VIDEO TECHNIQUES IN THE FEEDBACK CONTROL

OF AN ELECTROMECHANICAL CONTINUUM

by
JOHN LAWRENCE DRESSLER
S.B., Massachusetts Institute of Technology
(1964)

S.M., Massachusetts Institute of Technology
(1966)

E.E., Massachusetts Institute of Technology
(1967)
SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR TEE DEGREE OF

DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

;

August, 1971 {_ L. Teb a7y

Signature of Author --

Department of Electrical Engineering, Sepgember

Certified by
Thesis Superégsor

- S i e i e i —— b

Accepted by y 4 S S _

, :
Chairman, Departmental Committee on Graduate Students

(CL S INST, ’tc'

MAR 23 1972

LIBRARIES




2

VIDEO TECHNIQUES IN THE FEEDBACK CONTROL
OF AN ELECTROMECHANICAL CONTINUUM

by

John Lawrence Dressler

Submitted to the Department of Electrical Engineering
on September 3, 1971, in partial fulfillment of

the requirements for the degree of Doctor of Science

ABSTRACT

The feedback control of continuum systems with dimensions large com-
pared to potentially unstable wavelengths requires a large number of
spatially distributed feedback sensors and drivers. The multiplicity
of signals to be amplified and processed suggests the use of computers
or other discrete time devices which handle signals on a ''time-sharing"
basis. Typically, scanning techniques are envisioned to sense and
drive, thus introducing to an analytical representation discreteness
in both time and space. A general method, based on the Fourier super-
position of wavetrains, is developed to describe infinite continuum
svstems with discrete spatial and temporal feedback. Dynamics are
represented by a generalization of the dispersion equation, with Z
transforms used to provide closed-form expressions if the discreteness
is in space or in time only. The Bers-Briggs criterion is generalized
to differentiate between absolute instabilities and amplifying waves

with the discrete feedback.

The quasi-one-dimensional model used to illustrate analvtical techniques
represents typical systems found using electron beams and plasmas,
particularly the dynamics of the Z-8 hydromagnetic pinch. An experi-
ment is used to demonstrate temporally and spatiallv discrete feedback

control of the Rayleigh-Taylor instability.
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CHAPTER 1

INTRODUCTION

1.1 Background and Scope

The waving of a flag in the breeze, the generating of waves on the
ocean by the wind, the breaking up of a jet of water, and the falling of
water from a glass turned upside down are all common examples of continu-

um instabilities. Many similar instabilities occur in the fields of

boundary layers, thermonuclear machines, magnetohydrodynamic channel flows
and levitation and orientation of liquids by magnetic of electric fields.

Often, these instabilities are undesirable, and a means of eliminating

them is needed.

One method of stabilizing a continuous medium is by coupling to a

passive structure. One example of this method is to hold a piece of

paper across the mouth of a glass of water. When the glass is inverted,
the paper will be held in place by the ambient air pressure and the water

will not fall from the glass. The paper, a passive medium, has coupled

to the surface of the water and made it stable. A second example is

the stabilization of the boundary layer of an object moving through

water. Kramer and Benjamin have found that if the object is covered

with an elastic covering, the disturbances in the boundary layer will be
damped, and under certain conditions, the flow can remain laminar. The
result is less drag as the object moves through the water.

A third example is the stabilization of a plasma by coupling the mag-

netic field to a conducting wall, and by coupling to the plasma surface

by a passive network. The former is explained by Rose and Clark (pages
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258-270) and the latter by Carlye,

For many situations, a suitable method of controlling instabilities
by coupling to a passive continuum has not been found. The other possi-
bility is that stability can be achieved by coupling to an active struc-
ture, that is, by the use of a continuum feedback control system. The
continuum feedback control system must detect the disturbances on the
continuous medium, and then apply the proper restoring force by drawing
on "external’ sources of energy.

A continuum control system adds another dimension to conventional
control theory. In a conventional, or lumped-parameter control system,
the variables are functions only of time. In the continuum, or distri-
buted-parameter control system, the variables are functions of time and
of one or more spatial parameters. The lumped-parameter control system
must control perturbations only in time; the continuum feedback system
must, ideally, control perturbations of variables at every point in space
that the variable is defined.

Fortunately, it is not necessary to detect or to drive every point
on a continuum in order to stabilize it. The experiment of placing a
piece of paper over the mouth of a water glass can be repeated with a
piece of screen substituted for the paper; the coupling of the screen
to the liquid surface can be sufficient to stabilize that surface. This
experiment illustrates the fact that it is possible to stabilize the
entire surface by coupling to only certain points of the surface.

Because of the practical difficulties of developing a feedback

control that couples to every point on the unstable surface, continuum
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feedback control has developed on a discrete spatial basis. The active
control systems that have been built have measured deflections only at
discrete points, and have applied restoring forces to segments of the
surface. This discrete spatial approach will be continued in this thesis,

and the added complexity of discrete time control will be considered.

1.2 Review of Previous Work

Continuum feedback control has been developed to some degree in at

least three areas. In industry, continuum control has been used to improve

distillation tower operation and chemical and nuclear reactor operation.
Continuum feedback control has also been used to stabilize electrome-
chanical systems, such as liquids stressed by electric fields, and elec-

tron beams. The third area is the stabilization of a confined plasma for

the purpose of power generation.
The use of continuum feedback control has been studied for the control

of chemical processes by Gould, Desalu, Schlaepfer and Murry. The control

of a nuclear reactor has been studied by Weiberg. This type of process is

usually dominated by transport and diffusion.

Because of the boundary conditions which are imposed on the nuclear

or chemical reactor by the influx and effluent, the mathematics of the

process requires an infinite number of spatial eigenfunctions. The

method used by Murry for the control of a reactor was to detect and to

feed back only to a certain number of these spatial modes. The infor-

mation from sensors was processed to find the amplitudes of these specific

modes. The actuators were then driven in such a way that only the proper

modes would be affected. The purpose of this work was to increase the

damping of the most significant modes of the system so that disturbances
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would damp faster. The problems that were analyzed are the inexact deter-
mination of the modes with a finite number of sensors and the ability to
drive only specific modes. Desalu extended Murry's method, and generated
the control function to maximize profit for a regenerative chemical pro-
cess.

The problem of stabilizing a continuum electromechanical system with
discrete spatial feedback has been analyzed by Melcher (1965, 1966),
Crowleyv (1967), Jefferis, and others. Jefferis has analyzed the prevention
of the buckling instability on an axially-compressed beam. Crowley has
analyzed the control of a convective kink instagility on a water jet that
was stressed by an electric field. The deflection of the jet was sensed
at discrete points in space and a restoring force applied to segments of
the jet. This problem is of interest because the control system made
possible the generation of absolute instabilities along with the natural
convective instabilities of the system. elcher has stabilized a con-
ducting ''membrane'' stressed by an electric field and also a liquid surface
stressed by an electric field. In both cases, stability was achieved by
applying a constant force to segments of the liquid or membrane surface.

Recently, the efforts to generate power from a fusion reaction have
generated interest in the area of continuum feedback control. The de-
vices which have been built to contain a thermonuclear plasma have met
with many instability problems. One group of these instabilities appears
as fluid type motion of the plasma surface. A possible method of con-
trolling such instabilities is to use a distributed feedback control sys-

tem to couple to the plasma surface. If the proper electromechanical
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interaction can be achieved, the disturbances on the plasma surface could
be prevented from growing.

The use of continuum feedback control for stabilizing a plasma had
been suggested by Melcher (1966). The idea did not receive much interest
until Arsenin, Zilkov and Chuyanov succeeded in stabilizing fluid insta-
bilities in a simple mirror machine. The success of their experiment led
to attempts by Parker and Thomassen to achieve similar results. Parker
and Thomassen found that they could couple to a certain unstable mode, but
not all of of the unstable modes. After these early efforts, many exper-
iments were conducted to apply feedback to plasma instabilities. These
experiments were reported at the Symposium on Feedback and Dynamic Control
of Plasmas, at Princton University.

In addition to the use of feedback to stabilize a continuum system,

a large amount of work has been done to apply optimal control to distri-
buted systems. A comprehensive list of papers, reports, and books which
deal with this subject has been compiled by Robinson. The experiments

done on the electromechanical continua and on the plasmas can be put into

a class of control systems represented by Figure 1.1. The system being

controlled is represented by the string stretched between two rigid sup-
ports. The string displacement is detected at discrete points and a

feedback force applied to a segment of the surface. There is a separate

feedback loop for each segment of the surface. This type of apparatus,

therefore, uses one sensor for each feedback electrode.
This approach is different from the chemical reactor controls, where
the output from all sensors is processed and the processor generates a

signal for each actuator. The number of sensors and actuators used on a
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chemical reactor are not necessarily equal.

The successes and failureg of the experiments with plasma demonstrated
a result that was obtained by Melcher (1966) in an earlier experiment. He
found that the continuum system must be sampled in space at a spatial fre-
quency at least twice that of the unstable waves. The feedback apparatus

used by Melcher, or by the plasma experimenters, used sensors to measure

periodically the disturbances on the continuum. If the distance between

the sampling points is one half the wavelength of the disturbance, then
this disturbance cannot be detected by the control system; this is
illustrated by Figure 1.2.

The fact is, of course, a consequence of the sampling theorem, better

known in the context of time functions. This theorem states that, in order

to retain all of the original information of a signal after sampling, the
sampling rate must be at least twice as fast as the highest frequency in

the original signal. In continuum feedback schemes, only the informa-

tion on the unstable wavelengths is of concern. Therefore, the spatial

sampling must occur at least twice the spatial frequency of the unstable

modes.

1.3 Overview
For many continuum systems, the extent of the volume to be controlled

is large, and the wavelength of the instability is small. If one were

trying to control the liquid coating applied to a sheet of paper in a
modern paper coater, he would be controlling essentially a surface in a
system ten feet wide, with an unstable (Taylor) wavelength of one-half

inch. The limitations imposed by the sampling theorem would require an
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SENSORS

Figure 1.2 Disturbances with a wavelength
of two sensor spacings cannot be

detected.
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array of 24,000 sensors and feedback actuators for each foot of length

of the paper. If the control system were built to stabilize a large-
scale thermonuclear reactor, a huge number of feedback loops might also
be required. It is probably unrealistic to consider having thousands of
individual feedback loops; the cost would be enormous and acceptable
reliability would be hard to achieve. One method of eliminating some of
the hardware requirements would be to use a time~multiplexing scheme,
which is illustrated in Figure 1.3. In this system, one wideband feed-
back amplifier is used by all the feedback loops. The amplifier input is
connected to one of the displacement detectors by the scanning system,
and the amplifier is connected to proper feedback electrodes by the
switching network. While the time-multiplexing will reduce the quantity
of equipment needed, it complicates the theoretical prediction of the
system dynamics. The equipment needed is also more complex, because a
scanning and switching network are needed.

The analysis of a continuum system with discrete spatial and discrete
temporal feedback has been done by Thomas. He has analyzed the control
of a membrane stretched between two rigid supports and stressed on both
sides by electrical fields. To describe the membrane deflections,

Thomas used a normal mode expansion. Unfortunately, as the number of
feedback stations increases, his method of analysis grows more compli-

cated; for large systems, this method becomes unwieldy. The reason for

this complexity is that, as the number of feedback stations increases,

the number of normal modes necessary to describe the svstem also increases.
In his paper, Melcher (1966) shows that, as the number of stations

is increased, the effect of the boundaries on the system becomes less
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important. He analyzed a continuous time system with normal modes and

also with a Fourier-transform technique. The normal mode expansion includ-
ed the effects of the boundaries, but the Fourier-transform analysis con-
sidered the system to be infinitely long, with no boundaries. The results
of the analysis indicated that the boundaries may be ignored in estimat-
ing the limitations of the feedback after the number of feedback stations

is four or more. Therefore, if a large system is to be analyzed, there 1is

no need to use a normal mode expansion, with its resultant complexity.
The Fourier-transform technique will provide adequate results.

Ignoring the boundary conditions simplifies the discrete-space,
continuous-time analysis, and also provides sufficient accuracy. It is

likely that ignoring boundary conditions for the discrete-time, discrete-

space problem will also simplify the analysis. This thesis will therefore

be directed toward generating a dicrete-space, discrete-time theory which

ignores system boundary conditions. The development of this theory is a

next step' to be taken in continuum feedback control theory.
The topics that will be developed for the thesis are explained in

the following sections. The basic method of analysis will be the Z

transform, which is better known for its application to time-sampled

signals. This technique is developed for time-sampled systems, space-

sampled systems, and finally for time~ and space-sampled systems.
Techniques are related to the prototype model described in the next

section. It should be emphasized that they are applicable to a wide

range of continuum control problems. In the following chapters, the

general class of situations that can be represented following the approach
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exemplified will be pointed out.

The Electrically Stressed String

The continuum system used extensively as a case study in this thesis

is shown in Figure 1l.4. A string of density per unit length R is stretched

along the x-axis with a longitudinal tension of Y. The string is main-
tained at ground potential, and is moving at a velocity of u along the x

axis. The variable £(x,t) represents the deflection of the string from

its equilibrium position.

There are two mechanisms for damping the deflections of the string.
There is damping because the string is not perfectly elastic, 2nd also
damping due to the material between the string and the electrodes. The
damping in the string can be considered as moving with the string, thus
it will have a3 different effect than that in the surrounding stationary
material.

There is an electrode above the string, and another below the string.
These electrodes are at a bias of Vo volts with respect to the string.

In addition to the bias voltage, there is a small driving voltage,
vd(x,t) added to the top electrode and subtracted from the bottom one.

It is assumed that the deflections of the string are small compared to
the distance d, and also that the wavelengths are long compared to d.
With these assumptions, the electric field will be almost entirely in the

y direction. This y-directed field is:

E, = Vv (xt)/(d *§&) (1.1)

y
where the top sign gives the field above the string and the bottom sign

gives the field below the string.
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From the Maxwell stress tensor, the force in the +y direction can

be found at each point on the string.

- 1 2 _ 1 2
£, = 7St 5 €, E2 (1.2)

By using Eq. (1.1), the force can be linearized to

ZE°V§ ZEOVOVd(x,t)
f (x,t) = ——5— &(x,t) + 5 (1.3)
¥ d d

The equation of motion considering damping is derived in Morse and
Feshbach (Chapter 2), and also in Shortley and Williams (Chapter 19). If
the forces due to the electric fields and the effects of convection are

added to the equation of motion, the result is

2e Vg 2e Vv
Q 0O 0

D’ _ azg . DE , 3§ 0 d
R D7e2™ Y 3x & D B 3 * ot az (1.4)

where o' is the damping coefficient due to internal damping, and B' is
the damping due to the external stationary medium; D/Dt is the substant-

ive derivative defined as

=(%€ +u==) (1.5)

Equation (1.4) can be rearranged to cbtain a more general form:

1 D _ 2% DE_g38, 2
vp De? &= ox2 % D B ot + kc Stevy (1.6)
where \//T;" (1.7a)
vP = R .7a
o' (1.7b)

=
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L}

g = %. (1.7¢c)
Zeovz

2 = X2

kc . (1.74)
vd
Zeovo

g = —— (1.7e)
vd?

The string model has been picked because it is mathematically similar

to many systems which are of practical importance.
The equation of the string, as it is presented in Eq. (1.6), can

represent many physical situations. If the deflection £ is considered

to be a rotational disturbance on a long structure (Woodson and Melcher,
Problem 11.12), the equation describes rotational waves. Similarly, the
equation can describe systems which have compressional waves (Woodson and

Melcher, Chapter 11).

When the velocity u is less than the phase velocity vp, the equation

models a convecting process such as a paper web moving through a paper
macihine , For cases where u is greater than Vo the equation can model

a jet of liquid (Crowley). When the tension is allowed to approach zero,

an electron beam is modeled by Eq. (l.6)(Woodson and Melcher, Chapter 10).

The force generated by the bias voltage on the electrodes, ki £, has

the appearance of a negative spring constant. When the string is per-

turbed from its equilibrium, this force acts to make the deflection grow.
If this term is large enough, the deflection will be statically unstable.
This equation does not describe strictly mathematically certain insta-
bilities such as Ravleigh-Taylor instability in a fluid or plasma. How-
ever, because this equation does exhibit static instabilities which are

similar to the Rayleigh-Taylor type of instability, the string model can
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give some insight into the Ravleigh-Tavlor instability.
The last term in Eq. (1.6), g vd(x,t), represents a way to drive the
string. If the string is unstable because of a resistive wall or a
large negative spring constant, the driving term provides a way to control
the instability. The ability to control these instabilities is useful for
improving electron beams and for containing a thermonuclear plasma.

The Fourier-LaPlace Transform

The variables used to describe the system are considered to have a
LaPlace transform in time and a Fourier transform in space. For example,

the displacement of the string, £, is related to its transform Z by the

relations
+o +o
f .
2(K,S) = E(x,t) e KX 7St 4y 4e (1.8)
i
" jorkO +o
-0 —_
E(x,t) = ?EF%?E' =(k,s) eI¥* 5t 4k 4s (1.9)
_joo-q-o' =00

There are occasions when the transform of a function is taken only in

space or time; in these instances, the transform of the variable will be

defined by
+
E(x,8) = | E(x,t) e 5% 4t (1.10)
-0 +j°’+0'
£(x,t) = E%E’ £(x,5) e°C ds (1.11)
and 400 -j"°+0'
E(K,t) = { c(x,t) e I%F 4y (1.12)
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4
E(K,t) K gk (1.13)

iy

E(x,t) =

- 00
The procedure is to use the capital letter to designate the transform in

both space and time, and to use the symbol ~ to designate the transform

of either space or time. The parameter list is used to resolve the

ambiguity whenever the symbol ~ is used.

Qutline

The Z transform (Jury, Chapter 1) provides the basis for analyzing

sampled data control systems. With this transform, transfer functions

and servo-loops may be generated. The Z transform technique has ccmmonly

been used only on lumped-parameter systems with temporally discrete sig-

nals.

In Chapter II, the Z transform is used to describe a continuum with

discrete temporal feedback. The infinite string is driven by a control

signal that is spatially continuous, but can be adjusted only at discrete

points in time. This topic is presented to introduce Z transforms to

continuum systems in the usual context of temporally discrete signals. A

dispersion equation is derived in terms of the continuous wavenumber K

and the discrete frequency Z. An analysis is made to determine the effect

of the system's parameters on the stability of the string.

In Chapter III, the infinite string is driven by a control signal

that is temporally continuous and spatially discrete. Z transform theory

is used to describe the discrete spatial nature of this system. The dis-

crete spatial wavenumber D is defined, and a dispersion equation in terms

of D and the continuous frequency S is derived. A stability analysis is
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made with the dispersion equation.

Many continuum feedback systems have only a few feedback stations
and it is not realistic to consider these systems to be infinite in the
longitudinal directions. The effects caused by the boundaries on the
longitudinal axis of these systems must be considered. When these bound-
aries are applied, the system can no longer support modes for any value
of D. The allowed modes on the system can occur for only a few eigen-
values of D. In Chapter IV, a method is presented for finding the eigen-
values of D, and the corresponding eigenmodes for a discrete spatial sys-
tem with longitudinal boundaries.

A stability criterion for spatially discrete systems with convection
is developed in Chapter V. For spatially continuous systems, the Bers-
Briggs criterion can be used to determine whether a wave is amplifying or
evanescent, and whether an absolute instability is present. This criterion
is modified so that the same determinations can be made for a spatially

discrete svstem. The convecting string with discrete spatial feedback is

used to illustrate the modified Bers-Briggs criterion.
The stabilization of the infinite string by a control system that is

discrete in both space and time is studied in Chapter VI. The dispersion

equation is found either in terms of Z and K, or in terms of S and D.

This dispersion equation is studied to find the values of parameters which

give stable operation.
Chapter VII is used to describe an experiment in which a continuum

is stabilized by a spatially and temporally sampled control system. A

layer of liquid is supported against gravity by air pressure. The control
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system is used to prevent the Rayleigh-Taylor instability from developing
at the liquid-air interface.

The results of the thesis are summarized in Chapter VIII. This
chapter will also show the general applicability of the techniques in this
thesis to other continuum feedback systems. The procedure for extending
the idea of a discrete spatial wavenumber to three-dimensional systems

will be discussed, and suggestions for further research are made.
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CHAPTER II
TEMPORALLY SAMPLED FEEDBACK

2.1 Introduction

It was explained in Chapter 1 that continuum feedback control sys-

tems which have been realized are spatially discrete systems. When these

systems are large compared to the wavelengths which are to be controlled,

a large number of feedback sensors and drivers is required. The multipli-

city of signals to be generated and processed can require a large amount
of hardware, such as amplifiers and filters. In the experimental portion
of this thesis, the hardware requirements are reduced by generating the
feedback signals with one amplifier and a time-sharing techknique. The
time-sharing technique makes this system spatially and temporally discrete.
The topic considered in this chaptef is the stabilization of a contin-
uum by means of a discrete time control system. The discrete spatial
nature of the feedback will be ignored in this chapter, and the feedback
driving and sensing signals will be considered as continuous functions of
space. This type of system can be used to model a continuum system which
has adequate spatial resolution, but does not have good temporal resolu-
tion. An example of a system in this class is a television system with

a slow sweep rate. The television can provide good spatial resolution

of a stationary object. However, when the object is moving, the temporal

changes in the image cannot be followed by the television system, and a

blurred image results. If this television system were somehow used in a

control system, the spatial discreteness could be ignored, but the temp-
oral discreteness would have to be considered.
The principal reason for analyzing this system of discrete temporal,

continuous spatial feedback is to introduce Z-transform theory, which is
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commonly used to describe discrete time-lumped parameter systems. After
their introduction in this chapter, Z transforms will be used to analyze
discrete spatial, continuous temporal systems, and then discrete spatial,
discrete temporal systems.

Most of the material presented in this chapter about Z transforms can
be found in Jury (Chapter 1). The only significant change that has been
made is that the variables are functions of both space and time. Jury
considers only variables that are functions of time.

Continuous spatial discrete temporal feedback has been studied before
by Thomas (1966) for the case of a string with fixed ends. In his analy-
sis, the deflections of the string were represented by a series of normal
modes. The problem will now be analyzed for the case of a string whose

boundaries are at infinity, and whose deflections can be described by a

Fourier integral instead of a Fourier series. It is not easier, mathe-

matically or conceptually, to analyze the case of an infinite string than
to analyze that of a string with longitudinal boundaries. However, when
the complication of spatial discreteness is added in the later chapters,
infinite systems are found to be much easier to analyze than finite sys-
tems. Since this chapter is to serve as a basis for the topics treated
later, the infinite string is studied here.

2.2 Description of the System

The continuum, which will be stabilized, is the string of Chapter L

with damping and no convection. The equation of motion for this serves as

a case study in exemplifying a general approach, and 1is

2 2
1 2L0ye) . 2850 R, 2 £ + gv nE)  (2.1)



The driving voltage, vd(x,t). can be adjusted continuously in space,
but it can only be changed at the discrete times t = 0,T, 2T, ..... The
form in time of this voltage is shown in Figure 2.1 for a particular point
in space and the form in space is shown in Figure 2.2 for several points
in time.

This forcing voltage is the type that is usually generated by a con-

trol system that includes a computer. The computer updates the driving
force at discrete points in time, and holds it constant between these dis-
crete times. In a realistic system, the computer probably could not update
the driving signal at each point in space at essentially the same time.
The complications caused by the signal not being changed at the same time
at every point in space are beyond the scope of this chapter and will be
treated in Chapter VI.

The transfer function which relates the deflection of the string to

the driving voltage may be found by taking the LaPlace transform in time

and the Fourier transform in space of Eq. (2.1) to obtain:

(ko) [ 2 + k2 + Bs - k2] = g Vy(k,s) (2.2)
D N
It is convenient to normalize the length of time, T, to one. This is
accomplished with the following dimensionless variables:
S = sT (2.3a)
§ = pvpzr (2.3b)
K = kTv (2.3c)
(2.3d)

N = k2 v?T?
P
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1 | | | ]
0] T 2T 3T 4T 5T
Figure 2.1 The driving voltage at a fixed point

as a function of time
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f(x,t) = v: ngvd(x,t) (2.3e)
The transformed equation can now be written as:
E(K,S) = ey FG.S) (2.4)
and the transfer function for the string is:
L (2.5)

H(K,S) = ST 335 +RE - W

The control scheme used in this system measures or ''samples' the de-

flection of the string at discrete instants in time. A restoring force

proportional to this measured signal is then generated in an attempt to

drive the deflections to zero. The system is complicated, because f(x,t)

is the discrete temporal function shown in Figures 2.1 and 2.2, and its

transform, F(K,S) is not easily found. Z transforms are used in the fol-

lowing sections to overcome the analytical difficulties caused by the

temporal discreteness.

2.3 Transforms of Temporally Sampled Signals

Detection Scheme: Temporal Sampling

The detection scheme incorporated in the control system measures
or 'samples' the string's deflection at the regularly spaced sampling

instants in time. Between the sampling times, the detector is producing

no information about the deflection of the string, and therefore the

sampled deflection is zero for this period of time. This sampled value of

the deflection can be thought of as impulse sheets, parallel to the x

axis, and spaced at regular intervals along the t axis. The locations

of these impulse sheets on the t axis are the sampling times. The
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amplitude of the impulse sheets along the x axis represents the amplitude
of the string's deflection at the sampling time. These impulse sheets are

shown in Figure 2.3.

The sampled deflection, &*, can be written as a product of the de-

flection and a train of impulse sheets:

, n=+
Ex(x,£) = E(x,£) ] u  (e-nT)

n=0

(2.6)

The lower limit of the summation is zero, because the system is considered

to be at rest for t < 0. This sampling process can be represented by the

network in Figure 2.4. The system deflection and an impulse train i*x(t),
(the sampling function), are multiplied together to produce the sampled
deflection (sampled function).

Single-Sided Z Transforms

The Fourier-LaPlace transform of the time-sampled deflection can be

found by two different methods. The first method shown here uses complex

integration to get the transform. The second method is of less general

applicability, and involves finding the sum of an infinite series.
If two functions are multiplied together, the Fourier-LaPlace trans-

form of the product is the convolution in K and S space of the two ori-

ginal transforms. If the original signal is considered to be zero for

t less than zero, then the sampling function needs to be a series of

impulse sheets along the positive t axis. The Fourier-LaPlace transform

of the sampling function, with T normalized to one, is given for

™| < 1y
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& (x,t)

o -t
% (x,1)
e thete
i*(x,t)

Figure 2.4 The temporally sampled output is
produced by multiplying the deflection

by a spatial impulse train.
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N — 2.7)

1 - e-s

I*(K,S) =

The transform of the sampled function is the convolution in K and S space

of the transforms of the displacement and the sampling function. That is
2%(K,8) = E(K,S) (X)I*(K,S) (2.8)

where cgorepresents the convolution.

Writing out this convolution integral, realizing that the convolution
in K space can be ignored because the sampling function is comnstant in X

and its transform is an impulse in K space, gives
o+ j™

= 1 = 1
5% (K,S) = 5o Z(K,P) -——_——_———-:] dp (2.9)
2mj [l-e (s-P)

g =-j=
This integral is illustrated in Figure 2.5. If the integral is performed

on Path Cl, the only poles enclosed are those of the sampling function.

The result is

S%(K,S) = ) Z(K,S - 2nm) (2.10)
n=-®

This type of function will result in a dispersion relation for the system

which will be an infinite series, and calculations for stability will be

cumbersome.

If the number of poles of =(K,P) is finite, then a closed form of

the transform can be obtained by using contour C2 . The result is

~ - 1 17
=%(K,S) = Residues E(K,P) ———_—-—_—]- = E(,0,) (2.11)
Polgs of = l-e (5-P) 2 +



ImP

ReP

P=S+2nm

POLES OF E (K,P)

Figure 2.5 Contour integral for finding the

transform of the sampled function



L7

The term 1/2 g(K,O+) is the Fourier transform in space of the deflec-
tion at t = 0+. This term results only when the function being samp led
has a step at t = 0. The sampling impulse at t = 0 will detect only one-
half of the value of the step. The summation term includes the whole

value of the step and therefore a correction factor must be added. Mathe-

matically, this term occurs because the integral along C2 is not zero.

The discrete temporal frequency is now defined as

-5 (2.12)

If this variable is substituted into Eq. (2.11), the transform of the
sampled function is obtained in the form

=% (K,S) = E(K,2) (2.13)

which is known as the Z transform.
A second method for finding the transform of the sampled function is

available when the deflection, §(x,t), is separable into a function of x

and a function of t. When the deflection is separable, it and its trans-

form can be written as:

E(x,t) = yY(x) ¢(t) (2.14)

2(K,S) = Y¥(K) @(s) (2.15)
Equation (2.6) can then be rewritten as:

(2.16)

geie,©) = Y09 ] ou (e - T w0 )u, (e

The last term on the right is introduced for the cases where &£(x,t) is

discontinuous in a step manner at t = 0. When this step is multiplied
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by the impulse at t = 0, the result is an impulse which has an amplitude

of one-half of the step. The impulse at t = 0 in the summation has an
area equal to the step at zero, so the last term is added as a correction

factor.

