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THE NON-ARCHIMEDEAN SYZ FIBRATION

JOHANNES NICAISE, CHENYANG XU, AND TONY YUE YU

Abstract. We construct non-archimedean SYZ fibrations for max-
imally degenerate Calabi-Yau varieties, and we show that they are
affinoid torus fibrations away from a codimension two subset of the base.
This confirms a prediction by Kontsevich and Soibelman. We also give
an explicit description of the induced integral affine structure on the
base of the SYZ fibration. Our main technical tool is a study of the
structure of minimal dlt-models along one-dimensional strata.

1. Introduction

(1.1) The theory of mirror symmetry emanated from string theory
and has had a fundamental impact on algebraic geometry ever since the
groundbreaking work of Candelas, de la Ossa, Green and Parkes [COGP91].
The mirror symmetry heuristic predicts that every complex Calabi-Yau
manifold X has a mirror partner X̌ of the same dimension whose complex
geometry is equivalent, in a suitable sense, to the symplectic geometry of X,
and vice versa. A celebrated application of these ideas was the prediction
of the numbers of rational curves of fixed degree (more precisely, Gromov-
Witten invariants) of the quintic threefold in [COGP91] by means of period
integral calculations on the mirror partner. An important challenge in the
theory of mirror symmetry is to give an exact definition of what it means
to be a mirror pair of Calabi-Yau manifolds, and to devise techniques to
construct such pairs.

(1.2) In recent years, much progress has been made, in particular by
Kontsevich–Soibelman [KS00, KS06] and Gross–Siebert [GS11a]. Both of
these programs are based on a conjectural geometric explanation of mirror
symmetry due to Strominger, Yau and Zaslow, known as the SYZ conjecture
[SYZ96]. Since its appearance, the conjecture has been amended in certain
ways; a common way to formulate it today is the following. Let X ∗ be
a projective family of n-dimensional complex Calabi-Yau varieties over a
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punctured disk ∆∗, and assume that this family is maximally degenerate.
The latter condition means that the monodromy transformation on the
degree n cohomology of the general fiber Xt of X ∗ has a Jordan block of
rank n+ 1. Then, up to rescaling the metrics, the family Xt is conjectured
to converge in the Gromov-Hausdorff limit to an n-dimensional topological
manifold S. Moreover, a general fiber Xt should admit a fibration ρ : Xt → S,
called an SYZ fibration, whose fibers are special Lagrangian tori in Xt, except
over a discriminant locus of codimension at least 2 in the base S. The mirror
partner of Xt can then be constructed by dualizing the torus fibration ρ over
the smooth locus and compactifying the result in an appropriate way (this
involves deforming the dual fibration by so-called quantum corrections). We
refer to the excellent survey paper [Gr13] for a more precise statement and
additional background on the SYZ conjecture, as well as the Gross–Siebert
program.

(1.3) The SYZ conjecture remains largely open, and is quite difficult even
in basic cases; see for instance [GW00]. A fundamental insight of Kontsevich
and Soibelman in [KS06] is that one should be able to construct a close
analog of the SYZ fibration in the world of non-archimedean geometry,
more precisely in the context of Berkovich spaces. Here, the base S of
the fibration arises as a so-called skeleton in the Berkovich analytification of
the degeneration. Let us emphasize that the non-archimedean SYZ fibration
is not merely an analog of the conjectural structure in a different context;
it can effectively be used to realize the original goal of constructing mirror
partners over the complex numbers, since one can go back from the non-
archimedean world to the complex world by means of non-archimedean
GAGA and algebraization techniques. In the non-archimedean approach,
the quantum corrections are provided by non-archimedean enumerative
geometry and wall-crossing structures [KS06, Yu16a, Yu16b, KY18]. The
non-archimedean SYZ fibration induces an affine structure with singularities
on the base S, and Kontsevich and Soibelman made the striking conjecture
that this affine manifold should be related to the Gromov-Hausdorff limit of
X (Conjecture 3 in [KS06]) – see [BJ17] for interesting results towards that
conjecture.

(1.4) The aim of the present paper is to construct the non-archimedean
SYZ fibration in general, and to prove some of its conjectural properties.
This paves the way for a better understanding of the Gromov-Hausdorff
limits and the SYZ conjecture. Our construction of the SYZ fibration builds
upon the original work of Kontsevich and Soibelman and the relations with
the Minimal Model Program discovered by the first two authors in [NX16a].
This discovery has led to a surprising dictionary where the SYZ heuristic
can be translated into precise predictions about the structure of minimal
models, which can then be proven with techniques from the Minimal Model
Program – see for instance [KX16] and [NX16b]. Our main new result here is
that the non-archimedean SYZ fibration is a smooth affinoid torus fibration
away from a codimension two subset of the base (Theorem 6.1), as implied
by Conjectures 1 and 3 in [KS06]. This amounts to proving that minimal
dlt models with reduced special fiber of Calabi-Yau varieties are snc along
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the one-dimensional strata of the special fiber (Theorem 4.5), and have a
toric structure along these strata (Proposition 5.4).

Acknowledgements. We are grateful to the referee for carefully reading
the article and pointing out a mistake in the proof of Proposition 5.4. The
first-named author is grateful to Mirko Mauri for a helpful discussion on
Proposition 2.11.

Preliminaries and notation.

(1.5) We fix an algebraically closed field k of characteristic 0 and we set
R = k[[t]] and K = k((t)). We also fix an algebraic closure Ka of K. We
denote by ordt the t-adic valuation on K and we define an absolute value
| · | on K by setting |a| = exp(−ordta) for every a ∈ K∗. This turns K
into a complete non-archimedean field. The natural logarithm, inverse to
the exponential exp, will be denoted by ln.

(1.6) We denote by (·)an the analytification functor from the category of
K-schemes of finite type to Berkovich’s category of K-analytic spaces. For
every R-scheme X , we will denote by Xk = X ×R k and XK = X ×R K
its special and generic fiber.

(1.7) If X is a Noetherian R-scheme and C is a subscheme of Xk, then

we will denote by X̂/C the formal completion of X along C. If X is of

finite type over R, then X̂/C is formally of finite type over R (or special,
in the terminology of [Be96]). That is, it has a finite cover by open formal
subschemes of the form Spf (A) where A is a quotient of a topological R-
algebra of the form R{x1, . . . , xm}[[y1, . . . , yn]]. Every Noetherian formal
scheme X has a unique maximal ideal of definition I , consisting of all
the topologically nilpotent elements in OX. The closed subscheme of X

defined by I will be denoted by Xred. This construction induces a functor
from the category of Noetherian formal schemes to the category of reduced
Noetherian schemes. If X is a scheme, then Xred is the maximal reduced
closed subscheme of X.

(1.8) A separated flat R-scheme of finite type Y is called toric if there
exists a toric morphism of toric varieties

Y → A1
k = Speck[t]

such that Y is isomorphic to Y ×k[t]R. Such a toric scheme can be defined by
giving a finite fan Σ of strongly convex rational polyhedral cones in Rn×R≥0

for some n ≥ 0, together with a positive integer ι; then one can take Y to be
the toric k-variety associated with Σ and Y → A1

k to be the toric morphism
induced by the morphism

Rn × R≥0 → R≥0 : (u, v) 7→ ι · v.
This is a slight generalization of the standard definition of a torus embedding
over R used in [KKMS73, IV.3], which corresponds to the case ι = 1 of our
definition. For instance, the R-scheme Speck[[

√
t]] is toric in our sense, but

not in the sense of [KKMS73, IV.3].
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(1.9) A Calabi-Yau variety over a field F is a smooth, proper, geometrically
connected F -scheme X such that the canonical line bundle ωX is trivial. In
particular, our definition also includes abelian varieties. A volume form on
a Calabi-Yau variety X is a nowhere vanishing differential form of maximal
degree, that is, a global generator for the canonical line bundle ωX .

