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ABSTRACT

This thesis develops methods for the analysis and
design of nonlinear feedback control for a class of con-
tinuum systems with a finite number of unstable modes.
Emphasis is upon switched or "bang-bang" feedback. Energy
functions and Lyapunov stabillty criteria are the primary
analytical tools. Practical design criteria are presented
based on a feedback system with a finite number of memory-

less control elements, or with simple lead or lag dynamics
added.

Null stability criteria are derived, which emphasize
the matching of spatial welghting in the sensor and enforcer
elements of the feedback system. A region of stability
is calculated, and maximized by requiring strong feedback
coupling to unstable modes and weak coupling to stable
ones. The minimum number of feedback stations required
for stability is shown to be equal to the number of un-
stable modes. The effects of feedback mechanisms such as
hysteresis, time delay, and time sampling are estimated,
and the estimates verified by digltal computer simulation.
Scanning control and spatially continuous feedback are
also analyzed. Continuum systems with bang-bang forces
due to field discontinuities, such as fluid orientation
problems, are treated using the same analysis. Prototype
systems are described and designed as examples.

Feedback stabilization of kink modes in TOKAMAK-
type plasma confinement devices, such as the M.I.T.
ALCATOR, 1is investigated as an example of such a control
system. Preliminary design of that control system is
carried out, and its feasibility shown to be limited by
the high-speed, high-current switching components needed
In the feedback loops. Such feedback may allow higher
heating currents in devices with lower magnetic fields.
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1. Introduction

The purpose of this thesis is to provide a guide
for the system designer who may want to use bang-bang
feedback to control or stabilize some kind of continuous
system. It will be assumed that he is familiar with
the standard analysis techniques of lumped systems and
of linear systems, and that a linearized model of his
system can be developed which applies over the operating
range of interest. This work will concentrate on the
properties of nonlinear controls for distributed systems,
with special emphasis on the use of "bang-bang" feedback
control, which switches its output very suddenly com-
pared to other scales of interest in the system.

As an example of such a control system, the problem
of feedback stabilization of kink modes in the M.I.T.
ALCATOR will be investigated in detail. Such instabilities
in toroidal plasma-confinement devices pose a serious
problem in the design of future controlled fusion plants.
Practical considerations make bang-bang feedback parti-

cularly interesting for such devices.
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1.1 Problems of Feedback System Design

The designer of a feedback control system will
face certain problems if he is working with nonlinear
controls or with continuous systems, which he may not
have encountered before.

Nonlinear systems have the perplexing property
that their behavior depends in what may be a drastice
way upon the initial conditions of the system, or upon
the scale of perturbation introduced into the system.
This makes it even more critical than might otherwise
be the case for the control system to be planned with
enough amplitude in its feedback loops to cope with any
expected level of disturbance or control requirement.
To make sure of this, 1t is necessary to be able to
describe such a subset of the possible controls and
disturbances cf the system in a precise manner, and
relate it to the feedback requirements.

Continuous systems introduce other complications.
Lumped systems may be modelled by a finite number of
coupled ordinary differential equations, and so the
State of the System at any time can be described exactly
by a finite number of barameters. This is not true

of distributed or continuous Systems, because they



12

typically store energy at every point rather than at
discrete locations. Thus a feedback controller, which
probably has only a few scalar inputs and outputs, has
a real problem in observing the state of the system and
So determining the appropriate response. For the
designer, this has a great deal to do with the spacial
distribution of his sensing elements. The same problem
occurs again in the ability to control the system, in-
volving the forcing elements of the controller. 1In-
deed, the total numbers of sensing and forcing elements
must be determined by the designer.

In addition to these problems, there are always
questions of deviation of a real control system from its
"ideal" mathematical representation. How fast must
the controller change output levels, and how can such
lags be represented? How sudden must the transition
be, and what are the effects of dead bands or linear
bands of operation near the transition points? How
can the designer account for linear or higher order
terms in the feedback which might accompany the bang-
bang force, intentionally or not? And, of course, 1if
control as well as stabilization is desired, what

dynamic limitations will there be on the input?
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Each of the above problems will be considered in
this thesis, and examples worked to show how the

analytical tools may be applied.
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1.2 A Guide for Readers

This thesis is intended for several audiences. It
1s organized so that certain parts may be read independently
for different purposes. The physicist or system designer
with little background in the field of nonlinear systems
will find Chapter 3 a valuable development of the concept,
notation, and reasoning in the simplified context of lumped
parameter systems. This section is of little interest to
those already familiar with nonlinear control systems.

The -nalysis of the continuum control problem begins in
Chapter 4 with a specialized model, and the most general form
of the problem is posed in Section 4.2.

The example of stabilization of MHD modes in Tokamak-
type plasma devices i1s worked out in detail, with preliminary
design for a control system and a feasibility study. This
is all in Chapter 5, and is meant primarily for those readers
concerned wlth the problem.

While most of the work in this thesis will apply to
continuous physical systems, the results can also be
applied in many cases to "large-scale" system design; the
structuring of economic and political policies, control of
social systems, and the design of management systems at
all levels. Such systems may often be modelled quite well
by nonlinear coupled systems of differential equations.

The considerations governing their control are quite similar
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in many instances to those governing the control of dis-
tributed physical system; both have a very large number
of parameters describing the state, both have the problems
of choosing the parameters to be sensed and the resulting
distribution of force or feedback action over the system.
Both are often interested in stable dynamics about a
particular choice of equilibrium. Therefore, the designer
of these large scale systems might well benefit from a
knowledge of the principles of design which emerge from
the control of small physical systems. He may also gain
from an understanding of the properties of solutions and

the relation between system structure and resulting behavior.
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1.3 Example: Plasma Confinement

Typically, a continuous system is characterized
by several parameters, and often it is desirable to
operate the system in a range of parameters which makes
certain modes of the system unstable. This is the case
in the problem of plasma confinement. One proposed
geometry for future fusion power plants is a toroidal
hydrogen plasma, surrounded by vacuum and enclosed in
a conducting metal shell. The plasma is primarily heated
to fusion temperatures by a current which flows around
the torus, induced by a changing magnetic flux through
the center of the torus. However,as the heating current
is raised, certain kinking motions of the plasma are
observed to become unstable. The plasma touches the
walls of the chamber, hydrogen and energy are lost, and
fusion conditions are not reached. Therefore, it is
desirable to stabilize such perturbations of the plasma
while raising the heating current, using magnetic fields
to force the plasma back toward its equilibrium position
when it approaches the walls. Because the necessary fields
and currents are very large, and the plasma motions rapid,
it is probably more practical to switch the feedback
fields on and off rather than keep them on and try to

linearly vary their strength.
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The resulting bang-bang feedback control of a continuum
is precisely the kind of problem under discussion. The
designer must decide how large he expects the pertruba-
tions of the system to be. He must choose the spacial
distribution of his sensing elements around the surface
of the torus, and the number required. He must then
decide how to construct his feedback current windings
to control the expected form of unstable perturbations
and determine the number needed. He must design the
feedback controller so that fields are applied at the
proper times by correct use of the input (sensor) signals.

His analysis must include calculation of the required
amplitude of feedback currents and fields. Also, he
has to be sure his switching elements can act quickly
enough to keep up with the plasma motions. He therefore
needs to evaluate the effects of switching lags, as well
as other non-ideal effects associated with his equip-
ment and design.

This designer might make a number of rough estimates
of the above, based on a simple lumped-parameter model
of the unstable modes involved. However, he could not
trust his results unless he had some kind of firm theoreti-

cal basis for believing that his approximations were good.

He would need some information on the behavior of the
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other mcdes of the system, and the effect of the feed-
back on them.

Once these questions were answered, the designer
could use his approximate model to examine the feasi-
bility of the feedback scheme and begin to design with
hardware. This thesis will answer such questions,

and show how the answers may be obtained for other systems.
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2. Literature Survey

The literature pertaining to the design of the
class of systems of interest is quite large. To organize
1ts content, it will be divided into several broad
categories.

First, the literature of nonlinear lumped-parameter
systems will be reviewed, with emphasis on the stabilicy
of systems and then on their control. Then the background
of distributed parameter systems will be reviewed, broken
into the same two groups. The stability section will
contain more linear analysis in the latter case, since
most work has been limited to that approach. Also, the
important results for analysis of MHD stability of
pPlasma columns is included. Finally, applications to
large-scale systems will be outlined as they have
appeared in the literature. All papers are referred
to by author, with additional information in the

Bibliography.
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2.1 Nonlinear Lumped-Parameter Systems
2.1.1 Stability

There are a large number of texts covering the
subject of dynamics of nonlinear finite-dimensional
systems. Several good ones are those by Lefschetz,

Kuo, and Brockett.* Approaches to the subject are
generally one of two types. The describing function
technique, developed simultaneously by Kochenburger and
Goldfarb, approximates the nonlinear elements in the
system by linear elements, with a transfer function
which depends upon the input amplitude and frequency.
This allows various linear stability criteria to be
applied, with modifications such as the graphical
technique described by McAllister.

Unfortunately, it is so far impossible to generalize
these techniques to continuous systems, because the
infinite sets of coupled equations do not lend themselves
to approximation by a single sinusoidal signal. There-
fore, this technique will be restricted in this thesis to
qualitative descriptions of effects which can not be
easily handled otherwise, and mainly those which are
properties of the feedback elements rather than including
the distributed system. The literature of this area
does provide useful background on the effects of hysteresis,
¥*References to the Bibliography are cited by author. If

more than one work by the same author is listed, the
publication date is also cited.
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time delay, phase lag, dead and linear bands, and other
non-ideal aspects of bang-bang control. Mahalanbis
points out the various types of delays and lags in dis-
continuous feedback systems, and notes the analogy to
negative damping which will be developed further.

Recent numerical work by Thomassen compares the tolerance
of time delay in linear and bang-bang systems for long
delays.

The second major approach to stability of non-
linear systems is Lyapunov's direct, or second, method.
This is described in detail by Hahn and by Bellman and
Kalaba (1964). The mathematics of the method are well
established, although a certain amount of variation
in exact definitions can be seen in the literature.

The identification of Lyapunov functions with energy has
been made in several places, including work by Willems

and by Wall. A similar approach used in electrical
networks can be derived from Tellegen's Theorem and is
thoroughly surveyed by Penfield, Spence, and Duinker.

Most surveys of Lyapunov's direct method, such as that

by Antosiewicz,require that time-derivativesof the state
variables be smooth in order that the solution be uniquely

determined by, and depend continuously on, the initial

conditions. This would rule out use of such a method
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for bang-bang problems. However, Rosenbrock allows the
derivatives of the Lyapunov funection to be discontinuous
by showing that only the right-hand derivative is required
for unambiguous results. This method will therefore be
used as the main analytical tool in investigating the
stabllity of nonlinear distributed parameter systems.

The theory of Lyapunov's direct method will be described
in Chapter 3.
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2.1.2 Control

The nonlinear control of finite-dimensional systems
has a large literature, full of rigorous mathematics but
often deficient in physical insight. The most pertinent
work to bang-bang control is concerned with minimum-
time optimal control problems, which assume the system
to be completely observable. Observability of linear
systems is discussed thoroughly by Brockett and will
be referred to later. The earliest influential work
appears to be that of Solncev, which emphasized stability. Ths pro-
blem was developed into a time-optimization problem and
a solution described by Bellman, Glicksberg and Gross.
Their work, with modifications and extensions by Gamkrelidgze
and by LaSalle, showed that the general equation of
motion of an N-dimensional linear system with forcing
terms of constrained magnitude could be driven to zZero
in minimum time, by forcing terms with maximum magnitude
and variable sign. Also, if the system had real distinct
negative eigenvalues, the sign changed at most N-1 times.
Such work does not generalize to infinite-dimensional

systems.

The problems of discontinuous forcing terms were

thoroughly classified by Andre and Siebert in a rigorous
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work on the subject. The first really complete solution
of the time-optimal problem was produced by Bushaw for
second-order nonlinear systems. Again, however, his
reasoning implies complete knowledge of the system and

of all possible options, so that his bang-bang result

has little direct bearing on distributed systems. Further
works by Athanassiades and Smith on higher order systems
and by Doeser on variational techniques lead to the con-
clusion, however, that minimum-time controllers will
generally use bang-bang feedback. A contribution by
Chandaket and Leondes generalizes these results to
systems with complex, stable roots and time-varying
magnitude limits. While this body of literature indi-
cates new reason for interest in bang-bang control, it
does not suggest that generalization to unstable or con-
tinuous systems will follow easily. Also, observability

1s assumed with disturbing ease in order to obtain a well-

posed problem.



2.2 Distributed Parameter Systems
2.2.1 Stability

Much of the more important early work in the area
of stability of distributed systems is described by
H. Bateman. Just as Parker analyzes linear lumped systems
in terms of normal modes, linear continuous systems are
most commonly analyzed that way. A good introduction
to such analysis is that of Woodson and Melcher. Modes
are defined by the equations of motion of the bulk
materials and fields, plus boundary conditions. Any allowed
perturbation of the equilibrium condition may be expressed
as a sum of such modes. For systems without feedback,
or with feedback included in the definition of the modes,
each mode evolves in time in a simple exponential fashion.
If all the modes are stable, then the equilibrium is
stable. Relations between mode spatial structure and
temporal behavior are summarized in the dispersion rela-
tion. Instabilities can often be classified as absolute or
convective by use of the Bers-Briggs stability criterion.
Such modal analysis will be important background tor
this thesis for two reasons. First, the modes of the
linear system will be used as a series representation of

perturbations with nonlinear feedback, resulting in more
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complicated time-dependence. Second, bang-bang feedback
can be viewed as a saturating linear feedback system in
the 1limit of infinite gain. Thus, for small amplitudes
of perturbation, a bang-bang feedback system will behave
like a linear system with very large feedback gain.

This 1limit 1is a useful check on predicted behavior.

The types of feedback which have been investigated
for distributed systems can be divided into two types.
The first is continuous feedback, in which the feeding
back occurs continuously at all points along the distri-
buted system; and discrete feedback, with lumped elements
interacting with the distributed system.

In the case of continuous feedback, analytical work
has been done with linearized systems and linearized
feedback, and experimental work including nonlinear
feedback, in a series of publications by Melcher and by

Melcher and Warren(1966)

studying the case of unstable
fluld interfaces. A particularly pertinent example
involving stabilization of MHD kink modes in plasmas
was investigated theoretically by Canales for linear
feedback. Another prototype system was investigated by

Crowley, again with linear feedback. In each case

above, the analysis of the effects of feedback is linearized.



A different approach to the problem, also linearized,
involves describing the feedback as a coupling between
modes of two distinct systems. Conservation theorems
are generated for these systems by an algorithm of
Bers and Penfleld, and coupling of modes is discussed
by Haus. A nonlinear analysis of feedback, taking one
mode at a time, is attempted by Melcher, Guttman, and
Hurwltz, but does not account for the coupling of modes
due to the feedback. It does, however, use an energy
picture which is very similar to the approach to be
developed later. Essentially, this makes a lumped
approximation of the continuous system. A review by
Melcher(1970) points out the current problems in this
fileld, as well as the problems of discrete feedback.
Use of wave train representations for long systems 1is
outlined, and the problems of mode coupling and feedback
nonlinearity as well as the limitations of linear stabili-
zation of plasmas in the presence of interchange modes
are discussed but not solved. These problems will be
dealt with in later chapters.

In the area of discrete feedback to continuous
systems, Melcher(1965) again analyzes linear feedback for
a prototype system pointing out the minimum necessary

number of such stations and the overstability problems
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at high gain. This was also considered in Crowley's work
and certainly suggests problems for bang-bang systems, as
well as a limiting check of results. By taking such linear
arguments to their logical conclusion, design criteria for
bang-bang systems will be derived. Problems of time-sampled
systems and spatially discrete, periodic feedback structures
are analyzed by Dressler for linear feedback, using a Z-
transform technique. Separation of modes, and linear stabili-
zation of these one at a time, 1s discussed by Gould and
Murray-Lasso. One large problem with such separation is the
practical difficulty of implementation of such separation,
discussed by Murray-Lasso. This 1is again essentially a lumped
approximation to the extent that separation is imperfect,and
will be discussed later. Further work in this direction has
been done using dynamic (Luenberger) observers for partial
state estimation and pole-moving algorithms to achieve desired
modal dynamics. Applications of pole-moving techniques are
given by Berkman, and a firm conceptual basis laid by Prado.
Prado's work in particular provides a more rigorous examina-
tion of some of the control problems not treated in this thesis,
such as observability of hyperbolic systems. Luenberger
observers of finite dimension, however, are unable to give
full state estimates for a continuum.

A linear system with discrete feedback from a scanning
linear element is analyzed by Heller. Scanning is con-

verted into a time-sampled,continuous feedback system by a
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change of time coordinates, and then linear modal analysis
used to examine stability. This same coordinate change will
be used later in this thesis to examine scanning by a non-
linear discrete feedback station. Heller's linear analysis
points out, as does Dressler elsewhere, that time-sampled
systems will always destabilize the higher modes of the
system unless some damping effect dominates the behavior of
such modes.

The work on linear systems does not apply in detail
to nonlinear controls, however, because the simple
exponential time dependence no longer applies. This compli-
cates the analysis, and requires that this thesis look to
other methods to describe the effects of the feedback.

The energy approach to stability analysis is more
general. An outline of Lyapunov's direct method for
distributed systems was given by Baker in very general
terms. It avoids use of the function-space approach
which 1s popular among control theorists, mentioned below.
In a more physical context, a variational principle was
produced by Bernstein and others which is in fact a form of
Lyapunov stability criterion for linear or nonlinear hydro-
magnetic systems. It is derived in detail and in greater
generality by Chandrasekhar. The principle applies to
perfectly conducting fluid systems with arbiltrary internal
and external magnetic flields, either isolated in space or enclosed

in a conducting shell, with possible compressibility,
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viscosity, and gravitational fields. If the minimum possible
potential energy due to perturbations is positive, then the
system is stable. Eigenvalues may be calculated directly
from the perturbations if the form of the modes is known,
such as 1n Rayleigh's earlier work. A tutorial develop-

ment of the subject is given by Kadomtsev. Feedback is not
included in any of this work in explicit terms, although

it is not impossible to add it. This thesis shall do so,

and review the principle in greater detail.

Since the example of plasma confinement will be
considered in detail later, the primary sources of modal
analysis for such systems are of interest. The first
pertinent work was the analysis of the MHD modes of a
cylindrical conducting fluid or plasma with equilibrium
currents restricted to the surface, by Kruskal and
Schwartzchild. This work was extended by R.J. Tayler
to a broader class of currents, and the best simple
cylindrical model for fusion devices analyzed by Shafranov
(1957). This included both uniform distributed currents
and surface currents, and passive feedback in the form
of a conducting shell. Extension fo toroidal systems
was made by Lust and by Mercier using the energy principle.
That method has been used by Shafranov (1969) for extended
discussion of stability of plasma columns with fixed

and free surfaces and arbitrary radial current distributions.



31

Linear feedback effects have been evaluated for helical
field cases by Ribe and Rosenblith, and numerical studies
done by Friedberg and by many others in the field.
Experimental feedback work has been mainly linear, such
as that of Parker and Thomassen. Nonlinear experiments
are still in the planning stages, such as a possible
bang-bang feedback experiment on the M.I.T. Alcator device
which is described in this thesis.

A majJor problem of feedback to large scale plasma
systems 1s the huge power-bandwidth product required.
It is hoped that switched feedback will be easier to
implement than linear feedback in these extreme conditions.
Another problem with linear feedback is the vanishing of
feedback coupling near the interchange condition (field
lines parallel to flutes of a mode), discussed by Melcher
(1970). These problems will be evaluated in this thesis,

and possible solutions explored.
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2.2.2 Control

The control of distributed parameter systems shows
strong analogy to that of lumped systems. Key concepts
such as observability and controllability are developed
by Butkovsky as well as an introduction to the problems
of optimal control. Unfortunately, as Robinson points
out 1In his review of the topic, most work on optimal control
has avolded the questions of stability and observability.
Several modifications of the concept of observability
are described by Prado.

Work by Lions rigorously treats the existence of
optimal controls for many common systems and cost functions.
Examples are worked out in detail, including bang-bang
results for time-optimal problems. Observability is
not discussed, and controllability is assumed. Bellman
and Kalaba (1962) use extensions of dynamic programming
to approach a very general class of optimal control
problems, with the same limitations. Wang (Advances,1964)
and others have followed this approach in more specific
cases, to obtain feedback forms for the control. Axelband
discusses the case of approximate optimal control by
use of limited controllers. Stability and observability
are again omitted. Stability of a system with optimal

control is studied by Wang (IEEE Transactions, 1964)
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in the case of a system with time delays, using a Lyapunov
stability criterion. He assumes observability, and in
general assumes the uncontrolled system to be stable in
order for the controlled system to be stable. This
thesis will specifically consider unstable systems and
apply controls without assuming the usual observability
criteria. In his examples above, Wang assumes spatially
band-limited perturbations, so that a Fourier series
representation may be truncated. Such approximations
are discussed by Gould; they are essentially a lumped-
parameter model, and truncation error is difficult to
estimate.

Many case studies of optimal control can be found
such as that of Wang (1970) in the area of plasma con-
finement, where a bang-bang control results. His model

does not consider the limitations imposed by real physical

measurements.
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2.3 Scope of the Thesis

Like the literature discussed in this survey, the
thesis results will be divided into lumped and distributed
systems.

The section on lumped parameter systems will be
essentially a review of known results, in the context
of nonlinear system design as it will be described for
distributed systems. Observability and Lyapunov stability
theory will be explained and defined as found in the
literature. They will be applied to a lumped-parameter
example, and results derived for bang-bang feedback.
The expressions derived in this section will then be
directly applicable to distributed parameter systems,
and thus facilitate handling any effects which may be
described by lumped characteristics, such as lag and
related non-ideal feedback effects.

The sections on distributed parameter systems
will then concentrate on the practical problems of
controlling and stabilizing a continuum. Lyapunov
stabllity criteria will be developed as is done in
the literature. However, the state estimation of
a continuous system will be modified to account for

the practical difficulties of working with lumped
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sensor elements. Then the bang-bang control problem
will be worked out in detail under these limitations.
Optimal control will not be attempted. The problems
of accounting for all the modés, lumped approximation
error, and evaluation of non-ideal effects will be
specifically taken into account. Limitations on such
control will be discussed, and design criteria developed.
The limit of continuous feedback will be explored.
Situations where such an analysis might apply will be
modelled, and analytical difficulties outlined. The
advantages of such a description will be noted, and
the problem of a scanning feedback system converted
into a sampled continuous feedback in the nonlinear case.
Several alternative pictures of bang-bang stabilized
distributed systems will be compared. Direct
modal analysis, wave train analysis, energy transport
and velocity pPictures, and the method of characteristiecs
will be presented as they might be implemented on a
computer. Actual computer simulation will be limited
to the modal approach.
The application of bang-bang feedback to plasma
confinement will be approached as a specific experimental

proposal. The problems and probable success of such
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an experiment will be discussed in terms of a simple
MHD model.

Possible areas for further work include the solu-
tion of the time-optimal control problem in the case of
limited cbservability, and the application of design
criteria to various specific systems. These range from

large-scale systems to plasma confinement experiments.
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3. Lumped Parameter Systems

This section is used as a vehicle for developing
the concepts, notation, and approximations to be used later
in the distributed parameter case. Section 1 reviews
the control theory applicable to our problem. Section 2
develops a simple model of an oscillator with a bang-
bang feedback force added. This oscillator will correspond
to a single mode of the distributed problem in Chapter 4.
Section 3 introduces variations on the basic type of
feedback, with approximations which are useful in calculat-

ing the effects of various corrections for gross prediction

of system behavior.
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3.1 Review of Concepts
3.1.1 System

We define a system to be a specified set of variables.
This may seem unphysical, but in order to isolate one
physical system from all others we must specify what
variables belong to it and what belong to the external
world. Thus, the set may consist of quantities which
may be measured inside a certain volume in space, or
quantities having some assumed casual relationship to
each other.

We then define the state of a system to be the
minimum information needed to determine the value of every
variable in the system at a given time. If some variables
are functions of other variables at an instant of time,
then they need not be explicitly specified in order to
determine the state. Any subset of variables, then, which
can be specified independently, 1s an acceptable set of
state variables. They each represent a coordinate in
state space, and so at any instant the state is given
by the state vector s(t). This allows us to write a

general equation of motion for the system
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§(t=to) = EO (3.1.1.1)

where K is a function of the state, and of time, and
of a vector of input variables u(t) not dependent on the state of
the system. We will also denote as y(t) a vector of

variables representing measurements made on the system,

with

y = c(s, u, t) (3.1.1.2)

and C some specified function of its arguments., Equa-
tions (1) and (2) will then define a representation of
the system, 1ts input, and its output. If the functions
K and T are sums of linear terms in s and u, then the
system is said to be linear; if not, then it 1s non-
linear.

A lumped system is one which has a state vector of
finite dimension, as opposed to a distributed or con-
tinuous system, which does not.

We refer tc the equilibrium of such a system
as any state s such that when U = o, %% = o for all t.

We will in general choose the origin of our coordinates

in state space so that s = § is such an equilibrium.
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This origin condition will also be referred to as the
null solution, or simply the null.
When feedback is applied to a system in the form
u(t) = F (3, t) it 1is expedient to define a new system
including the feedback elements. Thus, the behavior
of the original system with T = & may be quite different
from that of the total System with a given feedback law.
In general, it is necessary that F satisfy a global
Lipschitz condition on 5 to insure a unique solution
to the differential equation with initial condition.
In particular, the bang-bang force terms which will be
considered in this thesis will not satisfy this condition.
However, these terms may be treated as a limit of a series
of functions which do satisfy the Lifschitgz condition,
where the limit may be taken at any point 1in the develop-
ment. Therefore, no further comment need be made as to

the existence or uniqueness of solutions.
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3.1.2 Stability

3.1.2.1 Definitions

There are a number of types of stability conditions
discussed in the literature. Since we are primarily
interested in nonlinear feedback systems, the following
definitions are chosen from the sources dealing with
Lyapunov's direct method. The systems with which we intend
to work are traditionally described by energy methods. We
introduce Lyapunov theory here to show the basis for such
arguments in a stability analysis.

Combining the equation (3.1.1.1) with a feedback law
relating u(t) to y(t), we may write the equation of

motion of the system as

-f%= f(t,s(t) ) (3.1.2.1)

Here we allow s and f to make on values in Euclidean

N-space RN, defined and with f bounded and s continuous

on the set {t,s|t>o,||s||<»} referred to as T x S.

