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A B S T R A C T

Recent improvements in the speed and sensitivity of fMRI acquisition techniques suggest that fast fMRI can be
used to detect and precisely localize sub-second neural dynamics. This enhanced temporal resolution has enor-
mous potential for neuroscientists. However, physiological noise poses a major challenge for the analysis of fast
fMRI data. Physiological noise scales with sensitivity, and its autocorrelation structure is altered in rapidly
sampled data, suggesting that new approaches are needed for physiological noise removal in fast fMRI. Existing
strategies either rely on external physiological recordings, which can be noisy or difficult to collect, or employ
data-driven approaches which make assumptions that may not hold true in fast fMRI. We created a statistical
model of harmonic regression with autoregressive noise (HRAN) to estimate and remove cardiac and respiratory
noise from the fMRI signal directly. This technique exploits the fact that cardiac and respiratory noise signals are
fully sampled (rather than aliasing) when imaging at fast rates, allowing us to track and model physiology over
time without requiring external physiological measurements. We then created a joint model of neural hemody-
namics, and physiological and autocorrelated noise to more accurately remove noise. We first verified that HRAN
accurately estimates cardiac and respiratory dynamics and that our model demonstrates goodness-of-fit in fast
fMRI data. In task-driven data, we then demonstrated that HRAN is able to remove physiological noise while
leaving the neural signal intact, thereby increasing detection of task-driven voxels. Finally, we established that in
both simulations and fast fMRI data HRAN is able to improve statistical inferences as compared with gold-
standard physiological noise removal techniques. In conclusion, we created a tool that harnesses the novel in-
formation in fast fMRI to remove physiological noise, enabling broader use of the technology to study human
brain function.
1. Introduction

Recent technological advances in fMRI have enabled neuroscientists
to investigate brain function at a higher temporal resolution. In partic-
ular, the increasingly widespread use of ultra-high field magnets coupled
with methods such as simultaneous multi-slice (SMS) imaging offer
enhanced sensitivity and an order of magnitude increase in the sampling
frequency of fMRI measurements (Barth et al., 2016; Feinberg and Set-
sompop, 2013; Feinberg and Yacoub, 2012; Hennig et al., 2007; Larkman
et al., 2001; Lin et al., 2006; Feinberg et al., 2010; Moeller et al., 2010;
Narsude et al., 2016; Setsompop et al., 2012, 2016; Zahneisen et al.,
2011), enabling imaging of blood-oxygenation-level-dependent (BOLD)
signals at rapid (repetition times (TR)< 500ms) timescales. Using fast
1
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fMRI, researchers have been able to detect and precisely localize
neurally-driven activity on the order of hundreds of milliseconds (Lewis
et al., 2016), investigate functional connectivity networks at higher fre-
quencies than those conventionally examined (Boubela et al., 2013; Chen
and Glover, 2015; Lee et al., 2013; Lin et al., 2015; Sahib et al., 2018;
Trapp et al., 2018), and resolve variable temporal dynamics in the he-
modynamic response function (Lewis et al., 2018; Lin et al., 2018; Smith
et al., 2012).

While fast fMRI offers enormous potential as a research tool, novel
challenges also emerge in the analysis of rapidly acquired data (Chen
et al., 2019). Fast (>0.1 Hz) neurally-driven BOLD signals are very low in
amplitude, due to the filtering properties of the hemodynamic response
(Bandettini, 2014; Dale, 1999; Lewis et al., 2016). These signals may
eptember 2019
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therefore be obscured by physiological noise associated with rhythmic
respiratory (~0.2 Hz) and cardiac (~1Hz) activity, which are of much
larger amplitude than the signal. Furthermore, physiological noise scales
with the sensitivity of fMRI measurements (Hutton et al., 2011; Krüger
and Glover, 2001; Triantafyllou et al., 2005). This relative increase in
physiological noise limits the ability of fast fMRI to detect subtle changes
in rapid, neurally-driven activity, as increasing sensitivity to these small
neural signals will in turn also increase physiological noise. A related
concern in fast fMRI analysis is the enhanced autocorrelation, which
conventional models of fMRI are unable to account for (Bollmann et al.,
2018; Corbin et al., 2018; Eklund et al., 2012; Mathiak et al., 2016;
Olszowy et al., 2019). Incorrect models of the physiological noise (Chen
et al., 2016; Chen and Glover, 2015; Hallquist et al., 2013; Lund et al.,
2006; Murphy et al., 2009; Weissenbacher et al., 2009) or of the auto-
correlation (Bollmann et al., 2018; Corbin et al., 2018; Eklund et al.,
2012; Honari et al., 2019; Mathiak et al., 2016; Olszowy et al., 2019) can
lead to important errors in interpretation of the fMRI signal, suggesting
that unique analysis strategies are necessary for fast fMRI.

Numerous physiological noise removal techniques, designed for
conventional fMRI, are currently widely used. These techniques can be
broadly grouped into reference-based models and data-driven ap-
proaches (for a more complete list see (Kasper et al., 2017)).
Reference-based models make use of external reference signals such as
electrocardiography (EKG), pulse oximetry, and respiratory belts to es-
timate and remove physiological noise. For instance, the widely used
algorithm RETROICOR estimates the phases of cardiac and respiratory
periods from external reference signals relative to fMRI acquisition and
models physiological noise using a Fourier expansion of the phases
(Glover et al., 2000; Harvey et al., 2008). The external physiological
recordings can also be used to model the cardiac and respiratory response
functions, which are lower frequency fluctuations (Birn et al., 2008b,
2008a; 2006; Chang et al., 2009; Chang and Glover, 2009). These tech-
niques often perform very well – however, they require the collection of
external signals, which can be technically difficult, particularly in patient
populations, and prone to noise in an MR environment. In addition, these
methods do not explicitly account for time-varying amplitude changes
present in physiological noise signals, or the altered autocorrelation
structure of fast fMRI.

Due to the added complexity of acquiring external physiological
signals, many studies now employ data-driven approaches which esti-
mate physiological noise from the fMRI data directly, often using
component analysis techniques (Behzadi et al., 2007; Beissner et al.,
2014; Churchill and Strother, 2013; Perlbarg et al., 2007; Thomas et al.,
2002). For example, CompCor estimates physiological noise regressors
by applying principal component analysis on voxels with the highest
temporal standard deviation or from anatomical regions with no assumed
neurally-relevant signal, such as the cerebrospinal fluid (CSF) or white
matter (Behzadi et al., 2007). While these techniques have improved
detection of neurally-driven responses, they also come with limitations
that can prove problematic in fast fMRI studies. Unlike model-based
approaches which isolate physiological noise in specific frequency
bands, the estimated physiological noise components from data-driven
approaches are broadband. Particularly with the enhanced frequency
resolution of fast fMRI, subtracting these broadband components from
voxels across the brain may in fact introduce artifactual noise into fre-
quency bands >0.1 Hz (Chen et al., 2017; Chen and Glover, 2015).
Similarly, data-driven approaches are unable to account for the temporal
lag of physiological noise across the brain as effectively as model-based
approaches, which can limit their performance.

We hypothesized that fast fMRI could enable an alternative approach
to physiological noise removal. Specifically, if the TR is sufficiently low
(~<0.5s) then the fundamental frequencies of cardiac and respiratory
activity can be sampled directly, rather than aliasing into lower-
frequency bands (Aslan et al., 2019). Fast fMRI data therefore contain
new information - high amplitude and non-aliased physiological noise
signals - that can in turn inform the noise removal technique. This
2

additional information present in fast fMRI data could potentially be used
to more accurately detect and model physiological noise.

An ideal noise removal technique would selectively remove the
narrowband physiological noise while preserving the full spectrum of the
neurally-driven BOLD signal. Lowpass filtering therefore cannot suffi-
ciently remove these artifacts, as it would remove the fast neural signals
as well. In addition, as illustrated in (Chen et al., 2019), simply notch
filtering this quasi-periodic physiological noise may fail to remove higher
order harmonics and can also remove neurally-relevant signals. More-
over, the data also contain background autoregressive noise that should
be accounted for. We therefore investigated whether a model-based
approach could be derived from the fast fMRI data directly, which
would obviate the need for external reference signals, account for the
underlying neural signal and autocorrelation, and prevent artificial
introduction of broadband noise components into the fMRI signal.

We aimed to develop a physiological noise removal algorithm that
leverages the new information in fast fMRI to overcome these challenges.
Our approach is based on a model of Harmonic Regression with Autor-
egressive Noise (HRAN) and estimates physiological noise directly from
the fast fMRI data. Our technique also uses a general linear model, and
can therefore be easily integrated with commonly used analysis streams
in the fMRI community. We first constructed a mathematical basis for fast
fMRI data and defined the physiological and autoregressive noise para-
metrically. Next, we used efficient likelihood-based regression tech-
niques to estimate the fundamental physiological frequencies from
physiologically noisy regions of the brain. With these determined fre-
quencies, our method estimates both the physiological and autocorre-
lated noise in addition to the neurally-relevant signal in each voxel or
region of interest (ROI), and selectively removes the physiological noise.
To assess our model performance, we constructed simulated datasets to
show that our technique can accurately detect physiological noise in the
presence of autoregressive noise, and can effectively remove it even
when its phase and amplitude is time-varying. Finally, we applied our
technique to fast fMRI data collected in a visual task, compared its per-
formance to other gold standard physiological noise removal techniques,
and found that our approach enables improved statistical inferences.

