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An entropy-based bound for the computational
complexity of a switched system

Benoît Legat, Pablo A. Parrilo, and Raphaël M. Jungers,

Abstract—The joint spectral radius (JSR) of a set of matrices
characterizes the maximal asymptotic growth rate of an infinite
product of matrices of the set. This quantity appears in a number
of applications including the stability of switched and hybrid
systems. A popular method used for the stability analysis of
these systems searches for a Lyapunov function with convex
optimization tools.

We analyse the accuracy of this method for constrained
switched systems, a class of systems that has attracted increasing
attention recently. We provide a new guarantee for the upper
bound provided by the sum of squares implementation of the
method. This guarantee relies on the p-radius of the system and
the entropy of the language of allowed switching sequences.

We end this paper with a method to reduce the computation
of the JSR of low rank matrices to the computation of the
constrained JSR of matrices of small dimension.

Index Terms—Joint spectral radius, Language Entropy, Sum
of squares programming, Switched Systems, Path-complete Lya-
punov functions

I. INTRODUCTION

IN recent years, the study of the stability of hybrid systems
has been the subject of extensive research using methods

based on classical ideas from Lyapunov theory and modern
mathematical optimization techniques. Even for switched lin-
ear systems, arguably the simplest class of hybrid systems,
determining stability is undecidable and approximating the
maximal asymptotic growth rate that a trajectory can have is
NP-hard [1]. Despite these negative results, the vast range of
applications has motivated a wealth of algorithms to approxi-
mate this maximal asymptotic growth rate.

A switched linear system is characterized by a finite set of
matrices A , {A1, A2, . . . , Am} ⊂ Rn×n and the iteration

xk = Aσkxk−1, σk ∈ [m] (1)

where [m] denotes the set {1, 2, . . . ,m}.
The maximal asymptotic growth rate of this iteration is

given by the joint spectral radius (JSR). The JSR ρ(A) of
a finite set of matrices A is defined as

ρ(A) = lim
k→∞

max
σ∈[m]k

‖Aσk · · ·Aσ2Aσ1‖1/k.

This definition is independent of the norm used.
The JSR was introduced by Rota and Strang [2] and has

many applications such as co-simulation [3], wavelets, the
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capacity of some particular codes, zero-order stability of
ordinary differential equations, congestion control in computer
networks, curve design and networked and delayed control
systems; see [4] for a survey on the JSR and its applications.

In some applications the values that σk can take in (1)
may depend on σk−1, σk−2, . . .. These constraints are often
conveniently represented using a finite automaton and the
JSR under such constraints is called constrained joint spec-
tral radius (CJSR) [5]; an example of constrained switched
system is given by Example 1 and its automaton is illustrated
by Figure 1. Constrained switched systems are used in a
variety of applications including networked control [6], [7]
and coordination of a network of autonomous agents [8].
Moreover, even if a switched system is unconstrained, studying
an associated constrained system generated by path-complete
methods enhance our ability to analyze the stability [9] or
stabilize [10] the original unconstrained switched system.

The automaton representing the constraints can be rep-
resented by a strongly connected labelled directed graph
G(V,E), possibly with parallel edges. The labels are elements
of the set [m] and E is a subset of V × V × [m]. We say that
(u, v, σ) ∈ E if there is an edge between node u and node v
with label σ.

We use Ek to denote the subset of Ek (i.e. the kth cartesian
power of E) that represents valid paths of length k. The k-tuple
(σ1, σ2, . . . , σk) is said to be G-admissible if σ1, . . . , σk are
the respective labels of a path of length k. We denote the set of
all k-tuples of [m]k that are G-admissible as Gk. The matrix
product Aσk · · ·Aσ1

is written As when s = (σ1, . . . , σk) or
s is a path with these respective labels.

The iteration (1) is rewritten as follows to take the automa-
ton into account:

xk = Aσkxk−1, (σ1, . . . , σk) ∈ Gk.

The definition of the JSR is generalized as follows for
constrained systems.

