wildly different signal magnitudes. The tem-
poral jitter resulting from the peak height variation can
be removed using a constant fraction discriminator.
Employed in this way, MCPs are capable of measuring
particle arrival times with very high resolution, making
them an ideal detector for mass spectrometers.

(3) Parallel-plate avalanche counter (PPAC). The PPAC
detector consists of two parallel thin electrode films
separated by 3–4 mm and is filled with 3–50 Torr of
gases such as isobutane (C4H10) or perfluoropropane
(C3F8). When a voltage gradient corresponding to
a few hundreds of volts per millimeter is applied
between the anodes and cathodes, ionized electrons
from incident heavy ions immediately cause an elec-
tron avalanche. Because there is no time delay before
the avalanche occurs and the electrons move at high
mobile velocity (mobility), the resulting signals have

FIG. 17. Energy-loss-corrected kinetic energy of α particles ELab
α as functions of laboratory α production angle θLab

α for two values of
transferred 3-momentum of the virtual photon q. The (a) panel shows α particles in the range of 0.7 � E c.m.

α � 0.8 MeV, and panel (b) shows
them in the range of 1.0 � E c.m.

α � 1.1 MeV.
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good timing properties, with rise and fall times of a
few nanoseconds, as compared with other types.

A PPAC detector has been developed at RIKEN
RIBF in Japan [58] that has a sensitive area of 240 ×
150 mm, and the position information is obtained by
a delay-line readout method. Called a double PPAC,
it is composed of two full PPACs, each measuring
the particle locus in two dimensions. High detection
efficiency has been made possible by the twofold
measurement using the double PPAC detector. The
sensitivity uniformity is also found to be excellent. The
root-mean-square position resolution is measured to be
0.25 mm using an α source, while the position linearity
is as good as ±0.1 mm for the detector size of 240 mm.

(4) Time projection chamber. A time projection chamber
(TPC) is a type of particle detector that uses a combi-
nation of electric and magnetic fields together with a
sensitive volume of gas or liquid to perform a three-
dimensional reconstruction of a particle trajectory or
interaction.

A Micromegas TPC is under development [59] for
the detection of low-energy heavy ions. The first pro-
totype consists of a 10 × 10 × 10 cm3 gaseous vessel
equipped with a field shaping cage and a Micromegas
detector. With 1 atm of gas, the energy resolution for
6-MeV α particles is about 10%. The window is 10 μm
of Mylar (polyethylene terephthalate), which has a
thickness of 1.4 mg cm−2.

The DMTPC detector technology has been devel-
oped at MIT [60] to search for dark matter. It consists
of a TPC filled with low-pressure CF4 gas. Charged
particles incident on the gas are slowed and eventually
stopped, leaving a trail of free electrons and ionized
molecules. The electrons are drifted by an electric
field toward an amplification region. Instead of using
MWPC endplates for amplification and event readout,
as in the traditional TPC design, the DMTPC amplifi-
cation region consists of a metal wire mesh separated
from a copper anode with a high electric field between
them. This creates a more uniform electric field in
order to preserve the shape of the original track during
amplification. The avalanche of electrons also creates
a great deal of scintillation light, which passes through
the wire mesh. Some of this light is collected by
a charge-coupled device (CCD) camera located out-
side the main detector volume. This results in a two-
dimensional image of the ionization signal of the track
as it appeared on the amplification plane. Information
about the charged particle, including its direction of
motion within the detector, can be reconstructed from
the CCD readout. Additional track information is ob-
tained from readout of the charge signal on the anode
plane. The largest existing prototype detectors each
have a total of 20 L of CF4 gas within the drift region,
where measurable events can occur. Recoil 19F and
12C nuclei with energies from 20 to 200 keV and α

particles from an 241Am source have been detected in
DMTPC [60].

(5) Low-pressure multistep detector for very-low-energy
heavy ions [61]. A large-area timing and position-
sensitive multistep gaseous detector designed for the
detection of very-low-energy heavy ions has been de-
veloped [62]. It consists of a preamplification stage
operating as a parallel-plate avalanche chamber di-
rectly coupled to a multiwire proportional chamber.
The multistep avalanche counter (MSC) was tested
with α particles, fission fragments, and heavy ions.
The detector operates at a pressure range of 1–4 Torr
isobutane, with very thin (≈50 μg cm−2) polypropy-
lene window foils. It has a high gain and good time
resolution (better than 180 ps fwhm) and a position
resolution better than 0.2 mm (fwhm). Its efficiency
for low-energy, high-mass ions was tested with 160Gd
ions and found to be 93% down to kinetic energies
of 1.3 MeV. In its original design, the MSC does not
provide �E information. Information concerning the
energy loss, in addition to timing and localization,
can be obtained by adding an independent wide-gap
collection and low-gain element.

We note the following:

(1) A large-area, thin, silicon detector with adequate posi-
tion resolution and with threshold set so that minimum
ionizing particles do not trigger is an attractive option.

(2) The first stage could be a thin gas detector, e.g., 10 cm
length of gas at 5 Torr. For isobutane (C4H10), the
thickness is 0.15 mg cm−2. The energy lost by a 1-
MeV α particle in such a detector is on the order of
0.2 MeV.

(3) This gas detector must be contained in the vacuum
system of the gas target. The detector gas volume can
be isolated from the gas jet volume by a thin window,
e.g., 50 μg cm−2 of polypropylene. The energy loss of
the α particle will be small in this window.

(4) The energy lost by a minimizing particle [stopping
power ≈2 MeV/(g cm−2)] will be of order 0.5 keV so
the gas detector will be blind to scattered electrons.

(5) The detailed technical aspects of the gas detector (e.g.,
charge collection mechanism, amplification, trans-
verse size, gas type, etc.) need to be considered in de-
tail. The gas pressure could be high enough to stop the
α or it could be thin enough to have another detector
(e.g., thin silicon) behind it. Note that a higher detector
gas pressure will require a thicker entrance window.
Until the details of the gas detector are specified, it
is hard to characterize the energy, position, and time
resolutions.

(6) Finally, the possibility to integrate the oxygen gas
target and the α detector by using the oxygen gas as
the ionizing gas for the detector is worthy of consider-
ation.

Below, we continue with the calculation of the
16O(e, e′α)12C reaction rate and perform an estimate of
the statistical uncertainties by using established parameters of
existing cluster gas-jet targets [36] and expected performance
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of electron accelerators (MESA [34] and CBETA [63])
under construction. In the rate calculations, we identify
and consider the most significant sources of systematic
uncertainty. Furthermore, systematic effects due to scattering
in the gas jet target can be reduced by extending the profile
of the jet and/or by increasing the transferred q value;
optimization here needs to be carried out experimentally.
Nevertheless, in calculation of the rate, we will use what we
have learned in this section and restrict the accepted range
of the α-production angle θ c.m.

