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Abstract

We consider the problem of estimating the parameters of a multivariate Gaussian mixture

model (GMM) given access to n samples x1,x2, . . . ,xn ∈ Rd that are believed to have come

from a mixture of multiple subpopulations. State-of-the-art algorithms used to recover these

parameters use heuristics to either maximize the log-likelihood of the sample or try to fit first

few moments of the GMM to the sample moments. In contrast, we present here a novel Mixed

Integer Optimization (MIO) formulation that optimally recovers the parameters of the GMM

by minimizing a discrepancy measure (either the Kolmogorov-Smirnov or the Total variation

distance) between the empirical distribution function and the distribution function of the GMM

whenever the mixture component weights are known. We also present an algorithm for multidi-

mensional data that optimally recovers corresponding means and covariance matrices. We show

that the MIO approaches are practically solvable for datasets with n in the tens of thousands in

minutes and achieve an average improvement of 60-70% and 50-60% on mean absolute percent-

age error (MAPE) in estimating the means and the covariance matrices, respectively over the

EM algorithm independent of the sample size n. As the separation of the Gaussians decrease

and correspondingly the problem becomes more difficult the edge in performance in favor of

the MIO methods widens. Finally, we also show that the MIO methods outperform the EM

algorithm with an average improvement of 4-5% on the out-of-sample accuracy for real-world

datasets.

1 Introduction

Finite mixture modeling is a widely used approach to modeling data that is believed to arise from

multiple heterogeneous subpopulations, such as data from pattern recognition, computer vision

and machine learning. A Gaussian mixture model (GMM) is an important mixture model family

which is useful for modeling data that comes from one of several Gaussian distributions. Consider

a set of K different univariate Gaussian distributions, with each distribution being defined by a

mean µi ∈ R, and a variance σ2
i ∈ R. Letting fi denote the Gaussian density function of the ith

component N (µi, σ
2
i ), the density function of the mixture is given by f =

∑K
i=1 πifi where π is

∗Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, Email:
hbandi@mit.edu

†Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, Email: {dbertsim,rahulmaz}@mit.edu

1



the vector of mixture component weights that sum to one
(
πT e = 1

)
so that the total probability

distribution normalizes to 1.

The most widely used algorithm for recovering estimates of the parameters of a GMM in practice

is the EM algorithm published in Dempster et al. (1977). This algorithm is a local search heuristic

that alternates between optimizing over the Gaussians’ parameters {(µ1, σ1), (µ2, σ2), . . . , (µK , σK)}
and the component mixing weights {π1, π2, . . . , πK} and converges to a set of parameters that

locally maximize the likelihood of observing the data sample. Wu (1983) established guarantees

that the solution of the EM algorithm converges to the maximum likelihood estimates when the

maximum likelihood function is unimodal but in practice, the maximum likelihood function is

usually multimodal and these guarantees are not valid anymore. Balakrishnan et al. (2017) proved

statistical guarantees on the convergence of the EM algorithm solution to a local optimum that is

within a statistical precision to the global optimum using suitable initializations.

Apart from maximizing the sample likelihood, various other algorithms have been proposed in

the literature to efficiently estimate the parameters of a GMM. Given n samples Dasgupta (1999)

proposed a method to provably recover good estimates for the parameters in polynomial time

in n. Their technique is based on projecting data down to a randomly chosen low-dimensional

subspace and then finding an accurate clustering so that the empirical means and co-variances of

these clustered points would be a good estimate for the actual parameters. Sanjeev and Kannan

(2001) extended these ideas to work in a more general setting in which the co-variances of each

Gaussian component could be arbitrary, and not necessarily spherical as in Dasgupta (1999). Yet

both of these techniques are based on the concentration of distances under random projections, and

consequently required that the centers of the components be separated by at least a constant factor

of (maxi σi)
√
d (d is the dimension of the data). Vempala and Wang (2002a) introduced the use of

spectral techniques, to choose a subspace on which to project based on large principle components

and propose an algorithm that needs the Gaussian componenets in the mixture to be separated by

at least (maxi σi)
√
K.

Yet all of these approaches for learning good estimates require that each pair of Gaussian com-

ponents be separated by some factor of the maximum standard deviation (maxi σi). A series of

works in the literature have also looked at the moment matching problem for a GMM. Belkin

and Sinha (2009) showed that one can efficiently learn GMMs in the special case that all com-

ponents are identical spherical Gaussians using the Method of Moments. Similarly, Kalai et al.

(2010), Moitra and Valiant (2010) proposed an algorithm that searches over the space of param-

eters of GMM to fit the first six moments of the observed data. In constrast, our objective in

this paper is to estimate the GMM distribution function f characterized by the set of parameters,

θ = {(π1, µ1, σ1), (π2, µ2, σ2), . . . , (πK , µK , σK)}, so that the cumulative distribution functions of

the GMM and the empirical distribution are close, i.e., D(F, F̂n) ≤ ε where F is the cumulative

distribution function (CDF) of the GMM, and F̂n is the empirical cumulative distribution function

and D(·, ·) is some discrepancy measure. Specifically, we use two discrepancy measures namely
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the Kolmogorv Smirnov and the Total variation distance to quantify the distance between the

two distributions and recover parameters of the GMM that optimally minimize these discrepancy

measures. The Mixed Integer Optimization(MIO) problems that we present in this paper are not

only less sensitive to pairwise distances between Gaussian components, but also are tractable and

solve problems of large sizes (n in tens of thousands) in minutes due to significant improvement in

speedups of MIO solvers in the last two decades.

We summarize our contributions in this paper below:

1. We present two novel MIO formulations for optimally recovering the parameters of a one-

dimensional Gaussian Mixture Model (GMM) that minimize a discrepancy between the em-

pirical distribution function and the distribution function of the GMM. We achieve this by

formulating the problem of minimizing the Kolmogorov-Smirnov (KS) distance and the Total

Variation (TV) distance as MIO problems. We use a piecewise linear function to approximate

the standard normal CDF in our MIO formulations. We also present a novel MIO formula-

tion to find an optimal set of breakpoints for approximating the standard normal CDF using

a piecewise linear function that minimizes the maximum approximation error between the

piecewise linear function and the standard normal CDF.

2. We present an algorithm for d-dimensional data that uses ideas from random projections, and

makes use of the univariate algorithm to optimally recover the model parameters in higher

dimensions. We also propose a Mixed Integer Quadratic Optimization (MIQO) problem and

a Semidefinite Optimization (SDO) problem to correctly identify a consistent ordering among

the estimates recovered across the d-dimensions of the model parameters.

3. We perform computational experiments on synthetic datasets generated using various assump-

tions and demonstrate that the proposed MIO problems are tractable for datasets of sizes in

the tens of thousands and solves for the parameters to provable optimality. We show that the

MIO approaches achieve an average improvement of 60-70% and 50-60% on mean absolute

percentage error (MAPE) in estimating the means and the covariance matrices, respectively

over the EM algorithm independent of the sample size n. As the separation of the Gaussians

decrease and correspondingly the problem becomes more difficult the edge in performance in

favor of the MIO methods widens. We also show that the MIO methods outperform the EM

algorithm with an average improvement of 4-5% on the out-of-sample accuracy for real-world

datasets.

The rest of the paper is structured as follows. In Section 2, we review Gaussian mixture mod-

eling and formulate the problem of minimizing the discrepancy between the empirical distribution

function and the distribution function of the GMM as a MIO problem for the univariate case by

using the Kolmogorov-Smirnov (KS) distance and the Total Variation (TV) distance as discrep-

ancy measures. We also present a novel mixed integer optimization problem to find an optimal set
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of breakpoints for approximating the standard normal CDF with a piecewise linear function. In

Section 3, we present an algorithm for multidimensional Gaussian mixture models by using ideas

from random projections and the univariate algorithm proposed in Section 2. In Section 4, we

perform computational experiments using various synthetic and real-world datasets to evaluate the

performance of our method against state-of-the-art methods like the EM algorithm. In Section 5,

we discuss some implications of this work and make some concluding remarks.