Taking the Fourier-Laplace transform of Eq. (2.16) gives

4+
E4(K,8) = ¥(K) [ eme™ - 1 vwec) (2.17)
n=0
By using the discrete temporal frequency Z from Eq. (2.12), Eq. (2.17)
is made into a power series of Z.
b n 1
E%(K,S) = ¥(K) ) ¢m)zZ" - 7 ¥(K$() (2.18)
n=0

For most functions of ¢, the power series will converge for a range of

values of Z. This allows the transform of the sampled function, Z#(K,S)

to be written in a closed form known as the Z transform:

2(K,2) = Y(K)?(2) (2.19)

Inverse Z Transforms: Laurent Expansion

There are two convenient ways of recovering the time-sampled signal

from the Z transform. Both of these methods involve finding the coef-

ficients of the series representation of the Z transform. The first method

is to expand the Z transform into a power series; this is the reverse of

the steps taken between Eqns. (2.18) and (2.19).

2(K,2) = ¥ [ 5 6(0) + 0(IZ + o2 + ++or ] (2.20)

The coefficients in this series represent the amplitudes at the sampling

times. For complicated functions, this method is not convenient, except



49
for the terms with low values of n.

Inverse Z Transform: Complex Integral Formula

In many cases, it is not easy to expand the Z transform into a series
to recover the original function. A simpler method of finding ¢(n), which

is the coefficient of " in the expansion, is to use Cauchey's integral

formula, which is

K (2.21)
r 0 K#-1

where ' is a contour that encloses the origin.

If ¢(Z) is multiplied by Z-(n+l), then the series expansion of

2~ 57y is

2= zy > o . ¢(“;§) + ¢;“) + $(n+l) + Zo(n+2)+ -+ (2.22)
If each term in this series is integrated on a contour around Z = 0

on which ¢(Z) is analytic, the only term which may have a non-zero result

is the Z"l term. Therefore,

27D gzydaz = 21§ ¢(n) (2.23)
r
Rearrangement gives
#(n) = E%E’ 77D gzy4z = ) Residues of @(Z)z'(n+1) (2.29

This formula is probably the most useful method of recovering the
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spatially sampled signal from the Z transform. It is illustrated here for
the situation where £ is separable into a function of x and a function of
t. This restriction is used only because it makes the derivation of the

inverse transform easier. In general, the inverse transform is

E(K,n) = % 27+ =g 7)4z (2.25)

~ r
where £ (K,n) is the Fourier transform in space of the deflection at the

normalized sampling time, n. The contour [ of this integral is made to

enclose the origin, but it must not enclose any of the poles of =Z(,2).
The reason for this choice of contour can be seen from Eq. (2.18). The
series of Eq. (2.18) will converge for values of [Z| less than the inverse

growth rate of the sampled function. This region of convérgence includes

the origin and the region out to the first pole of Z(K,Z). The contour
I' is constrained to be in this region of convergence.

2.4 Open-Loop Discrete Temporal Transfer Function

Sample and Hold Filter

The force, applied to the string by the electrode, is constant for
an interval of time T. This electrode and its associated electronics is
called a "sample and hold filter'"; it is shown in Figure 2.6. The elec-

trode system is driven by an impulse train, and each impulse produces a
pulse whose height is the area of the impulse. The duration of the pulse

is the sampling time, or the time between input pulses. The output is
the discrete time force which is applied to the string.

Sampled Transfer Function

The string with the driving electrodes can be thought of as a system,

G(K,S), which receives a time-sampled input, u*(x,t), and produces an
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u®(x,1) y f(x,t)

L
L

o 1 2 ! o 1 2 !

Figure 2.6 The temporally discrete force is
generated by driving a sample-and-hold

filter with an impulse train.
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output, &£(x,t), which is continuous in space and time. It is important to
keep in mind that it is not the continuous deflection £(x,t) that is being
controlled. The control system knows only the measured value of the de-
flection E*(x,t) and this is the quantity that is controlled. A diagram
representing the system from sampled input to sampled output is shown

in Figure 2.7.

From the theory of sampled data control systems, it can be shown that

a simple relation exists between the Laplace transforms U*(K,S) and

=*(K,S). This can be found by noting that

Z(K,S8) = U*(K,S)G(K,S) (2.26)
When the output is sampled, the result, using Eq. (2.10), is
400
Z*(K,S) = )  U*(K,S-2n7)G(K,S-2nT) (2.27)
n=-co
From Eq. (2.10), it can also be seen that
<+
U*(K,S) = )}  U(K,S-2am) (2.28)
n=—m
This allows U*(K,S-2nTm) to be factored from Eq. (2.27) to give
(2.29)

Zx(K,S) = U*(K,S) G*(K,S)

where G*(K,S) is the sampled value of the impulse response of the string

and associated electrodes and circuits.
By rewriting Eq. (2.29) in the Z-form of Eq. (2.19), the system of

Figure 2.7 can now be represented by Figure 2.8. The system has been

broken down to a system function, G(K,Z), which takes the time-sampled
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u* (K,2) g (K,2)

G (K,Z)

Figure 2.3 Block diagram of the temporally

discrete open-loop system
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signal U*(K,S) and produces a time-sampled output Z(K,Z). The problem
now is to determine G(K,Z) from G(K,S).
The transfer function of the open—-loop system is the product of the

transfer functions of the sample and hold filter and of the string.

1-e”> 1
6(K,s) = S > <?2+ 35S + KZ2-N ) (2.30)

Sample and |\ String )
\\pold filteg)

\ﬁ

The sampled response of this filter can be found from Eq. (2.9). With
Eqns. (2.30) and (2.13), Eq. (2.9) becomes
o+j®

-P
1 (L-e ) dP
G(K,2) = == (2.31)
CLE (2460 +K2- M)P[l-e” C7F)]

o-j®
The poles of this integral are shown in Figure 2.9.

There are two paths by which the integral can be closed. Path II
encircles an infinite number of poles, and is therefore not used. If con-
tour I is used, a problem arises because of the term e-P in the numerator
of the integrand. This term goes to infinity for large values of imagi-

nary P and the integral does not converge. This problem can be overcome

by realizing that e-P represents a delay of the generated wave. Since
the deflection is sampled, the delays of the sampled signal must all be
multiples of one sampling period. If an integer delay is factored from

the delayed term, the integral becomes
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Figure 2.9 Contour integral for finding the

transfer function G(K,Z)
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g+
1-e5 dp
(2.32)

6(K,2) = =
2mJ (% + 6P + K2- M)P[1-e” 7P

o-jo

This integral has three poles which have the following residues:

21§ + Residue @ =0) = T— (2.33)
. 2 2 i
2mj * Residue {P = - 6/2 - [(8/2)%- K*+ N] *} =
1 - e-s
(8/2 -1 (- 29) [Loa O/ 2F1) =5 (2.34)

Y,
2mj + Residue {P = -8/2 + [(§/2)% -K*+ N]"2 } =

LL-e-'S

(- §/72+W)2W)[1-e

-(8/2 -W) e-s] (2.35)

where W = [(&/2)* - K* + N] ) (2.36)

The total Z transform of the system, which relates the discrete input

signal to the time-sampled displacement, is then

(1-z) { - 2w+2e'6/2[- §/2(e"- e-w) + W(ew+e'w)]}

G(K,Z) = '
(KZ-N)(ZW)[1—2e'5/2(ew+e'w) + e 922]

il - ze 22" +e™) + =822
- ) 2w) [1-ze~ 2 "+ M)+ e022] (2.37)
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2.5 Closed-Loop System

Transfer Function with Feedback

For this case study, the following feedback scheme is used. The
sampled deflection is amplified and the negative of the resulting signal
is applied to the driving electrodes. The system could probably be sta-
bilized better if the feedback loop contained additional filters. However,
this chapter serves only to introduce the techniques for analyzing discrete
temporal feedback, and therefore only the simplest feedback is considered.
With this feedback the entire system can be represented by the servo-

loop of Figure 2.10. The transfer function for this closed-loop system can

be written as

=(K,Z) _ _G(K,Z2)
U(K,Z)  1+AG(K,Z) (2.38)

Z-K Closed-Loop Dispersion Equation

The discrete natural frequencies of the system, that is, the fre-
quencies at which there may be a response with no drive, can be found by

setting the denominator of the transfer function to zero.

1 + AG(K,2) = O (2.39)
With Eq. (2.37), Eq. (2.39) may be rewritten as
K2 - N + 0@ (1 - ze7%%(eVe™+ 2279
=0 (2.40)

+a01-2) (- 20 + 2e 2 1o8/2("e T wieTae ™ 1}

Equation (2.40) is the Z-K dispersion equation for the closed-loop

system. With this equation, the discrete temporal frequencies, Z, can be
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Ul(k,Z)

jg,_}

G(K,Z)

E(K,Z)

Figure 2.10 Servo-loop representation of the

temporally discrete system with

feedback
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found in terms of the wavenumber, K. It is interesting to note that this
dispersion equation is a second-order polynomial in Z and that the original
continuous time-transfer function, Eq. (2.4), was second order in S. The
use of the Z transform has allowed a dispersion equation to be found for
the case of discrete time feedback which is not much more complicated

than the dispersion equation for a continuous time system.

Stability Criterion

The stability critericn for this dispersion relation can be easily
obtained by several methods. The first method is to use the normal cri-
terion for an -k dispersion equation. If an w-k dispersion relation
gives a value of ( with a negative imaginary value (positive real value
for S) for a real value of k, then the system is unstable. From the
definition of Z, Eq. (2.12) shows that a negative imaginary value of w
will generate a value of Z whose magnitude is less than one. The

stability criterim that is used with Eq. (2.40) is to require that

lz|21 (2.41)
for stable operation.
Another method of deriving this same criterion is to use Eq. (2.18),
If

which expresses the Z transform as the sum of an infinite series.
the sum of this series has a pole at a value of Z,the magnitude of which
is less than one, then the coefficients of the high order terms of Z in
the expanded series must be greater than one. This corresponds to a

function that is growing in time and is unstable.
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An Upper Bound on Gain

It is possible for this discrete time control system to drive
certain modes unstable. If the sampling rate, or the rate at which the
feedback force changes, is close to one-half the frequency of a certain

mode, then the control system can pump energy into this mode. This mode

would be overstable and characterized by growing oscillations unless some

damping were added to drain energy from the mode.

A good guess for the mode that the system will first drive over-
stable is the mode whose complex natural frequency with no gain is twice
the sampling frequency. Sincethe sampling time has been normalized to

one, this means the complex part of S should be

S = jm (2.42)

Using the transfer function of the undamped system, Eq. (2.5), the wave-

number which corresponds to this complex frequency is

K2 = (8§/2)2 + m* + N (2.43)
With this wavenumber, the value of W becomes

W = jm (2.44)
and the dispersion equation, (2.40), reduces to

z (79/2[(5/2)2 + 72 + A] + A} + (6/2)2 + w2 = O (2.45)

From the stability criterion that was stated in the previous section,

the point of impending instability occurs when
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(2.46)

Since all the terms in Eq. (2.45) are real, Eq. (2.46) can be changed to

(2.47)

The most restrictive case for stability results when the minus sign (-) is

used. To satisfy the condition that the magnitude of Z be greater than

one, close to the point of Z = -1, the following upper bound on the gain

is derived from Eq. (2.45):

-G/z]
(2.48)

A

[r? + (§/2)%][1l-e
A = 572
(1L + e )

The significance of this upper bound on the gain is that it pgoes

to zero as the damping goes to zero. This means that with no damping,

the discrete temporal nature of the feedback will always make the system

unstable. This fact should be expected, due to the nature of the contin-

uous string. Since any wavenumber K is allowed to exist on the string,

then all imaginary values of S can also occur. It is reasonable to assume
that the discrete nature of the feedback will cause some modes to be

driven. Since there are no boundaries to eliminate some of the modes,

then the potentially overstable modes will exist and will be excited.

Results of the Stability Analysis

The dispersion equation, (2.40), can be analyzed on the computer
to find the values of gain which would give stable operation for differ-
ent values of N, §, and K. The results are shown in Figure 2.11l.

It is found that the value of gain, A, must be larger than N for the

system to be stable. Along the line A = N, the value of Z is +1. This
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Figure 2.11 Conditions for stability of the string

with discrete temporal feedback
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corresponds to an impending static instability.

Along the top boundary of the stable regions, the value of Z is -1l.
This corresponds to an impending overstability, or to growing oscillations.
It should be noted that this value of Z is the same value that was picked
in the section titled "An Upper Bound on Gain' as the most likely to be
unstable for high values of gain.

At the top right-hand corner of the stable regions, an instability
occurs which is neither purely static or oscillatory. This instability
is probably some combination of the two instabilities that have been
mentioned. It is significant that the upper bound in gain in Figure 2.11
is less than the value predicted in Eq. (2.47). This should be expected,
because there was no guarantee that the derived upper bound was a least
upper bound. The significance of (2.47) is not that it gives the least

upper bound for stable gain, but that it shows the system is unstable
with no damping.

2.6 Summary

The Z transform, which has been used to describe discrete time,

lumped-parameter systems, can be applied to discrete time, continuum

systems. With Z transforms, a time-sampled continuum can be described by

a closed-form transfer function in terms of the wavenumber, K, and the
discrete temporal frequency, Z.

When discrete time, spatially continuous feedback is applied to
the continuum, a closed-loop transfer function can be generated by use

of conventional servo theory. A dispersion equation in terms of Z and

K is obtained in closed form from the poles of tne closed-loop transfer
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function. The stability of the closed-loop system can be determined

from this dispersion equation.
The case of the string with discrete temporal feedback was analyzed

in detail. It was found that increasing the feedback gain could stabi-

lize the system, but that too much gain drives the string overstable.
The maximum gain that can be used before overstability resulted depended

on the damping applied to the string. When there is no damping, any non-

zero gain drives the string overstable. This overstability occurs

because there is a wavenumber which corresponds to oscillations at twice

the sampling frequency. The control system pumps tnis mode, and the

system becomes overstable.
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CHAPTER III

DISCRETE SPATIAL FEEDBACK FOR AN INFINITE SYSTEM

3.1 Introduction

At the present time, spatial resolution is a serious limitation for
continuum feedback control systems. The spatially discrete nature of the
feedback is a restriction because it is almost impossible to make feedback
drivers or sensors that can independently drive or detect each point of a

continuum. The electrodes which are used to drive electromechanical sys-

tems must be a certain finite size. They will, therefore, drive a section
of the continuum, rathan than one point. In industrial applications,

such as chemical reactors, the number of locations for valves or other

controls is limited to a few discrete points on the reactor. Sensors are

similarly restricted. In electromechanical systems and in chemical pro-
cesses, important parameters can be measured at only a few discrete points.

In this chapter, the spatially discrete system which will be con-

trolled is the stationary string stressed by an electric field. The feed-

back force is applied by electrodes of finite size, and the deflection is

sampled at the center of each electrode. The same system has been studied

previously by Melcher (May, 1965). His analysis uses a Fourier transform

technique to describe the deflections of the membrane. This method con-

siders the continuous displacements of the string as the output of the

system. The dispersion equation which he derives is an infinite series

in w and k. This dispersion equation must be truncated before the sta-

bility of the system can be determined.
The approach that is used in this chapter is to use Z transforms to

describe the spatially discrete nature of the system. Using this technique,
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the output of the system is considered to be the measured or 'sampled'

value of the displacement. The information about the displacement between

the sampling points is ignored. This approach is physically closely re-

lated to the actual system, since the control system tries to stabilize

the sampleddisplacement; the displacement between the sampling points is

unknown to the control system. Z transforms also generate a closed-form

transfer function relating the sampled output to the driving voltage.

With these transfer functions, servo-loop diagrams (which are an aid for

the analysis) can be made.

3.2 Description of the System

As a case study, the unbounded string, with damping and no convec-

tion, is analyzed in detail in this chapter. The equation of motion for

this case is

2 2
PECD) 60D e

2
3 t2 %2 3t + k_ E(x,t) + g v (x,t)(3.1)

' N’,_.

It is explained in Chapter I that this equation has wide applicability.
With the proper values for the coefficients, it can describe such phenom-

ena as electron beam instabilities or hydromagnetic instabilities in a

plasma column. The results obtained in this chaoter should also have wide

applicability; with only small modifications, the techniques presented
here for stabilizing the string can be used for many other situations.
Figure 3.1 shows a physically realizable method of adding the

driving voltage to the bias voltage. The bias electrodes are divided

into segments of legnth L. Each segment is driven by a source, Vdn’

which adds the driving or control voltages to the bias voltage on the
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electrode segment.
Since the voltage on each electrode segment is a constant, the same
force is applied to each point of the string adjacent to the electrode

segment. The control voltage is, therefore, constant for the regions

(2n - 1)L/2 < x <(2n + 1)L/2. A picture of the driving voltage that is

produced by the electrode structure is shown in Figure 3.2. The transfer

function which relates the deflection of the string to the driving force
may be found by taking the Fourier transform in space and the LaPlace
transform in time of Eq. (3.1) to obtain

S
v,

Z(k,s) [%—2 2 + k%2 +Bs - ké] = g v, (k,s) (3.2)
P

It is mathematically convenient to normalize the length of an electrode

to one by defining the following dimensionless variables:

s = %5 (3.3a)
p
K = kL (3.3b)
§ = BVPL (3.3¢)
N = ki L? (3.3d)
f(x,t) = ng vd(x,t) (3.3e)
The transformed equation may now be written as
2(K,S) = L F(K,S) (3.4)
- S°+ 8S + K°- N ’
and the transfer function for the string is
L (3.5)

HK,S) = 57335+ &&= &



70

*3uTi3s ayl 03 23e3ToA 23I3IDSTP

L11eTIRds B satydde apoaldsfa pajuawdas ayg

<
-

g}

2°€ Qandyg

(%1x) pa %



71

The control scheme used for this system measures the deflection of
the string at the center of each electrode. A restoring force is then
generated to drive the sampled deflection to zero. This control scheme

may be thought of as 'spatially sampling' the deflection and feeding this

signal back to the string by means of a 'spatial filter', the driving

electrodes. Some other sampling schemes may be easier to implement on a

real system and could provide better control than the scheme studied here.

For example, Melcher and Warren (November 1966), measured the average

deflection of a fluid surface by measuring the capacitance between the

fluid and the driving electrode. However, when the average def lection

is sampled, the system is mathematically more complicated than when the

deflection is sampled. Since the purpose of this chapter is only to

illustrate the techniques for analyzing discrete spatial feedback, the

mathematically simplest case is studied.
The system is complicated because the driving force f£(x,t) is spati-

ally discrete and its transform, F(K,S), is not simple to find. The method

of generating a closed-loop transfer function from the open-loop function in

Eq. (3.4) is not obvious. In the following sections, Z transforms will be
used to overcome these difficulties.

3.3 Transforms of Spatially Sampled Signals

Detection Scheme: Spatial Sampling

The detection scheme incorporated in this system measures or

'spatially samples' the string's deflection at the center of each electrode;

that is, at the points x = 0, 1, *2, ++++ . The measuring circuit does

not obtain any information about the string between the sampling points,

and therefore the sampled deflection is zero for these regions. This
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sampled deflection can be thought of as impulse sheets, parallel to the t
axis and spaced at regular intervals along the x axis. These impulse
sheets are located at the sampling points on the x axis. The variation
of the amplitude along the t axis gives the amplitude of the deflection
as a function of time at the sampling points.

The spatially-sampled deflection, £*, can be written as a product

of the deflection and a train of impulse sheets:
40

E*(x,t) = &(x,t) ) u, (x-n) (3.6)
n= -

The limits of this summation are different from those of the summation in
Eq. (2.6). Causality does not apply to waves traveling in space and a
disturbance can travel in the negative x direction as well as in the posi-
tive x direction.

The process of generating the spatially-sampled signal can be rep-
resented by the network shown in Figure 3.3. The spatially continuous
output is multiplied by an impulse train i*(x), to produce the spatially-

sampled signal.

Double-Sided Z Transforms: D Transforms

When the Fourier-LaPlace transform cf a spatially sampled signal is
calculated, it must be remembered that a disturbance can propagate either
to the left or right on the x axis. This complication does not appear in
Chapter II when time sampling was considered, because disturbances can
travel only forward in time.

The method of generating the transform by means of a Laurent series

illustrates the problems of the double-sided transform. For example,
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&(x,t)

/\rt_’x E*(x't)

i* (x,t) oo
ERTTIN

Figure 3.3 The spatially-sampled output is produced
by multiplying the deflection by a

spatial impulse train.
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take the case in which the disturbance can be broken up into a function

of t and a function of x. For this case, the deflection and its transform

can be written as

£(x,t) p(x) ¢(t) (3.7)

¥Y(K) @(S) (3.8)

=(K,S)

Equation (3.6) can be rewritten as

EX(e,t) = ¢(8) | w(x)u (x-n) (3.9)

The transform of Eq. (3.9) can be seen to be
o0

E%(K,S) = 6(S) ] w(n) e I (3.10)

==00

The discrete spatial wavenumber, D, is now defined as

-3k (3.11)

and Eq. (3.10) becomes a Laurent series in terms of D. This series is

broken up into two series: one in positive powers of D, one in negative

powers of D.

-1 +
Ex(K,8) = ()| § w@d'+ [ w@Dd" + y(0) (3.12)
n=-o n=+1

These two series in (3.12) will probably converge for various values of
D. The problem which may happen is that no value of D exists which allows

both of the series of Eq. (3.12) to converge, and a closed-form of the

euqation does not exist. An example of this situation is when the spatial

function Y(n) increases in both directions away from the origin.
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The problem caused by the series of Eq. (3.12) not converging when
the disturbances grow in space as one moves away from the origin will be
covered in Chapter V. For this chapter, this problem will be ruled out by

physical considerations. It is known that non-convecting systems like the

string do not support amplifying waves or waves that grow in space. There-
fore, Ea. (3.12) is assumed to converge for some value of D to give
Z(D,S) = &(S) Y¥Y(D) (3.13)

which is the transform of the spatially-discrete function in terms of the
discrete spatial wavenumber D, and the continuous temporal frequency S.

A second method of generating the transform of the spatially-sampled
function is to use the method of convolution in the K-S plane. This
method is similar to that used in Chapter II, but the fact that the dis-
turbances can travel either direction on the x axis makes the problem more
difficule.

The Fourier-LaPlace transform of the disturbance on the string can
usually be broken up by a partial fraction expansion into two terms; one

term represents the disturbance which travels to the left, the other rep-

resents the disturbance traveling to the right.

=(K,s8) = E+(K,S) + = _(K,S) (3.14)

The part of the disturbance that travels on the positive x axis will be
sampled by an impulse train that starts at zero and exists on the positive
That part of the disturbance that travels on the negative x axis

X axis.

will be sampled by an impulse train that exists on the negative x axis.



76

Since the sampling process is the same as multiplying the continuous deflec-
tion by an array of impulses in space, the transform of the sampled funct-

ion can be found by convolving the transforms of the continuous function

and the impulse train.

E%(K,S) = E, () @I K,S) + E_(K,5)(XI_(K,S) (3.15)
where I,(K,5) = ————u_(S) (3.16)
1-e
and
I_(K,8) = —t—— u_(S) (3.17)
1-el

are the transforms of the sampling function on the positive x axis and

negative x axis, respectively.

Writing out the convolution integrals of Eq. (3.15) gives

+ o
_ IS U L]
;*(K,S) = T —+(st) l_e_j(K_Q) _JdQ
! o
+ o
+ zin 2 (q,s) | —2—1 do (3.18)
’ - l_e+j(K-Q) N

The first of these integrals is represented in Figure 3.4a and the second

in Figure 3.4b. If these integrals are both performed on the paths labled

Cl, an infinite number of poles of the sampling function are enclosed.

The result is
+ ®

=%(K,$) = ) [E.(K- 2om,s) + Z_(K - 20m,S)] (3.19)

n=-o

This is the form of the transform for the sampled displacement which was
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Figure 3.4 Possible contours of integration for the

transform of a spatially-sampled function
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used by Melcher (May, 1965). It results in a dispersion equation for the
system which is an infinite series, and calculations for stability are
cumbersome.

Z are finite, then a closed-form

If the number of poles of E+ and =_

expression for E*(K,S) can be obtained. Integrating around the contours C,

gives

= - 3 1 _____\-1i
S8 pgleieiidgis <_+(Q'S) A A G Q)> 2 50

- Z Residues E_(st) —j‘—a-g:w) - % E_(O,S) (3.20)
l-e

Poles of EZ_

The two terms E+(0,S) and £_(0,S) represent the LaPlace transform of

the value of the two waves at x = 0. Whenever the disturbances traveling

to the left or right have a step discontinuity at x = 0, the value of the
integral on the semicircular path, C,, is not zero, but is equal to one-

half of the jump at x = 0. Physically, these terms appear because the samp-

ling pulse at zero will detect only one-half of the value of the step.

This form of the transform of the sampled function is the Z transform.

By using the discrete spatial wavenumber D, which is defined in Eq. (3.11),

Eq. (3.20) can be rewritten as

Z*(K,S8) = E2(D,S) (3.21)

The transform of the spatially-sampled function has now been obtained in
closed form in terms of the continuous temporal frequency S, and of the

discrete spatial wavenumber D.
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Equivalence of Double- and Single-Sided Transforms

In the previous section, it was assumed that the Fourier-LaPlace
transform of a function could be broken up into two terms, one represent-
ing the wave traveling to the left, the second representing the vave
traveling to the right. In cases where convection is present and ampli-
fying or evanescent waves may occur, it is difficult to decide whether a
certain root of the transform corresponds to a left- or right-traveling
wave. To make the separation called for in (3.14) properly, it is neces-
sary to use the Bers-Briggs criterion (Briggs, Chapter 2):

Fortunately, a simpler method of obtaining the double-sided discrete
transform is available. If all disturbances are assumed to travel to the
right, and the single-sided discrete transform is computed, the proper
mathematical form of the double-sided discrete transform is obtained.

The problem with this method is that the region of analyticity of the
resulting transform is not known, and the transform cannot be inverted to
achieve the spatial functions.

To show that the same discrete transform is arrived at if a left-
traveling wave is assumed to travel to the right, the following method
Assume that a disturbance which travels to the left is launched

is used.

on some system. From Eq. (3.18), the discrete transform of this distur-

bance is obtained from the transform of the disturbance's impulse response

by + o
E4(K,5) = = i @.5) | —y| 4@ (3.22)
2%(K,8) = 74 L 1 -l (FQ) :

This integral is closed on the right, to enclose only the poles of Ei(Q,S).

The result is
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E,(Q,S)

=*(K,S) = - Z Residue :
Poles of EL 1-ed (K- Q)

12
- 5 8.(0,8) (3.23)

The right side of (3.23) may be rearranged to give:

E. (Q,9)

- J Residue | ————
Poles of = L 1 -e’ (K-Q)

1z

= -] (K‘Q)
_L(Q,S)e

= z Residue .
Poles of Z 1-e3K-Q

l ”~
-5 EL(O.S) (3.24)

The summation on the right side of Eq. (3.24) is the transform that results

if Z. represents a right-traveling wave wnhich is sampled by an impulse

train whose impulse at zero is missing. That is the impulse train shown

The information in a right-traveling wave at x
One half of the value of the distur-

in Figure 3.5. = 0 is not

detected by this sampling function.
bance at the origin is, therefore, missed by this sampling function.

The value of §£(0,t), which results from assuming EL(K,S) represents a
wave traveling to the left, is the negative of the value of §(0,t) which

results if EL(K,S) represents a wave traveling to the right. That is

2E.(0,8) = -FE.0,5) (3.25)

where &_(0,S) is the value at zero of the right-traveling wave. Equation
R g

(3.25) allows the right side of (3.24) to be changed to

E, (Q,5) e (X-Q) L -
Z Residues “IR-Q) -7 L(O,S)
Poles of Z L-e
L
- (Q S) E-j (K-Q) l
- . S z z -
= 2 Residues N e'j(K‘Q) + QR(O,S) - E-ER(O,b) (3.26)

Poles of E L
L
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Figure 3.5

The impulse train which produces the

transform given in Eq. (3.24)
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~

The term EP(O,S) can be incorporated into the summation; then, Eq. (3.23)

becomes

£ (Q,9) ~
= - : Lt i1
Zx(K,S5) = Z Residues e-j(K‘Q) 5 ER(O) (3.27)

1

1 =
Poles of L

Comparison of Eq. (3.27) with (3.20) shows that the discrete transform of
the left-traveling wave represented by EL can be juggled into the same
form wnich results if EL represents a right-traveling wave. This result
is very important for finding the transform of a sampled function that may
be traveling either in the positive or negative x direction. What it means

is that the transform of the discrete function may be found from the trans-

form of the continuous function by using the formula

+ o
= _ 1 2(Q,8) do
E*(K,S) = —F 3 Q) (3.28)

This simplifies finding the discrete transforms, because it is not neces-
sary to break up the tranform of the continuous function, as was done in
Eq.(3.14). By convolving the transform of the continuous function with the
transform of an impulse train that exists only for x 2 0, the correct dis-
crete transform will be obtained.