It will be assumed that f(t,0) = 0 on I, and that F is

sufficiently smooth that there exists a unique solution

f(t,to,fg) in S which depends continuously upon (to,fo)

and equals ig at t = t_.
We introduce the norm ||x|| as a measure of the

length of x, with properties |[|3]|=o0, | [x] >0 1f X # o, and

| | x| |+~ if any component x;+>, and llfl + 52||§||§i|[+||x2||.
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3.1.2 Stability
3.1.2.1 Definitions

There are a number of types of stability conditions
discussed in the literature. Since we are primarily
interested in nonlinear feedback systems, the following
definitions are chosen from the sources dealing with
Lyapunov's direct method.

Combining the equation (3.L1J)with a feedback law
relating u(t) to y(t), we may write the equation of
motion of the system as

%% = F(t,s5(t) ) (3.1.2.1)

Here we allow s and f to take on values in Enclidean
N-space RN, defined and with f bounded and s continuous
on the set ({t,s|t>o,||s||<=} referred to as I x S.

It will be assumed that f(t,o) = o on I, and that T is
sufficiently smooth that there exists a unique solution
f(t,to,fo) in S which depends continuously upon (to,fo)
and equals io at t = t_.

We introduce the norm ||x|| as a measure of the

length of X, with properties |[o||=o, ||X]||>0 if X = 3, and

| [x] |+~ if any component xg*=, and ||x+ §2||i||fl||+||§é

For purposes of this'thesis, the norm will be
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For purposes of this thesis, the norm will be

THIES

] (3.1.2.1.2)
i=1 1

nhm~m=
>

where M 1s the dimension of S, (finite or not). Let N

be a subset of S containing the neighborhood of 253,

say N = {x | ||x||<r, r>o}. Let I,={t | t2t >0} .
We may now define the following types of stability:
1) The null solution x=o is stable if given any
€>0 and t, € I, there exists a G(e,to) > o such that
| 1x 11<6 implies that ||x(t)||<e for all t > -

2) The null solution is uniformly stable 1if the

above é(e,to) = §(e) 1independent of t, can be
found for any ¢ > o.

3) The null solution is quasi-asymptotically stable

if, given any to £ , there exists a 6(t0)>o such
that IIEOII < § implies ||x(t)|{|+0 as t + =; which
means that for any (to), there exists a T(e,to) such
that |[x(t)|] < e(t,) for all t > t, + T.

4) The null solution is asymptectically stable if

it is stable and quasi-asymptotically stable.

5) The null solution is uniformly asymptotically

stable if it is uniformly stable and if 3) can be

satisfied for € > o with 8§ and T not dependent on

£ .
o
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6) The system is globally stable if all solutions

are bounded; that is, if given any to e I and

r, > 0, there exists a finite r(to,ro) > 0 such

that ||xo|| < r, implies that ||;(t,to,fg)(|<r

for all t > to.

7) A system is uniformly globally stable if all

solutions are uniformly bounded; which means that
the above r(to,ro) = r(ro) independent of Eoe
In addition, we introduce the following definition of
our own, because it is often useful to know what subset
of possible initial conditions leads to bounded solu-
tions.
8) A system is said to be stable in a region
R(to), if for all ig in the region RO, there exists
a finite r(t ) > o such that ||f(t,to,fo)|| < p
for all t > to. (Clearly, it is necessary for
R(t) to be bounded for all t > t,» in the sense
that all vectors x(t) in R(t) have bounded norm.)

9) A system is said to be uniformly stable i a

——

region R(to) if the above r can be chosen independent

of to.
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3.1.2.2 Lyapunov's Direct Method

Now that we have defined stability, we will develop
criteria for determining whether a system is stable
according to one of the preceding definitions.

Let V(t,Xx) be a real scalar function, defined
and locally Lipschitzian on Iy x S5, S ={x| [[|x][<p}
(the subset of I x S of interest), such that given Eo
in S, V(t,x) is continuous on I,» and require that

V(t,0) = o on I,.

Define on Io X So the functions

_dav _ Lim  V(t*h, x + h f(£,X)) - V(t,X)

h+o h
(3.1.2.2.1)
This 1is the right-hand total derivative of V(t,x)when x(t) sat-

isfies the equation of motion.

Such a function is positive definite on Io X So
if, given any €, o < € < , there exists a u(e) > o
such that V(t,x) > u for all t e I» & < HIx[] < p.

The function is negative definite if -V is positive

definite.
It 1s decrescent if V(t,x) + o with x uniformly
on I; that is, for any U > o there exists a S(u)> o

such that [|x|| < & implies that V(t,X) < u for all't e I.
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It i1s radially unbounded if V(t,x) goes to = with

x uniformly on I; that is, for any u there exists an
r(u) such that ||x|| > r implies that V(t,x) > u for
all t e I.

A function V(t,x) is said to be a Lyapunov function

for the system (3.1.3) on IO X So if:

1) It is defined and locally Lipschitzian on
Io X So'
2) It is continuous on I, and V(t,o) = o.

/Loy
3) V=g < oonI XS,

We now invoke the following theorems from the
literature (the survey by Antosiewicz) to relate properties
of V(t,x) to stability. Proofs are included here to
point out the key steps in the reasoning.

Theorem 1) If there exists on I X N a positive
definite Lyapunov function V(t,X), then X = 0 is stable.
This can be established by a power series in ||x]|].

Proof: Given any €, o < € < p, there is a u(e)
such that V(t,x) > u for all t € I, e < |[|X]|] < p
because V is positive definite.

Given any t, e I, there is a G(to,e) such that

V(t,, x,) <u for all ||§6|| < §. But because V' < o,

0’
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V(€,X) < V(t X ). Thus it is not possible that
[Ix(t)|| > e€; so x = o is stable.

Theorem 2) If there exists on I x N a decrescent,
positive definite Lyapunov function V(t,x), then X = o
is uniformly stable.

Proof: The proof is exactly like theorem 1, but
because of the added condition it is possible to choose
S independent of to‘

Theorem 3) If there exists on I x N a positive
definite Lyapunov function V(t, X) such that V is
negative definite on I x N, then X = & is stable.

Also, for any to € I, any Py <P , and any €, o < € < p,

there exists a G(to, po) and a to(po, t €) such that

o)

if ||§6|| < §, then for some Bl Sty * T, ||f(tl,to,

x )| < e. |

Proof: Given €, we can find § by theorem 1.
ir ||§6]| < €, then let t = o. If |[f6|| > €, then
let A = the largest value of V(t,X) such that [1x]] < 6.
Then let v > o be the minimum value of V such that
[[x]] > e. Let T, = AV

Then if ||x|| > € for all t ¢ [ty tg T,] it is

required that u(e)«< V(to T, to, xo) but
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V(t,x) < V(t,x ). Thus it is not possible that
[ [x(t)]]| > e; so x = o 1is stable.

Theorem 2) 1If there exists on I x N a decrescent,
positive definite Lyapunov function V(t,X), then X = o
is uniformly stable.

Proof: The proof is exactly like theorem 1, but
because of the added condition it is possible to choose
S independent of to.

Theorem 3) 1If there exists on I x N a positive
definite Lyapunov function V(t, X) such that V is
negative definite on I x N, then X = 0 is stable.

Also, for any to € I, any po <P, and any €, o < g < p,

there exists a G(to, p.) and a to(po, t €) such that

o) o?

if |[lx [l < &, then for some t1 2t * T llf(tl,to,

x| < e

Proof: Given €, we can find § by theorem 1.
Ir llfoll < &, then let v = o. If ||E§|| > €, then
let X = the largest value of V(t,X) such that [[x]] < &.
Then let v > o be the minimum value of V such that
[1x]] > €. Let T, = My,

Then if ||x|| > € for all t ¢ [tys t, T ] it 1is

0

required that u(e)< V(t_ + t_ , t , X.) but
(o] (o] (0]

O,
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Vit + 1

o] o? t

00 Xo) S V(t , X ) - v 1, < o which is
not possible. Therefore, at some t, in [to, E, * To]
there must be an lr;(tl)|| < €.

Theorem 4) If there exists on I x N a decrescent
positive definite Lyapunov function V(t,x) and V/(t,f)
is negative definite on I x N, then X = o is uniformly
asymptotically stable.

Proof: By'théorem 3, there exists a To and po

and t, with t, elt , t  + t ] such that if [|x || < o,

then |[[x(ty, to» X, < & for any 8. By theorem 2,
there exists a §(e) such that if ||f(tl, €y Io) [ |<6(e),
then ||x|| < e for all £ > t,. Therefore, x = o is

uniformly asymptotically stable.

Theorem 6) If there exists a real scalar radially
unbounded function V(t, x) on I x N,, where N ={x| [|x|| > o}
which is locally Lipschitzian and positive definite
there, and if V' < o, then the system is globally stable.

Proof: Given any t, € I and ry > 0, let Vo(to,ro)

represent the largest value of V(t,r) such that t > o

p < |Ix|| <r Let r(t_, r ) be chosen so that

on

V(t, x) > V.for all t > t_, [[x[| > r.

Then if ||x]|]| < r,» it follows that V(t_, x ) <V

and for t > to,V(t,f) < V(to,fo). Thus for any t > t_,

[xl] < r.
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There are other theorems, involving asymptotic
stability for all fb and uniform boundedness, which are
quite similar to those given here. Thus we will omit
these proofs. Primarily, our concern will be with
construction of Lyapunov functions to show stability;
first of the null solution, and second for some larger
region including the null. Since we will not generally
be dealing with systems which are globally stable, it is
useful to develop theorems for stability in a region.
These are original with this work and are given below.
Theorem 7) If there exists a connected, bounded,
open region R(t) in S such that V(t, X) is a Lyapunov
function for the system on I x R(t) and V(t, x) takes on
onyits maximum valuye VO everywhere on the boundary of R(t),then
the system is stable in the region R(t),
Proof: Since the boundary of R(t) is given by
V(t, x) = V,» and since for all fo inside R(to) for
all t e I we have Vitys x,) < V,» then for all ¢t > e
it is required that V(t, x) < vit,, fb). Thus at no
time t > t_ can the state X lie on the boundary of R(t),

and so X remains inside R(t). Since R(t) is bounded,

[Ix|| remains bounded for all ¢ >ty
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Theorem 8) If V(t, Xx) is a Lyapunov function on

I x R(t), where R(t) is a connected, open region of S

containing the null and bounded by V(t, %) = V<
and if for all t e I and x(t) e R(t) the quantity

[l v V|| > e >0 for 5§ # 5,and all components of
Vs V are continuous for s # o, then the region R(t)

is bounded.

Proof: Let s{t) represent any point in R(t).

Since V(t, o) = o, then

S

>V, > V(t, 5;) = f3 VWV T ds > e L > ||§1||
PATH 2 in R(t)
where at="'s V |ds |
fv., Vv
Therefore, ||§l|| is finite, 3nd so R(t) is bounded.

These theorems allow us to establish the stability
of a system by constructing a Lyapunov function for it
and examining the properties of that function. 1In general,
we will assume that the positive definiteness of the
function near the null can be established by the first two
terms of a power series expansion in ||X|| of Vs
(This means that we ignore cases of zero linear force
terms.) We do this simply because such cases are physically
unlikely in the distributed system situation, and we would
need information about the detailed nonlinear behavior

of the system to investigate such cases. Once null
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stabillty 1s established, we look for the limits of the
region of stability R(t) by looking for a point at which
Vs V = 0. This point represents a local maximum for V
in the direction normal to V(t, Xx) = V., and a neighborhood
of constant V(t,x) in all directions along the surface.
The point §6,given by V, V = o which has smallest
value V(t, 56) for all t sets the limit of R(t), and
V, is the value of V(t,go) which is minimum.

Note that these theorems give sufficient, but not

necessary, conditions for stability. Therefore, the

estimates obtained here may be very conservative in some

cases,.
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3.1.3 Observability and Controllability

The concept of observability is quite straightforward :
given the output ¥y of the system for some time

to <t < tl, if it 1s possible to uniquely reconstruct

the state of the system 5(t) at t = t ., then the system

O,
1s observable at that time. For a linear system, we

may write

%% = X(t) ‘s + g(t) oy
(3.1.3.1)
37=6(t) y §+B(t) Y

The behavior of the system may be written as

S(t) = $(t,to) T S(e) + st Bk, t,) " B(x ° Wx)dx

o

(3.1.3.2)

where g(t,to) 1s the transition matrix and satisfies the

equation and initial condition

8(to,t ) = T (3.1.3.3)
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Since the input and output are supposedly known,

we may simplify the problem to one of

aQln

y(t) = (t) 3(t,to) . E(to) where u = o.

(3.1.3.4)
Given y(t) over some interval to £t < ty, can we
reconstruct any s(t)? If so, the system is completely
observeable.

This mathematical concept is closely related to the
practical problem of state estimation. Gilven the
avallable output information on a system, how can we
estimate the state? This is clearly important for feedback
control, since our desired input will depend on certain
aspects of the state.

Controllability is the dual of the observeability
concept. A system is completely controllable if there
exists an input which will drive the state between any
two points in the state space in a given time. Theoretically
a system which is both observeable and controllable can
be handled almost at will, and one begins to look for
optimal control schemes.

The relationship between observeability and state
estimation becomes less obvious as the number of state
variables increases. Although a complex system may be
observeable, any algorithm for state estimation may

require too many steps to be practical. In the 1limit
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of an infinite number of degrees of freedom, as in a
distributed system, the lumped concept of observeability
loses its value. Much of the literature of optimal
control, as was pointed out in Chapter 2, simply ignores
the state estimation problem and assumes the state to be
known,

The most common method of state estimation is the
use of a Luenberger observer, This consists of an
external dynamical system with a finite number K of state
variables. If it is designed properly, the effect of the
outputs y(t) on the observer will be to make these
K state variables take on the value of the desired
information about the original system state s(t).

Because of the restricted class of problems we will
deal with in this thesis, i1t will be possible to achieve
the desired stability or control with a very simple
Observer; either one with no memory (K=o0), or one includ-

ing only single time integrations or time-differentiations

of the state.
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3.2 Model: The Dielectric Slab
3.2.1 The Linear System

In order to clarify the important concepts of
bang-bang feedback, a lumped-parameter system is a use-
ful model. In this simplified context, we can develop
the notation to be used later with distributed systems,
and examine the analytical tools which will be needed
then.

Our model will be that of a slab of solid dielectric
material, free to move in one direction &, and con-
strained by the effects of an idealized spring and
dashpot. This represents the original second-order
system, which is linear and time-invariant, before feed-
back 1s applied. The purpose of any feedback, unless
stated otherwise, is assumed to be to keep the block near
§ = 0, and minimize the effect of any perturbations.

We can take the mass of the slab to be M > o,
the spring constant K, the damping b, and the coordinate

measured from equilibrium g. The equation of the motion

is

(3.2.1.1)

where K and b may be negative.
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Since the system i3 linear, we may assume solutions

of the form

E(t) = &(o) Cos wt + 5591 Sin wt

(3.2.1.2)
where w is in general complex. In fact,
[ 5 -t
b +[b % - 4Nk
Jw =
2 M (3.1.2.3)
Thus, to assure that the solution be stable, we
require
a) K > o and
b) b > o0 (3.2.1.4)

We will refer to violation of the first conditon as a
static instability, and the second as a dynamic instability,
when the effects are separable. When the condition b)
is an inequality, the solution is asymptotically stable.

We may cast the System in state variable form by
assuming an external force Fe(t) as the input and the

position to be the output. Thus we have



(3.2.1.5)
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3.2.2 Feedback

Now we apply a feedback force to the slab. This
might be done by creating electric fields near the
ends and letting polarization forces give the feedback,
as in figure 3.2.2.1. The dielectric material e > €5
is of dimensions L x W x d, mass M. It exactly fills
the gap between two conducting plates, but is held
against the polarization forces by the spring and dash-
pot. The effect of the voltage is to pull the slab
into the plates.

To calculate the feedback force, we note that
(neglecting fringing fields) the capacitance of the

plates is

L
WLEO W(§+€)(€-€O)

<l|©
n
Q
N
Y
S—r
It
-+

d d

(3.2.2.1)
where Q is the total charge on the top plate. Energy

conservation may be written for the electrical sub-

System as
dw=VdQ-Fe dg (3.2.2.2)

where W(Q,e) is the energy in the capacitor and Fethe

force exerted on the slab, measured positive in the
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direction of &. Choosing W = o when Q = £ = 0, we may

combine 5) and 6) to integrate and find

_ 1 Q
W(Q,e) = 5 cl(e) (3.2.2.3)
This gives
_ 9 W 3 C
Fo= " — [g=%¢2)2 =2°5
3 & J £ (3.2.2.4)

Setting Q = C V and differentiating, we get

2
F(V,e) = V Wle-e))

24 (3.2.2.5)

Thus the force may be made to take on any desired
positive value by adjustment of V(t). A negative force
could be achieved by placing a similar capacitor-plate
arrangement on the other end of the block. The equation
of motion of the block may then be written

dze de

—, = -K e -b 3= + F (¢t) (3.2.2.6
d t2 dt e

Our choice of sensors and feedback processing will then
determine the dependence of Fe on the position or velocity

of the block, on time, or an any other parameters we

choose.
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3.2.3 Bang-Bang Feedback

One such dependence will be of particular interest.
Suppose that the second pair of plates is used, and the
feedback arranged so that the second capacitor has
voltage Vo applied when § > o, and the first has the
same voltage applied when £ < o. The resulting force
depends only on £ and i1s graphed in figure 3.2.3.1.
It is piecewise constant, both as a function of §
and as a function of time. Because of 1ts two-state
nature we refer to it as bang-bang feedback.

For analytical purposes, we may write this feedback

force as

Fe = -F, C T%T ]

wh F_ =
ere D

> (3.2.3.1)

VO W (e—eo)

2d

where we interpret the case of £ = o as a limiting form

of

F_ = Lim, - F_ [ —&—] (3.2.3.2)

© a0 P " a+|g|

There is another way in which we might implement

the above feedback law. This would be to arrange the
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system of Fig. 3.2.3.2 so that in equilibrium, the
dielectric block is centered under the plates, exactly
filling the space between them and with V(t) = Vo' We
would then have a situation in which the feedback law
defined by 2) exactly describes the electrical force
on the slab, but the discontinuity arises from the sharply
bounded region of electric fields in space, rather than
an artificially imposed feedback law. Thus, an analysis
of bang-bang feedback control will also be useful in
describing certain classes of systems in which the feed-
back 1s an inherent part of the system, caused by spatial
discontinuities.

Just as the above reedback law was a bang-bang

positional feedback rorce, we could arrange our feedback

to be of the form

Fo = - F,I —5— ) (3.2.3.3)
L€l

which 1s a bang-bang velocity feedback. Just as positional

feedback depended only upon £ and so represented a sort

of nonlinear spring, the velocity feedback represents

a nonlinear damping term. A superposition of the two

forces is clearly possible as another special case.
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Let's be a bit more precise about our definition
of bang-bang feedback. We assume, at least for the

moment, that an equilibrium exists with 2. = o.

ot

For a linear system, any small deviation on the order of
€ from equilibrium produces a force (or analogous
expression) proportional to €. In any practical problem,
there will be some range of € of interest, €, <€ < E2.
If there is a "feedback" element in the system, with
nonlinear characteristics, such that it produces a force
on the order of 1, or much larger than the linear term
for s; €15 then that nonlinear force appears to be dis-
continuous on the scale of interest. Ve therefore
refer to it as "bang-bang".

In the next section, the effect of such feedback
laws upon the stability and equilibrium of the system

will be investigated.
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3.2.4 Stability

We will use the total energy of the system, in-
cluding a contribution due to feedback, as a Lyapunov
function. Multiplying equation (3.2.2.6) by é and

integrating by parts, we have

d 1 -2, 1 2 _ -2 :
aw (oME* SKE  1=1-bg +F (1) ¢

(3.2.4,1)
We may i1dentify the kinetic energy T = % M 52,

the potential energy of the original linear system

Y = % K 62, and the damping "internal" to the original
system Bo = b éz. With Fe = 0, the energy function
E=T+ ¢ 1is a Lyapunov function for the system if

b > o, since d E/ dt = —BO. It is positive definite and
radially unbounded if K > 0, giving stability of the
null and global stability.

Let us then assume that our feedback processing

is such that

Fo(t) = - F, (€) - F_(£) (3.2.4.2)

The feedback force is a superposition of a position-

ing force and a damping force, henceforth referred to
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as position and velocity feedback. We may then write

d -
T LE] =-8B (3.2.4.3)
E=T+ ¢+ U B =B + By
£ ..
U = g Fp(X) dx B, = F (&) &

This expression will serve as a prototype for all
future stability analysis of the class of feedback problems
treated in this thesis. In order to dominate any negative
contributions to E given by y, the form of V requires
that Fp(E) be restricted to the first and third quadrants.
In order to dominate any negative contributions to B
from Eo’ the function Fv is likewise restricted.

Given this feedback structure, the key points in
establishment of stability of the null follow easily.

We must find out if B> o for all § such that |5| =€ > o,
and for the same s establish whether E(5) > o, or

VSE s > 0. To do this, we consider consecutively
higher-order terms in an expansion of B and VS E° s

in ascending powers of €. The first terms encountered,
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since Fp and Fv are finite, are first order in e. If
there is a place where these vanish, the second order
terms are consldered, and so on. In general we need
not consider higher than second order terms, because
these include the effects of the linear original system
and are unlikely to vanish precisely in a physical
situation.

Now consider the case of bang-bang feedback:

g
Fple) = Fy 5=, Fu(p) = P, —— .

el | £l (3.2.4.4)

These lead to U = FpIEI, B, = F,l¢l. Thus to lowest
order B > o 1if FV > o regardless of b, and if FV = 0

is still positive for b > o.

oE 2

VSE S=ﬁ £ +

3
d

™
™

=K £ + Fp | €] + M £

Naa I

(3.2.4.5)

To lowest order this expression is positive if M > o
and Fp > o. Thus, even if K < o, the system displays
null stability if Fp > o because the bang-bang term is

dominant at small amplitudes, and a similar argument
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holds for damping terms. Figure 3.2.4.1 displays the
effect graphically, showing potential energy ¢ + U as
a function of £ for the case K < o. Note that if

Fp < o or Fv < 0, the null is unstable regardless of
K and b. We shall also note that if the feedback 1is
constrained by !Fp(t)lﬁ some constant, then bang-bang
positional feedback results in the fastest energy in-
crease as a function of g of all possible feedback
functions. Therefore, it results in confining ¢ to
the smallest range of values for a given energy of
perturbations. Bang-bang feedback also has the advantage
of compatability with digital processing equipment

and simplicity of implementation; only switches are
necessary, as opposed to amplifiers.

However, the same reasoning leads to the con-
clusion that at some large amplitude the linear term
will dominate, and we expect instability for K < o.
Therefore, it is desirable to determine the limits of
the region of stability R. Note that if null stability
applies, the region R is known to exist in the neighbor-
hood of the null, and so its existence need not be proved

Since Fp > o and Fv > o0, the region of stability
can not be limited by the feedback. We must look for
a2 region with boundary determined by one of the follow-

ing.
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1) B becoming negative outside the boundary;

2) E decreasing outside the boundary.

The first condition requires B = o on the boundary,
since B is continuous. The second could result from the
derivative of E normal to the boundary going to zero or
Jumping discontinuously to a negative value.

At this polnt we notice that along switching surfaces
D = g=0, it 1is always true that Vs U = o. Thus, the value
of VSE along such surfaces is determined entirely by
the linear force terms. The condition that these give
nonzero VSE 1s precisely the condition for null stability
along such directions: VSE ‘s >o for D= o. There-
fore, we know that the limit of R due to E reaching a
maximum may be found from VS E = o, (stability theorem 8)
because the points of discontinuous VSE have been
ruled out. This gives a region of stability as E(s) < E0

where E _ = E(Eo) and Eb is the point of lowest E such

that V_E o. If E(s) has been chosen wisely, the region so

defined includes most initial conditicns leading to bounded
responses.

We therefore find two regions: Rl bounded by the
surface B = o, and R, bounded by the surface E(s) = E-
The region of stability R will then be the region
E(s) < E, where E; is the minimum value of E on either

of the two boundaries. This must be true, because

inside El we know that E < El and B > o. Therefore,
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the energy can not grow to the value E and it must

1’
do so to cross the boundary. Thus if the system ever
enters the region R, it can not leave.

Consider for example Fv = 0, b > o, Fp > o, K# o.
Then B > o everywhere, but VE=M é é + (K g+ Fp TiT)E .

This gives

. -F
) = = = P °
S T T R T (3.2.4.8

Note that this is simply the condition that the feedback
and spring forces are balanced. We can find a self-
consistent solution for EO only if K < o; hence, for

K > o, the region R has no boundary and the system is

F. £
globally stable. However, if K < o, §E_ = --£ o ’
0 K lgol
which can be verified by taking cases gor the sign of
F
s = : = -—R
50. Thus S, €016 giving E0 58 > ©, from

E0 = E(go, go). Thus, the region of stability is bounded

by the surface

.2
E(s) = % Mg + % K £° + Fp le| = E

(3.2.4.7)

Inside this surface, o < E(§5) < E, and all solutions

having such initial conditions are stable. In the
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case K = o, we find that %3 is infinite, as in E-
This simply means tbat once again the system is globally
stable. The case K= o is clearly no problem.

Any finite number of coupled second-order systems
can be analyzed in an analogous manner. Clearly, however,
if there are higher-order nonlinear terms in any part
of the system, they .must be included in determination
of the boundary of R, and will lead to more difficult
solution.

We may then say that one system is more stable than
another, if (all other factors being equal) it has a
larger region of stdbility; assumlng that E is well chosen.

We can plot these stability results in several ways.
First, we can directly draw the surfaces of constant
E(E,t) for any given t in the state space, and shade
in the region of stability. This gives a measure of the
amplitude of disturﬂances.which have been stabilized
by any given feedback scheme.

Second, we can assume some simple form of perturba-
tion, and plot the limits of stabllity in terms of the
feedback amplitude required versus some destabilizing
parameter; say, Fp versus (-K) or Fv versus (-b) for
fixed Eb and ko' Such a plot might be useful to a

system designer. The coordinates could be put in
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dimensionless form by use of the mass M and some
appropriate lengths and times.

Consider the example where we scale our quantities
so that M = 1, take b = o, and set K <o, Fp > 0 con-
stant. A sketch of E(S) = constant is shown in figure
3.2.4.2. A plot of stability parameters showing

Fp vs. (-K) at constant Eo’ is shown in fig, 3.2.4,3.
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3.2.5 Comparison with Other Approaches

In order to examine the advantages and disadvantages
of this type of analysis, we will look at the positional
bang-bang feedback problem from two other points of
view,

First, we can directly integrate the equation of

motion to obtain, from

ME=-K £ - P, —& (3.2.5.1)

lE]
the exact solution, where w = K/M, as long as £ > o L
-Fp F : Sin wt
8(8) = g2 + [ £(t=0) + Blcos wt + £(t=o0)-Sin wt
w

F .