2 One-Dimensional Gaussian Mixture Modeling

In this section, we first give an overview of one-dimensional Gaussian mixture modeling. We then

present two novel MIO formulations allowing us to solve the problem of minimizing a discrepancy

(either the Kolmogorv-Smirnov distance or the Total variation distance) between empirical distribu-

tion function and the distribution function of the GMM to optimality when the mixture component

weights π are known. Unlike Belkin and Sinha (2009), Dasgupta (1999) and Kannan et al. (2005),

our univariate algorithm is less sensitive to separation between the Gaussian components and we

do not make any assumptions on the degree of separation between Gaussian components.

Formally, a Gaussian mixture model (GMM) is a convex combination of K different one-

dimensional Gaussians with weights πi ∈ [0, 1] such that
(∑K

i=1 πi = 1
)

, means µi ∈ R and

variances σ2
i ∈ R. Letting fi ∼ N (µi, σ

2
i ) denote the distribution of the ith Gaussian com-

ponent of the mixture, the density of the GMM is given by f =
∑K

i=1 πifi. We are inter-

ested in estimating the GMM distribution function, f characterized by the set of parameters,

θ = {(π1, µ1, σ1), (π2, µ2, σ2), . . . , (πk, µk, σk)}, so that the cumulative distribution functions are

close (F ≈ F̂n or equivalently D(F, Fn) ≤ ε) where F is the CDF of the GMM and Fn is the em-

pirical distribution function and D(·, ·) is a discrepancy measure (either the Komogorov Smirnov

distance or the Total variation distance) between two distribution functions.

2.1 Minimizing discrepancy based on the Kolmogorov-Smirnov distance

In this section, we introduce the Kolmogorov-Smirnov distance between any two distributions and

incorporate this discrepancy measure into the problem of estimating the parameters of a GMM

when the mixture component weights are known. In order to recover these parameters, we seek to

minimize the Kolmogorov-Smirnov distance between the empirical cumulative distribution function

Fn(x) and the cumulative distribution function of the GMM F (x).

The Kolmogorov-Smirnov distance (Massey Jr, 1951) between any two distributions F (x) and

G(x) is given by

DKS(F,G) = sup
x
|F (x)−G(x)|.

Simiarly, the Kolmogorov-Smirnov distance between an empirical distribution function Fn(x) on

{x1, x2, . . . , xn} (where we assume without loss of generality that the sample is ordered and non-
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decreasing) and any other distibution function F (x) is defined as

DKS(Fn, F ) = max
x∈{x1,x2,...,xn}

|Fn(x)− F (x)| = max
i∈{1,2,...,n}

∣∣∣∣ in − F (xi)

∣∣∣∣.
Recall that the cumulative distribution function of the GMM F (x) is given by,

F (x) =

K∑
i=1

πiFi (x) =

K∑
i=1

πiΦ

(
x− µi
σi

)
,

where Fi is the CDF of the ith Gaussian componentN (µi, σ
2
i ), i ∈ {1, 2, . . . ,K}. We thus propose to

solve the following MIO problem in order to estimate the parameters (µ1, σ1), (µ2, σ2), . . . , (µK , σK).

min
{µi,σi}Ki=1

max
j∈{1,2,...,n}

∣∣∣∣∣ jn −
K∑
i=1

πiΦ

(
xj − µi
σi

)∣∣∣∣∣. (1)

Since the standard normal CDF Φ(·) does not admit a closed form representation and it is neither

a convex nor a concave function, we incorporate a piecewise linear approximation so that Problem

(1) can be reformulated as a MIO problem.

2.1.1 A piecewise linear approximation to the standard normal CDF.

In order to reformulate Problem (1) as an MIO problem, we first define auxillary variables sj =

1/σj , tj = µj/σj , j = 1, 2, . . . ,K so that we eliminate nonlinear terms in the expression,
xj − µi
σi

.

Therefore, we seek to solve the following MIO problem:

min
{ti,si}Ki=1

max
j∈{1,2,...,n}

∣∣∣∣∣ jn −
K∑
i=1

πiΦ (sixj − ti)

∣∣∣∣∣. (2)

Observe that since the standard normal CDF does not admit a closed-form representation, we

need to use some approximation to the CDF in Problem (2). Specifically, we use the closed-form

approximations proposed in (Tocher, 1967, Zelen and Severo, 1964), and solve the corresponding

non-linear and non-convex problems using Baron commercial solver. However, these methods do

not scale well for large problems (See Table 3), therefore, we propose to use a piecewise linear

approximation to the standard normal CDF so that the complete problem can be reformulated as

a linear MIO problem.

A piecewise linear function is composed of a series of line segments joining a set of predefined

break-points. In lemma 1, we provide a bound on the objective function of Problem (2) when we

approximate the standard normal CDF by a piecewise linear function L(·).
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Lemma 1. The objective of Problem (18) is related to the objective of the problem (4) as follows:

max
i∈{1,2,...,n}

∣∣∣∣∣∣ in −
K∑
j=1

πjΦ

(
xi − µtj
σtj

)∣∣∣∣∣∣ ≤ max
i∈{1,2,...,n}

∣∣∣∣∣∣ in −
K∑
j=1

πjL

(
xi − µtj
σtj

)∣∣∣∣∣∣+ ε?PWL

where ε?PWL is the maximum absolute approximation error between the standard normal CDF Φ(·)
and a piecewise linear approximation function L(·).

We construct an approximation function to the standard normal CDF using binary variables

as follows. First, denote v1 < v2 < . . . < vp as the break-points for approximating Φ(·). Note that,

the approximation error when using a piecewise linear function depends both on the number of

break-points used and also how these break-points are chosen. Trivially, as we increase the number

of break-points, the approximation error decreases while the computational burden increases.

Since the approximation error also depends on the location of these predefined p break-points, we

formulate the problem of finding an optimal set of break-points that minimizes the total maximum

approximation error across all of the linear pieces as a shortest path problem in Section 2.1.2. In

Figures (1a) and (1b) we plot the piecewise linear approximations to the standard normal CDF

with 5 and 10 linear pieces obtained as solutions of solving the shortest path problem (6).

Once we have an optimal set of break-points v1 < v2 < . . . < vp, the function Φ(·) can then be

approximated using a piecewise linear function L(x) over the interval [v1, vp] as follows,

L (x) =

p∑
k=1

Φ(vk)yk (3)

x =

p∑
k=1

vkyk

y1 ≤ z1

yk ≤ zk−1 + zk, k ∈ {2, . . . , p− 1}

yp ≤ zp−1

p−1∑
k=1

zk = 1

p∑
k=1

yk = 1

zk ∈ {0, 1}, k ∈ {1, . . . , p− 1}

yk ≥ 0, k ∈ {1, . . . , p− 1}.
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where the binary variables {zi}p−1
i=1 are defined as

zi =

1, if x ∈ [vi, vi+1],

0, otherwise.