Inverse D Transform

There are two convenient methods of recovering the spatially sampled
signal from its D transform. The first is to expand the transform into a

Laurent series in terms of D. This is the reverse of thne step taken in

Eqs. (3.12) and (3.13).

+w
E(@,S8) = o(S) ) ¥()p" (3.29)

n=-w
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The individual terms in this expansion represent the amplitude of the

function at the sampling points. For complicated functions, this method

is not convenient, except for low values of n.
The second method for recovering the spatially-sampled function is

to use Cauchey's integral formula. This method allows a coefficient of

any power of D in the Laurent expansion to be found without actually making

the expansion. Cauchey's formula says that

£ p¥ap = (3.30)
. 0 K # -1

If the expansion of Z(D,S) is multiplied by D-(u+l), the result is:

p” ) =p,s) = @(s) [ vosd) 4 8@ 4 yarl) + DY(nt2)+ :]
(3.31)

If this series is integrated about D = 0 on a contour on wnich ¥(D) is

analytic, the result is

o~ @D =(p syap = 2mj e(S)u(n) (3.32)
r
Rearrangement gives
®(s)yY(n) = 5%3- p~ (@+1) Z(D,S)dD (3.33)
T
or
®(S)Y(n) = ) Residues of —:-t(lfi—s)insider (3.34)
D
This derivation assumed that the deflection was separable. This res-
The

triction was made only to make the derivation easier to understand.

more general inverse transform can be written as
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£(n,s) = % p~ @) =(p sydp (3.35)
r

where £(n,S) is the LaPlace transform in time of the spatially sampled sig-

nal at x = n.

Ambiguity of Inverse D Transforms

A problem occurs when either of the two methods is used to recover
the original spatial function from a double-sided transform. This problem
is:the region of analyticity of the transform must be known to invert the
transform properly. The Laurent expansion in Eq. (3.29) is not unique, and
the number of poles enclosed in Eq. (3.35) by I' is not known unless the
analytical region is specified.

A modified form of the Bers-Briggs criterion is presented in Chap-
ter V. With this criterion, the region of analyticity for the double-
sided transforms can be determined, and the transforms can be inverted.

For the case of no convection that is studied in this chapter, the modified
Bers-Briggs criterion shows that the region of analyticity includes the
real K axis. When the transform is analytic for real K, the value of T

for Eq. (3.35) is the unit circle, and the region of analyticity for the
Laurent expansion of Eq. (3.29) is the unit circle. With this information
the stability of the non-convecting svstem studied in this chapter may be
determined. When convection is present, finding the proper contour for T
is difficult, because amplifying waves may vossibly exist. This problem

is studied in detail in Chapter V.

3.4 Open-Loop Transfer Function

The Electrode as a Spatial Sample-and-Hold Filter
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The electrode segment, which drives the string, applies a constant
force to the adjacent section of the string and no force to the remainder
of the string. This electrode, with its attached wire, may be thought of
as a spatial network which takes a signal that exists at only one point omn
the x axis, the connecting wire, and spreads it out over the length of the

electrode segment. This network is the spatial equivalent to the sample-

and hold filter which was used in Chapter II, and is illustrated in Figure

3‘6.

The signal on the wire is considered to be a spatial impulse whose
area is proportional to the voltage on the wire. The filter produces a

voltage pulse of a fixed width on the » axis, the amplitude of which is

proportional to the impulse area. The force applied to the entire string

mav be generated by this network if it is driven by a spatial impulse

train. The area of each impulse corresponds to the signal fed to each

electrode segment by a wire. The resultant output is the force f(x,t),

applied to the string. This process is illustrated in Figure 3.7.

Transfer Function of a Spatially Discrete System

The string, with its driving electrodes, can be thought of as a sys-

tem which accepts a spatially discrete input, and produces an output that

is continuous in space and time. The control system does not see the con=

tinuous deflection, however; it sees only the measured or 'spatially

sampled' valve of the deflection. The system, as seen by the control

system, is illustrated in Fig. 3.8. The signals on the wires connected

to the electrode segments are pictured as the impulse train u*(x,t). The

electrode segments are driven by this impulse train, and produce the

spatially discrete forcing function, f(x,t). This function drives the
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string to produce the spatially continuous deflection £E(x,t). The de-
tection system then measures the deflection at regular intervals, to pro-
duce the spatially discrete output Ex(x,t).

It is convenient to have a transfer function that relates the discrete
output to the discrete input. This transfer function can be found by

finding the transform of the continuous output in terms of the transform of

the input:
Z(K,S) = U%(K,S)G(K,S) (3.36)

By using Eq. (3.19), the transform of the spatially sampled output is found

b
to be + oo

Z%(K,S) = ) U*(K + 2n7m,S) G(K + 2am,S) (3.37)
N==c
Since U*(K,S) represents a sampled function, Eq. (3.19) can be used to get

-+ o
U*(K,S) = )  u(K + 2um,S) (3.38)

n==— oo

Equation (3.38) shows that U%(K,S) is periodic in K with a period of 2w.

Therefore,
UK + 2aom,S) = U (K,S) (3.39)
and (3.37) can be written as
+ ©
S%(K,S) = U%(K,S) ) G(K + 2am,S) (3.40)
N=—co

From Eq. (3.40), the transfer function relating the spatially dis-

crete input and output is the transform of the spatially sampled response
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of the system to an impulse at x = 0. From Egqs. (3.19) and (3.28), this

discrete transfer function is
+ o

G*(K,S) = G(D,5) = 7= G(‘_ij%){fg) (3.41)
1-e

- 00

With the discrete transfer function, G(D,S), Figure 3.8 can be condensed

to the simple open-loop system shown in Figure 3.9.

Evaluation of Open-Loop Transfer Function

The continuous transfer function, G(K,S), is the product of the

transfer functions of the electrodes and the string

iK/2_ e-jK/z 1

6(K,5) = . K SZ+ 8S +K2- N (3.42)
electrodes st;Ing
A partial fraction expansion of G(K,S) gives
-1 -1
jK/2 -jK/2 }3 - 2 N
G(K,S) = e .e 2(S<+ &S N)}’+ 2(S52+ 8§S-N) r (3.43)
j K+j (2 +8S-N)"2  K-j(s%+ §5-N)72

L
K (82 + §S-N)

+

When Eq. (3.41) is used to find the discrete transfer function, a problem

arises that must be solved by a physical argument. This problem is illus-

trated by the convolution of the first term on the right of Eq. (3.43)

L3Q/2_ =30/ 2 dQ

-1
25(S2+8S-N) [Q +j(S%+ §S-N) 1/2][1-e

GT(K’S) =2

_j (K-Q) ]

(3.44)
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u(b,s) = (D,S)

G (D,S)

Figure 3.9 The electrodes, string, and sensors can
be represented by a discrete transfer

function.
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Path I is the desired path of integration in Figure 3.10 because there is a
finite number of poles encircled and a closed-form solution is obtained for
the integral. However, the term e-jQ/2 goes to infinity for large, imag-
inary values of Q, and this integral blows up. This problem can be over-
come by realizing that e“jQ/2 represents a delay in the generated wave.
Since the wave is sampled, any delay will cause delays in the sampled
function of at least one sampling period. By removing an integer delay

from the sampling term, the integral is changed to

+ o

c* (K,5) = _(l_g_-jK) ejQ/Z dQ i} -
1 " 2§(S%+ 8S-N) [Q+] (S® +8S-N) 2][1-e"7 Q)]

= ™

(3.45)

Closing this integral on Path I of Figure 3.10, and using the discrete

wavenumber D gives
L Y
> (S24+89-1) 2
-(1-D) e (S°+8S-N)

G (D,S) = 1,2
y > (s2465) [1pe F S50 77 (3.46)

The same procedure can be repeated for the other terms of Ea. (3.43), and

the discrete transfer function is

1
-z W 2 -
c(d,s) = e (1 Dzzw(l+e ) _;]+ 12 (3.47)
2w? D(l+e ~)-(D2 +1)e _J W
where .
2 (3.48)

W = (82 +38S - N)
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3.5 Closed-Loop System

Closed-Loop Transfer Function

The purpose of the feedback system is to apply a restoring force to
the string that will make all deflections stable. The method of generat-
ing the feedback signal used here is to apply a voltage to an electrode
segment that is proportional to the displacement at the middle of the
electrode. The polarity of the voltage is such that the force tries to
drive the displacement to zero. Schematically, this feedback process is

illustrated in Figure 3.11. The transfer function of the servo-loop is

Z(D,S) _ _G(D,s)
u(D,s)  1+AG(D,S) (3.49)

The gain A can have some frequency compensation as in conventional

servo therory, and it can also have some compensation dependent on the
discrete wavenumber, D. However, this chapter serves only to illustrate
the method for analyzing a discrete spatial feedback system, and therefore

only the simplest case of constant feedback is considered.

D-S Dispersion Relation

To determine the stability of the closed-loop system, it is neces-

sary to find the natural frequencies of the system. These are found by

setting the denominator of the closed-loop function equal to zero. Using

Eqs. (3.47) and (3.48), this dispersion relation is found to be

2(W? + A)[DL + e'zw) - (D% + l)e'W]

+ale Y+ et ym? - 2+1)] = O (3.50)
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5 (D,S)

G(D,S) -

Figure 3.11

Servo-loop representation of the spatially

sampled string with feedback



96

With this dispersion equation, the discrete spatial wavenumbers of a
disturbance can be found as a function of the frequency, S. It is impor-
tant to notice that this equation is second-~order in D and that the de-
nominator of the spatially continuous transfer function was of second
order in K. The use of Z-transform tneory has allowed a dispersion

equation to be obtained for a system with discrete spatial feedback which

is only slightly more complicated than the dispersion equation for the

continuous spatial case.

Comparison of Z Transforms and Wave-train Analysis

Melcher (May 1965) has analyzed this same system by another method,

and has achieved a dispersion equation that appears to be different from

the dispersion Egq. (3.50). In this section it is shown that Melcher's

dispersion equation is merely a different form of the one derived here.

The transfer function G(D,S) is expanded into a series of poles of the

variable W, which was defined in Eq. (3.48). If this form of the transfer

function is used in (3.49), Melcher's dispersion equation is obtained.

The method of expanding a meromorphic function into a series of

poles is given by Morse and Feshback (pp. 382 - 385.) By their method,

G(D,W) will be made into a series of the form

+@ b
G(D,W) = conmstant + | = (3.51)
n=-cwo n

By lettingW go to zero, the constant can be evaluated, and Eq. (3.51)

rewritten as

® /b b
G(D,W) = G(D,W=0) + Z(W_“a +52> (3.52)
—-® et n
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The value of G(D,W=0) can be found by rewriting Eq. (3.47) as

2 W W
- (1-D) cosh(W/é) + (l-Dti-w)(l-De ) (3.53)
W2(L-De') (L-De )

G(D,W) =

This function is expanded about the point W = O and terms of second order
are retained:

2 2 2
- (1-D)(1 + W?/8) + (1-D)? - DW (3.54)
w? (1-02)

G(D,W)

Taking the limit as W - 0 gives

2
e(D,0) = _]8; cos (K/2) (3.55)

+ % sinZ (K/2)

The function G(D,W) is now broken up into two functions defined as

_ _ ik _W/2
gy = —doe)e (3.56)
2Wz(l-e P
_ _—3K| _-W/2
£y = —-e _.I)ce = (3.57)
2 2w(1-e 1% e™)
The poles of El(w) are at
W = jK + 2nmj (3.58)
and the poles of f2 (W) are at
(3.59)

W = - jK=-2mnmj

These poles are the values of a, for Eq. (3.52). When W is close to ome of

these poles, the functions are approximately equal to

i sin@/2) (1" (3.60)

£, = (K+2am)2 (W - jk = 2nTj)

lim W -+ a,
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_ i sin(k/2) (<"
£W) = ®izam2 W +ik+2mim) (3.61)

lim W +a
n
the terms bn’ which are needed for Eq. (3.52), are the residues of the

above two functions. With these values for bn’ Eq. (3.52) becomes

+
oy =Ly cost®D_ Ty ] sin(®/2) (D™ | sin/2) <D™
’ 8 ~ 4 sin?(K/2) = - (K+2nm) 2 (W-3jK-2nj™) (K+2nm) 3

+ xo
j sin(K/2) (—l)m sin(K/Z)(-]_)m
* m=§m[}K*2nW)z(W*'jK4-ijn) T K+ 2mm) 3 } (3.62)

The terms of the two summations are combined by letting n = m to give

+
_1 cos? (K/2) 1" 2 sin(K/2)
6(R,w) = g+ T sinZ(K/2) nZ_m K+ Zam) W2+ (K2nm 2]
“+o
2 sin(K/2)*(-1)"
-1 (Einémlr)g = (3.63)
n=-o

This equation can be simplified if the second summation is put into closed

form. Morse and Feshback (pp. 413-414) explain how this is done and the

formula is

z (-l)nh(n) = - z residues of Th(Z)csc(nZ) at the poles
of h(Z) (3.64)

For the series being summed here

2 sin(K/2) (3.65)
m3E/2m + n)?

h(n) =
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and h(Z) has a second-order pole at Z = - K/2m. Plugging Eq. (3.65)
back into (3.64) gives

T (-1)® 2 sin(K/2)

(K+ 2nm)3

cos? (K/2)
4 sin?(K/2) (3.66)

1
§ +
N==go

Equation (3.63) can now be simplified to the desired form of G(D,W)

+

cd,W) = )

==00

1" 2 sin(K/2)
(K+2nm) [W* + (K+ 2nm)?] (3.67)

Now that the transfer function of the spatially-sampled system has
been made into an infinite series, Melcher's work must be juggled into
the same form. In his paper, Melcher assumes that the spatial deflection

of the string is of the form

400 i + =~}
Ex) = ] a JdEZamx, g at e~ (K+2qMx (3.68)
q=—m q_---CD

With this solution, he derives an infinite set of equations for the ampli-

tudes A .
q

Aq[(K + 21q)% + S% + 6S -N) ]

+w
YE;%Eﬁzj—-nZ_m A_(-1)" sin(k/2) (3.69)

This equation appears different from the one in Melcher's paper because
the length, £, has been normalized to one, the long-wave limit has been
used, and damping has been added. If Eq. (3.69) is divided by

(K + 21mq)2 4+ S%2 + S - N, and multipled by sin (K/2)(-1)%, the result is
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+ o
- i - q
28 sin(®/2)(-DY ], Linksoy cny®
A sin(K/2)(-1)? = . (3.70)
q (K+2mq) [(S2 + 8§S - N)+ (K+2mq)?]

Adding together all of the equations represented by (3.70) gives

+ o0 4+
N -4 ] 2sin/2)-DT ] A sink/2)(-DT
] A sin(k/2)(-D" = —A== i
= (K +2mq) [(S% + &S =N)+ (K+ 2mq)?]

(3.71)
+
If the summation Z Am sin(K/Z)(—l)m is considered to be a variable,
=—c
Eq. (3.71) repres:;ts the servo-loop shown in Figure 3.12.

The open-loop transfer function of Figure 3.12, which has been
derived from a wavetrain analysis, is the same as the transfer function
given in Eq. (3.67). Therefore, the closed~loop dispersion equations,
obtained from Z transforms and wavetrain techniques, are the same. The
only difference between the dispersion equations is that the one obtained
from the Z transform, Eq. (3.50), is the closed form of the dispersion

equation generated by Melcher's wavetrain analysis, Eq. (3.71).

The fact that the wavetrain method and Z transforms give the same

dispersion equation raises a question about the two methods. Melcher

considered the continuous deflection of the string to be the system out-
put; the Z transform assumes that the sampled deflection was the output of

the system. The question that occurs is: where in Melcher's analysis is

the information that determines the displacement between the sampling
points? The answer is: this information is contained in the set of equa-

tions given by Eq. (3.69). With this set of equations, the amplitudes,

A , of all of the various waves can be found and the deflection at any
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point in space can be generated. When all of these equations are added
together to get Eq. (3.71), the relations between the various amplitudes
are destroyed.

Therefore, the fundamental difference between the wavetrain analysis
and the Z-transform analysis is the difference between the equations rep-
resented by (3.69) and (3.71). Equation (3.71) is the expansion of the Z
transform, and there is no way of finding the various amplitudes Aq from
this equation. Only the sum of the amplitudes, Z A sin (K/Z)(-l)m, can
be found. When the set of Egqs. (3.68) is available, it is possible to
determine the amplitudes Aq of the individual waves, and the entire de-

flection can be obtained.

Stability Criterion for the S-D Dispersion Equation

The stability criterion used with the dispersion equation given in
Eq. (3.50) is the same criterion that is used for an w - K dispersion equa-
tion. In general, the value of S (or w ) is found for all real values of K.

If there is a real K for which the corresponding S has a positive real part,

the system is unstable.

The discrete spatial frequency D has been defined as e-JK. Thus, all

real values of K correspond to all values of D on the unit circle. To de-
termine the stability of the system from Eq. (3.50), the values of Sare
found for all values of D on the unit circle. If there is a value of D
on the circle which gives a value of S with a positive real part, the sys-
tem is unstable. This criterion actually is the same as solving for S for

0 < K < 2m. All real values of K are not used. Equation (3.19) shows that

the spatial sampling has made the transforms of this system periodic on the
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K axis with a period of 2m. Therefore, using all values of K between
0 and 2T is equivalent to using all real values of K.

Results of Stability Analysis

The dispersion equation of the closed-loop system, Eq. (3.50), can be
studied to find the values of the parameters which give stable operation.
Values of N, 8, and D are picked and a root locus plot of S is constructed
as a function of the gain. The values of gain for which the real part of
S is not positive can be found on the root locus plot. This process must
be repeated for all values of D on the unit circle to find the range of
gain which gives stable operation for a given N and §.

A portion of one of the root locus plots is shown in Figures 3.13.
The parameters for this plot are N = 4, D = ed and 6 = 0. At zero gain,
the system is unstable because there is a root at S = + 1.7. As the gain
is increased, the two roots on the real axis move to the imaginary axis
and the string becomes stable. As the gain is increased more, the roots
which began at j4.9 and j7.0 move together. When these two roots meet,
they break away from the imaginary axis, and the string becomes overstable.
Increasing the gain still more causes these roots to rejoin the imaginary
axis and roots farther from the origin to break away from the imaginary
axis. Thus, the overstability moves to higher frequencies as the gain
is increased.

In Fig. 3.14, the effect of damping is illustrated. This plot has
the same parameters as Fig. 3.13, except that the damping has been increased

to 1. The roots now tend to move along the line - §/2 (- %9 instead of

the imaginary axis, as they did with no damping. It now takes more gain

to force a root across the imaginary axis and to cause an overstability.
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OVERSTABLE
5:=2
26 |—
24 8-1
A
16 —
TA
N STABLE
8 —
41— STATICALLY
UNSTABLE
0 | 1 | | |
0 2 4 } 6 8 To)

Figure 3.15 The region of stable operation for the spatially

discrete system as determined from the S-D dis-

persion equation
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The value of gain needed to stabilize the string by driving the root

on the positive S axis to the imaginary S axis is unchanged from the

case of no damping.

Thus, the effect of damping is to hinder the onset of overstability.

The damping does not change the gain necessary to remove the initial insta-

bility.
The region of stable operation in the A-N plane is plotted in Fig.

3.15 for several values of §. For long wavelength disturbances, there

is no restoring force due to surface tension. The only restoring force

is the feedback force, and it must be equal to the unstabilizing force

for the system to be stable. The lower boundary for the stable region

is therefore the line A = N. The right-hand limit of the stable region

is due to the spatial sampling. For values of N greater than w2 » the

wavelength that is twice the sampling distance is unstable. This wave-

length cannot be detected by the sampling system, and thus it cannot be

stabilized.

The upper boundary of the stable region is a result of the dis-

crete nature of the feedback. If a disturbance has a wavelength which

is shorter than the electrode width, the feedback can pump this mode and

drive the system unstable [Thomas, p. 43]. By adding damping to the

system, energy can be drained from these modes and the region of stability

is increased.



3.6 Summary

The Z transform, which is usually used to describe temporally
discrete systems, can be adapted to spatially discrete systems. With
this transform, a spatially sampled continuum can be described by a
closed-form transfer function in terms of the discrete spatial wave-
number, D, and the frequency, S. When spatially discrete feedback is
applied to the system, a closed-loop transfer function is generated.
The natural frequencies of this transfer function determine the disper-
sion equation of the system in terms of S and D.

For analyzing spatially discrete systems, the Z transform tech-

nique has several advantages over the wave train analysis used by Melcher.

The dispersion equation obtained with the Z transforms is a closed form

expression in terms of S(or w) and D. The dispersion equation obtained

from the wave train analysis is an infinite series in terms of S and K.
To do calculations with Melcher's dispersion equation, the series must
be truncated, and there is the possibility of truncation error. The

dispersion equation obtained from the Z transform method is in closed

form, and there is no possibility of truncation error.
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CHAPTER IV

SPATIALLY-SAMPLED SYSTEM WITH BOUNDARIES

4.1 Introduction

Many continuum feedback control schemes have been generated for sys-—
tems which have only a few feedback sensors and drivers. Typically, a
normal mode expansion of the uncontrolled system is used to describe the
dynamics of the closed-loop svstem. One of the advantages of using the
normal modes of a system is that they do not influence each other. Con-
sider the case of a string with ends that are fixed at x = 0 and x = L.

The equation of motion for the spatial deflection of this string is:

Sz"( = Lz
£ = 22 £ 4.1)

and the resulting solutions to tihis equation are the normal modes

o (x) = sinz—ﬂx (4.2)

If this string is driven by a force with the same spatial dependence as
one of the normal modes, ¢k(x), then the resulting disturbance on the
string will consist of only this mode; none of the other modes will be
excited.

Most drivers or actuators that are applied to distributed systems
are not designed to excite only one of the open-loop normal modes.
Electrodes which drive a section of a plasma column or a valve on a dis-
tillation column will cause changes in many of the open-loop modes. The

sensors are also not designed to pick out just one mode, but measure

displacements which are combinations of many modes.



Because continuum feedback systems usually cannot distinguish or
excite single open-loop modes, the ability of these modes to remain un-
coupled is destroyed. With no feedback, there is a dispersion equation
of low order for each of the open-loop modes. With feedback, there is
a dispersion equation of infinite order for the system of coupled open-
loop modes.

A method of eliminating the coupling of modes is to define the set
of normal modes for tihe system with feedback. These closed-locop normal
modes are not coupled, and may be easier to manipulate than the open-
loop modes. For instance, in Section 3.5, it is shown that Z-transforms
lump an infinite number of the Fourier modes into a sum. This sum of
Fourier modes may be thought of as a closed-loop mode.

In this chapter, the closed-loop modes are found for a string which
has longitudinal boundaries and discrete spatial feedback. These closed-
loop modes are derived by several methods; by use of a matrix descrip-
tion of the system, by use of the Fourier normal modes, and by use of the
Z-transform. In addition to defining the closed-loop normal modes,

these derivations will illustrate the relationships between the various

methods of analyzing spatially discrete feedback systems.

4.2 Generation of Closed-Loop Modes for a System Described by a Matrix

Previous studies by Thomas (1966) and Melcher (May 1965) of contin-
uous systems with longitudinal boundaries have considered the spatially
continuous distribution of some variable of the continuum as the output
and the spatially continuous force generated by the drivers as the input.

The approach used by Gould (Chapter 7) for analyzing the control

problem is to consider the several measured deflections of the system as



outputs, and the signals to the drivers as inputs. This approach has
the advantage that it seems to reduce the number of dimensions of the
system to the number of sampling stations. Instead of writing an equa-
tion for each mode of the open loop system, an equation relating each
output or measured deflection is written in terms of the various inputs.
Using this approach, a system whici is sampled at two places would be
described by only two equations. A system with feedback, which is
sampled at two places, is shown in Figure 4.1. In this system, the out-
puts are multiplied by a negative gain, and this signal is fed to the

corresponding input. Hopefully, this feedback scheme will drive the

displacements to zero.

The equation for the outputs of this system, written in matrix form,

is:
E =GY-GAE 4.3)
where
51 yl glx glz
53 3 1: ,-G—=
ng Y2 €, 8,2
and a 0
A =
LO a

The closed-loop transfer function for the system can be found by rewrit-
ing Eq. (4.3) as

g = [£+A§l-l GY (4.4)



Y2

9 92 L € (x,)

+

d2 922 € (x5)

Figure 4.1 A system which is spatially sampled in two
locations and driven by two forcers can be repre-

sented by a system of two coupled inputs and outputs.
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The transfer function for this system will, in general, contain no
zero elements. If a transformation could be made so that the off-diagonal
terms of the transfer matrix were zero, then the svstem would become two
independent systems. That is, a transformation matrix T is desired which
will diagonalize the matrix [I + &“g]'l G. If this transformation is

found, the system can be described by the equation
= (4.5)

where the vectors u and w are found from £ and Y by the transformations

= TY (4.6)

(£

u = T 4.7

and fll and f22 are the non-zero diagonal terms of the matrix

F= 1 [I+a6l” G (4.8)

The method for finding the transformation matrix T can be found in
DeRusso (chapter 4) and Hildebrand (chapter 1).

The significance of Eq. (4.5) is that the outputs, u,, are uncoupled
from each other. Instead of being two coupled subsystems, where any
drive vy affects both outputs, the transformed system consists of two

uncoupled systems which are described by the equations

u = fw (4.9)
1 u !
u, = fzyz (4.10)



For the more general case of n sampling statioms, n independent systems

of the form

(4.11)

are found.
The transformation matrix T is significant because it is made from

the characteristic vectors of the system. These characteristic vectors

define the orthogonal coordinates in the space defined by the sampled

output of the system. In the situation where there is no sampling or

feedback, the normal modes of the system are sinusoids of the proper

frequencies. Since there are an infinite number of points on the contin-

uous system, an infinite number of these normal modes are needed to des-

cribe the system. In the situation in whici the system is sampled, only

a few points on the system are known. This can be thought of as saying

that the system has only a few 'dimensions'. When the modal matrix T is

found, what is actually found is the orthogonal coordinates, or normal
modes of the sampled system. When the equations for the system are

written in the uncoupled form, Eq. (4.5), the drive Y, and the response

£ are broken up into their components along the various normal modes.

As an example, Gould's technique could be applied to the case of
the string with discrete spatial feedback. The inputs, v;s are the sig-

nals to the driving electrodes and the outputs, Ei are the deflections

at the sampling points. The transfer elements, gij’ are the relation-

ships between the drives and the sampled deflections. These transfer

elements can be found by the use of Green's functions, which are ex-

plained by Morse and Feshback (chapter 7). Once the transfer elements



have been computed, the process of finding the uncoupled modes of the
system is straightforward. Unfortunately, the algebraic manipulations
necessary to compute the transfer elements are difficult to perform and
it is practically impossible to put the diagonal matrix Ifl[zj-égj-l GT
into a usable form.

The purpose of this section is merely to introduce the concept of
the closed-loop normal modes as they are described by Gould. Since the
analysis of the string is so complicated by Gould's method, it is not
considered to be a worthwhile example, and is not presented here. The
closed-loop modes for the string are found later in this chapter, by

easier methods.

4.3 Generation of Closed-Loop Modes from Open-Loop Modes

In previous studies of the string by lMelcher (May 1965) and Thomas
(1966), the spatially continuous deflection of the string is considered
to be the output of the system. This deflection is described by an in-
finite number of the open-loop normal modes. Because the deflection
of each point of the string can be found by their methods, their analy-
sis must contain much more information than is necessary to find the de-
flection at only the sampling points. If this extra information can be
discarded from the normal mode analysis, then only the information about
the sampled deflection would remain. From this remaining information,
the closed-loop or sampled normal modes can be found.

This method of finding the closed-loop normal modes gives the same
modes that could be obtained from the matrix approach. The advantage of

starting with the open-loop normal modes is that the algebraic manipula-

tions are much easier.



Normal-Mode Description of the Finite String

The system studied in this section is the electrically stressed
string of finite length whose ends are attached to solid supports. This

system is shown in Fig. 4.2, The string is driven by a finite number

of electrodes which are of length L. The ends of the string are fast-

ened at the points x = 0 and x = mlL, where m is the number of feedback

electrodes. The equation of motion for the string is

1 2%e(x, 9% (x, 3tk
= 20ot) | BEGaD g BB o k2ptx,0)+ g, (x,0Gu12)

d is similar to the spatially-discrete voltage shown in Fig. 3.2.

The length of a driving electrode, L, is normalized to one and the

where v

length of the string is normalized to m by the introduction of the fol-

lowing normalized variables:

s = Iuvi (4.13a)
P

N = ki L2 (4.13b)

§ = BVPL (4.13c)

M= L2g (4.13d)

Assuming that the displacement is an infinite sum of the open-loop

normal modes,

[e <]
£(x,t) = Real( ] E_ sin 5‘%) eSt (4.14)
n=1
allows Eq. (4.12) to be rewritten as
v nm, 2 ~
J (5, sin &) [s2 + 685+ (=) - N] = Mv (x) (4.15)
n=1 o m m
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When this system is described by its open-loop normal modes, it is
not in the matrix form of Eq. (4.3), and the closed-loop normal modes can-
not be formed by the method shown in Section 4.2. This problem is over-
come in the following section.