(1.10) Let X be a Noetherian scheme, and let D be an effective divisor
on X , with prime components Di, i ∈ I. A stratum of D is a connected
component of the schematic intersection DJ = ∩j∈JDj , for some non-empty
subset J of I. An open stratum is a stratum S minus the union of the prime
components of D that do not contain S.

(1.11) Let X be a smooth and proper K-scheme. A model of X is a
proper flat R-scheme X endowed with an isomorphism XK → X. An snc-
model of X is a regular model X such that Xk is a divisor with strict
normal crossings. An snc-model is called semistable if Xk is reduced. By
the semistable reduction theorem [KKMS73, Ch4§3], there exists a finite
extension K ′ of K such that X ×K K ′ has a semistable snc-model over the
integral closure of R in K ′; if X is projective, then we can moreover obtain
a projective semistable snc-model.

A dlt-model of X is a normal model X such that the pair (X ,Xk,red)
is divisorially log terminal (dlt). We say that a dlt-model is good if every
prime component of Xk,red is Q-Cartier; this is slightly weaker than the
usual condition that X is Q-factorial, but it is sufficient for our purposes.
In particular, every snc-model is also a good dlt-model. A dlt-model X is
called minimal if the logarithmic relative canonical divisor KX /R+Xk,red is
semi-ample. WhenX is Calabi-Yau, this is equivalent to saying thatKX /R+
Xk,red is torsion; when, moreover, Xk is reduced, then it is equivalent to
saying that KX /R ∼ 0 (since O∗(X) = K∗, a divisor D on X supported
on Xk is principal if and only if it is a multiple of Xk; so if some nonzero
multiple of D is principal and Xk is reduced, then D is itself principal).

(1.12) We collect what is currently known about the existence of these
models in the following theorem. We say that a smooth and proper K-
scheme X is defined over a curve if there exist a smooth k-curve C, a smooth
k-variety Y , a proper morphism Y → C and an isomorphism of k-algebras

R ∼= ÔC,c for some closed point c of C such that X is isomorphic to Y ×C

Spec (K). If X is projective, then we can take Y to be projective over
C, because projectivity descends under arbitrary field extensions [GW13,
14.55].

Theorem 1.13. Let X be a projective Calabi-Yau variety over K.

(1) If X is defined over a curve, then X has a projective good minimal
dlt-model over R.

(2) If X is defined over a curve or dim(X) ≤ 2, then there exists a
finite extension K ′ of K such that X has a projective good minimal
dlt-model with reduced special fiber over the integral closure of R in
K ′.
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(3) If X has a projective semistable snc-model over R, then X has a
projective minimal dlt-model with reduced special fiber over R.

(4) There exists a finite extension K ′ of K such that X has a projective
minimal dlt-model with reduced special fiber over the integral closure
of R in K ′.

Proof. In case (1), we choose a smooth k-curve C, a smooth k-variety Y , a

projective morphism Y → C and an isomorphism of k-algebras R ∼= ÔC,c

for some closed point c of C such that X is isomorphic to Y ×C Spec (K).
Shrinking C around c, we can arrange that Y is smooth over Co = C \ {c}
with trivial relative canonical divisor. By running an MMP on (Y, Yc,red)
over C, we find a new projective model Y ′ over C that is Q-factorial and such
that the pair (Y ′, Y ′

c,red) is dlt and KY ′/C + Y ′
c,red is relatively semi-ample

(see [NX16a, 2.3.6]). By base change to Spec (R), we obtain a projective
good minimal dlt-model for X over R. After a finite extension of K, we may
furthermore assume that Yc is reduced, by the semistable reduction theorem;
then Y ′

c is reduced, which proves (2) in the case where X is defined over a
curve. When X has dimension at most 2, then (after a finite extension of
K) we may assume that X has a projective semistable snc-model X over R,
and we can directly run an MMP on X by [Ka94], producing a projective
good minimal dlt-model with reduced special fiber over R.

Point (3) follows from Theorem 2 in [KNX18] and its proof (unfortunately,
that argument does not allow us to deduce the existence of a good minimal
dlt-model). Point (4) follows from (3) and the semistable reduction theorem.

�

Remark 1.14. If X is a projective Calabi-Yau variety over K, then it is
expected that X always has a projective good minimal dlt-model over R,
and, up to a finite extension of K, also a projective good minimal dlt-model
with reduced special fiber. Unfortunately, the necessary tools from the MMP
have not yet been developed over the base ring R. For the applications to
mirror symmetry, the case where X is defined over a curve appears to be
sufficient. Nevertheless, we will try to avoid this assumption as much as
possible in the sequel, by means of some approximation arguments.

(1.15) An integral affine function on an open subset of Rn is a continuous
real-valued function that can locally be written as a degree one polynomial
with coefficients in Z. Beware that some authors, including [KS06], allow
a constant term in R in the degree one polynomial; our more restrictive
definition is better suited for the purposes of this paper.

2. Construction of the non-archimedean SYZ fibration

(2.1) Let X be a Calabi-Yau variety over K. The essential skeleton
Sk(X) of X was first defined by Kontsevich and Soibelman in [KS06]. The
construction was then refined and generalized in [MN15]. Let ω be a volume
form on X. Then one can attach to the pair (X,ω) a weight function

wtω : X
an → R ∪ {+∞}
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that measures the degeneration of (X,ω) at t = 0 along points of Xan;
see [MN15, §4.5]. The essential skeleton Sk(X) is the locus of points in
Xan where wtω reaches its minimal value. This definition only depends
on X, and not on ω, because multiplying ω with a scalar λ ∈ K∗ shifts the
weight function by the constant ordtλ. The essential skeleton is a non-empty
compact subspace of Xan, which can be explicitly computed in the following
way. Let X be an snc-model of X, with special fiber Xk =

∑
i∈I NiEi.

If we view ω as a rational section of the line bundle ωX /R(Xk,red), then it
defines a Cartier divisor on X that we denote by divX (ω). It is supported
on Xk because ω is nowhere vanishing on X; thus we can write divX (ω) =∑

i∈I νiEi. If we denote by ∆(X ) the dual intersection complex of Xk,
then Sk(X) is canonically homeomorphic to the sub-∆-complex of ∆(X )
spanned by the vertices corresponding to the components Ei for which νi/Ni

is minimal (see Theorem 3 in [KS06, §6.6] and Theorem 4.7.5 in [MN15]).
In particular, Sk(X) is homeomorphic to a finite ∆-complex of dimension
≤ dim(X).