Observe that when x ∈ [vi, vi+1], the value of Φ(x) is approximated by a weighted average of Φ(vi)

and Φ(vi+1) which is captured by the variables {yi, zi}pi=1. Combining Problem (2) and Equations

(3) we obtain the following MIO problem:

min
{ti,si}Ki=1

ε (4)

s.t. ε ≥ j

n
−

K∑
i=1

πi

p∑
k=1

Φ(vk)y
k
i,j , j ∈ {1, 2, . . . , n}

−ε ≤ j

n
−

K∑
i=1

πi

p∑
k=1

Φ(vk)y
k
i,j , j ∈ {1, 2, . . . , n}

sixj − ti =

p∑
k=1

vky
k
i,j , j ∈ {1, 2, . . . , n}, i ∈ {1, 2, . . . ,K}

y1
i,j ≤ z1

i,j , i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . , n}

yki,j ≤ zk−1
i,j + zki,j , i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . , n}, k ∈ {2, . . . , p− 1}

ypi,j ≤ zp−1
i,j , i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . , n}

p−1∑
k=1

zki,j = 1, i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . , n}

p∑
k=1

yki,j = 1, i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . , n}

si ≥ 0, i ∈ {1, 2, . . . ,K}

zki,j ∈ {0, 1}, i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , p− 1}

yki,j ≥ 0, i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , p− 1}.

Finally, the means and the variances can be retrieved from the optimal solution (s?j , t
?
j ) as µj =

t?j
s?j

and σj = 1
s?j

. Observe that since the coordinates xi are given to be non-decreasing, the first term

inside the absolute value of each of the constraints ε ≥
∣∣∣ in −∑K

j=1 πjΦ (sjxi − tj)
∣∣∣ , i ∈ {1, 2, . . . , n}

is increasing with i, therefore since the CDF is a monotonic function, the optimal solution s?j has

to be positive (and not zero) and sufficiently large so that for each xi, the value of the second term∑K
j=1 πjΦ (sjxi − tj) increases with i as well.
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(a) PWL approximation with 5 break-points.
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Figure 1: Optimal piecewise linear approximations for the standard normal CDF.

Observe that the computational burden on the solver arises from the constraints of the type,

ε ≥

∣∣∣∣∣ jn −
K∑
i=1

πi

p∑
k=1

Φ(vk)y
k
i,j

∣∣∣∣∣ , j ∈ {1, 2, . . . , n}, (5)

as each of these constraints links K(p−1) binary variables zki,j , i ∈ {1, 2, . . . ,K}, k ∈ {1, 2, . . . , p−1}
with a shared variable ε in the MIO formulation. Note that since we are minimizing the maximimum

absolute difference in the CDFs at n points; at the optimal solution the majority of these constraints

may not be binding unless the solution is highly degenerate. Therefore, in order to accelerate the

solution of the MIO problem (4), we generate a subset of these constraints dynamically using a

greedy strategy as illustrated in Section 2.1.3, rather than defining all the constraints from Equation

(5) upfront.

Note that since the objective function in the KS model contains the empirical CDF, the model

is not as robust as the EM-algorithm to addition/removal of a small set of data.

2.1.2 Optimal set of breakpoints over a discretized grid for piecewise linear approx-

imation.

The accuracy and computational complexity of our univariate algorithm depends on how well we

approximate the standard normal CDF using as low a number of binary variables as possible.

Therefore, it is important to have an optimal (by minimizing the total approximation error) piece-

wise linear approximation to the standard normal CDF for a given number of break-points. In this

section, we formulate the problem to find an optimal set of p break-points that minimizes the total

sum of the maximum approximation error in each piece between a piecewise linear function using

(p− 1) linear pieces and the standard normal CDF Φ(·) as a shortest path problem on a network.
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First, we discretize the interval [−3, 3] which spans almost 99.7% of the probability density of

the standard normal distribution. We define a uniform grid of m points X = {ui}mi=1 uniform over

[−3, 3] and formulate a shortest path problem to choose p breakpoints from X that minimize the

total sum of the maximum approximation error across all of the p− 1 linear pieces.

We define a directed acyclic graph G(V,E) such that the discretized set of points X are the set

of nodes V and each pair of edges (ui, uj) ∈ E has a cost of cij which is equal to the maximum

approximation error between the standard normal CDF and the line segment joining Φ(ui) and

Φ(uj), i.e,

cij = max
x∈[ui,uj ]

∣∣∣∣Φ(x)−
(

Φ(ui) +
Φ(uj)− Φ(ui)

uj − ui
(x− ui)

)∣∣∣∣, i < j.

Note that the maximum approximation error between the curve Φ(·) and the line segment joining

Φ(ui) and Φ(uj) occurs when the slope of the line segment and the curve are the same, i.e,

s =
Φ(uj)− Φ(ui)

uj − ui
=

1√
2π
e−

x2

2

Therefore, the maximum approximation error occurs at x?ij = ±
√
− log(2π)− 2 log(s) ∈ [ui, uj ].

The cost cij for each pair of edges (ui, uj) ∈ E is given by,

cij =


∣∣∣Φ(x?ij)−

(
Φ(ui) +

Φ(uj)−Φ(ui)
uj−ui (x?ij − ui)

)∣∣∣ , i < j

∞, otherwise.

The problem is now to find a directed path of length p − 1 from u1 = −3 to um = 3 with the

smallest cost. We can solve this problem using dynamic programming as follows. We define D(k, u)

to be the cost of the shortest path of length k from node u to node um. Therefore, we have the

following recursion:

D(k + 1, ui) = min
j>i
{cij +D(k, uj)}.

Finally, the optimal cost of a path of length p− 1 from u1 to um is given by D(p− 1, u1). Now

we define the “maximum absolute approximation error” between the standard normal CDF and

the optimal PWL approximation L(·) as

ε?PWL = max
x
|Φ(x)− L(x)|. (6)

During the solution process, we solve the shortest path problem only once to find an optimal subset

of break-points of X and use these break-points in formulation (4). The shortest path problem to

find an optimal set of 10 break-points from a discretized set X of size m = 1000 can be solved

under a second. In figures 1a, 1b, we plot the optimal PWL approximations with five and ten
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break-points respectively. With as low as 10 break-points we have an optimal PWL approximation

with a maximum approximation error of ε?PWL = 0.00059.

2.1.3 Dynamic constraint generation.

As previously mentioned, the computational burden to solve the MIO problem (4) arises from the

constraints of the type,

ε ≥

∣∣∣∣∣ jn −
K∑
i=1

πi

p∑
k=1

Φ(vk)y
k
i,j

∣∣∣∣∣ , j ∈ {1, 2, . . . , n}, (7)

as each of these constraints links K(p−1) binary variables zki,j , i ∈ {1, 2, . . . ,K}, k ∈ {1, 2, . . . , p−1}
with a shared variable ε in the MIO formulation. Note that since we are minimizing the maximimum

absolute difference in the CDFs at n points; at the optimal solution majority of these constraints

may not be binding. Therefore, rather than defining all the constraints from Equation (7) upfront,

we generate a subset of these constraints dynamically using a greedy strategy to accelerate the

solution of the MIO problem as follows.

We maintain a dynamic set of indices I for which we have constraints

ε ≥

∣∣∣∣∣ jn −
K∑
i=1

πi

p∑
k=1

Φ(vk)y
k
i,j

∣∣∣∣∣ , j ∈ I,
in the MIO formulation. Whenever the solver finds an integer feasible solution for the MIO with

the current set of indices I, we use the current solution (µ1, σ1), . . . , (µk, σk) to check if all the

constraints in (7) are satisfied by calculating the maximum discrepancy over the remaining set of

indices as:

j? = arg max
j∈N\I

∣∣∣∣∣ jn −
K∑
i=1

πiΦ

(
xj − µi
σi

)∣∣∣∣∣,
where N = {1, 2, . . . , n}. We update the set of indices I = {j?} ∪ I and add a constraint for j? if

max
j∈N\I

∣∣∣∣∣ jn −
K∑
i=1

πiΦ

(
xj − µi
σi

)∣∣∣∣∣ > ε

i.e, the constraint at j = j? violates an inequality from (7). We do this using lazy constraint

callbacks available in Gurobi 6.5 and CPLEX 12.3 that allow a user to add user cuts whenever the

solver finds an integer feasible solution.
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2.2 Minimizing discrepancy based on the Total Variation distance

In this section, we introduce the Total Variation distance between any two distributions and extend

the approach in Section 2.1 to the total Variation distance to estimate the parameters of a GMM

for the case when the mixture component weights π are known.

