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An immobile charged species provides a charged medium for transport of charge carriers that is exploited
in many applications, such as permselective membranes, doped semiconductors, biological ion channels, as
well as porous media and microchannels with surface charges. In this paper, we theoretically study the
electrochemical impedance of electrodiffusion in a charged medium by employing the Nernst-Planck equation
and the electroneutrality condition with a background charge density. The impedance response is obtained under
different dc bias conditions extending above the diffusion-limiting bias. We find a transition in the impedance
behavior around the diffusion-limiting bias and present an analytical approximation for a weakly charged
medium under an overlimiting bias.
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I. INTRODUCTION

Transport of charged species relative to the surrounding
medium is driven by gradients in their concentrations (i.e., dif-
fusion) and in electric potential (i.e., migration or drift), which
is therefore called electrodiffusion. The Nernst-Planck equa-
tion [1,2], also known as the drift-diffusion or the diffusion-
migration equation, has successfully described electrodiffu-
sion in various fields, including batteries [3], fuel cells [4],
semiconductors [5], solar cells [6], ion-exchange membranes
[7–10], as well as biological systems [11–13], although its
theoretical validity is restricted to dilute systems [14–16]. It
is solved either under the electroneutrality condition in the
thin-double-layer limit [17–19], or more generally, under the
electric potential that is determined self-consistently from the
charge density via the Poisson equation governing electro-
statics [16,20,21]. In the latter case, the model is called the
Poisson-Nernst-Planck (PNP) set of equations, whose steady-
state solution leads to the Poisson-Boltzmann distribution and
the Gouy-Chapman double-layer model [22]. Recently, its
transient response was thoroughly reviewed by Bazant and
colleagues [16]. Its impedance response has also been studied
extensively by Macdonald and Franceschetti [19,21,23–27],
Buck and Brumlev [28–30], Jamnik and Maier [31–33], Moya
and Horno [34–36], and others [37–39] for various boundary
conditions. When there is an excess amount of supporting
electrolyte or when there is a large disparity in the mobilities
of the charge carriers, the electrodiffusion models reduce
to the neutral diffusion equation, or Fick’s law, exhibiting
Warburg behavior in its impedance response [19,40,41].

In many applications, there can be an immobile charged
species that electrostatically interacts with the charge carriers.
For example, in doped semiconductors, the dopants become
ionized and provide immobile charges, either positive if the

*Corresponding author: bazant@mit.edu

dopants are donors or negative if acceptors [5]. Permselective
membranes, often used in desalination and chemical separa-
tions, typically have charged functional groups attached onto
the polymer backbone chain [10,15,34,42,43]. In addition,
ion channels in cell membranes are proteins that have a
pore structure when open, whose inner surface consists of
ionized groups [11–13,44,45]. The immobile charged species
effectively provides a charged medium for the transport of
charge carriers. Therefore, as suggested by Teorell, Meyer,
and Sievers [8–10] for membranes, the immobile charge
species can be considered as a background charge density
that is added to the charge density of the mobile charge
carriers either in the electroneutrality condition or the Poisson
equation. Even for microchannels or porous media where the
majority of charge carriers are out of the double layer on their
local surface, it was recently shown that the surface charge
can be treated as a homogenized background charge density
in upscaled macroscopic transport models [46].

The electrical response of electrodiffusion in the pres-
ence of an immobile charged species has been studied for
the aforementioned applications in various setups, including
steady state [17,18,47–50], transient [50–55], and impedance
[15,34,56–58]. When the immobile species has the opposite
charge to the active charge carrier that carries the current
at boundaries, the current may exceed the diffusion limit in
steady state [17,18]. A depletion region is formed near the
sink boundary where the concentration of charge carriers in
the bulk electrolyte diminishes. The overlimiting current is
sustained by either an extra conductivity provided by the
charge carriers screening the immobile charges or by electro-
osmotic circulation and instability if the medium is fluid, in
the depletion region [18,59]. The transient response under
an overlimiting current was thoroughly studied by Zangle
et al. [52–55], Mani and Bazant [60], and Yaroshchuk [61],
where they showed concentration polarization propagating as
a shock wave. Also, Yan et al. [62] and Khoo and Bazant
[50] have recently studied the linear sweep voltammetry of
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electrodiffusion in a charged medium with different boundary
conditions. On the other hand, although there are a few studies
on the impedance response in the context of a permselective
membrane [56–58], a solar cell [6], and a microchannel
[63,64], a general theory of the electrodiffusion impedance
in a charged medium is not yet available to the best of our
knowledge.

In this paper, we present a theoretical model for the elec-
trochemical impedance of electrodiffusion in the presence
of an immobile charged species and study its behavior un-
der different dc biases. We consider a system that has two
symmetric, oppositely charged charge carriers, which can be
binary electrolytes in a liquid solution, electrons and holes
in a semiconductor, or electrons and cations in a mixed
conductor. No reaction or generation in the bulk is assumed,
as well as negligible convection, as a first attempt to focus on
the effect of the immobile charged species and the dc bias.
Their contributions could be important in some applications,
for which the model in this paper should be modified ac-
cordingly [6,18,65,66]. We consider two cell configurations:
(i) a reservoir configuration in which one side of the system is
exposed to a reservoir that maintains constant concentrations
and potential, and the other side is in contact with a selective
boundary that accepts only the active charge carrier, and
(ii) a symmetric configuration in which both sides are in
contact with the selective boundaries. Our model isolates the
response of the bulk electrodiffusion from the contributions
of the interfaces and displacement current. For many appli-
cations where the electric double layer is much thinner than
the system length scale (i.e., thin-double-layer limit) [16,67],
the interfacial impedance appears well separated in frequency
from that of the bulk transport [19,27]. The displacement
current also contributes at much higher frequencies. For a
linearized response such as impedance, their contributions
could be obtained separately and added to the present model
to examine the total cell impedance for the entire frequency
range, as shown in our following study [68].

Beginning in Sec. II, we will first set up governing equa-
tions and boundary conditions, nondimensionalize variables,
and then introduce a small perturbation to the system. In
Sec. III, the zero-order terms are solved analytically to study
the steady-state behavior. The first-order terms are then solved
in Sec. IV, given the zero-order solutions, which provides
the impedance response. We investigate the solutions for
different combinations of immobile charge density and dc
bias including those in the overlimiting regime. Asymptotic
expressions for low- and high-frequency limits are obtained
for the small- and large-bias regimes. Lastly, we also propose
and validate a two-zone approximation for a large bias above
the limiting current in Sec. V.

II. MODEL

Consider a one-dimensional system from x = 0 to x = L,
containing two oppositely charged mobile species and another
charged immobile species. It could be an unsupported liquid
binary electrolyte in a permselective membrane with charged
functional groups, or in a porous medium or a microchannel
with surface charges. It could also be a solid-state system,
such as a semiconductor or a mixed ion-electron conductor
containing ionized dopants. The Nernst-Planck equation is

employed to describe electrodiffusion of the charge carriers.
Assuming no generation and negligible convection,

∂c±
∂t

= −∂F±
∂x

, (1)

F± = −D

(
∂c±
∂x

± zec±
kBT

∂φ

∂x

)
, (2)

where c±(t, x) and F±(t, x) are the concentrations and the
fluxes, respectively, of the positive and the negative charge
carriers, and φ(t, x) is the electric potential. t and x are the
time and the position variables. e, kB, and T are the electron
charge, the Boltzmann constant, and the absolute temperature,
respectively. Here we assumed a symmetric charge number
z and a symmetric chemical diffusivity D. Although D is
generally a function of concentration, we consider it constant
for simplicity. For a porous medium or a microchannel, D
is the effective diffusivity corrected by the porosity and the
tortuosity [69] and φ is the electric potential in the solution
phase.