Closed-Loop Transfer Functions

As an example, the closed-loop normal modes and their transfer func-
tions will be developed for the case of two feedback stations. The ends
of the string are fastened at x = 0 and x = 2. For this case, one elec-

trode drives the string for 0 < x < 1, and the other electrode drives

St]

1 < x < 2. The voltages on the two electrodes are given by Re[lee

and Re[VdZeSt], respectively.

Multiplying Eq. (4.15) by sin nrm/2 and integrating from O to 2

gives: (21
H(le + de) n odd
= [g2 nm, 2 _N] =< M - -
_n[S + ( 2) + &S N} J - (le de) n = 2,6,10,
L 0 n=0,4,8,"""
(4.16)

This equation shows that, with this electrode structure, it is im-

possible to drive the modes n = 0, 4, 8, ... . These modes cannot be

influenced, and are called "uncontrollable''.
The detection scheme that is used here is to sample the displace-

ment at the center of each driving electrode. To drive this displace-

ment to zero, a voltage proportional to the measured displacement and

of opposite polarity is applied to each electrode. That is, V47 is pro-

portional to §(1/2,t) and V4, is proportional to £(3/2,t). In terms of



the open-loop normal modes, the driving voltages are

Vi = -c'[‘/:‘; (E +E5 -2 -2 +E )

+ (_:_2- 55 + 5”- 5“ eee )] (4.17)
Vi, = -c'[’/—i_( E +E - E - E+ E)

- (E - E + & - E + )] (4.18)

where G' is the constant for the feedback gain. Substituting Egs. (4.17)

and (4.18) into (4.16) gives

= 2 m 2z _ = - = 2 =% =T
C [s+65+(2) N] — "1+'3 E, _7+...)
(4.19)
for n odd, and
2
Z (52 + 6 oM g1 = -8 = Lz T - =
_n[s +oS+(2) N] ™ (..2 _.G+_N _“-4-...)
(4.20)
forn =2, 6, 10, 14, ... .
(4.21)

where A = MG’
These are the same equations that were derived by Melcher (May 1965).

The trick now is to get this infinite number of equations representing

the open-loop modes into just two equations representing the closed-loop

modes. If Eq. (4.19) is divided by the coefficient of En’ the result is

- - 2A V2 - - - —
= = (ZE + = -2 -Z +...) (4.22)
n (s? + 8S + (-“21)2 Ny ™ 3 s Y

for n odd.
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The set of equations represented by (4.22) is now added and subtrac-

ted together, to get

(E +E -8 -E + cel) =
-A2/2_< 1 . 1/3
m sz+as+(21) - N 52+<Ss+(32m)2-N
) 1/5 1/7 N ) :
Zz = 2
sz+as+(g—“) - N sz+ds+(—7§Tl) -N
(E 45 =5 =E 4« ) (4.23)
1 3 S 7

The same process can be repeated on the even modes of Eq. (4.20), to

obtain:
(E -5 4 E - E 4+ E = 00) =
2 6 10 14 16
_g._< 1/2 _ 1/6 .
Z - 2
T sz+<ss+(27“) - N sz+o“s+(—621)-N
1/10 ces) o(= - = = - = T o ees)
Tom. 2 N - > (“2 6 + “10 1w + 16

§% + 85 + (5)
(4.24)
If the sums of the normal modes in Eqs. (4.23) and (4.24) are con-
sidered to be variables, then these equations can be represented by the
servo loops in Figures 4.3 and 4.4.
The system description has been changed from one consisting of an

infinite number of open-loop normal modes to one consisting of two inde~

pendent closed-loop modes. Comparison of the output of the two servo

loops with Eqs. (4.17) and (4.18) shows that the two closed-loop modes

are proportional to the sum and the difference of the two measured



1212

H, (s)

H (kn » S ) 4T_7

Figure 4.5 The bounded string with spatially continuous

feedback

can be represented by an infinite number of

servo loops. The transfer function in the servo loop
is the transfer function of the infinite string

evaluated at the eigenvalues kn’
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displacements.

By finding the two closed-loop normal modes which describe the sys-
tem, the number of equations which describe the system has been reduced
from an infinite set to two. This reduction in the number of equations
must correspond to a loss of information about the system. The lost in-
formation is the value of the string's deflection at any point other than
the sampling points.

In Eq. (4.14), the deflection of the string is described as a sum of
the open-loop normal modes. If the amplitude of each of these modes is
known, the deflection at any point can be constructed. With Eqs. (4.19)
and (4.20), these amplitudes can be determined. When the sets of equa-
tions represented by Eqs. (4.19) and (4.20) are added together to get
Eqs. (4.22) and (4.23), the ability to find the individual amplitudes,
En’ is lost. Only the sums of the amplitudes, shown as the outputs in
Figs. 4.3 and 4.4, can be determined. By taking the sum and differences
of these two outputs, the deflection at the sampling points can be deter-

mined to within a multiplicative constant.

4.4 Generation of Closed-Loop Modes from the Z-Transform of

the Unbounded System

When the closed-loop modes are generated from the open-loop modes,
the information which determines the value of the deflection between the

sampling points is lost. It is shown in Section 3.5 that using Z-trans-

forms corresponds to dropping the information about the deflection betwen

the sampling points. This suggests that there is probably a relation-

ship between the closed-loop normal modes and Z-transforms. This connec-

tion is developed and a method of generating the closed-loop modes from
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the Z-transform is presented in this section.

Boundaries Create Eigenvalues and Zeros

An infinitely long structure, such as a parallel-plate transmission
line or a string, will support waves for any real wavenumber, k. These
transmission lines also put no restriction on the phase of a wave; a
wave with a spatial variation of sin (kx) can exist, as well as one with
a spatial variation of cos (kx).

If the transmission line is terminated by a free end, or a short,
or if the string is fastened to a rigid support, the wavenumber and the
phase of the disturbances are restricted. The wavenumber, k, of a dis-
turbance is restricted to certain eigenvalues and the eigenmodes, the
disturbances at the eigenvalues of k, can occur only with certain values
of phase. For example, a string fastened at x = 0 and x = L will have
waves whose spatial distribution is sin (kx); waves wnich have a distri-
bution of cos (kx) cannot exist. The value of k is also fixed at the
values nm/L.

The previous discussion leads to some conclusions about the rela-

of the transfer function for an infinite system to the transfer

tionship

function of a finite system. The first conclusion is that the transfer
function for the bounded system must contain zeros that are not in the
infinite transfer function. These zeros will insure that no disturbance

will exist when a drive with the wrong phase characteristics is applied

to the string. The string with the ends pinned at x = 0 and x = L will

have to have zeros that assure that no waves with a spatial variation of

cos (kx) can exist. The second conclusion is that the transfer function
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for the bounded system applies only to the eigenvalues of k. In addi-

tion to the proper phase, the waves must also have the proper wavelength

to satisfy the boundary conditions. By restricting k to the values nr /L

the string will have no deflection at x = 0 and x = L.

Transfer Function of a Spatially-Continuous System with

Longitudinal Boundaries

The method of finding the transfer function for a bounded system

from the transfer function of the unbounded svstem is derived in this

section. The system studied here is terminated at the points x = a and

x = b, so that the disturbances are zero at these boundaries. An example

of this situation is a transmission line with the voltage shorted at the

ends or a string with the ends attached to a solid support.

This system has spatially continuous feedback. By analvzing this

system, the procedures for forcing the proper phase onto the disturbance
and for finding the elgenvalues of k can be introduced without the comp-

lications of spatial discreteness. This complication is added later.

At a boundary, a reflected wave is generated which interferes with

the incident wave and makes the deflection zero. A procedure, illus-

trated by Morse and Feshback (Chapter 7), for mathematically generating

this reflection, is to use the method of images. The reflection or image

due to the boundary at x = b is made by flipping the incident wave about

the point x = b and multiplying by a minus (~) sign. The incident wave

and the reflected wave approach the boundary from opposite sides and

with opposite polarities. The two waves meet and the destructive inter-—

ference at the boundary makes the displacement zero at this point. 1In
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terms of the incident wave, the first reflected wave is

Ep (x,£) = - &;(-x-2b,t) (4.25)
1

The second boundary at x = a creates more reflections. An image wave must
be set up to cancel not onlv the incident wave, but also the first reflec-

ted wave. This second reflected wave can be written as

ER2= - g (-x - 2a,t) - 531('x - 2a, t) (4.26)

Using Eq. (4.25), this second reflection is

ng =-E;(-x-2a, t) + g (x+ 2 - 2a,t) (4.27)

The sum of the original wave plus the two reflections matcnes the
boundary conditions at x = a, but the boundarv condition at x = b is no

longer satisfied. A third reflected wave, ER , must be generated to
3

cancel ER at this boundary. The creation of ER will now necessitate
3

2

the generation of another reflected wave, ER , to match the boundary
L

condition at x = a. The process is continued indefinitely as an infinite

aumber of reflections are created by the waves bouncing back and forth

between the boundaries. The total disturbance on the bounded system can

be written as

E(x,t) = Z [Ei x + 2n(b-a),t]
n=-w
- ] El x+2u(-a) + 2b,t] (4.28)
n=- oo

and the transform of the disturbance on the bounded system is
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= _ = -2jkb .
E(k,s) = [ E;(k,8) - e J E; (=k,S)]

(1 + o2dk(-a) | -25k(b-a) , 43k(b-a) . -4jk(b-a),

(4.29)

The series in this transform can be recognized as the transform of an

impulse train with a period of 2(b-a) on the x axis. In Mason and Zimmer-

man (pp. 242-247), this transform is shown to be

l" M - — 0] - - -— T
1+e2Jk(e-a) | -2ik(b-a) | 4jk(b-a), = _ T ) u (k- ?%3579

(4.30)

With Eq. (4.30), tne transform of the disturbance on the bounded svstem in

terms of the disturbance on the unbounded system is:
@

-ijbsi(_k’s) ] (_bT.r_a) z uo (k- -;—:ljz ) (4.31)

Z(k,s) = [E.(k,s) - e
1 n=-~o

If the original disturbance on the unbounded system, Ei’ is written
as the product of some drive Ui(k,s), and the transfer function of the

unbounded system, H(k,s), the disturbance on the bounded system is

EGe,s) = [U; 0 8)RGK,8) = ¢TI0, (i) 1GID) T u G- g2

(4.32)

This equation shows how the boundaries have affected the transfer

function. The impulses at k = n7/(b-a) nave made the system function apply

to only these eigenvalues. There can be no energy at any other wavenumber.

The proper phase relationship is forced onto the disturbance by the term

in brackets in Eq. (4.32). This can be seen by considering the case in
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which the left end of the system is fastened at the origin so that a = 0.

From normal mode theory, it is known that disturbances on this system are

of the form sin (kx) and are, therefore, odd functions in k space. At the

eigenvalues of k, the value of e-Zka is equal to one, and the term in

brackets is the proper odd function of k.

Continuous Spatial Feedback for a Bounded System

The transform of the disturbance, which is given in Eq. (4.32), is
not in a familiar form, because it does not appear as the product of a

drive and a transfer function. The longitudinal boundaries on the system

have forced the disturbance to be a complicated function of the drive and

the unbounded transfer function. Fortunately, there are special cases

where Eq. (4.32) can be put into the familiar form. TIwo examples are

whenever Ui(k,s) or H(k,s) are even or odd functions of k.
For many systems, the characteristics of a wave are independent of

the direction in which the wave is traveling. The string is an example

of this kind of system; a wave traveling to the left has the same speed

and sees the same impedance as a wave traveling to the right. A system

with this property will have a transfer function which is an even function

of k. For these systems, the transfer function of the disturbance can be

written as
[~}

S(k.s) = -2jkby T _om_
Z(k,s) = H(k,s)[U; (k,s) - e U, (-k,8) 1 G nz_m uy (k= £

(4.33)

From the form of Eq. (4.31), it is seen that the impulses and the term in

brackets on the R.H.S. of (4.33) are the drive that exists on the bounded

system. That is,
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U, (-k,8)] ] uo(k-%ll_r—a—) (4.34)

n=—m

T -2jkb
Uk,s) = g [U;(k,8)- e
The feedback signal is generated by amplifying the sampled deflection by

a negative gain. Therefore, the drive for the bounded system is
U(k,s) = - A E(k,s) . (4.35)

The transform of the deflection on the closed-loop system can be found by

substituting Eqs. (4.34) and (4.35) into (4.33), to obtain

Z(k,s) = - AH(k,s) E(k,s) . (4.36)

Equation (4.36) is of the same form as the equation for the closed-loop
response of an unbounded system. The differences between the bounded

and unbounded cases are the restrictions applied to Z(k,s) when longi-
tudinal boundaries are present. Equation (4.31) shows that, when bound-
aries are present, Z=(k,s) has a value only at the eigenvalues of k.
Equation (4.31) also shows that the phase of Z(k,s) is restricted because
the values of Z(k,s) and Z(-k,s) are not independent. If the boundaries
are removed from the syétem, the restrictions are removed from Z(k,s).

.From Eq. (4.31), the deflection can be seen to be of the form

@

Z(k,s) = ) £ (s) u (k - %g;)

n=-—x

(4.37)

Substituting Eq. (4.37) into (4.36) produces the following infinite set

of equations:

En(s) = - AH(kn,s) En(s) (4.38)

nm
where kn = b_—a- .
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From this set of equations, an infinite number of servo loops like the one
in Figure 4.5 can be drawn.

By using Eq. (4.31) the servo loops for any amplitude Eb(s) and the
corresponding amplitude E_b(s) can be combined. The result is a servo-
loop representation for each of the sinusoidal normal modes of the system.

A specific example will not be given for this situation where the
feedback force is a continuously variable function of space. This problem
has been done by Melcher (May 1965) and Thomas (1966) for the case of the
string, and there is no value in repeating it. This section was presented
only to illustrate the method of generating the transfer function for a
bounded system from the transfer function of an unbounded system. The
complexity of discrete spatial feedback was left out to simplify the der-
ijvation. The problems caused by discrete spatial feedback are considered

in the following sections.

Transfer Function of a Spatially Discrete System with Boundaries

By modifying the technique which we presented earlier in section 4.4,
the transfer function of a discrete spatial system with longitudinal bound-
aries will be derived from the transfer function of the same system without
boundaries. The system to be studied here is the string with discrete
spatial feedback that was studied in section 4.3. The method that is used
is applicable to a string with any number of feedback stations. However,
to avoid the complexity of a variable number of feedback stationms, the
aumber is set at two in the following derivation. The string with two
feedback electrodes is shown in Figure 4.6.

The feedback system samples the deflection at the center of eacn

electrode. Because it is convenient to have the first sample occur at the
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-1/2 L/2 3L/2

Figure 4.6 A cross-sectional view of the bounded

string with two feedback electrodes
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origin, the system is located with the left end at x = - 1/2L.
The transform of the continuous displacement of this system can be
obtained from Eq. (4.32). The only modification that must be made is that
the drive must now be designated as a sampled function. Using the values

a= -1/2 L and b = 3/2 L gives the transform of the displacement as

E(k,s) = [U$(k,s)CCk,s)- e 3" US(-k,s)G(~k,s)]*
*o
m o
GO 1wl -7 (4.39)

The transfer function for the infinite system, G(k,s) includes the prop-

erties of both the driving electrode and the string. G(k,s) is given bv

Eq. (3.42).

For convenience, the length L is normalized to one by using the
definitions in Egs. (3.3a) through (3.3e). Equation (4.39) can now be

written as

5(K,5) = [U$(K,S)C(K,S)~ e K UX(K,S)G(K,S) ]+ (4 .40)
+oo
T - o
2 z uo(K 2 )
The next step is to sample the displacement at the points x = 0,1,2,:+ .
The result is
+ o
- i * am,  *
E*(K,S) = 7 [U;(K,5)G(K,S) E_DUO(K - 591
4 ™
—3iK *
- 7 03K, 8) e 6K, | u,® - 5] (4.41)
n=—o

It is shown in Eq. (3.19) that spatial sampling makes a function periodic

in K space with a period of 2m. Because the impulse train, the drive, and
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the delay e-'3JK are already periodic at this rate, the sampling does not

affect them. The only term affected by the sampling is G(K,S). Rewriting

Eq. (4.41) gives

+
E4(K,S) = 7 U$(K,5)G*(K,S) ] u K - 5
n=-x°
+ o
- X u%(- K,S)G*(- K s)e"3jK ! u (x - 20 (4.42)
2 i ’ ’ n=_m fe) 2 .

The impulse train in LEq. (4.42) is periodic with a period of m/2. The

other terms in the equation have a period of 2m. This means that the terms

U% (K, $)G*(K,S) and e *3Ku# (- K,5)G*(- K,5) are sampled by the impulse ctrain
four times in a period of 2m.

The impulse train in Eq. (4.42) can be factored into a group of four

impulses that is repceeted with a period of 2m. The result is

4+ 4

- - - -3jK T ’
54(K,8) = 3§ ] [UF(K,5)6*(K,8)- e T UE(-K,8)G*(-K,5) ]
n:-wp=
uo(K - Kp - 2nm) (4.43)
where K.p = %F- , L<p <k (4.44)

By using the techniques shown in Chapter 3, the periodicity of 2w on

the K axis can be removed by writing Eq. (4.43) in the D form. The result is

= _ W _ 03 -1 -1 .
z(D,s) = 3 [Ui(D,S)G(D.S) D U, (D »S)G(D °,9) ]

(4.45)

I o~
[~
o}
~
w]
"
]
Nt

p=1

where D = i (PT/2) 1< p <4 ' (4.46)
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Equation (4.45) can be generalized for the case of r sampling stations.

When there are r sampling stations, the left end of the system is located

1 . .
at x = = > and the right end is at x = r -

2 . The equation for this

N+

case is seen to be

= _ 1 _ 2r—-1 -1 -1 .

2r
21 u (@ - D)) (4.47)
p= :

where D = e jpm/x 1<p < 2r (4.48)

Equation (4.45) shows the effects that boundaries have on the
transform of the deflection. When there were no longitudinal boundaries
on the system, the transform was a continuous function on the D axis.
When the boundaries are applied, the transform becomes impulses at the

eigenvalues of D. The boundaries have also created zeros in the trans-

form of the deflection. The term in brackets in Eq. (4.43) assures that
a disturbance with the wrong phase cannot exist on the string.

There is a significant difference between the disturbance on a
spatially discrete bounded system and the disturbance on a spatially con-

tinuous bounded svstem. For the spatially continuous system, Eq. (4.31)

shows that the number of eigenvalues of K is infinite. For the spatially

discrete system, Ea. (4.44) shows that the number of eisenvalues of D is

finite. The difference in the number of eigenvalues can be explained by

the argument that was presented in Section 4.2. The output of the con-
tinuous system is considered to be the continuous deflection of the

string. Since there are an infinite number of points on the string, an
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infinite number of eigenmodes is needed to describe the deflection.
The output of the spatially discrete system is the deflection at a finite
number of sampling points. Because the deflection is known at only a few

points, only a few eigenmodes are needed to describe the measured output.

As the number of sampling points increases, tihe number of eigenmodes also

increases.

Discrete Spatial Feedback for a Bounded System

Similar to the case of a spatially continuous system, the transform
of the discrete spatial deflection given by Eq. (4.47) does not appear as the
product of a drive and a transfer function. The longitudinal boundaries
force the disturbance to be a complicated function of the drive and the
unbounded transfer function. This transform can be put in the desired form
only when the drive or transfer function have certain forms.

For many systems, the character of a disturbance is independent of the
A wave traveling to the left has the same speed, and

direction of travel.

sees the same impedance, as a wave traveling to the right. A system with

this property has a transfer function which is an even function of K. If

this system is spatially sampled, the discrete transfer function obeys the
relation

G(D,S) = G( },s) (4.49)

The stationary string and its driving electrodes are a system whose transfer

function has this property.

When the unbounded transfer function satisfies the condition given by

Eq. (4.49), Eq. (4.47) can be written as
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2(D,8) = 6(0,8)[ T U (0,8) - T p*Flu (071,5)]- ]

L uo(D-Dp) (4.50)

the
FromEgs. (4.31) and (4.47), it can be seen that impulses and the term in

brackets on the right side of (4.50) are the drive that exists on the bounded

system. That is,

2r
. T _ o2T-1 -1 . _ <
U (,8) = L [U;(D,S) - D U. (" ,8)] ¢ ) u_ (D D) (4.51)

p=l
The feedback signal for this example is generated by amplifying the sampled

deflection by a negative gain. The drive for the bounded system is therefore

u(,s) = - A =(D,S) (4.52)

The transform of the deflection on the closed-loop system can be found by

substituting Eqs. (4.51) and (4.52) into Eq. (4.50) to obtain

=(D,S) = - AG(D,S) =(D,S) (4.53)

Equation (4.53) is of the same form as the equation for the closed-loop res-

ponse of an unbounded system. The differences between the two cases are the

restrictions applied to =(D,S) when longitudinal boundaries are present.

Equation (4.47) shows that, when boundaries are present, 3=(D,S) can have

a value only at the eigenvalues of D, Equation (4.47) also shows that the

phase of Z(D,S) and =(D !,S) are not independent. If the boundaries are

removed from the system, both of these restrictions are removed from =(b,s).

From Eq. (4.47), the deflection is of the form

2r
=(@,s) = pgl :p(S)uo(D—Dp) (4.54)



where

Dp = e jem/r

The following set of 2r equations is produced by substituting Eq. (4.54)

into (4.53) and equating the impulses at the same values of D.

:p(S) = - AG(DP,S) :p(S) (4.55)
From this set of equations, a set of 2r servo-loops like the one in Fig.

4.7 can be drawn. By studying these servo-loops, the stability of each

amplitude, ED, can be determined.

As an example, the transfer functions of the discrete eigenmodes will

be derived for the case of the string illustrated in Fig. 4.6. The ends of

the string are fastened at x = - 1/2 and x = 3/2 and two feedback electrodes

are used to drive it. This is the same example that was considered in § 4.3.

In that previous example, the transfer functions are derived from the eigen-
modes of the unsampled svstem. The form of these transfer functions is a
series of poles in the K-S plane. For purposes of comparison, it is de-
sirable for the results of the example worked here to also be in the form

of a series. Therefore, the series form of G(D,S), given in Eq. (3.67),

is used here. If the closed form of G(D,S) were used, the closed form of

the transfer function would result.

For the case of two feedback stations (r = 2), Eq. (4.48) gives for
the eigenvalues of D

R

p = 1,2,3,4 (4.56)
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Figure 4.7 The bounded string with spatially discrete

feedback can be represented by a finite number of

servo loops. The transfer function in the servo loop

is the spatially discrete transfer function of the

unbounded string evaluated at the eigenvalues Dp.
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These values of Dp correspond to the principal values of K

Kp = gf' p =1,2,3,4 (4.57)

Substituting the principal values of K from (4.57) into the series form
of G(D,S), Eq. (3.67), gives for the discrete transfer functions

v D ) sin (/4

(-1 sin (mw/4) (4.58)
= (m/2 +2nm) [S%+ 85— N +(7/2+ 2am)?]

p, )l
I\

I
N

p—

T _ (=" 2 sin (1/2)
c(D._,S) =
P 'K nz-m (7 +2am) [S2+ 8S-N+ (m+ 2nm)?] (4.59)

p ="
=] n .
G(D ,S)' - (z1) 2 sin (3m/4) - . (4.60)
| L 31 n-e (Gm/2+2am)[sP+ 85N +( F + 20m7)
P 2
(==} n R
G(D .S)‘ = (1) 2 sin (1) (4.61)
L n=—o (27 + 2n7) [§%+ 6S-N) + (2m+ 20m)?]
P

The transfer functions given by Eqs. (4.58) and (4.60) are identical, and

can be expanded to give

G(D_,S) = 2'/;2—[ - 1 + 1 £
P _m 3w [S246S -+ (/2)2] 3[S%+8S-N +(59)°]
K = 5,5 2
P 2°2
) L . } (4.62)
5[sz+6s-N+(-521)2]

The transfer function given by Eq. (4.59) can be expanded to give
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G(._,S) - % L - 1
P K, =T S2+ 85 =N +m2 3(S2+ 85 - N +(3m)2
. 1 L. (4.63)

5[S2 +8S - N +(5m)2]

These transfer functions are the same as the previously derived transfer

functions that are shown in Figs. 4.3 and 4.4.

If the transfer function in Eq. (4.61) is expanded, it is found to

be zero.

GO, _pp = O - (4.64)
p

The reason the transfer functions are equal for the eigenmodes at

K = m/2 and Kp = 3m/2 can be explained by Eq. (4.47). Examination of

Eq. (4.47) shows the eigenmode for a given D (or Kp) is related to the

eigenmode for the corresponding Dp-l( or Kp). Since the amplitudes of

these eigenmodes are not independent, the transfer functions for the two

modes must be the same.
This relationship between the two modes is a consequence of the

boundaries. It has been pointed out that the boundaries force the deflec~-

tion to have a certain wavenumber and phase. The proper phase is obtained

by making the two modes dependent. This dependence is easily seen by con-

sidering a spatially continuous system of length 1. Two of the possible

modes are AleJﬂx and Aze-wa. If the system has ends at x = 0 and 1, then

A must equal -A2 and the deflection is of the form sin (mx). If the ends

are at x = bi , then A equals A, and the deflection is of the form cos
2 1 2

(mx) .
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The transfer function for the eigenmode at KD = 27 is zero. The

<

explanation for this can be found in Eqs. (4.17) and (4.18). When the

system is described by the open-loop normal modes, the modes corres-
ponding to n = 0,4,8,12,... cannot be detected by the feedback sensors

(spatial samples). These modes therefore do not contribute to the

sampled output. In Chapter 3, it was shown that the D transform represents

a sum of the open loop modes. For the system considered here, the closed-

loop eigenmode at Kp = 27 (Dp = 1) represents a sum of all of the open-

loop modes which are not detected by the feedback semsors. This closed-

loop mode is also not detectable and its transfer function must be zero.

4.5 Determination of the System Stability from the Closed-Loop Modes

The stability of the closed-loop normal modes can be determined from

the transfer functions of these modes. The poles of these functions in the

S plane are found as functions of the variables A, N, and 6. The values

of these parameters, for which the poles of all of the modes are in the
left-half S plane, determine the region of stability in the A, N,§ plane.
A problem that can occur is that the closed-loop modes may be stable

but tne system is unstable. This happens if the instability is not detected

by the control system. A potentially unstable wave which is not detected

by the control system is illustrated in Fig. 1.2. If this wave is unstable,

the system is unstable. Since the closed-loop modes consider only the de-

flection measured by the control system, the closed-loop modes can be

stable for this case.
It is important that no potential instability be missed when the closed-

loop normal modes are used. By carefully deriving the closed-loop modes,
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the possible existence of these unobservable modes is revealed. These

unobservable modes must be checked for stability along with the closed-

loop modes.

In section 4.3, the closed-loop modes are derived from the open-loop

modes. This derivation shows that unobservable disturbances are possible.

For the case of two feedback stations, Egs. (4.17) and (4.18) show that
the modes £, Es , E12 . are not observed by the control system.

To insure that the entire system is stable, both of the closed-1loop
modes and each of the unobserved open-loop modes must be checked for
stability.

The existence of unobservable disturbances is also revealed when the
closed-loop modes are derived from the Z transform of the unbounded system.
For the case of two-station feedback, the transfer function for the eigen-
value D = 1 is found to be zero. The numerator of the transfer function

is zero because the spatial sampling cannot detect the corresponding
eigenmode. A trick which allows this mode to be seen is to ignore the zero
in the numerator of the transfer function for D = 1. The roots in S of

the denominator are then found, and if there are any poles in the right-

half S plane, this unobservable mode is unstable.
The region of stability in the A, N, 8 plane which can be computed

from the closed-loop modes is not given here. This information has been

given by Melcher [May, 1965] and there is no need to repeat it in this

thesis.
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4.6 Summary
In this chapter, three methods for describing a spatially

sampled continuum system with boundaries have been compared. These three

methods are: the matrix approach used by Gould, the theory of normal

modes used by Melcher, and the Z transform.

The matrix approach considers the measured, or '"sampled', deflect-
ions of the system as the outputs and the signals to the drivers as the

inputs. This view of a continuum system results in a model with a finite

number of coupled inputs and outputs. By the proper transformation, the

normal coordinates of tnis system can be found. With these normal coor-

dinates, the system can be made into a finite number of independent,

single-input, single-output systems.
The Z transform method also considers the sampled deflection as the

output. By using Fourier integral techniques, the discrete normal modes

of the system are found. These modes are not coupled by the feedback.
The total system then can be modeled by a finite sum of uncoupled feed-

back loops, one for every discrete normal mode. These discrete normal

modes are the same as the normal coordinates found by Gould's method.

Melcher has modeled the bounded system by the normal modes of the

system without feedback. This analysis considers the continuous deflec-

tion of the system as the output. By this approach, the output has an

infinite number of degrees of freedom, and therefore an infinite number

of modes are required to describe the system. By the proper mathematical

manipulations, the information about the deflection between the sampling
points can be dropped from Melcher's analysis, which then gives the same

closed-loop normal modes that can be obtained from the Z-transform method

or from Gould's matrix method.
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The easiest method of determining if a spatially discrete system is

unstable is to use Gould's method or the Z transform. Both methods pro-
vide the same set of independent feedback loops which represent the total

system. By cnecking the stability of each of these loops, the total system

stability can be found.