E(t) = -[&(t=0) + KE Ju Sin wt + £(t=0) cos ut

v

(3.2.5.2)

When £ changes sign, the solution is re-started with
new initial conditions. A special case with K = 0,
é(t=o) = 0 1s graphed in figure 3.2.5.1, where £ is g
plecewise-parabolic function of time. Notice that the

time between zéro-crossings (half a period) is

T/2 = 2 ’%M €(o), which depends upon the initial con-

p
ditions. The energy approach does not tell us the



75

Fiju.re, 3. 25’

Exact So}ution to Bahj-Banj Force Prob/em

&) \ /_\
. " y €

5]
Tﬁ, ] f—-_‘%'ﬂ;(c) /\ .




76

exact form of solution, but loses that information in
order to simplify the analysis.

The second method to be used for comparison is
the describing function approach. If a sinusoidal signal
£ = E(o0) cos wt enters the bang-bang feedback element,

then the output has a fundamental component

Fp(t) = Fp % cos wt (3.2.5.3)
We may therefore model the feedback element as a

linear filter
4y g

Glw,8) = T EEOS (3.2.5.4)

to the extent that higher harmonies may be ignored.

Oscillations will then occur at a frequency and amplitude

4 F
l - -_—
€(o) such that ( - 2 ) ( E—E%a)) = -1 = open loop
gain, or
F ——
w = 2| —2— giving a half-period of % = 2“\[; MFE(O) ]
™ M £(o) b

Comparing with the exact solution, we see that the error
is a factor of =« ’3_ in cycle time prediction.
2
Both these methods depend upon having an exact

expression for the state of the system at all times, a¢

least to a sinusoidal steady-state 1limit. Thus they will

have limited utility in a distributed problem.
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3.2.6 Feedback-coupled Oscillators

The purpose of looking at lumped systems in this
way is to develop a:proﬁotype for feedback control of
distributed systems. Thus the mass, spring, and dash-
pot of this example will correspond to a single mode
of a distributed system. Since in most cases there will
be more modes than feedback elements, we now consider
the case of two dieiectric slabs coupled together by
a single feedback element. This example involves only
positional feedback.

Let the equation of motion for each slab be as

follows:
d2£1 ag,
M, —d;—z— = -Ky &) -b; ” + Fi(t)
2 (3.2.6.1)
d-¢g, dg,
Yoz ot TR b TPy T * Fp(®)

The sensor of the single feedback element will be taken
to sense a linear sum of the displacements. The result-
ing sensor signal will be referred to as the discriminant
D(t) = Al El(t) + A2 52(t).

The force due to the feedback element will also

be taken to be linearly distributed to the two slabs
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Fl(t) = -Bl Fp(t), Fz(t) = -82 Fp(t), where the force
F (t
p( )

Fp(D(t)) depends only on the discriminant.

The state of the composite system is then described
by the two displacements and the two velocities, giving a
four-dimensional state space. We form the energy
(Lyapunov) function as before by multiplying each equation

of motion by its velocity and integrating by parts:

> 2 :
a -1 ' 1 2 . '
R[§M151+§K151 J=-by 8, -0y & F D)
(3.2.6.2)
d iy é2+lK£23=-bé-béF(D)
at bt &, 4+ 5K6, 2 52 “by &, Fy

The equations are then added together to obtain a

single energy equation. We then make use of the fact

that

dcC dcC

d dC
T Fo(x) dx] = F(c) 2 = Fo(D) §E + gelF,(C)-F(D)]

C(t)
;
o dt

(3.2.6.3)

to rewrite the equation as

E—=—B,E=T+¢+U,B=Bl(t)+52(t)
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1, 21 2 _ ‘2 2
T=5M &~ +35M, ¢, By(t) =b, &%+ b, g,
"’=%K1512+%K2522

C(t)
U = fo Fp(x) dx where C(t) = Bl El(t) + 82 €2(t)
4
B,(6) = §5 [ F,(B(5) - F_(C (1) ]
(3.2.6.4)

Thus, for any nonlinear feedback function Fp(D),
in order to stablize the equilibrium we want Fp(D) to
be in the first on third quadrant, and we want as closely
as possible for D=C to eliminate the second damping
term. Otherwlse, the energy or damping could become
negative leading to static or dynamic instability.

This condition may be contrasted with that of a
linear feedback system under the same circumstances.
If D #C, then 1t must be because the welighting of the
two displacements Ei and 52 is different in the sensing
signal D(t) and the forcing signal C(t). This can produce
a situation in which the force 1is applied in phase with

the displacement for a given oscillator, and so drive
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it unstable. Such a mismatching of weights in a linear
feedback system would put an upper bound on the allowable
gain in the feedback loop consistent with stability.

In the bang-bang case, the "gain" for small signals is
infinite, so that any mismatch causes instability of

the null. This is discussed further in Section 3.3.8.

If bang-bang feedback is used, F (D) = p_ —D(£)

|D(t) |
is the feedback law, and so
- dc D(t) c(t)
U=F |c(t)| and B,(t) = &£ F [
e ° P e [o(n)|
(3.2.6.5)

This last term clearly shows that 82 < 0 when DC < o

and é is of the proper sign. This occurs when the

single sensor is telling the feedback element to drive

the system the wrong way. An extreme case might be

if Al = B2 = 0, so that the sensing of 52 resulted

in a force applied to Ml which could drive it unstable.
Assuming that Al = B1 and A2 = 82 gives B2(t) =0

and U = Fp [D(t)|. We then can examine stability of

the null.
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If Fp > 0, then we are assured that to rfirst-
order terms VSE(E)'§>0 for {s|= € > o. However, second-
order terms dominate E for all directions in state

space near s = o0 such that D = o = Ay &+ A, &5

Given that D 0, we must then require
_ 2 2 2

Vs BT os = M) £+ M, 65 + K

2

+ K2 52 >

Ol
Let's assume that we have numbered our slab systems so
that K2 > Kl' Thus, if only one of them was originally
unstable, it was system one. We then eliminate £, using
DK = 0. Also, since Ml > o, M2 > o, We may be assured
that the kinetic terms above are positive or zero.
We then write for the most critical direction
2
A, g A

« = _ 2 22 2 2 2

Vs E T s =K (=5 + K, £,° + [K( Al) + Ky1857.

Ay

(3.2.6.6)

For stability of the null, we require that the coefficient
A2 2

Kl( KI)

the effective spring constant of the system in a direction

+ K2 be positive. This is a restriction on

which does not excite the feedback.
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Certain conclusions become immediately apparent.
First, such feedback can not stabilize more modes than
there are stations; if K2 < 0 and Kl §K2, the system is
unstable regardless of Fp. Second, there must be a certain

margin of stability to the stable modes, 1in this case
Aa.2
Ky > Ky (KI) .

The effect might be thought of as balancing an
unstable mode against a stable one when the feedback has
no effect. This margin of stability increases as the
feedback coupling to higher, stable modes decreases and
as the coupling to lower modes increases. Thus for most
efflcient use of feedback, coupling to stable modes (A2)
should be minimized, and coupling to unstable modes (Al)
maximized. At best, A2 = 0 and the unstable modes are
- controlled without affecting the higher modes.

The region of stability, assuming the null to be

stable, is given by VS E = o, or

o} -F o}
K, £,°+F_ a 2 _ 5.0 ._RP , D
1 ~°1 p 1 o 1 K 1 o
| D™ 1 | D™ |

o -F o)

o D o D D

Ko Ex7#F, A, [ O] SorEy = Ay | o |
D K2 D
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Clearly, if Kl > o and K23K1 no self-consistent
solution exists and the system is globally stable.
Plugging into the energy form, we find

(F_ A, D° 1° [F_ A, Dp° 12
p 1l p "2
E = -1 ¢ [DO] ) +( |DO|

(3.2.6.8)

so that the reglon of stability is E( £, él, £55 £5)< E,.

The condition that EO be positive, assuming Kl
(:2 )2

1 Al

for null stability, which checks with intuition.

(O,

K2 > 0, is simply that K + K2 > 0, the condition
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3.3 Complications

There are many deviations from the idealized systems
discussed so far which will enter into the analysis of
any real system. Many such complications are characteristics
of the feedback elements alone, and so can be expressed
in terms of the input and output of the System without
reference to the internal state. In such a case, it is
expedlent to investigate the complications in the con-
text of the lumped-parameter model, and let the results
carry over into the domain of distributed systems.
In the following sections we continue to let Dn(t)
represent the sensory outputs. The purpose of these
sections is to develop algorithms for estimating the
effects of non-ideal aspects of the problem. Therefore
several expressions concerning hysteresis, lag, delay,
etc. are approximations for use in the problems of
implementation, rather than general expressions for

use in the unrestricted analysis of these effects.
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3.3.1 Hysteresis as Negative Damping on Energy

When the state of the system changes so that the
discriminant D(t) passes through zero, a real controller
will not immediately react and change the sign of the
feedback force. This delay might take the form of
hysteresis, so that the feedback changed state when
the discriminant had passed some value A > o beyond
the nominal switching value of zero. Such a feedback
function is diagrammed in figure 3.3.1.1.

Hysteresis may occur naturally due to the
mechanisms used in the feedback loop, or it may be introduced
deliberately to avoid "chatter". In either case we
may view the phenomenon as a deviation from ideal feed-
back, representing a difference between the feedback
force as it should be and the force actually applied.

We may, therefore, write it as an additional force
superimposed on the ideal feedback, so that the sum

of the two equals the actual force imposed. We write
the hysteretic force contribution as a term due to mis-

application of positional feedback,

D
+ H where
e P ID[ p
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Hy=F [z (1+—2zBlyy 2, Do,y D
P p | a- |DJ| |DD| | D|
(3.3.6.1)

The first term in brackets assures us that this
force appears only for [D| < A. The second term makes
it nonzero only when b and D are in the same direction.
The last gives it the slgn of D, so that it cancels
the ideal restoring force.

Insertion into the equations of motion and forma-
tion of an energy equation result in this term becoming

a negative energy contribution so that E=T + ¢y + U + U

J

where
P A - |D| .
Uy=--Pr1+ 7314+ DD 4
y |a- |D|] |DD|

(3.3.1.2)

This shows that the negative energy term appears
only in the immediate viscinity of the null, where
[D| < A. It allows us to examine stability with
U, = o, and then add this effect to consider its perturb-

D
ing influence. Being negative, it may result in a loss
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of null stability, but if the region of stability extended
beyond |D|=A it should not eliminate the entire region
of stability.

By rearranging the last factors in the expression
for Hp= we may express the term as part of the damping
instead of an energy contribution. This leads to a damp-

ing term BHp added to the other terms in B of the form

-F A - | D] DD .
Byp = —2 [1+ — —— ][ 1+ — 1 [D|
P " |4~ |p]] |DD|
(3.3.1.3)

Such a negative damping term results in energy
being pumped into the system each time ID| < A. Thus
if b = o and FV = 0, this hysteresis effect would result
in a slow growth of all oscillations of the system,
until finally the energy grew so large that the state
exceeded the bounds ‘of the region of stability. At
that point a second stage of growth would occur characterized
by the fastest-growing unstable modes of the system.
One would expect that since hysteresis creates
a negative damping, its effects might be minimized by

the presence of positive damping. This could be supplied
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by internal damping mechanisms of the system (b > o)

or by velocity feedback (Fv > o). Internal damping,

being linear, would grow with the norm more quickly than
Bp, and so if this effect were to limit the growth of E

it would do so at some sufficiently large amplitude of
perturbations which could be estimated from the expressions
given. If Fv were introduced, then it would probably be
subject to the same hysteretic problems as Fp, where

the new force term would be

. o .. .
Ho=pfr1+ A=10L 3p,4. DB 5 D
|a'=[D[ | |DD| D]

(3.3.1.4)

This could again be expressed as a negative damping

term in the energy equation, given by B = B + BH’
where B = Fvlbl and
F . “ .
By = - o [0+ 8=IBL g1 BB g g
at-D| | oo

(3.3.1.5)

This shows that in general the system will grow
until its average D is sufficliently larger than A
so that the two terms give approximately equal contri-

butions. Clearly there will be a range of Fp>>Fv,b=o
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where energy will be primarily pumped into the system
by BHp and removed by F;Iﬁl.

The introduction of a dead band into the bang-bang
force term, wider than the hysteresis loop, would of
course eliminate the hysteresis effect, unless a new
hysteretic effect accompanied the edges of the dead

band.
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3.3.2 Time Delay as Hysteresis

Perhaps a more realistic model of certain types
of switch lag or processing delay in a feedback loop
would be a pure time delay t. This model says that
T seconds after D crosses the switching input value,
the output changes state. If the time delay is short
enough compared to motions of the system (say, two
successive zero crossings of D(t))then the time lag
might be described as a hysteresis with A = 1 5
where D is evaluated at the instant that D = o. (This
form is investigated in a different context in Chapter 4
as a way of representing combined position-plus-~rate
feedback.)

To ascertain just what conditions would allow this
approximation, we may employ the describing function analysis
of hysteresis and time lag and compare results. Time
lag Tt glves a describing function, comparing with
(3.2.3.4),

4 F

G(w) = —B o -Jout
T £(0) (3.3.2.1)

Hysteresis A, on the other hand, has a phase lag ¢ such

that So sin ¢ =A so that the describing funection is
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-1 A
4 F -J sin" [ ]
e £(o)

G(w) = —E—

TE(0)

(3.3.2.2)
To compare the two, we replace Tt by Q——— where
5(t1) = w g(0), giving describing functiog(tl)

4 F ‘J??'S)
G(uw) = —B

Tg(o) (3.3.2.3)

Thus we see that the approximation is good if %TET << 1
or substituting for A in terms of t, if w T << 1. The
role of w must be carefully considered in a nonlinear
feedback system. Therefore, in the 1limit of small time
delays compared to successive Zzero-crossing times of the
sensor signal, the effect of time delay may be approxi-
mated by the hysteresis formula with A = £ 1. Note

that no amount of deadband could ever eliminate a time
delay, since a new delay results at the edge of the

band.
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3.3.3 Time Sampling as Time Delay or Lag
If the'control system under discussion is to be
run by a digital machine, or if it is simulated on a
digital computer, then the input D(t) will be time-
sampled at regular intervals t = n T. Thus, when a
zero-crossing occurs, the controller will not learn
of i1t until the next sample arrives. Unless by some
coincidence the sampling rate is equal to the period
of oscillation, in general the result will be a time
delay which is of varyingduration, uniformly distributed
between zero and T, with an average value of T/2 = 1.
Under what circumstances can this approximation be made?
Suppose that the input signal D(t) to the feedback
is band-limited, with Fourier transform D(f). The
sampling process can be considered multiplication by
; Uo(t-n T). To avoid loss of information, we assume

n=-—w

D(f) is limited to the Nyquist frequency, so

= 1
D(f) = o for |f|>2T .
To find the output of the sampler, we convolve -
[ <]
D(f) with pX % U(f -2 to get a sampler output
n=-o o] T
|
= = -
Z(f) = I T D(f - &) (3.3.3.1)
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If we now take the feedback to be of the sample and
hold type, the signal z(t) must then be fed into a T-
second holding circuit, which we model as a linear element

with impulse response

h(t) = 1, 0<t<T
{
o otherwise (3.3.3.2)

This has Fourier trans form

H(E) 1 [1 - e -j2wa]
janwf

- e-JnfT sin v £ T
T f (3.3.3.3)

Thus the output of the sample and hold would have the

form

T

© =jenf(=)

y(f) = 5 D(f - %) sin m £ T e 2

n=-o ™ fT
(3.3' 3!’4)

If we then low-pass filter this output for use by
eliminating all frequencies [f| > lT » the resulting

signal has frequency-domain form
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. T
~jenf(=)
r £ T

(3.3.3.5)

Thus the signal D¥(t) is simply the input signal D(t)

with time delay t = % provided that

TfT=wrTt< <],
Hence, once again if the effective time-lag 1is
small compared to successive zero-crossings of the

sensing signal, the formula for hysteresis may be applied,

when this time

_ ¢ T
TR (3.3.3.6)
We also note that the- time-lag factor e ~9°7LT

in (3.3.9) may be approximated, for w t < < |, by a

simple first-order lag so that

0

D¥(t) = D(E)
1+ Jut (3.3.3.7)

Hence this development also shows that for the
above approximation, a first-order lag in the feedback

loop may also be treated as time delay or hysteresis.
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Numerical work by Thomassen shows that, unless
w T < about .5, time delay results in instability regard-
less of the velocity feedback used. Thus, in the range
of parameters giving stable operation, the above approxi-
mations should be reasonably good. Also, since they
were made with minimal reference to the internal description
of the system, they apply to continuous systems as well

as lumped ones.
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3.3.4 Control with Bang-Bang Feedback

The situations considered thus far have been
restricted to stabilization of lumped systems for
sufficiently small perturbations about a pre-existing
equilibrium. However, in general one may want to drive
the system along some predetermined trajectory in
state space, or at least specify the output variables
as functions of time. When this case is analyzed,
we will also acquire the ability to handle bang-bang
feedback which is asymmetric: the force applied in
the two possible states of each feedback element may
be different. Also, these forces may be functions of
time. In this section, then, we will describe such
systems and relate their analysis to the simple cases
already considered.

In the most general case, the desired outputs of
the system will be denoted S(t). We will then
assume that, for positional feedback, the feedback force

1s applied so that when

+
D(t) >S(¢), Fo = - Fp (¢) - F

V'

D(t) <S(t), Fo Fp'(t) - F

v

This may be written formally as
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D*¥(t) = D(t) - s(t)

F_o+ (£) F - (t)
Fl®) = - B a4 D(O) gy 7] L DH(E) g oy dDX
€ 2 [D¥(t) | D¥(t)| Vv

(3.3.4.1)
Note that the value of Fe when D¥ = o, designated

Fs(t), is left undefined at this point. Although we
restrict it to finite values, it is unnecessary to define
it precisely, since the value of Fe at a point in time

if bounded can not affect the state of the system,

which responds only to the integral of Fe. Thus the

equation of motion

— = _-K g - b_QQ + Fe(t) (3.3.4,2)

may be separated into two parts; one representing
a quasistatic equilibrium condition at D¥ = o and the
other representing deviations from that condition. We
therefore define ES such that Es(t) = S(t) and
E*¥(t) = g(t) -Es(t). Static equilibrium then gives
-K Es(t) + FS(t) = o, defining Fs(t).

We then define the remaining part of the feed-

back positioning force as
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FR(t) = Fe(t) - Fé(t)
~[Fg(£) + F_*(t)]
= )% D#*
5 [ 1+
| D¥|-
[ -Fq(t) + F_"(t) ] % dD#*
+ > B (1 - =] - § (s, )
5 | D¥ | dt
(3‘3'“’03)
Fo' (t) Fo(t)
- * * ¥
FR(®) = ——— 1+ B g By L DEg g, dDF
R )
2 | D*| 2 | D*| dt
(3.3.4.4)
At this point we know that when D¥ = o, FR = o.
The remaining terms in the equation of motion can
¥
all be written in terms of &%, a&% and £ (t),
dt S
Pex 4%t | dg
M =——— + M —S = - K g% - p —S
at? dt? at
(3'3-”-5)
dg¥*

dt
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We then form our energy equation, representing a
dg*

Lyapunov function in the state space s¥ = (g%, —=— ),
dt
*
by multiplying the above by %%— and integrating by
parts. The additional relation
dF
* *
o (P ¥ ) = @ p D T p
p dt P|D#| dt
gives the result
gg.z_B
dt
= = *
E T+ ¢+ U B BS+ BO + BT
1 dE* .2 dg¥  dg de* g,
T=§M(—) BS=b _S+M 5
dt dt dt dt dt
* * * ¥
v = % K £*2 B* = b (d6%y2 Lo (4 ,4D¥, dD
dt dt dt
v 7 7% o ppx|
_ dt
F.r(t) F_(T)
* * #
v = R [1+ 27 [p¢| + B Tpy o DY gipeia p Fppe
2 | D¥*| 5 D¥* P
D¥ = £#%

(3.3.4.6)
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From these expressions, we are in a position to
analyze the stability of the new equilibrium using the
Same analytical tools as before. For stability of the

null, we will require Fp+(t) > e > o, Fp'(t) > e > o3

and B > o for small perturbations, or

- 7 dD*\ D* . -
rvgt, ) FT =2 -B - BT' The region of stability be
comes time-dependent, determined once again by E(§)<Eo(t)

where E (t) = E(s¥(t)) where EO*(t) is a saddle point
found from vz, E(t) = o.

Special cases are clearly called for here. One
such case could be simply one of time-varying feedback
amplitude, with S(t) = o. In this case, ET,gives the
effect of the time-variation of Fp on the system. This
mechanism corresponds to the phenomenon of parametric
instability in a linear case. One could think of this
method of pumping energy into a system as follows:
if the system were to remain at s = EJ; while the value
of Fp were suddenly raised, the energy due to U would
be Increased without any other effects taking place.
This could eventually result in driving the system out
of the region of stability.

Probably the most interesting limit is that in

which the desired displacement is time-independent,
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or S(t) = S. This makes B vanish, and reduces the

above to the creation of a new static equilibrium. The
new equilibrium is stabilized by bang-bang feedback
provided that the original feedback force was larger than
the force needed to hold the system against its linear
restoring terms. Thus in this case a system stable at

€ = o might be unstable at £ = S.

2 dF_¥
: ds d"S p
Similarly, if dat ’ a& and It are sufficiently

small, any internal or externally applied damping in
the system will dominate B and so give a quasistatic
region of operation. The magnitudes of the rates in-
volved could be calculated for any given case from the
expressions given above.

In terms of our dielectric slab model, for instance,
it might be desired to make the slab move such that
£ (£) = A cos 9t = S(t). To do this, the sensor output
D = g(t) 1s compared with the desired motion, resulting
in an error function D¥(t) = £(t) - A cos wt = £%(t),
We will assume that b is negligible. The applied feedback

force will be

* *
Fo= - Fy —— - Fy D = p(6) 4 Fp(t)
° o | D*|

(3.3.4.7)
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which is to be accomplished by adjusting the voltages

on capacitor plates at either end of the slab, as

described earlier. The force required for equilibrium

is F =+ K A cos wt, so that the feedback force remaining

for stabilization is

[F_+ KA cos t] [1 + D* ]
Fp = P —

2 | D* |

[F_ - K A cos wt] [ 1+ D¥ j
+ D

2 | D#*|

(3.3.4.8)
Thus, for adequate positioning force, it is required

that for all ¢, Fp > K A cos wt.

For null stability, one further requires that, for

B > o,
% n%
F P s M A NZ_Q_ cos wt + K A w sin wt
| D*| | D¥ |

The minimum value of Fp insures that the feedback can

hold the slab against spring tension. The second

constraint insures that there is enough feedback damping
force to dominate the inertia of the slab and the effects

of variation of FR. Clearly, if F = o and the frequency
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w were very high, the mass M would be left behind its
desired position.

With null stability assured, the region of stability
will be bounded in this case by Vs E = o giving E*0=o,

and either

£ [(F_ + K A cos wt ]
¥ = _ P for D_#* >o
[F_ - K A cos wt]
gx + B .
o) K for DO <o.

(3.3.4.9)

Assuming that null stability occurred, these equations
have self-consistent solutions only if K < o. Otherwise
the system is globally stable. If K < o, A > o, then
the value of go* to use is the one giving the minimum

value of Eo. Thus at t = o we have

(3.3.4.10)
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Thus the system is stable if at t = o the initial

conditions are such that s* lies inside E(s*) = E,-
F
Note that the statement EO* = - KB - A corresponds to
-F
£ = EO + A = KE , the simple result that the feed-

back force balances the sPring force.
In the more complicated case where there are N
feedback stations, 1 < K < N, and M oscillators, 1 <m < M,

M
the same analysis may be done, where Dn = L. A £

m=1l "nm °m
are linearlyindependent outputs of the sensor elements.
The only difficult step is the determination of equilibrium
forces FS and displacements Em, given the desired sensor
outputs Dn = Sn(t). These forces and displacements
total M + N unknowns , and therefore we need M + N equations.
N of these are given by D, = Sn(t) where D is written
in terms of the displacements Em. The other M equations

come from the force equilibrium condition. If the feed-

N
back force on the mth slab is F = I B F (t), then
e n=1 nm e
for each slab we have
N
—Km ES + T Bnm FS = o for all m.
m n=1 n

Thus we may simultaneously solve these M + N equations

for the ES and FS » and rewrite our equations in terms
m n
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M
of g*=¢€ - Eg,D*=D -5 = I A_ E¥, and

nm °m °?
m n n m=1

FR = F - F . Problems involving N > 1 will be dis-
n ®n Sn

cussed further in the next section.
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3.3.5 Multiple Feedback Systems
All of this work is developed in order to describe a dis-

tributed system as a set of modes, each modelled by an oscil-

lator. Hence, we now look at the cost of multiple oscillators.
All the previous work that has been described

can be generalized to the case of M oscillating slabs

with N feedback stations, M > N. Each feedback station

is characterized by its sensor, its feedback force func-

tion, and its force coupling to each oscillator. Let

the nth sensor output be a linear sum of oscillator

displacements. (Velocity feedback behaves similarly.)

A £ ,1 <n< N
(3.3.5.1)
Any convenient normalization of Anm may be employed.
If desired, an intermediate cross-couplling network might
be inserted between the sensors and the feedback elements,

th

so that the input to the n feedback element is of the

form

(3.3.5.2)
In this case, it is simple to combine the linear operators
f and 1 into a single effective A-matrix. Thus this
case need not be treated separately.
Let the feedback force Fe=-Fn(Dn(t)) due to the

nth feedback element have coupling coefficient Bnm
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to the mth oscillator, so that the force term in the mth

equation of motion due to the nth feedback station is

Bnn Fn' Then each such equation of motion, by superposi-

tion of forces, is

(3.3.5.3)

For convenience we define the dual of the discriminant

Dn to be
M
Cal®) = I By gn(e) (3.3.5.4)

We then note that

_d_ an(t)

S Fo(x) dx = C_F (c)

nn
(o]

Thus, by multiplying the above equation of motion
dg

by —a and summing over all m, the energy equation
dt
becomes
dE _ _
it - - B, B = Bo + Bp
M dg
E=T+ y+0U T=I Zm (—B)?
m=1 dt

(3.3.5.5)



110

M 1 5 N .
v = I =KE& B, =% CI[F(C)-F(D)]
nop 2 mom P o n n
U = ¢ S F (x) dx B =% b (=
n=1 le) n (0] m=1 m " dt

These can easily be recognized simple generalizations
of the corresponding formula for N = 1, M = 1 derived
in the previous sections. They are more complicated to
use only because the scalar operations carried out to
determine stability are replaced by matrix operations.
The analysis of velocity feedback is precisely analogous
and so will be omitted here.