(2.2) Kontsevich and Soibelman postulated that Sk(X) should be the base
of the non-archimedean SYZ fibration, but the definition of Sk(X) does not
provide us with a map Xan → Sk(X). To construct such a map, we will
use an alternative description of the essential skeleton that appeared in
[NX16a]. Let X be a minimal dlt-model of X, and denote by X snc the
open subscheme of X consisting of the points where X is regular and Xk

has strict normal crossings. Then the dual intersection complex ∆(X snc)
of X snc

k can be canonically embedded into Xan (see [MN15, §3]). It follows
from [NX16a, 3.3.3] that the image of this embedding is exactly the essential
skeleton Sk(X). To be precise, it is assumed in the statement of [NX16a,
3.3.3] that X is Q-factorial and defined over an algebraic curve, but these
assumptions are not used in the proof. If the minimal dlt-model X is
good, we will now construct a continuous retraction ρX : Xan → Sk(X) by
generalizing the construction for snc-models in [MN15, 3.1.5].

(2.3) Let X be a good minimal dlt-model of X. We need to make
the following technical assumption: the strata of Xk are precisely the log
canonical centers of the pair (X ,Xk,red) that are contained in Xk. By
the definition of a dlt-model, every log canonical center of (X ,Xk,red) is
a stratum. The converse implication is known when X is defined over an
algebraic curve [Ko13, 4.16]. We will prove in Corollary 4.4 that it also holds
when Xk is reduced, which is the most important case for our purposes. We
expect that the assumption is always satisfied, but the relevant parts of the
Minimal Model Program have not been written down for R-schemes. In any
case, if our technical assumption holds, we can proceed in the following way.

(2.4) Let x be a point in Xan and let redX (x) be its reduction on Xk

(see [MN15, 2.2.2]). Let Z be the unique minimal stratum of Xk that
contains redX (x). By our assumption (2.3), Z is a log canonical center
of (X ,Xk,red). Then Z ∩ X snc is a non-empty stratum of X snc

k by the
definition of a dlt pair. Thus, it determines a unique face τ of the dual
intersection complex ∆(X snc). Let E1, . . . , Er be the prime components of
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Xk that contain Z, and let N1, . . . , Nr be their multiplicities in Xk. Then
E1, . . . , Er correspond precisely to the vertices v1, . . . , vr of τ . We choose a
positive integer m such that mEi is Cartier at the point redX (x) for every
i, and we choose a local equation fi = 0 for mEi at redX (x). Then ρX (x)
is the point of the simplex τ with barycentric coordinates

α =
1

m
(−N1 ln |f1(x)|, . . . ,−Nr ln |fr(x)|)

with respect to the vertices (v1, . . . , vr). Under the embedding of ∆(X snc)
into Xan, the point ρX (x) corresponds to the monomial point represented
by (X , (E1, . . . , Er), ξ) and the tuple

1

m
(− ln |f1(x)|, . . . ,− ln |fr(x)|),

in the terminology of [MN15, 2.4.5]. It is obvious that this definition does
not depend on the choices of m and the local equations fi. It is also
straightforward to check that ρX is continuous, and that it is a retraction
onto ∆(X snc) = Sk(X).

Definition 2.5. Let X be a Calabi-Yau variety over K and let X be a
good minimal dlt-model of X that satisfies assumption (2.3). Then we call
the map ρX : Xan → Sk(X) constructed in (2.4) the non-archimedean SYZ
fibration associated with X .

(2.6) Beware that, even though the subspace Sk(X) of Xan only depends
on X, the ∆-structure on ∆(X snc) = Sk(X) and the retraction ρX : Xan →
Sk(X) depend on the choice of the (good) minimal dlt-model X ; we will
illustrate this in Example 2.7 below. However, the essential skeleton Sk(X)
does carry a canonical piecewise integral affine structure, which is induced
by the embedding into the K-analytic space Xan: see [MN15, §3.2]. If X
is a minimal dlt-model for X, then this piecewise integral affine structure
coincides with the one induced by the ∆-complex structure on ∆(X snc) =
Sk(X), provided that the barycentric coordinates on the faces of ∆(X snc)
are weighted by the multiplicities of the prime components in Xk as in
[MN15, 3.2.1].

Example 2.7. Let X be a maximally degenerate K3 surface over K, and
let X be a good minimal dlt-model over R with reduced special fiber. Then
Sk(X) is a 2-sphere, and ∆(X snc) provides this sphere with a triangulation.
Different choices of X are related by elementary modifications (flops) of type
0, 1 or 2 [FM83, pp.12-15]. An elementary modification of type 0 does not
affect the triangulation of Sk(X) or the map ρX , because it only changes X
along a curve contained in a two-dimensional open stratum. An elementary
modification of type 1 does not modify the triangulation of Sk(X) but it
does alter the map ρX , because the points of Xan that specialize to the
minus one curve that is flipped (but not to its intersection with a double
curve) will be mapped to a different vertex of Sk(X). Finally, an elementary
modification of type 2 flips an edge in the triangulation of Sk(X), but does
not alter ρX because ρX is invariant under blow-ups of strata in snc-models
(see Propositions 3.1.7 and 3.1.9 in [MN15]).
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Denote by Z the set of vertices of ∆(X snc) = Sk(X). It follows from
our main result, Theorem 6.1, that the fibers of ρX over all the points of
Sk(X) \ Z are 2-dimensional affinoid tori; more precisely, the restriction of
ρX over Sk(X) \ Z is an affinoid torus fibration in the sense of (3.3). The
vertices in Z correspond to the prime components of Xk, and the fiber of
ρX over a vertex depends on the geometry of X along the corresponding
component E: it is isomorphic to the generic fiber of the formal completion
of X along the open stratum of Xk whose closure is E.

Proposition 2.8. Let X be a projective Calabi-Yau variety over K. Then
the essential skeleton Sk(X) is a strong deformation retract of Xan. If X
is a good minimal dlt-model that satisfies the assumption in (2.3), then ρX

is homotopic to the identity on Xan relative to Sk(X).

Proof. It is shown in [NX16a, 4.2.4] that Sk(X) is a strong deformation
retract of Xan. This implies that every continuous retraction Xan → Sk(X)
is homotopic to the identity on Xan relative to Sk(X); in particular, this is
true for the retraction ρX . �

(2.9) Let X be a Calabi-Yau variety over K of dimension n. We say that
X is maximally degenerate if X has a semistable snc-model over R and the
essential skeleton Sk(X) has dimension n. This is the class of Calabi-Yau
varieties where we expect the SYZ mirror symmetry picture to appear. If
X is projective, then the condition dim(Sk(X)) = n is equivalent to the
property that, for any topological generator σ of Gal(Ka/K) ∼= µ̂(k) and
any prime number ℓ, the action of σ on the étale cohomology space

Hn
ét(X ×K Ka,Qℓ)

has a Jordan block of rank n + 1, by [NX16a, 4.2.4(4)]. If X is maximally
degenerate and projective, then Sk(X) is a closed pseudomanifold (see
[NX16a, 4.2.4(3)] – in the statement of that result, one should add the
assumption that X has a semistable snc-model, like in [NX16a, 4.1.7]). If we
assume, moreover, thatX is geometrically simply connected and hi,0(X) = 0
for 0 < i < n, then it is expected that Sk(X) is homeomorphic to Sn. It is
not difficult to prove that Sk(X) has theQ-rational homology of Sn, and that
its fundamental group has trivial profinite completion; see [NX16a, 4.2.4(4)]
and [HN17, 6.1.3(4)]. When X is defined over a curve, the homeomorphic
equivalence of Sk(X) with Sn has been established in [KX16] when n ≤ 3,
and also when n = 4 and X has a minimal semistable snc-model. These
results can be extended in the following way.