Assuming thin double layers, we isolate the quasineutral
bulk and adopt the local electroneutrality condition to replace
the Poisson equation. The immobile charged species provides
as a background charge density in the neutrality condition

0 = zec+ − zec− + ρ, (3)

where ρ is the charge density of the immobile species. For a
porous medium or microchannel, Eq. (3) means macroscopic
electroneutrality, which is valid as long as the pores are
larger than a couple of nanometers [70,71]. Then ρ becomes
the homogenized density of the surface charge; ρ = avσs/εp,
where av is the volumetric area, σs is the surface charge, and εp

is the porosity (unity for a straight microchannel) [46,50,72].
This condition constrains c+ and c− to vary exactly in phase
with each other, keeping a constant offset ρ/ze in bulk. The
results in this paper are illustrated by assigning the positive
charge carriers to be the active carrier. This choice is arbitrary
and the results are symmetric in ρ, if the negative charge
carriers become the active carriers.

Let us define the dimensionless variables x̃ = x/L, t̃ =
Dt/L2, ρ̃ = ρ/2zec0, φ̃ = zeφ/kBT , and c̃ = c−/c0 = c+/c0 +
2ρ̃, where c0 is the initial anion concentration at equilibrium.
Then by Eqs. (2) and (3), the dimensionless fluxes (F̃± =
LF±/Dc0) become

F̃+ = −∂ c̃

∂ x̃
− (c̃ − 2ρ̃ )

∂φ̃

∂ x̃
, (4)

F̃− = −∂ c̃

∂ x̃
+ c̃

∂φ̃

∂ x̃
. (5)

Upon plugging the flux equations into the conservation equa-
tions given by Eq. (1), we add and subtract the conservation
equations of the positive and the negative charge carriers.
Thus, the following dimensionless governing equations are
obtained for c̃(t̃, x̃) and φ̃(t̃, x̃):

∂ c̃

∂ t̃
= ∂2c̃

∂ x̃2
− ρ̃

∂2φ̃

∂ x̃2
, (6)

0 = ∂

∂ x̃

(
(c̃ − ρ̃)

∂φ̃

∂ x̃

)
. (7)
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FIG. 1. Two cell configurations and their boundary conditions:
(a) reservoir and (b) symmetric configurations.

The first equation describes conservation of the total number
of charge carriers, whereas the latter equation describes con-
servation of the net electric charge. By assuming the local neu-
trality condition in Eq. (3), we are able to reduce the number
of concentration variables and drop the time derivative for the
conservation of net electric charge.

As for the boundary conditions, we consider two common
cell configurations as shown in Fig. 1. In both configurations,
a potential (−Ṽ = −zeV /kBT ) is applied at the selective
boundary at x̃ = 1, where only the active carrier (the positive
charge carrier in this paper) can pass the current and the other
carrier is completely blocked (F̃− = 0). Since we are isolating
the bulk electrodiffusion, the boundary conditions are defined
inside the transport medium, not involving charge-transfer
kinetics or double-layer charging dynamics at the interfaces.
The influence of interfacial impedance is discussed in detail
elsewhere by Macdonald using the Chang-Jaffe kinetics [73]
and by ourselves using the Butler-Volmer kinetics [68]. There-
fore, in this work, the boundary conditions at x̃ = 1 are

φ̃ = −Ṽ , (8)

dc̃

dx̃
− c̃

dφ̃

dx̃
= 0. (9)

In the reservoir configuration, Fig. 1(a), an ideal reservoir
maintains c̃ and φ̃ constant on the other side (x̃ = 0). We set φ̃

at x̃ = 0 to be zero as a reference value. Therefore, the bound-
ary conditions for the reservoir configuration at x̃ = 0 are

c̃ = 1, (10)

φ̃ = 0. (11)

In the symmetric configuration, Fig. 1(b), the boundary at
x̃ = 0 has the same semiblocking condition (F̃− = 0) as well,
identical to the boundary at x̃ = 1. The boundary conditions
for the symmetric configuration at x̃ = 0 are

dc̃

dx̃
− c̃

dφ̃

dx̃
= 0, (12)

φ̃ = 0. (13)

The two blocking conditions for the negative charge carrier in
the symmetric configuration do not specify a unique solution.
To obtain a unique solution, the total number of the negative
charge carriers should be conserved, which adds the following
integral constraint for the symmetric configuration:∫ 1

0
c̃dx̃ = 1. (14)

Regardless of configuration, the dimensionless system is
governed by two dimensionless parameters, ρ̃ and Ṽ , which
represent the charge density of the immobile species and the
magnitude of the applied bias, respectively. It is also possible
to specify the applied bias by the current ( j) as well. Disre-
garding the displacement current, the current comes from the
charge carrier fluxes: j = ze(F+ − F−). When scaled by the
diffusion-limiting current ( jlim = 2zeDc0/L), the dimension-
less current ( j̃ = j/jlim) can be obtained by

j̃ = −(c̃ − ρ̃ )
∂φ̃

∂ x̃
. (15)

j̃ is constant throughout the system domain due to the local
neutrality condition in Eq. (3). In this paper, we refer to j̃ to
specify the magnitude of the dc bias rather than Ṽ , because it
gives a more relevant scale to electrodiffusion.

The system is perturbed by a small sinusoidal stimulus
with a frequency ω̃ = ωL2/D in either Ṽ or j̃ to calculate the
impedance. When the amplitude is small enough, variables
can then be expanded according to the perturbation theory:

c̃(x̃, t̃ ) = c̃(0)(x̃) + εc̃(1)(x̃)eiω̃t̃ + O(ε2),

φ̃(x̃, t̃ ) = φ̃(0)(x̃) + εφ̃(1)(x̃)eiω̃t̃ + O(ε2),

j̃(t̃ ) = j̃ (0) + ε j̃ (1)eiω̃t̃ + O(ε2),

Ṽ (t̃ ) = Ṽ (0) + εṼ (1)eiω̃t̃ + O(ε2), (16)

where ε is an arbitrary small number that represents the
amplitude of the AC perturbation. Other variables may be
expanded in the same manner as well. Upon substitution of
the expanded variables into Eqs. (6)–(15), the collection of
O(1) terms can be first solved for the reference steady state
under a dc bias. Given the steady-state solution, the collection
of O(ε) terms can be solved for the perturbation around the
steady state, which is then used for calculating the impedance.

III. STEADY STATE

Impedance is measured by applying a perturbation around
a reference steady state. By achieving different steady states
by dc bias, we can study nonlinear behavior of charge carriers
via impedance spectroscopy [74]. To interpret such results,
we need to incorporate the steady state in an impedance
model. Although the steady-state solution under dc bias has
already been studied in Refs. [18,50], we revisit its behavior
for completeness of the paper. The steady-state solution is
obtained by solving the O(1) terms, and steps involved in
obtaining an analytical solution are presented in Appendix A.
For the reservoir configuration, the solution is

j̃ (0) = 1 − (
e−Ṽ (0) + ρ̃Ṽ (0)), (17)
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FIG. 2. Steady-state solution for the reservoir configuration: (a) current-voltage curves for different ρ̃. (b) Concentration and (c)
potential distributions for ρ̃ = −0.01 under different dc biases. For the symmetric configuration: (d) current-voltage curves for different ρ̃.
(e) Concentration and (f) potential distributions for ρ̃ = −0.01 under different dc biases.

c̃(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ρ̃W0

[
− 1

ρ̃
exp

{
( j̃ (0)x̃ − 1)

ρ̃

}]
, if ρ̃ < 0,

1 − j̃ (0)x̃, if ρ̃ = 0,

−ρ̃W−1

[
− 1

ρ̃
exp

{
( j̃ (0)x̃ − 1)

ρ̃

}]
, if ρ̃ > 0,

(18)

φ̃(0) = log(c̃(0) ), (19)

where W0 and W−1 are the principal (upper) and the lower
branches of the Lambert W function, respectively [75].

