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SUMMARY

Accurate measurement of clonal genotypes, muta-
tional processes, and replication states from indi-
vidual tumor-cell genomes will facilitate improved
understanding of tumor evolution. We have devel-
oped DLP+, a scalable single-cell whole-genome
sequencing platform implemented using commod-
ity instruments, image-based object recognition,
and open source computational methods. Using
DLP+, we have generated a resource of 51,926 sin-
gle-cell genomes and matched cell images from
diverse cell types including cell lines, xenografts,
and diagnostic samples with limited material. From
this resource we have defined variation in mitotic
mis-segregation rates across tissue types and
genotypes. Analysis of matched genomic and image
measurements revealed correlations between
cellular morphology and genome ploidy states. Ag-
gregation of cells sharing copy number profiles al-
lowed for calculation of single-nucleotide resolution
clonal genotypes and inference of clonal phylog-
enies and avoided the limitations of bulk deconvolu-
tion. Finally, joint analysis over the above features
defined clone-specific chromosomal aneuploidy in
polyclonal populations.
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INTRODUCTION

Large-scale single-cell whole-genome analysis has the poten-

tial to yield new insights into the molecular dynamics of cellular

populations, currently a frontier of tumor biology research.

However, technological advances in single-cell genomics

have lagged those of transcriptomics (Macosko et al., 2015;

Ziegenhain et al., 2017), due in part to physical limitations of

capturing DNA with even coverage across the genome (Gawad

et al., 2016). Measuring single-cell genomes at scale in tissues

and cell populations will greatly advance clonal decomposition

of malignant tissues, studying properties of negative selection,

resolving rare cell population genotypes and identifying DNA

replication states of individual cells, all of which are hard to

measure when cellular information is destroyed in bulk

sequencing. Several amplification-based methods have been

described (Navin et al., 2011; Zong et al., 2012; Hou et al.,

2012; Ni et al., 2013; Gawad et al., 2014; Lohr et al., 2014;

Wang et al., 2014; Baslan et al., 2012), including degenerate

oligonucleotide-primed PCR (DOP-PCR), multiple displace-

ment amplification (MDA) and multiple annealing- and loop-

ing-based amplification cycles (MALBAC); however, amplifica-

tion introduces both coverage and polymerase bias into

sequences (Gawad et al., 2016), leading to lower fidelity

representations of the genome and analytical scenarios where

duplicate sequences cannot be easily resolved. The recently

introduced single-cell combinatorial indexed sequencing

(SCI-seq) aims to increase the throughput of single-cell
ber 14, 2019 ª 2019 The Authors. Published by Elsevier Inc. 1207
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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sequencing but is limited by its high duplication rate and rela-

tively low coverage breadth (Vitak et al., 2017).

Previously, we showed that direct DNA transposition single-

cell library preparation (DLP) performed with microfluidic de-

vices reduced the biases relative to pre-amplification-based

approaches (Zahn et al., 2017). Despite the performance of

microfluidic-based DLP (M-DLP) analysis, the use of custom

microfluidic devices presents an obstacle to adoption in

many labs and also places limits on scalability due to fabrica-

tion constraints. Microfluidic devices also impose constraints

on cell size, with large cells clogging channels and very small

cells passing through traps, unless devices are customized

for the cell type. Similar limitations on cell size apply to some

droplet-based methods. To address these limitations, we

have developed and optimized an alternative and much

higher-throughput direct transposition single-cell whole-

genome sequencing approach, referred to here as DLP+,

based on commodity high-density nanowell arrays and picoliter

volume piezo-dispensing technology available ‘‘off the shelf’’

(Figure 1). A unique and significant advantage of DLP+ is the

ability to capture high-resolution microscopy images of objects

prior to dispensation using an integrated camera and trans-

parent dispensing nozzle. The camera and real-time software

perform image-based quality control, allowing for active selec-

tion of single cells, thereby avoiding the sequencing of doublet

cells or debris. We show that optimized DLP+ enables robust

and scaled analysis of tens of thousands of cells per experi-

ment across various tissue types. From a resource of 51,926

DLP+ sequenced single cells, we show how DLP+ data can

be used to identify clonal populations and their genomic fea-

tures, properties of individual cells including replication state

and chromosomal mis-segregation, and relationships between

genomic and morphological properties.

RESULTS

A Resource of Diverse, Annotated, Single-Cell Genomes
Generated with Scalable Open Array Transposon-
Mediated DNA Sequencing
Scalable Single-Cell Library Preparation in Open

Nanoliter Wells

To scale amplification-free transposon-based single-cell genome

sequencing to thousands of cells per library, we implemented a

new platform called DLP+ by using commodity off the shelf com-

ponents, principally comprised of a contactless piezoelectric

dispenser (sciFLEXARRAYER S3 and cellenONE, Scienion) and

open nanowell arrays (TakaraBio SmartChip; Figure 1, Fig-

ure S1A). Key elements include a large number of freely program-

mable reagent steps, real-time imaging, and object recognition

allowing arrayed dispensing and doublet removal, bypassing lim-

itations of Poisson loading. Details of the platform are fully

described in Figure S1. Since imaging occurs before the library

preparation reagents are spotted, doublets, empty wells, or cells

with contamination are excluded from library preparation at two

steps, during nozzle imaging and subsequently in a well-imaging

step (Figure 1A, Figure S1E). The final libraries are pooled during

recovery (Figure 1C) and sequenced at the desired coverage

depth by using standard Illumina protocols and HiSeq instru-
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ments, yielding raw, indexed FASTQ data for analysis and

interpretation.

To scale analysis and quality control of DLP+ data analysis, we

developed and deployed open-source, cloud-compatible soft-

ware infrastructure. Requirements for the system included auto-

mation of per cell quality assessment, interactive visualization for

efficient quality control (QC), and managing the storage and

analysis of large amounts of data and metadata produced by

our sequencing experiments. The system includes two data-

bases: Colossus for tracking per cell metadata and Tantalus

for tracking raw and processed sequencing datasets and

metadata for associated analyses. Raw sequencing data are

processed using the single-cell pipeline, a set of workflows for

producing QC and variant data built upon a cloud-capable work-

flow engine. The pipeline implements workflows for whole-

genome alignment, Hidden Markov Model-based copy number

inference including ploidy estimation, and calculation of SNVs,

breakpoints, and allelic measurements. A key feature of the sin-

gle-cell pipeline is an 18-feature classifier of library quality

trained on 20,000 manually curated libraries producing a quality

score (QS) metric for efficient quality assessment of DLP+ li-

braries (Figures S2C and S2D). Results from the single-cell pipe-

line are loaded into Montage, a web-based, interactive data-

visualization platform for QC and data exploration. Montage

allows for the construction of dashboards for interactive explora-

tion of large amounts of multidimensional data served by an

Elasticsearch backend. A key feature of Montage is linked

charts; selection or filtering of datapoints in one chart propa-

gates to all other charts of the same data, facilitating novel

data-exploration-use cases without requiring development of

bespoke visualization software. Single-cell data from this report

may be visualized in a Montage instance available at https://

www.cellmine.org. The details of the quality score classifier deri-

vation, analysis pipeline, and software downloads are in the

STAR Methods and Data S1.

Biological and Physical Determinants of High-Quality

DLP+ Library Construction

To establish experimental conditions that optimized DLP+, we

initially applied the same reaction conditions from M-DLP (Zahn

et al., 2017). This resulted in many poor-quality libraries due to:

(1) alignments for which interpretable, integer state copy number

profiles could not be inferred with low-quality score values and (2)

failed libraries where coverage was low or absent (Figures S2A

and S2E; 1 nL G2 buffer). We therefore optimized the physical re-

action determinants of high-quality libraries by using quality score

as a benchmark by systematically varying multiple factors: cell

lysis volume and buffer type, transposase (Tn5) concentration,

post-indexing PCR cycles, cell lysis/DNA solubilization time, and

cell viability state. Each of these proved to have measurable

impact on performance (Figure S2), and interactions between

each parameter were determined. After optimization, we

compared reaction conditions relative to the GM18507 M-DLP

dataset (Zahn et al., 2017) by using bootstrapped subsampling

of libraries to comparable read depths. We found by using opti-

mized reaction conditions that genome coverage was as good

or better with DLP+ (see Data S1 for details) but with a substantial

increase in throughput over the MF-DLP method, scaling from

hundreds to thousands of cells (Figure S2E, Data S1).

https://www.cellmine.org
https://www.cellmine.org
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Figure 1. Concept Schematic of the Experimental and Computational Processes for DLP+

(A) Cell isolation and lysis.

(B) Open-array library construction. DLP+ libraries from unamplified single cells are built by carrying the chip through a series of reagent addition, spin, seal, and

heat incubation steps.

(C) Pooled recovery for sequencing.

(D) Computational pipeline workflow for single-cell genome data management, alignment, and post-processing.
We next applied optimized DLP+ across a range of different

tissue and cell types including cell lines, human breast cancer

patient-derived xenograft (PDX) samples, a mouse model of sy-

novial sarcoma (SS), patient tumor samples from frozen follicular

lymphomas (FL), a diagnostic fine-needle aspirate (FNA) spec-

imen from a breast cancer patient, and nuclei from flash frozen

tissues, generating a reference resource of high-quality anno-

tated single-cell genomes (Figure 2, Table S2). Cells from these
samples range in size from 5microns to 80microns and included

cells fresh from culture (cell lines), cells isolated from cryopre-

served tissues (breast PDX, FL), and cells from dissociated pri-

mary tumor material. The DLP+ process allows for dead cells

to be selectively excluded from library construction based on

their fluorescent staining. For the purposes of this study, we

included dead cells to allow for evaluation of the effect of cell

viability on successful library construction in different tissue
Cell 179, 1207–1221, November 14, 2019 1209
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Figure 2. DLP across Different Tissue Types Split by Viability: Live Cells (n= 35,973, Green) and Dead Cells (n= 8,877, Orange)

(A) Violin plots showing the quality score of single-cell libraries across various tissue types, split by cell viability status (live or dead), with number of cells shown

above the violin. Black lines show median.

(B) Fraction of successful cells in a sample (quality > 0.75), split by cell viability. The size of the bubble represents the total number of successful cells. Violin and

bubble colors indicate cell viability.

(C) Example single-cell copy number profiles from cell lines, breast PDX, follicular lymphoma, and mouse synovial sarcoma. Colors correspond to integer HMM

copy number states; black lines indicate segment medians. Arrows highlight regions of complex copy number change.
types and to provide a full reference set of genomes in differing

biological states.

We applied the quality score classifier to 51,926 DLP+ libraries

sequenced from cells and nuclei as described above and

defined successful high-quality libraries as those with quality

score R 0.75. We observed that 65.0% of cells labeled as live

(n= 25,270/38,705) produced high-quality single-cell genome

sequences. Per sample, the live cell success rates ranged from

30.6% to 96.0% with a median of 73.3%, with 28/33 samples

having a live cell success rate over 50% (Figures 2A and 2B).

For tissue and cell line samples where both live and dead cells
1210 Cell 179, 1207–1221, November 14, 2019
were included (n= 32), dead cells had significantly lower quality

scores than live cells, accounting for sample as a covariate

(nested ranks test p value < 10-4). Nevertheless, 36.0% of cells

labeled as dead (n= 3,776/10,577) produced high-quality

libraries. Low-quality (quality score % 0.75) dead cells were

characterized by low read count (median per cell read count

15,106) but did not exhibit representation bias or non-

integer copy states. Finally, the success rate for nuclei was

66.0% (n = 972/1,468), and quality metrics including quality

score, total mapped reads, duplicate reads, and integerness

were comparable between cells and nuclei prepared in parallel
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from the same sample (Figures S3A and S3C). Nuclei were inter-

mixed with cells when clustering both cell and nuclei copy num-

ber data obtained for the same sample (Figure S3B), providing

further evidence that nuclei produce libraries with quality and

characteristics similar to cells. Notably, high-quality libraries

can identify highly aneuploid genome states, including complex

rearrangements (Figure 2C) in a similar manner to DLP. Taken

together, the above data illustrate the scalability and versatility

of DLP+ single-cell whole-genome sequencing.

Ascertainment of Clone Specific Single-Nucleotide
Resolution Mutations and Phylogenies
Single-cell sequencing techniques promise to providemore accu-

rate measurement of clonal genotypes and clone proportions in

cancer samples thereby obviating cumbersome and error-prone

bulk tissue computational deconvolution methods. This in turn fa-

cilitates accurate phylogenetic reconstruction of major clones in a

cancer. An important practical trade-off is the coverage per cell of

genomesequenced against the number of cells fromapopulation.

Wehypothesized that large numbers of DLP+single-cell genomes

sequenced at low coverage, could be leveraged to determine

clonal populations and subsequently infer clone-specific nucleo-

tide resolution somatic events including SNVs, allele-specific

copy number and rearrangement breakpoints plus phylogenetic

trees computed over these events. To address this, we developed

an analytic workflow which first predicted somatic SNVs, and

breakpoints on a merged dataset where all cells were collapsed

into a ‘‘pseudo-bulk’’ genome. We then clustered single cells

into cell subsets by their copy number profiles and measured

the presence/absence of somatic, and rearrangement break-

points in each clone. Given measurements of variants per clone,

we then calculated allele specific copy number per clone and in-

ferred phylogenetic evolutionary histories given SNVs, break-

points, and copy number profiles.