The Total Variation distance between any two distributions P and Q on a σ-algebra F is defined

as the supremum of the difference between the probability of P and Q over all the Borel sets A ∈ F
given by

DTV (F,G) = sup
A∈F
|P (A)−Q(A)|.

To make the problem tractable, we choose a subset J of the σ-algebra F such that J = {(l1, u1),

(l2, u2), . . . , (lm, um)} ⊂ F and minimize the Total variation distance on this set J . Therefore, the

distance metric that we consider is as follows:

DTV (F,G) = max
A∈J
|P(X ∈ A)− P(Y ∈ A)|,

where X ∼ P, Y ∼ Q.

We propose two different approaches of choosing the subset J ⊂ F . In the first approach, we

choose dynamic intervals that are centered around the means of each of the Gaussian components.

Recall that the density of a Gaussian distribution is centered around its mean, therefore consid-

ering intervals centered around the mean would capture the high probability density intervals of

a Gaussian. We thereofore choose multiple intervals centered around the means of each Gaussian

component so that J = {(µj − δσj , µj + δσj)| i = 1, . . . ,K, δ = 1, 2, 3}. We propose to solve the

following MIO problem:

min
µi,σi

max
δ∈{1,2,3}

j∈{1,2,...,K}

|Pn ((µj − δσj , µj + δσj))− P ((µj − δσj , µj + δσj))|, (8)

where Pn(·) is the probability measure of the empirical distribution and P (·) is the probability

measure of the GMM. To reformulate this problem as a MIO problem, we make use of the binary

variables to keep track of the count of number of samples that lie in the interval of size δσi around the

mean µi. As in the previous section, the univariate algorithm proposed here assumes that mixture

component weights π are known and we later propose an alternating optimization approach to

estimate both the component weight π and the parameters of the GMM.

As defined earlier, let Fi denote the cumulative distribution function for ith Gaussian component

with weight πi. Therefore, the CDF of the mixture of Gaussians F is given by: F (x) =
∑n

i=1 πiFi(x).

Therefore, the probability of the GMM inside the interval (µj − δσj , µj + δσj) is given by:

P ((µj − δσj , µj + δσj)) = F (µj + δσj)− F (µj − δσj) (9)
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=

K∑
k=1

πk (Fk(µj + δσj)− Fk(µj − δσj))

=
K∑
k=1

πk

(
Φ

(
µj + δσj − µk

σk

)
− Φ

(
µj − δσj − µk

σk

))
.

To keep track of the count of the number of samples that fall in the interval (µj−δσj , µj +δσj),

we define binary variables aδi,j such that,

aδi,j =

1, if xi ∈ (µj − δσj , µj + δσj),

0, otherwise.

We model the above constraints on the binary variables aδi,j as follows:

aδi,jxi ≤ aδi,jµj + δ · σj , (10)

aδi,jxi ≥ aδi,jµj − δ · σj .

Observe that the above constraints are satisfied for any data point which has aδi,j = 0. In order to

make the count of the number of data points inside the intervals accurate, we add the following

constraints to the formulation:

(1− aδi,j) |xi − µj | ≥ (1− aδi,j)δ · σj . (11)

Since the probability of the empirical distribtuion inside the interval (µj − δσj , µj + δσj) is given

by the proportion of samples that fall in this interval, we have

Pn ((µj − δσj , µj + δσj)) =
n∑
i=1

aδi,j
n
. (12)

Once the constraints on the binary variables aδi,j are defined, the objective is to minimize the

discrepancy between the CDF of the GMM F (x) and the empirical CDF Fn(x) by calculating the

corresponding probabilities in all of the intervals, (µj − δσj , µj + δσj) δ ∈ {1, 2, 3}, j ∈ {1, . . . ,K}.
Using Equations (9–12), we obtain a MIO formulation for the univariate case when number of

Gaussians in the mixture K and mixture component weights π are known as follows:

min
{µi,σi}Ki=1

max
δ∈{1,2,3}

j∈{1,2,...,K}

∣∣∣∣∣
∑n

i=1 a
δ
i,j

n
−

K∑
`=1

π`

(
Φ

(
µj − µ` + δσj

σ`

)
− Φ

(
µj − µ` − δσj

σ`

))∣∣∣∣∣ (13)

s.t. aδi,jxi ≤ aδi,jµj + δσj , i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

aδi,jxi ≥ aδi,jµj − δσj , i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}
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(1− aδi,j) |xi − µj | ≥ (1− aδi,j)δσj , i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

aδi,j ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}.

Although, the “Big-M” formulations are weak, for tractability of the problem, we linearize

constraints (10) using McCormick type linearization and introduce new variables pδi,j = aδi,jµj by

incorporating the following constraints,

pδi,j − δ · σj ≤ aδi,jxi ≤ p
δ
i,j + δ · σj ,

Mµa
δ
i,j ≤ pδi,j ≤ M̄µa

δ
i,j

µj − (1− aδi,j)M̄µ ≤ pδi,j ≤ µj − (1− aδi,j)Mµ

where the Big-M constants [Mµ, M̄µ] are taken as [x1, xn].

Similarly, constraint (11) can be linearized by reformulating the product tδi,j = aδi,jσj as pre-

sented below

δσj ≤ (1− aδi,j)xi − µj + pδi,j + δtδi,j +Mµ(1− bδi,j)

−δσj ≥ (1− aδi,j)xi − µj + pδi,j − δtδi,j −Mµb
δ
i,j

tδi,j ≤ Mσa
δ
i,j

tδi,j ≤ σj

tδi,j ≥ σj −Mσ(1− aδi,j)

bδi,j ∈ {0, 1}

where the Big-M constant Mσ for the standard deviation is taken as Mσ =
√

σ̂mix
πmin

, σ̂mix is the

empirical estimate of the standard deviation of the mixture.

To make the problem tractable, we reformulate Problem (13) by using a piecewise linear ap-

proximation to the standard normal CDF. Observe that the expression
µj − µ` + δσj

σ`
cannot be

linearized by defining auxillary variables as in Problem (2) as now we cannot retrieve the means

and the variances from the auxillary variables. Therefore, to eliminate the nonlinearity imposed

by σ` in the denominator of the expression
µj − µ` + δσj

σ`
, we approximate the product between

binary variables zk`,j and σ` with rk`,j variables as follows:

rk`,j ≤ Mσz
k
`,j , k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K} (14)

rk`,j ≤ σ`, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

rk`,j ≥ σ` −Mσ(1− zk`,j), k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

rk`,j ≥ 0, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}.
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Therefore, using Equations (3) and (14), a piecewise linear approximation to Φ

(
µj − µ` + δσj

σ`

)
is given by,

L

(
µj − µ` + δσj

σ`

)
=

p∑
k=1

Φ(vk)y
k
`,j (15)

µj − µ` + δσj =

p∑
k=1

vky
k
`,j , `, j ∈ {1, . . . ,K}

y1
`,j ≤ r1

`,j , `, j ∈ {1, . . . ,K}

yk`,j ≤ rk−1
`,j + rk`,j , k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

yp`,j ≤ rp−1
`,j , `, j ∈ {1, . . . ,K}

p−1∑
k=1

zk`,j = 1, `, j ∈ {1, . . . ,K}

p∑
k=1

yk`,j = σ`, `, j ∈ {1, . . . ,K}

rk`,j ≤ Mzk`,j , k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

rk`,j ≤ σ`, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

rk`,j ≥ σ` −M(1− zk`,j), k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

zk`,j ∈ {0, 1}, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

rk`,j , y
k
`,j ≥ 0, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

From Eqs. (13) and (15) we obtain the following MIO formulation for Problem (8):

min max
δ∈{1,2,3}

j∈{1,2,...,K}

∣∣∣∣∣
∑n

i=1 a
δ
i,j

n
−

K∑
`=1

π`

(
p∑

k=1

Φ(vk)y
k
`,j

)∣∣∣∣∣ (16)

s.t. pδi,j − δ · σj ≤ aδi,jxi ≤ p
δ
i,j + δ · σj , i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