Figure 2(a) shows j̃ (0) versus Ṽ (0) for ρ̃ ∈
{−0.1,−0.01, 0, 0.01, 0.1}. Without the immobile charge
(ρ̃ = 0), j̃ (0) saturates at the diffusion-limiting current
( j̃ (0) = 1). If the immobile species and the active carriers are
cocharged (ρ̃ > 0), j̃ (0) is limited by 1 − ρ̃[2 − log(2ρ̃ )], at
which c̃(0) reaches 2ρ̃ at x̃ = 1. When charge-transfer kinetics
is considered, the current limit cannot be reached with a finite
potential bias, since the charge-transfer resistance diverges
due to the diminishing concentration at the boundary. On
the other hand, if the immobile species and the active carrier
are countercharged (ρ̃ < 0), j̃ (0) can exceed the limiting
current above which it keeps a constant slope of −ρ̃. In the
overlimiting regime, the current is sustained by the active
carriers that screen the immobile charge.

In Figs. 2(b) and 2(c), c̃(0) and φ̃(0) are plotted under
a varying dc bias for ρ̃ = −0.01. As a bias is applied, a
concentration gradient develops and it becomes steeper as
j̃ (0) increases. Below the limiting current, c̃(0) drops almost

linearly along x̃, while φ̃(0) shows a steeper drop closer to
the boundary at x̃ = 1. On the other hand, above the limiting
current, the depletion region appears near the boundary at
x̃ = 1, where c̃(0) diminishes and φ̃(0) shows a steep linear
decrease. Therefore, the contribution of electric migration
should be larger compared to that of diffusion in the depletion
region. Also, notice that the depletion region grows as j̃ (0)

increases. In the Supplemental Material [76], a MATLAB

script is attached which plots the steady-state solution for
the reservoir configuration with a given combination of ρ̃

and j̃ (0). When ρ̃ becomes more negative, the transition in
c̃(0) and φ̃(0) becomes smoother, which makes the depletion
region less distinctive. An analytical approximation for the
overlimiting regime is discussed in Sec. V.

For the symmetric configuration, an analytical solution can
also be obtained. Steps involved in solving the O(1) terms
are presented in Appendix A. The solution for the symmetric
configuration is

j̃ (0) = α
(
1 − e−Ṽ (0)) − ρ̃Ṽ (0), (20)

c̃(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ρ̃W0

[
−α

ρ̃
exp

{
( j̃ (0)x̃ − α)

ρ̃

}]
, if ρ̃ < 0,

α − j̃ (0)x̃, if ρ̃ = 0,

−ρ̃W−1

[
−α

ρ̃
exp

{
( j̃ (0)x̃ − α)

ρ̃

}]
, if ρ̃ > 0,

(21)

φ̃(0) = log

(
c̃(0)

α

)
, (22)
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where α is an intermediate parameter such that

α = (1 + ρ̃)
(
1 − e−Ṽ (0))

1 − e−2Ṽ (0)

+
√

(1 + ρ̃ )2
(
1 − e−Ṽ (0)

)2 − 2ρ̃Ṽ (0)
(
1 − e−2Ṽ (0)

)
1 − e−2Ṽ (0)

. (23)

It can be inferred by Eq. (22) that α = c̃(0)(x̃ = 0).
Figure 2(d) shows j̃ (0) versus Ṽ (0) for ρ̃ ∈ {−0.1, −

0.01, 0, 0.01, 0.1}. While its general behavior is similar to
Fig. 2(a), the diffusion-limiting current in the symmetric
configuration is twice that of the reservoir configuration. The
current is limited by 2 if ρ̃ = 0, or by α − ρ̃[2 − log(2ρ̃/α)] if
ρ̃ > 0, where α is implicitly determined by putting −Ṽ (0) =
log(2ρ̃/α) in Eq. (23). On the other hand, the overlimiting
regime is accessible if ρ̃ < 0. In Figs 2(e) and 2(f), c̃(0) and
φ̃(0) are plotted under a varying dc bias for ρ̃ = −0.01. When
j̃ (0) > 0, c̃(0) begins to have a gradient and c̃(0) at x̃ = 1
drops, which results in c̃(0) building up near the boundary
at x̃ = 0 due to the integral constraint in Eq. (14). It re-
sults in a steeper gradient, which enhances the transport and
makes the diffusion-limiting current twice higher than that
of the reservoir configuration. Other than that, c̃(0) and φ̃(0)

show similar behaviors to those of the reservoir configuration
[Figs. 2(b) and 2(c)]. In the Supplemental Material [76], a
MATLAB script is attached which plots the steady-state solution
for the symmetric configuration with a given combination of
ρ̃ and j̃ (0). An analytical approximation for the overlimiting
regime in the symmetric configuration is discussed in Sec. V
as well. The steady-state solutions are used in calculating the
O(ε) perturbation solutions in the next section.

IV. IMPEDANCE

While the O(1) solution corresponds to the reference
steady state under a dc bias, the O(ε) terms describe the
perturbation around it, which leads to the impedance solution.
The O(ε) governing equations are

iω̃c̃(1) = d2c̃(1)

dx̃2
− ρ̃

d2φ̃(1)

dx̃2
, (24)

0 = (c̃(0) − ρ̃ )
d2φ̃(1)

dx̃2
+ dc̃(0)

dx̃

dφ̃(1)

dx̃

+ dφ̃(0)

dx̃

dc̃(1)

dx̃
+ d2φ̃(0)

dx̃2
c̃(1). (25)

For the reservoir configuration, the O(ε) boundary conditions
are

c̃(1) = 0 at x̃ = 0, (26)

φ̃(1) = 0 at x̃ = 0, (27)

φ̃(1) = −Ṽ (1) at x̃ = 1, (28)

dc̃(1)

dx̃
= c̃(1) dφ̃(0)

dx̃
+ c̃(0) dφ̃(1)

dx̃
at x̃ = 1. (29)
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FIG. 3. Z̃ in the reservoir configuration with ρ̃ = −0.01 under
different dc biases: (a) j̃ (0) = 0.2 and 0.5, (b) j̃ (0) = 1.0, 1.5, and
2.0. The circular makers are Z̃ (ω̃ = 1).

This boundary value problem involves the O(1) solution
derived in the previous section. Since they are not elemen-
tary functions, Eqs. (24)–(29) should be solved numerically.
We attach our MATLAB script in the Supplemental Material,
which solves the boundary value problem and calculates the
impedance for any combinations of j̃ (0) and ρ̃ [76]. When the
O(ε) solution is obtained, combined with the O(1) solution,
the impedance (Z̃ = 2Dc0Z/kBT L) is calculated by

Z̃ = Ṽ (1)

j̃ (1)
= Ṽ (1)

−(c̃(0) − ρ̃)(dφ̃(1)/dx) − c̃(1)(dφ̃(0)/dx)
.