Definition 1 ( [5]). The constrained joint spectral radius
(CJSR) of a finite set of matrices A constrained by an
automaton G, denoted as ρ(G,A), is

ρ(G,A) = lim
k→∞

ρ̂k(G,A, ‖ · ‖),

where
ρ̂k(G,A, ‖ · ‖) = max

s∈Gk
‖As‖1/k. (2)

The arbitrary switching case (1) can be seen as the par-
ticular case when the automaton has only one node and m
self-loops with labels 1, . . . ,m.
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Example 1 (Running example). We borrow the example of
[11, Section 4]. It is based on a state-feedback control that
might undergo dropouts in its state feedback. The set of
matrices A is composed of the following four matrices

A1 = A+B
(
k1 k2

)
, A2 = A+B

(
0 k2

)
,

A3 = A+B
(
k1 0

)
, A4 = A.

where k1 = −0.49, k2 = 0.27,

A =

(
0.94 0.56
0.14 0.46

)
and B =

(
0
1

)
.

The corresponding automaton is represented by Figure 1.
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Figure 1: Automaton for the running example. The numbers
on the edges are their respective labels.

Approximating the CJSR usually consists in certifying up-
per bounds γ to the CJSR by exhibiting Lyapunov functions
or invariant sets for the matrices Ai/γ (see Section II for
precise definitions). The search for such Lyapunov functions
can naturally be written as a convex optimization program
using sum of squares (SOS) programming [12]. It turns out
that these Lyapunov methods cannot produce an arbitrarily
bad CJSR approximation: bounds are known on the accuracy
of the estimate they deliver. Indeed, the following two bounds
have been proved in the unconstrained case for the lowest
upper bound γ that can be certified using sum of squares
polynomials1 of degree 2d, denoted ρSOS-2d(A):

ρSOS-2d(A) ≤
(
n+ d− 1

d

) 1
2d

ρ(A) (3)

ρSOS-2d(A) ≤ m
1
2d ρ(A). (4)

The two guarantees are incomparable, as (3) depends on
the dimension, and (4) depends on the number of matrices.
However, only (3) has been generalized in the constrained case
yet; see Theorem 3. Our main result is a generalization of the
second guarantee: we relate the accuracy of the SOS-based
approximation algorithm with the combinatorial complexity of
the automaton. This complexity is measured by the entropy of
the language of allowed switching signals. This new estimate
of the accuracy of the SOS technique is always better than the
previously existing one for sufficiently large sum of squares
degree. According to the new estimate, the more constrained
the system is, the smaller the entropy is and the better the
accuracy of the method is. This shows that, in some sense, it
is easier to analyse stability of constrained switched systems

1A polynomial p(x) is a sum of squares if there exists some natural number
k and k polynomials qi(x) such that p(x) = q21(x) + · · ·+ q2k(x).

than unconstrained switched systems because the entropy of
the language of allowed switching signals is smaller.

Constrained switched systems may also be useful to analyse
abstraction techniques for complex control systems. Given a
nonlinear system, an abstraction of the system can be con-
structed by a discretization of the state-space, such abstraction
may enhance our ability to analyse the system [13]. The
entropy of the language of allowed switching signals of the
abstraction is related2 to the topological entropy of the non-
linear system [15], [16]. This suggests that the computational
complexity of the abstraction is intrinsically related to the
topological entropy of the nonlinear system and not to the
specific choice of discretization, e.g. the value of ε. In [17], the
authors use the Kullback-Leibler divergence of the uncertainty
induced by a model to measure its fidelity. They measure
the entropy of the uncertainty of the noise representing the
part of the plant that is not accounted for in the model. This
is similar to our work which measures the entropy of the
uncertainty induced by an uncontrolled switching representing
the loss of information due to the discretization. However, it
is fundamentally different as we use this entropy to measure
the computational complexity of the model and not the fidelity
of the abstraction. Indeed, as we have seen, in our work this
entropy is related to the topological entropy of the plant and
not to the accuracy of the abstraction. Other appearances of
the entropy in systems and control theory include [18], [19];
see [20] for an overview.

In [21], Ahmadi and Parrilo show how to reduce the
computation of the JSR of matrices that are all of rank one to a
combinatorial problem, which coincides with the CJSR of 1×1
matrices (i.e. scalars). As a final contribution, we generalize
this approach and give a reduction of the computation of the
JSR (or CJSR) of matrices that are all of rank at most r to
the computation of the CJSR of r × r matrices.