We will specialize to bang-bang feedback at this

D
point: Fh(D) = - Fp‘ n so that
"o, |
n
N o | N . %1 C n
Uu= 1= F C land B_ = ¢ C F C - ]
n=1 5 n P p=1 1 "
[Dnl  [Cpl
(3.3.5.6)

Once we have ascertained that the above conditions

hold, we can test for stability of the null: vV, E s >0

and B >o. For Bi 0 Wwe require Cn = Dh’ which will happen

for all possible En only 1if Anm Bnm'for all n and M.
For v E's o, we require Fp > o for all n to lowest

n
order.
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Let R < N be the number of linearly independent
discriminants Dn' Then, the next higher order terms will
appear in y_E ° s > o only if M > R, for only then can

there be a nonzero solution of

A

M
T = o, n =1 to N.

€
=1 nm°m

(3.3.5.7)
To consider the quadratic terms in VS E ' s, we
will first make sure that the oscillators are ordered
so that two criteria are satisfied:
1) The first R oscillators, 1 < m < R,

re chosen

A E_ = o,

a
R
so that there is no nontrivial solution of m;l nm °m

n =1 to N. This is always possible because there are
R linearly independent discriminants.
2) Subject to the limitations of 1), the Em

are ordered so that Ki > Kj if 1> j.

We then rewrite the equations Dn = 0, as a single

vector equation

= 0, so that (Al . = A

=
Ao ]

o (Bl = ..

This can be split into two parts,

R bR * Ay.r © Ey_g T © -
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where Eﬁ contains the displacements 1 < m < R.

Because of the ordering of m, we know that A is

R
an invertible R x R matrix. Thus we may solve for the

displacements &, in terms of the displacements £,
R M-R

as follows:

M- h M-R (3.3.5.8)

We then use the fact that, if the linear (Dn) terms vanish,

we may write

V.E s =g Mgt Kn Em (3.3.5.9)

Since Mm ¥ o, the kinetic term is clearly positive

definite. We must then show, for stability of the null,

- 2 -
that 2y = E Km 5m > o for all Dn = o,

1

~iE

Let be the diagonal matrix with [ﬁ]m = K

m
and split it into two smaller diagonal matrices ﬁR and

ﬁM—R as was done with £. We may then write

= Fr < T . ¥ 153 . o
2y g R K + ! Ky_g EM—R

(when prime denotes adjoint) or
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= F1 . 1 2
2y Eog | (A A
(3.3.5.10)
We must then show that the matrix
= _ = . = =11 = = _l = =
Q= Ay g' R K " AR - Byg' * Kyg
(3.3.5.11)

is positive definite, in order to have 2y > o for any
choice of Ey -. This can be done using Sylvester's
fest, which consists of requiring det 31 > o,

1 < I < M-R, when 6I represents the matrix formed of

the first I rows and columns of 5.
Because of the ordering of Km, if KR+l < o and
3 t
KR+1 > Km<R then the first term of Sylvester's test

willl clearly be negative, and the null is not stable.

Thus, the minimum number of linearly independent feedback

stations needed in order to achieve stability of the

null is equal to the number of oscillators with Km < o.
Once we know that the minimum number of feedback

stations will be used, we might want to maximize their

effectiveness. If our Lyapunov function is well

chosen, this means making § as positive as
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possible. To do so, we want to vary the coupling con-
stants A, so as to minimize the effect of ﬁR on 5,
and make sure that all the unstable oscillators (Km < o)
are contained in ﬁR' Therefore, our feedback should:

1) Be sure to have each sensor observe a linearly
independent combination of the unstable displacements.

2) Maximize the coupling to those oscillators by
maximizing the determinant of KR' This makes the terms of A~
small and so minimizes the effect of ﬁR on Q.

1
R

3) Minimize coupling to the stable oscillators.

This makes all elements of iM-R small, and so minimizes

effects of ﬁR upon Q.

In the limit where each feedback station couples
to only one unstable oscillator, the minimum number is
clearly sufficient to establish stability of the null.

Once the problem of stability of the null is analyzed,
the region of stability problem emerges. Once again, the
velocity feedback and damping considerations are exactly
like those involving positional feedback, sc we take
b = F = o and look for the limlt on the region R of

'
stability, using the saddle polnt condition;

V. E=o0 at 54> E(so) = E_.

This leads by direct substitution of the formula

for E to
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£, =0

o] N no
K 3 + z A F = 0
m m n=1 "m Pn [D_°|

n
M
where Dno = I An Emo
m=1 m

(3.3.5.12)

Solution of the above equations for Eom is not
difficult; &t merely requires trying all possible combina-
D
tions of—L— = + 1, which gives 2 possibilities.

p©
n |
Often physical insight will motivate the choice.

In any case, if no self-consistent solution exists,
then the system is globally stable. This occurs, for
instance, if Km > o for all m. If more than one such
solution exists, the region of stability is bounded by
E(s) = E, such that E, 1is the minimum of those found.

This value will be

(3.3.5.13)

The existence of such a solution implies that EO will

be positive.
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This concludes the analysis of the stability of M
oscillators coupled together by N < M bang-bang feedback
elements. All the other complicating effects discussed
in this chapter may be included in this analysis in a
straightforward manner. The results of this section will
be discussed further in Chapter 4, when a clear interpreta-

tion of Anm and Bnm is available.
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3.3.6 Higher Order Terms
We have considered in detail the case of bang-
bang feedback, where the positional or velocity feed-

back is aplecewise-constant function of the input variable
F (D) = -F —
p( )

A more general form of feedback designed to keep
D = o might in many cases be a force function with a
discontinuity at D = o and some continuous variation
for D # o. On either side of the discontinuity, then,
we could expand the force in a power series in D, so that
(for D > o for instance)

-F D

(D) il (1 ) = F_ D
F = + — - - F D e
P 2 ID| Py Py

(3.3.6.1)
How can our analysis be generalized to include these
higher order terms?

First, let's consider the stability of the null.
Clearly the zero-order force terms will dominate, since
they lead to first-order terms in vV, E s. Thus the
higher-order terms will not affect these calculations

at all. 1If there is a non-zero perturbation of the null
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possible which does not excite the feedback zero-order
forces (D=o0) then it will not excite the higher-order
forces either. Thus, the quadratic stability test is un-
affected, also. If there were a feedback system with

no zero-order force but a first-order term, such as a
saturating linear feedback force, then it would have to be
added into the first-order terms due to the linear system

> o. This

@]

in the quadratic-term stability test VSE :
would be simple enough, and need not be carried further,
for it is unrealistic to expect all the first-order terms
to vanish precisely for any perturbation of the system.
When the region of stability question arises, how-
ever, the situation is quite different. The condition
VSE = o would still represent the saddle point 50
such that E(s) = E, gives the boundary of a region
of stability. Calculation of that 50, however, would
have to include all the terms in the feedback function.
Thus, instead of solving a linear equation for EO, the
equation would be of whatever degree the feedback function
turned out to be. Thus, if there were N feedback stations
and M oscillators, one would have to solve M simultaneous
nonlinear equations, a task not to be envied. Hence this

problem will not be pursued further.
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3.3.7 Dead Band and Linear Band

The bang-bang feedback force can only be approximated
in any real situation. One possible deviation from the
ideal, discontinuous force term is a linear band of
feedback which smoothly allows the force to change from
its negative to positive extrema. Another possible
alteration in the force law is a region of zero force
near the discontinuity at D = o. Thus for a linear band,

the force 1is

-F D> A
P D
= - = <
Fp(D) Fp x |D|< A
+F D < -A
P

(3.3.7.1)
For a dead band, the force would be identically zero
for |D| < A, and the same as bang-bang feedback otherwise.Dead-
band may be deliberately introduced to reduce the duty
cycle of feedback elements, or to eliminate chatter.
Since both these force functions can be fitted
into the general form of energy equation given in section
3.2, the resulting form of feedback energy U will be given

below:
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A-| D]
Linear band: U = % F_ D2 [ % (1 +
P |a-|DJ|
(3.3.7.2)
D| -A
1 2 1 |
+ [ 3 F_A° + F_ (|D| =27 [5(1 +

2 °p P 27 |Ip| & |

Dead band:U = [Fp(lDl-A)] L % (1 + D] -4 ) ]
| {Df-a |
(3.3.7.3)

In the case of linear band, stability of the null
must be investigated by expanding D in terms of the
displacements and seeing if AE ° s > o for all possible
displacements. In the case of dead band, the null will
be stable only if it was stable without feedback, since
the feedback will not turn on until the state of the system
i1s removed from the neighborhood of 5 = o. However, there
may still be a region of bounded solutions (a stable oscillator).

For a linear band case, if the null is not stable
then there will be no region of stability. If the null
is stable, then a region of stability may be found by
setting V. E = o and solving for the saddle point
50, assuming it to lie outside the linear band. When
found, this assumption can be checked. If it lies inside
the linear band, then the largest value of Eo such that
E(s) = E, lles entirely within the linear band will be

the limit of the region of stability.
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For the dead band case, even if the null is
unstable there may be a region of stability, but it
will not include the origin unless Eo>o. If Eo<o,
the region of stability lies between two
surfaces each defined by E(5)= E,- If there is a
region of stability but no null stability, then the
system will always be subject to disturbances on
the scale of [D|=A regardless of damping.

A dead band might well be designed into a bang-
bang feedback system deliberately to decrease the
switching frequency or to cut down the duty cycle.
Such effects can be clearly visualized in the case of
a single oscillator. Since D(t) is a linear combination
of state variables, it changes continuously with time,
so that the time lag between turn-off and turn-on of
the feedback force represents an interval of rest for
the feedback elements during which the system "drifts"

according to the original linear equations of motion.
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3.3.8 Non Self-Adjoint Feedback

So far in thils discussion, we have said little
about the case of feedback with different welghting
functions for Anm and Bnm’ the sensor and enforcer
element coupling to different modes. This is because
our energy function is not a Lyapunov function in such
a case; the feedback part of the system is not self-
adjoint: If n and € are perturbations, n' ' B F (')
T B F (K W),

To examine this case, let's consider a linear

feedback scheme with one station and two slabs (modes).

The equations of motion, with masses normalized to unity,

are
4%k
1 2
—, T w 81 - By F(A) &) + &, ¢))
dt
d2£2 ;
e w
w2 T T2 2By FlAp &)+ a6y

(3.3.8.1)

where F is the feedback gain. For very small perturbations,
the limiting case F + » should approximate bang-bang

behavior.
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The exact eigenvalues of this problem can be

found from the matrix equation

2 2
W - w - B, FA -B, F A
det 1 1 1 1 2
= 0
2 2
-B F Al W= w, = B2 F A2
(3-3-8.2)
This gives the quadratic equation in m2:
it 2 2 2
w - w (wl + U)2 + F(AlBl + A2 B2 ) )
2 2 2 2 _
+ (ml w, + F (wl A2 B2 + W, AlBl)) = 0
(303.8-3)
Letting
b = w,® + w,® + F(A, B. + A. B.)
1 2 171 2 2
w2 w 2 2 2
c=","", +F(wl A282+w2 AlBl)

fhe solutions are given by

€
]
rojo
|+
—
I

(3.3.8.4)
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We note several things at this point. First, the
roots depend only on the products Am Bm’ not on the
separate factors. Second, if all Am Bm > o, then m2 > o0
for sufficiently large F. Third, if m2 is complex, then at

least one unstable root will always exist with w complex.

This will occur if ( % )2 - ¢ < 0. This criterion can
be restated by making the following substitutions:
_ 1,2 2
=35 (0" - 0" )
S =2 (AL B, + A. B.)
2 1 71 2 2
D=2 (A, B, - A, B. )
2 171 2 2

Then, overstability (instability at nonzero frequency)

is between the limits
F, = 52 [ D+ D° - S (3.3.8.5)

Hence there is a range of overstability provided that

ID| > |S| , or (assuming A, B, > o) provided that

A2 82 < 0.

To learn the restrictions on F placed by stability

of systems with A2 82 < o, consider various ranges of

gain.
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If the gain 1s low, so that

2 2| 5> g2 (A By + A, 32)2

(or alternatively, if wm2 >> F Am Bm for all m) then

the roots of (3.3.7.3) are given approximately by

(3.3.8.6)

2 _ 2
w_ = w2 + F A2 82

This 1s the regime investigated by Crowley (1971) where

he concludes that an estimate of the allowable gain F

can be found by requiring that all modes m of a continuous

2
system satisfy mm + F Am Bm > o,

This 1limit does not apply in the high-gain regime
where we may assume [F A B |>>‘wm2 for at least a

finite number of modes M.

In this high-gain 1limit, the roots of (3.3.7.3)

reduce to one given by

2

w- = F (Al B, + A

1t Ay By)

(3.3.8.7)

and a second, which to lowest nonzero terms in the

inverse feedback gain, are



(3.3.8.8)
The first root tells the system designer that he
must be surs that % Am Bm > o for his feedback system to
be stable in the high-gain 1limit. The second root is
independent of F, and in fact corresponds to perturbations
which do not excite the feedback. Stability then corresponds
€o null stability in the self-adjoint bang-bang case

(Am = Bm) with stability requirement

Now consider the case of M modes, and N feedback

stations. Let's suppose that for modes m < M, the

1
coupling to the feedback is strong;

N 2
I F A B 2]

and for m > M1 the reverse is true. The eigenvalues
w2 are then shifted as the gain 1is turned up, so that for
m > Ml we have roots
2 0 2
w = w +FAmBm
from the low-gain limit, and for m < Ml there are N roots

given approximately by the equation



(3.3.8.9)

(where B, and A, are truncated at M, entries A s Bnm)

plus (Ml - N) roots (the zero eigenvalues above) in-
dependent of Fn and representing combinations of modes
which do not excite the feedback. The N modes given by

(9) above will all be stable provided that the eigenvalues
N
w ° of the matrix I F B * A ' are positive. We
n =] D °n n
can conclude several things from this. First

N Ml N
z w = I I F

n=1 k=1

A

k kn kn

Second, if each feedback station n is separately designed

M
so that Zl A B > 0, then all the eigenvalues will
m=1 nm nm

be positive and the corresponding modes will be stable.
However, as long as any mode m of the orliginal system had

N
z A B < o, the resulting feedback-stabilized system

n=1 nm “nm
will be overstable for some lower value of gain. Hence,
some m Anm Bnm < o0, the best one can achieve is conditional
stability.

Our conclusions for feedback system design are as
follows. If possible, choose Anm and Bnm so that they are
of the same sign for all m. If this is not achieved, there
will probably be at least some mode m which is overstable

at finite gain. 1If that design is not possible, then at
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least let Am Bm be small when it 1s negative to make sure

!

that £ A B > o for each feedback station, so that

m=1 nm nm
at high gain the system won't be driven unstable. Then,
the structure of the coefficients Anm should be chosen
so that combinations of modes which don't excite the feed-
back will all be stable, and that for weakly coup led
modes w 2 + FA B > o.

m m m

In the case of continuum systems, the easiest way to
make sure that Anm Bnm > o for all m will be to make the
spatial weighting functions for sensor and enforcer elements

An(z) and Bn(z) the same for all n. This will be clarified

in the following chapter.
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3.4 Evaluation of Lumped Cases
The material in this section represents in itself
a design guide for certain types of lumped linear systems,
with bang-bang feedback. It presents analytical tools,
estimation formulas, and design criteria for a class of bang-
bang feedback systems with a variety of modifications.
However, the primary purpose of developing this
material in energy-function form is to be able to apply
it to the control and stabilization of continuous systems.
These formulas will appear again, but each oscillator
will be replaced by a mode of the linear distributed
system. Coupling of the feedback forces and sensors
will be accomplished by spatial shaping of weighting
functions. Therefore, it is important to understand
the methods and ideas put forth in this section in order

to build up a picture of the continuum as a state space

with an energy function.
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b) Distributed Systems
4.1) Quasi-One Dimensional Systems

Chapter 4 contains most of the general results
of this thesis. Most of these can be most easily explained
in the context of a one-dimensional mathematical model.
This model approximates the behavior of many systems
after their multi-dimensional aspects have been suppressed
by analysis.

The model will be developed in the first section,
as a quasi-one dimensional model of a vibrating membrane
which is subject to external electrical forces. Sub-
sequent sectlons will expand the model to include bang-
bang feedback in a number of situations, and present
deslgn criteria for such feedback control of continuous

systems.
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4,1.1.1) Linear System

Consider a membrane under tension with mass per
unit length p, stretched over some interval o < z < L.
We will assume that, for simplicity, the perturbations
£E(z,t) from equilibrium are slowly varying in 1z, so
that they look locally constant in z. At a distance d
above and below the membrane, we position conducting
plates and raise them to a voltage V with respect to the
membrane, which is taken to be perfectly conducting.
The electric fields above and below the membrane are
then respectively, in the x-direction.

v . v

Ba =7 3 By = * TE

(4.1.1.1.1)

Hence the electrical force on the membrane (per

unit length in z,) is given by

1 2 2 o) 1 1
F = = ¢ (E - )= E -
2 %o (d-£)2  (d+£)2 ]

(4.1.1.1.2)

If we assume that for small perturbations |g| < < d,

we may linearize to get
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Fe; —2 YV = p ¢ (4.1.1.1.3)

Viscosity might give an additional force term -b %g .

These give an equation of motion

% a% b
° —525 oY az2 ' Pe g;
(4.1.1.1.4)
with boundary conditions
(o, t) = E(L, t) = o (4.1.1.1.5)

This will be our prototype of a continuous hyperbolic linear syster
The purpose of the model is merely to develop the proto-

type, so that details of the modelling process are un-

important. See figure 4.1.1.1. for a diagram of the

system.

At this point we introduce the following normalized

variables:
Z
' = 2
z L
= &
& =3
2
t' = % where T2 = AL
Y
b'! = E
p
P' = ﬁ
0 (4.1.1.1.6)
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Fc’gure Y.1.1.1 Mem brane 57:feh4

a. Without Fccd back

25"- 2}& Eéfv, ( Z.'V«
Qv Qm Qu Q|

k. With Feedbock (N='1’)
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All primes will be suppressed in the following develop-

ment.

The resulting equation of motion is

E(o,t) = E(L,t) = o (4,1.1.1.7)

Such a system is traditionally analyzed in terms

of modes. Let

@

Sz,8) = I oan(t) g () ' (4.1.1.1.8)

where Em is an eigenfunction for the spatial operator,

or a mode:

Em(z) = [2 sin m7m 2

normalized so that the modes form a complete orthonormal
set of functionson the spatial interval of the system.

Then our equation of motion reduces to a set of ordinary constant-

coefficient differential equations for am(t):

2
d~a d a
m_+ b LU, L m2 w2'—P ] a = o (4.1.1.1.9)
a2 dt
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We define m2 w2 - P = Km’ and solve for a, with solutions
. sin w_¢t
_ m
am(t) = am(o) cos w t + am(o) _——E;__ where

2 . =
—w + Jjb W + Km = 0 leading to

. _ =b b2 _
J w, = ;; + f( 2) Km

(4.1.1.1.10)

Stability requires that b > o, Km > o for all m, or

P < w2. Thus P represents a destabilizing influence,

and tension a stabilizing influence which dominates at

least the higher modes of the system.
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h,1.1.2 Feedback

We now wish to add feedback to the system to stabilize
the equilibrium for higher values of P. By optical
or other means, we will sense some spatially weighted
averages An(z) of the deflection e, and feed these
signals Dn into nonlinear force feedback elements.
The resulting action on the membrane is an additional
force distribution, which is the sum of the forces due
to each of the feedback elements. The force due to the
nth feedback element will have spatial distribution
Bn(Z) and amp%itude Fn(Dn(t)). (This will be normalized

F T
by Fn' = -1 with prime suppressed.)'

P
We may establish the conventions

1
/ 2 - 1 2 =
o An (z) d z = fo Bn (z) d z 1
(4.1.1.2.1)
to avoid confusion, and formally define the sensor
signals
- (1 _
D(e) = Jo A (z) E(z,t) d z, n =1 to N.
(4.1.1.2.2)

The new equation of motion is then

2 n
3" ¢ _ o_§& 90§
2 = + PE -b + I Bn(z) Fn(t)

at 3z ot n=1
(4,1.1.2.3)
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Added feedback terms dependent on the velocity rather than
position can be added in an obvious manner.
We may analyze the System with feedback by using
a Galerkin series which expresses the new £(z,t) in

terms of the modes of the original linear system. This

gives a sensor output signal

Dn(t) =m=§ Anm am(t)
= 1 "
Anm = ,l'o An(z) gm(z) d z (4.1.1.2.4)

The equation of motion can then also be multiplied

by gm(z) and integrated over z to give

2 d a (t)
[+ K1 a(t) = —om
2 m m
dt dt
N
+ 3 B Fn(t)
n=1 nm
where
B = S 1 B (2) £ (2) q2
nm o] n. m

(4.1.1.2.5)

This equation represents the equation of motion of the

mth mode of the System, showing explicitly the coupling
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\
of the feedback terms. It is an exact parallel to
the equation of motion of the mth oscillator in the
previous chapter.

In the case of bang-bang feedback, the force due

to the nth feedback station will be assumed to be of the
form
D D
- _n n
Fn(t) = - %, FV -
Ip_| " Ip_|
n n (4.1,1.2.6)

This is a superposition of positional and velocity feed-

back forces, each dependent on only the nth sensor

output or its time derivative. Cross-coupling is considered later.
Applying these relations to the membrane model,

th

the force from the n feedback station is due to the

feedback voltage on the nth segment of the electrodes
above and below the membrane, as shown in Fig. 4.1.1(b).
If there are N equally spaced Ssegments, then in the

quasi-one dimensional approximation

_ n-1 n
Bn(z) = 1 (N ) < z < 3
0 elsewhere

(4.1.1.2.7)
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The electrical force including the voltage vnon the nth

segment is given by (4.1.1.2) as

€ Ve (1 - 95)° (1 + vg )2
F o= C v - 7 ]
2 2 2
(d-¢) (d+¢g)

The highest-order effect of Vnis to introduce an

additional (feedback) force on the membrane

2 €5 an(t)

Fn(t) = o

4 (4.1.1.2.8)

where v 1s determined by ?n and D... Letting
n n
be a sum of hang-bang terms,

Vn(t) = v + v n
n ng.:
| D | | D, |
we may write
D D
E (t) = - R —D _p n

where (before normalization)
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where (before normalization)

v €
280 A% Pn 2 o] v

n d2 n d

(4.1.1.2.9)

The next higher-order effects due to v, are at

least linear in both of the factors ( Zg ) ( % ).
\%
we assume that |vn| < <V, then these terms are negligible.

If

compared to the forces already calculated, in spite of

the bang-bang nature of Vo
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4.1.2 Canonical Form

Looking at the equation of motion for the mth
mode (4.1.1.2.5) and comparing with the previous chapter,
we see that the next step is to form an energy equation
by multiplying (4.1.1.2.5) by ém(t) and summing over all

modes m. This gives

[+ <) [e -]
d 1 2 1 2 2
at L E ( 2% *t 3K, a )l = “mk1 D an
m=1
N o . Dn
- I z B a [F F
n=l m=1 nm-m Pn , D , * Vn
n

We now define the dual of the sensor signal
1 ®
Cn(t) = f Bn(z) €(z,t) dz = : B am(t)

nm
(o} m=1

The last term of (4.1.3.1) is then of the form

N dc - D D
- I —“[FP n_ 4 Fy o
n=1 dt n n .
BN D, |

(4.1.2.2)
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Since this expression involves only terminal variables
(independent of m) it may be treated precisely as its

equivalent in the lumped-parameter case.

It is clear that, as nearly as possible, the designer
should try to arrange the sensor elements so that their
spatial welghting is the same as the forcing elements
which they control. This gives the desired result

B = A

am nm? and since the modes form a complete set,

requires that Bn(z) = An(z). This means that the sensor
signal Dn(t) is simply an average of the deflection
over the length of the nth forcing segment. In this

case the positional feedback terms form an exact time-

derivative, so that

1 n (4.1.2.3)

which 1s the bang-bang form of the more general expression

N C,
I /7 Fp (x) dx (4.1.2.4)
n

n=1 °

where (-FP (Dn) ) is the nonlinear feedback force law.
n
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The complete Lyapunov function is then

E=T+ ¢ + U where

_ 1 : 2 _ 11,302
T = E 2 8y ° fo 2(3 )" dz
m=1
b= T W oa?- L3622y
N =1 2*m %n o0 2-'at 5 z

dE _

T = ~-B, B = BO + Bl + BP + BV
where
® 2 1 3E |2
BO = I b a = [~ Db ( 5% )< dz
m=1 0
N .
By = 1 Fylc |
n=1 n

For An(z) = Bn(z), the terms BP and B, vanish.

(4.1.2.5)

(4.1.2.6)

They

represent deviations from the ideal spatial matching

condition, and may be considered a means of evaluating

the errors introduced. From equations (4.1.2.2) and

(4.1.2.4), we require that for Dn # Cn

5



N D c
Bp= I F, C_ [ -8 - LR
n=1 n n b I
|Dn| n
N . D :
By = I F, C_ [ n_ _ C ]
n=1 n : .
D, | c, | (4.1.2.7)

Note that the spatial matching condition does
not require that the feedback couple only to one mode,
as many older schemes in the literature require.
Any spatial distribution is acceptable, as long as the
sensing and forcing distributions are the same. Clearly
some will work better than others, and the design criteria

for choosing a good one come directly from the stability

analysis.
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b,1.2.1 Null Stability

Under what conditions is E a positive definite
Lyapunov function in the neighborhood of the null é(z, t) =
£(z,t) = 0 2 For if it is, then the null is stable.

In the particular case which we have chosen,
dE

an > o.
b > o, so <o if An(z) Bn(z) and FP > o0

dt
However, the requirement that E > o for ang combination
of (am, ém) # 0 in the neighborhood of the null may
be written V_ E ° 5 > o where 5 1is the state vector
in the space of mode amplitudes a. and velocities ém’

Since the space is infinite-dimensional, stability depends

upon the choice of norm, as we define

m L]
m=1
We then write
-] . ® N
= 2 2
V.E"s=  a“+ 3 a “+ 3% F, |D_|
S m=1 m =] m m n=1 Pn n
(4,1.2.1.1)
[+.]
D = % A a
n m=1 Nm m

Clearly the first term is positive definite. Clearly,

also, the last term dominates near the null and is positive
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definite for FP > 0, except in directions where
Dn = o0 forn = ? to N.