Lemma 2.10. Let X be a projective Calabi-Yau variety over K of dimension
n. Then there exist a smooth pointed k-curve (S, s), a projective flat
morphism of k-schemes f : Y → S of relative dimension n and an

isomorphism of k-algebras ÔS,s
∼= R with the following properties:

(1) the fibers of f are geometrically connected;
(2) f is smooth over S \ {s}, with trivial relative canonical bundle;
(3) the essential skeleta Sk(X) and Sk(YK) are homeomorphic;
(4) if X is geometrically simply connected then the same holds for the

the fibers of f over S \ {s};
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(5) if hi,0(X) = 0 for 0 < i < n, then the same holds for the the fibers
of f over S \ {s}.

If we fix a model X for X over R and a positive integer N , then we can
moreover arrange that the R-schemes X ×RR/(tN ) and Y ×S Spec (R/tN )
are isomorphic.

Proof. One can construct (S, s) and Y by means of a standard argument
based on spreading out and Greenberg approximation; see for instance
[MN15, 5.1.2] and the proof of [NX16a, 4.2.4]. The identification of the
essential skeleta of X and YK follows from [NX16a, 4.2.3]. Geometric
simple connectedness and the vanishing of Hodge numbers carry over to
the smooth fibers of the spreading out, by Grothendieck’s specialization
theorem for étale fundamental groups [SGA1, X.3.9] and the invariance of
Hodge numbers in smooth and proper families [De68, 5.5] (in fact, for our
purposes, semicontinuity suffices). �

Proposition 2.11. Let X be a projective Calabi-Yau variety over K of
dimension n.

(1) Assume that X has a semistable snc-model. If X is geometrically
simply connected, then Sk(X) is simply connected.

(2) Assume that X is maximally degenerate and geometrically simply
connected, and that hi,0(X) = 0 for 0 < i < n. Then Sk(X) is
homeomorphic to Sn when n ≤ 3, and also when n = 4 and X has
a semistable snc-model X with KX /R ∼ 0.

Proof. (1) Using Lemma 2.10, we can replace X by a degenerating projective
flat family of Calabi-Yau varieties f : Y → S over a smooth pointed k-curve
(S, s) such that Y is smooth over k, the smooth geometric fibers of f have
trivial étale fundamental group, and the fiber Ys over s is a reduced strict
normal crossings divisor. By the Lefschetz principle, we may assume that
k = C. It follows from the Beauville-Bogomolov decomposition theorem
that a complex Calabi-Yau variety is simply connected if and only if it has
no nontrivial finite étale covers. Thus the smooth closed fibers of f are
simply connected. Now we can copy the argument in §34 of [KX16] to
deduce that the dual intersection complex of Ys is simply connected; this
dual intersection complex is homotopy equivalent to the essential skeleton
Sk(YK), by [NX16a, 3.2.8].

(2) We again reduce to the case where X is defined over a complex curve,
which has been solved in Proposition 8 in [KX16]. The reduction in the case
n = 3 follows once more from Lemma 2.10 and the argument in (1). Now
assume that X has a semistable snc-model X with KX /R ∼ 0, and let Y
be an algebraic approximation of this model as in Lemma 2.10, with N ≥ 2.
Then Y is smooth over k and Yk is a reduced strict normal crossings divisor,
since these properties can be checked on the reduction modulo t2. The same
holds for minimality of such a model, because it is equivalent to the triviality
of the logarithmic relative canonical line bundle on the special fiber, and the
induced logarithmic structure on the special fiber only depends on reduction
of Y modulo t2 (this result is due to Illusie; a proof can be found in [Na98,
A.4]). Thus Y satisfies the conditions of Proposition 8 in [KX16]. �
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3. Affinoid torus fibrations

(3.1) Let X be a maximally degenerate Calabi-Yau variety and let X be
a good minimal dlt-model of X with reduced special fiber. Then we will see
in Corollary 4.6 that X satisfies assumption (2.3), so that it gives rise to a
non-archimedean SYZ fibration ρX : Xan → Sk(X) in the sense of Definition
2.5. The principal aim of this article is to study the fibers of ρX . In the
classical SYZ conjecture, the fibers of the SYZ fibration are expected to be
special Lagrangian tori away from a codimension two subset of the base. We
will now present the corresponding structure in non-archimedean geometry,
which was introduced in [KS06, §4.1].

(3.2) Let n be a positive integer, and let T be a split algebraic K-torus of
dimension n with character module M and cocharacter module N = M∨.
We define the tropicalization map of T by

ρT : T
an → NR : x 7→ (M → R : m 7→ − ln |m(x)|).

This map is continuous, and its fibers are (not necessarily strictly) K-affinoid
tori. The tropicalization map ρT has a canonical continuous section s : NR →
T an that maps each n ∈ NR to the Gauss point of the affinoid torus ρ−1

T (n).
The image of s is called the canonical skeleton of T , and denoted by ∆(T ).
The map s induces a homeomorphism NR → ∆(T ), which we will use to
tacitly identify ∆(T ) with NR.

(3.3) Let Y be a K-analytic space, let B be a topological space and let
f : Y → B be a continuous map. Then we say that f is an n-dimensional
affinoid torus fibration if we can cover B by open subsets U such that there
exist an open subset V of NR

∼= Rn and a commutative diagram

f−1(U) //

f

��

ρ−1
T (V )

ρT

��

U // V

where the upper horizontal map is an isomorphism of K-analytic spaces and
the lower horizontal map is a homeomorphism.

(3.4) If f : Y → B is an n-dimensional affinoid torus fibration, then f
induces an integral affine structure on the base B [KS06, §4.1]. For every
open U in B as in the definition, and every invertible analytic function h on
f−1(U), the absolute value of h is constant on the fibers of f by the maximum
modulus principle. Thus h induces a continuous function |h| : U → R>0. The
integral affine functions on U are, by definition, the functions of the form
− ln |h|. If U is connected, then it is proven in Theorem 1 of [KS06, §4.1]
that under the homeomorphism U → V , the ring of integral affine functions
on U is identified with the ring of polynomial functions of degree one with Z-
coefficients on V ⊂ NR, so that this construction indeed defines an integral
affine structure on B (to be precise, in [KS06] the authors consider affine
functions with constant term in R, rather than Z, but since K is discretely
valued in our case, we get a slightly stronger result).
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Example 3.5. We use the tropicalization map to identify the canonical
skeleton ∆(T ) with NR. We denote by C the open cone (NR × R>0) ∪
{0} in NR ⊕ R. Let Σ be a locally finite fan of strongly convex rational
polyhedral cones in C. We denote by Σ1 the rational polyhedral complex
in NR obtained by intersecting the cones in Σ with NR × {1}. Consider
the torus embedding T → X over R associated with Σ as in [Kü98, 1.13].
The R-scheme X is separated and locally of finite type, and it is quasi-
compact if and only if Σ is finite. Since Σ is supported in C, the generic
fiber of X is canonically isomorphic to the split K-torus T . Assume that
X is regular; this is equivalent to the property that the fan Σ is simple,
and it implies that the special fiber Xk is a strict normal crossings divisor.
Denote by X the formal t-adic completion of X . The generic fiber Xη is a
K-analytic space endowed with a natural injective morphism of K-analytic
spaces i : Xη → T an. The morphism i embeds Xη as an analytic domain in
T an.