2. Methods

2.1. Model motivation and structure

In conventional fMRI, physiological noise resulting from cardiac and
respiratory cycles is aliased into the same band as the neurally-relevant
signals, due to the slow (<0.5 Hz) sampling rate. In contrast, the tem-
poral resolution of fast fMRI (>2–3 Hz) allows direct observation of the
fundamental respiratory frequency and its lower harmonics (e.g.
~0.25 Hz, 0.5 Hz, 0.75 Hz) and the fundamental cardiac frequency (e.g.
~1Hz), although its harmonics may alias (e.g. 2 Hz, 3 Hz). For example,
the spectrogram of the 4th ventricle obtained during a resting-state scan
of fast fMRI (Experiment A, TR¼ 0.367s) shows high-power activity in
typical respiratory and cardiac frequency bands (Fig. 1A). The EKG and
respiratory belt data demonstrate that the high-power oscillations seen in
the spectrogram have the same period as respiratory and cardiac cycles
(Fig. 1B). In data acquired from a separate subject at higher sampling
rates (Experiment B, TR¼ 0.227s), spectrograms of three different brain
regions show that the physiological noise varies spatially (as observed
from the differences in signal across the spectrograms) and temporally
(as observed from the differences in signal within each spectrogram)
(Fig. 1C); however, the fundamental physiological frequencies and
overall harmonic structure are preserved.

These observations suggest that physiological noise in fast fMRI may
be modeled by an appropriately designed harmonic regression model.
For a given time segment t1; t2;…; tT of length T we model the physio-
logical noise related to cardiac activity c ¼ ½ct1 ; ct2 ;…; ctT �’ and respira-
tion r ¼ ½rt1 ; rt2 ;…; rtT �’ as:



Fig. 1. Physiological noise sampled directly in fast fMRI. Unlike in conventional fMRI, physiological noise can be resolved without aliasing in fast fMRI. (A) A
spectrogram of the 4th ventricle from a subject in Experiment A shows high power oscillations in the cardiac (red arrow) and respiratory (blue arrow) frequency range.
(B) A zoomed-in time series from (A) (black rectangle) shows that the high-power oscillations correspond to cardiac (red) and respiratory (blue) cycles obtained from
external physiological recordings. (C) Spectrograms from ROIs in Experiment B manifest the harmonic structure of the physiological noise. In the right lateral ventricle
(left) one respiration term (blue arrow), two cardiac terms (red arrow), and one interaction term (purple arrow) are observed. These components are also present to
varying degrees in pericalcarine cortex (middle) and the thalamus (right).
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cti ¼
XK

ðAck cosðkωctiÞ þ Bck sinðkωctiÞ Þ

k¼1

rti ¼
XL

l¼1

ðArl cosðlωr tiÞþBrl sinðlωr tiÞÞ

where cti and rti are the cardiac and respiratory noise at time ti respec-
tively. In this model, ωc is the fundamental cardiac frequency, Ack and Bck
define the amplitude and phase of the k’th harmonic of cardiac activity,
and K specifies the number of cardiac harmonics. Similarly, ωr is the
fundamental frequency of respiration, Arl and Brl define the amplitude
and phase of the l’th harmonic of respiratory activity, and L specifies the
number of respiratory harmonics.

In addition to the physiological noise, the fMRI data may consist of
low frequency drift, neurally-relevant signals, and un-modeled activity,
typically represented using an autoregressive (AR) process.

To model the drift d ¼ ½dt1 ; dt2 ;…; dtT �’ in the fMRI signal, we use a
linear term:

dti ¼ μ0 þ μ1ti

where dti is the linear drift at time ti with coefficients μ0 and μ1.
3

To model the neurally-relevant signals n ¼ ½nt1 ; nt2 ;…; ntT �’, we use a
standard fMRI approach and convolve the applied neural stimulus with a
hemodynamic response function (HRF):

nti ¼ κ
XT
j¼1

s
�
ti � tj

�
h
�
tj
�

where nti is the neurally-relevant signal at time ti, s is the applied neural
stimulus, h is the chosen HRF, and κ is a weighting coefficient.

Finally, we use an AR process to capture the remaining elements of
the fMRI signal that we have not explicitly modeled, which may include
spontaneous, un-modeled neural activity (Bianciardi et al., 2009; Boll-
mann et al., 2018). An AR(1) process can sufficiently explain any
un-modeled activity in conventional fMRI (Purdon and Weisskoff, 1998;
Woolrich et al., 2001; Worsley et al., 2002). However, in fast fMRI, even
with physiological noise correction, a higher order AR process or more
elaborate model is required to fully explain the data (Bollmann et al.,
2018; Corbin et al., 2018). We therefore model the remaining fMRI signal

ε ¼ ½εt1 ; εt2 ;…; εtT �
0
as:

εti ¼
XP
p¼1

αpεti�p þ ηti



Fig. 2. Cyclic Descent Algorithm. HRAN uses an
efficient cyclic descent algorithm to estimate model
parameters. First, a windowed data segment y is
selected from a physiological noise ROI (e.g. the
ventricles). Second, windowed design matrices Z are
generated by iterating through physiologically plau-

sible cardiac and respiratory frequencies. Third, bβ for
a given data segment y and design matrix Z is
computed using Generalized Least Squares. Fourth, bα
and cσ2 are determined using the Burg Algorithm and
Levinson Durbin Recursion on the residuals. Steps

three and four are cycled until cσ2 converges, and the
likelihood for the given parameters is computed.
Finally, the likelihood is optimized across all tested
physiological frequencies, yielding estimates of the
fundamental cardiac and respiratory frequencies.
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ηti � N
�
0; σ2

�

where εti depicts an autoregressive process of order P (which may be
greater than one) at time ti , αp is the autoregressive coefficient at lag p,
and ηti is Gaussian noise with a mean of zero and variance σ2. Alterna-
tively stated, ε can be represented as a vector of Gaussian noise with a
mean of zero and covariance Q

�
α; σ2

�
, where Q

�
α; σ2

�
is the AR covari-

ance matrix associated with parameters α ¼ ½α1; α2;…; αP� and σ2.
Gathering all of these components of our model together, we can
4

represent the data segment y ¼ ½y1; y2;…; yT �
0
(e.g. from a voxel or region

of interest) as the sum of cardiac noise c, respiratory noise r, drift d,
neurally-relevant signal n, and autoregressive noise ε:

y ¼ cþ rþ d þ nþ ε

We can also rewrite this model compactly using matrix notation. We
specify a matrix Zðωr ;ωcÞ and parameter vector β as:



Zðωr;ωcÞ¼

2
66666666664

1 t1
1 t2
⋮ ⋮
1 tT

zfflffl}|fflffl{d
XT

j¼1
s
�
t1 � tj

�
h
�
tj
�

XT

j¼1
s
�
t2 � tj

�
h
�
tj
�

⋮XT

j¼1
s
�
tT � tj

�
h
�
tj
�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n

cosðωct1Þ ⋯ sinðKωct1Þ
cosðωct2Þ ⋯ sinðKωct2Þ

⋮ ⋱ ⋮
cosðωctT Þ ⋯ sinðKωctTÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{c

cosðωrt1Þ ⋯ sinðLωrt1Þ
cosðωrt2Þ ⋯ sinðLωrt2Þ

⋮ ⋱ ⋮
cosðωrtTÞ ⋯ sinðLωrtT Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{r

3
77777777775
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β ¼ ½μ0 μ1 κ Ack … Bck Arl … Brl �0
such that our full model becomes:

y
�
ωr ;ωc; β;α; σ2

� ¼ Zðωr ;ωcÞβþ ε

Our model specifies a parametrically defined basis for the physio-
logical noise that is separable from the remaining components of the
fMRI signal. Importantly, our model also allows for time and frequency
overlap between physiological sources of noise (represented by the
harmonic regression) and any un-modeled, spontaneous neural activity
(represented by the autoregressive noise), which prevents over-
estimation of the physiological noise and preserves the underlying
fMRI signal.

2.2. Estimating parameters with cyclic descent algorithm

In order to estimate and remove the physiological noise, we must
estimate the parameters ωr ; ωc; β; α, and σ2 defined in our model. Our
bβðωr;ωcÞ ¼ ðZðωr ;ωcÞ
0
Q̂ ðωr;ωcÞ�1Zðωr;ωcÞ þWðωr;ωcÞ�1��1

Zðωr ;ωcÞ
0
Q̂ ðωr ;ωcÞ�1y
model consists of harmonic regression with autoregressive noise, for
which parameter estimation methods using maximum likelihood tech-
niques have been developed and implemented in a wide variety of
models, including ballistocardiogram artifacts (Krishnaswamy et al.,
2016), two-photon calcium imaging data (Malik et al., 2011), and
circadian rhythms (Brown et al., 2004; Brown and Schmid, 1994). In
particular (Krishnaswamy et al., 2016), employ an efficient cyclic descent
algorithm that addresses the specific challenges of our parameter esti-
mation. First, the cyclic descent algorithm handles the non-linearity
resulting from the unknown physiological frequencies ωr and ωc

through sequential minimizations (Krishnaswamy et al., 2016). Second,
the algorithm uses a local likelihood framework to accommodate
time-varying parameter estimates (e.g. variable amplitude or frequency
of respiration over time) (Krishnaswamy et al., 2016).