Melcher's normal-mode approach is more complicated than the other two
methods, because it provides information about the entire deflection of the
string. This method is useful when the deflection at every point of the
string must be determined. With any spatially sampled system, there is a
chance that the instability is not detected by the control system. With
Melcher's normal-mode method and with the Z~transform method, any possible
unobservable disturbances are easily identified. These unobserved modes
can be checked, and the stability of the entire system can be determined.

If Green's functions are used to derive a matrix description of the
system, it is not apparent how the unobserved disturbances can be detected.

Thus, for systems which may contain unobservable instatilities, the Z-

transform and modal methods are probably the best methods to use.
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CHAPTER V

CRITERIA FOR IDENTIFYING AMPLIFYING WAVES AND ABSOLUTE INSTABILITIES

ON A SPATIALLY DISCRETE SYSTEM

5.1 Introduction

When the stability of a continuum system is being studied, it is some-

times important not only to find out if instabilities are present, but also

to determine the tvpe of instability. Twiss (1951), Sturrock (1958) and

others have indicated that it is possible for two distinct types of insta-

bilities to be observed on spatially continuous systems of infinite extent:

"convective' instabilities and '""absolute' instabilities. These two types of

instabilities are shown in Figs. 5.la and 5.1b, respectively. When a system

is unstable in the absolute sense, a pulse of finite amplitude and finite

spatial extent will have unbounded growth at every point in space. When a

system is convectively unstable, a pulse on the system will grow without

bound as it moves along the system. The propagation is fast enough so that

the pulse moves past any fixed point on the system. Eventually, the ampli-

tude at any fixed point decreases to zero.
An absolute instability is often undesirable unless an oscillator or

self-excited device is desired. A convective instability has practical

applications in such devices as a traveling-wave tube. A pulse that is

introduced at the input of a traveling-wave tube will grow. The convective

nature of the instability causes the growing pulse to be transported along

the tube. At the output end of the tube, the pulse is extracted. Due to

the growth of the pulse as it traveled through the tube, the output is an

amplified replica of the input. It is this, and other applications of
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5.1a Convective Instability
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5.Ib Absolute Instability
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5.lc Convective Absolute Instability

Figure 5.1 The three types of instability that can be

observed on a spatially discrete continuum system.
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convective instabilities that make it important to be able to distinguish
between convective and absolute instabilities.

A method of distinguishing between amplifying and evanescent waves, and
for detecting the presence of absolute instabilities, has been developed by
Bers and Briggs (Oct. 1963). Their criteria are applicable to systems which
are time-invariant and uniform in one spatial dimension. This type of system
has perturbations of the form exp [j(wt-kx)]. The relation between the fre-

quency w and the wavenumber k is given by the dispersion equation

Alw,k) =0 (.1

When the system iS spatially discrete, the problem of determining the
type of an instability is more complicated. A spatially discrete system is
not uniform in one spatial dimension, and a dispersion equation such as (5.1)

does not exist. It is therefore impcssible to use the Bers-Briggs stability

criteria on a spatially discrete system.
Crowlev (1965) has studied a jet of water which was stressed by an elec-

tric field. The kink mode is convectively unstable on this system. To

control the instability, a spatially discrete feedback system was used. He

found this feedback arrangement could stabilize the jet, and it would also
cause a type of instability that is not seen on spatially continuous systems.
This new type of instability is a mixture of a convective and an absolute
instabilitv. It resembles an absolute instability, because a pulse, applied
to the system, will create an unbounded response at all pecints downstream

of the point of excitation. The instability resembles a convective instabil-

ity because the disturbances do not propagate upstream. This instability is

illustrated in Fig. 5.lc.
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Crowley found that the behavior of the system can be predicted anal-
ytically. He formulated stzbility criteria that require using the method
of characteristics to determine the proper boundary conditions for the
system. His method is more specialized than the adaptation of the method
developed by Bers and Briggs. In Chapter 3, a method is presented for
generating a dispersion equation for a spatially discrete system. This

dispersion equation is a relation between the complex frequency S and

the discrete spatial frequency D, which is of the form
A(S,D) = O (5.2)

A simple stability criterion was also developed to go with the disper-
sion equation. The system is unstable if, for any value of D with unit
magnitude, the dispersion equation gives a value of S with a positive

real part. This simple criterion does not give any information about

the nature of the instability.

This chapter is concerned with modifying the Bers-Briggs criteria
so that they can be applied to spatially discrete systems with dispersion
equations like Eq. (5.2). With these new criteria, it is possible to
determine if a spatially discrete system is stable, convectively unstable,
absolutely unstable, or unstable in the hybrid mode which Crowley observed.
For an example the string will be analyzed and the type of the instabil-
ities will be determined. The string, with convection, is described by
the same mathematical model as the water jet that was analyzed by
Crowley. The results obtained here are therefore compared directly to

Crowley's, and a verification of the modified Bers-Briggs criteria is

obtained.



5.2 Stability Criterion for z Spatially-Sampled, Time-Independent System

Mason and Zimmerman (pp. 369 - 385) present a method for determining
the stability of a time function from the function's LaPlace transform.

By their criterion, a function which propagates forward in time is unstable
if the transform has a pole in the right-half S plane. A function prop-
agating backwards in time is unstable if the transform has a pole in the
left-half S plane.

In this section, an equivalent criterion is presented for time-
independent spatially-sampled functions which can be described by D
transforms. This criterion determines if the function is stable in a
spatial sense; that is, does it remain unbounded as x approaches plus or
minus infinity? This criterion is not very useful by itself; however,
the ideas presented in this section must be understood before the sta-
bility criteria for temporal and spatial instabilities can be understood.

If more information about Z transforms is needed, a thorough treatment,

such as the book by Jury (1964), should be consulted.
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The simple stability criteria for spatially sampled signals can be

deduced by studying two functions; one function exists for positive values

of x and the other for negative values of x; these are:

2% x 20
f1(X) = (5.3)
0 x <0
eax x <0
f (x) = (5.4)
: 0 x>0

Both of these functions are sampled at unit intervals on the x- axis; the

sampled functions are

r,z e** u_(x-n) x>0
J a=1l °
fl*(x) = 0 x <0 (5.5)
S  ug (x) x =0
%X 4 (x-n) x <0
n=-1 °
fz*(x) ={ 0 x>0 (5.6)
Fu (0 x = 0

K\ 2
The reason that both functions have an impulse of value 1/2 at the origin
is that the sampling impulse at the origin detects only half the value of

the step at the origin. A more complete explanation is given in § 3.3.

The LaPlace transforms of the sampled functions are

o
F #(k) = - %- + Z o -ejnk (5.7)
1 n=0
Fak) = -2 + ] %I K (5.8)
2 n=0
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By using the definition of D,

D - ik

the LaPlace transforms

F (D) F *(k)
1 1

F (D) F #*(k)
2 2

(5.9
can be rewritten as
=%_—+ e®D + 292 + ... (5.10)
o e B e R (5.11)

For |D| less than e-a, the series of Eq. (5.10) will converge, and for

|D| greater than e, the series of Eq. (5.11) will converge. The sums of

these series are

F o) = 20+ D) for [p| <&@ (5.12)
! (1 - eaD)
o -
F (D) = — 1/2(1 + e’D) for [D| > e o (5.13)
2 (1 - %)

These two transforms are the same except for a minus sign.

A pole-zero

plot of FI(D) is shown in Fig. 5.2a, and a pole-zero plot of Fz(D) is

shown in Fig. 5.2b.
marked by shading.

4 ImD

00 L

0

Fig. 5.2a

The regions of convergence of these transforms are

s 57
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The formula for recovering the original function from the D trans-—

form is derived in §3.3. It is

£(n) = % Fr)p” @) ap (5.14)

Cc
In Eq. (5.14), the contour C must not only surround the origin, but must

also lie in the region of convergence of F(D). Suitable contours for
FI(D) and FZ(D) are shown in Figs. 5.2a and 5.2b.

The criterion for determining the stability of.fl(n) and fz(n) from
their D transforms can be deduced from Figs. 5.2a and b. Then o is greater
than 0, the function fl(n) grows away from the origin, and the function
fz(n) decays away from the origin. In Fig. 5.2, the poles will be inside
the unit circle for this case. When o is less than zero, the function
fl(n) decays away from the origin, while fz(n) grows away from the origin.
For this case, the poles in Fig. 5.2 will be outside the unit circle.

From these observations, the criterion for spatial stability of a spatially

sampled function is:

1) If a pole of F(D) is located inside the unit circle (o > 0), the

function represented by F(D) is unstable if it exists on the pos-
itive x- axis. That is, this pole represents an unstable wave

if it is outside the contour of integration used in Eq. (5.14).

2) If a pole of F(D) is located outside the unit circle (a < 0),

the function represented by F(D) is unstable 1f it exists on the

negative x- axis. That is, this pole represents an unstable wave

if it is inside the contour of integration used in Eq. (5.14).

This criterion considers only spatial instabilities; i.e., disturbances

that are unbounded as one moves away from the origin. Time-dependent
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instabilities are not taken into consideration. This criterion is there-
fore useful only for determining the existence of convective instabilities.
The big problem with the stability criterion presented in this section
is that the region of convergence for the D transform must be known. When
complex systems are studied, the region of convergence of the transforms

usually is not known. Also, the possible presence of absolute instabili-

ties makes the criterion inadequate.
In the following section, the Bers-Briggs criteria are modified to pro-
vide a useful set of criteria for determining the nature of instabilities

on a spatially discrete system. With these new criteria, the problems of

determining absolute instabilities and of finding the region of convergence

of the D transform are overcome.

5.3 Development of Modified Bers-Briggs Criteria for Spatially

Sampled Systems

The Bers-Briggs criteria have been derived (Briggs, Chapter 2) for a
system that is infinitely long in one spatial dimension and uniform in that

same dimension. In this section, the equivalent criteria are derived for

a system, infinitely long in the x- direction, that is spatially discrete.

This spatially discrete system accepts inputs that are impulses in space

and produces an output that is also an impulse train. The spatially dis-

crete system is also uniform in a discrete sense. That is, if the position

of the input is changed, the only change in the output is a similar change

of position.

Green's Function Formalism

The simple criterion for spatial instability developed in the previous

section was restricted because it required a knowledge of the region of



155
convergence of the D transform. This is equivalent to knowing if the
original function exists on the positive or negative x- axis. If general
criteria are to be developed for determining the types of instabilities,
then a method must be found to excite waves and see which direction they
travel. The method of exciting these waves in space is an adaptation of
a technique used in circuit theory. In circuit theory, it is known that,
after the drive to a circuit is turned off, the only signals present on
the circuit are at the natural frequencies of the circuit. These respon-
ses at the natural frequencies may be thought of as the normal modes in
time of the circuit. To excite these modes, the circuit is driven with a
short pulse, and the resulting response is a combination of the temporal
normal modes.

In a similar manner, the normal modes in space of a distributed
svstem (continuum) can be excited by a pulse in space. In the region of
space away from the driving pulse, the only response will be at the 'spa-
tial natural frequencies'. The spatial natural frequencies determine the
normal modes of the system. The source used in this analysis cannot be a
pulse, because the discrete system accepts only impulses as inputs. The
source used is therefore restricted to be a finite number of impulses located
near the origin.

When absolute instabilities are present on a system, some waves grow
without limit, and a steady-state response does not exist. If this growth
is to be detected, the response must be observed at a finite time after
the source is turned on. The source therefore is required to be zero for
t < 0. By fixing the time the source is turned on, the response outside

of the source region may be watched, to see if exponential growth exists.



156
If a convective instability may be present, it is necessary to
watch the steady-state response outside of the source region. If this
steady-state response contains any modes which are increasing away from

the source region, then these modes are amplifying waves.

The source function which drives the discrete system is of the form

s*(x,t) = f(t) Z b(n)uo(x—m) (5.15)
n

where f(t) is zero for t < 0 and b(n) is zero except for a few values of
n close to the origin.
The spatially discrete response of the system due to the drive s*(x,t)

is computed using the spatially discrete Green's function for the system,

g*(t,n). The response is

E*(x,t) = [ Z gx(t-t',x-n)s*(n,t')dt’' (5.16)

A double-sided Z transform is now performed on the spatial coordinate x,

and a LaPlace transform is performed with respect to time. The Z trans-

form can be guaranteed to converge for |[D| = 1 for all finite time be-

cause of the finite speed of propagation of any disturbance. The trans-

form of the response is

z(D,s) = G(D,S)F(S)B(D) (5.17)

The source is considered to be an oscillator operating at a constant fre-
quency. The excitation is therefore of the form

St

£(t) = e t>2 (5.18)

and its transform is
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F(S) = g—:ﬁg—— (5.19)

It should be noted that, since the source, b(n), is localized, its trans-
form contains no poles other than at D = 0. With Eq. (5.17), the actual
response at any of the sampling points is found to be

joo+ L

E(n,t) = (z_ni')'f G(D,S)F(S)B(D)eStﬁ(n+l)dDdS (5.20)

-j=+a [D|=1

Equation (5.20) gives the response of the system at any time and place
in terms of the transforms of the Green's function and the drive. This is
the proper format for investigating the response to see if it grows in

time or in space. It is important to notice that ouside of the source
region, the only poles in D that affect the response are the poles of

G(D,S). These poles are at the values of D which satisfy Eq. (5.2), the

dispersion equation for the system.

LaPlace Transform of the Response

(5.20) in

It is convenient to define a new variable and to write Eq.
a different form; let
- 1 -
£(n,$)= 5T # ¢(,5)8(m)d” ") 4p (5.21)

[p[=1
This new variable is the LaPlace transform in time of the response at a

particular sampling point. In terms of this new variable, the response

at a given sampling point is
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+ jo+o
Em,6) = 5 E(n,S)F(s)e " ds (5.22)
-jo+0

In order that the causality condition be obeyed, it is necessary for

~

the contour of Eq. (5.22) to be to the right of any singularities of £(n,S).

That is, o should be larger than the fastest growth rate in time of any

unstable wave. A method of finding this value of 0 is given in the section

on branch lines. For now, it will be assumed that a larpge enough value of

o has been selected.

From the previous discussion about the spatial limitations of the

drive, the response in the source-free region is a sum of the normal modes

~

of the system. That is, the response, &(n,S), 1is determined from the poles

of the Green's function, G(D,S). These poles are the roots of the disper-

sion equation, A(D,S) = 0, for S on the Laplace contour. The contour inte-

gral for £(n,S) in the source~-free region is illustrated in Fig. 5.3.

4; ImD
C Poles of G(D,S)

X » Re D

Figure 5.3
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The poles inside the contour correspond to normal modes which exist

to the left of the source, and the poles outside correspond to normal

modes which exist to the right of the source. It is important to notice

that the response &(n,S) consists of modes that all decay away from the

source for any S on the Laplace contour.
~

Brancih Lines of £(n,S)

To obey the requirement of causality, it is necessary that the con-

~

tour of Eq. (5.22) lie to the right of all of the singularities of £(n,S)

in the right-nalf S plane. One of the two types of singularities that can

occur is a branch line. The mechanism for finding these branch lines is

shown in Fig. 5.4.

I
Branch Lines 4, ImS l 4ImD
of £(n,S) 1
has ﬂ Contour for j
Eq. 5.22
0| X
\SS‘ x/ o) :
\ y A Re D
Re S x e
l o
X
I
|
[
(a) (b)
Figure 5.4

5.4a a value of S, marked by an x, is picked in the right-
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nalf plane. The imapinary part of S is held fixed, and the real part is
decreased from 01 to a,. While the real part of S is changing, the poles
of G(D,S) are observed. From Eq. (5.21) and Fig. 5.4, the attentive reader
can see that g(n,S) will be a continuous function of S, unless one of the
roots of G(D,S) crosses the unit circle, as illustrated by pole A in Fig.
5.4b. When this occurs, g(n,S) will jump in value, because the number of
poles inside the contour of integration will change.

The loci of all points in the S plane which correspond to roots of
G(D,S) on the unit circle in the D plane are branch lines for the function
g(n,s). These branch lines are the lines found by solving the dispersion
equation, A(D,S) = O, for all values of D on the unit circle.

If a pole of G(D,S) crosses the unit circle in the D plane for some S
in the right-half S plane, then the dispersion equation must give values

of S with a positive real part for some value of D with a unit magnitude.

The value of o used on the Laplace contour in Eq. (5.22) must therefore

be larger than the maximum growth rate in time obtained from the disper-

sion equation for a value of D on the unit circle.

Analytical Continuation of &(n,S)

If the integrals of Egs. (5.21) and (5.22) are evaluated using the
proper Laplace contour, the response of the system can be found for all
time and space. If only the nature of the instability is desired, it may
be unnecessary to perform the integral. With the proper mathematical

trick, the desired information can be found without calculating the de-
tailed response. The mathematical technique used to simplify the calcu-

lations is to define the analytical continuation of Z£(n,S). This tech-

nique is described by Hildebrand (Chapter 10) and Morse and Feshback
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(Chapter 4).

The analytical continuation of £(n,S), designated by g(n,s), is found

by redefining &(n,S) in its integral form as

¥,s) = ‘zTIr—J ¢m,s)s@®Dp " ap (5.23)

c
Instead of being fixed to the unit circle, the contour C of the integral

is allowed to deform to contain the same poles as S is moved toward the

imaginary axis. The integral is illustrated in Fig. 5.5.

AImD
J
s N\
x
© 1 —» Re D
X
C
(@]

Figure 5.5.

The difference between g(n,s) and &(n,S) can be seen by comparing tne

integrals illustrated in Figs. 5.4b and 5.5. As S crosses a branch line

in Fig. 5.4a, the contour for g(n,s) is deformed, so that no poles of

G(D,S) cross the contour. Tae value of z(n,s) is therefore continuous

as S crosses the branch lines of £(nn,S).

For values of S which are to the right of any singularities of

£(n,S), the values of £(m,S) and g(n,s) are identical. Therefore,
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f\, ~
£ (n,S) can be substituted for £(n,S) in Eq. (5.22) and the proper res-

ponse of the system will still be found.

Distinguisining Between Amplifying and Evanescent Waves

By using the analytical continuation, g(n,s), the criterion for dis-
tinguishing between amplifying and evanescent waves can be developed.
To simplify the following treatment, the assumption is made that there
are no singularities of g(n,S) in the right-half S plane, except for
branch lines. The other possible singularity, a branch pole, is considered

in the section on absolute instabilities.

The equation for the response of the system, in terms of g(n,s), is

+ jo+0

E(n,t) = % ¥(n,s)F(s)e " ds (5.24)
—jo+0

The integrals to find £(n,t) and E(n,S) are illustrated in Figs. 5.6a

and 5.6b., for values of n outside of the source region. The Laplace con-
tour which is to tne right of the brancn lines of g(n,s), is illustrated
by the dashed line in Fig. 5.6a. The solid contour in Fig. 5.6a repre-
sents a contour that can be used to find the response when it is defined

in terms of g(n,s). This contour is to the right of the singularities of

%(n,s), and it is also to the right of the pole of F(S).
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Figure 5.6

The response obtained by using the solid contours illustrated in

Fig. 5.6 is the same respomnse that is obtained by using the Laplace con-

tour for the integral in the S plane, and the unit circle for the contour

in the D plane. This fact can be seen by moving the contour in the S plane

to the right until it coincides with the Laplace contour. The contour in

the D plane can now be deformed to the unit circle witnout changing the

enclosed poles. Since no singularities, in either plane, have crossed

a contour of integration, the response obtained by either set of contours

is the same.
Whenever the value of S is on the Laplace contour, the values of

~ n,
£ (n,S) and £(n,S) are the same. It therefore follows that the response

obtained by using Eq. (5.24) and the solid contour shown in Fig. 5.6a

is the same as that obtained by using Eq. (5.22) and the Laplace contour.
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The use of the analytical continuation of E(n,s) has allowed the
contour of integration in the S plane to be moved to the imaginary axis.
The pole of the driving function at S = jwo prevents the contour from
moving farther to the left. The response of the system due to any poles
of E(n,s) in the left-half S plane will decay with time, Thus, the res-
ponse of the system for large time will be

jw t

" o}
lim E(n,t) ~ E(n,jw e (5.25)

t+>

By using the stability criterion for spatial instabilities developed
in § 5.2, it can be determined from Fig. 5.6b if amplifying waves exist
on the system. The poles A and C are inside the contour, and correspond
to waves traveling in the negative x- direction; the poles B and D are
outside the contour, and correspond to waves traveling in the positive x-
direction. The pole A is outside the unit circle and represents an
amplifying wave that grows as x becomes more negative; B is inside the
unit circle and represents an amplifying wave that grows as x becomes
more positive. The poles C and D represent waves that decay in the minus
and plus x directions, respectively.

The criteria for distinguishing between amplifying and evanescent
waves can now be stated. The loci of the values of D, whicn are found
from the dispersion equation, are plotted as S is varied from Jwg +0 to
jwo. If a locus of D crosses the unit circle, then this root corresponds
to an amplifying wave at S = jwof If the locus moves from outside of the
unit circle to the inside as the real part of S decreases, the wave

amplifies in the positive x- direction; if the locus moves from inside
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the unit circle to the outside, the wave amplifies in the negative x-

direction. Loci which do not cross the unit circle correspond to evanescent

waves. This test must be repeated for all real values of Wy and the value

of 0 must be picked larger than the fastest possible growth rate in time of

an unstable wave.

n
Branch Poles of £(n,S)

In the development of the criterion for distinguishing between amp-
lifying and evanescent waves, the only type of singularity considered was
a branch line. The other possible singularity is a branch pole, which
can cause an absolute instability if it is in the right-half S plane.

The mechanism for finding the branch poles of E(n,S) is illustrated in
Fig. 5.7. A value of S, marked by an x, is picked in the right-half S

plane at jmo + 0. The imaginary part of S is held fixed and the real part

is decreased toward zero. The loci of the values of D, which are ob-
tained from the dispersion equation, are plotted as S is varied.

For some values of S, marked by an 0 in Fig. 5.7a, two poles in the
D plane may come together from opposite sides of the contour. The particu-
lar value of S for which this occurs is a branch pole of E(n,s). At the
branch pole, the contour of integration used to find E(n,S) is pinched

N
between two poles, and a singularity of £(n,S) results. This singularity

can be seen by expanding the dispersion equation about the double root

at D = D2 to get

2 2
A(D,S) = (g—g) (s - jwo -02) + %(%%) (b - Dz) (5.26)
jwo+ Gz jwo+ o,
D D

2 2
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Figure 5.7

The first partial derivative with respect to D is zero, because of the

double root of D at D2

Equation (5.26) can be used to find the poles of the Green's func-
tion in the D plane as S approaches jmo +0,- By using these poles in

N
Eq. (5.23), the value of £(n,S) is found to be

N B(D )D -(n +1)
£(n,S) % 1 (5.27)
[ )(—r)] s - ju-0) 2
w + O'
D

2
v
Other poles of the Green's function also make a contribution to &£(m,S).

Their effect was considered in the section on amplifying waves, and is

ignored in this section.
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Criterion for Determining the Presence of Absolute Instabilities

When the response in time is calculated, the branch pole of

~
E£(n,S) must be taken into account. The proper contour of integration for

j“k)X

Branch Pole ___—\

Eq. (5.24) is shown in Fig. 5.8.

—» Re S

Figure 5.8

To obey the requirement of causality, this contour must lie to the right
of the branch pole and the pole of the driving function. The singularity
which is the farthest into the right-half plane is the dominant influ-
ence as t -~ ®, For the case illustrated in Fig. 5.8, the branch pole is

the dominant term, and the response due to this branch pole is

(jw +0,)t s
B(D,)F(ju + 0, )D St e : e(S o cz)tdS
HOLE 38, 3%% | ;
[ ] L(as)(aD"] (S- ju, =0,) "2
S= Jw°+ a, C
D=0D,
- (jw, + 0,)t
B(D,)F(juw_+0,)p, e T
v > (5.28)
|: ( )(aDZ)J t
jmo + 02

D,
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The response due to the branch pole is seen to be growing exponentially
in time for every value of n. This exponential growth does not occur
for every pair of poles of G(D,S) which come together. TIf two roots start

on the same side of tne contour in the D plane, they will not pinch the

contour between themselves when they meet. This double pole will there-

n
fore give only a finite contribution to £(n,S) as S approaches the cri-

tical value and no exponential growth occurs.

From the previous discussion, the criterion for determining if an

absolute instapility exists can be stated. As the frequency, S, is

varied from jmo + g to jwo, the loci of the values of D, which are the

roots of the dispersion equation, are plotted. If two roots, whicn

start on opposite sides of the unit circle, come together, then an ab-

solute instability will exist for that value of S. This test must be
repeated for all real values of w, to find the frequency with the fast-

est growth rate. The initial value of ¢ that is used must be larger

than the largest growth rate obtained from the dispersion equation for a

value of D on the unit circle.

Criterlm for Determining the Presence of a Convective-Absolute Instability

It has been snown oy Crowley that an absolute instability that does

not propagate upstream can exist on a spatially discrete system. The

system is characterized by an unbounded growtn at all sampling points

downstream of the initial disturbance. This unbounded response does not

occur upstream from the initial disturbance.
od for determining the existence of this instability is

The meth

similar to the metnod used to find absolute instabilities. For an



169

absolute instability, the poles of the Green's function are observed as
the real value of S is decreased. If two poles pinch the contour of

n
integration for £(n,S) between themselves, an absolute instability re-

The poles of the Green's function are the only singularities in

sults.
N
the integral for &(n,S) that are watched. The pole in the integrand of
= = (o+l) . . .
Eq. (5.23) due to the term D is not considered in the test for an

absolute instability.

It is possible, in Eq. (5.23), for a pole of the Green's function to
to pinch the contour of integration between itself and the pole, due to

- (n+l1 . . .
the term D ( ) as the real part of S is decreased. Pole A in Fig. 5.9
{llustrates this event. When the contour is pinched in this manner, a

singularity results in tie right-half S plane, and the response of the

system is characterized by exponential growth in time.

fImD

X +» Re D

Figure 5.9
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(5.23) it can be seen that, at the sampling points on

the negative x- axis (n < 1), the pole due to D-(n+l)

From Eq.

will be at infinity

and not at the origin. For these values of n, a singularity does not

occur in the right-half S plane when the pole A moves to the origin.

The exponential growth in time of the disturbance will therefore occur

only on the positive x- axis or for n > O.
It is also possible for a system to exhibit exponential temporal

growth only on the negative x— axis (n < 0). If a pole drags the contour

to infinity, then the contour is pinched between tnis pole of the Green's

-(n+1)

function and the pole due to D . This effect is illustrated by

pole B in Fig. 5.9. When the value of n is positive, ﬁ-(n+l) is not a

pole at infinity. The movement of pole B to infinity as S is moved
toward the imaginary axis does not pinch the contour, and does not cause

a singularity in the right-half S plane. The movement of the pole B to

infinity will therefore create exponential growth in time only on the

negative x- axis.

The exponential growth on the positive x- axis can be demonstrated
mathematically by expanding the dispersion equation about tihe root in

the U plane that is near zero:

A
A(s,D) ® (g—s) (s -jw = 09,) + (g—g (@ - 0) (5.29)
jwo- g, jwo-oz
0 0

Using (5.29) as the denominator of the Green's function, the value of

N
£(n,5), computed from Eq. (5.23), is
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+=(n+1)

A\ /3
£(n,5) = PO 53) (75') D=0
(s - ju, - o,)™1 (5.30)

This value was computed by considering the pole of D_(n+l) as the only
pole inside the contour of integration. The multiple pole at S = jwo+ o]

will lead to a disturbance of the form

N B(O)F(jw_ + o )[ n .. \-(n+l) ,
E(n,t) = n°! 2 |'(§%) (%) t? eIWotHo,t (5.31)
' D=0

This disturbance is exponentially growing for all positive values of n.

For values of n less than zero, the pole at the origin disappears, and

there is no exponential growth in time. This same analysis can be re-

peated for roots of the Green's function which drag the contour to

infinity and create exponential growth for all points on the negative x-

axis.

The criterion for determining the existence of a convective-abso-

lute instability can be summarized. The frequency S is varied from the
y Yy

value jug = g, to jmo, and the loci of the poles of the Green's function
are plotted in the D plane. If a pole, which started outside the unit
circle, hits the origin, then the system is absolutely unstable on the

positive x- axis. If a pole which started on the inside of the unit circle
goes to infinity, tne system is absolutely uastable on the negative x-
axis. This test must be repeated for all real values of W, and the ini-

tial value, cl , must de larger than the fastest growth rate obtained

from the dispersion equation for values of D on the unit circle.
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5.4 An Example: The Convecting String

For an example, the modified Bers-Briggs criterion is applied to
the convecting string, described by Eq. (1.4). This example is picked
because the convecting string, with spatially discrete feedback, can

exhibit the three types of instability which are possible on a spatially

discrete system.