The critical case is whether the remaining term
(equal to 24) is positive definite for 311 a . such

that Dn =0, n=1to N:

z Km a_” > o, Dn = o (4.1.2.1.2)

What makes this problem difficult is the infinite summa-
tion. Certainly if Km > 0 for all m, the system is
stable, but it would be even without feedback so that
isn't very enlightening. 1In general, there will be 3
finite number of unstable modes M, with Km Lo form < M.
This number will be’determined, in our membrane model,
by vy and P.

We proceed as in the lumped-parameter case:

define vectors, a, ay and a_ so that

[__ﬁ -1 =131, a_ = the m“? component of a

[e o]

so that ay is an N-vector containing the components of 5

for m < N, and a_ contains the rest. Then we may write

=0

D = a (4.1.2.1.3)
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where [D]n = D [A]nm = A

n? nm °

Define also a diagonal matrix K so that

[Klmm= Km

Then the above problem may be written

> o for all a such that

ol =N
1 .
= 0|

a = o. (4.1.2.1.4)

where prime denotes transpose. Now divide K into KN

= = = =
and K,,and A& into Ay and A, 1in a manner analogous to the
division of a. Thus Ky and Ay are N x N matrices con-

taining the information for m < N, where N is the number

of stations. K_ 1is a diagonal matrix of infinite dimen-
sion containing Km for m > N, and A, 1s N x » represent-

ing the rest of A. We then rewrite the above as

aty Ky “ay tay, K,"a, > o

for all EN and a_ such that

(4.1.2.1.5)



148

At this point we recognize that if A,  1s not invertible

M
there is no hope of stabilizing the system. For if that
is the case, then it is possible to find a collection of
mode amplitudes a_, m < M such that D = o for a_ = o,
m > M. Let Eo be a vector composed of these mode amplitudes.
Since we know that K, <o form <M, then 5'0 " K 5'0
is negative, and so E is not positive definite throughout
the neighborhood of the null.
We therefore establish the minimal design criterion
that, for stability of the null, An(z) must be chosen
so that Dn represent the least M independent samples of
the M lowest modes: the unstable modes. This can be
tested independently of the higher modes of the systemn.
If iN is not invertible (of rank M < R < N) then
reduce N by one until an invertible matrix remains. The

previous reasoning requires that R > M for guaranteed

- _ -1 -
stability. Then, solve for ay = Ay - - a,.

il

Plugging into the expression for 2y, we require

p=]

at . = } . T . = = .
a'y " [K, + A! Ay Ky " Ay A, 1 " a,> o.

for all a_

(4.1.2.1.6)
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= — = =" . =-1'u= . =_l =
Let Q= K_+ A_ Ay T TRy T Ay AL - Use Sylvester's
test for positive definiteness of quadratic forms, which
says let 5L be the matrix representing the first L

rows and columns of am. Thus, by analogous notation,

If Q, 1is positive definite, then det 6L > o for all
1 <L <= . This would not be very practical if we had
to find det 5L for all L. However, det aL should be-

come large and positive as L becomes large, for the

following reasons.

First, K, 1is diagonal and has entries which become
large as L + », In our example, Km - m2 as m + o,

Second, as long as our feedback sensors and forcing
elements are of finite width, they must have small
coupling to the higher modes. This says that [Anml + o0
as m + ®, Thus, the effect of ?N, representing the un-
stable modes, is minimized as m becomesmiarge. Our later
examplesbear out this premise. Essentially, each Q

L
of Sylvester's test approximates the whole system by

(N+L) modes.

The first few terms, then, will tell whether 6m

is positive definite. 1In many cases the first term of
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the series of tests, det 51, will determine the entire

test. This first term requires

—! L==1'. = o ==1' ., =
Kye1 > - A ger T Ay v AN T Ay
(4.1.2.1.7)
where AN+l is the vector with elements An(N+l)' This

says that not only must the (N+l)th mode be stable,

but it must be stable by a certain margin to avoid pging
destabilized by the feedback coupling to the unstable
modes. A good feedback design should minimize this
margin to maximize the stable range of P. This can be
done by maximizing det [KNI, so that iﬁl is small, and
by minimizing all elements of ﬁm. This says that the
coupling to unstable modes should be strong, and the
coupling to stable modes weak, for best use of feedback
stations.

Let's analyze our example case for stability of

the null. Assume An(z) = Bn(Z) as given by the example.

Then we find Anm to be

nkL

_ N

An= 7 /2  sin mmz dz

n-1
N L

_ 72 m(n-1ym

[ cos - cos T _ 4

mw N N

(4.1.2.1.8)
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Consider the case of N = 2 feedback stations. How

large can P become before the stability of the null can
not be sustained by two feedback stations? An approxi-
mate answer can be gotten by requiring that the mode
m = 3 be stable, giving P < 9 n2. However, the exact
answer will be a stronger condition on P, due to the
coupling to unstable modes through the feedback.

To find this 1limiting value,first it is necessary

to calculate ﬁ and iN for N = 2.

N
_ 2
Kl =T P
- 2 _
K2 = 4 7 P
- 73]
AN = — —_—
T T
2 -3
= 1T Tr‘

== _ =4 = . )
det AN = = # o0 so AN is invertible:

T
=..l_
AN-+/én + /2 n
4y 4
+ /2 1 - /2
4 4

We now calculate the matrix 5@ by stages as 5L'



— w2 —3nu
e EEE ST v (572 -2p)
N N N 8 8
M
=37 L (5n2—2P)
8 8

We will examine only the first two matrices 1in the
test for positive definiteness of 6w; that is, we will

require det 52 > o, Therefore, we need only

(3m° - P
(4m)° - P

K3

Ky

and the first two columns of im

/2 o
3T
V2

o
3w

We see that the mode m=4 does not couple at all to

our feedback. This is not surprising, since m=4 goes
through a complete cycle of the sine wave at each feed-
back station. Hence, 1if Ql is positive definite, Q2

will also be.
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= - - /‘2 /5 . ="l' . Z =_l
2
3
2
- 1 2 _ 827°- 10P
Ql e K3 + § (Tr - P) e
9

The requirement det Ql > 0 glves the exact condition

for null stability with N = 2:

P < 8.2 12 . (4.1.2.1.10)

It may be verified that this condition 1s stronger than

any higher-mode approximations det 5L >o for L > 1,

for the reasons discussed previously. The above con-
dition is a limit on the destabilizing voltage V in terms
of the tension vy and other geometrical factors. If a
higher value of P is desired, a rearrangement of the
feedback geometry with 2 stations is theoretically possible
which could give up to P < 9n° as a stability limit.
Higher values of P would require more feedback stations.

Raising the feedback voltage FP does not allow null
stability at higher P.
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b,1,2.2 Region of Stability

Once we have established the existence of a neighbor-
hood of stability near the null, it is desirable to define
the region of state space which represents possible
initial conditions leading to stable solutions. The
.initial condition of the membrane, given by £(z, to)
and %% (z, to), can be analyzed in terms of modes as
done before. Therefore, the initial condition of the
system is given by a double infinity of mode amplitudes
am(to) and velocities ém(to). The region of stability
represents a closed, bounded region in state space R(to)
which has the property that if E(to) = {am(to), ém(to)}
lies in R(t ) at t = t_, then ||s(t)|| will be bounded
for all t > to.

The boundary of R will be established by the con-
dition E(s) = E,» with B > o and E(s) < E, for all
s € R. Using the same reasoning as was introduced in
the last chapter, E_ = E(Eo) where Eo is the point
of minimum E (not including the null) where Vs E = 0.

This condition gives an equation for each component of

VSE. The mode velocity components are simply

a, = 0. (4.1.2.2.1)
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The mode amplitude components are more complicated

and give
a® = - DA D°
m n=1 nm ~Pn n
K D%
_ (4.1.2.2.2)
where D° = mil Anm aom
OThe solution can be found by assigning test signs
to TDE | and solving for aom. Since there are a finite
n

number of discriminants, this procedure is not too d4iffi-
cult. A self-consistent solution is required, so that
the aom found must produce the assumed sign of Don.

This check can be made with a small number of aom
answers, because a well-designed system will have small
coupling to the higher modes. If more than one set of
results is self-consistent, the one with lowest

E(EO) = E, should be chosen. If no self-consistent

set exists, then there could be no boundary to R and so

the system is globally stable. The final value of EO

is calculated directly as
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= 1 02 N Ol
E = I 3K a + I F |D
o} m=1 2 " m m n=1 Pn n
o
© N A F D
= I % Ko [ I nm Pn n ] e
m=1 n=1
o
K, D, |
N D 0 « N D o}
7 nil Fon 0 Lh=y App C ng - AJm pJ 7J ) ]
0 o)
2,°) Ky 10
o)
L N D N
E =-3% 2+ [ § A F,_ -1 _32._35 Ly o0
o] - nm ~ Pn . 2 m m
- 2 K n=1 0 n=1
m=1 m IDn |
(4.1.2.2.3)

This formula can be calculated to arbitrary accuracy
very quickly, since Km + © and Anm + o0 by hypothesis
as m + », We may use Eo as a measure of the stability
of the system, since a large EO means a large region of
stability. The condition of null stability assures us

that EO > 0.
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In the case that all Km > o, the system is
globally stable. Hence, there is no self-consistent

solution for 55, as can be inferred from (4.1.2.2.2):

o} : o
if Dn > o for example for all n, then Anm a,

but that implies that DnO < 0 which is inconsistent.

(O,

The example of the membrane with N = 2 may be
used to illustrate the process. Suppose P = 5n2.
Then the previous section assured us that a region of
stability exists, because the null is stable. How does

the size of the region of stabllity vary with FPn?

p1 = Fpo = Fp»

and make use of the previously calculated values of Anm'

We will assume for simplicity that F

The point EO occurs when a_ = o and, by (4.1.2.2.2)

o)
-F N D
a © = P z A n . Assume D O>0,fOP n=1,2.
m nm n
Km n=1 |D ol
n
2F, /2
Then a,° = P 5
T (P-5°)
o _ _ 0
o -2Fp /2
a3 =
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The terms m > 5 will have negligible effect, since

we can see that Km goes as m2 getting large and positive
1

while Anm goes as - This gives
~ 2 F, /2 -2F_ V2
Dlo = D2O = ( /2 ) ( —__—27?_— ) + ( 12)(___2__5_ Y. ..
T m(P- 7°) 3w 3w (91°-P)
) 8 Fo
91rLl
T, - 2 . (o] - (o]
When P = 5 1 it 1s clear that Dl = D2 > o. Hence
this is a self-consistent solution. It gives a value of
approximately
o 1. 2Fp V2 5 1 5 2FP/2‘ 2
ES -5(‘"-?)( 2)-5(91r-p) (———2—— )
T (P-7%) 37 (977 -P)
2
g Q 8 FP
o) 9 Tr2
(4.1.2.2.4)

Note that the critical mode amplitudes amo scale linearly

with FP s While EO scales as the square.
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What other sign possibilities exist? We could

choose DlO > o, D20 < o. This gives

2f2FP
al=a =au=o,a =

T(P-41°)

which 1s also self-consistent. However, this leads to a

value
2
2 /2 F 2 4 F
By = - 5 (4n°-P) ( ——F— ) =——p B
° T(P-47%) T

which 1s larger than the first. Hence, the first
value should be chosen. Other choices for the signs
of Dn lead to merely the negative of the previous
choices 1n terms of amo, Dno, and so the same values of
E,- Thus, the region of stability consists of all §(to)
such that E(to) falls inside the closed surface (which
encloses the null) E(s) = E, s&iven by (4.1.2.2.4).
Inside that surface, E(s)< E, and B > o.

These results may be expressed graphically in
several ways. One interesting graph for the system designer
i1s the range of parameters P and FP such that the null

is stable. This plot corresponds closely to those drawn

for linear systems. The example N = 2 is plotted in
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figure 4.1.2.2.1 with modal stability limits shown for
reference to the original system. This plot is not
as informative as the linear feedback equivalent be-

cause it 1is independent of F_, as would be the linear

P
case 1if An = Bn and F + », TIf desired, one could calcu-
late the limits on P as a function of N, the number of
feedback stations, and plot this dependence.
To give graphical information about the region

of stability, figure 4.1.2.2.2 shows the largest stable
amplitude of the lowest mode alo,
for various values of P. Many

as a function of
feedback amplitude FP
other plots are possible and made practical by the use
of a computer to solve the stability problem
for various parameter values.

Now that this example has been completely analyzed,

a more careful consideration of the more general continuum

rcontrol problem will be presented in the next chapter.
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4,2 Modes and State Space

What are the minimum conditions on a system which
allow us to treat it as was done in the previous
section?

4,2.1 Form

Until now, we have assumed the following general
characteristics:

1) The system must be governed by a set of
partial differential equations over r ¢ V (any number
of dimensions) which are at most second-order in time,
and boundary conditions on all S. bounding V, of the

J
form given below

2

—_ - = N N
=, . 93X ,.=,—. 3% — .= = = = 3D’
p(r) tbp(r)" — + K(r)'x+ £ B (7)F (D )+ £ B_'"(T)F_'(‘"n)=o
3t2 3t n=1 B nnt 2R n %
(4.2.1.1)
_ a NJ
At boundaries S,,L X+ I B "(r)F_ (D_ )
3’73 nj=l n, ny 3
NJ dp
+ T B! (pr)F ( — 21 ) = o
n.=1 =y oy dt
(4.2.1.2)

where K and ij are linear operators including spacial
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partial derivatives. With Fn and Fnj = 0, the linear

part will be referred to as the "original system".

The scalar functions Fn or Fnj will be referred to as

"feedback". The "sensor signals" Dn or Dnj are spacial

averages of the dependent variables,

D =

S A _(r) ° X ds
n vy n

(4.2.1.3)

Dnj S Anj(r) x ds

We will assume that p(T) is positive definite;

that is, x''p(T) * X > o.

Linear Part - 2) The linear spatial operator K(r)'x

with boundary conditions ij X = o at Sj has eigen-

functions iﬁ(?) and eigenvalues K_;

A

(r) * X, (¥) = K_blr) X_(F) (4.2.1.1.1)

where the fﬁ are normalized so that

.
-

\frfm(i?)" (r) x (r) d v=1 (4.2.1.1.2)

ol

and the Em form a complete set over V:

x(r,t) = a_(t) fm(F) (4.2.1.1.3)
m

for any reasonable x(r,t) satisfying the boundary conditions.
Note that this limits the system to one with a countable

number of eigenmodes and eigenvalues. This avoids the problems
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of continuous spectra.

Thus the coefficients { am, am} = s form a vector
space which contains all possible states of the system
- dx
{X,E}.
3) The Eﬁ are orthogonal for m # n,

S En(FnzcaJIm(F) dVvs= 3§

v mn

(4.2.1.1.4)

This is equivalent to the statement that K(r) is a self-

adjoint operator:

fOx (T RE) XAV = Sy (D R (B x (F) a v

(4.2.1.1.5)

for any El and ;2 satisfying the boundary conditions
Lj(fi) = 0 at Sj' Below we show the necessity and sufficiency

of this statement to prove 3). Necessity: For if the fﬁ are
orthogonal,=then let

X, = I a X X~ =L a X
1 m m m 2 m n n
6 X, " K" x,dV==zIzfa a §{x "K'k dV
=Y %Y a a K § = T a 2 K
m n m m mn n o m

reversing X, and X5 leads to the same expression.



165

Sufficiency: 1If K is self-adjoint, then

S X' K" "X dV=/, X .%®'X 4av
v m n \'4 n m

T e Sy, — - T 4 Sy .—
Kn 6 X o(r) x, dV Km 6 X, p(r) X, 4V

For m # n, this implies that either fﬁ and ;n
are orthogonal, or Km = Kn. The cases of non-distinct
eigenvalues encountered in this work are those in which,
for instance, both sines and cosines of the same argument
make up the eigenfunctions Eﬁ. These are clearly orthogonal.
4) The linear original system then has solutions
as given in 2) with am(t) = Cm ejwmt. It will be assumed
that the modes are numbered so that Im(w ) > o for
m > M. If an infinite number of modes are unstable,
then feedback stabilization by a finite number of stations
is not possible.
This restriction implies that if m > M, then

b > o and Km > 0.

Nonlinear Part 5) The feedback functions Fn(Dn),
daD! dD' .
1 n ' nj
F ( It ) Fnj (Dnj)’ and F nj ( IT ) are assumed

to be piecewise continuous scalar functions, independent

of time, with at most one discontinuity at D = o.
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Under these conditions, it is possible to dot
the equation with %% and integrate over V, using
boundary conditions, to obtain an energy equation

%% = -B. The function E may then be used as a3 Lyapunov

function on the slab space defined by the mode amplitudes
a (t) and velocities Efm for stability analysis.

dt
Results:

The general form of the energy equation for this

system is

%% = -B, E=T+ y+ U (4.2.1.3.1)
1 dx' = dx 1 2
T=35/) z—.p.70dt=l 5 a
2 v dt dt m 2 m
_ 1 - .z . = o1 2
v = 5 S x K x d Tt=¢ 5 Km n
\' m
N Cn
U= I U where U = [ F (x) d x
n n
n=1 (o]
c. =/, B xdt=3:B a
n v n n nm Tm
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o P F (4.2.1.3.2)
dx = dx ’
B = J = .0 = = ¥ b
0 v dt dt m m m
an
Bp = g dt C Fn(Dn) - Fn(cn) ]
dc' dD !
n n
B, = ¢ . PV —
Voo dt n it

VE.s=o0 for small |s|
B > o (4.2.1.3.3)
and the region of stability bounded by E(s) = E_ where E, 1is
theis smallest value of E such that either V. E = o

S
at s_ or B > o at §O.

o)
Note that in the continuum problem, the spatial
distribution of the nth sensing and forcing elements
determine An(Z) and Bn(z). Clearly, we desire
An(z) = Bn(Z) to make B > o. However, the deviation

from this condition is measured by Fn(Dn) - Fn(cn)'

Therefore, if An(z) - Bn(z) is small (perhaps only
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Anm - Bnm # o for large m, and then very small) then
the effects of BP may be masked for motions on the
scale of interest by BO or BV' Then we may ignore this
deviation from ideal feedback design.
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b.2.2 Comparison with Modal Control

The control of continuous systems one mode at a
time has been discussed in the literature, in the con-
text of linear feedback. Clearly, if we can make each
feedback station interact with only one mode by spaéial
filtering, the control problem is enormously simplified.
If Anm = Gnm’ then design of each feedback station can
alter the dynamics of the unstable modes at will, one
at a time. Pole-moving schemes for linear feedback
are only one possibility, since nonlinear feedback based
on position or velocity information could also be used.
However, it is usually very difficult to achieve the
required spacial distributions An(z) and Bn(z). Luenberger
observers relieve this constraint somewhat, but only
by removing the problem to higher modes which they do not
estimate. The scheme proposed in this work is more
general, in that An(z) and Bn(z) can be chosen arbitrarily, as
long as they are almost identical. After this criterion is
satisfied, one can then try to improve the design to the
point where it begins to approximate modal control.
Looking at the null stability criterion, it is clear
that the most efficient feedback scheme is modal control.
However, if that can not be conveniently achieved because

of physical limitations on An(z) and Bn(z), one can still
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achleve stability by keeping An(z) = Bn(z). The deviation
from modal control results in combining unstable modes
with stable ones in the null stability criterion, and

gives a measure of system degradation.
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h,2.3 Generalization -

What restrictions in the preceding class of problems
can be relaxed? Let us consider them in order.

1) The system of partial differential equations
may be of higher order I in time derivatives. 1In general,
the derivatives of order I-2K, o < K < I/2, will become
part of the Lyapunov function E, and the odd derivatives
become part of its total derivative B in the resulting
energy equation %% = -B. If o(r) = o, then the equation
becomes first order in time, and might, for example,
be represented by the diffuslion equation rather than the
equation of a vibrating string. The same analysis can
be used, but with the simplification that the state con-
sists only of mode amplitudes. Details of such a system
are described in Appendix C.

Also, ; and g may be spatial derivative operators
instead of constants. However, they must be self-
adjoint as defined in 3), for otherwise non-orthogonality
of modes would not allow drawing of conclusions about
stability. Once again, the space of states having negative
damping must be finite-dimensional 1f feedback is to be
successfully applied. Note that if the ;m are not the
eigenvectors of 3 and E, then finding w_ may be compli-

cated, but the energy analysis can still be used. In
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such a case, analysis of %% = -B would require defining

two different basis sets in the state space ror proving
E > o and B > o.

Also, the boundary conditions Lj(f) = 0 may include
time-derivatives. In this case, the set of eigenfunctions
is not limited by such boundary conditions, and the
boundary condition is used to determine additional terms
in the energy equation. Clearly, boundary interactions
are just a special case of interactions which are dis-
tributed through the volume V.

2) Clearly, this normalization is arbitrary. How-
ever, no other has any obvious advantages.

3) Note that the requirement that K be self-
adjoint is in some cases related to the property of
exchange of stability. If some parameter of a system
1s varied continuously, and the system as a result be-
comes unstable with zero frequency, then the system is
said to exhibit exchange of stability. If b remains
non-negative as R varies, this property clearly results.
One common form of the b operator is that of the viscous
stress tensor. Appendix A shows that this 1is self-
adjoint by showing that V ' F has a symmetric form. We
also note here that convective systems (those with non-
zero equilibrium velocities VO) are in general not

self-adjoint if VO " x # o.
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4) Our division of the system into linear "original
system" and nonlinear "feedback" need not be correct.
Perhaps something in the system changes rapidly as a
function of the state as compared with other processes.

In that case, the '"feedback" may be an internal mechanism
with effectively an infinite number of stations. Such

a case will be discussed later, in the example of a

fluid with a sharply bounded field region above it.

Then, any eigenvalues are allowed for the linear part, and
the summation over N becomes an integral.

5) The feedback functiors Fn(Dn) etc. may be functions
of time. 1In this case, their derivatives enter the energy
equation as additional terms in B. In general, all
effects which can not be handled as a part of E must be
included as corrections to B. In many cases, as will be
discussed, such correction terms can be bounded and their
effect understood this way.

Also, 1t may be that a programmed value may be

subtracted from the sensor signal,

Dn*(t) = Dn(t) - Sn(t),

and the feedback is a function of the error Dn*(t). This might ap-
Ply to the possibility of shaping surfaces of plastics

or metals in an extrusion process, or adding time-variation
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to control for stability. 1In this case, the prc
can be put in the form of a static or quasistati
equilibrium and a dynamic stability about that e
with time-varying Fn' These aspects will be dis
later.

In the work which follows, we will continue
with a one-~-dimensional model in which p and b ar
stants. K(r) will be a linear sum of spatial de
all of even order. Thus, we can examine the prc
of the entire class of systems in terms of the s

model we have already developed.
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L,2.4 Norm, State, and Stability

The system can now be formally described in terms
of the state space {am, ém}. Since the feedback requires
no energy storage, it does not add state elements. If
the feedback is truly external to the physical system,
then it makes sense to refer to the Dn(t) as the out-
puts and the Fn(t) as inputs. We know that the stability
of an infinite-dimensional system depends upon the
definition of norm. Our definition will be

Xl = [z al+a?] 1/ (4.2.4.1)
This will converge for most common perturbations x,
which have components falling off at least as 1/m.

Lyapunov stability of such a system can then be
defined as it was for finite-dimensional systems. The

development 1s fully described by the model in section 4.1.
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b3 Complieations

Most of the complications which are of interest
for this class of control systems are complications in
the form of the feedback law. As such, they can be
treated independently from the continuous system itself,
and so are handled just as in the lumped parameter problem.
Therefore, we refer to Chapter III for the following
topics.

Hysteresis as Negative Damping or Energy

Time Delay as Hysteresis

Time-Sampling as Time Delay or Lag

Control with Bang-Bang Feedback

Multiple Feedback Station Problems

Higher Order Terms

Dead Band and Linear Band

We simply treat the modes of the continuous system
as oscillators, coupled together by the feedback. Our
algorithms for treating stability questions have all
been worked out so that the modal series can be truncated,
knowing that the effects will be minimal. This is based
on two assumptions:

1) The higher modes of the system, having rapid

spacial variations in their structure, are very stable
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(Km and/or b, large and positive.)

2) The higher modes do not couple strongly to the
feedback, because the feedback sensing and forcing elements
have finite size. (An and Bn do not have rapid spacial
variations in their structure, and so Anm and Bnm become
small as m becomes large.) These assumptions become
more true as the design of the feedback system improves,
since good design implies:

1) b_ and Km >> o for m > N

m
o)
2) Bnm = Anm
3) det KN large
4) [Anml small for m > N.

In other words, the sensors and forcing elements
should be designed so as to give spacial weighting
patterns with maximum coupling to the unstable modes
and minimum coupling to the others.

Nith this in mind, the algorithms for testing for
null stability and determining region of stability should
be re-read at this point. The tests given in Chapters
III and used in IV-1 are identical except that the number
of modes (oscillators) has become infinite.

With this in mind, we will focus on several problem
areas in the above group of topics which are peculiar

to the continuous system.
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h,3.1 Combined Position and Rate Feedback

To minimize system complexity, it is desirable
to use a single feedback station with one bang-bang
output for both position and rate feedback. Thus, some

algorithm based on both Dn and D will be used to

N

determine G (D, D), and F = -F, G716 .

n’
The simplest case, of course, is a linear weighting

of the two. Let the discriminant of the feedback be

Grl = Dn + T Dn = ; Anm (am + T am)

(4.3.1.1)
We can form an energy function for this type of
feedback by taking our modal equation of motion, multiplying
by ém as usual, sum over m, and then notice that the feed-

back terms look 1like the first term of

G_ . G . .
= R .—n. = _n
t C Fn lGnl ] ) Gn F L Anm(am+T am)

G| G "

4
d

(4.3.1.2)

The second term is of the form

Gn ..
Fn Dl’l
EN

which may be either positive or negative. However, let's
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assume for a moment that the amplitude a, are small,
so that the discontinuous feedback force dominatesthe

equation of motion. Thus

(4.3.1.3)

Therefore, combining the above with our equations of

motion, we get

d
;[T+w+U] = -B (4.3.1.4)

where U = I F_ [Gn| » T and ¢ are as given previously,
n

and the feedback part of B is approximately

(4.3.1.5)

Thus we once again have an energy formulation. Now ,
however, the feedback energy involves the velocities ém
as well as amplitudes am. If T + o, we recover the
original energy function. As T becomes large, however,
the energy equation should approach that of a pure velo-
city feedback system. It does not, because as T+ the

force as written here takes on an indeterminate form.
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Long before that happens, however, the null becomes
unstable if ml2< o. To see this rigorously, one has
fo solve the problem of proving VSE' s > o for all
{am, ém} such that G = o; the same operation as done
in positional feedback. However, Gn = o implies (in

vector notation from chapter III).