Here, we adapt the approach taken by (Krishnaswamy et al., 2016) to
1) estimate the physiological frequencies from a manually defined brain
region with high physiological noise and 2) use the estimated physio-
logical frequencies to regress out physiological noise in each voxel. The
implementation of our model and algorithm, which we refer to as Har-
monic Regression with Autoregressive Noise (HRAN), is described below
(Fig. 2). Step 1 is performed once to estimate physiological frequencies,
and Step 2 involves fitting the model across voxels and time windows.

2.2.1. Estimating physiological noise
First, we select an anatomically defined brain region known to

manifest high levels of physiological noise (e.g. the ventricles, see
Physiological ROI selection), fromwhich wewill estimate the physiological
5

frequencies. We advance through the extracted data in moving time
windows, to account for variable physiological frequencies over time. For
a given time window (which in our experiments ranged from 24s–45s,
see Time window selection) we assume a constant cardiac and respiratory
frequency. As in (van der Meer et al., 2016), we also apply a Hann
window to each data segment (see Time window selection).

To estimate the cardiac and respiratory frequencies in eachwindowed
data segment y of length T, we generate matrices Zðωr ;ωcÞ by iterating
through a range of physiologically plausible frequencies and generating
regressors for each cardiac and respiratory frequency pair. For example,
ωr may range from 0.15 to 0.35Hz (9–21 breaths per minute), and ωc

may range from 0.8 to 1.6Hz (48–96 beats per minute). For each
Zðωr ;ωcÞ, we then determine the negative log likelihood in a particular
time window using a recursive fitting procedure.

Specifically, we apply the same Hann window we applied to the data
segment to the design matrix Zðωr ;ωcÞ, and compute the generalized
least squares estimate as:
where β̂ ðωr ;ωcÞ is the amplitude estimate, bQðωr ;ωcÞ�1 is the inverse AR
covariance estimate initialized as the identity matrix ITxT , and Wðωr ;ωcÞ
is an estimate of the prior covariance computed using the multitaper
power spectrum. Wðωr ;ωcÞ is defined as a diagonal matrix with the dif-
ference in power at the given physiologic frequency and its harmonics in
each column and a moving average of the multitaper power spectrum.
Including an estimate of the prior covarianceWðωr ;ωcÞ helps to guide the
first few iterations of the cyclic descent as bQðωr ;ωcÞ�1 is estimated.

Next, we compute the residual of the generalized least squares esti-
mation, which is our estimate of the autoregressive noise:

bεðωr ;ωcÞ ¼ y� Zðωr ;ωcÞβ̂ ðωr;ωcÞ
Using the Burg algorithm, a recursive set of operations that minimize

the least squares forward-backward prediction error, we can estimate

bαðωr ;ωcÞ and cσ2ðωr ;ωcÞ (Box et al., 2008; Kay, 1988) from bεðωr ;ωcÞ.
Levinson-Durbin recursions can then be used to efficiently compute the

inverse AR covariance matrix bQðωr ;ωcÞ�1, which can be made increas-
ingly computationally efficient through block multiplication (Box et al.,
2008; Kay, 1988; Krishnaswamy et al., 2016; Malik et al., 2011).

The generalized least squares estimate is then recomputed, informed

with the inverse AR covariance matrix bQðωr ;ωcÞ�1, and the Burg algo-
rithm and Levinson-Durbin recursions are once again used to estimate the
autoregressive parameters from the residual. This process is cycled until

subsequent cσ2ðωr ;ωcÞ converge to within 0.01%. At this point, the

weighted mean square error bST ðωr ;ωcÞ is computed as:
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bSTðωr ;ωcÞ ¼ ðy� Zðωr;ωcÞbβðωr ;ωcÞ Þ
0 bQðωr ;ωcÞ�1ðy� Zðωr ;ωcÞbβðωr ;ωcÞ Þ
and the negative log likelihood of the selected parameters (in particular,
ωr and ωc) is computed as:

�log
�
L
�
ωr;ωc; bβ; bα;cσ2 jy��∝Tlog

�cσ2�� log
���bQ�1���þ bST

�cσ2

This negative log likelihood is computed for each pair of physiolog-
ically plausible ωr and ωc (i.e. for each of the Zðωr ;ωcÞ matrices we
generated) for a given data window. Then, the negative log likelihood is
minimized to determine the optimalωr andωc for the given data window.
This cyclic descent algorithm is then repeated across the subsequent,
overlapping Hann time windows to determine the optimal physiological
frequencies in each window across time.

2.2.2. Removing physiological noise
As noted earlier, the physiological frequencies are conserved

throughout the brain (Fig. 1). Therefore, the full cyclic descent algorithm
only needs to be completed once to identify ωr and ωc. Once these
quantities are known, the parameter estimation becomes linear and far
more computationally efficient as a sequential optimization is no longer
required (Malik et al., 2011). As a result, once the physiological fre-
quencies are determined we can efficiently remove physiological noise
from each voxel by performing the same moving-windowed, recursive
fitting procedure in each voxel, thereby accounting for phase and
amplitude variation across the brain. This fitting approach parallels how
noise is removed in a GLM if an autoregressive model has also been
included (for example, with RETROICOR, HRV, or RVT). However, a
distinction is that we calculate these model fits in sliding windows to also
allow for varying dynamics over time.

Specifically, for a given time window in a given voxel, we can

determine the maximum likelihood estimate of beta bβðωr ;ωcÞ using
recursive fitting as described above. We can then remove the physio-
logical noise (associated with specific columns in Zðωr ;ωcÞ) from that
particular data segment as:

y � Zpðωr;ωcÞβ̂pðωr;ωcÞ

where ωr and ωc have been previously determined, Zpðωr ;ωcÞ contains the
subset of columns in Zðωr ;ωcÞ associated with physiological noise, and
β̂pðωr ;ωcÞ is the amplitude associated with each respective column of
Zpðωr ;ωcÞ. This method can be efficiently applied on a voxel-to-voxel basis
to account for spatial and temporal variations in amplitude and phase of
physiological noise. Notably, we also obtain an estimate of the drift, neural
signal, and autoregressive noise for each time window and each voxel. In
this study, we choose to only remove the physiological noise and keep the
estimated autoregressive noise and drift terms in the data. However, one
could also choose to remove the estimated autoregressive noise and drift at
this step, for instance, if they wished to obtain white residuals.
2.3. Simulated data

In order to test the ability of HRAN to estimate and remove physio-
logical noise, we created two simulated time series of 300s with
TR¼ 0.250s.

The first simulated data set, used to test whether HRAN can track
physiological noise frequencies, depicts a region of interest with high
physiological noise (e.g. the ventricles). It consists of (a) respiratory noise
simulated as a sinusoid centered at 0.3Hz and its first harmonic at 0.6 Hz
with variable amplitude (ranging from 3 to 16 arbitrary units) and fre-
quency (ranging from 0.27 to 0.33Hz) over time, (b) cardiac noise
simulated as a sinusoid centered at 1 Hzwith variable amplitude (ranging
from 2 to 8 arbitrary units) and frequency (ranging from 0.92 to 1.08Hz)
over time, and (c) AR(1) background noise (with alpha¼ 0.9, sigma
6

squared¼ 5).
The second simulated data set, used to test performance of HRAN in

detecting neural signals, depicts a region of interest with neurally-
relevant activity (e.g. visual cortex), represented by a 0.1 Hz sinusoid
(with amplitude 25 arbitrary units) and the same AR(1) background
noise as the first simulation. It also contains simulated physiological
noise of the same amplitude and frequency as in the first simulation, but
with the cardiac noise phase shifted by 90�.
2.4. Data acquisition

2.4.1. Study participants
We analyzed data collected from three separate experiments. The first

two experiments were performed at Massachusetts General Hospital. All
subjects provided informed written consent and all experimental pro-
cedures were approved by the Massachusetts General Hospital Institu-
tional Review Board. We analyzed one subject collected as part of a
previous study that acquired long-duration resting state data (Experi-
ment A) and four subjects performing a visual task (Experiment B). Of
these five subjects, three identified as female and two identified as male,
with an age range of 22–27.

The third experiment (Experiment C) was performed at Boston Uni-
versity. All subjects provided informed written consent and all experi-
mental procedures were approved by the Boston University Institutional
Review Board. Four subjects were enrolled (one identified as female,
three identified as male), with an age range of 25–32.

2.4.2. Data acquisition

2.4.2.1. Experiment A – resting-state data. In Experiment A, we analyzed
a long duration resting-state scan with external physiological recordings
in one subject, which enabled us to assess how well HRAN was able to
estimate the physiological frequencies over a large time range. This
subject’s data was previously acquired and analyzed as part of a previous
study of sleep (Fultz et al., 2019).