α and the accepted α-particle
kinetic energy ELab

α to reasonable values.

B. Proposed experiment concept

First, having made exploratory projections using our
model, we have come to the conclusion that the luminosity
should be larger than 1035 cm−2 s−1, but that the density
of the target oxygen has to be low enough to allow the
α particles that exit the target to be detected. A suitable
target design here is a windowless oxygen cluster-jet target,
like the one described in Ref. [36]. The areal thickness
of 2.4 × 1018 atoms/cm2 was measured for (≈2 mm wide)
hydrogen jet at a gas temperature of 40 K and gas flow of
40 l/min. For our purposes, we will assume one has an oxygen
cluster-jet target capable of achieving an areal thickness of
5 × 1018 atoms/cm2, which for a 2-mm-wide jet corresponds
to a density of 6.65 × 10−4 g/cm3. We also require an elec-
tron accelerator which can deliver a beam energy of about
100 MeV and a beam current of at least 10 mA. Two suitable
electron accelerators are currently being constructed, namely,
MESA, which should deliver a beam current of 10 mA [34],
and CBETA, which should be able to go up to 40 mA [63] for
beam energies of 42, 78, 114, and 150 MeV (any energy in
between would also be possible). In what follows, we assume
a beam current of 40 mA and a jet target as described above,
which is equivalent to a luminosity of 1.25 × 1036 cm−2 s−1.

To identify events belonging to the 16O(e, e′α)12C reaction,
we need to detect the scattered electron in coincidence with
the produced α particle. Figure 18 shows a schematic layout
of a possible experiment.

A high-precision magnetic spectrometer is suitable for
detection of the scattered electron. For the purpose of defin-
ing electrons accepted by the electron spectrometer, we will
assume that the spectrometer has an in-plane acceptance of
±2.08◦ and out-of-plane acceptance of ±4.16◦; this amounts
to a solid angle of 10.5 msr.

Since we want to obtain S factors close to the Gamow
energy (300 keV), we will need to deal with α particles having
very low kinetic energy ELab

α (see Fig. 17), where the energy
loss in the target and the multiple scattering in the target
material play important roles, as shown in Fig. 16. In order to
select α particles with reasonable energy and angular spread,
one should either reduce the density of the gas jet or set a
cut on the minimum accepted kinetic energy ELab

α , i.e., to
accept α particles within a certain range around the direction
of the virtual photon. We decided to go with the second
option and set a cut to accept α particles having a kinetic
energy ELab

α � 0.55 MeV. This cut also imposes a limit on the
maximal accepted in-plane scattering angle θ c.m.

α , and to cover

FIG. 18. Schematic layout of our proposed 16O(e, e′α)12C ex-
periment: 16O, inside a gas cluster-jet target, is disintegrated by the
electron beam into α particles and 12C nuclei. The scattered electron
is detected in an electron spectrometer and the produced α particle in
the ion detectors.

all settings listed in Table I within an equal angular range,
only α particles having an in-plane scattering angle θ c.m.

α in
the range from 0◦ to 60◦ were accepted. For the out-of-plane
angle φα , the full acceptance from 0◦ to 360◦ was assumed.
Note that by selecting the full range of φα , the integral of
interference response functions RT T and RT L over φα will
be equal to zero and only longitudinal RL and transverse RT

response functions will contribute to the total cross section.
Figure 19 shows a top-view layout of the experiment.

Table II summarizes the assumptions for the parameters
used in the differential cross section [Eq. (21)] for the cal-
culation of the rate and subsequent statistical uncertainties.

TABLE I. Summary of experimental parameters for the rate
calculation.

Parameters

Thickness 5 × 1018 atoms/cm2

Oxygen target
Density 6.65 × 10−4 g/cm3

Current 40 mA
Electron beam

Energies 78, 114, 150 MeV

In plane ±2.08◦

Electron arm acceptance Out of plane ±4.16◦

Solid angle 10.5 msr

In plane 60◦

α-particle arm acceptance Out of plane 360◦

Solid angle 3.14 sr

Luminosity 1.25 × 1036 cm−2 s−1

Integrated luminosity (100 days) 1.08 × 107 pb−1

Central electron scattering angles 15◦, 25◦, 35◦

E c.m.
α range of interest 0.7 � E c.m.

α � 1.7 MeV
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FIG. 19. Top-view layout of proposed 16O(e, e′α)12C experi-
ment, showing the in-plane angular acceptance of the ion detectors.

C. Estimation of event rates

Since it is difficult to calculate the rate analytically, we
have carried out a numerical simulation of the conceptual
experiment illustrated in Fig. 18. By using Monte Carlo
integration and explicit experimental parameters (see Table I)
and theoretical assumptions (see Table II), we have estimated
the rate of the coincidences per day in the energy range
0.7 � E c.m.

α � 1.7 MeV divided into 100-keV-wide bins; see
Fig. 20. For tC0 case A, the coincidence rate ranged from 73
day−1 up to 30 602 day−1, and for case B, from 55 day−1 up
to 23 123 day−1. In total, the coincidence rate of tC0 case A is
≈32% larger than for case B.

In order to mimic the data treatment in a real experi-
ment, the accepted events in the energy range 0.7 � E c.m.

α �
1.7 MeV were placed in 100-keV-wide bins, for which, as
shown in Fig. 15, it is possible to identify the α particles from
electrodisintegration of 16O and fully separate them from the
background. Additionally, the full range of accepted electron
scattering angle θe was divided into four bins corresponding
to four different q values, and events in each θe bin were
finally sorted into six θ c.m.

α bins ranging from 0◦ to 60◦. An
example of the sorting can be seen in Fig. 21. The rate was
converted into the number of events collected over 100 days
by multiplying it with the integrated luminosity of 1.08 ×
107pb−1.

TABLE II. Summary of theoretical assumptions for the rate
calculation.

Assumptions

Value ≈1 for J = 1, 2
b′

CJ,EJ Sign + for J = 1, 2

Value of b′
C0 ≈1

c′
C0 ≡ a′

C0 × b′
C0 = a′

E2, Case A

Value of a′
C0 = 0.5a′

E2, Case B

tC0 Sign +
In the E c.m.

α region of interest, only the Coulomb phase contributes.

FIG. 20. Coincidence rate per day for tC0 cases A and B, for
electron beam energy of Ee = 114 MeV, central electron scattering
angle of θe = 15◦, electron spectrometer acceptance of 10.5 msr,
α-particle detector acceptance of 3.14 sr, and luminosity of 1.25 ×
1036 cm−2 s−1.