The equation of Motion of the string, including damping and convec-

tion, is derived in Chapter 1. It is

(5.32)

2 2 -
LD 2 DB 5By tpa gy
Cc

sz ot2  9x? Dt at d '

The feedback scheme used in this example is the same spatially discrete

system that was studied in Chapter 3. The feedback system is illustrated

in Fig. 3.1 and the spatially discrete voltage it produces is shown in

Fig. 3.2.

If the convective velocity of tine string is set to zero, Eq. (5.32)
describes the stationary string which is known to exhibit absolute insta-
bilities. If both damping terms are set to zero in Eq. (5.32), the
equation describes the unstable water jet which Crowley has studied. He

has shown that the jet can exhibit either the convective instability or

the convective absolute instability. When the convecting damping term

and the constant kc are set to zero, the equation describes a system
which has a resistive-wall instability. Woodson and Melcher [pp. 608-613]

have analyzed this resistive-wall instability, and have shown that it is

a convective instability.

Both of the previously mentioned studies have used the method of
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characteristics to determine the nature of the instability. By repeat-

ing the studies, using the modified Bers-Briggs criterion, the two
methods can be compared.
The derivation of the D-S dispersion equation for the convecting

string is similar to that of the dispersion equation for the stationary

string given in Chapter 3. The only change that is made is the inclusion

of the convection term in the equation of motion.

Taking the LaPlace transform in time and the Fourier transform in

space of Eq. (5.32) gives

S(k,s) [ ;ii-(s + jku)? + k2 + Rs + a(s + jku)-kcz] = ng(k,s).
(5.33)

By defining the following dimensionless variables, the length of a driving

electrode, L, is normalized to one.

s = sL/vP (5.34a)
K = kL (5.34b)
§ = vaL (5.34¢)
v = alv (5.34d)
N = kc?LZ (5.34e)
U= /v, (5.34£)
F(K,S) = gLZVd(K,S) (5.34g)

With the dimensionless variables, Eq. (5.33) is rewritten to illustrate the

transfer function relating the deflections of the string to the driving

force.

F(K,S) .
. 5.35)

E(K,S) =
[s% + K2(1-U?) + K(2USj + VUj) + 85 + vS-N]
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It is shown in § 3.4 that the driving force, F(K,S), is generated
by driving the electrodes by a spatial impulse train, U*(K,S). The
transfer function between the driving impulses and the string's deflec-
tion is the product of the transfer function of the driving electrode

and the transfer function of the convecting string. It is

jK/2  -iK/2
- 1
G(K,S) = s —

N [S2 + K2 (L-U?)+ K(2USj + VUj)+ 8S+vS-N]

i d
driving electrode convecting string

(5.36)

The feedback signal for this example is generated by sampling the deflec-
tion of the string at the center of each electrode pair. To find the

transfer function relating the measured deflection to the electrode inputs,

Eq. (3.28) is used with (5.36) to get

+ ©
1 _oiK o JQ/2 40
G(D,S) = -jK _+jQ (5.37)
2m§ (1-U%) QQ + A + FW(Q +A - JW) @A- e 17 ™37 :
where -
_ 2UjS + VUj
A= .—Z‘J(T-?!—)_l (5.38a)
2 I 2 - 2 2772 1/2
and g e _IS%+ Vs + 65(1-U)-N(1-UD+ (VU/4)] (5.38b)
a-u?

The contour for the integral is made to include only poles of G(K,S) and

the discrete transfer function is obtained in closed form. The values of

the residues at these poles are

. _ _ 1
Residue (Q=0) = OF T = D) (5.39)
N2 - 2
Residue (Q = - A+ jW) = 3w (5.40)

(=M+iW) (24W) (1-De3 ")
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e-jK/Z eW/2

Residue (Q = =-A-jW) = —
(~A-§W) (~24W) (1-De IA*V

(5.41)

)

The discrete transfer function is 27j times the sum of the residues mul-

tiplied by the coefficient of the integral in Eq. (5.37), which is

(1-0) e 3M2(wonysinh (W/2)(1+ De 3N

(1-0%) %4+ w?) (29w (1-pe 3% e7¥) (1-pe 32tV

G(D,S) =

+ (1 - D)(-2jW)cosh (W/2)(1 - pe~3%y e‘j{/z . 1
(1-U2) A%+ ¥2) 250) (1 -pe I e™y - pe ™) T -2y (02 + wR)

(5.42)

When the sampled deflection is amplified and fed back to the driving

electrodes, the system can be represented by the servo loop shown in
Fig. 3.11. The transfer function of the closed-loop system is
G(D,S) (5.43)

T(@,8) = T3 a6,

The dispersion equation for the closed-loop system is found by equating

the denominator of the closed-loop transfer to zero. Using Eqs. (5.43)

and (5.42), this dispersion equation is found to be

[(L - U%) @2+ AD+ a] (230 [1 + p?e” 23} _ 2pe™IAs0sh W]
A .
+ A(L - D)e™d /2 [2XA sinh(W/2) (1 + De Iy

2iW cosh(W/2)(1 - pe IM)] = o (5.44)

This is the dispersion equation for the convecting string with discrete

spatial feedback. It is a second-order polynomial in terms of the dis-

crete spatial wavenumber, D. To apply the modified Bers-Briggs criteria
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to this dispersion equation, the quadratic formula is used to find the

two roots in D for any value of S in the right-half plane. Without the
complication of spatial discreteness, the string is described by a dis-
persion equation that is a quadratic function of K. To apply the Bers-
Briggs criterion to the dispersion equation of the continuous system, the
quadratic formula is used to find the two roots in K for values of S in

the right-half plane. it therefore can be seen that, by using the dis-
crete spatial wavenumber D and the modified Bers-Briggs stability criterion,
the spatially discrete system can be studied as easily as the continuous

system.

The Stationary String: An Absolute Instability

In Chapter IIIL, the stability of the stationary string is analyzed
in detail. It is assumed that any instability on the system is an ab-
solute instability. This assumption is made because there is no obvious
mechanism for convecting a growing pulse away from its initial position.

The modified Bers-Briggs plot of the stationary string (U = 0) for
one set of the parameters is shown in Fig. 5.10. The value of gain, A,
is 50 and the parameters V, § and N are zero. This plot shows that, for
some value of S between j6.0 and j6.5, the two loci, which started on
opposite sides of the unit circle, come together. According to the sta-
bility criterion, the string is absolutely unstable for this set of
parameters. By repeating this test for various values of N, A, and 6,
the same region of stability as shown in Fig. 3.15 can be found.

It is of interest to review the numerical procedure used in Chapter
ITI to obtain the stability plot of Fig. 3.15 and compare it with the

modified Bers-Briggs method. In Chapter III, the roots of the dispersion
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Figure 5.10 The modified Bers-Briggs plot for the stationary

string. The string is absolutely unstable for

6.0 < Wp < 6.5,
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in S are found for values of D on the unit circle. Since the disper-
sion equation is transcendental in S, an iterative procedure must be used
to find the roots. The process is further complicated because there are
an infinite number of roots in S for each value of D. Enough of the
roots must be found to assure that there are no overlooked instabilities.
The procedure must be repeated for enough values of D on the unit circle
to assure that the most unstable value of D has been found.

When the modified Bers-Briggs method is used, the roots of the dis-
persion equation in D are found for values of S in the right-half plane.
The dispersion equation is a quadratic function of D, and the two roots
can be found with the quadratic formula. This procedure must be repeated
for enough values of S in the right-half plane to assure that all critical
frequencies have been investigated.

The advantages of each method can be seen. If the dispersion equa-

tion is used to find the frequencies S which result for a given D, then

many roots must be found by an iterative procedure. If the discrete wave-

number D is found from the dispersion equation for a given value of S, only

two roots must be found and the quadratic formula can be used. When D

is used as an input parameter in the dispersion equation, representative
values are picked from the unit circle. When S is used as an input para-
meter, representative values must be picked from the entire right-half

plane. The result is that, when S is the input parameter to the disper-

sion equation, finding the roots in D is an easy operation but many

values of S must be tried. When D is used as the input parameter, finding

the roots in S is difficult, but only a few values of D are tried.
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A Resistive Wall Interaction: Convective Instability

Convective instabilities can result when a stream interacts with a

stationary structure. An example of an application of this effect

is a traveling wave tube. Here, an electron beam is coupled to a sta-

tionary transmission line, and an amplifying wave results. The amplify-
ing wave is used to amplify signals in microwave systems. The coupling
of an electron beam to a stationary structure can also have undesirable

results. The beam in a particle accelerator can couple to the resistance

in the accelerator wall, which causes the beam to become unstable and

limits the maximum beam current. This effect has been studied by Bird-

sall, Brewer and Haeff, and bv Laslett, Neil and Sessler.

A simplified version of the resistive-wall instability has been
studied by Woodson and Melcher [pp. 608-612]. They studied the convective
string which is surrounded by a stationary viscous material. The trans-—
verse deflections of the string are convectively unstable because of the
coupling between the moving string and the stationary damping material.
The system which they have studied can be described by Eq. (5.35) if the
transverse stress, N, and the convecting damping term, v, are set to zero.

When the velocity, u , is greater than the phase velocity, vp, the sta-

tionary damping causes the string to be unstable.

The consequences of applying spatially discrete feedback to the

string to influence the instability can easily be determined. The closed-

loop dispersion equation for the svstem is obtained from Eq. G.44) by

using the proper constants. The stability criteria are tnen used to

determine if there is a value of gain for which the string is stable.



A plot of the loci of the roots of the closed~loop dispersion equation

for the string is shown in Fig. 5.11 for the parameter values A = 4, § = 2,

and U = 2. For large negative values of the imaginary part of w, the loci

are both outside the unit circle. As the imaginary value of w moves

toward zero, some of the loci cross the unit circle; the string is there-

fore convectively unstable for this set of parameters.,
Other values of gain, damping, and velocity can be tested by plotting

the loci of the roots of the D-S dispersion equation. If the normalized

velocity is greater than one, the result is always the same ; the feed-

back cannot stabilize the string. This result probably occurs because
the feedback force is not similar to tle unstabilizing force. In Eq.
(5.33), the damping is seen to produce a force proportional to the time
derivative of the deflection, while the feedback force is proportional to
the deflection. The feedback force is sometimes adding to the unstabili-
zing force and sometimes it is subtracted from it. The final result is

that the spatially discrete feedback scheme used here cannot stabilize

the resistive-wall instability on the string.

The Perpendicularly Stressed Water Jet: Convective Instability

In his doctoral thesis, Crowley has studied the control of a water
jet which was stressed in the transverse direction by an electric field.

Because of the applied electric field, the transverse deflections of the

jet are convectively unstable. In an attempt to control the instability,

a spatially discrete feedback system was used, which sensed the deflection
of the jet at several locations and drove the jet by electrodes which

applied a constant force to a segment of the jet. With the proper constants
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A= 4.
N = O.
u= 2.
8 = 2.
v = O.
| ReD
T =
2

Figure 5.11  The modified Bers-Briggs plot for con-
vecting string with stationary damping. Tne

string is convectively unstable.
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the jet's transverse deflections can be described by the same equation
that describes transverse deflections of the string, (1.4). The jet has
very little damping and thus both damping terms are assumed to be zero.
The convective velocity, u, must also be greater than the phase velocity,
vP. If this condition is not satisfied, the liquid jet can not be formed;
only blobs of liquid would issue from the nozzle.

The electrode structure used by Crowley to apply the bias electric
field and the driving field to the jet is similar to the electrode struc-
ture shovm in Tig. 3.1 The feedback force applied to the jet is also
generated in the same manner as that used in Chapter 3; the deflection of
the jet is measured at the center of each driving electrode segment and
a proportional voltage is applied to the segment. The closed~loop trans-—
fer function for the jet is therefore obtained from the transfer function
for the convecting string, Eq. (5.43), by setting the damping terms to
zero and requiring the normalized velocity to be greater than one.

The water jet with discrete spatial feedback is studied here for
several reasons. This example shows how discrete spatial feedback can be
used to influence a svstem which is convectively unstable. That infor-
mation may be useful for the design of amplifiers or other devices which
use an amplifying wave. This example also illustrates how the modified
Bers—-Briggs criteria can simplify the analysis of a convecting system.
When Crowlev studied the water jet, he had to use the method of charac-
teristics to determine the proper boundary conditions for a disturbance
and to determine the nature of the instabilities. With the stability
criteria presented here, all of the boundary conditions can be deduced

from the D-S dispersion equation and there is no need to study the res—
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ponse of the system in space and time with a characteristic plot.

Since this example has already been done in detail by Crowley, comparing
the results obtained here with his results should provide a check on the
validity of the stability criteria.

In Fig. 5.9, it is shown that the stationary string is absolutely
unstable when it is stressed by an electric field. The initial excita-
tion of the string excites waves which travel in both directions, and
thus, for values of S with a large positive real part, the two loci are
on opposite sides of the contour. As the real part of S is decreased,
the two loci come together and the contour is pinched between them.

An absolute instability therefore exists on the stationary string.

If the string is moved toward the right (+ x direction) at a
velocity greater than that of propagation on the string, all of the waves
on the string will propagate toward the right. Both the loci in the
modified Bers-Briggs plot will then begin outside the unit circle for
large positive values of the real part of S. According to the stability
criteria, the system cannot support an absolute instability because the
contour cannot be pinched between the two loci. However, the string
will exhibit a convective instabilityv if either of the two loci crosses
the unit circle as the real part of S is decreased.

A plot of the loci for the water jet is shown in Fig. 5.12 for omne
value of A and N. This plot is generated by the same method used to
generate Figs. 5.10 and 5.11. The two roots in D of the dispersion equa-
tion are found for a value of S in the right-half plane. The imaginary

part of S (real part of ) is held constant, and the real part of S

(negative imaginary w ) is decreased. The loci of the roots of the
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Figure 5.12 The modified Bers-Briggs plot for the water jet

with discrete spatial feedback. The jet is convectively

unstable.
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dispersion equation are plotted for the different values of real S.

On these loci, the real value of (UR) is given and the points corres-
ponding to various values of imaginary w are marked.
The plot of the loci shows that for A = 52 and N = 16, the jet

is unstable. Since all disturbances are carried downstream by the jet,

both loci are located outside the unit circle for values of W with a

large negative imaginary part (large positive Sp). As the imaginary

value of W approaches zero, the loci move toward the origin. For some

values of wP’ one of the loci crosses the unit circle and thus the
~
system is convectively unstable for disturbances of this frequency.

The other values of A and N can be checked to find the values

for which the lateral deflections of the jet are stable. For the

other values of the parameters, it is not necessary to plot the loci of
D for values of w in the lower half plane (S in the right-half plae).
Figure 5.12 shows that both loci are outside the unit circle when w has
a large negative imaginary part. As the imaginary value of w is

increased, the loci may cross the unit circle. If the jet is unstable

for the particular value of gain and electrical stress, one of the loci
will end inside the unit circle for a value of w on the real axis.
The stability of the system can thus be determined by finding the two
roots in D of the dispersion equation for all real values of w.

The region of stable operation of the jet in the A-J plane is
This region has one significant difference from

shown in Fig. 5.15.

the stable region of the stationary string. The right-hand boundary
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is located at N = Aﬂz, while the boundary for the stable region of

the stationary string (Fig. 3.15) is located at N = 72 . When there is
no convection, the right-hand boundary is caused by the inability of the
sensors to detect a disturbance whose wavelength is equal to two samp-—
ling distances. With convection, the sensors can detect a disturbance
of any wavelength, and the boundary is moved fartner to the right.

The right-hand boundary for the convecting system occurs because the
driving electrodes cannot drive a disturbance whose wavelength is equal
to the width of the electrode segment.

The stable region of the jet is similar to that of the stationary
string in two ways. Line A = N forms most of the lower boundary for the
stable region for the jet and the string. The stable region is bounded
on the top by an overstability which is caused by the spatially dis-
crete control system.

The results shown in Fig. 5.15 are similar to those obtained by
Crowley and confirm that the use of the modified Bers-Briggs criteria
is consistent with the use of the method of characteristics.

The Perpendicularly Stressed Water Jet: Convective—Absolute

Instability

Crowley has found that with high values of feedback gain, the
water jet can exhibit the convective-absolute instability. This 1is
caused by the spatially discrete nature of the feedback sensors and
drivers. The sensor measures the deflection of the jet and a force,
proportional to the measured signal, is applied to a section of the

jet. The applied force is centered around the sensor and thus both
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upstream and downstream portions of the jet are affected. The up-
stream portion of the jet moves past the sensor, and a new signal is
generated which causes the jet upstream of the sensor to be driven.
If the proper conditions are satisfied, the interaction of the control
system and the jet can cause an absolute instability in the region of
the electrode and sensor. Because the driving electrode does not
affect the jet at the next sensing point upstream, the absolute insta-
bility is not transported upstream from the point of excitation. The
natural velocity of the jet carries the disturbance downstream. The
result is the convective-absolute instability. All points downstream
from the original excitation are characterized by unbounded growth.
According to the modified stability criteria for a spatially
discrete system, a convective absolute instability will occur when one
of the loci of D pinches the contour against the origin for some value
of S in the right-half plane. The value of gain (A) necessary to cause
this to happen for a given amount of perpendicular stress () can be
found by the following method. The closed-loop, D-S dispersion equation
for the jet is generated by setting the damping terms § and v , equal
to zero in Eqs. (5.38a) and (5.38b). The value of D in the dispersion

equation (5.44) is set equal tozero and the following equation is

obtained:
4

sre2 _ N(1=02 2
(2 - v+ n B EQIL  pugucosn 2 =0 (5.45)

The solutioms of (5.45) are the values of S for which one value of D in
Eq. (5.44) is zero. If the value of S lies in the right-half S plane,

then a convective-absolute instability will exist for the corresponding
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values of N, U, and A.

Figure 5.13 shows a root-locus plot of one root in S of Eq.
(5.45) for U= 2 and ¥ = 4. As the gain is increased beyond 130, the
root moves into the right-half plane. For values of gain large enough
to move a root of Eq. (5.45) into the right-half plane, a value of D
equal to zero can be found from the dispersion equation for a value of
S in the right half plane. The gain necessary to move the root locus
in Fig. 5.13 into the right-half plane is thus that necessary to induce
the convective-absolute instability.

A stability plot of the loci of the roots of D is given in Fig.
5.14, for the values A = 87 and N = 16. These values were selected
because a root locus plot similar to that of Fig. 5.13 has shown them
to be unstable. Both the loci start outside of the unit circle for
large negative values of w; - As the magnitude of wy decreases, the
loci move toward the origin, and one of them hits the origin for a
value of wp between 15 and 16. The incipience of the convective
absolute instability for N = 16 will consequently occur for a gain, A,
slightly less than 87 and for a frequency, wps @ little higher than 15.

The region in the A-N plane where the jet exhibits the convective-
absolute instability is shown in Fig. 5.15. It can be seen that this
region is bordered by the convectively unstable region; the stable
region and the region of the convective-absolute instability do not
touch. This happens because the loci have to cross the unit circle
to get to the origin. For each value of N, there is a value of gain
less tnan the value needed for the convective absolute instability, for
which the loci penetrate into the unit circle but do not reach the

origin. These values of gain cause the region of convective-absolute
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instability to be bounded from below by a region of convective-
absolute instability.

The boundary for the convective-absolute instability in Fig. 5.15
is calculated by making root-locus plots, similar to Fig. 5.13, from
Eq. (5.45). The loci of the roots of the dispersion equation do not

have to be computed. It is necessary, however, to construct one of

the plots of the loci of D to insure that the locus which hits the

origin starts outside the unit circle for large negative values of
the imaginary part of .

5.5 Summary

Criteria for determining the existence and type of instabilities
on a spatially discrete system are developed in this chapter. These
criteria make it possible to determine if the system is stable, or if
it exhibits an absolute instabiliy, a convective instability, or a
convective-absolute instability.

Bers and Briggs have previously derived stability criteria, which
are used to investigate the stability of spatially continuous systems.
Their criteria are applied to the w-k dispersion equation for the sys-
tem. The criteria presented here are derived by modifying the Bers-
Briggs so they can be applied to spatially discrete systems described
by an S~D dispersion equation. For an example, the criteria are applied
to the string driven by a spatially discrete feedback system. It is

shown that, with the proper values of gain, damping, and convection,

the string can exhibit any of the three possible types of instability.
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Figure 5.13 A root-locus plot of S for the jet with D set

to zero. The jet has the convective absolute instability

when the gain approaches 140.
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Figure 5.14 A modified Bers-Briggs plot for the jet showing

the existence of the convective absolute instability.
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Figure 5.15 The regions of stable and unstable for the water

jet as determined from the S-D dispersion equation. The types of

instabilities are identified by using the modified Bers-Briggs criteria.
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CHAPTER VI

Discrete Spatial-Discrete Temporal Continuum Feedback

6.1 Introduction

For continuum feedback control systems which contain many feedback
drivers and sensors, a time-sharing technique is attractive to generate
the numerous control signals. It is explained in Chapters I and ITII that
continuum feedback control systems are spatially discrete systems. The
addition of a time multiplexed feedback system will make them also temp-
orally discrete systems.

Thomas [1966] has analyzed the problem of a finite system with dis-
crete temporal and spatial feedback. The system he studied is the same as
the bounded string shown in Fig. 4.2, except that his driving voltages were
generated on a discrete temporal basis. He described the deflections of
the string with the normal modes of the undriven string. As the number of
sampling stations became larger, the number of normal modes necessary to
describe the svstem became too large for the method to be useful.

In Chapters II and III, it is shown that Z-transform theory is a use-
ful tool for studving discrete temporal or discrete spatial feedback on
a continuum. This tecnnique is useful because the information concerning
the string's deflection between the sampling times or sampling points is
disregarded. In this chapter, the Z- transform is extended to the case of
an infinite continuum, driven by a discrete temporal-discrete spatial feed-
back system. By ignoring the information about the string's deflection

between sampling locations and times, a useful description of the system

is made.
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The system studied in this chapter is shown in Fig. 6.1l. This sys-—
tem is the familiar string, driven by a series of electrodes which each
affect a section of the string. For simplicity, only the electrodes on
one side of the string are shown. The driving electrodes provide the same
discrete spatial force that is considered in Chapter III, and is shown
in Figure 3.2. The difference between this system and the one studied in

Chapter III is the discrete temporal nature of the voltage applied to the

electrodes.

The individual control voltages are adjusted on a discrete—time basis.

The time interval between adjustments of a control voltage is t, seconds.

The electrode is also broken into sections of J segments. The control

voltages in this section are adjusted in a sequential manner, from left to
right. Wnen the last control segment in a section has been adjusted, the

feedback returns to the first segment. With this type of sampling the

electrode which drives the section of string for - L/2 < x < L/2 is ad-

justed at t = t_, 2t 3t .... . The electrode segment which drives
J o o? o’

the section of string for nL - L/2 < x < nL + L/2 is then adjusted at the

i = o) -
times t = ¢t + nt,/J, 2ty + ntO/J, 2to + nto/J, ve.. « The form of the
driving voltage that existson the electrode segment for nlL - L/2 < x < nL +

L/2 is shown in Fig. 6.2, on the next page.

The reason for breaking up the control into sections of J segments is

to make this infinite control system appear as an infinite number of finite

control systems placed end to end. A real system would consist of only J

segments, and the control system would adjust the control segments from

left to rignt, and then repeat the process. If one were to analyze this

finite system, it would be necessary to use aormal modes and to consider



a

*20104 93910sTp Lyyreiodwal pue Ayreyieds e

saonpoid UYOTUM 24NIONIIS IPOAIDITI UB A WIATAP ST Suydls 3yl T[°9 9IndTy

Ir yibus buiuupog

A
r R

ar u

X -

1P 1€ 12 1 0]
———- | ‘
\_/
ﬂYV
r -f- M”U M“u MWU -f-

-

(4x)
w/




196

4 v(nL-L/2 <x<nL+L/2,t)

L

| ! | | 1 -
-2ty +nty -to+nty nte to +nte ’2to+nto t
J J J J J
Figure 6.2

Discrete temporal voltage supplied to a Driving

- Electrode

boundary conditions. By olacing an infinite number of these finite sys-
tems together, the boundaries are moved to infinitv. The boundary condi-
tions can now be ignored, and a Fourier Integral representation for the
spatial displacement can be used.

The motivation for this type of spatial and temporal sampling is the
common television system. The intensity of a picture, seen by a tele-
vision camera, is a function of space and time. The television camera
measures the intensity of the picture on horizontal lines (spatial samp-
ling) in a sequential manner (temporal sampling). The control system here
can be thought of as a simplified television system that measures certain

points on a line in a sequential manner.
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6.2 Spatially and Temporally Sampled Signals

Detection Scheme: Spatial and Temporal Sampling

Similar to the case studied in Chapter III, the control system studied
here measures or ‘''spatially samples' the deflection of the string only at
the center of each electrode. With the addition of a digital computer or

other temporally discrete device to the feedback system, these measurements

are made on a discrete time basis. That is, the 'spatially sampled' output

is ""temporally sampled' by the control system. To simplify the analysis of

the control svstem, the measurements of the deflection are made by scan-

ning the sensors in the same way the driving voltages are adjusted. This
means the value of the deflection at the peint x = nL is measured at the

times t = t  + nco/J, 2t, + ntO/J, cee o

The measuring system provides no information about the deflection,

except at the sampling points in space and time. This sampled output can

be thought of as a grid of impulses in the x-t plame. At points in space

and time other than the sampling points, the measured deflection is zero.
At the sampling points, the area of the impulse is the value of the

%
deflection. The time and space sampled deflection £*(x,t), can be written

as a product of the deflection and an impulse array in the x-t plane:

% =) © nto
£*(x,t) = E(x,t)s ) ] uy(x-nL, t - —= - mt ) (6.1)
Nn=-o m=-—x

b

where J is the number of spatial samples in a repeat length.

It is convenient to define the impulse array in Eq. (6.1) as the

%
sampling functionm, i*(x,t). Thus,

; o
i* (x,t) = 2 z u (x-nL, t = —5— - mt ) (6.2)

== M-
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The temporal and spatial sampling process can be represented by the
network shown in Fig. 6.3. The spatially and temporally continuous func-—
tion, &£(x,t), is nultiplied by the sampling function, i:(x,t), to produce
the sampled output, Ez(x,t). In Fig. 6.3, the impulse arrays are drawn for

a repeat length (J) equal to four.

/'-\_1—~\~_, f(x,f)

% Tf
*
t,x & (x,t) * %
* X P
R
; i (x,t) X X
T X X X
X X 28 K
X > X
X
e X
x X X
—X > ¢ ———
-4L X
Figure 6.3

The detected signal is produced bV multiplying

the continuous signal by an impulse array.

Transform of the Sampling Function

The transform of the sampling function is derived in this section.
This transform is used in the following sections to calculate the transform
of the space- and time-sampled deflection.

The first step for finding the transform is to break up the sampling
function into two convolved functions. In Fig. 6.3, the sampling function

is seen to be a series of diagonal lines of impulses that are repeated on
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the t- axis. Thus, the sampling function can be generated by convolving

the diagonal line of impulses with an impulse train along the t- axis.

8

% = s
i*(x,t) = u (x-mL, t-m—2) u (x,t -nt_) (6.3)
o J , o o

-0 n=-x

T e

where CED stands for convolution in x and t space.
The transform of the sampling function is the product of the trans-

forms of the two terms on the right of Eq. (6.3). These transforms are

(=] (=]

2 . ) .
] uoGxt-nty) <= = § 0 ug(s - T (6.4)
n=-—w O =~ o
bt s 2wLJ4 s o
Z uo(x—mL, t-m 3~9++ —_Edl Z ug (s 3—+ FjkL + m2mj) (6.5)
m=— ° m=-

The transform given in Eq. (6.4) is found in Mason and Zimmerman [pg. 262].
The transform in Eq. (6.5) is shown to be correct by taking the inverse
transform to recover the original time function. The inversion is accomp-

lished by first integrating on the wavenumber, K.