(30)

Figure 3 presents Z̃ under different biases on the complex
plane for the reservoir configuration with ρ̃ = −0.01. Below
the diffusion-limiting bias ( j̃ (0) < 1) as shown in Fig. 3(a),
the impedance of bulk electrodiffusion appears as a semicircle
that grows in both low-frequency and high-frequency limits
with increasing bias. At the high-frequency limit, it is dom-
inated by the O(ε) conduction with the steady-state conduc-
tivity that leads to the pure resistive behavior. The capacitive
contribution comes from the fluctuation in O(ε) conductivity
under the steady-state potential gradient, which turns back to
the resistive behavior at the lower-frequency limit when the
conductivity fluctuates in phase with Ṽ (1) and j̃ (1). Around
the diffusion-limiting bias ( j̃ (0) = 1), the semicircle becomes
suppressed, and then the impedance appears more like a finite-
length Warburg element under a bias above the diffusion limit
( j̃ (0) > 1), as shown in Fig. 3(b). Its overall magnitude also
starts converging above the limit. Such response comes from
the conduction in the depletion region and the diffusion out
of the depletion region, under an overlimiting bias. A detailed
discussion of this regime is presented in the next section with
an analytical approximation. Without any bias, the impedance
shrinks to a pure resistance of (1 − ρ̃)−1.

The transition along increasing bias becomes more ap-
parent by plotting the limiting behaviors as functions of
the applied bias j̃ (0). Figure 4(a) shows the low-frequency
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FIG. 4. Limiting behaviors of Z̃ as functions of j̃ (0) in the reser-
voir configuration with ρ̃ = −0.01: (a) R̃L and R̃H , and (b) θH .

resistance, R̃L = Z̃ (ω̃ → 0), and the high-frequency resis-
tance, R̃H = Z̃ (ω̃ → ∞). Both increase exponentially in the
underlimiting regime ( j̃ (0) < 1) and then converge to ρ̃−1 in
the overlimiting regime ( j̃ (0) > 1). Asymptotic expressions
of R̃L and R̃H are derived in Appendix B for the small-bias
limit ( j̃ (0) � 1) and in Appendix C for the large-bias limit
( j̃ (0) � 1):

R̃L( j̃ (0) � 1) � 1 − ρ̃

(1 − ρ̃)2 − j̃ (0)
, (31)

R̃L( j̃ (0) � 1) � 1

−ρ̃
, (32)

R̃H ( j̃ (0) � 1) � − (1 − ρ̃)

j̃ (0)
log

(
(1 − ρ̃ )2 − j̃ (0)

(1 − ρ̃)2

)
, (33)

R̃H ( j̃ (0) � 1) �
(

1

−ρ̃

)
j̃ (0) − 1

j̃ (0)
. (34)

They are compared to the numerical limiting behaviors in
Fig. 10 in Appendix A. In addition, Fig. 4(b) shows the
local phase angle at the high-frequency limit θH . In the
underlimiting regime, θH starts by −90°, which corresponds
to the semicircle shape on the complex plane, Fig. 3(a). It then
approaches −45° in the overlimiting regime as the impedance
transitions to the finite-length Warburg shape. If ρ̃ � 0, R̃L and
R̃H diverge before the diffusion-limiting bias. The maximum
current bias in the reservoir configuration is 1 if ρ̃ = 0 or
1 − ρ̃[2 − log(2ρ̃ )] if ρ̃ > 0, as discussed in Sec. III.

In a similar approach, the impedance for the symmetric
configuration can be obtained. Its O(ε) governing equations
are the same as the reservoir case, Eqs. (24) and (25). The
O(ε) boundary conditions for the symmetric configuration are

φ̃(1) = 0 at x̃ = 0, (35)

dc̃(1)

dx̃
= c̃(1) dφ̃(0)

dx̃
+ c̃(0) dφ̃(1)

dx̃
at x̃ = 0, (36)
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FIG. 5. Z̃ in the symmetric configuration with ρ̃ = −0.01 under
different dc biases: (a) j̃ (0) = 0.5 and 0.1, (b) j̃ (0) = 2.0, 3.0, and 4.0.
The circular makers are Z̃ (ω̃ = 1).

φ̃(1) = −Ṽ (1) at x̃ = 1, (37)

dc̃(1)

dx̃
= c̃(1) dφ̃(0)

dx̃
+ c̃(0) dφ̃(1)

dx̃
at x̃ = 1, (38)∫ 1

0
c̃(1)dx̃ = 0. (39)

To solve Eqs. (24), (25), and (35)–(39) with a typical solver
for boundary value problems, another field variable is intro-
duced, ỹ(1)(x̃) = ∫ x̃

0 c̃(1)(s)ds, which adds another governing
equation, dỹ(1)/dx̃ = c̃(1). Then the integral boundary condi-
tion, Eq. (39), is replaced by two new boundary conditions for
ỹ(1)(x̃): ỹ(1)(0) = 0 and ỹ(1)(1) = 1. The implementation can
be found in our MATLAB script attached in the Supplemental
Material [76], which solves the O(ε) problem and calculates
the impedance for the symmetric configuration with any com-
binations of j̃ (0) and ρ̃ [76].

Figure 5 shows Z̃ under different biases for the symmetric
configuration with ρ̃ = −0.01, and Fig. 6 shows the transition
of its limiting behaviors along increasing j̃ (0). Like in the
reservoir configuration, Z̃ appears similar to a semicircle on
the complex plane below the diffusion-limiting bias ( j̃ (0) <

2), whose R̃L and R̃H increase exponentially with increasing
j̃ (0), as shown in Fig. 6(a). However, the semicircle is tilted by
a small angle at the high-frequency limit due to the integral
constraint in the symmetric configuration, Eq. (14). Therefore,
θH starts less negative than −90° in Fig. 6(b). Then Z̃ shows
a transition around the diffusion-limiting bias ( j̃ (0) = 2), and
it appears like a finite-length Warburg element in the over-
limiting regime ( j̃ (0) > 2), as shown in Fig. 5(b). Similar
to the transition observed in the reservoir configuration, R̃L

and R̃H converge to ρ̃−1, and θH converges to -45 ° in the
overlimiting regime. Asymptotic expressions of R̃L and R̃H
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for the symmetric configuration are derived in Appendix B
for the small-bias limit ( j̃ (0) � 2) and in Appendix C for the
large-bias limit (( j̃ (0) � 2):

R̃L( j̃ (0) � 2) � 1 − ρ̃

2(1 − ρ̃ )2 − j̃ (0)
+ 1 − ρ̃

2(1 − ρ̃ )2 + j̃ (0)
, (40)

R̃L( j̃ (0) � 2) � 1

−ρ̃

(
1 − 1√

2 j̃ (0)

)
, (41)

R̃H ( j̃ (0) � 2) � − (1 − ρ̃)

j̃ (0)
log

(− j̃ (0) + 2(1 − ρ̃ )2

j̃ (0) + 2(1 − ρ̃ )2

)
, (42)

R̃H ( j̃ (0) � 2) � 1

−ρ̃

j̃ (0) −
√

2 j̃ (0)

j̃ (0)
. (43)

They are compared to the numerical limiting behaviors in
Fig. 10. The current bias j̃ (0) is limited by 2 if ρ̃ = 0, or by
α − ρ̃[2 − log(2ρ̃/α)] if ρ̃ > 0, as discussed in Sec. III, and
R̃L and R̃H diverge before the limiting current bias. Regardless
of ρ̃, Z̃ becomes a pure resistance of (1 − ρ̃)−1 without any
bias, same as the reservoir configuration.