The number of events per bin was used to calculate the
corresponding statistical uncertainty and this is the quantity
for which we performed the above described procedure, since
it determines how large an advantage one might have measur-
ing the electrodisintegration of 16O compared with previous
experiments.

D. Estimated uncertainties in determination
of astrophysical S factors

Now that we have determined the angular distribution
of the number of events, we can proceed to predict the
astrophysical S factors, with associated uncertainties. First,
the event distribution is converted back into the differential
cross-section distribution by dividing it with the Monte Carlo
integrated phase space covered by each bin and the integrated
luminosity, but now including the statistical uncertainties; see
Fig. 22.

The Levenberg-Marquardt method was used to extract
three fitting parameters a′

E1, a′
E2, and a′

C0 (from the Coulomb
monopole) from the data, as well as their uncertainties. At
given E c.m.

α bin, we obtained four values for each fitting
parameter originating from four q bins, which were combined
together by taking the average value of each parameter and
by calculating their total uncertainty. The last step is to invert
Eq. (62) and for each E c.m.

α bin calculate the SE1 and SE2 fac-
tors and their uncertainties; see Fig. 23 as an example for tC0

case A and case B at Ee = 114 MeV and θe = 15◦. When we
compare tC0 cases A and B, the value of a′

C0 has a minor effect
(≈3%) on the uncertainties in SE1. For the same comparison,
the relative uncertainties in SE2 are approximately 25% larger
in case A, but the uncertainties in SaC0 in case B are twice as
large as in case A. The “bump” in the relative uncertainties of
SaC0 case B is caused by fluctuation in the θ c.m.

α position of the
data point inside the last bin 50◦ < θ c.m.

α < 60◦.
Figure 24 shows one example of the calculated SE1 and SE2

factors with projected statistical uncertainties for parameters
Ee = 114 MeV, θe = 15◦, and tC0 case A, as well as data from
past experiments. These results are also plotted in terms of
relative uncertainties in Fig. 25 to point out a clear advantage
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FIG. 21. Number of events as a function of θ c.m.
α assuming 100 days of data collection at the luminosity of 2.5 × 1036 cm−2 s−1. The left

column represents tC0 case A and the right one case B. Horizontal bars denote the width of the θ c.m.
α bin, which here is equal to 10◦. Horizontal

placement of the data point within a bin was done according to the procedure recommended in Ref. [64]. The q bins are 1.91 MeV/c wide and
E c.m.

α bins are 100 keV. For all events inside a particular q and E c.m.
α bin, the specified q values represent the average value, and the stated E c.m.

α

values represent the average of the expected and averaged E c.m.
α value.

FIG. 22. Differential cross section as function of θ c.m.
α . The left column represents tC0 case A and right column is case B. Vertical bars

correspond to statistical uncertainties assuming 100 days of data collection at the luminosity of 2.5 × 1036 cm−2 s−1. The same binning
procedure was performed as described in caption of Fig. 21.
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FIG. 23. Reconstructed astrophysical SE1 and SE2 factors, showing their absolute (left column) and relative uncertainties (right column)
for tC0 cases A and B, Ee = 114 MeV and θe = 15◦. SaC0 does not have an astrophysical counterpart and it just a conversion of the third fitting
parameter into an S factor and corresponding uncertainty in order to put it in perspective with SE1 and SE2.

of measuring the 16O(e, e′α)12C reaction for several E c.m.
α

energies. Compared with the most accurate measurements
from Refs. [13,16], the relative uncertainties in SE1 and SE2

at a given energy are improved at least by factors of ×5.6 and
×23.9, respectively.

FIG. 24. Reconstructed astrophysical SE1 and SE2 factors with statistical error bars (represented by solid circles) from our calculation for
Ee = 114 MeV, θe = 15◦, tC0 case A, together with experimental data from Refs. [5–13,15,16,18] and AZURE2 R-matrix fit [24].
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FIG. 25. Relative uncertainties of reconstructed the astrophysical SE1 and SE2 factors (represented by solid circles) from our calculation
for Ee = 114 MeV, θe = 15◦, tC0 case A and relative errors from Refs. [5–13,15,16,18] experiments. Data points with uncertainties larger then
140% are not shown.

In the following Figs. 26 and 27, we summarize the cal-
culation of the projected relative uncertainties in the SE1,
SE2, and SaC0 factors as functions of the beam energies
Ee = 78, 114, and 150 MeV and the electron scattering
angles θe = 15◦, 25◦, and 35◦. Even for values of Ee, θe,
and tC0, which give the worst projected statistical uncertain-
ties, improvements in the relative uncertainties of SE1 and
SE2 at a given energy, compared with previous experimen-
tal data from Refs. [13,16], are at least ×2.6 and ×15.5,
respectively.

In general, with increasing electron beam energy Ee all
uncertainties are reduced. This can be easily understood, be-
cause at fixed central electron scattering angle θe the accepted
angular phase space of the electron is also fixed, but at larger

beam energy Ee we also get a larger q value, and thus the
coincidence rate is larger.

If we vary the central electron scattering angle θe at fixed
beam energy Ee, the uncertainty in SE1 is smaller at smaller
values of angle θe, which favors the kinematic setting having a
larger accepted electron angular phase space and thus having
the larger rate for fixed Ee. The uncertainty in SE2 behaves
the opposite way, favoring the kinematic setting with larger q
value at fixed Ee.

E. Discussion of results

The results summarized in Figs. 24 and 25 offer significant
potential that the S factors associated with the E1 and E2
multipoles of the 16O(e, e′α)12C reaction at astrophysical

S
S S S

S S S

S S

FIG. 26. Relative uncertainties of the SE1, SE2, and SaC0 factors for several values of beam energies Ee, electron scattering angles θe, and
for tC0 case A. The SaC0 does not have an astrophysical counterpart and it just a conversion of the third fitting parameter into an S factor and
corresponding uncertainty in order to put it in a perspective with SE1 and SE2.

025804-23
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FIG. 27. Same as in the caption of Fig. 26, but for tC0 case B.

energies can be determined with significantly reduced uncer-
tainties. We would like to emphasize important details about
the assumptions we have made:

(1) Although we obtained excellent results in reducing the
statistical uncertainties, note that our calculation does
not include detailed consideration of systematic un-
certainties, which are always present in experimental
data. However, we are not aware of any systematic
effect that can reduce the large improvement in the
determination of the radiative capture reaction with our
new approach. At fixed beam energy Ee and electron
scattering angle θe, the electron spectrometer detects
scattered electrons in a narrow range of electron mo-
menta E ′

e and the θe. Therefore, one can expect that the
systematic uncertainty connected with the detection
of the electron will not vary significantly over these
ranges. As discussed in Sec. VI A 2, the systematic
uncertainties related to the detection of the α particles
are very energy dependent. They increase rapidly as
the α-particle kinetic energy ELab

α decreases; see, for
example, Fig. 16. However, we note that the kinetic
energy of the α particle can be controlled by the trans-
ferred momentum q and the thickness of the jet target
traversed by the α particle can be reduced by extending
the shape of the jet’s profile. This optimization needs
further consideration.