To exemplify this approach, we generated 1,966 DLP+

libraries from 3 clonally related high-grade serous (HGS) ovarian

cancer cell lines derived from the same patient, sourced

from one primary tumor and two relapse specimens. On cells

with > 500,000 reads (n= 1,542 cells retained) and quality

score > 0.5 (n= 1,345 cells retained) we used dimensionality

reduction and clustering (Data S1) to identify 9 cell subsets

with shared copy number profiles as a first approximation to

clones (subsets withR 50 cells, 891 cells retained). The 9 clones

ranged in size from 62 to 145 cells with amedian coverage depth

of 15x (Figure S5E and S5H).
Figure 3. Features from Merging of Clones of OV2295, OV2295(R2), an

(A) Raw total copy number for clone E (y axis) across the genome (x axis) colore

(B) Minor allele frequency of clone E (y axis) across the genome (x axis) with inferre

blue lines.

(C) Presence of breakpoints (y axis) in each clone (x axis).

(D) Presence and state of SNVs (y axis) in each clone (x axis) with SNVs with no

determined by reference and alternate allele counts shown in dark and light blue

(E) Cell counts per clone per sample.

(F) Reduced dimensionality representation of n = 1,345 cells passing preliminar

ing UMAP.

(G) Correlation between counts of breakpoints and SNVs on the branches of the

region represents the 95% confidence interval of the regression line.

(H) Phylogenetic tree with branch lengths calculated as counts of SNVs originati
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For each clone, we computed clone-specific features

including total copy number (Figure 3A), allele-specific copy

number, SNVs and breakpoints. For allele specific copy number,

we inferred haplotype blocks from germline polymorphisms (in-

ferred frommatched bulk normal genome) using Shape-IT (Dela-

neau et al., 2011) and the 1000 Genomes phase 2 reference

panel. Across the 9 clones, high-quality allelic measurements

were available for 92%–94% of the genomic bins based on a

threshold of at least 1 haplotype block per bin and 100 reads

per haplotype block per clone. Clone-specific haplotype block

allele ratios coincided with fractional values that could easily

be matched to genotypes consistent with clone specific copy

number calls. For each clone, we thus fit a straightforward

HMM to infer minor copy number based on haplotype block

read counts and total copy number (Figure 3B). By way of

example, total copy number and minor allele fraction for clone

E (Figures 3A and 3B, 145 cells) is consistent with a whole-

genome duplication (WGD) event. Chromosomes 1, 7, 10, and

11 all harbor 4 copies and a minor allele fraction near 0.5.

Furthermore chromosomes 2, 5, and 9 all contain segments

with 3 copies and minor allele fraction of 0.33. These events

are consistent with single copy loss from a WGD event. By

contrast, chromosomes 3, 4, 6, and 12 all harbor segments

with 5 copies and minor allele fraction of 0.4 consistent with a

single copy gain (e.g., AAABB) after WGD. Additionally, DLP+

allows for the resolution of clone specific focal amplifications

such as the 4-copy segment of chromosome 13 specific to the

clone 1, 8 branch of the phylogeny, an event that would be diffi-

cult to characterize from merged data of OV2295. Finally, we in-

terpreted segments with minor allele fraction of 0 as loss of

heterozygosity events. These are evident directly from the

data: for example, chromosome 17, known to be homozygous

in nearly 100% of HGS ovarian cancers, is unambiguously

centered at 0 minor allele fraction.

We further explored the inferred clusters using both SNVs and

breakpoints. We used mutationSeq (Ding et al., 2012) and

Strelka (Saunders et al., 2012) to identify SNVs across the 9

clones, and maximum likelihood to infer a phylogenetic tree

relating the inferred clones (Figure 3D and 3H). As expected,

each of the 3 samples formed a distinct clade in the phylogeny.

A total of 14,068 SNVs passed thresholding of which 84% fit

perfectly with the inferred phylogenetic tree, 28% predicted as

ancestral, 9% clone specific and the remaining 63% clade spe-

cific. Ancestral mutations with significant impact were found in

TP53 (584T > C), FOXP2, and SUGCT. Clade specific mutations
d TOV2295(R) Cell Lines Based on Single-Cell CNV (n= 891)

d by inferred total copy number.

d minor copy number ratio (minor copy number / total copy number) shown as

coverage in a clone shown in red, heterozygous and homozygous SNVs as

respectively.

y filtering, with cells excluded by additional filtering in gray, as calculated us-

identically structured phylogeny inferred for both variant types. The shaded

ng on each branch.



with significant impact were found in ZHX1, HTR1D and INSL4.

We then used an orthogonal method (hierarchical clustering) to

infer a phylogeny from breakpoints inferred using deStruct

(McPherson et al., 2017a) (Figure 3C). A total of 538 passed

thresholding of which 88% fit perfectly with the inferred phylog-

eny. By maximum parsimony, 15% breakpoints were predicted

as ancestral, 11% as clone specific, and the remaining 73% as

clade specific, mimicking the rankings of SNV phylogenetic class

proportions. The topology of the breakpoint phylogeny was iden-

tical to the SNV phylogeny and counts of breakpoints and SNVs

along specific branches were highly correlated (Figure 3, p value

< 2.1*10
�7 Spearman rank). The OV2295 datasets are available

at zenodo (https://doi.org/10.5281/zenodo.3445364).

The phylogenetic congruency of SNVs and breakpoints sug-

gest the cell subsets inferred from copy number profiles repre-

sent accurate genomic clones with unambiguous genomic

structure to a first approximation. While many methods have

been developed for whole-genome clonal deconvolution (Carter

et al., 2012; Nik-Zainal et al., 2012; Fischer et al., 2014; Ha et al.,

2014; Oesper et al., 2014; Deshwar et al., 2015; McPherson

et al., 2017b), most suffer from unidentifiability challenges

induced by the combinatorial interaction between tumor con-

tent, cancer cell fraction, baseline ploidy, and copy number ge-

notype. We generated in-silico mixtures of cells, sampling from

the three original ovarian cancer source samples in pre-specified

proportions. We then compared ReMixT, THeTA2 and CloneHD

to clustering applied to DLP+ copy number profiles (see STAR

Methods). Bulk deconvolution exhibited poor performance in

predicting: (1) clonal fraction (Figure S5D), (2) number of clones

in the mixture (Figure S5E), and the (3) copy number architecture

of each clone (Figure S5E) relative to single-cell DLP+, establish-

ing that single-cell DLP+ is more effective in deconvolving copy

number clones than bulk methods.

We next executed a proof of principle experiment, establishing

efficacy of DLP+ for clone identification and analysis in a clinical

diagnostic setting, using limited material from a fine needle aspi-

rate (FNA) biopsy. FNA sampling is less invasive than wide bore

core biopsy procedures; however, the number of cells obtained

is often more limited. We applied DLP+ to an FNA of a breast

cancer (stage cT2N0, triple negative, BRCA2+/� germline, see

STAR Methods). We then reconstructed copy number clonal

architecture of the malignant cells and derived the reference

germline genome from cells with diploid copy number—all

from a single FNA sample (Figure 4). Clustering analysis yielded

62 cells with diploid copy number, and 3 aneuploid populations

comprising 220 cells. Adopting the diploid cells as a germline

reference cell population for comparison, we extracted

heterozygous germline SNPs, inferred haplotype blocks, and

computed allele specific copy number from each malignant

clone. Our analysis produced copy number and LOH profiles

for 3 tumor clones in the FNA (Figure 4), allowing us to identify

ancestral clonal amplifications in MCL1, MYC and CCNE1,

clone-specific amplifications of RAD18 and RAB18, and clonal

LOH of BRCA2 coincident with a germline loss of function

mutation.

Our results here demonstrate a significant step to improving

clonal inference through single cell demultiplexing and clus-

tering. We suggest this reduces the computational burden and
uncertainty in inference imposed by bulk WGS methods while

enhancing biological and phylogenetic interpretation of the data.

Prevalence of Whole-Chromosome Aneuploidy Differs
between Cell Types and Genotypes
Bulk genome analysis of malignant and non-malignant tissues

does not easily permit the study of rare, potentially negatively

selected chromosomal aberrations such as mitotic segregation

errors. Mitotic mis-segregation can be observed in single-cell

genomes as non-clonal gains and losses of whole chromosomes

and we set out to examine the rate and patterns of mis-segrega-

tion across different cell types. Initial inspection of massively

scaled DLP+ libraries from unsorted diploid cells (184-hTERT,

GM18507) identified a minority (< 5%) of cells with a mostly

diploid genome (Figure 5A), but with aneuploidy of one or more

whole chromosomes, indicating a chromosome segregation

error. To quantify such events, we first clustered cells with

shared copy number profiles, and then quantified outlying cells

in each cluster that differ by 1 or more whole-chromosome

gain or loss (defined as > 90% of the chromosomal length).

This results in a distribution of size and chromosomal represen-

tation of such events, over cell types (Figures 5A–5G). We

observed that autosomal mitotic error rates differ between

different cell types, with the highest event rate of 5.2% in

184-hTERT wildtype and TP53 null cell lines (106/2,038 ge-

nomes, 255/4,918 genomes), and 2.6% (57/2,160 genomes) in

the reference GM18507 cell line. In contrast, tissue-derived

DLP+ libraries of human follicular lymphoma and a mouse trans-

genic generated sarcoma model exhibited much lower rates of

whole-chromosome aneuploidy (6/858, 0.6% and 7/589, 1.2%,

respectively), consistent with the notion that mitotic mis-segre-

gation rates are lower in tissues than cell lines (Knouse et al.,

2014, 2018).

We next asked how whole-chromosome gains and losses are

distributed across the genome, considering 3 libraries where

sufficient events were present to define a quantitative distribu-

tion (GM18507, 184-hTERT wildtype, 184-hTERT isogenic

TP53 null 95.22). We observed that whole-chromosome gains

tend to predominate over losses for both the lymphoid cell

type and breast epithelial 184-hTERT cell type. Interestingly, in

the 184-hTERT isogenic TP53 null, although the overall rate of

whole-chromosome aneuploidy is similar to the isogenic wild-

type (�5.2%), the event type relationship is reversed, with losses

slightly in excess of gains over all chromosomes (Figures 5E–

5G). For all 3 cell types, rates of gains and losses across the

22 autosomes have a similar order of magnitude, outliers

notwithstanding (Figures 5B–5D). There was no observed

dependence on chromosome size, nor a consistent bias for

errors involving any specific chromosome. We note that chr17

was excluded from analysis due to the sgRNA/CRISPR induced

translocation of the TP53 locus.

Partially Replicated Genomes Identify Replication
States in Diploid and Aneuploid Single Cells
We investigated whether other genome states, such as interme-

diate states of DNA replication, can be identified in tissues from

DLP+ single-cell genome sequences. Genome replication oc-

curs asynchronously in human cells and moreover, early and
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Figure 4. Features from Merging of Clones of SA1135 Fine Needle Aspirate of a Breast Cancer

Shown for each panel is total clonal copy number (top) and haplotype block allele ratios (bottom) for clones identified in a fine breast cancer needle aspirate. n =

number of cells in clone.

(A) Diploid heterozygous copy number and of normal cells.

(B–D) Aneuploid copy number and Loss of Heterozygosity (LOH) profiles of 3 tumor clones B, C, D. Annotated are clonal amplifications in MCL1, MYC and

CCNE1, subclonal amplifications of RAD18 and RAB18, and clonal LOH of BRCA2 coincident with a germline loss of function mutation.
late replicating regions are known to have a different GC content

(Woodfine et al., 2004; Hansen et al., 2010). Partially replicated

genomes are thus indicative of cells in an S-phase state, as

the genome replicates asynchronously. We reasoned that varia-

tions in genome coverage and GC distribution should reflect the

genome replication states. To establish the relationship, we flow

sorted diploid GM18507 cells from asynchronously growing cul-
1214 Cell 179, 1207–1221, November 14, 2019
tures, gating by DNA content and viability on cell cycle phases

(Figures S7A-S7F). Each sorted fraction was subjected to

DLP+ (G1 n= 437, S n= 393, G2, n= 359, dead n= 512)

with sequencing at high depth (mean 2,238,604 reads per cell,

� 0.1x genome coverage). As expected, the distribution of GC

content over binned read counts reveals a strong GC bias

in S-phase cells (Figure 6A) but not in G1 or G2 cells. This
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(legend on next page)
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distribution is also visible in the form of GC regression curves for

each cell (Figure 6B). The additional mass of partially replicated

DNA pushes the mode of the S-phase distribution well above

that of G1-phase cells (Figures 6A and 6B S-phase panel).