(4.3.1.6)

Solving for EN and substituting into the energy matrix
to find T + y, one gets the result V_E ° s = 2(T + y)
which is given in figure 4.3.1.1, as a matrix divided
into nine parts. A computer could use Sylvester's
test for positive definiteness by truncating W_ and A
in the usual way. A more intuitive look, however, is
more rewarding.

If the feedback is well designed, 50 that elements
of i&l and Kw are small, then two terms give most of
the information 1n this test. The static considerations
come from the terms in the center submatrix, and are identi-
cal to the null stability test for positional feedback.
The velocity contribution is most critical in the upper-
left submatrix, which is purely diagonal. Stability

requires that
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1+ 7% w > o for all m < N. (4.3.1.7)

The most dangerous mode is m = 1 since it has most negative

m2. The upper limit on T consistent with stability, then,

is predicted to be

5 (4.3.1.8)

The existence of off-diagonal submatrices have the effect
of requiring slightly lower values of T2,because using the
generallized Gauss theorem: if a matrix K = | l and
let D # o, then det K = det (R -85 181! e, for

det K > o, we require not only det & > 0, but det (i—g'ﬁ-l'ﬁ')>o

Of course, if wmz > o for all m, then any T is allowed,

as we would expect. Also, if T = 0, the original stability

criterion results.

Region of stability considerations take the form

from VS E = o of

o o 0
= - B
23,0 = -T1 F a6 °c°
5 ©°
-z Fn Am G ©
2 O - n ['™n |
m 2
m

(4.3.1.9)
The resulting maximum energy of stable perturbations

is given by



(4.3.1.10)

which can be shown to be positive definite from the pre-
ceding discussion. The effect of T > o is to lower
the value of El slightly, making the region of stability
slightly smaller.

We must remember, however, that the form for B
written above is an approximation. Actual results of
computer experiments show that in fact instability results
for T less than some critical value, but the precise
value is about ten times greater than l/ml2 and depends
on initial conditions. Optimal values of T to give
fast quenching of perturbations without overshoot generally
depend on the initial conditions. For static initial
conditions in which the lowest mode makes up of the
initial condition, good choices for the value of T

-

can be derived from the lumped approximation

where
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Gn = (al + T al) Anl (4.3.1.11)

The optimization problem has explicit solutions for
finite-dimensional problems. (See for instance, LaSalle's
work. )

Here is another approach to combined feedback for
small T. Let

D + T D
F (t) = -F n n

n .
+
1Pn * T Dy | (4.3.1.12)
Thus, examining the feedback force in the Dn - Dn
plane, we see that Fn(t) changes sign across the line
m =
Drl + T Dn 0.
This scheme can be related to the one given by
simple position feedback, since our energy function can
be formed from it. We note that the feedback force
here is of proper sign for position feedback provided
that Dn(Dn + T Dn) > 0. Vhen this inequality is violated,

then the force is in the proper direction for velocity

feedback. Thus we form the total force
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D (D + T D) D
= D _ _n"n n n
Fn(t) = - Fn n - Fn[ 1 ]
|Dn | |Dn(Dn + T D)) |Dn|
(4.3.1.13)
This gives
U, = FID | > o

(4.3.1.14)

This effect of the rate feedback, then, is to
add a damping term without changing the energy function.
The damping term is nonzero only part of the time.
If T 1is the time between zero-crossings and v > > T,
then Bn # o for approximately g of the time. Thus

averaged over many oscillations, the effective feedback is

that of a term

rIj
[}
|
W/
3
!
A |3
W)

n’ n (4.3.1.15)
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Since the average zero-crossing time Tt approaches
zero as the amplitude decreases to zero, the damping
term given here will be dominated by other effects, such
as time delays, for small amplitudes.

We may conclude that the effect of lead or lag
compensation in a positional feedback loop, formed by

placing a linear element with transfer function

with Tl, T, < <1
1L + T, s

(4.3.1.16)

between the sensor and the nonlinear element in the feed-
back loops, will be:

If Tl> T2, damping is introduced

If T2> Tl’ negative damping is introduced.

The aprroximate value of the damping term is for

Ti << 1, given by

_ (T, - T,) .
B, = F_ 1 2 |D

T
(4.3.1.17)

These results match those of Kochenberger, who used a

describing function approach to treat this class of lumped

control problems.
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4.3.2) Control of a Continuum with Discrete Bang-Bang

Feedback

Suppose that, in addition to stabilizing a con-
tinous system, we actually wish to control its shape.
Perhaps we wish to mold some material without touching
its surface, using electrical or magnetic fields. The

membrane model will be used, so that

2 2 N
9 & = 23L& 4pg - % B (2) P (t)
3 t° 3 z° n=1 & n
where
E(o,t) = €(1,t) = o (4.3.2.1)

Suppose we want to force the surface into some shape.
This time, the discriminant will have an offset Sn

so that

Dn(t) = [ An(z)'s(z,t) d z - Sn

o
(4.3.2.2)
The feedback force Fn(t) will be of the form
F D F _ D
F(e) = —+ [1+ B 3400 5 _ 10 9
2 2
EN BN

(4.3.2.3)
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That is, Fn(t) takes on Fn+for Dn\t) > o, and
Fn- for Dn(t) < 0. We are free to define Fn(f)
for Dn = 0.

To analyze this system, we expand the displacements
in terms of the normal modes of the system without the

feedback, as before.

£(z,t) = i am(t) Em(z), En = /2 sin mwz
(4.3.2.4)
where without feedback
2
- a _(t) .
= = -wm2 a,(t) (4.3.2.5)
3t°
wm2 =n® 1% - P (4.3.2.6)

With the feedback, the equation of motion can

be dotted with Em and integrated over z to give

2
d- a
Z 2 . _ .1 -
, t2 + . é Em (g-Bn(Z)-n(t) ) d z
Let Bn(z) = ; Bnm gm(z)
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1

Bm = fo Bn(z) Em(z) d z (4.3.2.7)

Then

m (4.3.2.8)

We now want to cast the problem in the form of a
static equilibrium at Dn - 0. For that reason, we write

= P
Fn(t) Fn + Fn (Dn(t) ) where F_ 1s constant and

1 2 1
F = o at D_ = o. We then have
n2 n
N B
ame = 5 nm Fn
n=1
6 2 (4.3.2.9)
m

at the point Drl = 0. Let
A = F e (z) A (z) d 2
nm 9 m n

SO that

n m nm m n (4.3.2.10)
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Thus we have, at the equilibrium (denoted by primes)

Dn = 0, or using (9) and (10),

N B, F
m J=1 2
w
m
N B
= g (r am _Jjm Foo
J m 2 J
W (4.3.2.11)

Now, we will have to assume the usual things
about the system. One is that wm2 increases with in-
creasing m. The other is that Anm and Bnm decrease with
increasing m. Both of these are reasonable for any
system with stability in the short-wavelength perturbation
limit and feedback electrodes of finite size. Thus, the

coefficients in (11) will converge quickly. We can write

(11) as

{1
|

S = 1 (4.3.2.12)

where S and Fl are n-vectors and ﬁ is the matrix of co-

efficients
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g = 5 (4.3.2.13)

If one mode has wm2 * O, we see that it dominates

the series and Fi + 0.

If each of the N feedback stations is spatially

discrete, and if An(Z) and Bn(z) are not spatially orthogonal,
then we expect that M will probably be invertible. Other-
wise there would exist a set of nonzero forces that could

exist in static equilibrium with zero output. Thus we

may write

(4.3.2.14)

This defines the values Fnl in terms of the off-

sets Sn' e also have the complete expression for the

shape of the equilitrium from (9)

£€(z) = a £ (z) =

m m

Em(z)

z
m

(4.3.2.15)
This summation over m again converges quickly,
as did (11).
We then have solved the equilibrium problem, and

can examine the dynamics. What we've done is to fix the
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values of N scalar quantities, representing weighted
average characteristics of the equilibrium. Any number
of techniques can be used to decide what fhese should
be in a given practical situation.

For example, let N = 1 feedback station, with

2 p
Fl(t) =1
|D|
and S = .1 with A(z) = B(z) = 1. Let P = 272

so that the m = 1 mode is unstable

2 _ _ 2
@y
w22 = 2ﬂ2
m32 -

Thus we're trying to keep the system at an average
position of .1 by applying a force of + w2 uniformly
to it whenever its average deflection varies from this
figure.
The parameters

1

A =B = f /2 sin mwzdz = 2/3
m m o “mr > M odd

O , m even
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So

22 2 8 )
M= T ()« ) =7, [-1+ =+ ...] = -.08
m " 2 T 63
odd m
So
Mt = _12.5, F, = M1s = -1.25
Hence the equilibrium is given by
2/2 1 ) sin mmwz
Eo(2) = L (-1.25) ( =) (T2
m m
odd
£.(z) = 114 sin mz - .0054 sin 3wz
Now for the dynamic problem.
Let am* =a - ame represent the motion in state
* *
space ( agm » an ) away from equilibrium. We have
from (8) 3t
2
r 9 2 *
L +(J.)m ] am = I Bnm Fn (t)
at2 n 2
(4.3.2.16)

where



* ¥
-F D F D
_ n+ n n-— _ n
Fnz(t) = Fn(t) - Fnl = (1 + ) + (1
2 |Dnl 2 anl
= (F - F Pn D
n+ nl) ( 1+ ) + (F_ - F ) (o _n
|D_|
2 n p) |Dnl
= *
Dn 'Zr:l Anm am
(4.3.2.17)

The dynamics are determined completely by (16)

and (17). In particular, if we rewrite (17) as
F + F - 2F -F + F
_ n+ n- nl n+ n- D
B (£) = «( )_¢& ) n
2
2 2 anI

That is, we have a new problem with no offset, and
a different feedback force! If we wished, we could make
this in turn into a problem with offset, and a symmetric
feedback term. The two effects are equivalent and can
be transformed linearly by (12) and (14).

We would now like to examine the region of

*
stability of the system in the state space ( i %n s am*).
at
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9 a_*%
We multiply (16) by m and integrate by parts to
ot

get
dE

m d a_¥ 2
—L =4 1 m 1 2 .2 . _

at— L 5 ( ) T3 %n At £Bnm %12 l=o

(4.3.2.18)

This tells us that we want Bnm to be large for modes
such that wm2 < o to ensure a large energy contribution

* =
5" Let ; Bnm am Cn'

Summing over all m, we then get

for our limited force Fn

dE 0, E=T + ¢ + U (4.3.2.19)
dt
*
L 9 ap¥ 1 se 2
T=1 35 3t ) =/ 1< v ) dz>o
m o 2

" z«lwza*2=fllta—(s-5)2] Ip(g-£ )% d

02 m “m o 2 3z e - 3PlE-E z



197
In order to ensure stability, we want the energy

E > o in a small region near the new origin
- *
o%: % ap ¥ o am* = o.

ot

This requires that, for all n,

Cn = Dn (4,3.2.20)
-F + F
Fo#= nl ., (4.3.2.21)
2
Fn— - Fnl
Fn* = > 0 (4.3.2.22)
2

(20) ensures that the feedback is in the right
direction for all modes. It implies that Bnm = Anm
for all n and m, or Bn(z) = An(z); that is, each feed-
back station has the same spatial distribution in its
forcing and sensing functions. This can be relaxed
only at the cost of driving some higher modes unstable
for very small oscillations about o¥.

(21) and (22) ensure that the feedback drives the
system toward Dn = o rather than away from it, for both
sitgns of Dn‘ If IFnlI gets too large, one of these

conditions will be violated, so this is a limitation

on the possible offsets Sn consistent with stability.
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We then have a feedback function for the nth station

looking like Figure 4.3.2.1. The number of stations needed
for bang-bang stabilization is independent of the

amplitude of feedback as long as it is of the

proper sign, so we will not discuss it here. Generally,

N must at least equal the number of independent modes

with w @ < o.
m

To determine argion of stability, we look for the
minimum energy EO such that VE = o at E(Eé) = EO. The

state vector 56 can be determined from the minimum of

Fn+ and Fn-’ denoted Fn0> 0.

This requires a self-consistent solution to

(4.3.1.23)
where Dn has the sign appropriate to Fno and results
from amo. A finite number of trials will always yield
a solution if it exists. If it does not, then global
stability applies, as is the case when wm2 > o for
all m. Otherwise, the region of guaranteed stability,

—%
including o , is then bounded by the surface



199

E(s) < Eg

where E(s) is given by (16) and

o
N D 2
_ 1 n
E, = I [ ¢ A Fro ]
m n=1
2 o w.? [D_ |
m n
o}
(4.3.2.24)
o)
t L F |Dn |
where
o]
A N D.
D = - nm [ £ a,_F, _—d 7
n _ Jm “jo
o m J=1
0 e |Djo|
m m
or
o
N D 2
E = z - 1 [ z A n ]
o) nm no
m 2 o (U2 n=1 [D l
m m n
o
(4.3.2.25)

(which is positive, and converges quickly)
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Continuing our specific example, we see that (20),
(21), and (22) are all satisrfied. We may assume from
previous work that this feedback arrangement has an

—%
energy minimum at o . We have

F¥ = 12 + 1,25° =11.1 > o
F# = ﬂ2 - 1.25° = 8.6 > o
So the minimum is Fn - F =28.6
o

Thus we assume that DnO < 0 and use (23) to find

o 2/2 (8.6)

am =t ( m ) w 2
m

o 2ve 8.5

a-l = - ( T 11.2 ) = . 77
2/2 8.6

o _ ao _ o]

a,” =o 3 = ( 3 )(7“2) = .037

So D° = g Am amo < 0o as assumed, so the solution is
m

self-consistent

m

2 (3) 112 (?) 2 30

So any initial perturbation with initial values of
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*
am*, 9 2m within the volume enclosed by the surface
ot
0 a_¥ 2
- 1 m 1 2 %2
E(s) =8 5 p (—mm——) + 3§ = P a
m 2 m 3t m 2 'm m m
F¥ F#*
+D[—(+—2 ) - = (1. DB, E,
2 |D| 2 |D|
where
= *
D z AL a (4.3.2.26)

will result in a bounded response for all times.

The problem is solved.

We may complicate the issue by making Sn or Fn+
functions of time. The same steps apply, with statzc
equilibrium separated from the dynamics, but the time-
derivatives must be lumped into the expression for B,

as done previously and in the continuous feedback

section.



202

b,3.3 Boundary Control

We will often encounter, in the design of control
systems, the limitation that. the system is only accessible
Lo us at some boundary. In one dimension, this means that
feedback can only be applied at the ends. In two dimen-
sions, the boundary is the perimeter, and in three
dimensions this is the enclosing surface. It is important
to know what properties the system must have to allow
us to stabilize or control its behavior with such restricted
feedback.

We examine the one-dimensional case in the context

of our membrane example. The equation of motion is simpli-

fied to:

—825 = 325 + PE

3£ 322 ‘o <z < 1

Z (4.3.3.1)
P, T, P constants
&
at z=o, 3z = * F (&)
=1, 2% - _p (¢

at z=1, Y Fl(E) (4.3.3.2)

where Fo and Fl will be our feedback functions. Thus,
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if Fo = F1 = 0, we have the "free end" string problem,

with solutions

g:

M 8

am(t) (/2 cos mmwz), wm2 = m° e - P

m=o0

(4.3.3.3)
We may then calculate the effect of the feedback

by considering overall energy conservation; we multiply

the equation by g% and integrate over =z to gat

T -0 E=T+yp+uU (4.3.3.4)
l [
Te S ogeC g% L %y 2
o m=o
dt
1 2 o ]
- 1,3€& P .2 = 2 2
v =/ (=) - = €° dz=r 32 W a
o] C 9z 2 m=o m n
£(o) £(1)
ug = FO(D)dD + Fl(D)dD
o 0

We may compare this with feedback from two distri-
buted feedback stations by noting that the same result
is derived from our general development when

Ao(z) = Uo(z) Al(z) = Uo(z—l)

Giving
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Do(t) = g(t,z=0) Dl(t) = £(t,z=1)

Thus we can use the same general approach to evaluate
the stability of the system. One difficulty arises,
however. Since the feedback has a singular spacial
distribution, the coupling coefficients Anm do not drop
off as they would for more distributed feedback. In
fact, Aom =1, Alm = (-1)™ is our example. In effect,
this 1s saying that the expansion of the system's perturba-
Cions in terms of modes of the original system does not

necessarily converge.

This can be seen in the case of bang-bang feedback;

_ _ D
F,(D) = F (D) = F —

(D] (4.3.3.5)

dhen we test for stability of the null, we have from D=o

£(o) = €(1) = o giving

1 21 (4.3.3.6)

q5i+1

Substituting into ¢ and requiring Yy‘s>o for all s

results in the Sylvester's test for the quadratic form
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2
o wo
2 2
w3 + wl (o} wl
2
0 m,4 + wo o]
2 2
ml (o] (US +

The first few inequalities resulting here give

(2ﬂ)2
(3m)°

(um)?

(STr)2

2P

2P

2P

2P

and so on.

> 0
> 0
4
P -
(2m)°-2p°
o
- > (0]
(3m)°-2p2

(4.3.3.7)

(4.3.3.8)

Instead of becoming more and more easily satisfied,

these may become less and less so.



We can not be sure what that limit would be, without some

new physical insight. That comes from noticing that the

conditions £(o) =£(1) = o impose a new set of boundary

conditions on the system, and we can solve for the new modes,

getting

£ = L a. /2 sin mmz, wm2 = m2 nz P

m=1
(4.3.3.9)
Clearly, the stability requirement is
2
P < 1 (4,.3.3.10)

Thus, we can get an exact expression for the limit
of the series of tests above by considering the stability
of the system with the argument of the feedback set to
zero.

We assume the bang-bang feedback has pinned down

the boundary, and require that the resulting system be

stable. If it is not, then no rearrangement of boundary

feedback can be effective for this system.
For region-of-stability considerations, we can rely
on the previous work with distributed feedback, since

even if the coupling coefficients do not decrease for
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large m, the increasing frequencies will be enough to
cause the series calculation of Eo to converge. In
our example, the series will approach l/m2 for large

m.
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b.3.4 Continuous Feedback

Since we have considered in detail most of the
interesting aspects of bang-bang feedback from an
aribtrary number of feedback stations, it is logical
to consider the limit of an infinite number of such
stations. This would be the case of a force applied at
every point in the system as a response to perturbations
at that point. While it is hardly feasible to consider
such large numbers of feedback loops that the system is
well modelled by this approximation, there are physical
systems where the description is quite good. These
are systems in which some property of the continuum is
sufficiently nonlinear that it is worthwhile to model
1ts effects as a discontinuous feedback force imposed
on a linear system.

Such a system might for instance be a fluid inter-
face which has its equilibrium surface very near a sharp
boundary in some field. Suppose, for instance, in order
Lo orient a fluid with high dielectric constant, we
impose an electric field over the region we would like
it to occupy. If the field drops off suddenly, the
surface of the fluid feels a bang-bang force whenever

it enters the field region. Thus incompressible fluids
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can be oriented in a zZzero-gravity environment
We can model such a situation as quasi-one dimensional
with obvious generalizations to more dimensions.

We now take up a concrete example of a system
which we propose to analyze for stability in terms of our
energy function for bang-bang forces. We choose a
fluid suspended against gravity, with e > €5 and a
sharply bounded region of electric field EO inside its
equilibrium surface.,

Consider the problem of an insulating incompressible
fluid, bounded by rigid walls at x = 0, 2 = o, and
z = 1; of density p; dielectric constant e > g surface
tension T, equilibrium surface at x = b, in a gravita-
tional field gX. Within this fluid, we establish a
region of electric fields of constant magnitude Eo by
means of closely spaced conducting plates of alternat-
ing potential, spaced less than one unstable wavelength

apart. We then write conservation of momentum within

the fluid as

AV
P — 2y
ot ogx -VP (4.3.4.1)

where

v " V=o (b.3,4,2)
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Taking the divergenée of (1), we have

P= O (u03|u-3)
with solutions of the form

P = PO + pgx + 1w

where

T = ¥ T cosh K (x+¢l) COS K(Z+¢3)

m
cosh K b

(4.3.4.4)

We then apply our boundary conditions on the fluid
by setting the velocity normal to each rigid wall equal
to zero. Using (1), this gives the results that
¢1 = ¢3 = 0. Thus " is the Fourier amplitude of the
pressure at the plane x = b. The equilibrium condition
gives P0 = -pgb. Thus, to first order, the Fourier
amplitude of the pressure at the fluid surface is given

oy

(4.3.4.5)



where the displacement at the surface 1s given by

E(z,t)=L a_

m=o0

noting that aj =

O.
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(4.3.4.6)

We now may write the surface tension force on the

interface as

with components Ton = = TK

2

a

m

(4.3.4.7)

The force on the perturbed interface due to the

electric field is zero for positive displacements and

constant for negative ones.

oo (e-eo)
e
2

(1 -

It is given by

—

| ¢l

(4.3.4.8)

since it is either opposing the gravitational effect

or zero.

If the fluid is incompressible, the integral

of the constant part of Fe over the surface rgives a

simple constant bressure, and the second term in Fe

remains as the effective feedback force.

We consider the simplest cases first, in order to

show parallels to the discrete feedback case.

Later,
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we will add the possibility of offset C(z) in the input
Lo the nonlinear effect, asymmetry in the response
Fe(E), and time variation of either of these quantities.
In a sense, the continuous feedback problem is easier
than the discrete one, because we need not worry about
whether we have enough feedback stations. The questions
of region of stability, quasistatic approximation, etec.
are still valid, however, and the answers are complicated
by the fact that we can no longer find the feedback
force at all points given the perturbation, without
considering an infinite number of points. The feedback
force is now a piecewise-constant function with an un-
known number of zero-crossings at unknown locations,

as for example in Figure 4.3.4.1. The force has Fourier

components

F = (g-e ) E S (1 - § ) cos Kz dz

> €] (4.3.4.9)

We note that, to first order, the pressure at the
interface is totally directed normal to the plane x = Db,
Thus, we may write equilibrium at the interface as

2 e _
L + og am - T K am + Fm = 0

(4.3.4.10)
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Writing the x-component of (1) at the interface,

3%a
p m -
-K Tanh Kb (4.3.4,.11)

2 m

Solving (10) for L and substituting, we have

2 e
a_ = -
e a,= K Tank Ko[ [pg TK"] a, + Fm ]

o]
3t 2
(4,3.4.12)

We now rewrite Fem = (-aU/Bam for all £ # o, where

-(e-EO)E 2 l
U = o roa [ (1 - 5~ ) cos Kz dz
2 m © 1
(4.3.4.13)
2
-(e-e )E ®
= °° © it a_ cos Kz (1L - — ) dz
2 0 o €|

(4.3.4.14)

We now recognize the quantity in brackets as g from
(6) and note that

1
[ & dz=o0 =23, (4.3.4.15)

o)
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so that
(t—:-eo)Eo2 1
U = S l gl dz > o
2 o -
(4.3.4,16)
d am 1
We multiply (12) by It K Tanh K6 and sum over m
to get
o} d2 a d a d a
L U Lo (ET.'K2-og]am L
m K Tanh Kb a2 dt dt
(4.3.4.17)
U d am
+ ] = o
] am dt
which we rewrite as dE/dt = o
E=T+ y + U (4.3.4,18)
. d a 2
T =z < ( ") o
m 2 K Tanh Kb dt
_ 1 2 _ 2
Y = ¢ 5 (T K og) (am)
m
(e-e) 502 1
U= i | ¢ a Cos Kz| dz > o

2 O m
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P
and U as given vreviously. Note that

K tanh Kb
plays the role of an effective mass density O of the

surface. Clearly, adding viscosity will simply place a
negative term on the R.H.S. of (18), by analogy to the
Hamiltonian of the system (See Appendix A).

We then recognize that E is a positive definite,
decrescent Lyapunov function in a region sufficiently
near the origin in the state space defined by our mode
amplitudes. The system therefore has a stable null
solution. It is globally stable for g < 0, as would
be expected.

The region of stability for the system is given by
the set of states E-in a closed volume of state space
including the origin for which E(G ) < E - We find Eo

—

by solving VE = o0 at s = go and, choosing the minimum

value of E(G ) = E
o] o}
However, at this vpoint the problem becomes difficult,

if not impossible. Taking VSE = o0 gives

a =0
m
2 o
- €E-€ E
a @ = ( 0) o fl & cos Kz dz
m Ta
ATk? - pg) O &
Eo = a © cos Kz
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We no longer have a finite number of choices for
Eo(z), but can pick its value at any point independently.
Therefore, it is not feasible to try an exhaustive search
of the possible solutions. If we postulate the form
of_éi__ we may get an answer, but it need not be the

o
oni§ iet of self-consistent solutions. 1In this case,
o

3
o

assuming changes sign only at z = % gives

solutions, if they exist, of

_ (e-eo) g ° 0, m = even

0 0 .
a_~ = [ ] L
mw(TKz-pg) 1,

m = odd

If no solutions exist, then the system is globally

stable. In any case,

2
L l(e-eo)EO £ >
B, = ) ; C é TE] cos KZ dz]
m 2pm(TK -pg ) 4
> 0.
(4.3.4,.20)

Now let's consider continuum control. Let the modal

equation of motion be

32 a 3 a 1

m m
+ K a_+b + S F (t,2) cos Kz dz = o
mog ¢l m m M a9t o &

(4.3.4.21)
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including the possibility of internal damping. Suppose

F,(z) D(z,t) F o (z) D(z,t)
r ot (1 + —— ) - — = (1 )
2

|D(z,t) | 2 |D(z,t) |

ey
Il

(]

Let D(z,t) = £(z,t) - C(z,t)

Define
,E’ = 5 : = (
2(z,t) =L a (t) z_(z) c(z,t) = £ C_(t) £ _(z)
m m
iq(z) = /2 cos mmz,
Let
= P 2 .. .
0 fo 0 Em (z) dz
Tho3,4.22)
2 = 0 Al 2 = ’T‘m2 1]'2 - D
T m m - -
o M S =T " ™ - 2 + b jw
m o ™

et T,(z) represent the static equilibrium part of the

Teedback and ¥,(z,t) be the dynamic vart.

~
z

~ !