The subject was imaged in a 3T Prisma scanner with a 64-channel
head coil, with the neck channels turned off (remaining¼ 48 chan-
nels). An initial anatomical multi-echo MPRAGE scan was acquired (van
der Kouwe et al., 2008) with 1mm isotropic resolution. Functional im-
aging consisted of a single-shot gradient echo blipped-CAIPI SMS EPI
(Setsompop et al., 2012). The resting-state functional scan was acquired
with a TR of 0.367s, 2.5mm isotropic resolution, TE¼ 32ms, multiband
factor¼ 8, FOV¼ 230� 230, shift factor¼ FOV/4, flip angle¼ 35�,
VERSE factor¼ 1, no in-plane acceleration, number of slices¼ 40, and
number of repetitions¼ 8000. External physiological recordings
included EKG and a respiratory belt, as well as electroencephalography
recorded for a separate study. Physiological recordings were acquired at
1000Hz, synchronized with the scanner, and downsampled to 200 Hz
prior to analysis.

2.4.2.2. Experiment B – 7T visual task. In Experiment B, we analyzed
data from four subjects who were presented with visual stimuli to
determine whether HRAN was able to improve detection of visually-
responsive voxels in 7T data acquired without physiological re-
cordings. The visual stimuli consisted of flickering radial checkerboards
with sinusoidally varying luminance contrast. The oscillation frequency
was fixed within each run, and varied from 0.1 to 0.3 Hz across runs (as in
(Lewis et al., 2018, 2016)). A red dot was also located at the center of the
checkerboard and changed brightness according to a uniform distribu-
tion. Subjects were instructed to press a button when they observed this
brightness change to ensure they remained attentive.

Imaging was performed in a 7T Siemens scanner with a custom-built
32-channel head coil. An initial anatomical multi-echo MPRAGE scan
was acquired (van der Kouwe et al., 2008) with 0.75mm isotropic res-
olution. Each functional run lasted 254 s and used a TR of 0.227s, 2 mm
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isotropic resolution, TE¼ 24ms, multiband factor¼ 3,
FOV¼ 240� 240, shift factor¼ FOV/3, flip angle¼ 30�, VERSE fac-
tor¼ 1, R¼ 2 acceleration, number of slices¼ 15, and number of repe-
titions¼ 1119. Due to the limited field of view, the functional acquisition
was positioned along the calcarine sulcus to target primary visual cortex,
using the anatomical image for guidance. A whole brain reference scan
with the same slice orientation as the functional runs was also performed
to assist with registration of functional scans to anatomical scans. No
external physiological data were acquired.

2.4.2.3. Experiment C – 3T visual task with isometric force hold. In
Experiment C, we collected data from four subjects at 3T replicating the
visual experimental paradigm of Experiment B, but with a) an additional
task designed to alter physiology, b) external physiological recordings,
and c) different TRs in order to compare HRAN with other physiological
removal techniques. First, one localizer run was performed with the
identical stimulus paradigm of Experiment B and used to identify
visually-responsive voxels. For each subsequent run, subjects were also
instructed to perform an isometric hand grip of a force gauge half-way
through the run (signaled by the red dot at the center of the checker-
board turning blue).

Imaging was performed on a 3T Prisma scanner with a 64-channel
head coil, with the neck channels turned off (remaining¼ 48 chan-
nels). An initial anatomical multi-echo MPRAGE scan was acquired (van
der Kouwe et al., 2008) with 1mm isotropic resolution. The functional
scans were acquired with TRs of 0.347s, 0.520s, and 0.720s for 254s,
with 2.5mm isotropic resolution, TE¼ 30ms, multiband factor¼ 2,
FOV¼ 190� 190, shift factor¼ FOV/3, VERSE factor¼ 1, no in-plane
acceleration, and number of slices¼ 10. For each TR (0.347s, 0.520s,
and 0.720s), the flip angles were 37�, 49�, and 56� respectively. As in
Experiment B, a whole brain reference scan with the same slice orien-
tation as the functional runs was also performed to assist with registra-
tion of functional scans to anatomical scans. External physiological
recordings included pulse oximetry and a respiratory belt (BIOPAC)
recorded at 2000Hz. One subject had slightly longer runs (an additional
45, 20, and 10 vol at each respective TR) and these additional images
were excluded to maintain consistent analysis across subjects.
2.5. Data analysis

2.5.1. fMRI preprocessing and statistical analysis
All fMRI data was first slice time corrected using FSL 5.0.11

(fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and motion corrected using AFNI (https:
//afni.nimh.nih.gov (Cox and Hyde, 1996) using the middle frame in the
time series as the reference. The data were then smoothed in FSL using a
5mm full-width-at-half-maximum Gaussian kernel. Functional runs were
registered to the anatomical image using boundary-based registration
(Greve and Fischl, 2009). Anatomical segmentations were generated
automatically from the anatomical image using Freesurfer (Fischl, 2012).
Anatomical regions of interest (e.g. primary visual cortex) for each run
were then extracted from the automatic segmentation, and transformed
to each individual subject’s native space. All subsequent analyses were
performed within the individual subject space. Additional analyses
(including implementation of HRAN) were performed in MATLAB 9.5
(2018b).

For analysis of Experiment B data, the initial 30 s (132 vol) and final
30 s (132 vol) of each run were excluded. The first 30 s were excluded as
our analysis used oscillating stimuli to induce a neural signal with a
known frequency, and we therefore restricted our analysis to the time
expected to contain this induced oscillation (i.e. after the large onset
transient subsided), as in (Lewis et al., 2016). The final 30 s were
excluded as motion artefact was present in a handful of our subjects in a
subset of runs towards the end of the run, likely related to fatigue from
7

multiple runs of the visual stimulus, and we opted to slightly truncate the
runs to consistently remove this issue. To examine visual-evoked acti-
vation of individual voxels, a general linear model (GLM) was imple-
mented in FSL consisting of a sine function and cosine function at the
stimulus frequency. The GLM was then solved in FSL using the default
settings for pre-whitening, a high-pass filter of 100s, and a voxel-wise
corrected significance threshold of 0.05. Each subject had one localizer
run with a stimulus frequency of 0.1 Hz, which was used to create a
region-of-interest (ROI) for comparison of activation across stimulus
frequencies. The ROI was defined as voxels that were anatomically
located in primary visual cortex, based on the Freesurfer segmentation,
and exhibited a significant F-test of the neural regressors in the localizer
run. To compare activation maps with and without physiological noise
regression, the median z-score was computed across all voxels in this ROI
for each run, and a Wilcoxon signed-rank test of the median z-scores was
performed across runs. Three runs spanning a broad stimulus frequency
range were analyzed for each subject leading to a total of 12 runs.

For analysis of Experiment C data, the initial 30 s of each run were
excluded to examine the steady-state responses (86 vol for TR¼ 0.347s,
58 vol for TR¼ 0.520s, 42 vol for TR¼ 0.720s). All other analysis steps
were identical to the analysis of Experiment B, including an initial run
with a stimulus frequency of 0.1 Hz for each subject to create an ROI of
task-responsive voxels in visual cortex, and the comparison of median z-
scores for each of the physiological noise removal methods using the
Wilcoxon signed-rank test across runs. With a TR of 0.347s, one run was
collected for Subject 1, and six runs were collected for Subjects 2–4. The
pulse oximeter fell off for the second subject during the first run, so no
analysis of these physiological recordings were performed for this sub-
ject. With a TR of 0.520s, one run was collected for Subject 1 and two
runs were collected for Subjects 2–4. With a TR of 0.720s, one run was
collected for each subject.

2.5.2. Physiological recordings analysis
To assess whether our model accurately estimates model parameters

(in particular, heart rate and respiration rate), we collected simultaneous
external physiological recordings in Experiment A and Experiment C. We
computed heart rate using the algorithm presented in (Barbieri et al.,
2004), which treats heart beats as a point process and therefore over-
comes challenges of using moving window or instantaneous estimate
approaches. As a similar technique does not exist for respiration, we
computed respiration rate as the reciprocal of the time interval between
subsequent breaths.

To obtain RETROICOR regressors in Experiment C, we processed our
external physiological recordings using the PhysIO Toolbox (Kasper
et al., 2017).

2.5.3. Model order selection
Our model requires specification of the following three parameters:

the number of cardiac harmonics K, the number of respiratory harmonics
L, and the AR order P. These parameters can be defined separately for
estimating the physiological frequencies from a region of interest with
high physiological noise (Kfreq; Lfreq; Pfreq), and for physiological noise
regression throughout the brain (KZ ;LZ ;PZ).

In the majority of fast fMRI scans, only the fundamental cardiac fre-
quency and the fundamental respiratory frequency along with its lower
harmonics can be observed directly (Fig. 1A). With this in mind, we
specify Kfreq ¼ 1 and Lfreq ¼ 1 in Experiment A and Experiment C, which
are appropriate model orders in general. However, we note that with at
least one subject in Experiment B (7T, TR¼ 0.227s) both a second cardiac
harmonic and interaction effect between cardiac and respiratory activity
are discernible (Fig. 1C,Fig. S2). While we could similarly set Kfreq ¼ 1
and Lfreq ¼ 1, the enhanced physiological noise provides additional in-
formation to improve parameter estimates. Therefore, we specify

https://afni.nimh.nih.gov
https://afni.nimh.nih.gov
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Kfreq ¼ 2 and Lfreq ¼ 1 for Experiment B, and include interaction terms as
described in (Harvey et al., 2008):
x ¼
XM
m¼1

ðDm sin ðAxm ωc t þ Bxm ωr tÞ þEm cos ðAxm ωc t þ Bxm ωr tÞ þ Fm sin ðAxm ωc t � Bxm ωr tÞ þGm cos ðAxm ωc t � Bxm ωr tÞÞ
where x ¼ ½x1;…xT � is the sum of the interaction effects, Axm and Bxm are
integers less than or equal to the number of cardiac harmonics (K) and
the number of respiratory harmonics (L), Dm; Em; Fm; and Gm define the
amplitude and phase of the interaction effects, and M is the order of the
interaction terms. For all experiments, we specified Pfreq ¼ 1 as we found
changing Pfreq did not greatly affect physiological frequency estimates
(Fig S3 A-B).