Adequate copy number analysis of genomes requires GC

correction, but standard GC correction techniques lead to arti-

factual correction due to the extreme and divergent GC bias in

S-phase cells (Figure 6A, second column). Correcting S-phase

cells based on a regression curve calculated from matched G1

cells from the same library results in appropriate normalization

even in highly GC skewed libraries (Figure 6A, third column)

Given appropriate normalization, cells in S-phase could be easily

recognized from their partially replicated copy number profiles,

with early replicating regions at higher copy number state than

late replicating regions (Figure 6C all chromosomes, Figure 6D

chromosome 4 expanded view). The pattern of replication in

S-phase mirrors that of conserved early replicating regions

(colored orange, Figures 6C and 6D) (Hansen et al., 2010) and

the proportion of conserved early phase genome is much higher

in S-phase cells than other states. We note that G2-phase gating

with standard DNA content-based flow sorting is slightly imper-

fect and identifies some G2 state cells that are in fact still in late

replication (Figure S7E). The modal ploidy of G2 states is uniden-

tifiable in this representation, as coverage is normalized for read

abundance over cells and the only hallmark of G2 states is twice

the number of reads.

We then investigated genome replication states in aneuploid

genomes using this approach. We flow sorted the hypotriploid

T-47D human breast cancer cell line into cell cycle fractions

(G1 n= 571, S n= 625, G2 n= 807, dead n= 1,039) and

sequenced the genomes with DLP+. The resulting additional

copy number/ploidy states over all cells are clearly visible (Fig-

ure S6A) as multiple modes. Using the same modal GC regres-

sion for correction, we observed the same distribution of early

and late replicating regions as in the GM18507 line, demon-

strating our ability to detect S-phase in aneuploid cells (Figures

S6C and S6D). We note that although dead cells also have a

high GC bias, they are clearly distinguishable from the form of

genome representation, in addition to the form of the GC bias

(Figures S6B and S6D). Taken together, the data show that

rare chromosomal aneuploidy states that do not amplify in pop-

ulations and replication states can be clearly identified when sin-

gle-cell genomes are sequenced at depth.

The availability of the flow sorted GM18507 and T-47D cells

allowed for the development a feature-based classifier of cell cy-

cle state for the more common situation of DLP+ from an
Figure 5. Single Whole-Chromosome Aneuploidies in Single-Cell Geno

(A) Three examples of cells from diploid cell types exhibiting whole-chromosome

(B) Quantification of single chromosome gain and loss patterns in diploid cell ty

horizontal axis chromosome number, in single GM18507 lymphoid cells.

(C) As for panel c, cell type 184-hTERT.

(D) As for panel c, cell type 184-hTERT/TP53�/� 95.22 (SA906).

(E) Percentage of each chromosome affected by whole-chromosome gains (oran

(SA906), and GM18507. Boxplots show median and quartiles, the whiskers show

(F) Event number per cell (horizontal axis), for gains (solid line) and losses (dotted

cell types in the key.

(G) Loss event ratio (losses versus gain) per chromosome for 184-hTERT, 184-hTE

184-hTERT TP53 null. Boxplots show median and quartiles, the whiskers show th
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unsorted cell population (see STAR Methods). The classifier

achieved an accuracy of 0.9 based on a hold out of 1,007 of

4,028 cells (25%). We applied our methods for identifying clones

and classifying cells as S-phase and harboring mitotic errors to

7,231 cells in 9 DLP+ 184-hTERT including the wild type and

TP53 null described above, and 7 additional passages of TP53

null lineage (Figures S4C–S4F). We observed an increase in

whole-chromosome mitotic errors in polyploid compared to

diploid clones (polyploid n = 2,152 cells, diploid n = 5,079, Fig-

ure S4E), whereas the distribution of replicating cell fraction

across clones appeared stable between polyploid and diploid

cells (Figure S4E). Taken together these results show how clonal

population structure and clone-specific rates of genome states

across cells within clones can bemeasured with DLP+, revealing

higher rates of mitotic error in polyploid cells relative to

their diploid counterparts, but consistent rates of S-phase

cycling cells.

Cell morphology Is Associated with Genome Ploidy in
Single Cells
A novel feature of the DLP+ platform is the capture of morpho-

logic features of cells through nozzle-based imaging, permitting

analytical integration with genomic properties inferred from sin-

gle-cell whole-genome sequencing. For each cell or nucleus

sequenced using DLP+, a high-resolution brightfield image is

taken of the cell or nucleus prior to spotting onto the nanowell

plate. Eukaryotic cells have long been known to maintain a con-

stant ‘karyoplasmic’ ratio; the ratio between cytoplasmic and nu-

clear volume (Wilson, 1925). We used the single-cell genomic

data andmatching images from 6 breast cancer PDX to correlate

genomic features with cell or nuclear morphology, by extracting

information about object size from segmented single cell im-

ages. As expected, the average diameter of cells for each sam-

ple scales with the average diameter of nuclei from the same

sample (Figure 7A, Pearson-r = 0.76, p value = 10-2). We next

compared cell diameter across cell states including G1, G2

and S phase and dead cells for GM18507 cells for which we

had experimentally determined cell cycle we observe that cell

diameter increases significantly from G1 to G2 phase Figure 7B.

However, diameters of S-phase cells were significantly higher

than those of G1 phase cells for only one library. Indeed, studies

in yeast have shown that nuclear size does not sharply increase

in S-phase, suggesting that nuclear size is not determined by

DNA content alone (Jorgensen et al., 2007). However, we find

that cell (Figure 7C) and nuclear (Figure 7D) size was correlated

with increasing integer ploidy for breast xenograft samples.
mes

gain or loss patterns.

pes. Left panel, vertical axis, chromosomal gains (orange) and losses (blue),

ge) and losses (blue) across all cells in 184-hTERT, 184-hTERT TP53 null 95.22

the remaining distribution, dots represent outlier chromosomes.

line), vertical axis, percentage of cells affected. Line colors represent the three

RT TP53 null 95.22 (SA906), and GM18507, showing the higher rate of losses in

e remaining distribution, dots represent chromosomes with outlier loss ratios.



Figure 6. Sequencing of Cell-Cycle-Sorted Populations from a Diploid Lymphoblastoid Cell Line Reveals Early Replicating

Regions (n = 1701)

(A) GC bias correction for merged GM18507 genomes from each flow sorted cell cycle state reveals S-phase GC bias correction artifacts. Bins from X and Y

chromosomes are shown in purple.

(B) Single-cell GC bias regression curves reveal S-phase cells consistently exhibit a steeper slope due to early-replicating regions with high GC content.

(C) Ploidy-corrected read counts for the merged GM18507 genomes from each state (G1 n= 437, S n= 393, G2, n= 359, dead n= 512) reveal early replicating

regions in S-phase. Colored points (diamonds) denote previously characterized early replicating regions (Hansen et al., 2010), bins from X and Y chromosomes

are shown in purple, while gray points (circles) denote late replicating regions. Violin plots show the distribution of late and early replicating regions for 2-copy

regions.

(D) Ploidy corrected read counts for chromosome 4 of the merged GM18507 genomes from each state.
These results establish that DLP+ image-based cell morphologic

characteristics relate to genomic characteristics, setting the

stage for integrated image-genome statistical models for

enhanced ploidy and other genome-state inferences.

DISCUSSION

Single-cell biology is opening up new understanding of physi-

ology and disease. However, most of the progress and data

available to date stem from single-cell RNA template measure-

ments. Single-cell genome analysis has lagged by comparison,

impeding progress in critical areas of biology such as genome

stability, cancer evolution and states of DNA replication. Scaling
of single-cell whole-genome sequencing to tens of thousands of

cells promises to accelerate the study of genome biology in

normal and malignant tissues by identifying and characterizing

genomic states not readily observable in bulk populations,

such as rare cell populations (which may be the result of neutral

processes or under selection), negatively selected background

mutations and partially replicated genomes. Distinction between

selection and neutrality will require fitness models, which,

however, will be enabled by access to single-cell genome

sequences. The present resource of single-cell genomes

sequenced from multiple tissue and cell types illustrates that

high-fidelity single-cell genome analysis can be conducted at

scale, using commodity hardware and off the shelf reagents.
Cell 179, 1207–1221, November 14, 2019 1217
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Figure 7. Correlative Analysis of Cell

Morphology and Genomic Features

(A) Scatterplot of mean nuclei diameter (x axis) by

mean cell diameter (y axis) split by diploid versus

tetraploid in libraries created from both cells and

nuclei (Pearson-r = 0.76, p value = 10-2). The

shaded regions shows the 95% confidence inter-

val of the regression line.

(B) Variation in cell diameter for GM18507 cells in

G1, G2, S phase, and dead (cell state D) cells (n =

2,266). Boxplots show median and quartiles,

whiskers show the remaining distribution, dots

show outliers.

(C) Cell diameter is larger in cells with ploidy > 2 for

breast xenograft samples (n = 1,620). Boxplots

defined as for B.

(D) Nuclei diameter is larger in cells with ploidy > 2

for breast xenograft samples (n = 731). Boxplots

defined as for B.

(E) Copy number profile (left), spotter nozzle image

(middle), and well CFSE staining image (right) re-

confirming singleton status, for an example diploid

cell.

(F) Copy number profile (left), spotter nozzle image

(middle), and well CFSE staining image (right),

re-confirming singleton status, for an example

tetraploid cell.
Although single-cell isolation can be achieved with other

methods such as FACS, the small shear volumes in DLP+ mini-

mize contamination in the carrier fluid compared to single

cells isolated by FACS (piezo dispenser �400 pL versus FACS

�2 nL droplet volume), and the small reaction volumes substan-

tially reduce library preparation costs compared to plate-based

formats. Image information acquired during cell spotting and

from whole-chip fluorescence scans can be used to selectively

process only cells of interest and more importantly, can be

used to study the relationship between morphologic properties

and genomic properties at scale over populations of single cells.

Moreover, spotting of image identified cells or nuclei more effi-

ciently utilizes open arrays than Poisson dilution loading (Leung

et al., 2016; Gao et al., 2017; Wu et al., 2015; Goldstein et al.,

2017) and greatly reduces cell doublets. To aid future re-imple-

mentation of DLP+ and deployment over a wide range of cell

types, we have defined the optimal working ranges of key phys-

ical and molecular reaction parameters to obtain even genome

coverage without the need for genome pre-amplification. It

should be emphasized that a key aspect of scaling is the data
1218 Cell 179, 1207–1221, November 14, 2019
processing required for interpretation

and visualization of thousands of single

genomes. We have implemented, from

raw data, an end to end computational

platform which automates calculation of

quality control parameters, probabilistic

classification of successful libraries, a

workflow for copy number inference

including GC content adjustment and

an interactive, browser-based data visu-

alization engine which allows for milli-
second interaction speeds even on millions of datapoints. The

cloud-based implementation of our platform facilitates virtually

limitless scaling and, importantly, a data dissemination vehicle

for sharing data with the broader scientific community. We antic-

ipate other lab implementations of DLP+ will take full advantage

of our software, thereby facilitating data aggregation acrossmul-

tiple groups.

Using DLP+, we have characterized 51,926 single-cell ge-

nomes from a variety of human andmouse cell types of different

cell sizes (ranging from 5 to 80 microns), malignant and non-

transformed, which we have characterized by genome states.

An important economic and experimental trade-off in single-

cell whole-genome sequencing, given that the highest costs

are still DNA sequencing reagents, is the analysis of fewer cells

to greater depth of genome coverage versus shallow

sequencing of many cells, borrowing strength for in depth anal-

ysis of clones identified from analysis over all cells. Small-scale

events, such as SNVs and breakpoints, can be investigated at

the clonal level by first identifying and merging single-cell ge-

nomes that are defined as clonal, based on shared copy



number or structural events at the population level. Here we

show that in aneuploid subclone containing populations, effec-

tive single-nucleotide resolution can be easily achieved by

merging clones defined by higher order structure such as

copy number. Moreover, clone specific events such as copy

neutral loss of heterozygosity that cannot be easily identified

in bulk populations with computational deconvolution ap-

proaches are easily identified even in minor cell populations.

Thus DLP+ permits leveraging shallow sequencing to sample

thousands of cells cost effectively, rather than sequencing

fewer cells at greater depth. We note that for clonal analysis,

we suggest that DLP+ will be most effective for cancers with

segmental aneuploidies that are clone-specific. We show that

clonal merging and the ability to work with limiting numbers of

cells allows clinical specimens such as fine needle aspirates

to be analyzed using this approach. Cancers that are predom-

inantly diploid may not derive benefit from this approach.

Here we investigated two general properties of single

genomes that cannot be easily obtained from bulk tissue/cell

population analysis. First, we show that whole-chromosome

aneuploidy, which occurs at low prevalence and does not result

in clonal amplification, is visible as whole-chromosome gains

and losses at a low prevalence in all cell types, are variable

across different cell types and genotypes. Quantification of

431 such genomes out of 10,963 analyzed in this way across

three cell lines and two tissue derived libraries is consistent

with the notion of lower aneuploidy rates in tissues compared

with cell lines (Knouse et al., 2014, 2018). We also observe that

TP53 loss does not appear to alter the overall event rate, consis-

tent with the notion that whole-chromosome aneuploidy may not

trigger a strong TP53 response (Soto et al., 2017); however, the

event type is significantly altered, from chromosome gains to a

slight dominance of chromosome losses. We expect the ability

to define and quantify rates of chromosomal mis-segregation

analysis will complement significant efforts to profile point muta-

tion rates and benign clonal expansions in diploid normal tissues

(Martincorena et al., 2018; Yizhak et al., 2019) as a source of

cellular variation in human tissues. We show that partially repli-

cated genomes can be easily identified as distinct from other

biological states or dying cells. With naive classification of sin-

gle-cell libraries such genomes would be filtered out, removing

the possibility of identifying and characterizing such states.