Mµa
δ
i,j ≤ pδi,j ≤ M̄µa

δ
i,j i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

µj − (1− aδi,j)M̄µ ≤ pδi,j ≤ µj − (1− aδi,j)Mµ i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

δσj ≤ (1− aδi,j)xi − µj + pδi,j + δtδi,j +Mµ(1− bδi,j)

−δσj ≥ (1− aδi,j)xi − µj + pδi,j − δtδi,j −Mµb
δ
i,j

tδi,j ≤ Mσa
δ
i,j i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

tδi,j ≤ σj i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

tδi,j ≥ σj −Mσ(1− aδi,j) i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

µj − µ` + δσj =

p∑
k=1

vky
k
`,j , `, j ∈ {1, . . . ,K}

y1
`,j ≤ r1

`,j , `, j ∈ {1, . . . ,K}
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yk`,j ≤ rk−1
`,j + rk`,j , k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

yp`,j ≤ rp−1
`,j , `, j ∈ {1, . . . ,K}

p−1∑
k=1

zk`,j = 1, `, j ∈ {1, . . . ,K}

p∑
k=1

yk`,j = σ`, `, j ∈ {1, . . . ,K}

rk`,j ≤ Mzk`,j , k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

rk`,j ≤ σ`, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

rk`,j ≥ σ` −M(1− zk`,j), k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

aδi,j ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

zk`,j ∈ {0, 1}, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}

bδi,j ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . ,K}, δ ∈ {1, 2, 3}

rk`,j , y
k
`,j ≥ 0, k ∈ {1, . . . , p− 1}, `, j ∈ {1, . . . ,K}.

Observe that the above MIO problem has a total of K(6n+K(p− 1)) binary variables.

As an alternate approach for minimizing the total variation distance between the empirical

distribution function and the distribution function of the GMM, we consider the problem of min-

imizing the total variation distance over the set of all intervals J = {(xi, xj)| i, j ∈ {1, 2, . . . , n}}.
Therefore, we propose to solve the following problem,

min
{µi,σi}Ki=1

max
(i,j)∈N×N

∣∣∣∣∣j − in −
K∑
`=1

π`

{
Φ

(
xj − µ`
σ`

)
− Φ

(
xi − µ`
σ`

)}∣∣∣∣∣, (17)

where, N = {1, 2, . . . , n}. In order to speed up the solver we use a similar approach of generating

dynamic constraints as in Section 2.1.3. We maintain a dynamic set of ordered indices I so that

we solve the problem:

min
{µi,σi}Ki=1

max
(i,j)∈I

∣∣∣∣∣j − in −
K∑
`=1

π`

{
Φ

(
xj − µ`
σ`

)
− Φ

(
xi − µ`
σ`

)}∣∣∣∣∣.
Whenever the solver finds an integer feasible solution {ε, (µ`, σ`), ` = 1, 2, . . . ,K}, we find an

interval (xi, xj) that has the maximum absolute difference in probability between the empirical

distribution function and the distribution function of the GMM inside this interval. Finally, we

update the set of indices I = I ∪ {(i, j)} and keep solving the problem by adding lazy constraints

to the model as shown in Section 2.1.3 until

max
(i,j)∈N×N\I

∣∣∣∣∣j − in −
K∑
`=1

π`

{
Φ

(
xj − µ`
σ`

)
− Φ

(
xi − µ`
σ`

)}∣∣∣∣∣ ≤ ε.
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This makes sure that we solve the problem (17) to optimality.

2.3 Estimating mixture component weights

In this section, we consider the case when mixture component weights π are unknown but the num-

ber of Gaussians in the mixture, K is still known. In this case, we use an Alternating Optimization

(AO) technique motivated by AO methods for convex optimization (Bezdek and Hathaway, 2002)

that alternate between optimizing over a collection of non-overlapping subsets of variables and are

shown to converge. In our AO approach we alternate between optimizing over the parameters of

the GMM given a set of mixture component weights and optimizing over the mixture component

weights given an estimate of the parameters of GMM. With this approach, the objective improves

monotonically with each iteration of the AO algorithm. However, since the objective function in

Problem (2) is non-convex, we cannot prove convergence of the AO method.

Algorithm 1 below allows us to jointly estimate the component mixture weights π along with

the Gaussians’ parameters of the mixture. Note that we run Algorithm 1 from multiple starting

points π0
j , j = 1, . . . ,K and keep the solution with highest log-likelihood.

2.4 Choosing the number of Gaussian components

In this section, we consider the case when we do not know the number of Gaussian components or

the mixture component weights, we are only given i.i.d. data from a mixture of Gaussians.

To address the problem of choosing the right number of Gaussian components in the mixture we

use cross-validation, a classical model selection technique in machine learning. First, we split the

dataset into training, validation and testing datasets. Then, to choose the right value of K, we do

the following: starting with the number of Gaussians in the mixture K = 2, we learn the parameters

of GMM on the training dataset using either MIO Problem (4) or (16) depending on whether we use

the Kolmogorov-Smirnov or the Total Variation distance while assuming that the mixture consists

of K Gaussian components and compute the log-likelihood on the validation dataset.

Finally, we plot the log-likelihood calculated on the test set against K and choose the value of

K for which the likelihood is the highest.
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Algorithm 1 Joint estimation of mixture weights and Gaussian parameters

Input: Data {xi| xi ∈ R, i = 1, 2, . . . , n}, number of Gaussians components K, initial weights π0
j ,

j = 1, . . . ,K and stopping criterion ε.
Ouput: θ = {(π1, µ1, σ1), (π2, µ2, σ2), . . . , (πK , µK , σK)}.
Algorithm:

1. Let t := 0. Using (πt1, . . . , π
t
K) as estimates for the weights, solve for the pa-

rameters {µti, σti}Ki=1 of the GMM using either Problem (4) or (16) depending on
whether we use the Kolmogorov-Smirnov or the Total Variation distance. Let θt ={

(πt1, µ
t
1, σ

t
1), (πt2, µ

t
2, σ

t
2), . . . , (πtK , µ

t
K , σ

t
K)
}

.

2. Solve the following linear optimization problem over weights π using the estimates of the
parameters of GMM

(
µti, σ

t
i

)
obtained from previous step.

min
{πi}Ki=1

max
i∈{1,2,...,n}

∣∣∣∣∣∣ in −
K∑
j=1

πjL

(
xi − µtj
σtj

)∣∣∣∣∣∣ (18)

s.t.

K∑
i=1

πi = 1,

πi ≥ 0.

where L(·) is the piecewise linear approximation for the standard normal CDF used in for-
mulations (4, 16).

3. Let πt+1
j , j = 1, . . . ,K be an optimal solution to problem (18). Using πt+1

j , j = 1, . . . ,K as

estimates for the weights, solve for the parameters {µt+1
i , σt+1

i }Ki=1 of the GMM using either
Problem (4) or (16). Let θt+1 =

{
(πt+1

1 , µt+1
1 , σt+1

1 ), (πt+1
2 , µt+1

2 , σt+1
2 ), . . . , (πt+1

K , µt+1
K , σt+1

K )
}

.