(2) One significant source of systematic uncertainty which
needs to be considered is the uncertainty of the elec-
tron beam energy Ee, which is especially important
at low E c.m.

α values. In a coincidence measurement
of the electrodisintegration of 16O, the kinematics are

overdetermined. Thus, an attractive method to deter-
mine the electron beam energy would be to reconstruct
the energy of the electron beam Ee for each coinci-
dence e′α pair separately.

(3) The Coulomb and electric multipole matrix elements
have only been expanded up to the NLO [see Eqs. (50)
and (54)], and for the corresponding NLO coefficients
we assumed b′

CJ,EJ ≈ 1. In general, these coefficients
are functions of q and, when dealing with experimental
16O(e, e′α)12C data, their magnitude and q behavior
will have to be verified by including them as four ad-
ditional fitting parameters. If values of b′

C0,C1,C2,E1,E2
are smaller than unity for large range of q, truncating
the expansion of multipole matrix elements at the NLO
term is justified. But, if the values are larger than 1, we
may need to include the third order in the expansion
with corresponding coefficients c′

CJ,EJ . Which order
in this expansion needs to be included can easily be
verified by measuring the rate of electrodisintegration
of 16O at several larger q points.

(4) The calculations here were focused on the E c.m.
α range

from 0.7 to 1.7 MeV, but a typical electron spectrom-
eter has at least a momentum acceptance of 10%, and
for Ee = 78 MeV the full available E c.m.

α range would
be from 0.0 to 6.7 MeV or for Ee = 150 MeV from
0.0 to 13.6 MeV. By choosing the appropriate beam
energy, a single 16O electrodisintegration measurement
could cover the E c.m.

α range of almost all previous
experiments and crosscheck their results. Furthermore,
at higher α energies, multipoles E3 and C3 could
start to significantly contribute to the cross section
(although this was not yet observed [25]). Because of
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this, we have provided the multipole decomposition
of the response functions up to octupole terms in the
Appendix.

(5) For all choices of the parameters Ee and θe, we ob-
tained a smaller uncertainty for SE2 compared to SE1.
There are two reasons for this result. First, the C2/E2
matrix elements which enter in the response functions
RL,T,T L,T T differ from C1/E1 matrix elements by a
factor q/ω. This is the dominant contribution, which
does not exist in the case of real photon experiments,
since q/ω = 1. Second, a minor contribution comes
from the θ c.m.

α -distribution of the relevant multipoles.
In the θ c.m.

α range from 0◦ to 60◦, the magnitudes of
the C2/E2 θ c.m.

α -distribution are larger compared with
those of the C1/E1. The same behavior can also be
observed for the E1 and E2 multipoles in the case of
real-photon experiments; for example, this is shown in
Fig. 5 in Ref. [25].

(6) In Sec. VI A 2, we have considered the most proba-
ble sources of background and demonstrated how to
identify the α particles from the electrodisintegration
of 16O. If one takes a closer look at Figs. 14 and 15, in
the same experiment, we can also identify the proton
and measure the rate of the 14N(e, e′ p)13C reaction.
Furthermore, the photodisintegration cross section of
18O is much larger compared with that of 17O and,
with further work, it would also be possible to extract
the rate of the 18O(e, e′α)14C reaction. Note that with
minor modifications, the same formalism presented in
this paper for electrodisintegration of 16O can also be
be applied to electrodisintegration of 18O.

VII. CONCLUSION AND OUTLOOK

In summary, we have considered in some detail a new
approach to determine radiative capture reactions at astro-
physical energies. Using detailed balance, we consider the
inverse electron-induced disintegration process. Specifically,
in this paper we have focused on the 16O(e, e′α)12C reaction
as a means to determine the astrophysically crucial radiative
capture process 12C(α, γ )16O. We have applied a multipole
decomposition constrained to fit existing data together with
some reasonable theoretical assumptions to extrapolate from
the electrodisintegration process to the photodisintegration
reaction. We have developed a Monte Carlo simulation of
an experiment where an external electron beam is directed
on an oxygen gas jet target; the forward-scattered electron
is detected in a magnetic spectrometer and the coincident,
low-energy, recoil α particle is detected in a large acceptance
detector centered around the direction of three-momentum
transfer. We assume what we believe are reasonable exper-
imental parameters to carry out such an experiment at the
upcoming ERLs. With an electron beam of energy 114 MeV
and beam current of 40 mA incident on a hydrogen gas
target of 5 × 1018 cm−2, we estimate that SE1 and SE2 fac-
tors can be determined at E c.m.

α = 0.75 MeV to of order
±20% and ±5%, respectively, in 100 days of continuous data
Collection.

Assuming that the multi-megawatt ERLs are realized with
electron energy of about 100 MeV, a key technical challenge
is to realize efficient, large-solid-angle, low-energy α-particle
detection that is blind to the large rate of electromagnetic
background. We note that previous work has shown [65] that
the electron beam quality of 100-MeV megawatt ERLs is
high, with ≈50 μm 1σ spatial size and with minimal halo.
To reach high precision, the experiment must be efficient and
stable over months of data collection. However, we stress
that the initial, key experiment to validate our proposed
approach should focus on higher E c.m.

α where the coincident
electrodisintegration rates are significantly higher than in
the astrophysical region and accordingly the running time is
a more modest several weeks. Such an experiment should
elucidate the multipole structure of the electrodisintegration
reaction, whose understanding is essential for extrapolation to
the photodisintegration reaction. If our approach is validated
experimentally, one can then embark on the more ambitious
measurement to determine the S factors in the astrophysically
interesting region at low α-particle energies, where the elec-
trodisintegration count rate drops precipitously.

In the present study, we have focused on electrodisinte-
gration of 16O into the ground states of 4He and 12C in the
low-momentum-transfer q region near the threshold for the
reaction. We have provided the bridge to photodisintegration
and radiative capture (real-photon) reactions through the limit
where the virtual photon involved in electron scattering be-
comes close to the real-photon line. Measurements of elec-
trodisintegration thereby have the potential to provide a new
way to approach the real-γ photodisintegration cross sections
and hence, through detailed balance, the capture reaction cross
section and ultimately the astrophysical S factors involved
in that process. As discussed in the introduction, obtaining
information on these last quantities is one of the high-priority
goals in nuclear astrophysics.