However, we show that the distinct profiles of such genomes

allow them to be identified, providing access to an important

parameter of population evolution in normal and malignant

cells. Finally, we show that bringing all of the extractable features

of imaging, cell ploidy, clonal population identification

together, we are able to identify clone-specific parameters

such as replication fraction and mitotic error proportion. We

exemplify that polyploid clones tend to have higher whole-

chromosome aneuploidy but similar distributions of replicating

cell fraction. These are key parameters in cancer evolution and

analysis of pre-malignant tissues that have not been easily

accessible to date.

In conclusion, the DLP+ platform and the associated data

resource will permit new insights into genome heterogeneity,

mutational processes and clonal evolution in mammalian tissues

and human disease, at scale.
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Biological Samples

Breast fine needle aspirate, SA1135 Vancouver General

Hospital

N/A

Follicular lymphoma, SA1088 Elizabeth Chavez,

Christian Steidl lab

N/A

Follicular lymphoma, SA1089 Elizabeth Chavez,

Christian Steidl lab

N/A

Critical Commercial Assays

SmartChip, Seq-Ready TE MultiSample FLEX Kit TakaraBio Cat#640056

CellTrace CFSE Cell Proliferation Kit ThermoFisher Cat#C34554

LIVE/DEAD Fixable Red Dead Cell Stains ThermoFisher Cat#L34971

Nextera DNA Library Preparation Kit Illumina Cat#FC-121-1031

Microseal film A BioRad Cat#MSA5001

Buffer G2 QIAGEN Cat#1014636

QIAGEN Protease QIAGEN Cat#19155

DirectPCR Cell Lysis Reagent Viagen Cat#301-C

Bioanalyzer 2100 HS kit Aglient Cat#5067-4626

NextSeq mid-output, 300 cycle kit Illumina Cat#20024905

NextSeq high-output, 300 cycle kit Illumina Cat#20024908

HiSeq2500 250 cycle kit Illumina Cat#FC-401-4003

HiSeqX 300 cycle kit Illumina Cat#FC-501-2501

Hoechst 33342 Invitrogen Cat#LSH3570

caspase 3/7 Essen Biosciences Cat#4440

propidium iodide Sigma Aldrich Cat#P4864-10ML, CAS Number 25535-16-4

SMARTerTM ICELL8 Loading Kit - B Takara Bio Cat#640206

Deposited Data

EGA sequence data This paper EGA: EGAS00001003190

Cellmine This paper https://www.cellmine.org

ov2295_breakpoint_counts.csv.gz: Table of

breakpoint counts per cell

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_breakpoint_counts.csv.gz

ov2295_cell_cn.csv.gz: Table of cell specific

copy number

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_cell_cn.csv.gz

ov2295_cell_metrics.csv.gz: Table of cell metrics This paper https://doi.org/10.5281/zenodo.3445364

ov2295_cell_metrics.csv.gz

ov2295_clone_alleles.csv.gz: Table of clone

specific allele data

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_clone_alleles.csv.gz

ov2295_clone_breakpoints.csv.gz: Table of

breakpoints per clone for OV2295 samples.

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_clone_breakpoints.csv.gz

ov2295_clone_clusters.csv.gz: Table of cell

clusters as putative clones

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_clone_clusters.csv.gz

ov2295_clone_cn.csv.gz: Table of allele specific

copy number per clone for OV2295 samples.

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_clone_cn.csv.gz

ov2295_clone_snvs.csv.gz: Table of SNVs per

clone for OV2295 samples.

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_clone_snvs.csv.gz

ov2295_nodes.csv.gz: Table of phylogenetic

information for SNV evolution

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_nodes.csv.gz

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ov2295_snv_counts.csv.gz: Table of SNV counts This paper https://doi.org/10.5281/zenodo.3445364

ov2295_snv_counts.csv.gz

ov2295_tree.pickle: Phylogenetic tree in python

pickle format.

This paper https://doi.org/10.5281/zenodo.3445364

ov2295_tree.pickle

Experimental Models: Cell Lines

GM18507 Coriell Cell Repositories Coriell Cat# GM18507, RRID: CVCL_9632

T-47D ATCC ATCC Cat# HTB-133, RRID: CVCL_0553

184-hTERT-L9 wt Tehmina Masud,

Samuel Aparicio lab

N/A, derived from RRID: CVCL_K053

184-hTERT-L9-95.22 Tehmina Masud,

Samuel Aparicio lab

N/A

184-hTERT-L9-99.5 Tehmina Masud,

Samuel Aparicio lab

N/A

HeLa ATCC ATCC Cat# CRM-CCL-2, RRID: CVCL_0030

Experimental Models: Organisms/Strains

Patient-derived xenografts Peter Eirew, Samuel

Aparicio lab

N/A

Mouse model synovial sarcoma, SA1075,

SSM2-22D1, male, hSS2 model which contains

a conditional SS18-IRES-EGFP allele knocked

into the Rosa26 locus

Laurin Martin, T. Michael

Underhill lab

N/A

Mouse model synovial sarcoma, SA1083,

SSM2-22D4, male, hSS2 model which contains

a conditional SS18-IRES-EGFP allele knocked

into the Rosa26 locus

Laurin Martin, T. Michael

Underhill lab

N/A

Mouse model synovial sarcoma, SA1085,

SSM2-20D1, male, hSS2 model which contains

a conditional SS18-IRES-EGFP allele knocked

into the Rosa26 locus

Laurin Martin, T. Michael

Underhill lab

N/A

Oligonucleotides

DLP duel index primers BC Genome Science Centre see supplemental table DLP-duel-index-primers.xslx

Software and Algorithms

SmartChipApp This paper https://github.com/shahcompbio/smartchipapp

Pypeliner v0.5.8 Andrew McPherson,

Sohrab Shah lab

https://github.com/shahcompbio/pypeliner

Single cell analysis pipeline v0.3.1 This paper https://github.com/shahcompbio/single_cell_pipeline

TrimGalore v0.5.0 Felix Krueger, Babraham

Bioinformatics

https://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/

bwa, aln v0.7.17-r1188 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

picard MarkDuplicates v2.18.14 Broad Institute https://broadinstitute.github.io/picard/

HMMcopy v1.12.0 Daniel Lai and Gavin Ha,

Sohrab Shah lab

http://bioconductor.org/packages/release/bioc/html/

HMMcopy.html

statsmodels v0.9.0 Jonathan Taylor https://www.statsmodels.org/stable/index.html

cell cycle classifier scikit-learn random-forest 0.21.3 This paper https://github.com/shahcompbio/cell_cycle_classifier

Montage This paper https://github.com/shahcompbio/montage

UMAP version 0.2.3 McInnes and Healy, 2018 N/A

ReMixT: Allele specific copy number computation McPherson et al., 2017b N/A

shapeitv 2.r837 Delaneau et al., 2011 N/A

mutationseq v4.3.9 Ding et al., 2012 https://github.com/shahcompbio/mutationseq

strelka: v2.0.17.strelka1strelka workflow

version: 1.0.14

Saunders et al., 2012 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Samtools v1.9 Li et al., 2009 http://www.htslib.org

deStructv 0.4.15 McPherson et al., 2017a N/A

pydollo 0.4.2 Andrew McPherson and

Andrew Roth, Sohrab

Shah lab

https://bitbucket.org/dranew/dollo

Colossus This paper https://github.com/shahcompbio/colossus

Tantalus This paper https://github.com/shahcompbio/tantalus

Sisyphus This paper https://github.com/shahcompbio/sisyphus

random forest classifierscikit-learn random-forest

v0.20.1

This paper N/A

Lumpy-svv 0.2.13 Layer et al., 2014 https://github.com/arq5x/lumpy-sv

FastQ Screenv0.11.3 Wingett and Andrews, 2018 https://www.bioinformatics.babraham.ac.uk/projects/

fastq_screen/

Other

DNA Engine Tetrad 2 Cycler with flatbed blocks BioRad Cat#PTC-0240

Bioanalyzer 2100 Aglilent Cat#G2939BA

Illumina NextSeq 550 Illumina Cat#SY-415-1002

HiSeq2500 Illumina Cat#SY–401–2501

HiSeqX Illumina Cat#SY-412-1001

FACSAria III cell sorter BD Biosciences N/A

Axygen Mini Plate Spinner Centrifuge, 120V Axygen Cat#Platespinner-120

Centrifuge 5810R Eppendorf Cat#5810R

sciFLEXARRAYER S3 Scienion Cat#S3

cellenONE Scienion Cat#X1

TI-E 10 3 inverted fluorescent microscope Nikon N/A

Fast travel stages for microscope fitted with an

ultra-course lead screw (28mm/s)

ASI Cat#Ti-2500LC

Grasshopper3 USB camera for microscope Point Grey Research/FLIR Cat#GS3-U3-23S6M-C
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Sam

Aparicio (saparicio@bccrc.ca). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Cells from the immortalized normal humanmale lymphoblastoid cell line (Coriell Cell Repositories) were cultured at 37�Cand 5%CO2

in RPMI-1640 medium with 2.05 mM L-glutamine (HyClone) supplemented with 10% FBS (GIBCO/Invitrogen). Cells from immortal-

ized normal human female breast epithelial cell line 184-hTERT L9 were cultured at 37�C and 5%CO2 in MEBMMammary Epithelial

Cell Growth Medium (Lonza) with transferrin (Sigma) and isoproterenol (Sigma), supplemented with Lonza MEGM(tm) Mammary

Epithelial Cell GrowthMediumSinglequots. The parental 184-hTERT-L9 breast epithelial cell line, which is immortalized but not trans-

formed and retains 3-D differentiation capacity and a diploid genome in early passages, was cultured as previously described

(Burleigh et al., 2015). We generated an isogenic p53 null sister cell line using sgRNA/CRISPR targeting of the locus, which was veri-

fied by western blotting and sequencing, resulting in the line 184-hTERT-L9-95.22 (SA906) and 99.5 (SA1101). Cell line passages

from the original monoclonal isolation of each cell line was recorded. Cells from the immortal human female epithelial cervical adeno-

carcinoma cell line HeLa (ATCC) were cultured as recommended by ATCC, at 37�C and 5% CO2 in Eagle’s Minimum Essential Me-

dium with 10% FBS. Cells from the human female high-grade serous ovarian adenocarcinoma cell lines OV2295, OV2295(R2) and

TOV2295(R) (Létourneau et al., 2012) were cultured at 37�C and 5% CO2 in a 1:1 mixture of Media 199 (Sigma M5017) and Media

MCDB 105 (SigmaM6395) on Corning plastics, with the media prepared as follows: Media 199 powder was dissolved in 700 mL wa-

ter, stirred for 10 min, 2.24 g of NaHCO3 added, brought to 1 L with water and filter sterilized. Media 105 powder was dissolved in

700 mL water, stirred 10 min, 14 mL of 1N sterile NaOH added, brought to 1 L with water and filter sterilized. Cells from the human
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female breast ductal carcinoma cell line T-47D (ATCC) were cultured at 37�C and 5% CO2 in RPMI-1640 Medium with 10% FBS.

Cells were grown to near confluence, trypsinized, resuspended in cryopreservation media and frozen down at �1�C/minute to

�80�C. We test the cells for mycoplasma with h-IMPACT II human pathogen testing (IDEXX Bioresearch).

Biospecimen collection and ethical approval for patient-derived breast xenografts
Tumor fragments from women diagnosed with breast lump undergoing surgery or from diagnostic core biopsy were collected with

informed consent, according to procedures approved by the Ethics Committees at the University of British Columbia. All subject ma-

terials (abstracted clinical records, biospecimens, other data) are de-identified at source. Patients in British Columbia were recruited

and samples collected under tumor tissue repository (H06-00289) and patient-derived xenografting (H11-01887) protocols that fall

under UBC BC Cancer Research Ethics Board. Patient consent for fine needle aspirations of breast tumors were performed under

protocol H11-01887.

Tissue processing for patient-derived xenografts
The tumor materials were processed as previously described in (Eirew et al., 2015). Briefly, tumor fragments were minced finely with

scalpels, thenmechanically disaggregated for oneminute using a Stomacher 80 Biomaster (Seward Limited,Worthing, UK) in 1-2mL

cold DMEM-F12 medium. Aliquots from the resulting suspension of cells and clumps were used for xenotransplantation or cryopre-

served for single-cell analysis in DMEM-F12 medium with 40% FBS and 10%DMSO. Tissue was dissociated to single cells by enzy-

matic digestion. Cryopreserved stomached cells/organoids were thawed rapidly in a 37�C water bath, topped up to 1.5 mL with

DMEM (Sigma) and centrifuged (1,100 rpm, 5 min), discarding the supernatant to remove DMSO from freeze media. 0.5 mL collage-

nase/hyaluronidase (StemCell) was added to the tissue and topped up to 1.5 mL with DMEM, pipetting up and down to dislodge tis-

sue pellet. The tissue was incubated at 37�C for two h, pipetting up and down the sample every 30min for 1 min during the first h, and

every 15-20 min for the second h, before centrifuging (1,100 rpm, 5 min) and removing the supernatant. The tissue pellet was resus-

pended in 0.5 mL trypsin, pipetted up and down 1 min, topped up with FBS to 1.5 mL and centrifuged (1,100 rpm 5 min), discarding

the supernatant. 1mL dispase (StemCell) was added to the tissue pellet and pipetted up and down 1min, and centrifuged for 5min at

1,050-1,100 rpm, discarding the supernatant. Digested cells were resuspended in PBS + 0.04% BSA in appropriate volume to

achieve a concentration of 1 million cells/ mL). Cells were passed twice through a 70 mm filter to remove remaining undigested tissue

and this single-cell suspension was used for DLP+.