4. If
|L(θt+1)− L(θt|

|L(θt|
≤ ε

then stop and output θt+1 where L(·) is the log-likelihood,

L(θ) =

n∑
i=1

log

 K∑
j=1

πj√
2πσ2

j

exp
−

(xi−µj)
2

2σ2
j

.
5. Else, t := t+ 1 and go to Step 2.
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3 Multivariate Gaussian Mixture Modeling using MIO

In this section, we propose a multivariate learning algorithm to estimate the parameters of a mixture

of Gaussians given d-dimensional data, as an extension of the univariate learning algorithm proposed

in Section 2. Given data {xi| xi ∈ Rd, i = 1, 2, , . . . , , n}, we propose a multivariate algorithm

that learns the parameters of the GMM, θ = {(π1, µ1,Σ1), (π2, µ2,Σ2), . . . , (πK , µK ,ΣK)} without

making any additional assumptions on the model.

It is well known that learning the parameters of GMM is computationally hard in higher di-

mensions. Observe that given a Gaussian random variable X ∼ N (µ,Σ), and some direction

ρ ∈ Rd, the random variable X projected onto ρ is also a normally distributed random variable

with ρ′X ∼ N (ρ′µ, ρ′Σρ). Therefore using the fact that the projection of a multivariate GMM onto

a line is a univariate GMM, we project the data down onto multiple directions in 1-d space and learn

the parameters of GMM in those particular projected directions. We iteratively project the data

onto various random directions so as to learn all the parameters of the d-dimensional GMM. The

approaches proposed in Vempala and Wang (2002a), Sanjeev and Kannan (2001), Dasgupta (1999)

are based on projecting data to a randomly chosen low-dimensional subspace and then finding an

accurate clustering in the lower dimensions where the separation between the Gaussian components

is at least a factor of maxi∈{1,2,...,K} σi. In constrast, our univariate algorithm is less sensitive to

separation between Gaussian components, therefore in our case, we can project the data into any

random direction.

In the multivariate algorithm proposed here, we first project the data onto a series of d2 random

directions D = {ρi| ρi ∈ Rd, i = 1, 2, . . . , d2} in order to estimate all of the Kd mean and K d(d+1)
2

covariance parameters along with K component mixture weights. Note that when two Gaussian

components in the mixture have the same weights, the univariate algorithm outputs some per-

mutation of the parameter estimates. Therefore, this induces a permutation learning problem to

correctly identify a consistent ordering among the estimates of the means and variances across the

d-dimensions. However, if we knew exactly the permutations of the mixture component means

for all of the projected directions, we can use an orthonormal basis W = [b1 b2 . . . bd] as a set of

projection directions and estimate the means of the Gaussian components by inverting W , which

is directly given by W−1 = W T . Similarly, to estimate the covariance matrices, we can choose

a set of orthonormal basis matrices that span all of the symmetric matrices and estimate all of

the covariance matrices. However, since permutations of the estimates are usually unknown; in

order to recover the true ordering tractably, we formulate a MIQO problem to identify a consistent

ordering among the means and then using the recovered ordering, we formulate an SDO problem

to estimate the covariance matrices.
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3.1 The multivariate algorithm

Here we present an algorithm for modeling multidimensional data as a mixture of Gaussians. As

explained in the previous section, we project the data via a series of projections and solve either

Problem (4) or (16) depending on whether we use the Kolmogorov-Smirnov or the Total Variation

distance iteratively to learn parameters of the GMM in the projected space. We finally formuate

a MIQO problem to identify a consistent ordering across the parameter estimates in different

coordinates and using this consistent ordering, we formulate an SDO problem to estimate the

covariance matrices.

To find a consistent ordering of the means and the variances across d-dimensions, we project

the data onto a series of d2 random directions D = {ρi| ρi ∈ Rd, i = 1, 2, . . . , d2} and run Algorithm

1 to find estimates of the means and variances of K components in the projected space of ρk

as:
{

(mk
1, s

k
1), (mk

2, s
k
2), . . . , (mk

K , s
k
K)
}

. Note that since for each random direction {ρ1, ρ2, . . . , ρd2},
we run the algorithm independently, the estimates of the means and variances recovered in the

projected space are some permutation of the true ordering. In order to recover a consistent ordering

among the estimates across d-dimensions, we formulate a MIQO problem.

Let us denote
{
µi| µi ∈ Rd, i = 1, 2 . . . ,K

}
as the true values of the means of the Gaussian

components in the mixture. We now define a projection matrix P k for each ρk ∈ D as follows:

P kij =

1, if mk
j is an estimate of ρ′kµi,

0, otherwise.

Therefore, we need to find permutation matrices P k, k ∈ {1, 2 . . . , d2} such that

P kmk ≈


ρ′kµ1

ρ′kµ2

. . .

ρ′kµK

 , k ∈ {1, 2, . . . , d2},

where mk =
(
mk

1,m
k
2, . . . ,m

k
K

)
.

Since the estimates of the means recovered in the projected space are noisy estimates of the true

means, we minimize `22 error of the estimates with the true values of the means in the projected

space. We thus propose to solve the following MIQO problem:

min
{πpl}d2k=1,{µi}

K
i=1

d2∑
k=1

∥∥∥∥∥∥∥∥∥∥
P kmk −


ρ′kµ1

ρ′kµ2

. . .

ρ′kµK


∥∥∥∥∥∥∥∥∥∥

2

2

(19)
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s.t.

K∑
i=1

P kij = 1, j ∈ {1, 2, . . . , d}, k ∈ {1, 2 . . . , d2}

K∑
j=1

P kij = 1, i ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , d2}

P kij ∈ {0, 1}, i ∈ {1, 2, . . . ,K}, j ∈ {1, 2, . . . ,K}, k ∈ {1, 2, . . . , d2}.

Problem (19) has K2d2 binary variables. As (K, d) are usually not very large in practice, the MIQO

problem is solved to optimality in a few minutes.

Using the solution {P k, k = 1, 2, . . . , d2} of Problem (19), we formulate an SDO problem to

recover the estimates of the covariance matrices as follows:

min
{Σi}Ki=1

d2∑
k=1

∥∥∥∥∥∥∥∥∥∥
P ksk −


ρ′kΣ1ρk

ρ′kΣ2ρk

. . .

ρ′kΣKρk


∥∥∥∥∥∥∥∥∥∥

1

(20)

s.t. Σi � 0, i ∈ {1, 2, . . . ,K}.

The above SDO problem has K semidefinite matrices (Σi ∈ Sd i = 1, 2, . . . ,K). When K and d

are small, the problem is solved to optimality within a few minutes. Algorithm 2, below learns the

prameters of a multivariate GMM.

3.2 Choosing the number of Gaussian components

Similar to the univariate case, we first split the dataset into training, validation and testing datasets.

We then learn the parameters of GMM using Algorithm 2 and perform cross-validation to choose the

number of Gaussian components K that gives the highest log-likelihood on the validation dataset.

20



Algorithm 2 Algorithm for learning parameters of a multivariate GMM

Input: Data {xi|xi ∈ Rd, i = 1, 2, . . . , n}, number of Gaussians components K, stopping criterion
ε and a set of d2 random directions D = {ρi| ρi ∈ Rd, i = 1, 2, . . . , d2}.
Ouput: θ = {(π1, µ1,Σ1), (π2, µ2,Σ2), . . . , (πK , µK ,ΣK)}.
Algorithm:

1. For each k ∈ {1, 2, . . . , d2}:

• Project the data down onto the line ρk: Xk = {ρ′kxi|xi ∈ Rd, i = 1, 2, . . . , n}.
• Apply Algorithm 1 to (Xk, ε) to recover estimates of the component weights, means and

variances. Denote the estimates as
{

(πk1 ,m
k
1, s

k
1), (πk2 ,m

k
2, s

k
2), . . . , (πkK ,m

k
K , s

k
K)
}

.

2. Set πi =

∑d2

k=1 π
k
i

d2
, i = 1, 2, . . . ,K.