The construction of the Berkovich skeleton Sk(X ) and the retraction
map ρX in [MN15, §3] are local on X , so that they extend immediately to
schemes that are locally of finite type. This yields a canonical embedding
of the dual intersection complex ∆(X ) of Xk into Xη . The image of
this embedding is called the Berkovich skeleton of X . The embedding
has a canonical retraction ρX : Xη → ∆(X ). It follows directly from
the definitions that ∆(X ) is contained in ∆(T ) = NR and coincides
with the support of Σ1. In particular, if Σ is a subdivision of C, then
∆(X ) = ∆(T ). Moreover, the ∆-structure on ∆(X ) is precisely the
polyhedral decomposition Σ1. We have Xη = ρ−1

T (|Σ1|), and the retraction
map ρX is the restriction of ρT to Xη.

(3.6) As a first application, let us discuss the case of abelian varieties. Let
A be an abelianK-variety of dimension n, and denote by A its Néron model.
Then Berkovich has constructed in [Be90, §6.5] a canonical skeleton ∆(A) in
Aan, together with a continuous retraction ρA : Aan → ∆(A), via the theory
of non-archimedean uniformization. The dimension of ∆(A) is equal to the
toric rank of A o

k (the dimension of the maximal subtorus). Let us make this
construction more precise in the maximally degenerate case. Assume that A
has purely toric reduction, that is, A o

k is a torus. Let e be the identity point
on A. Then the universal pointed covering space of (A, e) (with respect
to the Berkovich topology) is isomorphic to the analytification of a split
n-dimensional K-torus T . The kernel L of the morphism π : T an → Aan is
a lattice in T (K) (called the period lattice), and the image ρT (L) of L in
NR is a lattice of rank n. By definition, the canonical skeleton ∆(A) is the
image of ∆(T ) under the map π. Moreover, we have a Cartesian diagram of
topological spaces

T an ρT
//

π

��

NR

��

Aan ρA
// NR/ρT (L)
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such that ρA sends ∆(A) homeomorphically onto NR/ρT (L). In particular,
∆(A) is a real torus of dimension n, ρA is an n-dimensional torus fibration,
and the induced integral affine structure on ∆(A) coincides with the quotient
structure on NR/ρT (L).

(3.7) If A has purely toric reduction, then we can interpret ρA as a non-
archimedean SYZ fibration by means of the theory of Mumford models
[Mu72] and the refinements of Mumford’s construction given in [Kü98]. We
say that a model P of A is a Künnemann-Mumford model if it is a regular
model that arises through the construction in the proof of [Kü98, 3.5].

Proposition 3.8. Let A be an abelian K-variety of dimension n. Then the
essential skeleton Sk(A) of A coincides with Berkovich’s canonical skeleton
∆(A). If A has semi-abelian reduction and P is a Künnemann-Mumford
model of A over R, then P is a good minimal dlt-model that satisfies
assumption (2.3). If A has purely toric reduction, then the non-archimedean
SYZ fibration ρP coincides with Berkovich’s canonical retraction ρA. In
particular, ρP is an n-dimensional affinoid torus fibration.

Proof. The equality ∆(A) = Sk(A) is proven in [HN17, 4.3.2]. Let P be
a Künnemann-Mumford model for A over R. Then, by definition, P is an
snc-model, and thus certainly good and dlt. It is shown in [HN17, 5.1.7]
that P is minimal.

Let P̃ be a regular relatively complete model of T as in [Kü98, 2.11]
such that the formal t-adic completion of P arises as a quotient of the

formal t-adic completion of P̃ under an action of the period lattice. Then,

by construction, P̃ is a torus embedding of T over R, and we have a
commutative diagram

T an

π

��

ρT
,,

ρ
P̃

22
∆(T )

��

Aan
ρA

--

ρP

11
∆(A).

Thus in order to prove that ρP = ρA, it suffices to observe that ρ
P̃

= ρT
by Example 3.5. �

Remark 3.9. A refinement of the proof shows that the equality ρA = ρP

remains valid if we only assume that A has semi-abelian reduction; then
the non-archimedean uniformization of A takes the form π : Ean → Aan,
where E is an extension of an abelian K-variety B with good reduction by
a split K-torus T . The dimension of T is precisely the toric rank of A o

k ,
the identity component of the special fiber of the Néron model of A. The

Künnemann-Mumford construction produces a relatively complete model P̃
of E that is a Zariski-locally trivial fibration in torus embeddings over the
Néron model of B. Since we do not need this generalization in this paper,
we omit the details.
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4. One-dimensional strata of minimal dlt-models

(4.1) The aim of this section is to show that good minimal dlt-models
with reduced special fibers of Calabi-Yau varieties over K are snc along
their one-dimensional strata (in fact, we will prove a more general result
– see Theorem 4.5 and Corollary 4.6). A technical complication is that
the full machinery of the MMP has only been written down for objects of
finite type over a field. To circumvent this problem, we will first prove an
approximation result (Proposition 4.3) that will allow us to reduce to that
case.

Lemma 4.2. Let X be a normal R-scheme and let D be a reduced effective
divisor on X such that D contains the singular locus of X and such that
the pair (X ,D) is dlt. Assume that KX /R + D is Cartier. Then X is
terminal; in particular, it is regular in codimension two.

Proof. By the definition of a dlt-pair, the scheme X is regular at the
generic point of every stratum of D, and at all the other points x ∈ X ,
the minimal log discrepancy mldx(X ,D) is positive. Since KX /R + D is
Cartier, mldx(X ,D) is an integer, and therefore at least 1. The inequality

mldx(X , 0) > mldx(X ,D) ≥ 1

now implies that X is terminal. In particular, it is regular in codimension
two. �

Proposition 4.3. Let X be a Calabi-Yau variety over K and let X be a
good dlt-model of X over R such that Xk is reduced. Assume that KX /R ∼
0. Let N be a fixed positive integer. Then we can find a smooth pointed
k-curve (S, s) and a normal proper flat S-scheme Y such that the following
properties hold:

(1) there exist an isomorphism of k-algebras ÔS,s
∼= R and an

isomorphism of R-schemes

X ×R R/(tN ) → Y ×S Spec (R/tN );

(2) the morphism Y → S has geometrically connected fibers, and its
restriction over S \ {s} is smooth with trivial relative canonical line
bundle;

(3) the pair (Y ,Ys) is dlt, every prime component of Ys is Q-Cartier,
and KY /S ∼ 0.

Proof. One can construct (S, s) and Y satisfying (1) and (2) as in Lemma
2.10 (note that normality of Y automatically follows from the fact that
Y \Ys is normal and Ys

∼= Xk is reduced). If N is at least 2, then for every
point x of Xk

∼= Ys, the model X is regular at x if and only if Y is regular
at x. Thus the pair (Y ,Ys) is snc at all the points of Ys where (X ,Xk) is
snc. Taking N sufficiently large, we can arrange that every prime component
E of Ys is Q-Cartier in Y . More precisely, let x be a point of Xk and let
mx be the Cartier index of E in X at x. Let f be a local generator for
the ideal sheaf OX (−mxE) at x. Assume that N > mx and let g be any
element of OY ,x that is congruent to f modulo tN . Obviously, g cannot
vanish at any other component of Ys, because t vanishes along each of these
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components and f does not. On the other hand, f divides tmx in OX ,x,
so that g divides tmx in OY ,y since N > mx. Thus the zero locus of g is
supported in Ys, which means that g = 0 is a local equation for mxE in
Y at x. From now on, we assume that N has been chosen large enough to
guarantee that N ≥ 2 and every prime component of Ys is Q-Cartier.