Mouse model development and tissue processing
The mouse model of synovial sarcoma used herein (L.M. et al., unpublished data) is based on the Haldar et al. (2007) hSS2 model

which contains a conditional SS18-IRES-EGFP allele knocked into the Rosa26 locus. Animals were maintained and experimental

protocols were conducted in accordance with approved and ethical treatment standards of the Animal Care Committee at the Uni-

versity of British Columbia.

At clinical endpoint mice were humanely euthanized and the tumor was removed from surrounding tissue, and subsequently disso-

ciated usingmechanical and enzymatic digestion. To enrich for tumor cells from thismononuclear suspension, dissociated cells were

stained using antibodies against various cell surface lineage markers including CD45, CD31, Ter119, F4/80, CD11b, and CD117.

EGFP+ tumor cells were sorted using a BD Influx gated on eGFP expression and negative for lineage markers. Target cells were

sorted into vacuum-filtered single-cell (SC) collection media (DMEM containing 5% FBS) with propidium iodide. Viable target cells

were subsequently further purified, and debris reduced by sorting a second time and collected into 500 mm SC collection media.

Tissue processing for follicular lymphoma
The Research Ethics Board Number for follicular lymphoma biospecimen collection is H14-02304. Leftovers from clinical flow sorted

samples were collected and frozen in FBS containing 10%DMSO. Cells were thawed and washed according to the steps outlined in

the 10x Genomics Sample Preparation Protocol. Cells were stained with PI for viability and sorted in the BD FACSAria Fusion using a

85 mm nozzle. Sorted cells were collected in 0.5 mL of SC collection media and this single-cell suspension was used for DLP+.

Tissue processing for fine needle aspirates
Fine needle aspiration (FNA) samples were obtained from 21 g needle aspiration of a cT2N0 primary breast cancer, of BRCA2 �/�
ER-, PR-, HER2- (TNBC) subtype. The FNA was expelled into DMEMmedia, then the needle was washed with DMEMmedia and the

wash was also collected, repeating needle washing twice for a total of three washes. FNA samples were kept at 4�C until processing

for DLP+. They were treated with 0.8% Ammonium Chloride Solution (StemCell) to lyse red blood cells prior to staining.

METHOD DETAILS

Robot operation
All cell and reagent spotting was carried out on a contactless spotting robot (sciFLEXARRAYER S3 or cellenONE, Scienion,

Figure S1). Pulse and voltage were adjusted before every dispensing step or routine to achieve a stable droplet. Piezo Dispensing

Capillary (PDC) 70 Type 1 nozzles were used for primer dispensing, PDC 70 Type 4 nozzles were used for reagent addition, and
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PDC 90 Type 4 nozzles or cell-qualified nozzles were used for cell dispensing. Spotter was primed daily with fresh and degassed

water according to manufacturer’s recommendation. Briefly, 700 mL of 18MU water was filtered through a 0.22 mm filter (Millipore

Express Plus). The filtered water was placed in a sonicating water bath (VWR Symphony) and vacuum applied for 30 min using a

custom adaptor lid. Following the ‘‘Prime’’ program prompts, the bottle containing the fresh system water was then connected to

the spotter. To minimize travel time during cell spotting, a custom chip holder was mounted next to the droplet camera (Figure S1A

i). All other reagent additions were carried out on a temperature-controlled target holder (Figure S1A vi), either at dew-point or 4�C. If
the dew-point was below 4�C, the relative humidity was increased to 38% ± 2%, with the exception of index primers and cell

dispensing where no humidity control was used. The built-in ‘‘Find Target Reference Point’’ functionwas used to adjust for placement

and rotational errors. Nozzles were removed after every spot day and all system liquid lanes run dry.

Chip handling
Following all reagent additions, nanowell chips were sealed (Microseal film A, BioRad; pressed on with a pneumatic sealer) and re-

agents collected at the bottom of the well with a centrifugation step at 3,214 g for 2min. All chip incubations, with the exception of the

cell heat lysis, were carried out on a flatbed thermal cycler (DNAEngine Tetrad 2, Biorad), followed by a centrifugation step for 2min at

3,214 g.

Primer spotting and wash routine
A unique combination of two dual index primers (2.1 nL each at 20mM)were dispensed into eachwell of the nanowell chip (SmartChip,

Seq-Ready TE MultiSample FLEX Kit, TakaraBio, 5,184 nanowells arranged in a 72 3 72 well array, 110 nL each, (Figure S1A i)) in

advance of cell spotting. 144 customized i7 and i5 primers (Integrated DNA Technologies) were used, where 0NNNNNN0 was replaced

with a unique hexamer barcode (Sanders et al., 2017):
i5: 50-AATGATACGGCGACCACCGAGATCTACACNNNNNNTCGTCGGCAGCGTC-30

i7: 50-CAAGCAGAAGACGGCATACGAGATNNNNNNGTCTCGTGGGCTCGG-30
Primers were desalted and normalized to 100 mM stock concentration in IDTE 8.0 pH. Working plates were prepared by diluting

each stock primer to 20 mM in 0.1% Tween 20 in TE pH 8.0. For primer dispensing, humidity control was not used and the primers

were allowed to dry down for storage at room temperature. A customwash routinewas implemented to avoid cross-contamination of

index primers during spotting. The wash cycle includes a series of pump and sonication steps with 2% Tween 20 and 1% SciClean

solution (Scienion).

Cell and tissue processing
Cell staining and sorting for cell cycle analysis

2 million cells fresh from culture suspended in 1 mL PBS were stained with Hoechst 33342 (Invitrogen), caspase 3/7 (Essen Biosci-

ences), and propidium iodide (PI, Sigma Aldrich) for flow sorting separation of different cell phases. Hoechst 33342 requires

optimization for different cell types. For the GM18507 cell line, we used 5 mg/ mLwith a 30 min incubation at 37�C in a tissue culture

incubator, in 5 mM caspase 3/7. For the T-47D line, we used 10 mg/ mL with a 20 min incubation at 37�C, in 5 mM caspase 3/7. PI was

added immediately before sorting at a final concentration of 2 mg/ mL and passed through a 70 mm filter.

Flow sortingwas carried out at the Terry Fox Laboratory, (BCCancer ResearchCentre) using a BD FACSAria III cell sorter equipped

with 375 nm, 405 nm, 488 nm, 561 nm and 640 nm laser. Cells were sorted into media in tubes. The flow sort gating for cell cycle

analysis of G1, S, G2 phase and dead cells by DLP+ is outlined in Figures S7A–S7F. We gated for cells using side scatter area

(SSC-A) versus forward scatter area (FSC-A) to exclude debris (black) but not dead cells (red). We next gated for single cells on

this gate, using FSC width versus FSC-A to gate out doublets. We next gated for live cells on the single-cell gate using PI versus

FSC to capture the live cells which are PI low. We excluded apoptotic cells on the live cell gate by gating out Caspase 3/7 high cells.

On this live non-apoptotic cell gate, we gated for the cell cycle phases using DNA content of the cells measured by Hoechst 33342

staining to sort the G1, S, and G2 phases of the cell cycle individually. We also gated dead cells using the gate for single cells estab-

lished in Figure S7B, but gating on the PI high, Caspase 3/7 high dead cells. Cells from different cell cycle fractions were stained and

dispensed into chips as outlined in the following sections.

Nuclei preparation from cells

For a subset of samples (GM18507, SA501X11XB00529, SA611X3XB00821, SA1135), nuclei were prepared from single-cell suspen-

sions by doubling the volume of the cells with Nuclei EZ lysis buffer (Sigma) before staining, to compare nuclei data to cell data.

Cell staining and dilution for spotting into nanowell chips

Single-cell suspensions were fluorescently stained using a combination of CellTrace CFSE Cell Proliferation Kit (ThermoFisher) and

LIVE/DEAD Fixable Red Dead Cell Stains (ThermoFisher), incubating for 20 min at 37�C. Cells were resuspended in fresh PBS at a

concentration of 220,000 cells/ mL (CelleOne dispensing) or 1 million cells/ mL (limiting dilution dispensing) prior to dispensing into

chips with unique dual index barcodes already dispensed in each well.
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Cell and nuclei isolation

Single cells or nuclei were isolated by dispensing a limiting dilution (Poisson distribution) or using active selection during cell spotting

(cellenONE).

For cell/nuclei isolation by limiting dilution, stained cells or nuclei were diluted to 1 million cells/ mL in PBS. 1 nL of the diluted sam-

ple was dispensed into a test array to determine the isolation rate and optimize the spotting volume to achieve optimal single-cell

occupancy before the remaining wells were filled using the optimized spot volume. Under optimal conditions about one-third of wells

contained a single cell or nuclei; other wells were empty or contained multiple cells/nuclei.

For active selection, spotting software (cellenONE) was used to select single cells, resulting in an almost perfect single-cell isolation

rate by identifying single cells inside the dispensing nozzle and depositing the desired cells selectively into reaction chambers (Fig-

ure S1). Stained cells were diluted to 220,000 cells/ mL in PBS. To help avoid imaging artifacts due to reflections or external light, the

robot enclosure was blacked out with opaque panels. An automatedmachine learning algorithmwas executed after every cell uptake

to set ejection and sedimentation boundaries with a mapping density threshold between 0.25 and 0.3.

cellenONE allows for thresholding on three geometric measurements calculated for each cell: diameter, circularity, and elongation.

Diameter is calculated asWaddel Disk Diameter: the diameter of a disk with the same area as the particle. Elongation is calculated as

the ratio of major tominor ellipse axes. Circularity is calculated as HeywoodCircularity Factor: themeasured perimeter divided by the

circumference of a circle with the same area. Real-time calculation of the three genometric measurements enables active selection of

single cells as they are dispensed, and the exclusion of doublets and debris. Activate selection also overcomes the limitations of cell

isolation by limiting dilution (Figure S1D and S1E). The following advanced settings were used: min area 20, max area 250 to 1,000

(depending on cell type), circularity 1.35, elongation 2.5. In addition, the LED pulse width was increased to 10 ms. Brightfield images

and particle metrics from deposited cells were saved with spatial information. Isolated cells were frozen in sealed nanowell chips at

�20�C until library preparation.

Chip imaging and cell calling

All nanowell chips were scanned on a 10 3 inverted fluorescent microscope (Nikon TI-E). Standard stages were replaced with fast

travel stages to increase speed (ASI stages fitted with an ultra-course lead screw (28mm/s)). Control software was written in LabView

(LabView 2015) and images were acquired on a Grasshopper3 USB camera (Point Grey Research/FLIR). A customized image anal-

ysis software (SmartChipApp in Java) was then used to confirm single-cell occupancy and acquire cell state information. CFSE stain-

ing is used to provide additional contrast. Intensity and area thresholding were used to select cells of choice automatically. Additional

information, such a cell state (live/dead), are linked to each well after imaging the entire device and automatically extracting fluores-

cent imaging information (Figure S1F and S1G). Automated calling was then reviewed, and a spotting robot input file was created to

process selected wells only. Since imaging occurs before the library preparation reagents are spotted, doublets, empty wells, or cells

with contamination can be excluded from library preparation (Figure 1A, Figure S1E). All imaging information together with additional

information, such as sample type, sample processing, and spatial information were recorded in a custom database, Colossus.

Library preparation optimization for nanowells
We initially used a one-pot transposase chemistry (Nextera DNA Library Preparation Kit, Illumina) as described by (Zahn et al., 2017),

and subsequently optimized amore robustmethodmodified as described below. The optimizations of specific steps are described in

this section. Table S1 summarizes all experimental conditions; a detailed description of each condition can be found below.

Dispensing method optimization

Cells were dispensed by a limiting dilution (Poisson) to isolate single cells or single cells were selected directly in the nozzle (block

cellenONE, see section Cell spotting). Active selection of cells in the nozzle results in a block pattern versus the scattered pattern of

single isolated cells resulting from the limiting dilution. We investigated the effect of sample distribution on the chip and mimicked a

limiting dilution-like scattered distribution using target dispensing of selected single cells (scattered cellenONE).