The paper is organized as follows. In Section II, we give
the SOS program searching for Lyapunov functions and we
give our new estimate for its accuracy. The new bounds
explicitly depend on the allowable transitions, through the
graph G(V,E). In Section III, we give the low rank reduction
mentioned above.

a) Reproducibility: The code used to obtain the results
is published on codeocean [22]. The algorithms are part of
the SwitchOnSafety Julia [23] package [24] which computes
invariant sets for hybrid sytems represented with the Hy-
bridSystems package [25]. The implementation relies on the
SumOfSquares [26] and SetProg [27] extensions of JuMP [28].
The solver used is Mosek v8 [29].

II. STABILITY AND ENTROPY

In this section, we give the SOS-based method to ap-
proximate the CJSR, we define the entropy of a constrained
switching signal and the p-radius of a constrained switched
system and we show how the performance guarantee of the

2The entropy of the abstraction with an ε-discretization measures the growth
rate of the number of cells in which the state could be [14, Example 6.3.4]
while the topological entropy is the limsup, with ε → ∞, of the growth
rate with n of the cardinality of the largest (n, ε)-separated (or the smallest
(n, ε)-spanning) set; see [15] for precise definitions.
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method is related to the entropy of the switching signal and
the p-radius of the switched system.

A. Stability

As introduced in [12] and generalized in [11] for the
constrained case, homogeneous3 polynomials of degree 2d can
be used to certify upper bounds on the CJSR.

Proposition 1 ( [30, Theorem 1]). Consider a finite set of
matrices A constrained by an automaton G(V,E). Suppose
that there exist |V | strictly positive homogeneous polynomials
pv(x) of degree 2d such that pv(Aσx) ≤ γ2dpu(x) holds for
all edge (u, v, σ) ∈ E. Then ρ(G,A) ≤ γ.

We relax the positivity condition of Proposition 1 by the
more tractable sum of squares (SOS) condition and define
ρSOS-2d(G,A) as the solution of the following sum of squares
program.

Program 1 (Primal).

inf
pv(x)∈R2d[x],γ∈R

γ

γ2dpu(x)− pv(Aσx) is SOS, ∀(u, v, σ) ∈ E, (5)
pv(x) is SOS, ∀v ∈ V, (6)
pv(x) is strictly positive, ∀v ∈ V, (7)∑

v∈V

∫
Sn−1

pv(x) dx = 1.

Remark 1. In practice we can replace (6) and (7) by “pv(x)−
ε‖x‖2d2 is SOS” for any ε > 0. This constrains pv(x) to be
in the interior of the SOS cone, which is sufficient for pv(x)
to be strictly positive. The bounds given in Section II-D are
valid if pv(x) is in the interior of the SOS cone.

Remark 2. The constraint (5) is equivalent to “pu(x) −
pv(Aσx/γ) is SOS” hence the 1-sublevel sets of the poly-
nomials pv provide invariant sets for the matrices Aσ/γ as
claimed in the introduction.

By Proposition 1, a feasible solution of Program 1 gives an
upper bound for ρ(G,A), and thus, for any positive degree
2d,

ρ(G,A) ≤ ρSOS-2d(G,A). (8)

Example 2. Consider the unconstrained system [21, Exam-
ple 2.1] with m = 3: A = {A1 = e1e

>
2 , A2 = e2e

>
3 , A3 =

e3e
>
1 } where ei denotes the ith canonical basis vector. For

any d, a solution to Program 1 is given by (p(x), γ) =
(x2d1 + x2d2 + x2d3 , 1).

Example 3. Let us reconsider our running example; see
Example 1. The optimal solution of Program 1 is represented
by Figure 2 for 2d = 2, 4, 10 and 12.

3A homogeneous polynomial of degree 2d is a polynomial for which the
degree of each monomial is 2d. The polynomial is called homogeneous as
for any real number λ, we have p(λx) = λ2dp(x).