Notice that our model focuses on the bulk electrodiffu-
sion without considering the contributions of the interfaces
and displacement current. Each of these additional contri-
butions would yield another relaxation behavior at higher
frequencies, usually well separated from the bulk features
[19,27,37,39,41]. Also, if the diffusivities of positive and
negative charge carriers are different, another finite-length
Warburg appears around the bulk diffusion frequency starting
from the unbiased condition. While we have isolated its
contribution out in this paper by assuming identical diffu-
sivities, the extra Warburg coming from unequal diffusivities
could appear merged with the bulk impedance studied in this
paper [19,37,39]. In our following study, we apply the model
and solution methods to a more general setup with unequal
diffusivities and charge numbers [68].
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FIG. 7. Spatial distributions of (a) c̃(0), (b) φ̃ (0), and (c) j̃ (0)
D and

j̃ (0)
C at an overlimiting current ( j̃ (0) = 2.0) in the reservoir configura-

tion with ρ̃ = −0.01.

V. TWO-ZONE APPROXIMATION

In this section, we present an analytical approximation for
a countercharged system with a low density of the immobile
charged species and with a large bias above the diffusion-
limiting bias. It is motivated by recognizing that c̃(0)(x̃) and
φ̃(0)(x̃) show two distinct zones under such conditions as
shown in Figs. 7(a) and 7(b). The two zones become more ap-
parent by defining the diffusion and the conduction currents,
j̃ (0)
D and j̃ (0)

C , for the steady state:

j̃ (0)
D = −dc̃(0)

dx̃
, (44)

j̃ (0)
C = ρ̃

dφ̃(0)

dx̃
, (45)

which add up to the total current: j̃ (0)
D + j̃ (0)

C = j̃ (0). Figure
7(c) shows how contributions of j̃ (0)

D and j̃ (0)
C change along x̃.

From x̃ = 0, expanding to a position around the middle in the
figure, c̃(0) drops linearly while φ̃(0) changes little compared
to the rest of the space. In this zone, j̃ (0)

D dominates, and we
define it as the diffusion zone with length l̃D that depends
on j̃ (0) and ρ̃. On the other hand, from x̃ = l̃D to 1, c̃(0)

stays near zero while φ̃(0) shows a large linear drop. Since
j̃ (0)
C dominates here, we define this zone as the conduction

zone with length l̃C (l̃D + l̃C = 1), which is referred to as
the depletion region in a lot of literature on the overlimiting
current. In this approximation, the Nernst-Planck model is
reduced to a pure diffusion equation in the diffusion zone
and to a pure conduction equation in the conduction zone.
We will derive the analytical solutions for steady state as
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FIG. 8. Comparison of the two-zone approximation with the numerical solution. For the reservoir configuration with ρ̃ = −0.01: (a) c̃(0)

and c̃(0)
TZ, (b) φ̃ (0) and φ̃

(0)
TZ along x̃, as well as (c) Z̃ and Z̃TZ, under different overlimiting biases. For the symmetric configuration with ρ̃ = −0.01:

(a) c̃(0) and c̃(0)
TZ, (b) φ̃ (0) and φ̃

(0)
TZ along x̃, as well as (c) Z̃ and Z̃TZ, under different overlimiting biases. The numerical solutions are in solid

lines, and the approximations are in dashed lines. In (c) and (f), the circular and the square markers are Z̃ (ω̃ = 1) and Z̃TZ(ω̃ = 1), respectively.

well as the impedance in both of the reservoir and symmetric
configurations. Its validity is then discussed over a range of
j̃ (0) and ρ̃ in the last part.

For the reservoir configuration in steady state, the approx-
imated concentration c̃(0)

TZ is obtained by solving d2c̃(0)
TZ/dx̃2 =

0 in the diffusion zone with boundary conditions c̃(0)
TZ = 1 at

x̃ = 0 and c̃(0)
TZ = 0 at x̃ = l̃D. On the other hand, c̃(0)

TZ is kept
zero throughout the conduction zone. Therefore,

c̃(0)
TZ =

⎧⎨
⎩1 − x̃

l̃D
, if 0 � x̃ � l̃D,

0 , if l̃D < x̃ � 1,

(46)

where l̃D is determined such that the concentration gradient
drives j̃ (0) in the diffusion zone by Eq. (44): l̃D = 1/j̃ (0). The
approximated potential φ̃

(0)
TZ is then obtained by solving the

pure conduction equation, ρ̃dφ̃
(0)
TZ/dx̃ = j̃ (0), in the conduc-

tion zone. Since the potential drop in the diffusion zone is
significantly smaller than that in the conduction zone, we set
φ̃

(0)
TZ = 0 in the diffusion zone. Therefore,

φ̃
(0)
TZ =

⎧⎪⎨
⎪⎩

0, if 0 � x̃ � l̃D,

j̃ (0)

ρ̃
(x̃ − l̃D), if l̃D < x̃ � 1.

(47)

c̃(0)
TZ and φ̃

(0)
TZ are compared to the exact solutions in Figs. 8(a)

and 8(b), respectively. When |ρ̃| is small and j̃ (0) is large
above the diffusion limit, the two-zone approximation shows
good agreement with the exact steady-state solutions.

The impedance approximation can then be obtained by
separately calculating the impedance of the two zones. For
impedance of the diffusion zone, we first calculate c̃(1)

TZ at x̃ =
l̃D given j̃ (1). c̃(1)

TZ is obtained by solving d2c̃(1)
TZ/dx̃2 = iω̃c̃(1)

TZ in
the diffusion zone with boundary conditions c̃(1)

TZ = 0 at x̃ = 0
and dc̃(1)

TZ/dx̃ = − j̃ (1) at x̃ = l̃D:

c̃(1)
TZ = − j̃ (1) l̃D

sinh(
√

iω̃x̃)√
iω̃l̃D cosh(

√
iω̃l̃D)

, (48)

for 0 � x̃ � l̃D (i.e., in the diffusion zone). To calculate
φ̃

(1)
TZ (x̃ = l̃D), we consider the O(ε) terms of Eqs. (15) and

(44): (c̃(0)
TZ − ρ̃ )dφ̃

(1)
TZ/dx̃ = dc̃(1)

TZ/dx̃. Since c̃(0)
TZ approaches

zero at x̃ = l̃D, we can integrate dφ̃
(1)
TZ/dc̃(1)

TZ = −ρ̃−1 from the
unperturbed condition (i.e., φ̃(1)

TZ = 0 and c̃(1)
TZ = 0), and obtain

φ̃
(1)
TZ (x̃ = l̃D)

c̃(1)
TZ(x̃ = l̃D)

= 1

−ρ̃
. (49)

Then, impedance in the diffusion zone (Z̃DZ) can be obtained
by

Z̃DZ = −φ̃
(1)
TZ (x̃ = l̃D)

j̃ (1)
= −φ̃

(1)
TZ (x̃ = l̃D)

c̃(1)
TZ(x̃ = l̃D)

c̃(1)
TZ(x̃ = l̃D)

j̃ (1)

= l̃D
−ρ̃

tanh(
√

iω̃l̃D)√
iω̃l̃D

, (50)

which turns out to be a finite-length Warburg element scaled
by l̃D/(−ρ̃ ). Also, its characteristic frequency corresponds to
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diffusion with length l̃D. On the other hand, impedance in the
conduction zone (Z̃CZ) is a pure resistor with a conductivity of
−ρ̃ and a length of l̃C . Therefore, the overall impedance in the
two-zone approximation is

Z̃TZ = Z̃CZ + Z̃DZ = l̃C
−ρ̃

+ l̃D
−ρ̃

tanh(
√

iω̃l̃D)√
iω̃l̃D

, (51)

where l̃C = ( j̃ (0) − 1)/j̃ (0) and l̃D = 1/j̃ (0). In Fig. 8(c), Z̃TZ

is compared to the exact Z̃ obtained by a numerical solution
obtained in Sec. IV for the reservoir configuration. The two-
zone approximation provides an accurate approximation in
impedance for a weakly charged system (ρ̃ = −0.01) under
an overlimiting current bias. It also infers that the finite-length
Warburg feature corresponds to the diffusion zone and the
resistor corresponds to the conduction zone. As j̃ (0) increases
above the diffusion limit, the conduction zone pushes out the
diffusion zone, and the finite-length Warburg part becomes
smaller while the resistor becomes larger, keeping the overall
low-frequency limit the same.