Given prior literature (Bollmann et al., 2018; Chen et al., 2019;
Harvey et al., 2008) and using the Bayesian Information Criterion (BIC)
as a guide (see Supplemental Information), we specified Kz ¼ 3, Lz ¼ 2,
and included no interaction terms for all experiments to capture higher
order harmonics of the cardiac and respiratory noise without overfitting
our signal. As suggested by the BIC, we specified Pz ¼ 2 for all
experiments.

2.5.4. Physiological ROI selection
Many anatomically defined brain areas are known to manifest high

levels of physiological noise, including the ventricles, white matter, and
brainstem, and individuals may manifest varied levels of physiological
noise in each region. We used Freesurfer (Fischl, 2012) to generate
anatomical segmentations, and for all subjects estimated physiological
noise from either the ventricles (left lateral ventricle, right lateral
ventricle, 3rd ventricle, or 4th ventricle) or whitematter ROIs, depending
on which regions were included in our acquisition window (which had a
limited field of view). We chose the ventricles and white matter, and not
the brainstem, because they are less likely to contain neurally-relevant
signals, which may impact our estimates of the physiological noise. In
these analyses, the size of these ROIs ranged from a couple dozen voxels
(e.g. using the 4th ventricle) to a few thousand voxels (e.g. using white
matter). In general, estimating physiological noise from ROIs as
compared with single voxels is beneficial as averaging across voxels en-
hances the relative proportion of physiological to thermal noise (Tri-
antafyllou et al., 2005); however, one could estimate physiological noise
from any single voxel (including voxels with neural activity if this is
appropriately modeled), as long as inspection verified that the voxel
contained large-amplitude physiological noise.

2.5.5. Time window selection
HRAN requires specification of a moving time window. In general, we

found that with shorter TRs we are able to use smaller time windows (e.g.
closer to 24s) without a reduction in accuracy, and with longer TRs larger
time windows (e.g. closer to 45s) may lead to slightly improved perfor-
mance. However, these parameters are subject to not only TR, but also
individual physiology and experimental condition. For example, if a
subject is performing a task with behavioral state changes, like sleep, a
shorter time windowmay be important to capture transient physiological
dynamics. While the length of these time windows may be optimized for
a particular experiment, we found that parameter estimates were fairly
consistent across window lengths (Fig S3 C-F). We selected a 30 s window
for Experiment A (TR¼ 0.367s), a 24s moving time window for Experi-
ment B, (TR¼ 0.227s) and windows of lengths 30s, 36s, and 45s for each
of the respective TR’s in Experiment C (TR¼ 0.347s, TR¼ 0.520s,
TR¼ 0.720s). For all experiments, we specified a 75% overlap of Hann
windows. The windows are overlapping and tapered to prevent artificial
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“jumps” that may occur in non-tapered, sequential windows (Fig. S4).

2.5.6. Physiological frequency range
HRAN requires specification of the expected cardiac and respiratory
frequency ranges. These values may be set broadly as ranging from car-
diac frequencies¼ [40 … 120] bpm and respiratory frequencies¼ [8 …

24] bpm to capture large variations in physiology across the population,
or could be set based on the individual subject’s estimated heart rate and
respiration rate. We visually inspected spectrograms of the ventricles and
estimated the mean heart rate and respiration rate from these spectro-
grams, if they could be sampled directly. We then initialized the physi-
ological frequency ranges as the mean heart rate� 12 and the mean
respiration rate� 6, which allowed for more computationally efficient
frequency estimation. For higher TRs (0.520s, 0.720s), a broader range of
40–120 bpm and 8–24 bpm were used for cardiac and respiratory fre-
quencies respectively.

2.5.7. Spectral analysis
All power spectra and spectrograms were computed using the

Chronux toolbox (chronux.org) (Bokil et al., 2010) using five tapers and
three tapers respectively. A moving window of 60s was used for Exper-
iment A, and 30s moving windows were used for both Experiment B and
C.

2.5.8. Comparison to other physiological noise methods
In simulated data, we compared HRAN performance with a simulated

reference-based model approach (which we term simRETROICOR) and a
simulated data-driven approach (which we term simPCA). For simRE-
TROICOR, we modeled the physiological noise as a Fourier expansion of
the simulated cardiac and respiratory frequencies (with 1 cardiac term
and 2 respiratory terms as in the simulation) and used a GLM to remove
the estimated physiological noise. This approach is similar to that of
RETROICOR, and models a best-case scenario with perfect estimation of
the cardiac and respiratory signals from the external recordings. For
simPCA, we first replicated the simulated physiological noise region ten
times with addedwhite noise (to reflect, for example, individual voxels of
the ventricles). We next performed principal component analysis (PCA)
on these ten simulated physiological noise voxels, incorporated the first
three principal components into a design matrix, and used GLM to
remove them from our simulated data. This approach is similar to many
data-driven approaches, which use component analysis on physiologi-
cally noisy voxels to estimate individual physiological noise components.

In Experiment C, we compared HRAN to widely used physiological
noise regression techniques in fast fMRI data. We implemented RET-
ROICOR with our acquired external physiological reference signals and
the PhysIO toolbox (Kasper et al., 2017). In both HRAN and RETROICOR,
we used 3 cardiac terms, 2 respiratory terms, and no interaction terms.
We also implemented a data driven approach modeled after aCompCor
(Behzadi et al., 2007), which we simply term anatomical PCA (aPCA).
First, we extracted masks of white matter and cerebrospinal fluid
(including the ventricles), eroding by one voxel. For each voxel in this
mask, we detrended the functional time series by removing the mean and
linear drift and normalized the variance by dividing the time series by the
temporal standard deviation. We then examined the correlation between
the voxel time series and our neural regressors (consisting of a sine and
cosine at the stimulus frequency). If either correlation had a p-value less
than 0.2, we excluded the voxel. We conducted PCA using singular value

http://chronux.org


Fig. 3. HRAN accurately estimates physiological
frequencies. Estimates of cardiac and respiratory
frequencies derived from fast fMRI data using HRAN
track estimates derived from external physiological
reference signals. (A) A spectrogram of the 4th
ventricle from a subject in Experiment A. The 4th
ventricle was used to generate estimates of the
fundamental physiological frequencies (white dots).
(B) These estimated cardiac (red dots) and respiratory
(blue dots) frequencies correspond to the heart rate
obtained from EKG (red line) and respiratory rate
obtained from a respiratory belt (blue line).
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decomposition on all voxels that satisfied the above criteria and selected
the first five principal components from white matter and the first five
principal components from CSF as physiological regressors. For HRAN,
RETROICOR, and aPCA, we removed the estimated physiological noise
from each voxel before performing statistical analysis in FSL.

3. Results

3.1. HRAN accurately estimates cardiac and respiratory dynamics and
explains fast fMRI data

We first validated that our model is able to provide faithful estimates
of the fundamental cardiac and respiratory frequencies directly from the
fast fMRI signals, without requiring external physiological recordings. In
resting-state data in which heart rate and respiratory rate varied over
time, we used HRAN to estimate the physiological frequencies from the
4th ventricle (Fig. 3A). We found that these estimated physiological
frequencies accurately tracked the heart rate and respiration rate
computed from simultaneously collected EKG and respiratory belt data
(Fig. 3B). In particular, our model estimates of heart rate and respiration
were each within the range of the heart rate and respiration rate obtained
from external recordings in 96% of analyzed time windows (n ¼ 100
thirty-second windows). Furthermore, the median root-mean-squared-
error (RMSE) of our model estimates and the heart rate and respiration
rate obtained from physiological recordings were 2.8 bpm (� standard
error of 0.27) and 2.0 bpm (� standard error of 0.14) respectively. These
errors in our model estimates are similar to the median RMSE of the heart
rate and respiration rate obtained from physiological recordings with
their averages in a given time window, which were 2.7 (� standard error
of 0.10) and 1.7 (� standard error of 0.09) respectively, suggesting that
the errors reflect the variability of cardiac and respiratory activity within
the time window. These results demonstrate that HRAN can be used to
determine cardiac and respiratory frequencies directly from fast fMRI
data, without requiring external reference signals.