[o-] joo+o’
2 . @ t . \ Kk
2mLJj T ou (s =2+ jkL+ j2mm)e’ fedkx ds_ dk (6.6)
t = o J 2Ty 2w
(o] m=-—-
-0 ..jcn +0
je+0c
t X
© ':(t- [¢] ) _ j 2Tl’mx
J z JL L ds
= — e e 2773
fo m=-w -j® +0 |
The right-hand side of (6.6) can be factored to give
jo +o .
- _ 2mix s(t—-JE )
J L JL ds
< ) e e (6.7)
o m=—-x J m

-jo+ag
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Both of tne terms in Eq. (6.7) can be put into a different form:

- B 2mTx o
Z e L. L z uo(x - mL) (6.8)
m=—0 m=—o
j® +o0 ( to )
s(t - — x
JL ds _ Eox
J e 2y - Y%t - 3) ©-9
-jo+0

With Eqs. (6.7), (6.8) and (6.9), the right side of (6.6) becomes

jo +0
_ _o s mhx
Iy s(e - 30 -5 T 4
— e e 7 - =
to M= =—co -TrJ
-J' oo + o]

== -

JL oX
t E ug (x= mlyu, (e~ 5p (6.10)
(o} m=—2

In the x-t plane, uo(x - mL) and uo(t - tox/JL) are impulse sheets,
They are zero everywhere except along the lines represented by their argu-
ments. The product of two impulse sheets is a two-dimensional impulse at
the point of intersection. The rignt side of Eq. (6.10) can thus be

written as

JL ¥ _ T _Bo .
. Z uo(x - mL)uo(t - tox/JL) =} u(t T ¥ mL) (6.11)
o m=- m=—-@

The original time function has been recovered from the transform in Eq.
(6.5) and the transform is therefore correct.
The transform of the sampling function is the product of the trans-

forms in Egs. (6.4) and (6.5); it is



201

(=<
* 2 2 t
I* (s,k) = (ZNZ LJ Z u, (s 39-+ jkL + m2mj) -
o

m_—....oo
v 2njm
I ouels -5 . (6.12)
n=-w o
Equation (6.12) can be put into a more compact form:
* 2. [= ] (=]
I* (S,k) = (—zil Z Z u (s -z—tuﬂ. k+£‘1+2.@1) (6.13)
t, L & ___o t L JL
n==0m m=-w o

The transform of the sampling function is therefore a two-dimensional

impulse array in the s - k plane. This array shows immediately one of the

effects that the scanning has on the system. When the deflection 18
sampled only in time, the transform of the deflection is periodic on the

s axis, with a period of 2ﬂj/t°. When the sampling is done only in space,

the deflection's transform is periodic with a period of 2m/L on the k axis.
When the system is sampled in time and space, both of the previous periodi-

cities still occur. However, a new period of 2n/JL occurs in the k- direc-

tion; this new periodicity is a result of the scanning method used for

sampling. This scanning length is JL and this causes the transform to

have a period of 2w/JL.
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Transform of the Space-and Time-Sampled Deflection

The space- and time-sampled function E*(x,t), is the product of

the continuous deflection and the sampling function. The transform of

the sampled deflection is therefore the convolution of the transforms of

£(x,t) and ii(x,t),

*
2 (5,0 = 2,0QF (5,0 (6.14)

where CED represents convolution in k and s space.
%
Equation (6.13) shows that the transform I*(s,k) is an impulse

*
array in the s-k plane. Thus, the convolution to find E* can be domne

by observation, and the result is

_% e ; 2 2
s = o ] (s - 2T, + 2T+ D, (6.15)
o n=—® m=-<x [s)

*
An alternate expression for =¥ is

(=< oo
=% (s,k) = — ) Y oo(s - 2mjm  2njmI o 20T (6 16)
t L t t JL
o n=-w m=- [e]

This transform is a periodic function in the k-s plane. The transform

has a period of 27m/JL in the k plane, and of 2m/ty in the s- plane.

It is shown in Chapter 2 that a transform that is periodic in s

can be written in closed form by using Z transforms. That is, the trans-

form of a temporally sampled function nas two forms.

I R .17
n=-x o

where * means temporal sampling with a period of tj.
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In Chapter 3, it is shown that a transform which is periodic on the
k axis can be written in closed form by using the discrete spatial wave-

number D. Thus, the transform of a spatially sampled function can be

expressed in two ways.

o

Sh@,s) = & ) Ek+ET s) = 20,8) (6.18)

Mm==c0
where the * refers to spatial sampling with a period of L.

The techniques developed in Chapters 2 and 3 can also be used to
get the transform of the space- and time-sampled function into a closed
form for either s or k. The summation over the variable n in Eq. (6.15)
can easily be put into closed form by using Eq. (6.18). For one value

of m, the summation over n is

o
1 = 2mm |, 2nT _ j2mr
t L z =k + 3T » S t )
0" el o
_jZmﬂ
- L ospe 7, s - 2mimy (6.19)
o to

The variable T in Eq. (6.19) is defined as

p = e kL (6.20)

This definition is slightly different from that given by Eq. (3.11) be-
cause the length L has not been normalized to 1.
In a similar manner, Eq. (6.17) can be used to put the summation

over n in (6.16) into closed form. For one value of m, the summation

over n is

1 f (& 2mm 2mjm |, 2nimJ )
€L el D A t, t,
i2mmw
= L s+ BT g ) (6.21)
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The variable Z in Eq. (6.21) is defined as

z e St/ (6.22)

This definition for Z is different from that given by Eq. (2.12) because
the sampling time, t /J, has not been normalized to 1.
With Eqs. (6.19) and (6.21), the two forms of the transform of the

space- and time-sampled functioms, Eqs. (6.15) and (6.156), can be written

as

=% 1 v - jzmTr 2mjm
=% (k,s) = — Z el T, s - = ) (6.23)
(o] m==-x o]
and
% 1 o j 2mT
Z* (k,s) = = Z Z(k + 2mm J'J'I_n_
JK = —co T Ze ) (6.24)

The transform of the sampled function is now a series only in

terms of one variable, s or k. The series in the other variable has been

put into closed form by using the discrete variables D and Z.

The transforms in Eqs. (6.23) and (6.24) are still periodic in one
variable and appear as if they can be put into a closed form. Unfortu-
nately, the Z transform method, which has been used to obtain closed-
form transforms, does not work on the transforms in (6.23) and (6.24).
For example, the periodicity in s of the transform given by Eq. (6.23)

can be removed with Eqs. (2.10) and (2.11). The modified form of the

trans form is

- j2mm (SEP)to
1 = J _ 2mjm, _ . Z(De 'p)
_E: Z =(De , S € ) z Residues . e-(s—p)t (6.25)

== Poles of =

If the function = has a finite number of poles in the p plane, the right
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side of Eq. (6.25) yields a closed-form transform for the space- and

time-sampled function. However, for the case of the string,
E(Dexp[—(s-p)to/J],p) is a transcendental function of p, and consequently
there are an infinite number of poles. The summation on the right side
of Eq. (6.25) consists of an infinite number of terms and a transform in
closed form is not achieved. 3y using a similar argument, it can be seen

that the transform given by (6.24) is also not reducible to closed form

for the case of the string.

6.3 The Open-Loop Transfer Function

The Electrode as a Spatial and Temporal Sample-and-Hold Filter

The driving electrodes and their associated electronic circuitry
are a combination of the spatial sample-and-hold filter and the temporal
sample-and-nold filter which were discussed in Chapters 2 and 3. At
the sampling times, a pulse is fed to the electrode segment's electronic
circuits. The voltage on the segment is then updated to a value propor-
tional to the amplitude of the input pulse. Between the sampling times,
the voltage on the electrode, and hence the force exerted on the string,
is constant. The signal applied to the electrode segment can be con-
sidered to exist at only one point in space, the point where the signal
lead is attached to the segment. The electrode segment accepts this
signal and produces a spatially constant force to the adjacent section
of the string. Each electrode segment, with its associated electronic
circuitry, may be thougnht of as a sample-and-hold filter in space and
time. The response of an electrode segment in space and time to an

impulse at the x-t origin is shown in Fig. 6.4.
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The discrete temporal and spatial force applied to the string
by the electrode segments is generated by driving the filter shown
in Fig. 6.4 with an array of impulses in the x-t plane. The impulses
of this array have the same locations in the x-t plane as those of the
sampling function. The area of each impulse is the same as the force
applied to a segment of the string between sampling times. This pro-
cess of generating the driving force f(x,t) is illustrated in Fig.
6.5.

Transfer Function of a Spatially Discrete System

The string and its driving electrodes can be thought of as a
system which accepts a spatially and temporally discrete input and
produces a spatially and temporally continuous output. The control
system then measures or 'spatially and temporally samples' the de-
flection of the string. Tue system, as seen by the control syvstem,
is illustrated in Fig. 6.6. The signz2ls generated by the control
system are pictured as the impulse array uz(x,t). The electrodes
are driven by this array, and generate the spatially and temporally
discrete driving function f(x,t). The force drives the string, and
produces the spatially and temporally continuous deflection, &(x,t).
The detection system samples the deflection in space and time to
obtain the impulse array, Eg(x,t).

In Chapters 2 and 3, a transfer function was made which related
the sampled output to the sampled input for space or time-sampled
systems. The same arguments can be used with some modifications to

produce a transfer function for a space- and time-sampled system.
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In Fig. 6.6, fhe transform of the continuous deflection is

related to the transform of the sampled input by

T(k,s) = U*(k,s)c(k,s) (6.26)

From Eqs. (6.15) and (6.26), the transform of the sampled deflection

is
s = L f E ke 4 T, 2mm o 2mimy
=Aes) = T L T to
o n=-x m=-m
2nm 2mm 2mim
- + -_—— _—— - ——— - .
G(k T + T s to ) (6.27)

o
The input, U*(x,t) is alreadv a sampled function and its transform

must obey the equation:

+

2nm +E‘E. __2_[‘.1_11) = U

T . S c (k,s) - (6.28)

.

Witk Eq. (6.28), the transform of the drive can be brought outside of
the summation signs and the relationship between the sampled input

and sampled output becomes

I~ ©
2nm 2mm 2mj T
:‘t‘(kgs) = U"E (k,s) E}-i' E z 6k + I + L S - t; )
o n=-=x m=-x

(6.29)

From Eq. (6.29), the transfer function relating the spatially and

temporally sampled input and output is the transform of the spatially

and temporally sampled impulse response of the system. For this case,

the impulse response means an impulse at the origin of the x-t plane.

Yith this discrete transfer function, the system can be represented by
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a simple block diagram similar to those in Figs. 2.8 and 3.9.

Evaluation of the Spatially and Temporally Discrete Transfer Function

From Fig. 6.6, the continuous transfer function of the system is the

product of the transfer functions of the string and the electrodes. This

transfer function is

-st, jkL/2  -3kL/2
_ l-e e - e 1
Gle,s) = s jk 1 2 2
—— s%+Bs+k” - k

v_ 2 [od
P
(6.30)

To simplify this transfer function, the length L is normalized to 1

by defining the following dimensionless variables.

K = kL (6.31a)
S = Ls/v (6.31b)
N = kchz (6.31c)
T = tovP/L (6.31d)
§ = (6.31e)

With these dimensionless variables, the continuous transfer function be-

comes:
jk/2  -3jK/2

- ST|
L-e -J e -—¢ 1 (6.32)

G(K,S) = S K SZ+ 65 + K2 - N

The transfer function for the spatially and temporally sampled sys-

tem is found by substituting Eq. (6.32) into (6.29). The transfer function

produced in this manner is a series in terms of both K and S. The two
desired forms of the transfer function use the discrete variables Z and D

and are consequently a series in terms of only one variable, K or S.



These two expressions for the spatially and temporally sampled transfer
function are obtained by plugging Eq. (6.32) into Eqs. (6.23) and (6.24).
The final forms of the discrete transfer function are put into a more

compact expression by defining the two functions:

L-ea ST L
S S2 + 85 + K2 - N (6.33)

and
jK/2 -jK/2 [‘
e - e 1
H (K,S) l: T JET TS TR J (6.34)

The function Hl(K,S) is almost identical to the continuous transfer

H1(K,S)

function of the temporally discrete system that was studied in Chapter 2.
This function contains the portion of G(K,S) which is a function of S.
The function Hz(K'S) is identical to the continuous transfer function of
the spatially discrete system studied in Chapter 3. Hz(K’S) contains
that portion of G(K,S) which is a function of K.

Substituting Eqs. (6.32) and (6.33) into (6.24) gives, for one form

of the discrete transfer function:

©® 9 sin(k/2+3%) j (2nm/J)
c¥(K,s) = = J H (Ze LK+ BN (6.35)
J 2nm 1 J
n==° K + —
J
where
_ (l-ZJ) {-2u + Ze-s/z[—é sinh W + 2W cosh W]}
Hl(Z,K) = 572 s (6.36)
2 (K%~ N) [1-2Ze cosh W + z2e 9]
+ 2W[l—22e-6/2 cosh W + e-szzl(l—ZJ)
2W(K? - N[){l-ZZe_G/2 cosh W + Zze_s](l—z)
L
W o= [(6/2)% - K* +¥]? (6.37)
7 = e ST/J (6.38)



An expression almost identical to Eq. (6.36) is derived in Chapter

2 and is given by Eq. (2.37). HL(Z,K) can be deduced from Eq. (2.37)

by comparing Eq. (6.38) to (2.12) and Eq. (6.33) to (2.30).

The other form of the spatially and temporally discrete transfer

function is found by substituting Eq. (6.34) and (6.32) into (6.23). It
is:
jggl .2nm
. L-eST @ H @I, s+ T
G*(D,S) = “F—— ) j2aT (6.39)
n=-o (s +J—T——)

The function HZ(D,S) is derived in Chapter 3 and is given in Eq. (3.47).
The discrete transfer function which describes the driving elec-
trodes and the string as seen by the control system has been derived in
two forms. One form gives the transfer function as a closed form in the
discrete spatial wavenumber D and a series in S. The other expression

is a closed form in terms of the discrete temporal frequency, Z, and a

series in terms of the spatial wavenumber, K. These expressions are
equivalent, since both can be put into the same series in terms of S

and K.

6.4 Closed-Loop System

Closed-Loop Transfer Function

To stabilize the string, a control signal must be generated from

the spatially and temporally sampled deflection. One possible control

scheme is to multiply the measured deflection by a negative gain and feed

the resulting signal to the electrodes driving the string. At the samp-

ling time for a given electrode segment pair, the voltage on the segments
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is adjusted. The new value of voltage produces a force proportional to

the deflection of the string at the center of the electrode segments and
with a polarity that drives the measured deflection toward zero. The
driving force is held constant until the next sampling tire. WJith this kind

of feedback, the entire system can be represented by the feedback loop

in Fig. 6.7.

»*
u*(k,s) 27(k,S)

X
G” (K,S)

A servo-loop representation of the string with

spatially and temporally discrete feedback.

Figure 6.7
The feedback system probably can be improved by generating a more
complicated feedback signal. The measured deflection can be filtered
in both a discrete spatial and a discrete temporal manner. However,

this chapter is concerned only with presenting a method for analyzing

a spatially and temporally discrete system, and thus the simplest case

of feedback is considered.
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The transfer function for the closed-loop system of Fig. 6.7 1is

* %

=*(K,S G* (K,

——1;-——1 = ¢ i) . (6.40)
U* (K, S) 1 + A*G(K,S)

It should be remembered that this transfer function relates the spatially
and temporally sampled output to the spatially and temporally discrete
input. From this transfer function, only the value of deflection at the
sampling points in space and time can be determined.

The D-S and K-Z Dispersion Equations

The stability of the measured deflection is determined from the

natural frequencies of the closed-loop system. These natural frequencies

are found by setting the denominator of the closed-loop transfer function

to zero. From Eq. (6.40), this dispersion equation is

*
1 + A*G(K,S) = 0 . (6.41)

There are three forms that this dispersion equation can have. It can be

an infinite series in terms of both S and K; it can be in closed form in

terms of D and a series in S; and it can be in closed form for Z and a

series in terms of K.

To obtain useful numerical results from the dispersion equatiom,
the series must be truncated, so that only a finite number of terms

exists. If the dispersion equation is a series in terms of S and a series

in terms of K, then both series must be truncated before numerical calcu-

lations can be made. A decision must be made as to how many terms in

each series must be used to obtain an accurate answer. If the dispersion

equation is in terms of Z and K, only the series for the variable K must

be truncated; the variable Z has put the series for S into closed form.

When the dispersion equation is in terms of D and S, only the series



for the variable S must be truncated; the variable D has put the series
for K into closed form. It is therefore desirable to use a form of

*

G*(K,S) that is a closed form in terms of either Z or D because there is

less chance of truncation error than with the double series.

Stability Criterion

The stability criterion that is used on this system is the same as

that used for any continuum system. From the dispersion equation, the

values of S are found for all real values of K. If the real part of S
is greater than zero for any value of K on the real axis, then the

system is unstable. If there are no values of S with a positive real

part for K on the real axis, then the system is stable. The same cri-

terion is adapted to Z-K dispersion equations in Chapter 2, and it is

adapted to D-S dispersion equations in Chapter 3. If a Z-K dispersion

equation is studied, values of Z inside the unit circle for real K indi-

cate the presence of an instability. If a D-S equation is analyzed, a

positive real value of S for a value of D on the unit circle designates

the system as unstable.
The spatially and temporally sampled system studied here can be

described by a S-K, Z-K or D-S dispersion equation. The form of the

dispersion equation that is easiest to use for numerical calculations

is picked and the corresponding stability criterion applied.



Results of the Stability Analysis

The form of the dispersion equation that is most convenient for
numerical stability calculations is the Z-K form. The desired form of
the equation is obtained by substituting Eq. (6.35) into (6.41). The
resulting dispersion equation is a polynomial in termsof Z whose coef-
ficients are complicated functions of K. The highest power of Z in
this equation depends on the number of terms in the series for Gi(K,Z)
that are used. If the terms in the summation of Eq. (6.35) correspond-
ing ton = -m, -(m-1), ... 0,1,2 ... m are used, the highest term in
the resulting dispersion equation is Z4m+J+l. For stability studies,
each of the 4m+J+1 roots must be found.

If the K-S form of the function Gz(K,S) is used, the dispersion
equation is transcendental in both S and K. This form is not used, be-
cause finding the roots in S of this transcendental equation is more
difficult than finding the roots in Z of the polynomial form of the
dispersion equation.

The D-S form of the dispersion equation, obtained by using the
form of Gz(K,S) given by Eq. (6.39), is useful for determining the type
of instability a system may have. After the series in Eq. (6.39) is
truncated, a dispersion equation which is a polynomial in D is achieved.
With this equation, the modified form of the Bers-Briggs criterion can
be used to determine the existence and nature of instabilities. For
the case of the stationary string, there is no possibility of a convec-

tive instability. Therefore, there is no need to use the D-S dispersion

equation and the modified Bers-Briggs criterion.
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The roots of Z for the dispersion equation that results when Lq.
(6.35) is substituted into (6.41) have been found for all real values

of K. The regions of stable operation are shown in Figs. 6.8, 6.9 and

6.10.

For the cases shown in Figs. 6.8 and 6.9, the number of electrode

segments in a section, J, is picked to be one. For this situation, the

control voltage on all of the electrode segments is adjusted at the same

time. This situation is not realistic, because the advantages of a time-

sampled control system are lost unless different electrodes are adjusted
at different points in time. The reason for doing this case first is

that the numerical calculations are easiest when J = 1.

From Eq. (6.35), it can be seen that the open-loop transfer func-
tion is an infinite series and that the magnitude of the terms decreases

as [n| increases. This suggests that the series in Eq. (6.35) can be

truncated for some value of |n| and an accurate model of the system

can still be obtained. The numerical solution of the dispersion equa-

tion shows this assumption to be correct. The data in Figs. 6.8 and

6.9 are found by using only the three terms n = -1,0,1. Using more

terms in the series made no significant change in the calculated sta-

bility region.
There are four regions of stability plotted for Gain (A) versus

electrical pressure (N) in Figs. 6.8 and 6.9. Figure 6.8 presents the

stable regions for a normalized sampling time (T) of 1 and damping con-

stants (8) of 2 and 4. Figure 6.9 presents the stable regions for a

faster sampling rate, T = .5, with the same values of damping. In both
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figures, the stable region is bounded from below by the line A = N.

This line represents the minimum gain necessary to stop the absolute
instability that occurs when there is no feedback. This same boundary
was found in Chapter 2 for a temporally sampled system, and in Chapter 3
for a spatially sampled system. This instability occurs for long spatial
wavelengths, K *« 0, and appears at the discrete temporal frequency Z = 1.

When the gain is increased above a certain value, the system is
characterized by growing oscillations, which are referred to as an over-—
stability. This instability also was observed in Chapters 2 and 3 when
the feedback was only spatially or temporally sampled. These growing
oscillations are caused by the feedback electrodes applying a force with
the wrong spatial or temporal phase to a certain mode of the string.

Comparison of Fig. 6.9 with 6.8 shows that one method of increas-
ing the maximum gain for stable operation is to decrease the sampling

time. In Fig. 6.9, with T = .5, the maximum gains for stability are al-

most twice as large as those with T = 1 shown in Fig. 6.8. This effect

of increasing the maximum gain by increasing the temporal sampling rate
was also found in Chapter 2. The reason for this effect is that when
the string displacement is sampled more often in time, the control
system will apply a force of the wrong sign to fewer modes.

Figures 6.8 and 6.9 both show that the system is less apt to be
overstable if the damping is increased. Since overstability is caused
by the control system pumping energy into a mode, providing a method to
dissipate this energy will make the system more stable. In Fig. 6.9,
the stable region of operation for ¢ = 4 is bounded on the right by the
line N = m2. This limitation is caused by the spatial sampling. When-

w2, a disturbance with a normalized wavelength of two is unstable.

ever N
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The string is sampled every unit length, so this wavelength is sampled

exactly twice. As a consequence of the sampling theorem, the feedback

System cannot detect this particular mode; it therefore cannot control

this mode.

In Figure 6.10, the stable region for a system with a sampling
length J of two is given. For this value of J, the control system ad-
justs the voltage on adjacent electrode segments in an alternating

manner. This system does not represent an efficient time-sampled system

because every other electrode segment is adjusted at the same time. This

case is presented because it illustrates the effects that increasing the

sampling length may have.

For the case of J = 2, it is necessary to use five terms (n = -2,
-1, 0, 1, 2) in the series of Eq. (6.35) to obtain accurate results.
For a given center wavenumber K, the extreme values used for the wave-

number are K + 27. These values occur for n = +2, This spread in the

values of wavenumber that is needed for accuracy for J = 2 has the same

width as for J = 1. The difference between the two cases is that, with

the longer sampling length J = 2, the wavenumbers K + T must also be

considered. This result indicates that, as the number of segments in

a sampling length increases, the spread in wavenumbers that must be

considered for accuracy does not increase, but the number of inter-

mediate wavenumbers increases.
The difference between sampling at all sensors at the same time and

scanning the sensors can be seen by comparing Figs. 6.8 and 6.10. The

only significant effect of the scanning is to decrease the tendency for

overstability. The upper boundary between the stable and overstable
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Figure 6.10 The region of stable operation for the spatially and

temporally discrete svstem for a scanning length of two.
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areas is increased for ¢ = 2 and 4.

When the feedback signal is changed at every electrode segment
simultaneously, certain modes can be pumped by the feedback. When the
feedback signal is changed at different times on adjacent electrodes, a
different set of modes will be pumped. Figures 6.8 and 6.10 show that,
for T = 1, the modes driven by the feedback for J = 2 are more difficult
to drive overstable than those driven by the feedback for J = 1. These
results may indicate that increasing J forces the overstability to modes
of shorter wavelength and the necessary gain for overstability is

increased. However, the data presented here are not sufficient to jus-

tify this assumption.

Numerical calculations to determine the stability of systems with
larger values of J were not done. The work presented here shows the
order of the dispersion equation which accurately describes the system
grows linearly with the value of J. This dispersion equation therefore
remains solvable by digital computer as J is increased. However, the

. equation
time needed to find all the roots of the dlspersion/is long. Since the

purpose of this chapter was merely to present a method of analyzing a

large temporally and spatially sampled system, further calculations are

not necessary.

6.5 Summary

By using the Z-transform techniques that were developed in Chap-
ters 2 and 3, a usable transfer function can be generated for a spatially
and temporally discrete system. This transfer function is initially
expressed as a double series in terms of S and K. By using Z transforms,

one of the series can be put into closed form and the transfer function
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can be written as an expression in S and D, or Z and K.

A closed-loop transfer function can be generated when spatially

and temporally discrete feedback is applied to the continuum. From the

poles of the closed-loop transfer function, a dispersion equation can
be derived. The dispersion equation can be an expression that is a

double series in S and K, a closed form in D, and a series in S ...

or a closed form in Z and a series in K. The stability of the closed-

loop svstem can be determined from this dispersion equation.
The stability of the string with spatially and temporally dis-

crete feedback was studied in detail. The D-S form of the dispersion

equation was found to be the easiest form to use for numerical calcu-

lations. To obtain accurate results for a system with a scanning length

of J, it was necessary to use 2J + 1 terms in the series of the open-

loop transfer function. The dispersion equation that resulted from the

2J + 1 terms was a polynomial in S of order 5J + 1.
The numerical calculations produced effects that had been seen
in Chapters 2 and 3 when either spatial or temporal discreteness was

studied. The stable region had a right-hand boundary that was caused

by the failure of the spatial sampling to detect certain modes. With

no damping, the system was overstable for any finite gain, because the
temporal discreteness caused certain modes to be pumped by the feed-
back. By adding damping to the system, the gain necessary for oversta-
bility was increased.

It must be remembered that any physical system will not be infinite,

but will be one scanning length long. The analysis in this chapter
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was done for an infinite system, so that boundary conditions could be
ignored. If the actual system has only a few feedback electrodes (small
J), the boundary conditions will be important and the method of analysis
presented in this chapter is inaccurate. For these small systems, the
normal mode analysis developed by Thomas must be used. As the number

of electrodes in a scanning length is increased, the boundary conditions

become less important. It is for these systems with a larger number of

feedback drives that the method shown in this chapter is valid.
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CHAPTER 'IY

E¥PEFIYENTS

7.1 Introduction

The objective of the experimental portion of this thesis is to
build a spatially and temporally discrete feedback control system which
controls a continuum instability. The purpose of the apparatus is to
have a system which demonstrates how a large number of feedback stations
can be controlled using a single amplifier on a time-multiplexed basis.

A general block diagram of the desired continuum control svstem is

given in Fig. 1.3. The deflection of the continuum is sampled in space

and time by a scanning device. The output of the scanner is amplified and

the switching system applies the amplified signal to the proper point
on the surface of the continuum. A synchronizing network is used to
coordinate the scanning and switching circuits so that the feedback

signal is applied to the proper location on the continuum.
This system is in many ways similar to a television svstem. In a
television system, an image, which is a continuum of light intensity,

is scanned by the television camera, which scans discrete lines on the

image and repeats these scans at regular time intervals. The output of

the camera is sent to a receiver which applies the signal to the face of

a cathode ray tube. The receiver is svnchronized to the camera, so that

the image is reproduced on the cathode ray tube. The fundamental dif-

ference between the experimental setup and a television system is that

the latter is open loop, and the experimental apparatus is closed loop.
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In designing an experiment, there are the conflicting requirements
of making the apparatus as simple as possible, while having it conform
to the model set forth theoretically. A good device for linearly meas-
uring the deflection at the sampling points is relatively difficult to
construct. If, instead, the deflection is measured by a nonlinear method...
a bang-bang feedback signal ... the system is considerably simplified.
Although the theoretical developments in Chapter VI can not be quanti-
tatively tested on such an apparatus, useful experience concerning the
development of spatially and temporally sampled control systems is
obtained. This alternative of a simplified "on-off" type of feedback

is used in the experiments to be described, and hence no attempt is made

to quantitatively compare theory and experiment.

7.2 Apparatus

The Continuum Instability

The continuum instability which is controlled is of the Rayleigh-

Taylor type. This is the instability which occurs when a heavy fluid is

supported against gravity by a lighter fluid. The interface between the
two fluids is unstable, and the heavier fluid falls to the bottom of

the container. The theory for this instability is presented in Chand-

rasekhar [Chapter 10]. This particular instability is picked for several
reasons. The mathematical description of the Rayleigh-Tavlor instability

is similar to that of some magnetohydrodvnamic instabilities which occur

in plasma confinement experiments.

Learning to control the Rayleigh-Taylor instability provides infor-

mation which is useful for attempts to control plasma instabilities.
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It is also convenient to have an interface between two fluids which can
be sensed optically. If one liquid is opaque and other transparent,
the interface can be detected by a photodiode or other light detector.

The tank which holds the liquid is shown in Fig. 7.1. It consists
of two four-inch square glass plates separated by a gasket of teflon .020"
thick. The teflon gasket seals three sides of the tank. One side is left
open for cleaning and filling the vessel.

The liquid-air interface is driven by an electric field which is
tangential to the interface. The explanation of this force is giveu by
Woodson and Melcher [Chapter 8]. To generate the electric field, the
inside surfaces of the glass are coated with a transparent conductor
which serves as an electrode. The transparent coating is tin oxide
doped with antimony for better conductivity. One glass plate is covered
completely with the tin oxide and serves as a ground plane. The other
plate has 16 vertical strips four mm. wide which are separated bv a
gap of one mm. By placing a voltage between the strip electrodes and
the ground plane, the electrical field tangential to the fluid surface
is generated. The voltages on the strip electrodes can be adjusted
independently, and thus a control force can be applied to each of the
16 segments of the liquid-air interface.

The liquid used in the tank is transformer oil, manufactured by
General Electric Corporation. It has a verv high resistance, and does
not allow anv significant current to flow between the electrodes. The

0oil is dyed dark green with copper napthalene to make the oil-air

interface easier to detect.
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The tank is mounted so that it can rotate about a horizontal axis
which passes along the equilibrium fluid surface. By rotating the tank
on this axis, the component of gravity perpendicular to the fluid surface
can be varied. The tank is filled with its open end on top and the fluid
collects in the bottom. The component of gravity perpendicular to the
surface points from the air into the liquid: a stable configuration.

If the tank is rotated more than 90°, the gravity vector will point from
the fluid into the air.