For the symmetric configuration, the approximation can be
obtained in a similar approach. For the steady state, c̃(0)

TZ is
obtained by solving d2c̃(0)

TZ/dx̃2 = 0 in the diffusion zone with
boundary conditions c̃(0)

TZ = α at x̃ = 0 and c̃(0)
TZ = 0 at x̃ = l̃D.

On the other hand, c̃(0)
TZ is kept zero throughout the conduction

zone:

c̃(0)
TZ =

⎧⎨
⎩α

(
1 − 1

l̃D
x̃
)
, if 0 � x̃ � l̃D,

0, if l̃D < x̃ � 1,

(52)

where l̃D is determined such that the concentration gradient
drives j̃ (0) in the diffusion zone by Eq. (44), l̃D = α/j̃ (0). α in
the approximation can be obtained as a function of j̃ (0) using
the integral constraint in Eq. (14). Since the triangular area
under c̃(0)

TZ in the diffusion zone should be 1, α = 2/l̃D, and

therefore, α =
√

2 j̃ (0) and l̃D =
√

2/j̃ (0). The approximated
potential φ̃

(0)
TZ is then obtained by solving the conduction

equation, ρ̃dφ̃
(0)
TZ/dx̃ = j̃ (0), in the conduction zone. Since the

potential drop in the diffusion zone is relatively small,

φ̃
(0)
TZ =

⎧⎪⎨
⎪⎩

0, if 0 � x̃ � l̃D,

j̃ (0)

ρ̃
(x̃ − l̃D), if l̃D < x̃ � 1.

(53)

Though the expression is exactly the same as φ̃
(0)
TZ in the

reservoir configuration, Eq. (47), l̃D is a different function of
j̃ (0) between the configurations. c̃(0)

TZ and φ̃
(0)
TZ of the symmetric

configuration are compared to the exact solutions in Figs. 8(d)
and 8(e), respectively, where they show good agreement when
|ρ̃| is low and j̃ (0) is large enough above the diffusion limit.

The impedance approximation for the symmetric config-
uration is obtained also by the similar approach used in
the reservoir configuration. First, c̃(1)

TZ is obtained by solving
d2c̃(1)

TZ/dx̃2 = iω̃c̃(1)
TZ in the diffusion zone with a boundary

condition dc̃(1)
TZ/dx̃ = − j̃ (1) at x̃ = l̃D and an integral con-

straint
∫ l̃D

0 c̃(1)
TZdx̃ = 0:

c̃(1)
TZ = − j̃ (1) l̃D

(
cosh(

√
iω̃x̃) − 1√

iω̃l̃D sinh(
√

iω̃l̃D)

)
, (54)

for 0 � x̃ � l̃D (i.e., in the diffusion zone). Then, as we did for
the reservoir configuration, φ̃(1)/c̃(1) at x̃ = l̃D is calculated by
solving the O(ε) terms of Eqs. (15) and (44), which turns out
to be the same as that in the reservoir configuration shown in
Eq. (49). Following the steps described in Eqs. (50) and (51),
the impedance approximation for the symmetric configuration
is obtained:

Z̃TZ = Z̃CZ + Z̃DZ = l̃C
−ρ̃

+ l̃D
−ρ̃

cosh(
√

iω̃l̃D) − 1√
iω̃l̃D sinh(

√
iω̃l̃D)

, (55)

where l̃C = ( j̃ (0) − α)/j̃ (0), l̃D = α/j̃ (0), and α =
√

2 j̃ (0). Due
to the integral constraint in Eq. (14), Z̃DZ has a different
expression in the symmetric configuration, even though it ap-
pears almost identical to the traditional finite-length Warburg
element on the complex plane. It leads to the extra term in
R̃L in Eq. (41) compared to that of the reservoir configuration,
which makes R̃L still increase in the overlimiting regime. In
Fig. 8(f), Z̃TZ is compared to the exact Z̃ obtained numerically
for the symmetric configuration. Similar to the reservoir con-
figuration, the two-zone approximation provides an accurate
approximation of Z̃ when |ρ̃| is small and j̃ (0) is large, above
the diffusion limit.

The validity of the approximation largely depends on the
interphase thickness (δ̃) indicated in Fig. 7(c), because we
assumed that the system can be exhaustively separated into
the conduction and the diffusion zones by a sharp interphase
between them. If δ̃ is not small enough, the contribution of
the interphase should introduce a significant error in the ap-
proximation. We define δ̃ by a distance between two positions
where j̃ (0)

D = 0.9 j̃ (0)/(1 − ρ̃ ) and j̃ (0)
C = 0.9 j̃ (0). Figures 9(a)

and 9(b) show how δ̃ changes by j̃ (0) and ρ̃ in the overlimiting
regime for the reservoir and the symmetric configurations,
respectively. When j̃ (0) is small and |ρ̃| is large, there do
not exist any distinct zones where either the conduction or
the diffusion current dominate and the interphase thickness
is not well defined. Otherwise, δ̃ decreases in a direction of
decreasing |ρ̃| and increasing j̃ (0). Its slope is steeper along
|ρ̃|, and a sharp interface (δ̃ < 0.1) is obtained regardless
of j̃ (0), if |ρ̃| < 0.01 for the reservoir configuration or if
|ρ̃| < 0.02 for the symmetric configuration, as long as an
overlimiting bias is applied.

An error in the approximation is quantified by the average
norm of relative residuals (�) at a range of frequencies
between 10−2 and 106 spaced logarithmically with two points
per decade:

� = 1

N

N∑
n=1

∥∥∥∥ Z̃ (ω̃n) − Z̃TZ(ω̃n)

|Z̃ (ω̃n)|

∥∥∥∥, (56)

where N = 17. Figures 9(c) and 9(d) show � in a range of
j̃ (0) and ρ̃ for the reservoir and the symmetric configurations,
respectively. � is relatively large above 0.1 in a region where
j̃ (0) is small and |ρ̃| is large, when the two zones are not fully
developed and δ̃ is not defined. Then, it decreases quickly in
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FIG. 9. Validity of the two-zone approximation for a range of j̃ (0) and ρ̃: δ̃ in (a) the reservoir and (b) the symmetric configurations, � in
(c) the reservoir and (d) the symmetric configurations.

a direction of decreasing |ρ̃| and increasing j̃ (0). A small �

(<0.1) is obtained even when the interface is somewhat thick
with δ̃ up to 0.2 at least. Therefore, it confirms that the two-
zone approximation is valid as long as the two zones are fully
developed and the interface is not too thick, which is achieved
with a small |ρ̃| and an overlimiting j̃ (0).

VI. CONCLUSION

The impedance of electrodiffusion in the presence of a
charged immobile species is studied by a theoretical model
that combines the Nernst-Planck equations and the elec-
troneutrality condition. In particular, its behavior is examined
for a range of immobile charge density and applied bias,
expanding to the overlimiting regime. The impedance of
bulk electrodiffusion is commonly considered as a smaller
contribution than those of interface kinetics. Under a dc bias,
however, its magnitude increases exponentially, and it could
be an important contribution to the overall cell impedance. In
a biased condition, a bulk relaxation appears as a semicircle
on the complex plane, which is attributed to perturbation in
the bulk conductivity under the steady-state electric field.