5 = # v S 0 7 «
3 a * + Cm o Jm um(t) J _l(z,b) Em(z) dz

1l
I
.
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So

F,(z,t) = i Fin(t) %éz)

1

can be calculated to arbitrary accuracy. We know

F2(z,t) = Fe(z,t) = Fl(z,t)

1
o ) Km Cm and Cm = fo C(zp)&m(z) dz
1lm
1 2 1 2
S Em dz s Em dz
o) o
(4.3.4,.24)
So
7 1 1
Fim = Km fo C(z,t) Em(z) d z
Then let
E(t) =T+ y + U (4.3.4,25)
1 *2 1 2
T = = = =
- i 2 Pnm am v i 2 Km am
1 D(z,t)
Uu(t) = / Fz(x,z,t) dx dz
0 o

The resulting energy equation is

dE
dt = - (B0 + B, + B

1 2)
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_ %2 _ cg o -
By = m %m By = i(bm 3 Cm " Pp 2y C m)
1 . D(z,t) 3F2
82 = f [FZ(D(z,t),z,t) C(z,t) - f —(x,z,t)dx]dz
0 o] ot
Here we have
F2(Z) = Fe(z) - Fl(z) (4.3.4,27
(-F,(z) - F,(z)] D(z)
= (l + -
2 ID(z) |
[F_(z) - Fy(2)] D(z)
+ (1 - )
2 |D(z) |
* ¥
-F, (z) D(z) +F_ D(z)
+ — (1 + ) ¥ — (1 -
5 [D(z) | 5 | D( 2)|

For stable equilibrium at D(z) = 0, we require

F,(z) >0 F_(2) > o (4.3.4.28)

We can interpret each term in B just as we did

in the discrete feedback case. In the quasi-static
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approximation, the terms B1 and B2 will be small because

1) Time-derivatives of C and Fe are assumeg small
since their characteristic times t > >|uw_ |

2) Variables ém* and é*m oscillate many times and

so products of these terms and C or Fe will

average to zero over times of order T.

Note that
G = s (Fe(2) o(z) . F_*(z) D(z)
S —— (1 + ) + (1 - y1|D(z)|dz
|D(z) | |D(z) |
D(z) = % am* £ (2)
m
* * *

So VE ° S > o for all § # o

if

then the equilibrium o 1is stable.

Now let's ignore B and concentrate on E for B > o.
To examine the region of stability, let's look at the
worst-case situation in which

VE = o

3
% —
We must find the value of a. at this point So’ and evaluate

E  there
o}
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* *
Let F_(z) = Min(F_ (z), F_ (z)>o0.Then we are
guaranteed stability inside a state~space surface defined
¥
as E(S ) = E, where E_ = E(§6*) i1s the minimum energy

for which VE = o,

¥ .¥0
SO is given by a, =o (4.3.4,29)
L o]
D (z)
*o _ F (z) § (z)—=— dz
am = - é (0] m ID?Z)I
K
m

If more than one solution can be found, choose the one
*

with lowest E(S ©) = E,. Assume that the solution

*
a_ © exists. This leads to

m
: L D°(z) 2
I F (2) € (2) dz ]
Eo =3 % o "o m |DO(Z)|
m
K (4.3.4.30)
e | N D_(x)
- F (z) I E (2 /' F (x) £ (x) dx]ld
5 o mn m 5 © m 1D°(x) | |z
X
m
L o p)
= -1 L« [/ F(2) £ (z) —2(2) 4,1,
n m Oo m (o]
ID"(z) |

E(S) = E_ gives the surface of the stability region.
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In summary, then, the stability of a continuum
system with a discontinuous forcing term may be analyzed
using the same Lyapunov function approach as was used
for discrete bang-bang feedback. One example of such a
problem is the orientation of dielectric fluids using
electric fields. The discontinuity in the force, which
is traceable to field discontinuities near the surface
of the fluid, can be modelled as a continuum of feedback
stations. The existence of a stable null position is
easier to show than the discrete feedback case. The
region of stability, however, is more difficult to

find unless simplifying assumptions can be made.
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b, 3.5 Scanning Control

One ideal form of control for a continuous system
would be one which scans the system with a single sensor,
processes a single output variable, and forces the system
with another scanner.This often minimizes the processing hardware.

A clever change of coordinates, suggested for linear
feedback analysis in an unpublished paper by W. G. Heller
allows use of the energy approach for nonlinear stability
analysis.

Let the system be governed by the equation

2°¢ 3%¢
0 > = -b §£+Y 5 +Pg{ - F(t) V (z-zm)
3t 3t 3z °
£(o)= E(L) = o (4.3.5.1)

where zm is the location of a scanner as it sweeps the

length of the system in a time T. Then, we can let

Ve = L/, VO =/ ¥/p , and write the feedback force
as a superposition of all the scans: for o <z <1,
(4.3.5.2)
F(t) B(z-zm) = -I F(t) Uo(z-zm)
m: -0
Z, = Vt-mL

(4.3.5.3)
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Now, we introduce a transformation of coordinates
which makes the scanner stationary in time, but keeps
the boundaries stationary in space. (Note that this is

not a moving frame of reference!)

£t =t - z/Vs z' = g (4.3.4.4)
So
t'm =t - Zm/VS= mT zé = VSt' + z' - mL
And
gé = E E = a_g. - L a_g
ot at! 02 az'! Vs at!
(4.3.5.5)
%t 2% 2t 2% _ 2 3% 1 %

3t 2 3t 1 e 322 3712 v, at'az! Vi 3t 12

2%¢ Vo2 vo2 3% %€
o) 5 (1 - — ]+ 20 -y —
at! 2 2 2
Vs VS at'aoz! az!'
€ ® z!
+ b sgr T P £+ I F(t'+ 22— ) U (mL -~ V t') = o
M=o v o} S

S
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£(z &)
If we let F(t) = F — X for bang-bang feedback,
[6Cz t) |
then in the new coordinates, at t' = mT
7 E(mT,z")
F(mT + — )= p —0n~ (4.3.5.7)
Vg |E(mT,z") |

We can form an energy equation by multiplying by 2%

a 1
and integrating over z', and use eigenfunctions E(t',z') =

[ 2 mmz'
1 ——
L a_(t") oL sim T

What we have done is to convert a scanning feedback
system in unprimed coordinates into a spacially con-
tinuous, time-sampled system in primed coordinates.

Since t + o0 as t' = @, our stability arguments
appoly to either coordinate System. Note that the mixed

derivative term vanishes

L3 3% & L L
P atr aprag 92 =05 ()] = o

(o) o

noj—

(4.3.5.8)

Thus the resulting energy equation is

|
|
!
o
1)
]

i - E T+ ¢+ U (4.3.5.9)



2
L i v .2
T= 5 £(1-:22 (23832 4025 (] - ) a
L 2 v 3t ! - v 2 m
S
L 2 K
_ L € 2 ' = _m 2
v = S 5 (T ¢ 35,) - P £7] dz' = ¢ 5 a .
0 m
Kn = (Y (£9) - P)
FoL
U=+ [ gl dz'
L (0]
L 2 L . E(t',z")
B=bf(g—,§,)dz' _F f 5[% & 3 U (mL-V_t ")
o o) €] m

lg(tr,z")]

The time-averaged effect of B would be zero if ¢
were always equal to its sampled value. Since it is not,it
has a slightly negative component during the intervals
between samples. This negative damping could be tolerated
without instability if internal damping had a greater
effect. It is clear from the form of T above that stability
>

can only be achieved by scanning feedback Vo < Vs'

that 1s, if the scanning speed is greater than the wave

speed for P = o,

]dz
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Both these conclusions parallel the results of
Heller for linear systems. Using the results of our
section on time-sampling, we know that for scanning
bang-bang control to be feasible, we require
( % )2 < % » and T < < 1, the characteristic zero-
crossing time interval for disturbances of the appro-
priate amplitude. 1If this latter is not true, then the

negative damping will dominate the entire region of state

with E < Eo.
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b,y Computer Simulation
4.1 Options and Tradeoffs

Several options will be discussed in this chapter
and the next for possible computer simulations of con-
tinuous systems with nonlinear feedback. The purpose of
our simulation is to examine the aspects of system
behavior which are not easily accessible to our analytical
tools. Several effects have been discovered in some
approximation, and a simulation checks the resuits of
these approximations. Some types of feedback are not
subject to our analysis at all, and simulation is the only avail-
able test of their feasibility. Finally, the simula-
tion serves as a check on analytically predicted results.

The limitations of digital computer simulation
are the discretization of spa ial information, the dis-
cretization of temporal information, and the computational
expense of a given scheme.

If digital computer simulation is the only desired
result, then the most basic technique involves converting
the differential equations of motion into difference
equations and integrating directly. This tends to be

extremely time-consuming, and will often involve use of
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a very fine network of spatial points to get accurate
results. It does not take advantage of the simple
nature of the original linear system. This approach was
not implemented.

In the systems which we are studying, solutions
tend to be well represented by a truncated Fourier
series in space. The schemes involving spatial discreti-
zation or methods of characteristics do not take advantage
of that fact. Therefore, the modal approach, or Galerkin
series, 1s the most efficient method of representing
the system. The time-dependence of the system can then
be handled in two ways. One is by direct discretization,
numerically integrating the difference equations for a
truncated set of mode amplitudes {am, ém}. The second
and most efficient uses the extra information that the
feedback forces are plecewise-constant to use an exact
analytical solution for the mode amplitudes between
increments. The first method was used as a check on
the second, and showed better than 5% agreement in
energy values (only at a cost of double the computing
time).

The computing method used, then is approximate

in two ways:
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1) The modal series is truncated,

2) The feedback is allowed to change sign only
at the beginning of sampling intervals.

If the system is assumed to be feedback controlled
by a time-sampled controller, then this second approxima-
tion 1is simply a representation of the sampling effects.
Hence, our analytical oredictions of time sampling can
oe checked this way.

A program was developed to simulate a bang-

bang feedback control system with the following

parameters:
p =L =1 Em = sin mmz (4,4.1.1)
B (z) = A (z) = 1 n-1 z < I
n n N - - N
1 <n <N O otherwise
Km = m2 “2 - P
o =0
FD = positional feedback force

FV velocity feedback force
Truncation at M = 16 modes

DT = time interval used (effective sampling)
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L.y, 2 Check of Analytical Results

Varying P and FP with FV - 0, N =4 feedback
stations, the following predictions were verified:

1) Null stability was exactly predicted, within
the limitations of the simulation.

2) Region of stability was also predicted to
available accuracy.

3) When the null was unstable, growth occured
in two stages; first, the modes combined to grow while
oscillating near Dn = o; then at large amplitudes
(al : 100), D, departed rapidly from zero and the system
took on the spatial characteristics and growth rate
of the fastest-growing mode, m = 1,

4) Time sampling caused a slow increase in E,
until E > EO.

Then, taking Fp # o, the following predictions
were verified:

5) Velocity feedback alone can not stabilize
an unstable system; it merely makes it oscillate about
én = o while growing.

6) Velocity feedback dominated the sampling
effects at sufficiently large amplitudes.

7) Optimum velocity feedback force was comparable

to the net restoring force acting on the lowest mode

excited. By optimum, we mean largest dE/dt.
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The criterion for determining whether one feedback
scheme was better than another was to take a standard
initial condition (a1 = 1., a, = .5, a3 = .1, a, = .05,
a5 = .01, ém = am>5 = 0) and standard system N=U, P=45,
and determine which led to the quickest reduction in
total energy E to below 1/e of its initial value.

Then, a single feedback force F was switched accord-
ing to the sign of (Dn + T bn), for various values of
T. This combined position and rate feedback showed that

8) Stability with damping was achieved as predicted

2 1

for T < | ——7| . However, simulation showed
1

9) That instability did not occur until T reached
values five times greater than those calculated. It
then grew while oscillating about (Dn + T bn) = o. This
implies that there is probably a better Lyapunov function.

10) Optimum values of T were found to be well
below this figure, however, in the range predicted by
theory.

Observations of simulated systems also showed certain
interesting characteristics:

1) Bang-bang control of multi-mode systems shows no
noticeable temporal periodicity in its detailed behavior.
The potential and kinetic energies show alternating maxima
and minima, with period of oscillation depending mainly

upon the amplitude of the lowest mode and the net force on

that mode.
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2) The spatial shape of the displacement, if
initially made up of lower modes only, continues to be
well approximated by the first N modes. The relative
magnitude of these amplitudes changes in a major way
between successive zero-crossing of Dn'

3) Except for the effects of time-sampling,
the behavior of 2 system in all respects is well represented
by (N+1) modes. Time-sampling effects are also well
represented if damping 1is present. (More modes would be
needed if the coupling coefficients did not drop off as
quickly with m as they do for this geometry.)

4) The increases in E due to time-sampling effects
tend to occur in sudden Jumps of as much as E/2 when a
Zero-crossing occurs, rather than as a gradual effect.
These jumps become less frequent as the amplitude of the

disturbance increases.
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by, 3 Estimation of Sample and Hold Effects

If the formalism we have developed is to be of use,
it should Suggest aporoximate prediction formulas for the
non-ideal effects we have discussed.

In barticular, assuming a sample and hold feedback
scheme which is simulated by our computer model, how
can the energy growth rate be estimated? The desired
form of the answer would be a long-term average growth
formula.

The "exact" expression, assuming hysteresis A

and no damping forces, is

6-D, | D, D :
FPK [1 + £ i+ =K 5p

1 I IA“IDKH IDK DK '

We will make the following simplifying assumptions:
1) The sampling time DT 1is very small compared

to the time between Successive zero-corssings of DK(t).
2) The state of the system is far inside the region

of stability.

3) The System can be approximately represented
by the lowest mode.
The first assumption lets us use our approximation

8= 2% | P |} that 1s, the time delay in the feedback
dt
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response 1s well modelled by a hysteresis effect, re-
presented by the average time delay (half the sampling
interval) times the output rate at zero-crossing.

The second assumption lets us ignore, for a first
approximation, the potential energy term v due
to linear forces.

The third assumption allows us to approximate the
kinetic energy as a single term.
b

While the first two assumptions can be justified

T =

by appropriate system parameters, the last is highly

questionable.

However, we are only looking for an estimate, so

we accept this limitation.

Then the system spends an equal amount of time

between the extreme values of Dn’ or the average value of

A -|D_|
o -|D_|] A a
n nl max

Also, when D, = o, [Dn | is a maximum, so

(4.4.3.2)
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This relation uses the knowledge that the maximum
values of kinetic and potential energies are equal.
We then assume that Dn Dn > o about half

the time, so that on the average

1 “n n 1
L1+ o 1= 3 (4.4.3.3)
D, D, |
We then substitute into our equation to get
N T
dE _ J - T Tnax 1 |
at - E P | 157 A, *nax !
n=1 n 5 a - L
B max
(h,bh.3.4)
= DT 2nax g = A
o _, 2 n,
e "
a'nax e . -
= D_T r l"i' o A Dn -
2 L4 -0 -"~.,1 -
- =1 - =1
n=1 a1 (D, |

This predicts a linear energy increase, oroportional to
OT. This same problem can be solved more precisely using
(4.3.1.5) with T = -DT/2 o get tThe same result, but
summed over all modes: & is modified slightly for

2 . .
7 T7 << 1 and the energy increase is

N

w



dE DT N Gn 2
- == [ £ F A ]
dt 2 _ n nm
m n=1 IG I
n
(b.b4.3.5)
For the given system we may estimate
o)
pX Anm = 2/2 for m = odd, o for m = even
n m
With F, = 100 this becomes
4dE it
— = 1 T
it 10" DT
Computer runs to check this result for DT = .00k and

.008 are shown in figure 4.4.3.1 As an estimate, this is
quite good, giving the average dE/dt within about 25% of
actual wvalues.

¥e would expect this estimate to break down for
large DT (comparable to 1/ [wll) or for © > z,-

The purvose of these estimation methods is to help
in designing a system. Therefore, we should be able to
dredict such things as the amount of velocity weighting
which is needed to balance the effects of sampling. With
DT = .008 and F = 100, ¥ = 4 we predict that the effects

of sampling and 7elocity feedback should roughly cancel

at T = DT/2 = .004. We also oredict that the instability
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results for T > TE%T— = % . We check these predictions
by simulation and plot E vs. t for the first few seconds
in the next graphs in Figure 4.4.3.2 and 4.4.3.3. \Note
that the system is stable but shaky for T as large as 1,
and that E would be roughly constant at the T value

oredicted. All in all our estimates are oretty good

oredictions of the magnitudes involved.
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4.5 Alternatives

It is always valuable to have more than one approach
to a subject. Even 1f the alternatives are not useful
in the present context, they may later hold the answer
to a different question.

Several alternative approaches may be applied to
the present problem. One is the analysis by use of
wave trains rather than by modes of the system. This
is most efficient in long systems, or systems which
close on themselves. Another approach to such a system
involves the concept of energy velocity, useful in power
transmission problems. A third possibility is the use
of the method of characteristics to give information
about a system, especially connective Systems, even
supersonic ones. These are presented in the following
sections. The results show that wave train analysis can
be treated just as modal analysis was to give stability
results; energy velocity concepts grow naturally from
energy stability arguments and may be useful in transport
broblems; and characteristics give an alternative picture

of the state space.
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b.5.1 Long Systems

When a system is long enough that disturbances
with interesting dimensions can travel for several
characteristic lengths before they contact a boundary,
i1t may be enlightening to describe the system in terms
of travelling waves rather than stationary modes.
Linear systems are easy to understand both ways, be-~-
cause a stationary mode may be constructed as a sum
of equal waves travelling in opposite directions. Thus,
we would expect that a formulation of system dynamics
in terms of energy would look very similar if it were
based on either the modes of the linear system with-
out feedback, or the wave amplitudes of the linear system
without feedback. This is in fact the case.

Suppose the linear system supports wave trains
of the form

£(z,t)=t Xl cos(mmt-sz) + X2 sin(mmt—sz)

m m m
(4.5.1.1)

where

w, = mm(Km) and Km = ——, m= - to +w,

We may write this as



2u4

o)

£(z,t) = Re I a_(t) £n(2)

m=-—=0

jmmt -JK =z
a = [ X -J X, ]e E = e
m 1n °n m (4.5.1.3)

We may then use the complex conjugate (*) to write

© 1
£(z,t) = © 1a_J(t) & [2z)
m=-» n'=o0
(4.,5.1.4)
where
1 S
i (t) = 5 a-, ag (t) = 5 ap
o) 1
+ijz
_ = *
gm () = e 5 Em (z) Em
o) 1
2 _ 2 _ 2
w = w = w
m m m
0 1

Thus we have an expression for the perturbation
which is in the same form as a modal expansion. The steps
leading to an energy formulation are exactly the same,
where we treat each (m,n) as a separate mode, even
though the n=o and n=1 modes are not independent. The
resulting modal equation is gotten by dot multiplying

by Em*(z) and integrating:



o,a__, N D
o [ 4 2, g2 5 F 0 2
m 5 m mn n=1 mn
3t D,
(4.5.1.5)
where
L 2
°mn T / DlgmI dz
0
L
A = f A (z) £ _(z) dz, A = A ¥ =5
mn 5 n mr! ? m my m
2 L
Dn - g A (z) €(z,t) dz = % % A mn —mn’
d amnf
We then multiply by It and sum over all m
and n’ to get
dE -
gc - % E=T+ ¢+ U
(4.5.1.6)
o d a__*# d2a > 9
T = g 5 o mn mg - % 5 = 0m|d ann |2
m=—o n dt dt M= - dt
= IL lo(ﬁ)2
5 2 at
(4.5.1.7)

(Since the Emhare mutually orthogonal and a. (t)

a_ *¥(t)].
(o]

1

Similarly,
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© L
- 2 20¢y=sT LpcdEy2, L p g2
b= Lt 1o w S lagT(e)=/T 5T(52) 5 P £%]dz
m=-co 2 o]
(4.5.1.8)
if
N D L
Fo == I Afz) F —— , D (t) =/ Afz) £(z,t) dz
n=1 i ID l (o]
n
(u.5'li9)
then
%% =0, E=T+ y+u (4.5.1.10)
N ®
U= % FIp/,p = 35 £ a a
n=1 1'1 ’ n m=- n mn mn
where
L
A —— g A (z) Emn(z) dz
We may then make our series more compact by noting
that Iamnlzis independent of n, Anml aml = (AnmO amo)*

SO that the m < o terms are determined by the m > o ones.

Thus we really have double the sum over m = = to ®

=]

with n=o, and D = 2 Re A a_ . Thus we can
n nm m
m= -~ o} o}

Suppress the subscript n’altogether. The factor of two

drops out of the equation.



2 L

T = % % o Idaml = /o ( %% )2 dz

m dt o

(4.5.1.11)
Yy = I % b w? |am |2
m m

N

U= ¢ F D |, D =Re L A a (t)
n=1] o' n n q  amm

There is not eénough new information in this formula-
tion to merit a lengthy discussion. We simply have a
different series to sum. If the boundary conditions
on the system are not periodic, then the reflection
condition will place restrictions on a,s m <o in terms
of @n> M > o. These must be considered in order to
determine the number of feedback stations N needed for
stabilization, since the number of independent unstable
modes is the critical number. In general, if there are
two modes n = o0 and n = 1 for each m, then double the
number of feedback stations will be needed.

One special case is dparticularly interesting. A
periodic system (such as a circle or torus) with N feed-
cack stations evenly spaced around it, such as in the
example, can be shown to always have det IEVI # o if

the complex notation is used, See Appendix F for

details.
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Can we formulate a local energy conservation relation-
ship for our system? 1In the limit of point-for-point
feedback (an infinite number of stations) it is clear

that we can. Taking the equation of motion with bang-

bang feedback at every point

2 2 4
pa_g=rp 3§+pg_p_§_- 38 (4.5.1.12)
3t 3z €] 3t
9&

multiplying by 3T and rearranging, we get

(4.5.1.13)

where we may interpret the first term as the time-
variation of local energy storage wl the second as the
divergence of energy flow S, and the third as dissipation
Pd‘ A logical definition of local energy velocity is
V, =S/4, and dW/3t + V * S + Pd = o.

Suppose, however, that we wish to define a non-

local energy velocity, which corresponds to the time

rate of change of the "location" of a pulse. We define
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é zZ W(z,t) dz

] _d r_L(t
v (t) = = &0

—WTF;] or the rate

o1a
t
Qe

iz, ey az

(4.5.1.14)

of change of the lSt moment of energy as the energy
velocity. Clearly, this depends upon the form of perturba-
tion of the system.

We note that Jeffries and Jeffries define a different
energy velocity for linear Systems, which is a local
property and may be described as a local group velocity.
It has the property that the énergy contained between two
points, each moving at their energy velocity, 1s constant.
The concept is different from that presented nere, since
this velocity is not local. The two ideas complement
each other.

de may wish to show that eénergy flows at a spatial
average velocity equal to the energy velocity. This may
be done by multiplying our energy conservation relation

by z and integrating over the System to get

a b L L. L
ot [ [z W(z,t)]l =+ /s s 4z - 7 g—(zS) dz - / Pd dz
o (o] z o}

(4.5.1.15)
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The second term on the right vanishes unless reflec-
tions are occuring. The third is not interesting since
it represents deviation from energy conservation in any

case. Thus we get

Ve(t) = as desired.

W dz (4.5.1.16)

Appendix B considers evaluation of Ve for linear systems
in more detail, and shows that Ve reduces to a weighted
average of the group velocity as we would expect. Also,
several generalizations of Ve are discussed in the

context of linear systems. End effects are ignored, since
they are not usually of interest for velocity concepts.
Hence, this development applies mainly to long systems,

or periodic ones.

This definition of energy velocity,since it is not
local, can be extended to any system with nonlinear
feedback of elther discrete or continuous form.

Is it possible to extend local energy-conservation
arguments to systems with discrete feedback stations?

We are faced with a problem, since the feedback contributes
to the energy. How can we assign this energy to some

point in the system? Let's avoid the problem by integrating
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over the entire feedback element. We will assume that
the feedback spatial distributions A (z) are bounded on

2,.< 2% < 2,7 » and do not overlap. Thus, from the local

equation of motion

2 2
0 ﬂ—g = é—g +Pe-F Pn a(z) - %%
at 32
D_|
znl
Dn(t) = f An(Z) £E(z,t) dz
z
no

(u05-.1017)
dE .
Multiplying by 3T and integrating from zno to znl glves

dE

it teSp) ¥ By =0, B =T o+ Yn * Ups Sy = S(zpp)-S(z, )

(4.5.1.18)
V4
B = s My 28,424, S(z)=-r 3& 3§
n z at 3z 3t
no
nl 1, 3£.2 nl 1., 3.2 P .2
T Tz eap)t dr ugm ) T AT 2° e
no no z
J =F_ |[D_|
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Thus we can write local energy conservation near
each feedback station. Letting these regions fall side

by side (zhl = etc.) so that they fill the

Z(n+l)o
system will allow examination of the transfer of energy
from one to another. Summing over all feedback stations
gives our total energy results.

The logical extension of our energy velocity, then,

is to let

En(t)

0 ™=
3

_d n
Ve(t) = gt [

L

(4.5.1.19)

This gives the number of elements traversed by an
energy pulse per unit of time. Settingb = O, we multiply

oy n and sum over n, giving

N LN
vty =32 0 I nEl=i: o B .
n=1 n n=1 dt
1 N
-5 5 n [S(an)-S(zno)]

(4.5.1.20)

Since S(an ) = S(z we may write

(q+1)o’



253

ve(t) = .

M=
™=

[(n+l) S(zn+l)0) - n S(ZnO ) - S(z(n+l)o)]

(4.5.1.21)

Ignoring reflections or end effects, this is Just

1 N
Ve = F zl S(zno ) (4.5.1.22)
n:

or the normalized inter-element energy transfer rate.