Given this accurate estimation of physiological frequencies, we next
examined how well our full model (including physiological noise, drift,
autoregressive components, and neural signal) fits fast fMRI data.
Assessing the goodness-of-fit of our model is critical to ensure that we do
not underestimate or overestimate the physiological noise, along with
the autoregressive components, thereby leaving correlated noise in the
residuals and skewing statistical inferences. This step is especially
important for fast fMRI data, where both the autocorrelation structure
and magnitude of physiological noise vary substantially across voxels.
For example, the power spectra of a white matter voxel, a grey matter
neocortical voxel, and a brain stem voxel (Fig. 4A) in a run from
Experiment B manifested a variable number of physiological harmonics
of differing amplitude and low-frequency correlated noise, and our
model must be able to accommodate these differences.

To confirm that HRAN explains data across voxels, we performed
HRAN and checked standard goodness-of-fit criteria in one run acquired
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with our shortest TR (Experiment B). We first calculated the normalized
cumulative periodogram (NCP) of the estimated HRAN components in
each voxel. The NCP depicts the cumulative power at each frequency –

for example, ideal white noise contains equal power at each frequency
and would therefore increase linearly across all sampled frequencies
(Fig. 4B). NCP demonstrated that the white matter voxel was relatively
similar to white noise, the grey matter voxel contained a combination of
both low frequency and physiological noise, and the brainstem voxel was
dominated by physiological noise (Fig. 4B). Notably, the residuals of
HRAN in each of these voxels lay within a 95% confidence interval of
ideal white noise, indicating that the residuals of our model do not
significantly differ from white noise. Furthermore, we created a quantile-
quantile plot of each of the residuals which demonstrate that they are
approximately normally distributed (Fig. 4C). These two findings suggest
that HRAN is able to appropriately model the data in each voxel, despite
their differing ratios of physiological and correlated noise.

We computed the NCP across all brain voxels and found that the re-
siduals lie within the 95% confidence interval of pure white noise in 84%
of all voxels (N¼ 72,358), 92% of neocortical white matter voxels
(N¼ 17,013), and 78% of neocortical grey matter voxels (N¼ 18,066)
using an AR(2) model as indicated by the BIC (Fig. 4D) (see Model Order
Selection). We also increased the AR order until the residuals remained
within the 95% confidence interval of ideal white noise and found that
with an AR(3) model, HRAN residuals remained within the 95% confi-
dence of ideal white noise in 97% of all voxels, 98% of neocortical white
matter voxels, and 97% of neocortical grey matter voxels.

Taken together, these results suggest that HRAN is able to 1) accu-
rately estimate the cardiac and respiratory frequencies from fast fMRI
data directly and 2) satisfy goodness-of-fit criteria in voxels with varied
physiological noise and autocorrelation structure.
3.2. HRAN accurately removes time-varying physiological noise in
simulated data

We next examined whether HRAN could accurately remove physio-
logical noise while preserving neural signal in a simulated dataset. A
challenge for many physiological noise removal methods is that the
amplitude and frequency of respiratory and cardiac signals are often not
stable throughout a run, but rather vary dynamically over time. We
therefore included variable amplitude and frequency noise in this
simulation, to create a difficult test case for each method.

First, we generated simulated fast fMRI data with cardiac and respi-
ratory noise of variable amplitude and frequency, representing the ven-
tricles. We then simulated cortical fMRI data as a neurally-driven
oscillation at 0.1 Hz contaminated with physiological noise. Notably, the
physiological noise in the simulated cortex has the same amplitude and
frequency as in the simulated ventricles; however, the phase of the car-
diac noise is shifted, representing temporal delays of physiological noise
across the brain which are often present in real data.

To test the performance of our method, we used HRAN to estimate the



Fig. 4. HRAN explains fast fMRI data
across tissue type. HRAN satisfies
goodness-of-fit criteria across voxels
with varied noise properties. (A) The
power spectra of three exemplar voxels
are shown from a subject in Experiment
B: a cortical white matter voxel (left), a
cortical grey matter voxel (middle), and a
brainstem voxel (right). Each voxel
manifests differing levels of physiolog-
ical and autocorrelated noise. (B) The
normalized cumulative periodograms
(NCP) demonstrate that the residuals
(grey line) in each voxel lie within a 95%
confidence interval of ideal white noise
(dashed black lines). (C) Quantile-
quantile plots show that the residuals
are also approximately normally distrib-
uted. (D) Goodness-of-fit criteria were
similarly examined across the brain, and
histograms of all voxels (left), cortical
grey matter voxels (middle), and cortical
white mater voxels (right) demonstrate
that HRAN satisfies goodness-of-fit
criteria across the majority of voxels in
the brain.
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physiological frequencies from the simulated ventricle data, and then
regress out the physiological noise from the simulated cortex data. We
also compared HRAN to (a) a simulated reference-based modeling
approach, in which the frequencies are known (due to external reference
signals) but the amplitude remains constant (simRETROICOR), and (b) a
simulated data-driven approach, in which principal component analysis
is used to estimate and remove the physiological noise from the data
directly (simPCA).

Visual examination of the cleaned simulated spectrograms demon-
strated that HRAN was the most effective in removing the simulated
physiological noise (Fig. 5A). The de-noised simRETROICOR spectro-
gram contained high amplitude physiological noise not only when the
10
original signal had relatively high amplitude physiological noise, but also
when the original signal had relatively low amplitude physiological
noise. A time-series plot of simulated physiological noise with the esti-
mated physiological noise from simRETROICOR overlaid shows that the
method overestimated the physiological noise in the original signal when
it had low amplitude (Fig. 5B). This resulted in the artificial introduction
of noise into these segments (Fig. 5A,C). In fact, by examining only the
de-noised data one is unable to discern whether the residual physiolog-
ical noise results from failure to remove high amplitude physiological
noise present in the original data or its artificial introduction. These
challenges arise because simRETROICOR assumes a fixed amplitude of
cardiac and respiratory noise across time, which, especially in longer



Fig. 5. HRAN removes simulated
physiological noise with variable
amplitude and frequency. Each row
displays the results of physiological noise
removal using a different technique (row
1 no physiological noise removal, row 2
HRAN, row 3 simRETROICOR, and row 4
simPCA). Spectrograms of the simulated
data with each of the physiological noise
removal methods performed are shown
in (Column A). The simulated physio-
logical noise (black lines) and estimated
physiological noise using each method
(colored lines) are displayed in (Column
B). The simulated data with physiolog-
ical noise removed using each method
(colored lines) are displayed on top of the
simulated neural signal (black dashed
lines) in (Column C). HRAN effectively
accounts for and removes the physio-
logical noise from the simulated data
(second row). As simRETROICOR cannot
accommodate variations in amplitude,
physiological noise is both left in and
introduced into the simulated data (third
row). While the simPCA approach ac-
counts for amplitude variations, it is
unable to address the 90� phase delay of
the cardiac noise and leaves it in the
simulated data (fourth row).
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duration scans, may not hold true.
While the simPCA approach successfully removed the simulated

respiratory noise, the cardiac noise, which was phase-shifted relative to
the simulated ventricle data, was still present (Fig. 5A,C). This PCA-based
approach is unable to account for the phase difference between the
cardiac noise in the two simulated data sets, and is therefore unable to
successfully remove the physiological noise. Furthermore, because the
estimated components are broadband, the structure of the background
AR noise was also affected. Unlike model-based methods, estimated re-
gressors derived from component analysis based approaches depend on
the timeseries from which they are extracted, and therefore do not
necessarily generalize across the brain.

Conversely, HRAN was able to accurately estimate the amplitude and
frequency changes of the physiological noise (Fig. 5A–C). As a result,
HRAN was most effective in removing the physiological noise from the
simulated neurally-relevant activity, reducing the root mean squared
error of the original data by 86% (9.42 to 1.34), a 64% improvement
compared to simRETROICOR (1.34 vs 3.70), and an 80% improvement
compared to simPCA (1.34 vs 6.74). These simulations therefore
demonstrate that HRAN can accurately model and remove physiological
noise in multiple challenging settings: when the amplitude and frequency
of the noise vary over time, and when the phase of the noise varies over
space.
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3.3. HRAN improves detection of stimulus-driven neural activity

After confirming that HRAN can accurately detect and remove
physiological noise in simulated data, we examined whether it was able
to improve statistical detection of task-related activity in a fast fMRI
experiment. In Experiment B, we presented subjects with visual stimuli
oscillating at specific frequencies (ranging from 0.1 to 0.3 Hz). We
selected an ROI that was within primary visual cortex and driven by the
lowest frequency stimulus (0.1 Hz), which elicited the largest amplitude
fMRI response, in order to identify a region that is expected to exhibit
task-driven signals. In this ROI, we compared the median change in z-
scores with and without physiological noise removal using HRAN. By
selecting our ROI in a run with a higher signal-to-noise ratio without any
noise removal, we prevented bias in the ROI selection due to the per-
formance of any particular cleaning method.