As the applied dc bias approaches the diffusion limit, the
diffusion current dominates in the bulk and the impedance

exhibits a transition to a series connection of a resistor and
a finite-length Warburg element. When there is no charged
immobile species or when they are cocharged to the active
charge carriers, the impedance diverges before the diffusion-
limiting bias, and an overlimiting bias may not be sustained
by electrodiffusion unless promoted by other mechanisms. On
the other hand, when the immobile species is countercharged
to the active charge carriers, an overlimiting bias can be
applied. In the overlimiting regime with a further increasing
bias, contribution of the resistor replaces that of the finite-
length Warburg element, while the overall magnitude is kept
finite by the constant conductivity provided by charge carriers
screening the immobile species.

Under an overlimiting bias, two distinct regions are found
in the steady-state solution with a sharp interphase. Based
on this observation, we present an analytical approximation
of the impedance where we assume complete dominance of
conduction or diffusion in their respective zones. It attributes
the resistor to the conduction zone and the finite-length War-
burg element to the diffusion zone. The resistor is taking
over the finite-length Warburg under increasing bias, because
the conduction zone is replacing the diffusion zone. The
approximation is valid when the immobile charge density is
low and the bias is larger than the diffusion limit. Combined
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with an interface model [68], the model and the approxima-
tion can be employed to interpret the impedance spectra of
electrochemical cells with a charged immobile species under
a dc bias even above the diffusion limit.
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APPENDIX A: ANALYTICAL SOLUTIONS IN STEADY
STATE

The steady-state solution can be obtained by solving the
O(1) terms in the perturbation. Collecting the O(1) terms, the
governing equations become

0 = d2c̃(0)

dx̃2
− ρ̃

d2φ̃(0)

dx̃2
, (A1)

0 = d

dx̃

[
(c̃(0) − ρ̃ )

dφ̃(0)

dx̃

]
. (A2)

Equations (A1) and (A2) can be integrated once by introduc-
ing the current ( j̃ (0)), which is unknown at this stage but will
be determined later for each configuration. Since the system
is locally neutral, j̃ (0) is constant throughout the domain.
The current is entirely carried by the positive charge carrier
everywhere in steady state, since the negative charge carrier is
blocked at the boundary, x̃ = 1. Then the total flux of charge
carriers as well as the net charge current should be j̃ (0) in O(1)
dimensionless form. Thereby

− j̃ (0) = dc̃(0)

dx̃
− ρ̃

dφ̃(0)

dx̃
, (A3)

− j̃ (0) = (c̃(0) − ρ̃ )
dφ̃(0)

dx̃
. (A4)

By subtracting Eq. (A4) from Eq. (A3), we recover the flux of
the negative charge carriers, which should be zero:

0 = dc̃(0)

dx̃
− c̃(0) dφ̃(0)

dx̃
. (A5)

Equations (A3) and (A5) are more straightforward to solve
analytically.

For the reservoir configuration, we first integrate Eq. (A5)
and apply the boundary condition at x̃ = 0: c̃(0) = 1 and
φ̃(0) = 0. Then we obtain

log(c̃(0) ) = φ̃(0). (A6)

Equation (A3) can be integrated using the boundary condition
at x̃ = 0 again:

1 − j̃ (0)x̃ = c̃(0) − ρ̃φ̃(0). (A7)

Then j̃ (0) can be determined by the boundary condition at x̃ =
1, φ̃(0) = −Ṽ (0):

j̃ (0) = 1 − (e−Ṽ (0) + ρ̃Ṽ (0) ). (A8)

Equations (A6), (A7), and (A8) make up an implicit form of
the steady-state solution for the reservoir configuration. They
become explicit if ρ̃ = 0. To obtain an explicit form for any
values of ρ̃, we plug Eq. (A6) into Eq. (A7) and rearrange it
to

1

−ρ̃
exp

(
1 − j̃ (0)x̃

−ρ̃

)
= c̃(0)

−ρ̃
exp

(
c̃(0)

−ρ̃

)
. (A9)

Then, we recognize that (−c̃(0)/ρ̃) should be the Lambert W
function, unless ρ̃ = 0. Depending on the sign of ρ̃, a different
branch gives a physically meaningful solution. When ρ̃ = 0,
Eq. (A7) gives the explicit solution for c̃(0). Collectively, we
obtain Eq. (18) as for an explicit form of the steady-state
solution for the reservoir configuration for any values of ρ̃.

On the other hand, for the symmetric configuration, we
again integrate Eq. (A5). We introduce an unknown parameter
α = c̃(0)(x̃ = 0), which will be determined later. By applying
the boundary conditions at x̃ = 0, c̃(0) = α, and φ̃(0) = 0, we
obtain

log

(
c̃(0)

α

)
= φ̃(0). (A10)

Equation (A3) can be integrated using the boundary condi-
tions at x̃ = 0 again:

α − j̃ (0)x̃ = c̃(0) − ρ̃φ̃(0). (A11)

Then j̃ (0) can be determined by the boundary condition at x̃ =
1, φ̃(0) = −Ṽ (0):

j̃ (0) = α
(
1 − e−Ṽ (0)) − ρ̃Ṽ (0). (A12)

Upon determining α, Eqs. (A10), (A11), and (A12) provide
an implicit form of the steady-state solution for the symmetric
configuration. They become explicit if ρ̃ = 0. α can be deter-
mined by employing the integral constraint,

∫ 1

0
c̃(0)dx̃ = α

∫ −Ṽ (0)

0
eφ̃(0)

(
dφ̃(0)

dx̃

)−1

dφ̃(0) = 1, (A13)

where dφ̃(0)/dx̃ can be obtained by combining Eqs. (A12) and
(A3),

−αeφ̃(0) dφ̃(0)

dx̃
+ ρ̃

dφ̃(0)

dx̃
= α

(
1 − e−Ṽ (0)) − ρ̃Ṽ (0), (A14)

dφ̃(0)

dx̃
= α

(
1 − e−Ṽ (0)) − ρ̃Ṽ (0)

ρ̃ − αeφ̃(0)
. (A15)

By plugging Eq. (A15) into Eq. (A13) and rearranging the
terms,

α

∫ −Ṽ (0)

0

(
ρ̃eφ̃(0) − αe2φ̃(0))

dφ̃(0) = α
(
1 − e−Ṽ (0)) − ρ̃Ṽ (0).

(A16)
Upon performing the integrations, Eq. (A16) becomes a
quadratic equation for α:(

1 − e−2Ṽ (0))
α2 + 2(1 + ρ̃)

(
e−Ṽ (0) − 1

)
α + 2ρ̃Ṽ (0) = 0.

(A17)
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Only one of the roots provides a physically meaningful solu-
tion. Therefore,

α = (1 + ρ̃ )
(
1 − e−Ṽ (0))

1 − e−2Ṽ (0)

+
√

(1 + ρ̃ )2
(
1 − e−Ṽ (0)

)2 − 2ρ̃Ṽ (0)
(
1 − e−2Ṽ (0)

)
1 − e−2Ṽ (0)

.