3. Using {
(
mk

1,m
k
2, . . . ,m

k
K

)
|k = 1, 2, . . . , d2} as problem data, solve the MIQO problem (19)

to identify a consistent ordering of the means and the variances across d-dimensions for the
estimates of the means and variances in all projected spaces.

4. Using the consistent ordering (permutation matrices) recovered above, solve the SDO problem
(20) to estimate the covariance matrices.

5. Output θ = {(π1, µ1,Σ1), (π2, µ2,Σ2), . . . , (πK , µK ,ΣK)}.

4 Data and Computational Results

In this section, we describe the data used and report the performance of our models on both

synthetic and real-world datasets. We study the performance of Algorithms 1, 2 and compare them

to the EM algorithm, and the models with (Tocher, 1967, Zelen and Severo, 1964) approximations

to the standard normal CDF. Specifically, we study the dependence of the accuracy in estimating

means, variances and mixture component weights on the training sample size. We also study how

close the recovered distribution function of the GMM is to the empirical distribution function

quantified by the Kolmogorov-Smirnov and the Total Variation distances. We use mean absolute

percentage error (MAPE) and weighted-MAPE to quantify the errors in estimating means, variances

and the mixture component weights. Specifically, we use the following metrics to compare the

performance of Algorithms 1 and 2 with the EM algorithm:

• The Kolmogorov-Smirnov distance between the GMM distribution function F and the em-

pirical distribution function Fn is given by

DKS (Fn, F ) = max
x∈{x1,x2,...,xn}

|Fn(x)− F (x)|.

• The Total Variation distance between the GMM distribution function F and the empirical
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distribution function Fn is given by

DTV (Fn, F ) = max
i<j
|{Fn (xj)− Fn (xi)} − {F (xj)− F (xi)}|.

• The MAPE in estimating means is given by

Tµ =
1

k

k∑
i=1

‖∆µi‖2
‖µi‖2

, ∆µi = µi − µtruei .

• The MAPE in estimating variances is given by

Tσ =
1

k

k∑
i=1

‖∆Σi‖F2

‖Σ‖F2

, ∆Σi = Σi − Σtrue
i ,

where the Frobenius qth norm of a matrixA ∈ Rm×n is defined as ‖A‖Fq =
(∑m

i=1

∑n
j=1 |Aij |q

) 1
q
.

• The MAPE in estimating mixture component weights is given by

Tπ =
1

k

k∑
i=1

|∆πi|
πi

, ∆πi = πi − πtruei .

All of the experiments were performed on a computer with Xeon @2.3GHz processors, 4 cores,16GB

RAM and all of the code implemented in Julia language (v 0.6) using commercial solver Gurobi

6.5.2.

4.1 Computational results with synthetic datasets

We generated a number of synthetic datasets from one-dimensional Gaussian mixture consisting of

two Gaussian components (K = 2) with

1. Larger separation between the Gaussian components:
|µ1 − µ2|
σmax

= 2, where σmax = maxi∈{1,2,...,K} σi.

2. Smaller separation between the Gaussian components:
|µ1 − µ2|
σmax

= 1.

3. Varying separation between the Gaussian components:
|µ1 − µ2|
σmax

∈ [0, 6].

For each of the above datasets, we generated multiple samples with n ranging from 100 to 2000

to study the dependence of the performance of our models on n. In Figures 2, 3 we compare the

performance of our MIO problems (4,16) with the EM algorithm for the case
|µ1 − µ2|
σmax

= 2 or 1,

respectively as a function of n. In Figure 4, we compare the performance of MIO problems (4,16)

with the EM algorithm for training sample size, n=500 as a function of the separation between the

Gaussians |µ1−µ2|σmax
varying from 0 to 6.
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Observations

1. In all cases we observe a significant improvement in all performance measures of the MIO

based methods compared to the EM algorithm independent of the sample size n. Specifically

the MIO based methods achieve an average improvement of 60-70% and 50-60% over the EM

algorithm for MAPE in estimating the means and the covariance matrices, respectively.

2. For large separations (around 6), the MIO based methods had comparable performance com-

pared to the EM methods. As the separation decreased, the edge in performance in favor of

the MIO methods widened.

3. The performance of the MIO based methods based on either the Kolmogorov-Smirnov or the

Total Variation distance is very similar.

In Table 1, we present the runtimes of the EM algorithm and algorithm 1 for both cases when

it solves either Problem (4) or (16) depending on whether we use the Kolmogorov-Smirnov or the

Total Variation distance. We also report the number of iterations performed until the stopping

criteria in Algorithm 1 is met. The table on the left shows mean runtime for synthetic data of

various sizes with a separation of
|µ1 − µ2|
σmax

= 2 and the table on the right shows mean runtime for

datasets of size n = 500 with separation varying from 0 to 6.

Mean runtime (sec.) Iterations

n EM KS TV EM KS TV

100 16.8 109 222 1,000 3 3
200 17.3 186 350 1,000 3 3
300 18.2 231 528 1,000 3 4
400 17.8 240 685 1,000 4 4
500 18.3 318 915 1,000 4 4
600 17.9 364 1181 1,000 4 5
700 17.9 398 1342 1,000 5 6
800 18.1 434 1613 1,000 6 7
900 18.2 527 1856 1,000 7 7
1000 18.6 595 2039 1,000 7 8

Mean runtime (sec.) Iterations

|µ1−µ2|
σmax

EM KS TV EM KS TV

0 17.6 1752 2053 1,000 12 14
0.25 17.6 1141 2004 1,000 11 10
0.5 17.8 865 1830 1,000 12 11
1 18 823 1660 1,000 9 11

1.5 18.2 475 1284 1,000 10 12
2 18.2 383 1118 1,000 6 8
3 18.1 470 1204 1,000 8 10
4 18.3 301 924 1,000 7 7
5 17.5 227 859 1,000 7 6
6 17.4 83 761 1,000 5 5

Table 1: Comparison of runtimes of algorithm 1 and the EM algorithm on synthetic datasets versus
size of data and the separation between gaussian component (table on the left shows mean runtime

for datasets with separation between the Gaussian components
|µ1 − µ2|
σmax

= 2 and the table on the

right shows mean runtime for datasets of size n = 500 with varying separation) along with the
number of iterations for ε = 0.01.

4.2 Computational results with real-world datasets

In the second part of the experiments we applied Algorithm 2, the EM algorithm and state-of-the art

methods for classification, namely, Support Vector Machines (SVM), Classification and Regression
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(b) Error in estimating variances.
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(c) Kolmogorov-Smirnov distance.
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(d) Total Variation distance.

Figure 2: Performance as a function of n for a one-dimensional Gaussian mixture with K=2

components and separation
|µ1 − µ2|
σmax

= 2.

Trees (CART) and Random forests (RF) on various publicly available data sets from the UCI

repository (Asuncion and Newman, 2007). Specifically, we chose Breast Cancer, Diabetes, Image

segmentation, Iris and US income census data sets to compare the performance of our algorithm in

terms of out-of-sample accuracy. For each of these data sets, we randomly split the data into two

parts: training set (70%) and test set (30%). We then perform random splits on the data sets five

times and report the mean out-of-sample accuracy.

We first estimate the parameters of the Gaussian mixture model by applying Algorithm 2 that

solves both Problem (4) of minimizing the Kolmogorov-Smirnov distance and Problem (16) of

minimizing the Total Variation distance.

After solving for the parameters of the mixture of Gaussians, we estimate the posteriori com-

ponent assignment probability using Bayes’ theorem for each of the samples in the test set. Given
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(a) Error in estimating means.
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(b) Error in estimating variances.
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(c) Kolmogorov-Smirnov distance.
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(d) Total Variation distance.