Let E be a prime component of Xk, denote by Ẽ its normalization, and

let ∆ be the pullback of the Q-Cartier divisor Xk−E to Ẽ. The scheme X
is regular in codimension two by Lemma 4.2. It follows that the different

Diff
Ẽ
(Xk −E) coincides with ∆. Thus the pair (Ẽ,∆) is dlt by adjunction

[Ko13, 4.8], using the same reasoning as in the proof of [Ko13, 4.16.4] (except
that we have not yet established the normality of E). Since N ≥ 2, the
scheme Y is regular in codimension two, as well; since it is of finite type over
k, we can apply inversion of adjunction [Ko13, 4.9] to deduce that (Y ,Ys) is
log canonical on a neighbourhood of E, and that the log canonical centers of
(Y ,Ys) contained in E are precisely the images of the log canonical centers

of (Ẽ,∆). At the generic point of such a log canonical center, the pair
(Y ,Ys) is snc because the same holds for (X ,Xk). Varying E, we obtain
that (Y ,Ys) is dlt. This implies that every stratum of Xk

∼= Ys is normal

[Ko13, 4.16]; thus, in retrospect, we see that Ẽ = E. �

Corollary 4.4. Let X be a Calabi-Yau variety over K and let X be a good
dlt-model of X over R such that Xk is reduced. Assume that KX /R ∼ 0.
Then every stratum of Xk is normal, and the strata of Xk are precisely the
log canonical centers of the pair (X ,Xk) contained in Xk.

Proof. In the proof of Proposition 4.3, we have constructed a dlt pair (Y ,Ys)
with Y of finite type over k such that there exists an isomorphism of k-
schemes Xk → Ys that identifies the log canonical centers of (X ,Xk)
contained in Xk with those of (Y ,Ys) contained in Ys. Thus the result
follows from the corresponding properties of (Y ,Ys) proven in [Ko13,
4.16]. �

Theorem 4.5. Let X be a normal separated k-scheme of finite type. Let
D be a reduced effective divisor on X such that the pair (X ,D) is dlt and
the divisor KX +D is Cartier. Assume also that all the prime components
of D are Q-Cartier. Let C be a one-dimensional stratum of D. Then, on
an open neighbourhood of C, the scheme X is regular and D is a divisor
with strict normal crossings.

Proof. We will argue by induction on the dimension of X . The case
dim(X ) = 1 follows at once from the fact that all strata of dlt pairs are
normal [Ko13, 4.16(2)]. Thus we may assume that dim(X ) ≥ 2, and that
the result holds for pairs of strictly lower dimension.

Let x be a point on C. We claim that every prime divisor in D that
contains C is Cartier at x. Assuming the claim for now, it follows that
C is a local complete intersection at x, and thus reduced because it is
generically reduced (the pair (X ,D) is snc at the generic point of C). Now
it follows from [Ko13, 4.16(2)] that C is normal, and thus regular since
it is of dimension one. But C is defined by the local equations at x of
the prime components of D that contain C; these local equations form a
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regular sequence, again by [Ko13, 4.16(2)]. We conclude that locally at x,
the scheme X is regular and D is a strict normal crossings divisor.

Thus it suffices to prove our claim. We may assume that x is not a zero-
dimensional stratum of D, since at such points, the pair (X ,D) is snc by the
definition of a dlt pair. Let E be a prime divisor in D that contains C. Let
F1, . . . , Fr be the non-empty intersections of E with the other components
of D, and set ∆ = F1 + . . . + Fr. Then the pair (E,∆) is dlt, and

KE +∆ = (KX +D)|E
is Cartier (see Proposition 4.5 and Claim 4.16.4 in [Ko13]). By the induction
hypothesis, E is regular at x.

Let m ≥ 1 be the index of E at x, that is, the smallest positive integer
such that mE is Cartier at x. Working locally around x, we may assume
that E is regular and that OX (mE) is a trivial line bundle. The choice of

a trivialisation determines a ramified µm-cover h : X̃ → X defined by

X̃ = SpecX

m⊕

a=0

OX (−aE).

Here OX (−aE) is the rank one reflexive sheaf associated with the Weil
divisor −aE. This is the so-called index one cover of the pair (X , E) at the
point x; see [KM98, 2.52] for details. The morphism h is étale over all the
points where E is Cartier; in particular, it is étale over all the codimension
one points of E, since X is regular in codimension two by Lemma 4.2. The

minimality of m implies that the inverse image of x in X̃ consists of a unique
point, which we denote by x̃.

We write Ẽ for the inverse image of E on X̃ , and D̃ for the inverse image

of the divisor D. By [KM98, 5.20], the pair (X̃ , D̃) is log canonical, and

mldx̃(X̃ , D̃) is positive. Since we chose x on a one-dimensional stratum C,
the divisor D has dim(X )− 1 prime components that pass through x. This

implies that Ẽ is unibranch at x̃. Otherwise, étale-locally around x̃, the

divisor D̃ would have at least dim(X ) components passing through x̃, and
x̃ would be their intersection; but this implies that x̃ is a log canonical center

of (X̃, D̃), by [Ko13, 4.41(2)], contradicting the positivity of mldx̃(X̃ , D̃).

We denote by Ẽ′ the normalization of Ẽ. Since Ẽ is unibranch at x̃,

there is a unique point x̃′ on Ẽ′ that lies above x̃ ∈ Ẽ. We have already

observed that the morphism Ẽ → E induced by h is étale in codimension

one; then the normality of E implies that Ẽ is normal in codimension one.

Thus Ẽ′ → E is also étale in codimension one. Since E is regular, the purity

of the branch locus now implies that the finite morphism Ẽ′ → E is étale

at x̃′; but x̃′ is the unique point that lies above x ∈ E, so that Ẽ′ → E, and

hence Ẽ → E, are isomorphisms. We finally conclude that m = 1, so that
E is Cartier at x. �

Corollary 4.6. Let X be a Calabi-Yau variety over K, and let X be a
good minimal dlt-model for X over R. Assume that the special fiber Xk is
reduced. Let C be a one-dimensional stratum of Xk. Then, on an open
neighbourhood of C, the scheme X is regular and Xk is a divisor with strict
normal crossings.
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Proof. The property that the pair (X ,Xk,red) is snc at a point of Xk

only depends on the reduction of X modulo t2. Thus by means of the
approximation result in Proposition 4.3, we can reduce to the case where
the model X is defined over a smooth algebraic k-curve; then the result
follows from Theorem 4.5. �

5. Toric structure of snc-models along one-dimensional strata

(5.1) Let X be a regular flat R-scheme such that Xk is a strict normal
crossings divisor. We write Xk =

∑
i∈I NiEi, where Ei, i ∈ I are the prime

divisors in Xk and the numbers Ni are their multiplicities. By the definition
of a strict normal crossings divisor, every stratum of Xk is a regular k-
scheme. Let C be a stratum of Xk. We say that X is toric along C if there
exist a regular toric R-scheme Y and a stratum D of Yk such that Yk is a

strict normal crossings divisor and the formal R-schemes X̂/C and Ŷ/D are
isomorphic.