After developing the general formalism for the electro-
disintegration reaction 16O(e, e′α)12C following past gen-
eral treatments of such semi-inclusive reactions, together
with some discussion of the photodisintegration reaction
16O(γ , α)12C and radiative capture reaction α + 12C → γ +
16O, we have proceeded to develop parametrizations for the
dynamical content in the problem. Since our focus is the
region near threshold for the photo- or electrodisintegration
reactions, we are assured that the energy of the photon,
Eγ , is small. Additionally, we have limited our attention to
kinematics where the three-momentum transfer carried by the
virtual photon in electrodisintegration, q, is also small. Here
one needs to state what is meant by “small.” We expect that
the nuclear dynamics involved in the reactions occur with a
typical nuclear scale q0

∼= 200–250 MeV/c, and accordingly
we measure both quantities versus q0, taking both ratios
μ1 ≡ Eγ /q0 and μ2 ≡ q/q0 to be small. This allows us to
expect that the lowest multipoles will dominate over higher
multipolarity contributions and also to expand each of the
small number of remaining multipoles in powers of μ1,2.
Ultimately, as we have shown in detail in the body of this
work, there are only a few parameters left that determine
the dynamical content of the problem in the kinematic re-
gion of interest. Such procedures are simply an extension
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I. FRIŠČIĆ, T. W. DONNELLY, AND R. G. MILNER PHYSICAL REVIEW C 100, 025804 (2019)

of what is typically done for photodisintegration or radiative
capture.

Of course, it would be valuable to have a microscopic
model for the reactions of interest here, although this is
far from realizable at present. Even relatively crude models
might be of some interest as they could help set the scales
in the problem. For example, a cluster model in which the
12C ground state might be taken to be a cluster of three
α particles and the ground state of 16O might involve four
α particles could be pursued. We have not done so in this
initial study, but instead have limited our attention to the
parametrizations discussed above. When measurements are
made of the kinematical dependences on q and the angular
distributions of the α particles are determined for each energy

above threshold, there is ample information to fix all of the
parameters involved experimentally.
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APPENDIX: EXTENDED ANGULAR DISTRIBUTIONS

Following Ref. [33], the responses in terms of Legendre
polynomials up to octupole contributions may be written as

RL = P0(cos θα )(|tC0|2 + |tC1|2 + |tC2|2 + |tC3|2)

+ P1(cos θα )

(
2
√

3|tC0||tC1| cos(δC1 − δC0) + 4

√
3

5
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7
|tC2|2 + 8

√
3

7
|tC1||tC3| cos(δC3 − δC1) + 18

11
|tC3|2

)

+ P5(cos θα )

(
20

3

√
5

7
|tC2||tC3| cos(δC3 − δC2)

)
+ P6(cos θα )

(
100

33
|tC3|2

)
, (A1)

RT = P0(cos θα )(|tE1|2 + |tE2|2 + |tE3|2)

+ P1(cos θα )

(
6√
5
|tE1||tE2| cos(δE2 − δE1) + 12

√
2

35
|tE2||tE3| cos(δE3 − δE2)

)

+ P2(cos θα )

(
−|tE1|2 + 5

7
|tE2|2 + 6

√
2

7
|tE1||tE3| cos(δE3 − δE1) + |tE3|2

)

+ P3(cos θα )

(
− 6√

5
|tE1||tE2| cos(δE2 − δE1) + 2

3

√
14

5
|tE2||tE3| cos(δE3 − δE2)

)

+ P4(cos θα )

(
−12

7
|tE2|2 − 6

√
2

7
|tE1||tE3| cos(δE3 − δE1) + 3

11
|tE3|2

)

+ P5(cos θα )

(
−10

3

√
10

7
|tE2||tE3| cos(δE3 − δE2)

)
+ P6(cos θα )

(
−25

11
|tE3|2

)
, (A2)

RT T = −RT cos(2φα ), (A3)

RT L = cos φα

{
P1

1 (cos θα )

(
2
√

3|tC0||tE1| cos(δE1 − δC0) − 2

√
3

5
|tC2||tE1| cos(δC2 − δE1)

+ 6√
5
|tC1||tE2| cos(δC1 − δE2) − 6

√
3

35
|tC3||tE2| cos(δC3 − δE2) + 6

√
6

35
|tC2||tE3| cos(δC2 − δE3)

)

+ P1
2 (cos θα )

(
2|tC1||tE1| cos(δC1 − δE1) + 2

√
5

3
|tC0||tE2| cos(δE2 − δC0) + 10

7
√

3
|tC2||tE2| cos(δC2 − δE2)

− 2

√
3

7
|tC3||tE1| cos(δC3 − δE1) + 4

√
2

7
|tC1||tE3| cos(δC1 − δE3) + 2

3

√
2

3
|tC3||tE3| cos(δC3 − δE3)

)
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+ P1
3 (cos θα )

(
2

√
3

5
|tC2||tE1| cos(δC2 − δE1) + 4√

5
|tC1||tE2| cos(δC1 − δE2)

+ 2

√
7

6
|tC0||tE3| cos(δE3 − δC0) + 2

3

√
7

15
|tC3||tE2| cos(δC3 − δE2) + 2

√
7

30
|tC2||tE3| cos(δC2 − δE3)

)

+ P1
4 (cos θα )

(
6
√

3

7
|tC2||tE2| cos(δC2 − δE2) + 2

√
3

7
|tC3||tE1| cos(δC3 − δE1)

+ 6√
14

|tC1||tE3| cos(δC1 − δE3) + 6

11

√
3

2
|tC3||tE3| cos(δC3 − δE3)

)

+ P1
5 (cos θα )

(
40

3

1√
105

|tC3||tE2| cos(δC3 − δE2) + 10

√
2

105
|tC2||tE3| cos(δC2 − δE3)

)

+ P1
6 (cos θα )

(
50

33

√
2

3
|tC3||tE3| cos(δC3 − δE3)

)}
. (A4)

For completeness, we can also evaluate the Legendre polynomials to write expressions involving only sines and cosines of θα:

RL = X 0,0
f i

= |tC0|2 + 3|tC1|2 cos2 θα + 5

16
|tC2|2(1 + 3 cos 2θα )2+ 7

64
|tC3|2(3 cos θα +5 cos 3θα )2+ 2

√
3|tC0||tC1| cos(δC1 − δC0) cos θα

+
√

5

2
|tC0||tC2| cos(δC2 − δC0)(1 + 3 cos 2θα ) +

√
7

4
|tC0||tC3| cos(δC3 − δC0)(3 cos θα + 5 cos 3θα )