Node 1 Node 2 Node 3 Node 4

2d = 2

2d = 4

2d = 10

2d = 12

Figure 2: Representation of the solutions to Program 1 with
different values of d for the running example. The blue
curve represents the boundary of the 1-sublevel set of the
optimal solution pv at each node v ∈ V . The dashed curve
is the boundary of the unit circle. Observe that some sets
are not convex. Compared to the same experiment done in
[30], the sets represented in this figure correspond to a tigher
upper bound than the ones reported in [30, Figure 2]. This
is due to a different implementation of Program 1. We use
the classical Sum-of-Squares Programming implementation in
this paper while in [30, Figure 2], the figure correspond to
Common Quadratic Lyapunov Functions (CQLF) in a lifted
space called the Veronese embedding; see [12, Section 3].
Using the notation of [12], the sets of this figure correspond
to the upper bound ρSOS,2d (where SOS stands for Sum-of-
Squares) and the sets of [30, Figure 2] correspond to the upper
bound ρCQ,2d (where CQ stands for Common Quadratic). The
inequality ρSOS,2d ≤ ρCQ,2d is proven in [12, Theorem 5.1].

B. Entropy

The entropy of a regular language is defined as follows.

Definition 2 ( [14, Definition 4.1.1]). Given a regular language
recognized by an automaton G, we define the entropy of the
language as

h(G) = lim
k→∞

1

k
log2 |Gk|. (9)

The entropy of a language generated by an automaton is
easily computable, as we now recall. The logarithm of the
spectral radius of the adjacency matrix of an irreducible4

automaton gives the entropy of its edge shift.

Definition 3 ( [14, Definition 2.2.5]). The edge shift
of an automaton G = (V,E) is the language recog-
nized by the automaton G′ = (E,E′) with the tran-
sitions ((u, v, σ), (v, w, σ′), (v, w, σ′)) ∈ E′ for each
(u, v, σ), (v, w, σ′) ∈ E. We denote the entropy of the edge
shift of G as h(E) = h(G′).

4An automaton is irreducible if for every pair of nodes u, v, there exists a
path from u to v accepted by the automaton.
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Particularizing equation (9) to the edge shift gives

h(E) = lim
k→∞

1

k
log2 |Ek|. (10)

It turns out that the entropy of the edge shift is equal to the
entropy of the language recognized by the automaton if the
automaton is right-resolving [14, Proposition 4.1.13].

Definition 4 ( [14, Definition 3.3.1]). An automaton G is
right-resolving if for every vertex v, the outgoing edges have
different symbols.

Every regular language is recognized by a right-resolving
automaton. Moreover, there are automated ways to obtain such
an automaton from a starting representation of a language with
an automaton that is not right-resolving [14, Section 3.3].

C. Constrained p-radius

The constrained p-radius is defined as follows.

Definition 5. The constrained p-radius of a finite set of
matrices A constrained by an automaton G(V,E), denoted
as ρp(G,A), is

ρp(G,A) = lim
k→∞

[
|Ek|−1

∑
s∈Ek

‖As‖p
] 1
pk

.

Thus, the CJSR can be defined as the constrained p-radius for
p =∞.

Theorem 1 shows a relation between entropy of the switch-
ing signals and the p-radius.

Lemma 1 ( [31, Corollary B.5]). The limit

lim
k→∞

[∑
s∈Ek

‖As‖p
] 1
pk

(11)

converges.

Theorem 1. Consider a finite set of matrices A constrained
by an automaton G. The following relation holds

ρp(G,A) = 2−h(E)/p lim
k→∞

[∑
s∈Ek

‖As‖p
] 1
pk

.

Proof. By Lemma 1, (11) converges and by (10),
limk→∞ |Ek|−

1
pk = 2−h(E)/p.

D. Performance guarantees

In this section, we provide a new bound that relates the
accuracy of Program 1 to the entropy of the switching signal
and the p-radius of the switched system.

An important property of the p-radius is that it is increasing
in p.

Lemma 2 ( [31, Lemma 3.7]). Consider a finite set of matrices
A constrained by an automaton G. For any integers p ≤ q,

ρp(G,A) ≤ ρq(G,A) ≤ ρ(G,A)
≤ 2h(E)/qρq(G,A) ≤ 2h(E)/pρp(G,A). (12)

This Lemma is already known in the unconstrained case
where 2h(E) = m [32].