Lysis optimization

We investigated the following lysis conditions on the open-array platform. Lysis buffer & Protease: G2 lysis buffer was prepared with

25 mL lysis buffer G2 (QIAGEN) and 2.5 mL (+) QIAGEN Protease (Protease was re-suspended in 7 mL UltraPure water). Direct lysis

buffer was prepared by combining DirectPCR Cell Lysis Reagent (Viagen) (25 mL), QIAGEN Protease (+: 2 mL, ++: 5 mL, +++: 10 mL) in

5% glycerol and 0.1% pluronic in PCR water. Volume& presoak time: 1 nL or 10 nL of the specified lysis solution was dispensed into

the selected wells of the nanowell chip and cells were incubated at 4�C (0 h, 2 h, 4 h or overnight (19-22 h)). Protease top-up: If appli-

cable, 2.5 nL of additional lysis solution was added to eachwell. Water bath/temp/dry down: Heat lysis was carried out at 50�C for 1 h

followed by a protease inactivation incubation at 70�C for 15 min, with a final cooling to 10�C. If applicable, cell heat lysis was per-

formed by immersing the sealed chip into a water bath at 50�C for 1 h, followed by a transfer to a thermal cycler for protease inac-

tivation (70�C for 15min, 10�C forever). During immersion, the chip wasmounted in a custom-built chip clamp to ensure a secure fit of

the seal. Finally, a dry down might have been performed at room temperature for 15 min, followed by dispensing 10 nL of water to

equalize volumes before tagmentation. Lysis solution was added to all wells, including gDNA, no-template (NTC) and no-cell (NCC)

controls.

Tagmentation optimization

After cell lysis, 18 nL of the 2.2 nL tagmentation mix (9 nL TD Buffer (Nextera DNA Library Prep Kit, Illumina), 2.2 nL TDE1 (Nextera

DNA Library Prep Kit, Illumina), 0.165 nL 10% Tween-20), 3.5 nL tagmentation mix (14.335 nL TD Buffer, 3.5 nL TDE1, and 0.165 nL
Cell 179, 1207–1221.e1–e12, November 14, 2019 e6



10% Tween-20) or 6.5 nL tagmentation mix (11.3 nL TD Buffer, 6.5 nL TDE1, and 0.165 nL 10% Tween-20) in PCR water were

dispensed into each well and incubated at 55�C for 10 min followed by cooling to 10�C.
Neutralization optimization

If neutralization was performed, the tagmentation reaction was neutralized with 4 nLQIAGEN Protease and 4 nL 0.2%Tween-20, and

an incubation at 50�C for 15 min, followed by a protease inactivation incubation for 15 min at 70�C, with a final cooling to 10�C.
PCR optimization

After neutralization, 39 nL of PCRmaster mix (19.5 nL NPM (Nextera DNA Library Prep Kit, Illumina), 6.5 nL PPC (Nextera DNA Library

Prep Kit, Illumina), 0.65 nL 10% Tween-20, 12.35 nL PCRwater) was dispensed to each well. PCRwas performed using the following

conditions: 72�C for 3 min; 95�C for 30 s; 8 cycles or 11 cycles of 95�C for 10 s, 55�C for 30 s and 72�C for 30 s; 72�C for 3 min; and

finally 10�C.

Optimized DLP+ method
DLP+was carried out using the robot and chip handlingmethods outlined in the previous sections with the following optimized steps.

Dispensing method Single cells were selected directly in the nozzle using cellenONE software and dispensed into chips with pre-

dispensed primers.

Lysis buffer & Protease: Direct lysis buffer was prepared by combining DirectPCR Cell Lysis Reagent (Viagen) (25 mL), QIAGEN

Protease (2 mL in 5% glycerol and 0.1% pluronic in PCR water.

Volume & presoak time: 10 nL of this lysis solution was dispensed into the selected wells of the nanowell chip and cells were incu-

bated at 4�C overnight (19-22 h).

Heat lysis: Cell heat lysis was performed by immersing the chip into a water bath at 50�C for 1 h, followed by a transfer to a thermal

cycler for protease inactivation (70�C for 15min, 10�C forever). During immersion, the chip wasmounted in a custom-built chip clamp

to ensure a secure fit of the seal. Lysis solution was added to all wells, including gDNA, no-template (NTC) and no-cell (NCC) controls.

Tagmentation After cell lysis, 18 nL of the 3.5 nL tagmentationmix (14.335 nL TDBuffer, 3.5 nL TDE1, and 0.165 nL 10%Tween-20)

in PCR water were dispensed into each well and incubated at 55�C for 10 min followed by cooling to 10�C.
Neutralization The tagmentation reaction was neutralized with 4 nL QIAGEN Protease and 4 nL 0.2% Tween-20, and an incubation

at 50�C for 15 min, followed by a protease inactivation incubation for 15 min at 70�C, with a final cooling to 10�C. PCR After neutral-

ization, 39 nL of PCR master mix (19.5 nL NPM, 6.5 nL PPC, 0.65 nL 10% Tween-20, 12.35 nL PCR water) was dispensed to each

well. PCR was performed using the following conditions: 72�C for 3 min; 95�C for 30 s; 8 cycles of 95�C for 10 s, 55�C for 30 s and

72�C for 30 s; 72�C for 3 min; and finally 10�C.
Recovery and Purification: The indexed single-cell libraries were then recovered by centrifugation through a recovery funnel into a

pool. Finally, size selection was performed using a 1.8 3 Ampure XP (Beckman Coulter) bead to sample ratio.

Quality control and sequencing
Cleaned up pooled single-cell libraries were analyzed using the Aglient Bioanalyzer 2100 HS kit. Libraries were sequenced at UBC

Biomedical Research Centre (BRC) in Vancouver, British Columbia on the Illumina NextSeq 550 (mid- or high-output, paired-end

150-bp reads), or at the GSC on Illumina HiSeq2500 (paired-end 125-bp reads) and Illumina HiSeqX (paired-end 150-bp reads).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis workflow
We obtained dual-index demultiplexed FASTQ reads from HiSeq instruments, and we used these FASTQ reads as input into our

workflow automation pipeline. Our workflow was written in Pypeliner (https://github.com/shahcompbio/pypeliner), is publicly avail-

able (https://github.com/shahcompbio/single_cell_pipeline), and outlined below. All tools were run on default settings unless other-

wise specified. Exact version and environment are encoded in the publicly available workflow link above.

Single-cell alignment

Reads were trimmed with TrimGalore to remove adapters and paired-end single-cell FASTQs were aligned with BWA (Li and Durbin,

2009)., aln mode. PCR duplicates were marked using picardMarkDuplicates and read alignment metrics are computed for each cell.

Single-cell CNV calling

Reads were tabulated for non-overlapping 500k genomic regions or ‘‘bins.’’ A modal regression normalization was performed to

reduce GC bias. Copy number was called using HMMcopy, under 6 possible ploidy settings and a fit was computed for each ploidy

with the best fit returned per cell.

Data analysis infrastructure

Amajor challenge to analyzing the data was dealing with the number of files present. With an average of 1,000 cells per library and up

to 3 libraries a week being produced, new infrastructure was required to be built specifically to keep up with the flow of data.

Modal regression for GC bias correction

In previous studies, GC bias correction was conducted using fitted local regression curves (Zahn et al., 2017; Ha et al., 2012). When

applied to samples whose average ploidy fell between integer values, this approach caused normalized read count bands to fall be-

tween integer lines, complicating ploidy estimation and integer copy number inference. To address this, a modal regression curve
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fitting procedure was applied as follows. For each cell, second-order polynomial quantile regression curves were computed for each

quantile from the 10th to 90th using the statsmodels Python package. Next, the area between quantile regression curves in the 10th

to 90th GC quantiles was computed by integration. A loess local regression curve was fitted to the curve distances, and theminimum

of the smoothed curve was selected as the modal quantile regression curve. To correct for GC bias, read counts for each bin were

divided by the predicted value at the modal quantile curve. Corrected read counts were passed as input to HMMcopy for segmen-

tation and copy number state inference.

Copy number calling

Copy number calling was done using HMMcopy as described in Ha et al. (2012). Briefly, we obtained a histogram of aligned read start

positions at 500k bins resolution across the genome, corrected for the bias effect of GC content on sequencing depth, then predicted

the copy number with a 12 state Hidden Markov Model. In order to optimize HMMcopy which was originally designed for heteroge-

neous bulk tumor genomes for single cells, two major changes were made. First, instead of applying the default loess regression

method from HMMcopy, we implemented a modal regression algorithm that correctly normalizes bin counts to integer values as ex-

pected of single-cell profiles. Second, instead of a 7 state model, we expanded to a 12 state model to better capture the dynamic

range of copies we encounter in single-cell libraries.

Determining the correct copy number calls was complicated by the lack of a ‘‘ladder’’ to map observed coverage depth to biolog-

ical chromosome count. This means that the data from a perfectly normal female human diploid cell could also be explained by a

single haploid genome, or any other ploidy genome sampled uniformly. For normal cells like this, we resolved this issue with prior

knowledge and manually set the parameter set to assume diploid biological input. For cells with more events in their copy number

profile, we can use these events to infer the actual copy number, under the assumption that all events should be derived from an

integer number of chromosomes as data was derived from a single genome. Algorithmically, we made copy number predictions

with HMMcopy using 6 possible ploidy assumptions (haploid to hexaploid), by multiplying the normalized data by 1 to 6. We then

computed a penalty score we call halfiness that penalizes non-integer copy number predictions and select the ploidy that minimizes

this penalty for downstream analysis.

Formally, halfiness is a single score computed for each cell independently as follows:

Xb
n= 1

�log2ðjjcn � snj � 0:5 j Þ � 1

sn + 1
(Equation 1)

Where b is the number of bins in the genome, n is the median predicted copy numbers for the segment the bin resides in (where a

‘‘segment’’ is simply contiguous bins with the same copy number state), and s is the integer copy number state that is one of 0 to 11.

Intuitively, the closer the predicted copy number is halfway between two integer copy number states, the higher the penalty score.

We also penalize these errors much more heavily at lower states, as practically these are the states with the highest occurrence and

confidence. We cap ðjcn �sn j Þ at 0.499 to prevent the asymptotic numerator from going to infinity and handle edge cases where this

difference exceeds 0.5.

Computing cell quality

We developed a binary classifier of library quality to distinguish high-quality libraries from technically poor quality libraries from and

those exhibiting biological DNA replication states. As training data we used a dataset of 20,000 manually labeled libraries. Per library

binary quality labels were curated by two of the co-authors independently on separate sets of libraries (13,000 and 7,000). Criteria for

labeling a library as high quality were based on clear integer segments, whereas poor quality libraries exhibited noise (high non-

integerness), uneven diploid baseline, or very low read counts (~1-5 reads per bin). A total of 6,700 libraries were labeled as good

and 13,300 as bad with roughly 2,500 others discarded during the process due to ambiguity. For each library in the training data,

we then computed 18 quantitative features from alignment and copy number metrics, described below.

d total_mapped_reads: the total number of mapped reads

d total_duplicate_reads: the total number of duplicate reads

d MBRSM_dispersion: median of bin residuals from segment median copy number values

d MSRSI_non_integerness: median of segment residuals from segment integer copy number states

d scaled_halfiness: a scaled metric to assess integer goodness of fit, as previously defined

d MBRSI_dispersion_non_integerness: median of bin residuals from segment integer copy number states

d breakpoints: number of intrachromosomal breakpoints

d loglikehood: log-likelihood of HMMcopy CNV fit

d mad_hmmcopy: mean absolute deviation of CNV results

d total_halfiness: halfiness, but not scaled by copy number state (no denominator in definition)

d cv_hmmcopy: coefficient of variation of CNV results

d mean_state_mads: the mean across all MADs of each copy number state

d mean_state_vars: the mean across all variances of each copy number state

d percent_duplicate_reads: percentage of reads that are duplicates

d autocorrelation_hmmcopy: autocorrelation of CNV results
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d mean_copy: mean copy number of all bins

d standard_deviation_insert_size: read insert size standard deviation

d state_mode: the most commonly occurring copy number state

We trained a binary random forest (RF) classifier Breiman (2001) on the 20,000 labeled libraries using the RandomForestClassifier

implementation from sklearn and setting the number of trees to 500 ðnestimators = 500Þ. The resulting classifier produced a training

out-of-bag estimate error rate of 2.38%. The two features with highest importance as ranked by the classifier (Figure S2C) were both

representations of sequenced depth, with the next 4 all being various calculations of how well the copy number profile fits to integer

copy number states. The relative low ranking of mean and mode copy numbers suggests the model will generalize to libraries pro-

duced from cells with varying levels of aneuploidy.

We then defined the quality score to be the class probabilities output by the classifier. Thus quality score ranges from 0 to 1, with 1

indicating a high probability that a library is high quality. When applied to the entire dataset the resulting quality distribution is strongly

bimodal, with 34% of results are below 0.1 and 52% above 0.9. Given this distribution, as visualized in Figure S2D, we used a

threshold score of R0:75 to capture a highly confident subset of cells for downstream analysis.

We additionally input the same set of curated features into two other classifier models, specifically a generalized linear model

(GLM) and support vector machine (SVM) using functions from base R and the R package e1071 respectively. For all three models

we then did ten separate 10-fold cross validation test to investigation the stability and performance of all classifiers. The random for-

est classifier had the best performance at the equal error rate point. We then chose a threshold of 0.75 to further minimize the esti-

mated FPR.

As a further comparison, we also used the full training set on the three algorithms, and computed scores for the entire dataset and

did Pearson correlations of all three tools. The RF and SVM had a correlation of 0.97, RF versus GLM was 0.84, and the GLM versus

SM was 0.85.