+
√

15

4
|tC1||tC2| cos(δC2 − δC1)(5 cos θα + 3 cos 3θα ) +

√
21

8
|tC1||tC3| cos(δC3 − δC1)(3 + 8 cos 2θα + 5 cos 4θα )

+
√

35

32
|tC2||tC3| cos(δC3 − δC2)(30 cos θα + 19 cos 3θα + 15 cos 5θα ), (A5)

RT = X 1,1
f i + X −1,−1

f i

= 3

2
|tE1|2 sin2 θα + 15

8
|tE2|2 sin2 2θα + 21

256
|tE3|2(sin 2θα + 5 sin 3θα )2

+ 3
√

5

2
|tE1||tE2| cos(δE2 − δE1)(sin θα sin 2θα ) + 3

2

√
5

2
|tE1||tE3| cos(δE3 − δE1)(sin2 2θα − sin4 θα )

+ 3

4

√
35

2
|tE2||tE3| cos(δE3 − δE2) sin 2θα (sin θα + sin 3θα − sin3 θα ), (A6)

RT T = X 1,−1
f i + X −1,1

f i = −RT cos 2φα. (A7)

RT L = −2Re
[
X 0,1

f i − X 0,−1
f i

]
= cos φα

{
−2

√
3|tC0||tE1| cos(δE1 − δC0) sin θα −

√
15|tC0||tE2| cos(δE2 − δC0) sin 2θα

− 1

4

√
21

2
|tC0||tE3| cos(δE3 − δC0)(sin θα + 5 sin 3θα ) − 3|tC1||tE1| cos(δC1 − δE1) sin 2θα

− 3
√

5

2
|tC1||tE2| cos(δC1 − δE2)(sin θα + sin 3θα ) − 3

8

√
7

2
|tC1||tE3| cos(δC1 − δE3)(6 sin 2θα + 5 sin 4θα )

+
√

15

4
|tC2||tE1| cos(δC2 − δE1)(sin θα − 3 sin 3θα ) − 5

√
3

8
|tC2||tE2| cos(δC2 − δE2)(2 sin 2θα − 3 sin 4θα )

+ 1

32

√
3

70
|tC2||tE3| cos(δC2 − δE3)(278 sin θα − 455 sin 3θα − 525 sin 5θα )
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+
√

21

8
|tC3||tE1| cos(δC3 − δE1)(2 sin 2θα − 5 sin 4θα )

+
√

105

16
|tC3||tE2| cos(δC3 − δE2)(2 sin θα − 3 sin 3θα − 5 sin 5θα )

− 7

64

√
3

2
|tC3||tE3| cos(δC3 − δE3)(13 sin 2θα + 20 sin 4θα + 25 sin 6θα )

}
. (A8)
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[31] I. Friščić, Electro-disintegration of 16O as a tool for investigat-
ing the astrophysical 12C(α, γ )16O reaction, in 12th European
Research Conference on Electromagnetic Interactions with
Nucleons and Nuclei (2017), http://einnconference.org/
2017/wp-content/uploads/2017/10/EINN-2017-Conference-
Abstracts-2810.pdf.

[32] S. Lunkenheimer, Studies of the nucleosynthesis 12C(α, γ )16O
in inverse kinematic for the MAGIX experiment on MESA,
WE-Heraeus-Seminar (2017), http://wwwa1.kph.uni-mainz.de/
WE-Heraeus-Seminar/650-Program1.pdf.

[33] A. S. Raskin and T. W. Donnelly, Ann. Phys. 191, 78 (1989).
[34] F. Hug, K. Aulenbacher, R. Heine, B. Ledroit, and D. Simon, in

Proceedings of the Linear Accelerator Conference (LINAC’16),
East Lansing, MI, USA, 25–30 Sept. 2016, Vol. 28 (JACoW,
Geneva, Switzerland, 2017), pp. 313–315.

[35] G. H. Hoffstaetter, D. Trbojevic, C. Mayes, N. Banerjee, J.
Barley, I. Bazarov, A. Bartnik, J. S. Berg, S. Brooks, D. Burke
et al., arXiv:1706.04245 [physics.acc-ph].