Figure 3: Performance as a function of n for a one-dimensional Gaussian mixture with K=2

components and separation
|µ1 − µ2|
σmax

= 1.

a data point x, the probability that it belongs to class Ci, i = 0, 1, 2, . . . ,K is given by

P (Ci|x) =
P (Ci)P (x|Ci)∑K
j=1 P (Cj)P (x|Cj)

=
πiN (x|µi, σi)∑K
j=1 πjN (x|µj , σj)

.

Finally, we classify the each sample x based on the most likely component assignment using poste-

riori component assignment probabilities. Note that for the Image segmentation dataset, we used

Principal Component Analysis (PCA) to reduce the dimensionality of the data from 19 to 4 by

choosing the first four principal components that explained more than 94% of the total variance in

the data set.

In Table 2, we compare the performance of our algorithm (KS & TV) with the EM algorithm,

the models with (Tocher, 1967, Zelen and Severo, 1964) approximations to the standard normal
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Figure 4: Performance as a function of separation |µ1−µ2|σmax
between the Gaussian components for a

one-dimensional Gaussian mixture with K=2 components and training sample size n=500.

CDF and the state-of-the art methods for classification in terms of out-of-sample accuracies for

each of the datasets. In all of the tests on the real-world datasets, we observed that the MIO based

methods outperform the EM algorithm with an average improvement of 4-5% on out-of-sample

accuracy. Although we have compared the performance of our algorithms with the state-of-the-

art methods in classification, we believe the comparison is not fair. Since different classification

methods have different operating characteristics – for example, mixtures of discriminant analysis

methods (Friedman et al., 2001) do flexible modeling of covariates (via mixture models), whereas

SVM, CART and RF do not model the distribution of the covariates. A by-product of the mixture

discriminant analysis framework is uncertainty quantification via probabilistic modeling (which is

not natural in the context of SVMs). Hence, our primary motivation here is to empirically study

the gains (in classification accuracy) by using our proposal for GMM estimation, when compared

to EM-based procedures.

26



In Table 3, we report the number of iterations performed till the convergence criteria is met for

Algorithm 2 using either KS or TV distance and the EM algorithm. We also report the training

time for each of these methods to estimate a GMM with a cut-off time at 720 mins. Both the

models with (Tocher, 1967, Zelen and Severo, 1964) approximations to the standard normal CDF

solved using Baron commercial solver do not make the cut-off time for the Image segmentation and

US census datasets due to their large sizes. Observe that even though the methods KS and TV

have comparable performance to Tr and ZS in terms of out-of-sample accuracy, the training times

for both the methods Tr and ZS are approximately 2-orders of magnitude higher. Also observe

that we gain an average improvement of 4-5% in out-of-sample accuracy over the EM-algorithm by

paying a price in training time as shown in Table 3.

Dataset Out-of-sample accuracy

Name n d K EM KS TV Tr ZS SVM CART RF

Breast Cancer 683 9 2 76.7% 80.2% 80.7% 79.8% 80.4% 87.8% 92.3% 93.8%
Diabetes 768 8 2 58.8% 65.1% 64.6% 65.5% 65.7% 68.9% 70.6% 72.7%
Image Segmentation 2, 310 4 7 32.9% 40.4% 39.9% - - 44.2% 52.5% 64.2%
Iris 150 4 3 88.2% 92.3% 91.9% 90.8% 91.5% 92.0% 92.4% 94.1%
US Census 45, 222 6 2 85.4% 87.7% 87.1% - - 90.1% 92.6% 94.6%

Table 2: Comparative results of algorithm 2(KS & TV), the EM algorithm, model using Tocher(Tr)
approximation, model using Zelen & Severo(ZS) approximation, support vector machine(SVM),
classification and regression trees(CART) and random forest(RF) on data sets from UCI ML Repos-
itory in terms of out-of-sample accuracy.

Dataset Iterations Training time(min)

Name n d K EM KS TV EM KS TV Tr ZS

Breast Cancer 683 9 2 1,274 4 4 0.23 5.92 7.86 455.27 587.34
Diabetes 768 8 2 1,498 6 7 0.28 6.76 8.16 582.45 714.38
Image Segmentation 2, 310 4 7 2,763 12 16 0.84 10.28 12.76 - -
Iris 150 4 3 686 3 5 0.12 1.84 2.78 126.14 162.56
US Census 45, 222 6 2 29,375 39 52 3.96 126.48 168.83 - -

Table 3: Comparative results of algorithm 2(KS & TV), the EM algorithm, model using Tocher(Tr)
approximation, model using Zelen & Severo(ZS) approximation on data sets from UCI ML Repos-
itory in terms of the number of iterations for convergence with stopping criterion ε = 0.01 and the
training time.

5 Conclusions

In this paper, we propose a new methodology to solve the problem of recovering estimates of a

Gaussian mixture model (GMM) given data that is believed to come from multiple heterogeneous

subpopulations. We minimize a discrepancy (either the Kolmogorov-Smirnov or the Total Variation

distance) between the empirical distribution function and the distribution function of the GMM. We
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presented two novel MIO models to solve the problem of minimizing a discrepancy to optimality.

Using both synthetic and real datasets, we illustrated that our algorithms outperform the EM

algorithm under various settings. The algorithms proposed in this paper can easily be extended to

a variety of univariate distribution families thereby opening the door to MIO based algorithms for

optimally learning the parameters of a mixture of various distribution families.

References

A. Asuncion and D. Newman. Uci machine learning repository, 2007.

S. Balakrishnan, M. J. Wainwright, B. Yu, et al. Statistical guarantees for the em algorithm: From

population to sample-based analysis. The Annals of Statistics, 45(1):77–120, 2017.

M. Belkin and K. Sinha. Learning gaussian mixtures with arbitrary separation. arXiv preprint

arXiv:0907.1054, 2009.

M. Belkin and K. Sinha. Polynomial learning of distribution families. In Foundations of Computer

Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 103–112. IEEE, 2010.

J. C. Bezdek and R. J. Hathaway. Some notes on alternating optimization. In AFSS International

Conference on Fuzzy Systems, pages 288–300. Springer, 2002.

K. Chaudhuri. Learning mixtures of distributions. University of California, Berkeley, 2007.

S. Dasgupta. Learning mixtures of gaussians. In Foundations of Computer Science, 1999. 40th

Annual Symposium on, pages 634–644. IEEE, 1999.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the em algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38,

1977.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer

series in statistics New York, NY, USA:, 2001.

A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two gaussians. In Proceedings

of the forty-second ACM symposium on Theory of computing, pages 553–562. ACM, 2010.

R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models. In

International Conference on Computational Learning Theory, pages 444–457. Springer, 2005.

F. J. Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical

Association, 46(253):68–78, 1951.

G. McLachlan and D. Peel. Mixtures of factor analyzers. Finite Mixture Models, pages 238–256,

2000.

28



A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of gaussians. In Foun-

dations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 93–102.

IEEE, 2010.

S. Ray and B. G. Lindsay. Model selection in high dimensions: a quadratic-risk-based approach.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):95–118, 2008.

R. Rossi, S. A. Tarim, S. Prestwich, and B. Hnich. Piecewise linear lower and upper bounds for the

standard normal first order loss function. Applied Mathematics and Computation, 231:489–502,

2014.

A. Sanjeev and R. Kannan. Learning mixtures of arbitrary gaussians. In Proceedings of the thirty-

third annual ACM symposium on Theory of computing, pages 247–257. ACM, 2001.

K. D. Tocher. The art of simulation. English Universities Press, 1967.

S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In Foun-

dations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages

113–122. IEEE, 2002a.

S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In Foun-

dations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages

113–122. IEEE, 2002b.

C. J. Wu. On the convergence properties of the em algorithm. The Annals of statistics, pages

95–103, 1983.

M. Zelen and N. C. Severo. Probability functions. Handbook of mathematical functions, 5:925–995,

1964.

29