Remark 3. Lemma 2 shows that the p-radius provides an
upper and lower bound on the CJSR. See [12], [33] for
methods based on the veronese liftings computing the 2d-
radius either by computing a spectral radius or by solving
a linear program (see [34] for computation algorithms when
p is not an even integer).

We show the following bound stating that the solution found
by Program 1 is at least as good as the bound obtained by
computing the 2d-radius (see Lemma 2).

Theorem 2. Consider a finite set of matrices A constrained by
an automaton G. For any positive integer d, the approximation
given by Program 1 using homogeneous polynomials of degree
2d satisfies:

ρSOS-2d(G,A) ≤ 2h(E)/2dρ2d(G,A) ≤ 2h(E)/2dρ(G,A).
(13)

Note that the second inequality in (13) is simply (12).
Theorem 2 is proven at the end of this section.

We can see with (13) that if h(E) = 0, the approximation
is exact. This corresponds to the case where every node of G
has indegree and outdegree 1. In that case, the graph forms a
cycle of some length k and the CJSR is simply the kth root
of the spectral radius of the product of the matrices along this
cycle.

For the unconstrained switching case, 2h(E) is equal to the
number of matrices m. Theorem 2 is therefore the gener-
alization of (4) to the constrained case. A generalization of
(3) to the constrained case was already known (note that the
bound does not take into account the particular structure of
the automaton):

Theorem 3 ( [11, Theorem 3.6]). Consider a finite set of
matrices A ⊂ Rn×n constrained by an automaton G and
a positive integer d. The approximation ρSOS-2d(G,A) given
by Program 1 using homogeneous polynomials of degree 2d
satisfies:

ρSOS-2d(G,A) ≤
(
n+ d− 1

d

) 1
2d

ρ(G,A).

The results of Theorem 2, Theorem 3 and (8) are summa-
rized by the following corollary.

Corollary 1. Consider a finite set of matrices A ⊂ Rn×n
constrained by an automaton G and a positive integer d,
the approximation given by Program 1 using homogeneous
polynomials of degree 2d satisfies:

max
{(n+ d− 1

d

)− 1
2d

, 2−h(E)/2d
}
ρSOS-2d(G,A)

≤ ρ(G,A) ≤ ρSOS-2d(G,A).

We see that we can have arbitrary accuracy by increasing
d.

Our proof technique for Theorem 2 relies on the analysis
of an iteration in the vector space of polynomials of degree
2d. When this iteration converges, it converges to a feasible
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solution of Program 1. By analysing this iteration as affine
iterations in this vector space, we derive a sufficient condition
for its convergence and thus an upper bound for ρSOS-2d(G,A).

Consider the iteration

pv,0(x) = 0,

pv,k+1(x) = qv(x) +
1

τ

∑
(u,v,σ)∈E

pu,k(Aσx), v ∈ V (14)

for fixed homogeneous polynomials qv(x) of degree 2d in n
variables (not necessarily different) and a constant τ > 0.

When this iteration converges, it converges to a feasible
solution of Program 1.

Lemma 3. Consider a constant τ > 0. If there exist homoge-
neous polynomials qv(x) in the interior of the SOS cone such
that iteration (14) converges then ρSOS-2d(G,A) ≤ τ

1
2d .

Proof. Suppose the iteration converges to the polynomials
pv,∞(x). It is easy to show by induction that pv,k(x) is SOS
for all k. It is trivial for k = 0 and if it is true for k then it
is also true for k + 1 by (14). Since the SOS cone is closed,
pv,∞ is SOS. Now by (14), for each v ∈ V ,

pv,∞(x) = qv(x) +
1

τ

∑
(u,v,σ)∈E

pu,∞(Aσx)

so pv,∞(x) is also in the interior of the SOS cone. For each
edge (u, v, σ), by manipulating the above equation, we have

τpv,∞(x)− pu,∞(Aσx) = τqv(x)+
∑

(u′,v,σ′)∈E,
(u′,σ′)6=(u,σ)

pu′,∞(Aσ′x)

so τpv,∞(x)−pu,∞(Aσx) is SOS. Therefore ({ pv,∞(x) : v ∈
V }, τ 1

2d ) is a feasible solution of Program 1.