025804-28

https://doi.org/10.1146/annurev.ns.40.120190.000401
https://doi.org/10.1146/annurev.ns.40.120190.000401
https://doi.org/10.1146/annurev.ns.40.120190.000401
https://doi.org/10.1146/annurev.ns.40.120190.000401
https://doi.org/10.1016/S0375-9474(03)00673-0
https://doi.org/10.1016/S0375-9474(03)00673-0
https://doi.org/10.1016/S0375-9474(03)00673-0
https://doi.org/10.1016/S0375-9474(03)00673-0
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1016/0375-9474(74)90470-9
https://doi.org/10.1016/0375-9474(74)90470-9
https://doi.org/10.1016/0375-9474(74)90470-9
https://doi.org/10.1016/0375-9474(74)90470-9
https://doi.org/10.1016/0375-9474(87)90555-0
https://doi.org/10.1016/0375-9474(87)90555-0
https://doi.org/10.1016/0375-9474(87)90555-0
https://doi.org/10.1016/0375-9474(87)90555-0
https://doi.org/10.1103/PhysRevLett.60.1475
https://doi.org/10.1103/PhysRevLett.60.1475
https://doi.org/10.1103/PhysRevLett.60.1475
https://doi.org/10.1103/PhysRevLett.60.1475
https://doi.org/10.1103/PhysRevC.54.1982
https://doi.org/10.1103/PhysRevC.54.1982
https://doi.org/10.1103/PhysRevC.54.1982
https://doi.org/10.1103/PhysRevC.54.1982
https://doi.org/10.1007/s100500050369
https://doi.org/10.1007/s100500050369
https://doi.org/10.1007/s100500050369
https://doi.org/10.1007/s100500050369
https://doi.org/10.1007/s100500170075
https://doi.org/10.1007/s100500170075
https://doi.org/10.1007/s100500170075
https://doi.org/10.1007/s100500170075
https://doi.org/10.1103/PhysRevLett.86.3244
https://doi.org/10.1103/PhysRevLett.86.3244
https://doi.org/10.1103/PhysRevLett.86.3244
https://doi.org/10.1103/PhysRevLett.86.3244
https://doi.org/10.1140/epja/i2005-10175-2
https://doi.org/10.1140/epja/i2005-10175-2
https://doi.org/10.1140/epja/i2005-10175-2
https://doi.org/10.1140/epja/i2005-10175-2
https://doi.org/10.1103/PhysRevC.73.055801
https://doi.org/10.1103/PhysRevC.73.055801
https://doi.org/10.1103/PhysRevC.73.055801
https://doi.org/10.1103/PhysRevC.73.055801
https://doi.org/10.1103/PhysRevC.80.065802
https://doi.org/10.1103/PhysRevC.80.065802
https://doi.org/10.1103/PhysRevC.80.065802
https://doi.org/10.1103/PhysRevC.80.065802
https://doi.org/10.1016/j.physletb.2011.08.061
https://doi.org/10.1016/j.physletb.2011.08.061
https://doi.org/10.1016/j.physletb.2011.08.061
https://doi.org/10.1016/j.physletb.2011.08.061
https://doi.org/10.1103/PhysRevC.86.015805
https://doi.org/10.1103/PhysRevC.86.015805
https://doi.org/10.1103/PhysRevC.86.015805
https://doi.org/10.1103/PhysRevC.86.015805
https://doi.org/10.1103/PhysRevLett.70.726
https://doi.org/10.1103/PhysRevLett.70.726
https://doi.org/10.1103/PhysRevLett.70.726
https://doi.org/10.1103/PhysRevLett.70.726
https://doi.org/10.1103/PhysRevC.50.1194
https://doi.org/10.1103/PhysRevC.50.1194
https://doi.org/10.1103/PhysRevC.50.1194
https://doi.org/10.1103/PhysRevC.50.1194
https://doi.org/10.1103/PhysRevC.81.045809
https://doi.org/10.1103/PhysRevC.81.045809
https://doi.org/10.1103/PhysRevC.81.045809
https://doi.org/10.1103/PhysRevC.81.045809
https://doi.org/10.1016/0375-9474(87)90436-2
https://doi.org/10.1016/0375-9474(87)90436-2
https://doi.org/10.1016/0375-9474(87)90436-2
https://doi.org/10.1016/0375-9474(87)90436-2
https://doi.org/10.1103/PhysRevC.79.055803
https://doi.org/10.1103/PhysRevC.79.055803
https://doi.org/10.1103/PhysRevC.79.055803
https://doi.org/10.1103/PhysRevC.79.055803
https://doi.org/10.1103/PhysRevC.81.045805
https://doi.org/10.1103/PhysRevC.81.045805
https://doi.org/10.1103/PhysRevC.81.045805
https://doi.org/10.1103/PhysRevC.81.045805
https://doi.org/10.1103/RevModPhys.89.035007
https://doi.org/10.1103/RevModPhys.89.035007
https://doi.org/10.1103/RevModPhys.89.035007
https://doi.org/10.1103/RevModPhys.89.035007
https://doi.org/10.1016/j.nima.2015.01.060
https://doi.org/10.1016/j.nima.2015.01.060
https://doi.org/10.1016/j.nima.2015.01.060
https://doi.org/10.1016/j.nima.2015.01.060
http://arxiv.org/abs/arXiv:1809.10176
https://www.jlab.org/exp_prog/proposals/13/PR12-13-005.pdf
https://doi.org/10.1088/1748-0221/5/12/P12004
https://doi.org/10.1088/1748-0221/5/12/P12004
https://doi.org/10.1088/1748-0221/5/12/P12004
https://doi.org/10.1088/1748-0221/5/12/P12004
http://einnconference.org/2017/wp-content/uploads/2017/10/EINN-2017-Conference-Abstracts-2810.pdf
http://wwwa1.kph.uni-mainz.de/WE-Heraeus-Seminar/650-Program1.pdf
https://doi.org/10.1016/0003-4916(89)90337-0
https://doi.org/10.1016/0003-4916(89)90337-0
https://doi.org/10.1016/0003-4916(89)90337-0
https://doi.org/10.1016/0003-4916(89)90337-0
http://arxiv.org/abs/arXiv:1706.04245


NEW APPROACH TO DETERMINING RADIATIVE CAPTURE … PHYSICAL REVIEW C 100, 025804 (2019)

[36] S. Grieser, D. Bonaventura, P. Brand, C. Hargens, B. Hetz, L.
Leßmann, C. Westphälinger, and A. Khoukaz, Nucl. Instrum.
Methods Phys. Res. A 906, 120 (2018).

[37] Workshop to Explore Physics Opportunities with Intense, Polar-
ized Electron Beams up to 300 MeV, Cambridge, MA, March
14–16, 2013, edited by R. Carlini, F. Maas, and R. Milner, AIP
Conf. Proc. No. 1563 (AIP, New York, 2013).

[38] T. W. Donnelly, in The Nuclear Many-Body Problem 2001,
edited by W. Nazarewicz and D. Vretenar (Springer, Dordrecht,
2002), pp. 19–26.

[39] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, New York, 1964).

[40] T. W. Donnelly and A. S. Raskin, Ann. Phys. 169, 247 (1986).
[41] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(Springer, New York, 1979).
[42] I. Sick, E. B. Hughes, T. W. Donnelly, J. D. Walecka, and G. E.

Walker, Phys. Rev. Lett. 23, 1117 (1969).
[43] M. E. Rose, Phys. Rev. 91, 610 (1953).
[44] F. C. Barker and T. Kajino, Aust. J. Phys. 44, 369 (1991).
[45] F. C. Barker, private communication to P. Dyer and C. A.

Barnes, Nucl. Phys. A 233, 495 (1974).
[46] L. D. Knutson, Phys. Rev. C 59, 2152 (1999).
[47] K. M. Watson, Phys. Rev. 95, 228 (1954).
[48] C. R. Brune, Phys. Rev. C 64, 055803 (2001).
[49] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257

(1958).
[50] G. D. Meyer, E. C. Aschenauer, H. P. Blok, D. Groep, K. Hicks,

H. Holvoet, E. Jans, L. Lapikás, B. Lannoy, G. J. L. Nooren
et al., Phys. Lett. B 513, 258 (2001).

[51] J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. D. Bièvre,
M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk
et al., Pure Appl. Chem. 88, 293 (2016).

[52] https://wiki.jlab.org/ciswiki/index.php/Simulations_and_
Backgrounds#Relevant_Theoretical_Cross_Sections.

[53] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum.
Methods Phys. Res. B 268, 1818 (2010).

[54] http://www.srim.org/.
[55] E. Köhler, D. Bonaventura, S. Grieser, A.-K. Hergemoller, H.-

W. Ortjohann, A. Täschner, A. Zannotti, A. Khoukaz et al.,
GSI Scientific Report 2012, GSI-SR2012-PHN-HSD-EXP-12,
GSI Report 2013-1 (GSI Helmholtzzentrum für Schwerionen-
forschung, Darmstadt, 2013), p. 18.

[56] A. J. Kordyasz, N. L. Neindre, M. Parlog, G. Casini, R.
Bougault, G. Poggi, A. Bednarek, M. Kowalczyk, O. Lopez,
Y. Merrer et al., Eur. Phys. J. A 51, 5 (2015).