(A18)

To obtain an explicit form for any values of ρ̃, we plug
Eq. (A10) into Eq. (A11) and rearrange to

α

−ρ̃
exp

(
α − j̃ (0)x̃

−ρ̃

)
= c̃(0)

−ρ̃
exp

(
c̃(0)

−ρ̃

)
. (A19)

The same as the reservoir configuration, we recognize that
(−c̃(0)/ρ̃) should be the Lambert W function, unless ρ̃ =
0. Depending on the sign of ρ̃, a different branch gives a
physically meaningful solution. When ρ̃ = 0, Eq. (A11) gives
the explicit solution for c̃(0). Collectively, we obtain Eq. (21)
as for an explicit form of the steady-state solution for the
symmetric configuration for any values of ρ̃.

APPENDIX B: SMALL-BIAS LIMITS OF R̃L AND R̃H

Under a small bias, c̃(0)(x̃) can be approximated by a linear
function. To satisfy the boundary conditions for the reservoir
configuration,

c̃(0)( j̃ (0) � 1) � 1 − j̃ (0)

1 − ρ̃
x̃. (B1)

In the low-frequency limit, the impedance should converge
to the local resistance in steady state, i.e., R̃L = dṼ (0)/d j̃ (0).
Under a small bias, φ̃(0)(x̃) is obtained by integrating the O(1)
terms of Eq. (15): − j̃ (0) = (c̃(0) − ρ̃ )dφ̃(0)/dx̃, using c̃(0) in
Eq. (B1) and a boundary condition, φ̃(0) = 0 at x̃ = 0:

φ̃(0)( j̃ (0) � 1) � (1 − ρ̃ ) log

(
(1 − ρ̃ )2 − j̃ (0)x̃

(1 − ρ̃)2

)
. (B2)

Then Ṽ (0) is obtained by −φ̃(0) at x̃ = 1:

Ṽ (0)( j̃ (0) � 1) � −(1 − ρ̃ ) log

(
(1 − ρ̃ )2 − j̃ (0)

(1 − ρ̃)2

)
. (B3)

Therefore,

R̃L( j̃ (0) � 1) � (1 − ρ̃)

(1 − ρ̃)2 − j̃ (0)
. (B4)

In the high-frequency limit, c̃(1) does not respond to the
perturbation, and φ̃(1) is obtained by solving the O(ε) terms
of Eq. (15) with c̃(1) = 0: − j̃ (1) = (c̃(0) − ρ̃ )dφ̃(1)/dx̃. Then,
evaluating −φ̃(1) at x̃ = 1, Ṽ (1) becomes

Ṽ (1)( j̃ (0) � 1) � − j̃ (1)(1 − ρ̃ )

j̃ (0)
log

(
(1 − ρ̃)2 − j̃ (0)

(1 − ρ̃ )2

)
.

(B5)

Then, R̃H under a small bias is obtained by

R̃H ( j̃ (0) � 1) = Ṽ (1)( j̃ (0) � 1)

j̃ (1)

� − (1 − ρ̃)

j̃ (0)
log

(
(1 − ρ̃ )2 − j̃ (0)

(1 − ρ̃)2

)
. (B6)

The same approach can be applied to the symmetric
configuration under a small bias ( j̃ (0) � 2). First, c̃(0)(x̃) is
approximated by a linear function,

c̃(0)( j̃ (0) � 2) � α − j̃ (0)

1 − ρ̃
x̃, (B7)

where α can be obtained as a function of j̃ (0) employing the
integral constraint in Eq. (14): α( j̃ (0) � 2) � 1 + j̃/(2 − 2ρ̃).
Then φ̃(0)(x̃) and Ṽ (0) = −φ̃(0)(1) are obtained:

φ̃(0)( j̃ (0) � 2) � (1 − ρ̃ ) log

(
(α − ρ̃ )(1 − ρ̃) − j̃ (0)x̃

(α − ρ̃ )(1 − ρ̃ )

)
,

(B8)

Ṽ (0)( j̃ (0) � 2) � −(1 − ρ̃ ) log

(− j̃ (0) + 2(1 − ρ̃)2

j̃ (0) + 2(1 − ρ̃ )2

)
.

(B9)

R̃L is obtained by dṼ (0)/d j̃ (0). For the symmetric condition
under a small bias,

R̃L( j̃ (0) � 2) � (1 − ρ̃ )

2(1 − ρ̃ )2 − j̃ (0)
+ (1 − ρ̃ )

2(1 − ρ̃ )2 + j̃ (0)
.

(B10)

Then to obtain R̃H , Ṽ (1)( j̃ (0) � 2) is obtained by solving
− j̃ (1) = (c̃(0) − ρ̃ )dφ̃(1)/dx̃ for φ̃(1) and evaluating it at x̃ = 1:

Ṽ (1)( j̃ (0) � 2) � − j̃ (1)(1 − ρ̃ )

j̃ (0)
log

(− j̃ (0) + 2(1 − ρ̃)2

j̃ (0) + 2(1 − ρ̃ )2

)
.

(B11)

R̃H is obtained by Ṽ (1)/j̃ (1):

R̃H ( j̃ (0) � 2) � − (1 − ρ̃ )

j̃ (0)
log

(− j̃ (0) + 2(1 − ρ̃ )2

j̃ (0) + 2(1 − ρ̃ )2

)
.

(B12)

The small-bias asymptotic expressions of R̃L and R̃H are
compared to the numerical limits of the full model in Fig. 10.
For both configurations, the asymptotic expressions show
good agreement in the small-bias regime, even close to the
limiting current.

APPENDIX C: LARGE-BIAS LIMITS OF R̃L AND R̃H

Asymptotic expressions under a large bias above the diffu-
sion limit can be obtained from the two-zone approximation
in Sec. V. R̃L is again obtained by the local resistance in the
steady-state approximation. For the reservoir configuration,
φ̃

(0)
TZ in Eq. (47) is evaluated at x̃ = 1:

Ṽ (0)( j̃ (0) � 1) � − j̃ (0)

ρ̃
(1 − l̃D), (C1)
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FIG. 10. Comparison of the asymptotic expressions (AEs) of R̃L

and R̃H to the numerical limits of the full model: (a) the reservoir
configuration and (b) the symmetric configuration.

where l̃D = 1/j̃ (0). Therefore, dṼ (0)/d j̃ (0) leads to

R̃L( j̃ (0) � 1) � 1

−ρ̃
. (C2)

In the high-frequency limit, the diffusion zone contributes
little to the impedance. Therefore, R̃H comes only from the
impedance of the conduction zone, Z̃CZ. Therefore,

R̃H � l̃C
−ρ̃

= 1

−ρ̃

( j̃ (0) − 1)

j̃ (0)
. (C3)

The same approach can be applied to the symmetric con-
figuration under a large bias ( j̃ (0) � 2). Evaluating φ̃

(0)
TZ in

Eq. (53) at x̃ = 1,

Ṽ (0)( j̃ (0) � 2) � − j̃ (0)

ρ̃

(
1 − l̃D

)
, (C4)

where l̃D =
√

2/j̃ (0) in the approximation. Then, dṼ (0)/d j̃ (0)

leads to

R̃L( j̃ (0) � 2) � 1

−ρ̃

(
1 − 1√

2 j̃ (0)

)
. (C5)

R̃H comes only from Z̃CZ. For the symmetric configuration,

R̃H ( j̃ (0) � 2) � 1

−ρ̃

j̃ (0) −
√

2 j̃ (0)

j̃ (0)
. (C6)

The large-bias asymptotic expressions of R̃L and R̃H are
compared to the numerical limits of the full model in Fig. 10.
Like the small-bias expressions, the large-bias expressions
show good agreement in the overlimiting regime, even close
to the limiting current when ρ̃ = −0.01. Since they are based
on the two-zone approximation (Sec. V), they are valid when
|ρ̃| is low and the bias is above the diffusion limit.
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