In view of Lemma 3, it is thus natural to analyse under
which condition iteration (14) converges.

Proof of Theorem 2. Iteration (14) is an affine map on the
vector space of homogeneous polynomials of degree 2d. It
is well known that if the convergence is guaranteed when we
only retain the linear part of the affine map then it is also
guaranteed for the affine iteration.

Therefore we can analyse instead the following iteration

pv,0(x) = qv(x),

pv,k+1(x) =
1

τ

∑
(u,v,σ)∈E

pu,k(Aσx), v ∈ V

We can see that

pv,k(x) =
1

τk

∑
s∈E−k (v)

qs(1)(Asx)

where s(1) denotes the first node of the path s.
Consider a norm ‖ · ‖ of Rn and its corresponding induced

matrix norm of Rn×n. For each v ∈ V , we know by continuity

of qv(x) that there exist βv > 0 such that qv(x) ≤ βv‖x‖2d
for all x ∈ Rn. Let β = maxv∈V βv , then

pv,k(x) ≤
1

τk

∑
s∈E−k (v)

βs(1)‖As‖2d‖x‖2d

≤ β

τk
‖x‖2d

∑
s∈E−k (v)

‖As‖2d

∑
v∈V

pv,k(x) ≤
β

τk
‖x‖2d

∑
s∈Ek

‖As‖2d

By Theorem 1, if τ > 2h(E)ρ2d(G,A)2d, then
limk→∞

∑
v∈V pv,k(x) = 0 hence limk→∞ pv,k(x) = 0

∀v ∈ V since the polynomials pv,k belong to a proper cone.
We obtain the result by Lemma 3.

E. Improving the automaton-dependent bounds

If strong duality holds for a convex problem, its feasibility
is equivalent to the non-existence of an infeasibility certificate
(see [35, Section 5.8]). An infeasibility certificate contains
one entry per constraint and if this entry is zero for a given
constraint then the infeasibility certificate remains valid if the
constraint is removed from the problem. In this section, we
show how this fact allows to improve the guarantee given by
Theorem 2 using the sparsity of the infeasibility certificate.

We show in [31, Lemma A.1] that strong duality holds for
Program 1 with a fixed γ. This allows Program 1 to be solved
by binary search on γ: Given a fixed value γ, the problem is
solved with γ = γ; if a feasible solution is found, it means that
γ? ≤ γ, otherwise, an infeasibility certificate is found showing
that γ? ≥ γ. By Corollary 1, an infeasibility certificate for γ
provides the following lower bound certificate on the CJSR:

max
{(n+ d− 1

d

)− 1
2d

, 2−h(E)/2d
}
γ ≤ ρ(G,A).

In Theorem 4 we show a simple way to improve this lower
bound certificate by inspecting the sparsity of the infeasibility
certificate.

Definition 6. Consider a finite set of matrices A constrained
by an automaton G(V,E). Given an infeasibility certificate µ̃
of Program 1, we denote by Eµ̃ the set of edges e ∈ E such
that the entry of µ̃ corresponding to constraint (5) with edge
e is nonzero.

Theorem 4. Consider a finite set of matrices A constrained
by an automaton G(V,E). For any positive integer d, if there
exists an infeasibility certificate µ̃ of Program 1 with γ = γ
then

2−h(Eµ̃)/2dγ ≤ ρ(G,A). (15)

Proof. We consider the graph Gµ̃(V,Eµ̃). Since the infeasi-
bility certificate µ̃ is zero for constraints (5) with edges e ∈
E\Eµ̃, µ̃ remains a valid infeasibility certificate for Program 1
with input (Gµ̃,A) and γ = γ, hence γ ≤ ρSOS-2d(Gµ̃,A). By
Theorem 2, 2−h(Eµ̃)/2dρSOS-2d(Gµ̃,A) ≤ ρ(Gµ̃,A) and since
Eµ̃ ⊆ E, ρ(Gµ̃,A) ≤ ρ(G,A). We obtain (15) by combining
these three inequalities.
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Example 4. Applying the result of this section to the running
example gives the result of Figure 3. The “Kronecker lift”
lower bound is the bound obtained by using the Kronecker
lift to transform the constrained system with 9 edges into an
unconstrained system with 9 matrices, one per edge. The upper
bound obtained with both systems is the same [11, Proposi-
tion 3.9] hence we can use the guarantee for unconstrained
systems (4) with m′ = |E| = 9 for the constrained system.