This latter configuration is unstable without feedback. By changing
the angle of the tank, the magnitude of the perpendicular gravity vector
is changed, and the growth rate of the instability affected. The dimen-
sions of the tank force the instability of the liquid surface to occur
in only two dimensions: a plane parallel to the axis of rotation. The
surface perpendicular to the axis of rotation is only .020" wide and
the surface tension keeps the interfacial deflections that vary in that

direction stable.

The Cathode Ray Tube Amplifier and Switching Network

The block diagram of the system, Fig. 1.3, shows the svstem being

operated with one amplifier. Its output is shared by all of the feedback

electrodes on a time-multiplexed basis. A switching network between the
amplifier and driver electrodes performs the time-sharing operation.

The amplifier and switching circuit are combined into a single
device by modifying a cathode ray tube. A schematic diagram of the

modified CRT and its connections to the liquid tanmk is shown in Fig. 7.2.

An electron gun and its deflection plates were removed from a Dumont S5ADP
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cathode ray tube and mounted in a vacuum chamber which is made from a
glass pipe, six inches in diameter and 18 inches long.

The ends of the glass pipe are sealed with brass plates. The elec-
tron gun is mounted on one brass plate (the back one) and the electron
beam is pointed toward the other brass plate (the face plate). The
electrical connections for the electron gun are made with insulating
feed-throughs on the back plate. The face plate supports 16 targets.
Each of these is mounted on a nickel wire which goes through a covar-
glass feedthrough and out of the vacuum system. Hence, each target is
insulated from the brass end plate and from the other targets. The
array of targets is covered by a suppressor grid which is mounted on the
brass face plate and is at the same voltage as the face plate.

The suppressor grid is needed on the CRT to suppress secondary
emission. When the electron beam hits a target, many electrons are dis-
lodged from the target by the energy in the beam. If there is no sup-
pressor grid, the dislodged electrons drift away and are collected by
the anode on the wall of the tube. The result is a loss of electrons
and the current from the target is smaller than the electron beam cur-
rent. When the suppressor grid is placed near the targets, the dis-
lodged or secondary emission electrons are returned to the target by
the field between the suppressor grid and the target. The current that
can be drawn from the target is then the same as the beam current.

It is possible to vary the beam current by varving voltage on the

first grid of the electron gun. The current drawn from any target can
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be regulated by varying the grid voltage.

The targets on the face plate are located in two horizontal rows
of eight targets each. The electron beam can be aimed to hit any target by
putting the proper voltages on the deflection plates. The beam is focused
to a small point and hits only one target at a given time.

The net result of the CRT with the 16 targets Is a device which 1is
both a switch and an amplifier. The electron gun and one target consti-
tute a tetrode tube. By connecting a load resistor to the target (which

is the tetrode anode), an amplifier can be made. Varying the first grid

voltage varies the beam current and the voltage drop across the load
resistor. The deflection plates allow the beam to be switched from one
target to another. Switching the beam is equivalent to turning one
tetrode off and turning another one on.

Although the CRT is capable of being operated as a linear amplifier,
it is not used in that manner for the nonlinear form of feedback which is
of interest here. The sensing circuits for the interface position pro-
duce only binary signals and there is no analog information available
for modulating the CRT beam current. The beam current is adjusted to
its maximum value and this intense beam is shifted to the desired target.

During operation, the voltage changes on the 100 Megohm resistors
are found to be limited to 1500 volts. This limit is caused bv second-
arv emission of electrons from the targets. The no-current voltage on
the target is 3000 volts and the voltage of the suppressor grid 1500
volts. If the beam current were large enough, the voltage drop on the

100 Megohm resistor would reduce the target to 1500 volts. Once the
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target reached the potential of the suppressor grid, the electrons
generated by secondary emission would be able to leave the target.
Any attempt to further increase the current to the target results only
in more electrons leaving the target by secondary emission.

An unexpected effect is found to occur when the beam current is
removed from a target. The voltage across the liquid interface should
decay with a time constant of about 30 milliseconds. This time constant
is due to the capacitance of the driving electrode in the tank and the
100 Megohm load resistor. The actual decay time for the voltage is
found to be less than a millisecond. If the CRT beam is turned off,
and the driving electrode is put at 1500 volts bv an external battery,

the time constant is about 30 milliseconds. A possible explanation for

this dependence of the time constant on the beam current is the presence
of gas in the vacuum chamber. The electron beam ionizes the gas, and
The

the ions collect on the target after the beam is removed from it.

ions place a positive charge on the target and discharge the capacitance

of the tank. When the electron beam is off, the ions are not present,

and the tank capacitance discharges through the 100 Megohm resistor.

The Spatial Sampling System

The theorv developed in Chapter VI assumes the magnitude of the de-

flection can be measured at regularly spaced intervals in space. To

perform this measurement, some type of light detectors must be placed

along the equilibrium surface of the liquid in the tank. As the sur-

face moves up and down, the signals from the light detectors change,

depending on the portion of the detector masked by the liquid. The

output of the detectors might be an analog signal proportional to the

position of the surface. This technique is not used. Rather, a simple



binary sensing system is used to measure the position of the oil-air
interface. Inexpensive photodiodes, about 2 mm in diameter, are po-
sitioned along the side of the tank. These detectors are located at

the air-oil interface and one is positioned at the center of each driving
electrode. The diodes are made for digital applications; their sensiti-
vity varies greatly and their output is not a linear function of the
input light. The signal from each diode is fed to a Schmidt trigger
circuit which acts as a level detector and produces a binary signal
which indicates whether or not the diode is exposed to light. The
signal obtained from the Schmidt triggers is thus a bang-bang type of
signal.

A characteristic of Schmidt triggers and level detectors is that

they exhibit hysteresis. The output of one trigger as a function of the

liquid is shown in Fig. 7.3.

4 Level Detector Output

>
-A/2 A2 Liquid Level

The output of the level detector exhibits hysteresis

Figure 7.3

to the nature of the triggers and the variation in sensitivity of
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the light diodes, the width of the hysteresis is approximately 2 mm
of interfacial deflection. This means that the interface can move 2

mm. about its equilibrium position and the signal from the detectors

will show no change.
The hysteresis of the sensing circuits is a large factor in limit-

ing the capabilities of the entire control system. Due to the uncer-

tainty about the true location of the interface, it could move

approximately one millimeter before a control signal is initiated to

restore it to equilibrium. The distance the interface moves before the

change is detected is an important parameter which establishes the

minimum gain needed by the circuit. If very small excursions from

equilibrium can be detected, only a small force is required to move the

surface back to equilibrium. If the deflection is large before it is

detected, a large force is required to restore the surface to equili-

brium. The hysteresis of the Schmidt triggers used in the experiment
is so large that, for some conditions, the available gain is not large

enough to move the surface back to equilibrium.

The Synchronizing Network

A device is constructed from binary integrated circuits for tem-
porally sampling the diode detector outputs and deflecting the electron
Only a general description of the operation of the synchronizing

gun.

network is presented here; the actual logic design of the network is
not of general interest.
The general mode of operation of the synchronizing network is as

follows. The photodiodes are checked in a sequential manner, from

left to right across the tank. When the network finds a diode that is
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exposed to light, it stops checking and waits for a clock pulse. When
the clock pulse occurs, the beam is switched to the electrode at the
position of the uncovered diode. The electric field puts a force on the
surface which restores the surface to a position in front of the diode.

While the beam is maintaining a voltage on the electrode, the syn-
chronizing network resumes its search for an uncovered diode. When
the next clock pulse occurs, the beam goes to the next electrode, where
the adjacent fluid needs to be pulled back to a position in front of
the diode. Since the electric field can exert a force on the liquid
surface only in the direction from the liquid into the air, the elec-
trodes (which correspond to detector diodes covered by the liquid)
receive no charge from the electron beam.

The synchronizing network constructed in this manner better utilizes
the available current from the electron beam. It is more straightfor-
ward to step the beam sequentially across the targets. If a diode
indicated the electrode needed charge, the beam would be turned on; if
the diode was obscured from the light by the liquid, the beam would be
It seemed that the system could be improved by not turning

turned off.

off the beam. If an electrode needed no charge, the beam would be im-

mediately switched to charge an electrode that did need the charge.

7.3 Operation of the Apparatus

Experimental Results

In the first experiment for stabilizing the liquid, only a short

liquid interface is used. The teflon spacer is made wide enough to fill

most of the volume between the two glass plates. The area left in the
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spacer for liquid is as wide as four of the strip electrodes. The sur-
face of the liquid is thus .8 inches wide. Four points on the surface
are sampled and four of the strip electrodes used to control the
deflections.

For this first experiment, the control system can stabilize the
surface until the tank is rotated 150° (60° past horizontal) from its
initial position. For rotations greater than this angle, the surface
is unstable. The shape of the unstable surface is similar to that shown
in Fig. 7.4. The liquid under one electrode strip falls while the sur-
face under the other three strips moves upward.

With the liquid cavity as wide as eight electrode strips, the
surface is 1.6 inches long and sampled in eight places with eight
electrodes used to control the surface. For this second experiment,
the control system stabilizes the surface for tank rotations less than
120° (30° past horizontal). For greater rotations, the surface 1s
unstable. Similar to the case of four feedback stations, the shave of
the surface as it becomes unstable is the same as that shown in Fig.
7.4. The liquid under one electrode strip falls and the surface under
the other seven move upward.

Explanation of Results

The limited performance of the control system can be attributed to

two components of the system. The hysteresis of the interface detectors

and the limited voltage swing available on the output of the CRT.
The switching circuit did not apply a restoring force to the elec-

trodes on a regular basis. If an electrode did not need to be charged,
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the electron beam skipped it and went to the next electrode which
needed the charge; if only a few other electrodes neeced charge, the
beam could soon return to the initial electrode. If many other elec-
trodes needed charge, it would be a longer time before the beam could
return. The result is that the time average force exerted by an electrode
depends on how many other electrodes are being charged.

From Fig. 7.4, it can be seen that the mode which goes unstable is
the one which makes the least gain available to the feedback electrodes.
The liquid surface moves so that all the electrodes but one are charged
by the electron beam. The liquid interface defeats the logic in the
switching network and forces the beam to move sequentially from one
electrode to the next. Only one electrode, the leftmost one in Fig.

7.4, does not receive charge from the beam.

In both experiments, the circuitry is fixed so that during every
cycle the beam hits one of the 16 targets which is unused. This unused
target is hit so that whenever the fluid interface is flat, and no
electrode needs charge, the beam goes to the unused target. When the
unused target is considered, the beam is shared by four electrodes as
the four-station experiment goes unstable. As the eight-station exper-
iment goes unstable, eight electrodes are sharing the electron beam.
The angle of roation where the instabilities occur can be predicted
approximately from the hysteresis of the detector and the maximum volt-
age charge available on the targets of the cathode ray tube, using the
following facts.

While the tank is not rotated (liquid on the bottom), one of the

electrode strips is charged to 1500 volts with respect to the ground
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plane electrode. The surface of the liquid in the region between the
electrodes is raised verticallv about eight millimeters. This is the
maximum deflection that the CRT can cause if its beam is pointed at the
corresponding target continuously. If the electron beam is being time-
shared among four or eight targets, the maximum deflection of the surface
that can be induced is one fourth, or one eighth, the maximum deflection
when one electrcie is charged.

For the feedback system to be effective, the deflection of the

surface which the feedback can make must be as large as the hysteresis

band of the detector. Otherwise, by the time the detector has noticed

a perturbation from equilibrium, the perturbation can be too large for
the feedback force to check its growth.

When there are feedback stations, the maximum vertical deflection
from the control system is one millimeter. If the surface is rotated
60° from horizontal, the deflection of the surface is 2 mm for a one mm
vertical deflection. The 2 mm deflection is equal to the hyvsteresis
of the detector and thus the surface cannot be stabilized for rotations
which make the surface have less than a 60° angle with horizontal.

This rough number agrees with the observed value.

The same argument can be used for the control svstem when only

four electrodes are used. The feedback can make a 2 mm vertical deflec-

tion and thus the surface can be stable with a tank rotation of 180°.
The tank is at about 150° when the instability occurs. The 30° error
makes only a 13% change in the gravity component perpendicular to the

surface. This discrepancy is not too large, considering the rough cal-

culations used.



243

7.4 Summary

For the experimental vportion of the thesis, a continuum feedback
control system was constructed which is capable of levitating a liquid
by stabilizing the Rayleigh-Taylor instability. Although the control
system is not capable of stabilizing a large continuum surface, the ex-
perimental results indicate a large-scale system using a time-multiplex-
ing can be built.

The experiment illustrates some problems which are encountered in
nonlinear continuum feedback control systems. The dependence of the
time average force on the shape of the surface deflection and the hys-

teresis of the detectors are two nonlinear phenomena that influenced

the operation of the control system.
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CHAPTER VIII

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

8.1 Summary

In Chapter 2, the Z transform, which has been used to describe dis-

crete time, lumped-parameter systems, is applied to discrete time, contin-

uum systems. With Z transforms, a time-sampled continuum is described by

a closed-form transfer function in terms of the wavenumber, K, and the

discrete temporal frequency, Z. When discrete time, spatially continuous

feedback is applied to the continuum, a closed-loop transfer function is
generated by use of conventional servo theory. A dispersion equation in
terms of Z and K is obtained in closed form from the poles of the closed-

loop transfer function and the stability of the closed-loop system is

determined from this dispersion equation.

The case of the string with discrete temporal feedback is analyzed

in detail. It is found that increasing the feedback gain can stabilize

the system, but that too much gain drives the string overstable. The
maximum gain that can be used before overstability results depends on

the damping applied to the string. When there is no damping, any non-zero

gain drives the string overstable. This overstability occurs because

there is a wavenumber which corresponds to oscillations at twice the samp-

ling frequency. The control system pumps this mode, and the system be-

comes overstable.

In Chapter 3, the Z transform is adapted to describe spatially dis-

crete systems. With this transform, a spatially sampled continuum is

described by a closed-form transfer function in terms of the discrete

spatial wavenumber D, and the frequency S.
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Spatially discrete feedback is applied to the system and a closed-

loop transfer function is generated. The dispersion equation of the system
in terms of S and D is found from the closed-loop transfer function and the
stability of the spatially discrete system is determined from this equation.
The stability of the infinite string with spatially discrete feedback
is studied in detail. Similar to temporally discrete feedback, the spatially
discrete feedback can drive the string overstable if high values of gain are
used. The addition of damping reduces the tendency for overstability.
The Z transform technique is compared with wave train analysis used
by Melcher. The dispersion equation obtained with the Z transforms is a
closed-form expression in terms of S (or w) and D, while the dispersion

equation obtained from the wave train analysis is an infinite series in

terms of S and K. To do calculations with Melcher's dispersion equation,

the series must be truncated, and there is the possibility of truncation
error. The dispersion equation obtained from the Z transform method is in
closed form, and there is no possibility of truncation error.

In Chapter 4, three methods for describing a spatially sampled

continuum system with boundaries are compared. These three methods are:

the matrix appro#ch used by Gould, the theorv of normal modes used by

Melcher, and the Z transform.

The matrix approach considers the measured, or "sampled'', deflec-

tions of the system as the outputs and signals to the drivers as the

inputs. This view of a continuum system results in a model with a finite

number of coupled inputs and outputs. By the proper transformation, the

normal coordinates of this system can be found. With these, the system

can be made into a finite number of independent, single-input, single-

output systems.
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The Z transform method also considers the sampled deflection as the

output. By using Fourier integral techniques, the discrete normal modes

of the system are found. These modes are not coupled by the feedback.
The total system can then be modeled by a finite sum of uncoupled feed-
back loops, one for every discrete normal mode. These discrete normal
modes are the same as the normal coordinates found by Gould's method.
Melcher has modeled the bounded system by the normal modes of the
system without feedback. This analysis considers the continuous deflec=

tion of the system as the output; by this approach, the output has an

infinite number of degrees of freedom, and therefore an infinite number

of modes are required to describe the system. By the proper mathemati-

cal manipulations, the information about the deflection between the

sampling points can be dropped from Melcher's analvsis, which then gives the

same closed loop normal modes that can be obtained from the Z transform

method, or from Gould's matrix method.
The easiest method of determining if a spatially discrete system
is unstable 'is to use Gould's method or the Z transform. Both methods pro-

vide the same set of independent feedback loops which represent the total

By checking t 2 stability of each of these loops, the total system

system.

stability can be found.

Melcher's normal-mode approach is more complicated than the other two,
because it provides information about the entire deflection of the string.
This method is useful when the deflection at every point of the string must
be determined. With any spatially sampled system, there is a chance that
the instability is not detected by the control system. With Melcher's

normal-mode method and with the Z transform method, any possible unobser-

vable disturbances are easily identified. These unobserved modes can be
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checked, and the stability of the entire system can be determined.

If Green's functions are used to derive a matrix description of the
system, it is not apparent how the unobserved disturbances can be detected.
Thus, for systems which may contain unobservable instabilities, the Z
transform and modal methods are probably the best methods to use.

In Chapter 5, criteria for determining the existence and type of
instabilities on a spatially discrete system are developed. These criteria
make it possible to determine if the system is stable, or if it exhibits
an absolute instability, a convective instability, or a convective-

~—

absolute instability.

Bers and Briggs have previously derived stability criteria which are
used to investigate the stability of spatially continuous systems. Their
criteria are applied to the w-k dispersion equation for the system. The
criteria presented here are derived by modifying the Bers-Briggs criteria

so thay can be applied to spatially discrete systems described by an S-D

dispersion equation. For an example, the criteria are applied to the string

driven by a spatially discrete feedback system. It is shown that, with the

proper values of gain, damping, and convection, the string can exhibit any

of the three possible types of instability.
In Chapter 6, the Z transform techniques that are developed in Chap-
ters 2 and 3 are used to construct a transfer function for a spatially

and temporally discrete system. This transfer function is initially

expressed as a double series in terms of S and K. By using Z transforms,

one of the series can be put into closed form, and the transfer function

can be written as an expression in S and D, or Z and K.
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A closed-loop transfer function can be generated when spatially
and temporally discrete feedback is applied to the continuum. From the
poles of the closed loop transfer function, a dispersion equation can
be derived which can be an expression that is a double series in S and
K, a closed form in D, and a series in S, or a closed form in Z and a
series in K. The stability of the closed-loop system can be determined
from this dispersion equation.

The stability of the string with spatially and temporally discrete
feedback was studied in detail. The D-S form of the dispersion equation
was found to be the easiest form to use for numerical calculatioms.

To obtain accurate results for a system with a scanning length of J,
it was necessary to use 2J + 1 terms in the series of the open-loop
transfer function. The dispersion equation that resulted from the
27 + 1 terms was a polynomial in S of order 5J + 1.

The numerical calculations produced effects that had been seen
in Chapters 2 and 3 when either spatial or temporal discreteness was
studied. The stable region had a right-hand boundary that was caused
by the failure of the spatial sampling to detect certain modes. With
no damping, the system was overstable for any finite gain, because the
temporal discreteness caused certain modes to be pumped by the feedback.

By adding damping to the system, the gain necessary for overstability

was increased.

Chapter 7 describes the experimental portion of the thesis, where
a continuum feedback comntrol system is constructed which is capable of
levitating a liquid by stabilizing the Rayleigh-Taylor instability.

Although the control system is not capable of stabilizing a large
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continuum surface, the experimental results indicate a large-scale
system using time multiplexing can be built.

The experiment illustrates some problems which are encountered in
nonlinear continuum feedback control systems. The dependence of he
time average force on the shape of the surface deflection and the hys-
teresis of the detectors are two nonlinear phenomena that influenced

the operation of the control system.
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8.2 Suggestions for Further Research

The work in this thesis has been limited to a study of the string model,
a quasi-one-dimensional system. Although the analysis has wide applica-
bility, there are many situations in which the techniques presented here need
more development. For instance, the control of a liquid surface would re-
quire a two-dimensional array of feedback electrodes. The Z transforms
presented in this thesis are for discreteness in only one spatial dimension.
In some instances, the spacing between the feedback electrodes and the con-
tinuum may not be small compared to the width of the electrode. The long-
wave limit used in this thesis is not appropriate for these situations.
In some plasma experiments, it is convenient to measure the average deflec-
tion adjacent to an electrode; all of the cases studied here have measured
the deflection at one point in the center of the electrode.

An outline for extending the techniques in this thesis to deal with

these situations is presented in this section and suggestions are made for

improving the experimental portion of the thesis.

Removing the Long-Wave Limit

In this thesis, the force applied to the string is derived by using

the long-wave limit. With this limit, it is assumed that the deflections

on the string are small compared to the wavelength of the deflection.

When this assumption is used, the electric field is assumed to be unifcrm

as the observer moves between the string and the electrode. The electric

field is then given by

v + v
o d (8.1)

E = 1=

which is linearized to give
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<

v
£ +.ji . (8.2)

N

= -2
E = 1=+

By considering the E field from the other electrode and using the Maxwell

stress tensor, the stress on the string is found to be

2e V? 26 Vv
O O, ood

T = T 6t —q2 (8.3)

A more thorough analysis includes the two-dimensional aspects of

the field. Both the field variations along the string and between the

string and the electrodes are considered. The method for finding the two-

dimensional field is given by Melcher (MIT Press, Chapter 3), and the result-

ing perpendicular, linearized field is

Vo Vo k V4
E = d—+£-d—'kc0thka+m . (8.4)

By using the Maxwell stress tensor, the stress of electrical origin on the

string can be calculated from Eq. (8.4). With this value of stress, the

equation of motion for transverse deflections on the string is

2e vgk cosh kd

p*¢ _ _ 3% _ .« DE _gv 3E 0
Roez =Y %2~ % D ™ B 3 t d2 sinh kd
2e V k vd
+—20 . (8.5)

d sinh kd

This equation is more inclusive than Eq. (1.4), the equation of motion

used earlier in this thesis. It shows that for short wavelengths, the

coupling of the feedback voltage decreases, and the unstabilizing effect

of the bias voltage is increased.

By taking the Fourier-LaPlace transform of Eq. (8.5) and using the

normalized variables given in Egs. (5.34a) to (5.34g), the transfer function
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relating the deflection to the driving voltage can be found to be

d
jK/2 _ _-jK/2 K =
G(K,S) = | = = = . L . .
] sinh(K &)
L
1
s2 + K% (1-U2)+K(2USj + VU4 65 + VS - i\lﬁ—;@-[h(d/“]

(8.6)

The transfer function given by Eq. (8.6) is separated into three terms.

The first and third terms have been identified in Chapter 3 and are the

transfer functions of the driving electrode and the string. The second

term is the transfer function of the space between the driving electrode

and the string.

With this continuous transfer function, the spatially discrete trans-
fer function can be generated. The problem that occurs is that the poles
of the transfer function in K cannot be found analytically. The trans-

cendental nature of the transfer function makes it necessary to find the

roots of K numerically. Once these roots are {ound, Eq. (3.41l) is used

to obtain the discrete transfer function. The discrete transfer function
thus obtained has a denominator which is a second-order polynomial in D.
The coefficients of the polynomial are tabulated numerical values which
must be calculated for each value of §, v, N, S and d/L.

When feedback is applied to the spatially discrete system, the modi-
fied Bers-Briggs criteria must be used to determine if the system is stable.
The values of the coefficients of D in the open-loop transfer function

must be found for values of S in the right-half S plane. Once these

coefficients are determined, the trajectories of the poles in D of the
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closed-loop system can be plotted as the real part of S is decreased.

From these trajectories, the stability of the system can be determined.

Average Deflection Feedback

In this thesis, the feedback signal is generated by sensing the
deflection of the string at the center of the feedback electrode. This
type of sensing is used because of its mathematical simplicity. In more
practical situations, it may be preferable to sense the spatially averaged

deflection of the continuum over the electrode, and not the deflection at

the center of the electrode. In an experiment performed by Melcher and

Warren [November 1966] and in numerous plasma experiments, the capaci-
tance between the continuum and the feedback electrode is measured.

From the capacitance, the spatial average deflection of the continuum

adjacent to the electrode is obtained. The measurement of the average

deflection is then used to generate the feedback signal.

The examples presented in this thesis can be modified to use a feed-
back signal proportional to the average deflection in the following
manner. The variable E(x,t) is defined as

L/2
f € (xty,t)dy . (8.7)

-L/2

E(xo t) =

=

This quantity is the average deflection for a length L centered at the

point x. The transform of §(x,t) can be generated by multiplying the

transform of the deflection by the proper spatial filter. The filter

can be deduced from Eq. (8.7), and the transform of E(x,t) is
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oJKL/2 _ =ikL/2

Z(k,s) = TiT Z(k,s) . (8.8)

When & is sampled by the spatial impulse train used in Chapter 3, the
result is an impulse trainwhose amplitudes are the average deflections

above each driving electrode.

With the filter given in Eq. (8.8), the analysis in this thesis can
be modified to use the sampled average deflection for feedback. For example,
in the case of the stationary string, the continuous transfer function which

relates the average deflection to the excitation is found by adding the

filter in Eq. (8.8) to the transfer function given in (3.42). The result

is
cK.s) - eJK/Z_ e-Jl\/Z 1 e'jK/Z - e-JK/Z
’ jK S2 + 8S + K2-N iK
electrode as string electrode as
driver sensor

By using the techniques given in Chapter 3, the spatially discrete trans-
fer function, relating the sampled averaged deflection to the sampled
input, can be generated from Eql (8.9). The desired closed-loop disper-
sion equation is then obtained by placing this transfer function into a
servo-loop similar to Fig. 3.1l.

If the analysis does not use the long-wave limit, then the spatial
filter in Eq. (8.8) is not sufficient. Another term must be added to
include the effect of the space between the sensing electrode and the
string. By multiplying the filter of Eq. (8.3) by the second term on the

right of Eq. (8.6), the correction for the string-electrode spacing is

made.
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Extension to Two-Dimensional Surfaces

Melcher [October, 1966] and Melcher and Warren [november, 1966] have

studied the control of a two-dimensional liquid surface. To drive this

surface, an array of rectangular electrodes is used. The driving force is

thus discrete in both directions in the plane of the surface. The surface

deflection is sensed at the center of each driving electrode. The measured

deflection is therefore a two-dimensional impulse array.

In his analysis, Melcher uses a wave-train approach. Because the sys-
tem is discrete in two dimensions, x and y, the dispersion equation which
he derives is a series in both kx and ky. The Z transforms, shown in Chap-
ter 3, can be used to achieve a closed-form transfer function for a system
which is discrete in one dimension; in Chapter 6 a spatially and temporally

discrete system is studied and it is found that the Z transform can pro-

duce a closed-form transfer function for only S or only K; the other

variable K or S,remains in series form.
When Z transforms are applied to a system which is sampled in two
dimensions, a problem occurs which is similar to the problem with space

Only one of the series, in kx or kv’ can be put into

and time sampling.

closed form; the other series cannot. The Z transform, as presented here,

can be applied to the two-dimensional sampling. It is useful because

it makes the dispersion equation a series in one variable instead of two.

The Z transform would be more useful if both series could be put into

closed form. A significant project would be to develop a modification of

the Z transform which gives transfer functions in closed form for systems

that are discrete in two dimensions.

Suggestions for Experimental Research

The experimental portion of this thesis cannot be compared directly
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to the theoretical part, because the level detectors used in the experi-

ment cause the feedback signal to be nonlinear; the theoretical work con-—
siders only linear feedback signals. An experiment that can be compared
to the linear theory can be made by constructing a linear, spatially-
discrete, level detector. There are many ways of building the linear
level detectors, two of which are outlined here.

The first method is to use a television camera to detect the surface
of the liquid in the tank, which 1is a dark green color and can be detected
optically. The television camera is fixed to scan the image of the tank
along vertical lines located in the center of each electrode strip. As
the camera scan moves from the liquid across the liquid-air interface,

the video output will change. Plotted versus time, the video output for

one scan will resemble the plot in Fig. 8.1

‘ Yideo
CueTput

Fig. 8.1 The discontinuity in the video signal determines
the location of the liquid-air interface.
The signal is low as the camera scans down the side of the tank and sees
the dark liquid. At the liquid-air interface, the signal jumps to a high

level because of the light coming through the transparent tank. By
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measuring the time from the beginning of the scan to the jump in the
signal, the distance of the interface from the origin of the scan can

be computed. The distance measurement is used to modulate the CRT beam

and a feedback voltage proportional to the deflection of the interface
is applied to the proper feedback electrode. To maintain a constant gain
as a function of the angle of tank rotation, it is necessary to attach

the camera to the tank so that the tank and the camera are rotated as

a unit.

Another method of linearly measuring the position of the interface
is to use an oscilloscope and a light-sensing diode. The liquid tank is
mounted flat on the face of the oscilloscope. A signal is applied to the

oscilloscope, causing the beam to trace out vertical lines down the

center of each feedback electrode on the tank. The light-sensing diode is

mounted so that it picks up light from the oscilloscope beam, which is

transmitted through the tank. When the liquid is between the oscillo-

scope beam and the diode, the latter gives a low signal. When the beam

is scanned vertically, a signal similar to Fig. 8.1 is obtained from the

light diode.

The time from the start of the scan to the jump in the diode signal

is proportional to the distance of the liquid-air interface from the point

where the scan started. The time measurement is used to modulate the beam

of the CRT and a feedback voltage, proportional to the deflection of the

interface, is applied to the proper electrode.
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