(5.2) Now let C be a one-dimensional stratum of Xk that is proper over
k. Let Ej , j ∈ J be the prime components of Xk that contain C. For every
j ∈ J , we set

bj = degOC(−Ej) = −(C · Ej).

We write Co = C \ (∪i/∈JEi). We say that X is log Calabi-Yau along C
if C ∼= P1

k and C \ Co consists of precisely two points, which we denote by
c0 and c∞. Denote by 0 and ∞ be the unique elements of I \ J such that
{c0} = C ∩ E0 and {c∞} = C ∩ E∞ (note that 0 and ∞ are not necessarily
distinct). Then the fact that

∑
i∈I NiEi is a principal divisor on X implies

that

(5.3) 0 = (Xk · C) = N0 +N∞ −
∑

j∈J

bjNj .

Proposition 5.4. Assume that Xk is log Calabi-Yau along C and that
bj > 0 for all j ∈ J . Then X is toric along C.

Proof. We will construct a regular toric R-scheme Y such that Yk is a strict

normal crossings divisor that has a stratum D satisfying X̂/C
∼= Ŷ/D. Let

ι be the greatest common divisor of the multiplicities Ni with i ∈ J ∪ {0}.
We choose lattice vectors ui, i ∈ J ∪ {0} in ZJ with the following property:
if we set v0 = (u0, N0/ι) and vj = (uj , Nj/ι) in ZJ ⊕ Z, for all j ∈ J , then
the set {vi, i ∈ J ∪ {0} } is a basis for ZJ ⊕ Z. Now we set

v∞ = −v0 +
∑

j∈J

bjvj

in ZJ ⊕ Z. Because of the relation (5.3), the last coordinate of v∞ equals
N∞/ι.

For every i in J ∪ {0,∞}, let ρi be the ray in RJ × R≥0 spanned by the
primitive vector vi. Consider the cones σ0 and σ∞ spanned by the rays ρj,
j ∈ J and by ρ0 and ρ∞, respectively. The intersection of these cones is the
common face spanned by the rays ρj, j ∈ J . Let Σ be the fan in RJ × R≥0
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with maximal cones σ0 and σ∞. Then Σ defines a toric k-variety Y . We
consider the toric morphism

Y → A1
k = Speck[t]

associated with the morphism of cocharacter modules

ZJ ⊕ Z 7→ Z : (u, v) 7→ ι · v,
and we set Y = Y ×k[t] R.

The scheme Y is regular because the cones σ0 and σ∞ are simple.
Moreover, Yk is a strict normal crossings divisor whose prime components
correspond to the rays of Σ, with multiplicities given by ι times the last
coordinates of the primitive generators of the rays; thus we can write

Yk =
∑

j∈J

NjFj +N0F0 +N∞F∞.

Set D = ∩j∈JFj and write d0, d∞ for the intersection points of D with F0

and F∞, respectively. By [Fu93, §5.1], we have D ·Fj = −bj for every j ∈ J .
We will now construct an isomorphism of formal R-schemes

f : X̂/C → Ŷ/D.

For every n ≥ 0, we denote by (X /C)n the degree n thickening of C in X ,
that is, the closed subscheme of X defined by the (n + 1)-th power of the

defining ideal of C. Thus (X /C)0 = C and, by definition, X̂/C is the direct
limit of the schemes (X /C)n in the category of locally topologically ringed
spaces.

If E0 and E∞ are distinct, then, for every j ∈ J , we denote by Lj the line

bundle on X̂/C induced by OX (−Ej − bjE∞). This definition does not give
the desired result when E0 = E∞. To include that case, we consider the

formal completion of E∞ at c∞. This is a closed formal subscheme of X̂/C ;
we write I∞ for its defining ideal sheaf, which is a principal ideal sheaf on

X̂/C . For every j ∈ J , we denote by L′
j the line bundle on X̂/C induced by

OX (−Ej), and we set Lj = L′
j ⊗Ibj

∞. Then Lj is a line bundle on X̂/C , and
our definition agrees with the previous one in the case where E0 and E∞

are distinct.
Since the restriction of Lj to C ∼= P1

k has degree 0, we can choose a non-
zero global section sj of Lj |C . The conormal bundle of C in X is given
by ⊕

j∈J

OC(−Ej)

which is a direct sum of ample line bundles, by our assumption that the
numbers bj are all positive. This implies that the degree one cohomology of
the conormal line bundle vanishes, so that the maps

H0((X /C)n+1,Lj) → H0((X /C)n,Lj)

are surjective for all n ≥ 0. Thus we can lift sj to a global section of Lj

on X̂/C , which we will still denote by sj . The same argument produces a

nowhere vanishing section s0 of OX (E∞−E0) on X̂/C ; its inverse s∞ = 1/s0

is a nowhere vanishing global section of OX (E0 − E∞) on X̂/C .
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Consider the open formal subschemes

X0 = X̂/C \{c∞}, X∞ = X̂/C \{c0}, Y0 = Ŷ/D \{d∞}, Y∞ = Ŷ/D \{d0}

of X̂/C and Ŷ/D. Note that si is a global equation for Ei on X0, for every

i ∈ J ∪ {0}. Likewise, s∞ defines E∞ on X∞, and sjs
−bj
∞ defines Ej on X∞,

for every j ∈ J . Moreover, w′ = ts−N0

0

∏
j∈J s

−Nj

j is an invertible regular

function on X̂/C . Since C is proper, w′ is constant on C, and, in particular,
it has a ι-th root; Hensel’s lemma then implies that we can find a regular

function w on X̂/C such that w′ = wι.
Let {v∨0 , v∨j (j ∈ J)} be the dual basis of {v0, vj (j ∈ J)}. Then we have

Y0 = Spf R{χv∨
0 }[[χv∨j (j ∈ J)]]/(t −

∏

i∈J∪{0}

χNiv
∨

i ).

Choose integers α0 and αj , j ∈ J such that α0N0 +
∑

j∈J αjNj = ι. Let
f0 : X0 → Y0 be the morphism of formal R-schemes defined by the morphism
of topological R-algebras

O(Y0) → O(X0) : χ
v∨i 7→ wαisi, for all i ∈ J ∪ {0}.

Let J be the largest ideal of definition on Y0. Then J (Y0) is generated

by χv∨j , j ∈ J . The ideal JOX0
is the largest ideal of definition on X0, and

its global sections are generated by sj, j ∈ J . In particular, f0 is adic. The
morphism

(f0)red : C \ {c∞} = (X0)red → (Y0)red = D \ {d∞}
is an isomorphism. It follows from [EGA3.1, 4.8.10] that f0 is a closed
immersion; since X0 and Y0 has the same dimension and Y0 is integral, f0
is an isomorphism.

Finally, we consider the second pair of affine charts X∞, Y∞. The lattice
vectors {−v∨0 , v

∨
j + bjv

∨
0 (j ∈ J)} form the dual basis of {v∞, vj (j ∈ J)},

and

Y∞ = Spf R{χ−v∨
0 }[[χv∨j +bjv∨0 (j ∈ J)]]/(t −

∏

i∈J∪{0}

χNiv
∨

i ).