The entropy of the switching signal h(E) used in The-
orem 2 is log2(2.61803), while the value

(
n+d−1

d

)
used in

Theorem 3 is d + 1 since n = 2. Therefore, as we can see
on the figure, the lower bound guaranteed by Theorem 3 is
more accurate for d = 1 only. The entropy h(Eµ̃) used in
Theorem 4 is log2(1.61803) for d = 1, 2 and log2(1.83929)
for d = 3, 4, 5, 6, it is more accurate than the three other lower
bounds for every d.

The lower bound obtained by computing the 2d-radius is
the most accurate one among all lower bounds for the same
d for this example. In practice, better lower bounds can be
obtained from the solution of Program 1 using the techniques
of [30], [31].

1 2 3 4 5 6

0.6

0.7

0.8

0.9

1.0

1.1

CJSR
Upper Bound
Theorem 2
Theorem 3
Theorem 4
Kronecker lift
2d-radius
2d-radius × 2h(E)/2d

Figure 3: Result of Example 4 for d = 1, 2, 3, 4, 5, 6; the value
of d is given in the horizontal axis. The exact value of the
CJSR found in [30] is represented by the horizontal line. The
upper and lower bounds given by Lemma 2 using the 2d-radius
are denoted “2d-radius”. The upper bound found by Program 1
with polynomials of degree 2d is denoted “Upper Bound”.
From this upper bound, three lower bounds can be obtained
using Theorem 2, Theorem 3 and Theorem 4. A fourth lower
bound can be obtained using the “Kronecker lift” as explained
in Example 4.

III. LOW RANK REDUCTION

Suppose we want to compute the CJSR of a finite set of
matrices A , {A1, . . . , Am} ⊂ Rn×n of rank at most r con-
strained by an automaton G(V,E). For σ = 1, . . . ,m, since

the matrix Aσ has rank at most r, there exists Xσ, Yσ ∈ Rn×r
such that Aσ = XσY

>
σ . This can be used to build a new system

with matrices of Rr×r with the same CJSR. This new system
can therefore be used to reduce the computation of the CJSR
of a system of low rank matrices to a system of matrices of
small size. Note that in the case r = 1, it is known that the
CJSR is computable in polynomial time [21].

Theorem 5 (Low Rank Reduction). Consider a finite set of
matrices A , {A1, . . . , Am} ⊂ Rn×n of rank at most r
constrained by an automaton G(V,E).

For a fixed decomposition Aσ = XσY
T
σ for σ = 1, . . . ,m

where Xσ, Yσ ∈ Rn×r, denote the set of matrices A′ ,
{A′σ1σ2

| σ1, σ2 = 1, . . . ,m} ⊂ Rr×r where A′σ1σ2
=

Y Tσ1
Xσ2 . Define the graph G′(V ′, E′) with V ′ , E and

E′ , { ((u, v, σ1), (v, w, σ2), σ2σ1) | (u, v, σ1), (v, w, σ2) ∈ E }.

Then the two CJSR are the same: ρ(G,A) = ρ(G′,A′).

Proof. As the CJSR does not depend on the norm used, we
choose a norm ‖ · ‖ that is submultiplicative, that is ‖AB‖ ≤
‖A‖‖B‖ for all matrices A,B.