Predicting cell cycle state

We sought to develop a classifier that would predict cell cycle state from DLP+ data using as training data the 4 flow sorted libraries

with labeled G1, S and G2 phase cells. We explored several cell specific features calculated from the genomic data, described

briefly as:

d HMMcopy predicted ploidy: Average ploidy calculated as the mean copy number state across all genomic bins.

d Number of copy number transitions predicted by HMMcopy: Number of boundaries between bins for which the copy num-

ber state changes.

d Correlation of GCwith read count:Correlation coefficient calculated between the GC of each bin and read count of each bin.

d Slope of theGC / read count regression line: Slope of a best fit line calculated for the relationship between theGC of each bin

and read count of each bin.

d Correlation of GC with read count, after aggregate correction: Correlation coefficient calculated between GC of each bin

and corrected read count of each bin.

d Slope of the GC / read count regression line, after aggregate correction: Slope of a best fit line calculated for the relation-

ship between the GC of each bin and corrected read count of each bin.

d Percent duplicate reads: Percent of the total reads called as PCR duplicates during alignment.

d Mean and standard deviation of the insert size: Insert size statistics calculated during alignment.

d Percent of unpaired mapped reads: Mapped read percentage calculated during alignment.

We then trained a RandomForest classifier on the collection of features and calculated feature importance. The highest performing

feature is the correlation between GC content of each genomic bin and observed read count in that bin, after aggregate correction

(Figure S7H). As described in themain text, partially replicating genomes will have a strong positive correlation between GC and read

count, due to the fact that GC rich regions in general replicate early. However, non-replicating genomes also have a GC bias due to

sequencing efficiency of DNA fragments with varying GC content. We thus calculate a correction curve for the GC sequencing bias

from the aggregate GC / read count data obtained by summing read counts across cells for each genomic bin. Each individual cell is

corrected for GC sequencing bias based on the curve fit to the aggregate data. Residual correlation after aggregate correction, pu-

tatively attributable to early replicating regions, is used as a feature in the classifier. Several features of lesser importance are variants

of this metric, including variants that use the slope of the best fit line to the aggregate corrected read counts, and read counts normal-

ized by HMMcopy number state.

One problematic aspect of using aggregate correction strategy is that correction curves calculated from the aggregate data may

themselves be influenced by the proportion of cells in S-phase. An abundance of S-phase cells in the library may add a positive bias

to the GC / read count correlation, resulting in an over-correction of per cell GC and an undercalling of S-phase cells in that library.

Furthermore, when calculating the features for the training data we must choose whether we want to exclude S-phase cells when

calculating the aggregate GC correction, or amore realistic proportion (30%). To assess the extent to which the classifier is impacted

by variations in proportion of S-phased used in calculating the features during training, and proportion of S-phase in the test data, we

performed a sweep over these two parameters. For each pair of parameters we randomly selected 10 training and test sets and

calculated F1 score to assess performance (Figure S7K). The performance of the classifier was highly variable for lower proportions
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of S-phase used in training. We selected a 30%mix of S-phase cells in calculate of aggregate correction due its relative stability over

a range of values for the proportion of S-phase cells in the test set.

Code for the cell cycle classifier is available at https://github.com/shahcompbio/cell_cycle_classifier.

Montage for single cell visualization
Montage is a framework for constructing visualization dashboards for interactive exploration of high-dimensional big data. Montage

provides standard charts such as scatterplots and violin plots for continuous valued qualitymetrics, in addition to custom charts such

as aggregated heatmaps and copy number profiles of single-cell genomes. A key feature of Montage is linked charts, where a dash-

board designer can configure multiple charts viewing the same underlying dataset. Selection or filtering of datapoints in one chart

propagates to all other charts of the same data, facilitating novel data exploration use cases without requiring development of

bespoke visualization software. The data served by a Montage instance is stored in an Elasticsearch index, allowing for scalable

data storage and efficient access that includes optimized aggregation-based queries. The Montage front end is built with D3.js

and is deployed as an Elasticsearch plugin.

We constructed a Montage dashboard configuration for quality control (QC dashboard) and library assessment, which consists of

the following for all cells in a given analysis: (1) a heatmap of copy number states across the genome per cell, (2) a table of exper-

imental conditions to allow for interpretation of experiment and controls, (3) a chip heatmap revealing a user selected sequencing

metric (ex. the total mapped reads) per cell across the physical device, (4) an interactive scatterplot of the cells’ quality metrics (which

can be selected) and (5) a violin plot of the distributions of metrics for each combination of cell call and experimental condition. All of

the plots can be filtered by clicking the green Data Filter circle and entering filters in the menu displayed. The metrics displayed in the

chip heatmap, scatterplot, and violin plot can be changed by clicking the plot and using the same side menu.

The interactive data filtering and exploration features ofMontage proved to be valuable for data quality assessment. As an example

of Montage’s utility, we describe a brief example of how Montage can be used to visualize mouse cell contamination in the SC-899

xenograft dataset. Navigating to the SC-899 data in Montage, we set the dimensions of the scatterplot to display total reads (x axis)

and total mapped reads (y axis). The off-diagonal points quickly illustrate which cells have unusually low numbers of mapped reads,

and selecting these cells reveals that they are the source of noisy copy number profiles in the copy number heatmap. In cases where

PDX tissue are analyzed, this can quickly filter contaminating mouse cells from the heatmap.

Pseudo-bulk analysis
We sought to use DLP as a platform for reconstructing the clonal architecture and evolutionary histories of sequenced samples. Copy

number changes are highly homoplastic, potentially confounding phylogenetic reconstruction. SNVs and breakpoints are more

optimal phylogenetic markers as their low homoplasy allows application of the infinite sites hypothesis. However, the low per-cell

coverage obtained with DLP is insufficient for either calling or assessing presence of SNVs or breakpoints in single cells. We thus

sought to reconstruct clonal architectures using a two-step procedure, first clustering cells by their copy number profiles, then treat-

ing the resulting clusters as pseudo-bulk genomes in a multi-sample analysis of SNVs, breakpoints and loss of heterozygosity.

Clustering by copy number

Accurate clustering is a crucial first step of pseudo-bulk analysis. If cells from divergent phylogenetic clades are clustered together,

downstream analysis will be unable to accurately assign SNVs to the correct clone. In the extreme case, a poor clustering will intro-

duce a fraction of contaminating cells in each cluster, resulting in SNVs being called as present in all clones and obscuring any phylo-

genetic signal. We thus chose a method of copy number clustering with stringent filtering of outliers and low-quality clones.

We first used UMAP version 0.2.3 (McInnes and Healy, 2018) with default parameters to produce a reduced 2-dimensional repre-

sentation of the normalized raw copy number data. For the ovarian cell line pseudo-bulk analysis, we then clustered the resulting

reduced dimensionality data using a Gaussian Mixture Model, over-specifying the number of clusters at 20. For the 184-hTERT

and fine needle aspirate samples, we used HDBScan, removing the outlier cluster. Clusters composed of less than 50 cells were

excluded from further analysis. The median copy number of the cluster was used as the measurement of total copy number for

each cluster.

Allele specific copy number

We computed allele specific copy number using a previously described approach (McPherson et al., 2017b), detailed below. In a

matched normal sample wemeasured reference and alternate allele counts for SNPs from the thousand genomes phase 2 reference

panel. We used a binomial exact test to filter for SNPs heterozygous in the normal sample. Using shapeit (Delaneau et al., 2011) and

the thousand genomes phase 2 reference panel, we computed haplotype blocks.

Next we measured per cell reference and alternate allele counts for heterozygous SNPs in the DLP data. Per clone counts were

aggregated by summing across cells in each cluster. Haplotype blocks that were split at boundaries of HMMcopy bins, and major

and minor haplotype allele counts were computed for each cluster and each haplotype block. We then used an HMM with Binomial

emission to model haplotype block counts, and used the viterbi algorithm to compute the optimal minor copy number state per bin.

To account for outliers, the emission was a mixture of a Binomial and a uniform distribution. Specifically, given observed total copy

number t, unobservedminor copy number z, minor haplotype allele counts x and total haplotype block counts k, the likelihood is given

by Equation 3. We used a fixed transition matrix favoring self transitions as given by Equation 4, where s is the maximum copy num-

ber state.
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z

t
+ ε (Equation 2)
pðxjm; k;pÞ = ð1�pÞBinomðx jm; kÞ+p (Equation 3)
�

Tnm =

difnsm
1� dð1� sÞelse (Equation 4)

For the purposes of this study we fixed the parameters at ε = 0:01, p = 0:01, d= 1e� 4 and s = 11.

SNV and breakpoint calling

We used mutationseq (Ding et al., 2012) and strelka (Saunders et al., 2012) to call SNVs in merged DLP genomes. We first created

merged BAMs for each DLP library, split into non-overlapping 10MB regions. Both mutationseq and strelka were used to call SNVs

with default parameters as for SNV calling in bulk whole-genome data, as previously described (McPherson et al., 2016). We gener-

ated a set of high-quality SNV predictions by filtering for SNVs with strelka somatic score R20, mutationseq probability R 0:9, en-

vode 50-mer mappabilityR0:99. Samtools Li et al. (2009) was used to extract per cell, per SNV reference and alternate allele counts

for a union set of filtered SNVs.

For breakpoint prediction we used deStruct (McPherson et al., 2017a), which produced per cell per breakpoint counts. Breakpoints

were filtered for predictions with at least 5 split reads, and at least 250 nucleotides anchoring the predicted sequence on either side of

the breakpoint (template length min feature).

Phylogenetic Analysis

We used the stochastic Dollo evolutionary model in conjunction with a binomial read count likelihood to reconstruct the evolutionary

relationships between clones as previously described (McPherson et al., 2016). In brief, alternate SNV counts are modeled as bino-

mial distributed given total counts at the SNV loci. To calculate a probabilistic score for a given tree and SNV, we calculated the likeli-

hood of the SNV reference and alternate counts, marginalizing the possible origins of that SNV throughout the tree, in addition to any

SNV losses due to copy number change. Losses occur with a branch specific probability that is learned as part of model fitting.

Exhaustive search is used to select the maximum likelihood tree. Given the ML tree, the origin branch and branch specific losses

are calculated for each SNV by maximum likelihood.

We generated a breakpoint phylogeny using hierarchical clustering of binary presence/absence data with average linkage and

euclidean distance.

DATA AND CODE AVAILABILITY

Data
The single-cell FASTQs have been deposited in the European Genome-phenome Archive under accession number EGA:

EGAS00001003190. The OV2295 datasets are available at zenodo (https://doi.org/10.5281/zenodo.3445364).

Software and code
Wedeveloped a suite of tools to facilitate large scale processing of DLP+ sequenced libraries on a local high performance computing

cluster with the ability to burst compute with Microsoft Azure’s Batch Compute. The suite of tools includes 2 databases,

Colossus and Tantalus, an application for analyzing the aluminum SmartChip, and an analytical pipeline. Colossus acts as a lab note-

book for the molecular biologists, cataloguing samples, DLP+ libraries, lanes of sequencing of those libraries and per cell metadata.

Tantalus, by contrast, is a system used primarily by analysts for tracking metadata of sequencing datasets, analyses and

results. Sisyphus communicates with the RESTful APIs of Colossus and Tantalus to prepare inputs for analyses and execute those

analyses.

The code for Sisyphus is publicly available and accessible at https://github.com/shahcompbio/sisyphus.

SmartChipApp

The SmartChipApp is an interactive application that analyses captured images of cells spotted in a grid in a nanowell SmartChip.

Images from two fluorescence channels are captured to highlight the state of the cells in each spotted well. For example, one channel

could be used to highlight the cells that are live and the second channel could be used to highlight the cells that are dead. The appli-

cation automatically detects and quantifies the number of live and dead cells in each well and saves the results in an Excel table. Cell

calls can be manually revised by the user. The application also saves files that control the spotting robot, allowing wells to be selec-

tively addressed based on their contents.

The code for the SmartChipApp is publicly available and accessible at https://github.com/shahcompbio/smartchipapp.

Colossus

Colossus catalogs samples, DLP+ libraries, lanes of sequencing of those libraries and per cell metadata. The implementation of

Colossus uses Django web framework with a PostgreSQL database. Data can be browsed in an intuitive front end that includes

search features, tabular presentations of the data, and the ability to add, edit and delete samples, libraries, and sequencings. Per

cell metadata can be imported into Colossus from Microsoft Excel spreadsheets generated by the SmartChipApp. Additionally,
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Colossus provides the ability to generate tables required for submitting a library for sequencing and demultiplexing the sequenced

library into per cell FASTQs. A RESTful API allows for integration into automation scripts.

The code for Colossus is publicly available and accessible at https://github.com/shahcompbio/colossus.

Tantalus

Tantalus is an organizational tool for tracking DLP+ sequencing datasets and analyses. The implementation of Tantalus uses Django

web framework with a PostgreSQL database. Metadata of single-cell datasets, including file paths and sample and library informa-

tion, are browsable and searchable in an html front end. A python celery-based backend allows for the automation of tasks including

data import and file transfers, with automation of analyses planned in future versions. A RESTful API allows for integration into auto-

mation scripts.