We found that even in this visual task known to evoke a strong
response, HRAN increased the median z-scores in the ROIs as compared
with no physiological noise removal (Fig. 6A, median change of 0.10,
Wilcoxon signed rank, p< 0.002). Notably, a median-increase in z-scores
of these task relevant voxels does not necessarily imply appropriate
physiological noise removal. In fact, if one were to simply bandpass filter
the data around the frequency of interest, this would also result in an
overall increase in z-scores, but would remove much more of the signal
than just the physiological noise. We therefore also examined spectral



Fig. 6. HRAN improves detection of task-driven
voxels. (A) As compared with no physiological
regression, HRAN increases the median z-scores of
anatomically and functionally defined ROIs in visual
cortex across four subjects and twelve runs. Autore-
gressive noise was not removed. (B, C) Spectrograms
of this ROI are shown with and without physiological
noise removal in two exemplar runs, demonstrating
that respiratory and cardiac frequencies are selec-
tively removed. (D, F) Power spectra in these two
exemplar runs further illustrates that these physio-
logical peaks are removed, while the signal and
background noise is preserved. (E, G) Maps of the
differences in z-scores in each voxel of an example
slice with and without HRAN, showing broad in-
creases in statistical detection of activation across the
visual cortex when HRAN is applied.

U. Agrawal et al. NeuroImage 205 (2020) 116231
content of the fMRI signals. Spectrograms (Fig. 6B and C) and power
spectra (Fig. 6 D,F) of two example runs suggested that HRANwas able to
selectively remove the respiratory and cardiac noise from the signal,
including their harmonics, despite the variations in amplitude and fre-
quency across time (particularly the respiration). Importantly, in both
runs the background power spectra were kept intact, suggesting that
HRAN also preserved the neurally-relevant signal as well as the autore-
gressive noise, and did not introduce additional noise into the original
data.

These results suggested that HRAN was able to successfully estimate
and remove physiological noise in fast fMRI data, thereby improving
detection of task-driven voxels. Furthermore, HRAN was particularly
effective in improving the z-scores at faster stimulus frequencies, which
have lower amplitude neural signals and in turn lower overall z-scores,
indicating that HRAN would be beneficial for single-subject imaging of
fast BOLD dynamics or more complex cognitive studies seeking to char-
acterize relatively small effects.
3.4. HRAN performs as well as gold-standard physiological noise removal
methods without requiring external physiological recordings

We next designed an experiment (Experiment C) to compare HRAN
with other widely used physiological noise removal approaches: RET-
ROICOR (which we take as gold standard due to its accurate noise esti-
mation from external physiological recordings) and an anatomical PCA
based approach (aPCA), where physiological noise components were
estimated using principal component analysis on the CSF and white
matter. In the experiment, subjects viewed an oscillating visual stimulus
12
(as in Experiment B). Halfway through each run, subjects performed an
isometric hand grip, maintaining force for the second half of each run. An
isometric hand grip is known to induce a greater afterload on the heart,
or increase systemic vascular resistance, which may impact heart rate
and cerebral blood flow (Lilly, 2011). Therefore, this experiment con-
tains a task-driven response (induced by the visual stimulus) with
time-varying physiological noise (induced by the hand grip).

The task elicited both the expected stimulus-driven response and
dynamic physiological noise over time (Fig. 7A). The spectrograms and
power spectra suggested that both HRAN and RETROICOR effectively
accounted for the physiological noise (Fig. 7A and B), whereas aPCA had
mixed results. Specifically, aPCA removed a substantial amount of the
low-frequency components present in the signal, but also introduced
high-frequency noise which obscured the cardiac and respiratory peaks
(Fig. 7A and B). Inspecting the time series further demonstrated this high-
pass filtering and introduction of high-frequency noise in aPCA, while
both HRAN and RETROICOR tracked the original signal well (Fig. 7C).

We found that all physiological noise removal methods increased the
median z-scores in the majority of runs. In particular, HRAN increased
the median z-score in 12/13 runs (median change of 0.216, Wilcoxon
signed rank, p¼ .001), RETROICOR increased the median z-score in 11/
13 runs (median change of 0.023, Wilcoxon signed rank, p¼ 0.049), and
aPCA increased the median z-score in 10/13 runs (median change of
0.278, Wilcoxon signed rank, p¼ 0.048). However, this performance of
aPCAwas not consistent across stimulus types. Notably, aPCAmanifested
the greatest increase in z-scores only in the lower stimulus frequencies,
and actually decreased the z-score when higher stimulus frequencies
were presented, whereas HRAN and RETROICOR increased the z-scores



Fig. 7. Comparison of noise removal
methods in one subject. HRAN
removes physiological noise while pre-
serving fMRI signal. (A) Spectrograms of
the ROI in one run from Experiment C
(Subject 4) show that cardiac noise is
appropriately removed by HRAN and
RETROICOR, but not by aPCA. (B)
Power spectra of the same ROI show that
HRAN and RETROICOR account for
time-varying physiological noise, while
aPCA removes low-frequency noise and
introduces high-frequency noise. (C)
Timeseries of the ROI demonstrate that
HRAN and RETROICOR track the orig-
inal data, whereas aPCA introduces sub-
stantial high-frequency fluctuations.
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for both low and high stimulus frequencies (Fig. 8B).
Notably, it is possible that these observed increases in z-scores may

have resulted from the removal of variance in the fMRI signal that is not
directly related to physiological noise. To characterize how well each
method selectively removed physiological noise, we examined the
average difference in power spectra before and after physiological noise
removal across runs for each subject (Fig. 8C–F). We expected that suc-
cessful physiological noise removal techniques would manifest a power
difference only in physiological frequency bands, leaving the rest of the
signal intact.

We found that both HRAN and RETROICOR effectively removed
physiological noise in distinct frequency bands associated with cardiac
and respiratory activity (as indicated by the negative differences in
power), while preserving neural signal. A notable exception was present
in one subject (Fig. 8E), where increased noise was present in the first
harmonic of respiration. We found that this increased noise was related
to a low frequency component present in only one of the RETROICOR
regressors, which may have resulted from irregular breathing patterns
that can lead to sub-optimal fitting. On the other hand, aPCA primarily
removed low frequency noise, and though it also demonstrated relative
reductions of noise in the cardiac and respiratory frequency bands, it was
with a background of overall increased high-frequency noise. This high-
pass filtering effect likely contributed to the observed increase in z-scores
13
at lower stimulus frequencies, while the broadband noise may have
impeded detection of more rapid neurally-driven responses (Fig. 8B). In
other words, although aPCA increased the z-scores in a majority of runs,
this result may have been driven by the reduction of variance at lower
frequencies (<0.1 Hz) rather than removal of noise in respiratory and
cardiac frequency bands.

These results demonstrated that HRAN can selectively remove phys-
iological noise as effectively as the gold standard technique, RETRO-
ICOR, but without requiring external reference signals.
3.5. HRAN performance at lower sampling rates

While we have shown that HRAN performs well at TRs where respi-
ratory and cardiac frequencies can be unambiguously identified, we next
aimed to determine how HRAN performs when these physiological sig-
nals are aliased. For example, a TR of 0.5s is required to track a typical
heart rate of 60bpm (or 1 Hz), but it is not clear how HRAN estimates
would vary if the subject’s heart rate increased slightly above the Nyquist
limit. In Experiment C, we also collected runs with TRs of 0.520s and
0.720s with external physiological recordings to investigate whether
HRAN could correctly identify the fundamental physiological frequencies
at lower sampling rates.

In one run, we observed that the heart rate varied from slightly below



Fig. 8. Comparison of noise removal methods
across subjects. HRAN selectively removes physio-
logical noise and improves z-scores across stimulus
frequencies. (A) Median z-scores across the ROI with
no physiological noise removal (black), HRAN (pur-
ple), RETROICOR (green), and aPCA (orange) across
all subjects. Stimulus frequency is jittered for display.
At lower stimulus frequencies aPCA demonstrates the
greatest increase in z-scores, but at higher stimulus
frequencies only HRAN and RETROICOR improve
detection. (B) Average difference of median z-scores
with each method and no physiological regression
grouped by stimulus frequency: low frequency
(<0.17 Hz, n¼ 7 runs) and high frequency
(>0.17 Hz, n¼ 6 runs). Error bars depict standard
error. (C–F) Difference in mean power spectra be-
tween each physiological noise removal method and
no physiological noise removal in the ROI. Negative
values indicate that power at that frequency has been
reduced (or noise has been removed), and positive
values indicate that power has been increased (or
noise has been introduced). Shading represents the
standard deviation across runs for each subject. One
run was collected for Subject 1, and six runs were
collected for Subjects 2–4.
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highest observable frequency (58 bpm with a TR of 0.520s) at 53 bpm to
well above it at 71 bpm (Fig. 9A). We found that while HRAN could not
track these heart rate dynamics directly, the aliased cardiac estimates
from HRAN accurately tracked the aliased heart rate. As expected, HRAN
was not able to distinguish between the true heart rate and aliased heart
rate as the fast fMRI data lack sufficient information; however, HRAN
was able to successfully account for and remove the aliased cardiac noise
in the fast fMRI data (Fig. 9B). In other words, because the cardiac noise
aliased into a distinct frequency band, HRAN was able to appropriately
estimate and remove the noise despite not sampling it directly. We
compared HRAN (using only 1 cardiac term and 1 respiratory term as
higher harmonics may not be correctly determined) with RETROICOR
(using 3 cardiac terms and 2 respiratory terms), and found that both
HRAN and RETROICOR removed physiological noise from the ROI in
visual cortex (Fig. 9B and C) and improved the median z-score in this ROI
as compared with no physiological regression (no physiological
14
regression: 6.36, HRAN: 6.53, RETROICOR: 6.47). In the five runs we
collected with TR¼ 0.520s, HRAN improved the z-score in 5/5 cases
with a median increase of 0.16 and RETROICOR improved the z-score in
4/5 cases with a median increase of 0.02.