[57] P. G. Friedman, K. J. Bertsche, M. C. Michel, D. E. Morris,
R. A. Muller, and P. P. Tans, Rev. Sci. Instrum. 59, 98
(1988).

[58] H. Kumagai, T. Ohnishi, N. Fukuda, H. Takeda, D. Kameda, N.
Inabe, K. Yoshida, and T. Kubo, Nucl. Instr. Meth. Phys. Res. B
317, 717 (2013).

[59] F. J. Iguaz, S. Panebianco, M. Axiotis, F. Druillole, G.
Fanourakis, T. Geralis, I. Giomataris, S. Harissopulos, A.
Lagoyannis, and T. Papaevangelou, Nucl. Instr. Meth. Phys.
Res. A 735, 399 (2014).

[60] C. Deaconu, M. Leyton, R. Corliss, G. Druitt, R. Eggleston,
N. Guerrero, S. Henderson, J. Lopez, J. Monroe, and P. Fisher,
Phys. Rev. D 95, 122002 (2017).

[61] R. A. Astabatyan, M. P. Ivanov, S. M. Lukyanov, E. R.
Markaryan, V. A. Maslov, Yu. E. Penionzhkevich, and R. V.
Revenko, Instrum. Exp. Tech. 55, 335 (2012).

[62] A. Breskin, R. Chechik, Z. Fraenkel, P. Jacobs, I. Tserruya, and
N. Zwang, Nucl. Instr. Meth. Phys. Res. A 221, 363 (1984).

[63] D. Trbojevic et al., in Proceedings of the International Par-
ticle Accelerator Conference (IPAC’17), Copenhagen, Den-
mark, May, 2017, Vol. 8 (JACoW, Geneva, Switzerland, 2017),
pp. 1285–1289.

[64] G. D. Lafferty and T. R. Wyatt, Nucl. Instrum. Methods Phys.
Res. A 355, 541 (1995).

[65] R. Alarcon, S. Balascuta, S. V. Benson, W. Bertozzi, J. R.
Boyce, R. Cowan, D. Douglas, P. Evtushenko, P. Fisher, E. Ihlo
et al., Phys. Rev. Lett. 111, 164801 (2013).

025804-29

https://doi.org/10.1016/j.nima.2018.07.076
https://doi.org/10.1016/j.nima.2018.07.076
https://doi.org/10.1016/j.nima.2018.07.076
https://doi.org/10.1016/j.nima.2018.07.076
https://doi.org/10.1016/0003-4916(86)90173-9
https://doi.org/10.1016/0003-4916(86)90173-9
https://doi.org/10.1016/0003-4916(86)90173-9
https://doi.org/10.1016/0003-4916(86)90173-9
https://doi.org/10.1103/PhysRevLett.23.1117
https://doi.org/10.1103/PhysRevLett.23.1117
https://doi.org/10.1103/PhysRevLett.23.1117
https://doi.org/10.1103/PhysRevLett.23.1117
https://doi.org/10.1103/PhysRev.91.610
https://doi.org/10.1103/PhysRev.91.610
https://doi.org/10.1103/PhysRev.91.610
https://doi.org/10.1103/PhysRev.91.610
https://doi.org/10.1071/PH910369
https://doi.org/10.1071/PH910369
https://doi.org/10.1071/PH910369
https://doi.org/10.1071/PH910369
https://doi.org/10.1103/PhysRevC.59.2152
https://doi.org/10.1103/PhysRevC.59.2152
https://doi.org/10.1103/PhysRevC.59.2152
https://doi.org/10.1103/PhysRevC.59.2152
https://doi.org/10.1103/PhysRev.95.228
https://doi.org/10.1103/PhysRev.95.228
https://doi.org/10.1103/PhysRev.95.228
https://doi.org/10.1103/PhysRev.95.228
https://doi.org/10.1103/PhysRevC.64.055803
https://doi.org/10.1103/PhysRevC.64.055803
https://doi.org/10.1103/PhysRevC.64.055803
https://doi.org/10.1103/PhysRevC.64.055803
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1016/S0370-2693(01)00750-X
https://doi.org/10.1016/S0370-2693(01)00750-X
https://doi.org/10.1016/S0370-2693(01)00750-X
https://doi.org/10.1016/S0370-2693(01)00750-X
https://doi.org/10.1515/pac-2015-0503
https://doi.org/10.1515/pac-2015-0503
https://doi.org/10.1515/pac-2015-0503
https://doi.org/10.1515/pac-2015-0503
https://wiki.jlab.org/ciswiki/index.php/Simulations_and_Backgrounds#Relevant_Theoretical_Cross_Sections
https://doi.org/10.1016/j.nimb.2010.02.091
https://doi.org/10.1016/j.nimb.2010.02.091
https://doi.org/10.1016/j.nimb.2010.02.091
https://doi.org/10.1016/j.nimb.2010.02.091
http://www.srim.org/
https://doi.org/10.1140/epja/i2015-15015-2
https://doi.org/10.1140/epja/i2015-15015-2
https://doi.org/10.1140/epja/i2015-15015-2
https://doi.org/10.1140/epja/i2015-15015-2
https://doi.org/10.1063/1.1139973
https://doi.org/10.1063/1.1139973
https://doi.org/10.1063/1.1139973
https://doi.org/10.1063/1.1139973
https://doi.org/10.1016/j.nimb.2013.08.050
https://doi.org/10.1016/j.nimb.2013.08.050
https://doi.org/10.1016/j.nimb.2013.08.050
https://doi.org/10.1016/j.nimb.2013.08.050
https://doi.org/10.1016/j.nima.2013.09.061
https://doi.org/10.1016/j.nima.2013.09.061
https://doi.org/10.1016/j.nima.2013.09.061
https://doi.org/10.1016/j.nima.2013.09.061
https://doi.org/10.1103/PhysRevD.95.122002
https://doi.org/10.1103/PhysRevD.95.122002
https://doi.org/10.1103/PhysRevD.95.122002
https://doi.org/10.1103/PhysRevD.95.122002
https://doi.org/10.1134/S0020441212020017
https://doi.org/10.1134/S0020441212020017
https://doi.org/10.1134/S0020441212020017
https://doi.org/10.1134/S0020441212020017
https://doi.org/10.1016/0167-5087(84)90007-3
https://doi.org/10.1016/0167-5087(84)90007-3
https://doi.org/10.1016/0167-5087(84)90007-3
https://doi.org/10.1016/0167-5087(84)90007-3
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1103/PhysRevLett.111.164801
https://doi.org/10.1103/PhysRevLett.111.164801
https://doi.org/10.1103/PhysRevLett.111.164801
https://doi.org/10.1103/PhysRevLett.111.164801