Let f∞ : X∞ → Y∞ be the morphism of formal R-schemes defined by the
morphism of topological R-algebras O(Y∞) → O(X∞) that maps χ−v∨

0

to w−α0s∞ and χv∨j +bjv
∨

0 to wαj+bjα0sjs
−bj
∞ , for all j in J . By the same

reasoning as above, one sees that f∞ is an isomorphism. By construction,
it agrees with f0 on the intersection of X0 and X∞, and the isomorphisms
f0 and f∞ glue to an isomorphism of formal R-schemes

f : X̂/C → Ŷ/D.

�

6. The smooth locus of the SYZ fibration

Theorem 6.1. Let X be a maximally degenerate projective Calabi-Yau
variety over K of dimension n, and assume that X has a good minimal
dlt-model X over R with reduced special fiber. Let Z be the union of the



THE NON-ARCHIMEDEAN SYZ FIBRATION 19

faces of codimension ≥ 2 in ∆(X snc) = Sk(X). Then the non-archimedean
SYZ fibration

ρX : Xan → Sk(X)

associated with X is an n-dimensional affinoid torus fibration over Sk(X)\
Z. Moreover, the induced integral affine structure on Sk(X)\Z is compatible
with the canonical piecewise integral affine structure on Sk(X) (see (2.6)),
in the sense that they give rise to the same piecewise integral affine functions
on Sk(X) \ Z.

Recall that such a model X can always be found after a finite extension
of the base field K if X is defined over a curve (Theorem 1.13), which is the
most relevant case for applications to mirror symmetry (see Remark 1.14).
We also recall that the essential skeleton Sk(X) is an n-dimensional closed
pseudomanifold, by [NX16a, 4.2.4]. If hi,0(X) = 0 for 0 < i < n, then Sk(X)
has the rational homology of the n-sphere Sn [NX16a, 4.2.4]. If, moreover,
X has dimension 3 and trivial geometric fundamental group, then Sk(X) is
homeomorphic to S3 by [KX16, §34]; see Proposition 2.11.

Proof. We start by showing that ρX is an affinoid torus fibration over the
n-dimensional open faces of ∆(X snc). Let σ̊ be such an open face; it
corresponds to a 0-dimensional stratum {x} in Xk. It follows directly from

the construction of ρX that ρ−1
X (̊σ) is the generic fiber of Spf ÔX ,x, the

formal completion of X at x, and that the restriction of ρX over σ̊ only

depends on the formal R-scheme Spf ÔX ,x. By the definition of a dlt-model,
X is regular at x, and Xk is a strict normal crossings divisor locally around

x. By our assumption that Xk is reduced, we know that the R-algebra ÔX ,x

is isomorphic to
R[[z0, . . . , zn]]/(t− z0 · . . . · zn).

Thus we can identify the restriction of ρX over σ̊ with the restriction of the
tropicalization map

ρGn
m,K

: Gn,an
m,K → Rn

over the standard n-dimensional open simplex

{u ∈ (R>0)
n+1 |u0 + . . .+ un = 1}.

It follows that ρX is an n-dimensional affinoid torus fibration over σ̊,
and that the induced integral affine structure on σ̊ is compatible with the
canonical piecewise integral affine structure on Sk(X).

If we can extend the integral affine structure from the union of the n-
dimensional open faces to Sk(X) \ Z, then the result will automatically be
compatible with the canonical piecewise integral affine structure on Sk(X).
Indeed, the essential skeleton Sk(X) is purely of dimension n by [NX16a,
4.2.4]. Therefore, a real-valued function on a subset of Sk(X) is piecewise
integral affine if and only if it is continuous and extends to a real-valued
function on an open neighbourhood of its domain whose restriction to the
interior of each n-dimensional face of Sk(X) is piecewise integral affine.

Now, we prove that ρX is an affinoid torus fibration locally around
the open faces of codimension one in ∆(X snc). We fix such a face τ̊ ,
corresponding to a 1-dimensional stratum C in Xk. By Corollary 4.6,
the model X is snc along C. By means of a finite sequence of blow-ups
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at zero-dimensional strata, we can moreover arrange that, for every prime
component E of Xk that contains C, the intersection number (C · E) is
negative. This may destroy the property that Xk is reduced, but it preserves
the properties that X is snc along every one-dimensional stratum, X is a
good minimal dlt-model, and X satisfies assumption (2.3). Moreover, the
sequence of blow-ups has no effect on the map ρX , by [MN15, 3.1.7]. The
effect on the skeleton ∆(X snc) is a sequence of star subdivisions of the
n-dimensional faces corresponding to the zero-dimensional strata that are
blown up [MN15, 3.1.9]. This does not affect the face τ̊ .

Thus it suffices to prove that ρX is an affinoid torus fibration over an
open neighbourhood of τ̊ , under the following alternative assumptions on
the model X and the 1-dimensional stratum C:

• X is a good minimal dlt-model satisfying (2.3);
• the model X is snc along C;
• for every prime component E of Xk that contains C, the component
E has multiplicity one in Xk, and the intersection number (C · E)
is negative.

We will prove that ρX is an n-dimensional affinoid torus fibration over the
open star of τ̊ in ∆(X snc) (that is, the union of τ̊ with the two n-dimensional
open faces whose closure contains τ̊).

By adjunction, the model X is log Calabi-Yau along C in the sense of
(5.2). We denote the 0-dimensional strata contained in C by c0 and c∞. The
model X is toric along C, by Proposition 5.4. More precisely, the proof of

Proposition 5.4 gives an explicit description of the formal completion X̂/C

of X along C. Note that, under our assumptions and with the notations
in that proof, the number ι is equal to one and Nj = 1 for every j ∈ J , so
that we can make the construction of the fan Σ more explicit: we choose
a bijection of J with {1, . . . , n}. Then we can take for (u0, . . . , un−1) the
standard basis of Zn, and set un = 0. The vector v∞ is now given by
(−1, b1, . . . , bn−1, N∞). Let Σ be the fan with maximal cones σ0 and σ∞.
Then the toric scheme Y constructed in the proof of Proposition 5.4 is
precisely the torus embedding associated with Σ in the sense of Example
3.5.

Let U be the union in ∆(X snc) of the open faces corresponding to the
strata c0, c∞ and C in Xk. This is an open neighbourhood of τ̊ in Sk(X).
Let V be the interior of the intersection of |Σ| with Rn × {1}. It follows

directly from the construction of ρX that ρ−1
X (U) is the generic fiber of X̂/C ,

and that the restriction of ρX over U only depends on the formal R-scheme

X̂/C . If D is the torus orbit in Yk corresponding to the codimension one
cone σ0 ∩ σ∞ in Σ, then we have shown in the proof of Proposition 5.4

that X̂/C is isomorphic to Ŷ/D. Thus, by Example 3.5, we can identify the
restriction of ρX over U with the restriction of ρGn

m,K
over V , which is an

n-dimensional affinoid torus fibration by definition. �

(6.2) Note that the proof of Proposition 5.4 gives an explicit description of
the integral affine structure on Sk(X) \ Z induced by the non-archimedean
SYZ fibration: after our finite sequence of blow-ups at zero-dimensional
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strata, the gluing data along codimension one faces of the skeleton are
determined by the intersection numbers (C · E). This is quite similar to
the constructions for log Calabi-Yau surfaces in [GHK15, Yu16a] and for
toric degenerations in the Gross-Siebert program [GS11b].
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