With a TR of 0.720s the highest observable frequency is much lower
(42 bpm), and the cardiac noise may alias more broadly across sampled
frequencies. For example, in one run the heart rate varied from 52 bpm to
78 bpm, and aliased into the respiratory frequency range (Fig. 9D).
HRAN was therefore unable to distinguish between cardiac and respi-
ratory frequencies (as seen by the HRAN respiratory estimates tracking
the heart rate, and HRAN cardiac estimates tracking the respiration). As a
result of the aliasing, HRAN lacked a defined cardiac frequency range and
essentially treated any oscillatory signal in the ventricles as physiological
noise. In a separate run, the cardiac noise aliased into a distinct frequency
band, and therefore HRAN was able to accurately estimate the cardiac
and respiratory frequencies from the aliased signal (Fig. 9F).



Fig. 9. Performance of HRAN varies with TR and
physiology. HRAN may be effective even if fMRI
data is sampled below the Nyquist frequency, though
to a limited extent. (A) With TR¼ .520s, the respi-
ratory frequencies estimated by HRAN (blue dots)
track the respiration rate obtained using external re-
cordings (blue line), though the cardiac estimates
(dark red dots) do not always track the heart rate (dark
red line) directly; however, the aliased HRAN cardiac
estimates (light red dots) track the aliased heart rate
(light red line). (B–C) Power spectra and spectrograms
of the ROI demonstrate removal of physiological
noise. Neurally-relevant peaks indicated by arrows.
(D,F) The cardiac frequencies may alias into respira-
tory frequency bands and limit HRAN estimation, or
into a distinct frequency band where HRAN still
performs well (examples have TR¼ .720s). (E,G)
Power spectra demonstrate removal of the physio-
logical noise to varying degrees. Neurally-relevant
peaks indicated by arrows.
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In the three runs we collected with a TR of 0.720s, we found that
HRAN was able to remove noise in similar frequency bands as RETRO-
ICOR (Fig. 9E,G), and both HRAN and RETROICOR improved the z-
scores in all three cases with a median increase of 0.62 and 0.57
respectively. However, these results must be interpreted with caution as
it is possible that HRAN (like conventional data-driven methods) may
have also removed noise not directly associated with cardiac and respi-
ratory activity. Together, these results suggest that HRAN may be useful
even at slightly higher TRs which cannot directly resolve physiological
frequencies, but must be applied more carefully.

4. Discussion

We created a model of harmonic regression with autoregressive noise
to estimate and remove physiological noise in fast fMRI. Our model de-
termines the fundamental cardiac and respiratory frequencies from the
fMRI data directly, and removes the physiological noise from neurally-
relevant signals and autocorrelated noise without requiring external
physiological recordings.
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Before performing any inference with our model, we first confirmed
that our model sufficiently explains fast fMRI data. Importantly, we
achieved a balance between model complexity and goodness-of-fit using
standard model comparison criteria as a guide and validating that the
residuals were not biased to any particular frequency (Figs. 3,4Figs. S1).
While we found the specified model orders (i.e. the number of cardiac
terms, the number of respiratory terms, and autoregressive order) were
sufficient to explain fast fMRI data across a wide range of acquisition
parameters (e.g. field strengths of 3T and 7T, TRs of 0.227s–0.720s), they
can also be adapted depending on experimental paradigm, preprocessing,
and acquisition. For example, we focused on visual cortex, but studies
investigating regions known to manifest higher levels of physiological
noise, such as the brainstem, may choose to include higher physiological
harmonics or interaction terms (Harvey et al., 2008). Similarly, we did
not incorporate realignment regressors into our estimates of physiolog-
ical noise, which may help to account for respiratory artifacts related to
motion (Bollmann et al., 2018; Fair et al., 2018). Our data were also
smoothed, which amplified the magnitude of the signal and physiological
noise, relative to thermal noise. Unsmoothed data may create a more
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distinct separation of optimal AR orders between tissue type (Bollmann
et al., 2018), and reduce the detection of the higher physiological har-
monics. Our model is therefore able to perform well across a wide range
of conditions, and can adapt as investigators continue to expand the
capabilities of fast fMRI.

Another important aspect of HRAN is that although it estimates
physiological noise from the data, it is a model-based approach designed
specifically for fast fMRI. In particular, it avoids removing neural signals
at high (>0.15 Hz) frequencies, preserving information that may be of
interest in fast fMRI studies (Figs. 6–8). Recent studies have discovered
neurally-driven signals an order of magnitude larger than predicted by
the canonical hemodynamic response function up to 0.75 Hz (Lewis
et al., 2016) and high-frequency fMRI signals have also been reported in
the resting state (Lee et al., 2013); therefore, approaches to remove
physiological noise that also remove signal or enhance noise in these
higher frequency bands may not be appropriate for fast fMRI. For
example, while temporal low-pass filtering removes non-aliased physio-
logical noise, it also removes all fast neurally-driven signals. In addition,
as suggested by previous work (Chen et al., 2017), we found that
data-driven methods in fast fMRI often estimate broadband physiological
noise regressors which are driven by low-frequency components.
Regressing these components across the brain introduced high frequency
noise into the data and obscured detection of the faster neural signals.
Notably, our tested data-driven method, aPCA, does lead to an
improvement in z-scores at lower stimulus frequencies. However, as
evident from the difference in power spectra in Fig. 8, the improvement
in z-scores is not related to physiological noise removal, but rather is
related to removal of variance in the signal not associated with physio-
logical noise (in this particular case, high-pass filtering). Given that
z-scores improve with removal of any non-task-related variance, we
recommend examining the power spectra before and after physiological
noise removal as an effective quality control measure to ensure proper
physiological noise removal. Certain pre-processing steps including
pre-whitening, filtering, manual classification, or even performing HRAN
on the estimated physiological regressors could help to prevent this
introduction of noise, but come with their own challenges (Bright et al.,
2017; Carp, 2013; Chen et al., 2017; Hallquist et al., 2013). Unlike
data-driven methods, model-based approaches are informed with bio-
logical intuition about the properties of the noise. Therefore, they
selectively remove physiological noise in distinct frequency bands and
preserve the higher-frequency signals, which is important as these
low-amplitude, high-frequency signals can overlap with the physiolog-
ical frequency range.

While HRAN was most effective at TRs where physiological noise is
sampled directly, we found that it also was able to remove physiological
noise in longer TR scans in which the cardiac rhythmwas aliased (Fig. 9).
In fact, in this undersampled case HRAN is similar to many data-driven
approaches which estimate physiological noise from anatomically
defined regions, except with the additional constraint that the noise must
be periodic. As a result, at longer TRs HRAN has the potential to intro-
duce noise into the data, for example, if the physiological frequencies are
estimated inaccurately. This limitation could be overcome if external
physiological recordings are collected by combining RETROICOR with
HRAN. Specifically, the estimated physiological regressors in RETRO-
ICOR could be incorporated into the cyclic descent algorithm to ensure
that physiological frequencies were accurately tracked (even if under-
sampled in the fMRI), the amplitude was allowed to vary, and the
autocorrelated noise was appropriately accounted for. Alternatively, a
slice-based approach as in (Aslan et al., 2019) could potentially be used
to sample the physiological noise. A second limitation is that HRAN does
not currently model low-frequency changes in respiratory volume or
heart rate variability (Birn et al., 2008b, 2008a; 2006; Chang et al., 2009;
Chang and Glover, 2009). Future work could examine how to incorporate
these variables into HRAN, either through direct measurements, or
through exploring whether these low-frequency fluctuations may in fact
be captured by the dynamic amplitude measures fit with HRAN in each
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time window. A related limitation of HRAN is that it assumes fixed pa-
rameters for a given time window, but physiological frequencies and
amplitude can vary even within a time window. In addition, HRAN as-
sumes a periodic structure to the physiological noise. While this prevents
the artificial introduction of noise potentially seen in data-driven ap-
proaches, it also limits the potential ability of HRAN to remove physio-
logical noise that deviates from the model. State-space approaches, such
as DRIFTER (S€arkk€a et al., 2012), are better able to accommodate these
dynamic changes, and could perhaps be integrated with HRAN to opti-
mally account for temporally and spatially varying physiological and
autocorrelated noise in fast fMRI. Finally, HRAN currently estimates
noise parameters from each voxel independently, though a regularization
procedure as in (Purdon et al., 2001) could be implemented to produce
smoother noise estimates.

In conclusion, we harnessed the enhanced information in fast fMRI to
estimate and remove physiological noise directly from the data, while
preserving the underlying signal. Notably, the faster signals detectable in
fast fMRI overlap with physiological noise, and the statistical structure of
the noise is altered, making accurate noise removal particularly impor-
tant – especially in patient populations or long duration scans where
physiological noise may be variable, and external physiological re-
cordings are difficult to collect. We demonstrate that while analysis of
fast fMRI data poses novel challenges, it also contains unique and
meaningful information, and our technique could be broadly useful for
future studies that aim to examine and exploit this abundance of new
information in fast fMRI signals. The full software is available at https://
github.com/LewisNeuro/HRAN.
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