The code for Tantalus is publicly available and accessible at https://github.com/shahcompbio/tantalus.

Single Cell Pipeline

The analytical pipelines for processing the raw sequence data are packaged as a single python module, single_cell_pipeline. The

pipelines use the pypeliner workflow orchestration tool to define dependencies between tasks and provide the ability to run the pipe-

lines in parallel environments including multi-processing, grid engine, and in Microsoft Azure Batch. In brief, an alignment and QC

pipeline generates alignedBAMs fromFASTQ files and runs HMMcopy for each cell. A series of additional pipelines for variant calling,

germline calling, and breakpoint calling are used for pseudo-bulk analysis. Each pipeline takes as input a list of input BAMs or FASTQ

files per cell in YAML format and outputs a set of results tables in HDF5 format. Details of how to run the pipelines are shown in the

readme available in the repo.

The code for the single cell pipeline is publicly available and accessible athttps://github.com/shahcompbio/single_cell_pipeline.

The code for pypeliner is publicly available and accessible at https://github.com/shahcompbio/pypeliner.

Montage QC dashboard

Montage is publicly available and accessible at https://github.com/shahcompbio/montage

ADDITIONAL RESOURCES

All DLP+ data generated a part of thismanuscript are available in Cellmine, a publicly accessibleMontage instance located at: https://

www.cellmine.org.

DLP+ protocols and plans for custom parts are available for download at: https://github.com/shahcompbio/dlpplus_protocols.
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(A) Doublet identification during nozzle imaging (B) CFSE imaging of well
identifying doublet

Figure S1. Spotter Setup and Single-Cell Isolation, Related to Figure 1 and STAR Methods, Method Details

(A) Spotting robot setup featuring: (I) nanowell open-array chip located on customized chip-holder, (II) wash-solution reservoir, (III) active fresh-water wash

station, (IV) dispensing nozzle, (V) droplet camera, (VI) chilled target holder.

(B) Brightfield image of the dispensing nozzle. Orange arrow highlights ejected droplet which can range from 300- 550 pL in size depending on instrument

settings.

(C) Overlay of a brightfield image showing the dispensing nozzle and the mapping density of detected cells. Green dots indicate ejected cells; blue dots indicate

cells that were again detected after ejecting a single droplet; dotted blue line shows boundary of cell ejection area/volume; dotted orange line indicates sedi-

mentation boundary.

(D) Automated imaging permits the identification of single cells and target deposition into a nanowell. Cells were deposited if a single cell was detected in the

ejection area and no particle was present in the sedimentation area. Orange arrow highlights selected single cell for deposition. e Brightfield image showing

contaminating debris (orange arrow).

(F) Montage of 186 fluorescent images of isolated single cells in the bottom of a nanowell using the cellenONE software. Images are aligned according to the array

layout.

(G) Left image: Nozzle image of an example doublet cell identified at spotting. Right image: CFSE stained plate image of the nanowell corresponding to the

doublet, identified by the image processing SmartChipApp.



(legend on next page)



Figure S2. Optimization of DLP+ Single-Cell Whole-Genome Sequencing Library Construction for the Open-Array Format, Related to

Figure 2

Examples of (A) high-quality and (B) poor quality single-cell genome libraries from a diploid GM18507 lymphoblastoid (male) cell line. Colors correspond to integer

HMM copy number states (Ha et al., 2012); black lines indicate segment medians.

(C) Random forest classifier feature importance, total mapped reads is of highest importance. Definitions of the features are in methods.

(D) OC from 10 ten-fold cross-validation on Random Forest (AUC 0.997)

(E) Quality score distribution over GM18507 cells of (i) the original MF-DLP data (Zahn et al., 2017)), (ii) lysis buffer types, (iii) Tn5 concentrations and increased lysis

presoak times (iv) on-chip storage of isolated cells and nuclei that were dispensed into nanowells and stored either overnight or for 63 days prior to lysis and library

construction, and (v) cell state (live or dead). Numbers of cells are indicated above each violin plot, where black lines show medians and dots indicate individual

cells (green circle = live, orange diamond = dead, gray square = no cell state data). Grey background indicates where cells underwent heat lysis immediately after

lysis buffer addition, and blue background indicates cells kept in lysis buffer for 19 h at 4�C before heat lysis.

(F) Effect of cell dispensing method on total mapped reads, with active selection (cellenONE, spotted in a block of wells or a scatter pattern) or passive limiting

dilution dispensing. Black lines show median.

(G) Effect of protease concentration on cells. Quality scores of single-cell libraries built with a low,medium, or high concentration of protease in the lysis buffer and

lysed for either 2 or 19 h, followed by library construction with a range of protease concentrations.

(H) Distribution of coverage breadth of bootstrap sampling of GM18507 libraries using a 2 h and overnight presoak lysis compared to a microfluidic device

(MF-DLP (n= 122, (Zahn et al., 2017)), DLP+ 2 h (n= 148), DLP+ overnight (n= 133).

(I) The effect of lysis time on coverage breadth of merged single-cell genomes. Bootstrap sampling of single-cell GM18507 libraries prepared using a 2 h and

overnight cold lysis conditions; DLP+ 2 h (n= 148), DLP+ overnight (n= 133), MF-DLP Zahn et al. (2017) (n= 122). Single-cell libraries were downsampled to a

similar median coverage depth. Boxplots show median and quartiles, the whiskers show the remaining distribution, and dots indicate outliers. Lorenz curves

shows coverage uniformity for merged single-cell genomes. Curves are median merged genomes. Experimental condition and number of merged cells are

indicated in the plot. Dotted black line indicates perfectly uniform genome.

(J) Distribution of fraction duplicate reads for GM18507 cells (2.2 nL Tn5, n= 587 (green); 3.5 nL Tn5, n= 571 (blue)) and on a microfluidic device (n= 141, (Zahn

et al., 2017) (yellow)). The top column labels state the numbers of cells per condition.

(K) Fraction duplicate reads versus coverage breadth of deeply sequenced GM18507 libraries (3.5 nL Tn5, n= 571), 10 HiSeqX lanes) with low quality (< 0.75) and

high quality (R 0.75) indicated.

(L) GC bias of GM18507 libraries as a function of Tn5 concentrations and 8 or 11 PCR amplification cycles.

(M) Lorenz curves showing genome-wide coverage uniformity of merged single-cell libraries over Tn5 concentrations and 8 or 11 PCR amplification cycles

(downsampled to 64 cells per experimental condition). Dotted straight black line indicates perfectly uniform genome.

(N) Effect of Tn5 concentration and PCR cycles time on coverage of merged single-cell genomes. Bootstrap sampling of single-cell GM18507 libraries prepared

using a range of Tn5 concentrations and PCR indexing cycles on the open-array and compared to the MF-DLP dataset (7); DLP+ 2.2 nL Tn5, 8 PCR (n = 188),

3.5 nL Tn5, 8 PCR (n= 190), 6.5 nL Tn5, 8 PCR (n= 197), 2.2 nL Tn5, 11 PCR (n= 198), and MF-DLP (7) (n= 122). Single-cell libraries were downsampled to a

similar median mean coverage depth. Coverage depth and coverage breadth are shown in boxplots.



Figure S3. DLP+ Produces High-Quality Libraries fromCells and Nuclei, while Dead Cells Drop Out with LowRead Count, Related to Figure 2

(A) Quality score distribution of optimized single-cell libraries, split by dead cells, live cells, and nuclei shows live cells and nuclei have a similar distribution, while

dead cells have lower quality. Total mapped reads distribution (orange is cells with quality score less than 0.75, and green is cells with quality score higher than

0.75), cells with low read counts have low-quality score, vertical line represents 125,000 reads.

(B) Heatmap of copy number profiles from cells and nuclei shows that cells (green in side bar) and nuclei (blue) cluster together using hierarchical clustering.

(C) Sequencing metrics of single-cell and single-nucleus libraries produced from the same samples.

(D) Example copy number profile from a nucleus and a cell derived from the same sample showing the same copy number clone type.



Figure S4. Pseudo-bulk Supplementary Analysis Depicting Properties of Clonal Populations of OV2295 and 184-htert Cells, Related to

Figure 3

(A) Total copy number heatmap for each clone of OV2295 (y axis) across the genome (x axis).

(B) Minor copy number heatmap for each clone of OV2295 (y axis) across the genome (x axis).

(C) Total copy number of 34 clones comprising 14,703 cells, with hierarchical clustering dendrogram (left).

(D) Number of cells in each clone.

(E) Estimated proportion of cells in S-phase with 90% confidence interval error bars.

(F) Estimated proportion of cells in with mitotic error with 90% confidence interval error bars.



Figure S5. Pseudo-bulk Supplementary Analysis ShowingComparison of Pseudo-bulk SNVDetection between 2 and 4 Lanes of Sequencing;

Relative Performance of Bulk Deconvolution for In-silico Mixtures, Related to Figure 3

(A) Heatmap of the number of SNVs (values in heatmap) that are detected in the 2 lane dataset (x axis) versus the 4 lane dataset (y axis) for three related ovarian

cell lines.

(B) Counts of the total number of reads (sum of reference and alternate allele, x axis) for SNVs detected in the 2 lane dataset for three ovarian cell lines, split by total

copy number of the encompassing region (y axis) and the phylogenetic status of each SNV (hue).

(C) Similar to b, for the 4 lane ovarian cell line dataset.

(legend continued on next page)



(D) Total clone fraction error (y axis) as boxplots for the 2 and 3 clone mixtures (y axis, n = 6, n = 9) for each method.

(E) Proportion of mixtures for which the number of predicted clones was correct (y axis) for the 2 and 3 clone mixtures (y axis) for each method.

(F) Mean correlation between predicted and clone copy number (y axis) for the 2 and 3 clone mixtures (y axis) for each method.

(G) Coverage in reads reference nucleotide for OV2295 clones.

(H) Cell count for OV2295 clones. i Histogram of the proportion of SNVs with 1 or more covering reads across cells.

(J) Distribution of log read counts per haplotype block as boxplots for OV2295 clones.

(J) Distribution of log read counts per SNV as boxplots for OV2295 clones.

(L) Distribution of log unique read counts per detected breakpoint for OV2295 clones.



Figure S6. Sequencing of Cell-Cycle-Sorted Populations from the Aneuploid T-47D Breast Cancer Cell Line Reveals Early Replicating

Regions (n= 3202)

(A) GC bias correction for merged T-47D genomes from each flow sorted cell cycle state reveals S-phase GC bias correction artifacts.

(B) Single-cell GC bias regression curves reveal S-phase cells consistently exhibit a steeper slope due to early-replicating regions with high GC content.

(C) Ploidy-corrected read counts for the merged T-47D genomes from each state (G1 n = 571, S n = 625, G2 n = 807, dead n = 1039) reveal early replicating

regions in S-phase. Colored points (diamonds) denote previously characterized early replicating regions (Hansen et al., 2010), while gray points (circles) denote

late replicating regions. Violin plots show the distribution of late and early replicating regions for 2-copy regions.

(D) Ploidy corrected read counts for chromosome 4 of the merged T-47D genomes from each state.



Figure S7. Feature-based Classifier of Cell Cycle State

Flow sort gating for cell cycle analysis of G1, S, G2 phase and dead cells by DLP+.

(A) Gate for cells. Side scatter area (SSC) versus forward scatter area (FSC) is used to gate out debris (gray) but not dead cells (red) because we will sort them.

(B) Gate for single cells. On the cell gate in a, we can use FSC width versus FSC area to gate out doublets if needed for single-cell sorting in a plate.

(C) Gate for live cells. On the gate in b, we use PI versus FSC to capture the live cells which are PI low.

(D) Gate for non-apoptotic cells. On the live cell gate in c, we use Caspase 3/7 (APC-A versus FSC) to exclude apoptotic cells which are Caspase 3/7 high from our

live cell population.

(E) Gate for cell cycle phases in live cells. On the live cell gate established in a-d, we use the DNA content of the cells measured by Hoechst 33342 staining

(V459/40-A)to gate the G1 (blue), S (orange), and G2 (green) phases of the cell cycle.

(F) Gate for dead cells. On the gate for single cells established in b, we gate on the PI high, Caspase 3/7 high dead cells (red).

(legend continued on next page)



(G) Example GM18507 cells in S phase and G2 with early replicating regions leading and late replicating regions lagging, including a cell from an unsorted

experiment, showing we can detect these cells without preselecting the population. Colors correspond to integer HMM copy number states (Ha et al., 2012);

black lines indicate segment medians.

(H) Overview of the process for calculating the top performing feature for classifying cell state, residual GC correlation after aggregate GC bias correction.

Uncorrected cell data is corrected for sequencing specific GC bias using an aggregate correction curve calculated frommerged library level read data. G1 phase

cells show little residual correlation between GC and corrected read count, whereas S phase cells show high correlation due to GC rich early replicating regions.

(I) F1 score (y axis) for a range of proportions of S-phase cells included in the calculation of aggregate GC correction during training.

(J) Receive Operator Characteristic curve for the classifier showing true positive rate varying with false positive rate for a range of thresholds, and a dashed line

showing a perfectly random classifier.

(K) Violin plots showing the highest performing features, post-correction residual GC correlation (y axis), for each cell cycle state (x axis).
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