Let β = maxmσ=1 max{‖Xσ‖, ‖Y Tσ ‖}. If β = 0, then
ρ(G,A) = 0 = ρ(G′,A′). Therefore we may assume that β >
0. Consider a positive integer k. We first show that [ρ̂k(G,A, ‖·
‖)]k ≤ β2[ρ̂k−1(G

′,A′, ‖ · ‖)]k−1 where ρ̂k(G,A, ‖ · ‖) is
defined in (2). For any G-admissible (σ1, σ2, . . . , σk), we have

Aσk · · ·Aσ2
Aσ1

= XσkA
′
σkσk−1

· · ·A′σ3σ2
A′σ2σ1

Y Tσ1
.

using the submultiplicativity of the norm chosen, we have

‖Aσk · · ·Aσ1
‖ ≤ ‖Xσk‖ · ‖A′σkσk−1

· · ·A′σ3σ2
A′σ2σ1

‖ · ‖Y Tσ1
‖

≤ β2‖A′σkσk−1
· · ·A′σ3σ2

A′σ2σ1
‖

≤ β2[ρ̂k−1(G
′,A′, ‖ · ‖)]k−1.

The same way, we now show that [ρ̂k−1(G
′,A′, ‖ ·

‖)]k−1 ≤ β2[ρ̂k−2(G,A, ‖ · ‖)]k−2. For any G′-admissible
(σ2σ1, . . . , σkσk−1), we have

‖A′σkσk−1
· · ·A′σ3σ2

A′σ2σ1
‖ ≤ ‖Y Tk ‖ · ‖Aσk−1

· · ·Aσ2‖ · ‖X1‖
≤ β2[ρ̂k−2(G,A, ‖ · ‖)]k−2.

In summary, we have

ρ̂k(G,A, ‖ · ‖) ≤ β
2
k [ρ̂k−1(G

′,A′, ‖ · ‖)]
k−1
k

≤ β 4
k [ρ̂k−2(G,A, ‖ · ‖)]

k−2
k .

Taking the limit k → ∞ we get ρ(G,A) ≤ ρ(G′,A′) ≤
ρ(G,A).

Example 5. Consider an unconstrained switched system with
2 rank r matrices A1, A2. This system is equivalent to the
constrained switched system with automaton represented in
Figure 4a. Its low rank reduction is represented in Figure 4b.

Remark 4. The matrices Xσ, Yσ of the factorization Aσ =
XσY

T
σ are not unique. For any invertible matrix S ∈ Rr×r,

Aσ = (XσS)(S
−1Y Tσ ) also gives a factorization. However, if

ρ(G′,A′) is approximated using the sum of squares algorithm
of Section II-A, any two factorizations will give the same
approximation. The effect of using XσS and YσS−T instead
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0

A1 = X1Y
T
1

A2 = X2Y
T
2

(a) Automaton G. We
have V = {0} and E =
{(0, 0, 1), (0, 0, 2)}.

1 2

A′11 = Y T1 X1 A′22 = Y T2 X2

A′21 = Y >2 X1

A′12 = Y >1 X2

(b) Automaton G′. We have V ′ = {1, 2}
and E′ = {(1, 1, 11), (1, 2, 21), (2, 1, 12),
(2, 2, 22)}.

Figure 4: Simple example of the low rank reduction.

of Xσ and Yσ will simply be a linear change of variable of
the polynomial pσ; see Section II-A.

What is the impact of this reduction on the computational
complexity and accuracy of the approximation ? The entropy
of the language of allowed switching signals is the same for
the initial system and the reduced system hence the guarantee
in Theorem 2 is the same for both systems. However, the
dimension of the matrices goes from the dimension of the
matrices n to their rank r hence for low rank matrices the
guarantee in Theorem 3 is improved.

In terms of computational complexity, there can be up to m
nodes and m2 edges in the automaton of the reduced system.
Therefore, even if the size of the matrices decreases from n
to r, the number of variables and constraints increases. This
shows that the reduction only decreases the computational
complexity if the rank of the matrices is sufficiently low.

IV. CONCLUSION

This paper uncovers a first relation between the com-
plexity of the discrete dynamic of a hybrid system and the
computational performance of convex optimization methods
analysing the stability of its continuous dynamic. The analysis
is performed on discrete linear switched systems, a subclass
of hybrid systems, but we believe that it should be extended
to other classes of hybrid systems such as markovian switched
systems where the entropy of the discrete dynamics is influ-
enced by transition probabilities.
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