If each segment is of uniform length z -z = AL = L s
nl no N
we may multiply by this factor to get
1 N
vV .(t) = = z S(z AL
o (t) g I (z ) (4.5.1.23)

which approaches the continuum limit as N + =
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b,5,2 Numerical Methods and Method of Characteristics

So far, we have two ways of integrating the equa-
tions of motion of the nonlinear system. Let's assume
that we intend to use a digital computer for the Jjob.
Then we may wish to make the partial differential equa-
tion into a difference equation by sampling at regular

intervals. Thus, our approach looks like this:

; . 3§ _
We are given E(zi, ti) and =T (zi,ti), z, = 1Az
with the equation

3% € 3°E N D_
0 5= T +Pg- I F AL (z)

at 322 n=1 = ID I a

n
(u-5-2-l)
1) We may approximate
iz 2 Az
azg(z ) - E(Zi"'l) - z(zi) + g(zi_l)
—=(z,
822 (Az)2
L o L/Az

D, (t,) =-£ A (z)E(z,t,)dz = 13; A (z,) £(zs,t,)Az

(4.5.2.2)
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Thus we can evaluate the left side [L.H.S.] of the

equation at Zys ti. We then can write
2)
& _ 9¢& 1
Tt (Zi, ti+l) = TE (ai, ti) + 0 [L.H.S.] At
(4.5.2.3)
3)
- & & At
E(Zi’ ti+l) = E’(zi’ti) + [ 3t (Zi’tl) + 'a—t (Zi’ti+l)] 2_
(b.5.2.4)
Other more complicated approximations may save
convergence time (or step size) or computation time,
but the philosophy is the same.
A second approach is to use the modal equations
to approximate the system. This is a fundamentally
different aprroach, and its spatial convergence properties
are governed by different considerations. Given the
same information, we can write
1)
= f
am(ti) é £E(z, ti) 5m(z) dz
(4.5.2.5)
for any desired number of modes M. Also,
ad, Y
( = )
‘ti) é T (z,ti) Em(z) dz (4.,5.2.6)
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We then have the equation from previous work,

R
d2a 2 N n nm Dn
0 m = -p w a - L
m m m m

5 n=1 anl

dt
(4.5.2.7)
[>¢)
D = I A
n m=1 nm " m

2) Thus we write

M

z A a {t,)
m=1 nm m 1

o

Dn(ti)

This allows evaluation of the [(L.H.S.] of the equation at

ti.
3) Thus
da da
— (t,.) = —B (£,) + [L.H.S.] At /o,
dt dt * ’
d am d am At
a_(t ) = a (t,) + [ (t,) +——— (¢ )] =
m i+l m' i dt i dt i+1 2
(4,5.2.8)

Again, fancier approximations can be used. One
variation on the above method is especially suited to
the bang-bang problem. It involves recognizing that the

above equation is a linear inhomogeneous differential
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equation with constant coefficients, as long as the Dn's
do not change sign. Thus we can write the exact solution

to the piecewise uncoupled equations:

d a sin w_ At
dt w

am(t + At) = am(t) cos w_ At +

1 N Dn(t)
- z Fn (1 - cos W At]
,Om me n=1 an(t) {
(4.5.2.9)
d am d am
—— ( t+At) = ——(t) cos w At - am(t)wmsin W At
at ' dt
N D (t) sin w At
- 1 5 P n m
0 n=1 n w
m |Dn(t)[ m
Q M
+ =
Dn(t At) E Anm am(t+At)
m=1
(4.5.2.10)

These are correct until Dn(t+At) changes sign.
At this value of t, the value of Dn should be up-

dated and the process continued. It is more convenient
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to keep At fixed and accept the error of the time-
sampling. (A hunting procedure could be easlly envisioned,
if desired.) This has the effect of a sample-and-hold
sensing device on the feedback. The modal truncation
1s accurate to the extent that Anm is small for m > M.
Thus, At may be made considerably larger without 1loss
of accuracy. This method has proved to be the most
economical and easiest implemented.

There is a third method, however, which could
be used as a check on the preceding ones. This involves

use of the method of characteristics. Given the system

e 2%g
P 42 = Y ;2‘ + P g + Fe(é;) (4.5.2.11)

where p, T, P are constant and Fe(E) may be either

discrete or continuous given feedback force, we may write

o, = 26 _ /T 2k c.= /T
"1 0 0d2z

6, = 22 +/§%§- e, =-/T

Q)
ct
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¢ 3¢
%2, ¢ 2
ot 9z

Thus we may define characteristic lines

t
. = +
10 2y A /7 C, dt

o} ° 1
t
= +
02 25 Z, S C2 dt
o]
Along Cl’ we have
¢, F_
= + —
N o £t 5 (8)
Along C2’ we have
dé: F
2 p e
— = _— + —_—
s Bt oS8
dt

Now, suppose we want to find E(zl,tl) and %% (z1

We may let

= - /X
Za T 21 0 tl’

Zy

» €

(4.5.2.12)

(4.5.2.13)

l)-

(4.5.2.14)
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Let's assume we are doing a computer simulation. Our

. 9 .
initial data will be E(zi,to) and =2 (Zi’to) in the

segment Z, 22 22y, We then let

=za + iAz
I J

i
We find new initial data at t = to + At for all

2, + Y/ % At < zg < oz =Y % At by the following algorithm:

£(z t ) - £(z, ,,t.)
1) g _ i+1° 70 i-1°"o
35 (24585) = for all i
2Az
(4.5.2.15)
T = ﬁ Y ag
2) ¢l(zl’°o) 5¢C (Zi’to) = '% 3z (zi,to)
¢2(Zi,t0) = -S—E (Z ,to) + v -g- % (Zi,to) for all iO
Fo(z,,6) = F_(£,(2,t))
(4,8.2.16)

- P
3) ¢,(z; + Cy A%, to+At)-¢l(zi,to)+[3 E(zi,to)+Fe(zi,to)]At

_ P .
¢2(zi + C, ot, t0+At)—¢2(zi’tO)+[EE(Zi’to)+Fe(zi’to)]A°

for all i (4,5.2.17)
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¢2 are known at the new time ti‘

ti + At
b)
g ' '
5)
§(z',,t",. )=

de are then ready to begin a new cycle.

(61+ 0,)

£
»(zi,ti)+5(zi+Az,ti)

ﬁ (z'

+ 238 (z'
ot

where ¢l and

zi + Cl At, ti =

Copmop),

t )

3z i°

2 a

(4.5.2.18)

At[

€
t
u AR

3)

i) + 28 (z

-Az,t,) ]
1t i i

(4.3.2,19)

Although

this method is rather complex, it will give results

which converge in a manner quite different from the

oprevious ones,

and so 1is a valuable check.

The conceptual point to be made is that there is

another

"state space" description available to us:

i)
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1 e, T
o )
dt
do F
2 _p g+ 8 (&)
dt o 0 (4.5.2.20)
dz
1 _
= Cl
dt
dz
2 _
—< = c2
dt

where 13 (z,t) is a function of ¢l(z,t) and ¢2(z,t).

A higher order system with N characteristics could
be described the same way, by letting ¢ represent the
vector of state variables, z represent the corresponding

locations along characteristic lines, and

d _ ==
- T
dt

govern the state of the system. Stability might perhaps be

analyzed using a Lyapunov function approach.
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5.0 Plasmas and Controlled Fusion
5.1 The Problem
5.1.1 Strategy
The successful operation of plasma devices for
fusion power will depend upon the production of high-
temperature plasmas in a confined volume. One type of
device which looks promising for this function is the
TOKAMAK. This consists of a toroidal chamber, usually
with highly conducting walls, containing the plasma
and encircling the flux of a transformer. When the
transformer primary is excited, the Plasma forms the
secondary and a heating current flows in the plasma.
A very large static toroidal magnetic field is also
present to help stabilize the current-carrying plasma.
A major limitation on the heating currents in Tokamak-
type devices is the problem of MHD kink modes of the
system, which become unstable at certain fhreshold current
values, with a resulting loss of plasma and energy.
One possible solution to the problem is feedback
stabilization of the system. Because such a system
would require very large feedback currents and band-
widths, it is most practical to use nonlinear feedback

in the form of switches rather than linear amplifiers.
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We therefore envision a Tokamak device, enclosed
In a conducting shell, with feedback current straps
projecting into the vacuum region between the plasma and
the shell. A sensing signal is generated for each strap
which isa weighted average of the local displacement of
the plasma surface. This signal is operated on in some
nonlinear fashion, feedback currents flow in the strap,
and the result 1s an additional force on the plasma
surface. This force 1is distributed locally according
to a second weighting function. Clearly, with a finite
number of sensor outputs, the state of the entire system
is not known.

We must now answer certain questions before
designing our feedback system. How will feedback
affect the stability of the equilibrium? How much
current will be needed? How fast must these currents
be switched? How many straps are needed, and what is
the best geometry for sensing and forcing?

Once these questions have been answered, more
pecinted conclusions about feasibility, hardware, and
experimental questions can be drawn. To approach these
questions, we shall first extend the energy principle
for hydromagnetic stability to systems with nonlinear
feedback. We shall then develop a general description

of switched, or "bang-bang" feedback, with stability
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criteria and design considerations. Then we shall
apply our results to a proposal for feedback stabili-
zatlon of the M.I.T. Alcator device, a high-field

Tokamak now under construction.
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5.1.2 Notation

Perturbations of the plasma are denoted E(Tr,t)
where r is the position in terms of a periodic cylindrical
model, with coordinates o < r < a, o < 8§ < 2mw,and
0 < Z < 27R. Here a and R are the minor and major radii
of the torus. Equilibrium mass density p, current Jz(r),
toroidal field HZ’ and poloidal field He(r) are assumed,
with H_ () = Ho(r)e + H,Z.

Z

The sensor distribution for the n°!

feedback strap
is denoted An(F), and the resulting signal referred to

as the discriminant D _(t). We will refer to the
equilibrium  surface S of the plasma, which encloses the
equilibrium volume Vi' The vacuum region is denoted

— t
VO. A feedback field H, from the n“h feedback strap produces

a normal force distribution Bn(F) on S, and the nonlinear
signal processing is denoted by the function Fn(Dn).
This conforms with the general model of the previous
chapter.

The proof of self-adjointness of perfectly conducting
nydromagnetic systems, which is the basis of the energy
drinciple described by Bernstein et al and explained in

detail by Chandrasekhar, implies the existence of ortho-

normal modes of such systems. Therefore we write
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E(r,t) = i a_(t) Eﬁ(?), (5.1.2.1)

modes that are orthogonal in the sense that

(5.1.2.2)

mn

IV DEm'EndT=6 O

The sel%—adjointness property of the system will be discussed later
Any convenient normalization may be assumed.

Here we denote by P the effective mass of the
mth mode. Without feedback, the modes behave as
am(t) = am(o) cos w_ t + am(o) sin w_ t/wm. Therefore,
we have a positional feedback force normal to S produced
by each of N feedback stations, producing a total force

N

Fp(F,t) = il -an(F) F (D (t) ) (5.1.2.3)

with discriminant

Op(€) =/ A (r)E(T,t)" n dS = i A 2 (E)

(5.1.2.4)

where we have defined

Am = s An(F) Eﬁ(?)' n ds.
(5.1.2.5)

The system is diagrammed in Fig. 5.1.2.1.
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If velocity feedback is also desired on Sl it is

assumed to be an additional force of the form

_ dp'_ (t) |
-B' (r) F' ( ——— s
1 n n dt

Fv(r,t) =

n o™=

n.
(5.1.2.6)

with D'n defined analogously in terms of A‘q(r) and

E(r,t).
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5.2 The Energy Principle
5.2.1 Description

A very general approach to the stability analysis
of plasmas is referred to in the literature as the energy
orinciple. It takes the linearized equations of a
perfectly conducting fluid and develops from them a
small-signal energy conservation result. For static
equilibrium, the resulting kinetic and potential energy
terms are quadratic in the local fluid disvlacement
E(r), and both are purely real. Thus, exchange of
stabilities applies independent of the geometry of the
system. Also, stability can be determined without solving
for the exact modes or associated growth rates of the
system.

The principle was first formalized in connection
with the stability of interstellar plasmas and is recently
of great interest in the stabilization of plasmas for
controlled fusion. It applies in general form to any
nonrelativistic, isotropic, perfectly conducting fluid,
either isolated in Spvace or enclosed in a perfectly conduct-
ing shell. The fluid may be compressible, and it may
reside in an external potential field such as gravity.
Equilibrium currents and magnetic fields are allowed both
inside (Hi) and outside (ﬁo) the fluid volume.

To avoid unnecessary algebraic complexity, the energy
principle will be derived for a Special case in the following

section. Then the more general form will be stated,
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5.2.2 Example

This section will derive the energy principle for
a special case as an example. For simplicity, we will
consider an incompressible, perfectly conducting fluid
with no equilibrium volume currents in some arbitrary
closed volume Vi' It is surrounded by some vacuum region
Vo’ which is enclosed by a perfectly conducting shell. The
equilibrium magnetic fields are ﬁi and ﬁg(F) inside and
outside the fluid. We will prove,via the energy principle,
that exchange of stabilities applies (w2 real) and that
stability of the static equilibrium can be reduced to a
condition on the zero-order magnetic fields near the fluid-
vacuum interface.

In fact, the incompressibility assumption can be
relaxed without serious consequences, because the
potentlally unstable modes of a plasma column in fact

have no divergence in the case of marginal stability.
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5.2.2.1 Equations

We begin with the linearized equations of the fluid.

Perturbation quantities are lower case, equilibrium

values capitals, and £ 1is the fluid displacement.

3V _ — =
osx =-Vp + (Vx hy) x Wy Hy (5.2.2
v v=o0 (5.2.2
es + Vv x My Hi = 0 (5.2.2
_ 8h,
V X e, = -y, (5.2.2.
i i T
u, Vo Hi = o0 (5.2.2
where H = H, + h., P=P, + p. v = J§&
i i i T R 5t
In the vacuum region,
v x HO = 0 (5.2.2
v HO = 0 (5.2.2.

Boundary conditions come from force equilibrium at the

interface S:

.1.1)

.1.3)

1.4)

.1.5)

.1.6)

1.7)



and non-penetration of flux at the

surfaces

N
It
-+
<l
bl
=
as)
>
g
"

where, at the fluid surface

_.=_+_
n ns nl

and Hl is the first-order perturbation at 4

the unperturbed filuid surface,

shell So’

i
n o

on

on

on

(5.2.2.1.8)

(5.2.2.1.9)

perfectly conducting

S (5.2.2.1.10)
S (5.2.2.1.11)
S

(5.2.2.1.12)

point on S,

while at the conducting

(5.2.2.1.13)
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For simplicity, we take ﬁi and P, constant over v,

H, "n_=o0,H "n =8 ‘@0 = o,
and i S > Yo s o) o)

We can now combine (3) and (4) to find

Ei = V x (€ x H,) (5.2.2.1.14)
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5.2.2.2 Energy Form
To obtain our energy equation, we dot (1) with the

velocity, and integrate over the equilibrium volume of

the fluid Vi:

e T X ar = 5 2ECFE dr
Vi Vi (5.2.2.2.1)
where
F(E) = - Up + Vx (V x E x ﬁi) x (g ﬁi)
(5.2.2.2.2)

It is easy to rearrange the left-hand side of (15)

into a perfect time derivative %%- where

(5.2.2.2.3)

=
©

<
<|
(o}
=
| v
(o]

T =17

V.
i

represents the kinetic energy of the perturbation. We

now would like to represent the right hand side of (15)
as the time derivative of a potential energy

lg - F () dan (5.2.2.2.4)



277

To do this, we must show that

]
[s%)
t
gl
~~
™y
p—
[o}
~

(5.2.2.2.5)

We note that v = 2& satisfies the same equations and
ot
boundary conditions as €, so we can reduce the problem

to one of showing that F(E) is "self adjoint": that is

Jn " F(E)-F " FM) ldrt=o (5.2.2.2.6)

V.
i

where £ and n are any two possible solutions of the fluid
displacement which satisfy the system's equations and
boundary conditions.

Before proving this, let's note a few things about
self-adjoint systems. If (6) is true, then we can show
that distinct modes of the system are orthogonal, since

letting

|
1]
fay
N
N
]
(1]

(5.2.2.2.7)



and using (1) and (6) gives

(ml2 - w, Y J o El' 52 dt= o
t (5.2.2.2.8)

Hence the energies of different modes of the system
are simply additive. This means that (6) 1is a very
powerful result, and a great deal can be said about the
systems which are self-adjoint.

So, let's prove (6) for our system.
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5.2.2.3 Proof of Self-Adjoint Property

We will do it by calculating I =/ 7 ° F(E) dt

'
and showing that it is symmetric in 7 and F. This will

also give us an expression for ¢, the potential energy,

which we need later anyway.

é. n ‘f-Vp + ¥V x (V x € x ﬁi) X oy gi ld 1
+ (5.2.2.3.1)

The first term becomes -Y° (n p) + p V- N and since n

is a solution of the system, V ° n = O.

For the second term, we rewrite as

=)
p—

-(nxuiHi)'Vx(ngx

=+ V' [((n x uﬁﬁi)x(v x £ x ﬁi)] - (9 x E‘xﬁi)'(v X n x

(5.2.2.3.2)

(5.2.2.3.3)

Hy

)
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Now use
and H, ‘en_ = o0 to write
i S
I =-~17 My (V x € x Hi) (V x n x Hi)
Va
- r - ’ el el
é (n ns) (p + ug Hi hi) d s
(5.2.¢.3.4)

Now, use the force equilibrium condition to write

the second term as

de will now manipulate this last term into the form

(5.2.2.3.6)

r b L
- u_n ol d
Mo o 0 T

is the perturbation field due to n.

where n !
o)
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Since V x ho' = 0, We can write ho'=v x A',

Vx9VxA" =0, So (6)

= ~f uo ho "V xA'dT = - f uo v [(A' x ho] drt

\Y \

(o] (o]
(5.2.2.3.7)

- - e bl . = - . _' -
= ! u (A" x no) nds +/ Mo ho (A' x n)ds

S+ 5 © S + 8

(@] (@]

Now we can rewrite(l1ll) in terms of A'. From the first-

order terms of (LJl11l)

n + VxH)=o0-= x e - (n v) H

n, x (e V x 8 0 n ( 5 v) o
9 o 1
— n_. x A + (n H

= - Bt S ( E) o -
3o
n x A' + (0 n) 3 =oonsS,nxA' = o0 on S
S AL n) o} ’ o)

(5.2.2.3.8)

Hence (7) becomes the last term of (5),

- é uo(ho ) HO) (n " n) d s
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282

;o F(E) d 1= -/ u
Vi Vi
2
A (T " 7))
2 3 n S

S
-/ u_ h h 'dr

¥ o o 0

o
which is symmetric in £ and n. So,

adjoint.

(5.2.2.3.9)

the system 1s self-
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5.2.2.4 Conclusions

“"e may now write the potential energy as

2
1 2 by 2o 2
g = f 5 Ihil dt + [ T . (g n_)< ds
v, S s ®
o
T 0 2
d - Il ar (5.2.2.4.1)
o
M 4 2 . M., . moo_ 2 r 0 - 2
This 1s clearly real, Thus, if T = - | Tolglc dn
7, 3
then w2 = b is real, and exchange of

I o/2 IE'Z dt
stabilities applies.

Also, we can say that if

everywhere or. the fluid surface S, then T > o and

(5.2.2.4.2)

Y > o so the total %% = 0, E=T+ v implies that the
equilibrium is stable. For a closed volume, this is

nardly possible. Thus the most dangerous instability

. . . 2 c e -

is one in which Ihil and Ihol2 are minimized while
.2

3 ho P

PR |€ 'n|[° on S is maximized. The "interchange"
s

mode is that case in which h, = Eo = 0, and we can see

that if it occurs it is certainly a stability oproblem
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Note that in(4.1), ¢ is a function only of £,
since the magnetic fields are completely determined by

E. Thus the interpretation of y as a potential energy

seems well founded.
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5.2.2.5 General Form
Here we exhibit the energy principle in its more general form.
Let ¢, PO and IR be the equilibrium gravitational potential,
pressure, and density, and let K'represent the perturbation
magnetic potential in the vacuum region Vb. Let P/PO =
(p/po) Y where P and p are the pressure and density. Then

Y = potential energy of a perturbation

1 = 2 = |2
= — L ( .
2£EYPO\V & )7 ug (inxHi)
t(8'V 2) @ "T)- ug (Vv oxH) x (V x & xH,)
- (@& 7)(Vok) 1 drx
u — -~
+ 5 2 |vxil|drt
T c
o 2 Y 2 ..
+ 5 VP +—9 |H| - = 9[H | ] n_
3 o] 2 X > e} 3
€ 'HS)‘ ds (5.2.2.5.1)
T = Kinetic en ergy = f = oy | g%- | d=
N < (5.2.2.5.2)



285

Note that Bernstein points out that the integral

overVy in ¢, for V¢ = o, may be rewritten, using

_ P
np =|€§-I and Jo =V x Hi’ as
0]
37 nglV x 6 x B, +(A, BT x 7 (2 ¢y p (D)2
2 v o] o P o]

- 2w (A B2 (I xm) t(F v a)] dr

(5.2.2.5.3)

The importance of this general form is that it shows the gen-
erality of the development in the breceeding chapter,even in the cas
of arbitrary internal currents and fields. Hence, we
know that the perturbations of the plasma can be represented
0y an expansion of normal modes, which form a complete
orthonormal set over the allowed perturbations.

We will use this result in two ways: first, to
write the coupling of the feedback to the plasma in a
useful form for stability analysis; and second, to examine

the stability of internal modes .
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5.2.3 Feedback
5.2.3.1 Linear Feedback

Often, although the basic system of fluids, vacuum,
and conducting shell may be unstable, it is possible to
increase the stability of the system with some form of
feedback control. This may mean applying additional
magnetic fields by use of electrodes, volume VF’ which
extend through the conducting shell into the vacuum region

VO. The strength of these fields £, might be determined

Oy some local average of the fluid displacement €'n_,
o

or its time derivative.

We may add these fields to our feedback model by
adding terms to the right-hand side of (5.2.2.1.9) to
represent the additional magnetic pressure. This leads to

an extra term in the energy equation (see Millner and Parker)

dE _ g, 28
3t £ (FP TS ) 4 s £.2.3.1.1)
E =T+ y
e + : £ m F_ = - I T 7
Zf this term is of the form FF uO I 'y ns
where
ip = ¥ x Ag, 35 X Ap = o at S,
n_ X AF = o0 at s (5.2.3.1.2)
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then we can rewrite the right-hand side of (5.2.3.1.1)

using (5.2.2.3.8) as

1]
+
\ﬁ
k=

jasy
e ]

Q.)I [<%]
(g
o]

3
]

Q.

wn

=+ f Moy HF X 5
3+s
O
- - . 9A
= +“ff IJO \v) (hFX ﬁ ) d T
(e}

V'
0o (5.2.3.1.3)
The second term of (3 ) reduces to
3 3 3n _ _
- [+ u, — 7Tx A, d T =S Uy X Ag n_ d s
v 3t : S+s 3t - S
0 o)
Mo
= [ 1l AL xn ds = o
s+s o 3t 13
(5.2.3.1.4)
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Hence we have

dE _ A = _ — . =
a? = + J. uO -576 JF d T = f eo JF d T
v \'
o} i
where Eg = ug %F is the electric field due to the

perturbation of the fluid and TF is the feedback current.
Note that, for the interchange mode, A = o and so
the feedback will have no effect!
If we're not worried about the interchange mode,

then clearly the thing to dc for linear feedback is let

- — Y
JF = -C1 A - C2 =F > Cl > o, 02 >0
(5.2.3.1.5)
-, T2 3
1 Mg

at each point on the feedback electrode volume Vo. The

currents are clearly realizeable, since v ° Tm = o from

v " A = o,

Then we have E = T + ¢y + U

where
Ho =2
U=/ C, 5= |A|“dr (5.2.3.1.6)
7 1 2
ak - 3 3 = ¢ I —3K|2d >
dt ) ) 110 X T o)



289

We have used the feedback to make the energy function
more positive for nonzero K, and created a damping term B
which reduces the oscillations of 2a stable plasma, just as
2 lossy element does those of a circuit. If all possible
perturbations £ of the fluid resulted in a positive

definite E and positive B, we can use a Lyapunov stability

criterion to say the system was stabilized.
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5.2.3.2 Nonlinear Feedback from N Stations

Now we can easily modify our energy arguments
to include nonlinear feedback from any number of
stations. The integral over the feedback wires VF
(5.2.3.1.4) 1is simply the sum of integrals over each
feedback station, since they are spacially distinct.
Let's analyze sepzarately the effects of the currents
used for positional feedback and those used for damping
(velocity feedback), since the equation is linear.

Let the sensor output be the line integral over

the feedback strap (VWn = Lq) of the vector potential.

o
i
H
>\
Q.
|
[]

D ) (Flux linked by the strap

due to the perturbation)
(Note that this involves subtracting out the

(5.2.3.2.1)
flux due to the feedback currents.)

Thus the coupling is given directly by the flux linkage.

Then the current JPn will be a nonlinear function of Dn:

ds

|de | (5.2.3.2.2)

Therefore the right-hand side of (5.2.3.1.4) is given

oy
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\I —_

du . 3k -

dat _nzl £ Host FPn (Dn) d4
" (5.2.3.2.4)

where
N Dn
U= ¢ / FPn(x) d x
n=1 o)

(5.2.3.2.5)

The damping part can be easily handled using the alternate

form of (5.2.3.1.4), and the same sensor signal. Let

T = - _n T
Ivm " m (3¢ ) &
|de | (5.2.3.2.6)
Note that
dD
n ;o= .
& w7

1s just the voltage difference across the feedback strap
due to the first-order field of the perturbation. Thus,
damping can be obtained by hanging resistors across the

feedback straps, giving
an an

However, this also tells us that velocity feedback is

the effect of any slightly conducting material in the
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vacuum region; for if e is approximately the total electric

field, then Tf = 0 e gives
B= [ ¢ |€|2d T
VF

(5.2.3.2.8)
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5.3 Modal Derivations

We now can easily compute all the quantities needed
for our stability analysis. However, in order to make
the modal form of the analysis explicit, we repeat the

last development in terms of modes of the system.
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5.3.1 Linear System Plus Feedback
The MHD equations of the (linearized) system allow
us to eliminate all variables in favor of E, the

displacement, giving

jo}
Q
Tl
I
l-_[jl
N
m|
p—

(5.3.1.1)

5%
t
n

where F(E) is the appropriate linear operator. We
dot-multiply (5) with Eﬁ(?) to pick out a sinele mode,
and integrate over Vi' Integration of the right-hand
side involves use of force equilibrium on the plasma
boundary, including the feedback terms. Thus the result

is

- (Fp + Fy) ds
(5.3.1.2)

We may then multiply each mode equation by dam/dt and

sum over all modes to obtain a modal form of (38), using

the self-adjointness property to prove that orthogonal

modes exist:
= = -B, E=T+ y + U, (5.3.1.3)

where
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z % o Idam |2 > 0
\' dt m i dt
p = I L o) W 2a 2(w defined with no viscosity)
m 2 "m m m

N E, _
= 13 E = .
5) nil é -n(Dn) an, En é Bn(P)E n ds
M : N
- w1 ' 1 - -
3 qil B F n (D n) nil En [Fn(Dn) Fn(En)] + BV

fdere the last term, BV’ represents any viscous
or resistive effects in the system, with BV > o. The
first term in B is due to velocity feedback and has the same
damping effect as viscosity. Thus,to guarantee that we are not
oumping energy into the system, we want to design our
sensors and enforcers so that E'n(F)= D'n(F). Similarly,
looking at the second term in B we want En(F) = Dn(F).
This tells us that the spatial weighting of the sensing
and associated forcing elements should be as similar as
possible: An(F) = Bn(F). Then we require that our feed-
back functions be restricted to the first and third

quadrants, so
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Py

é Fn(x)dx> 0 (5.3.1.4)

And 6'n F'n(ﬁ'n) > o for all feedback functions Fn'

Since the stability problem is now in the form
given in Chapter 4, we will refer to the results quoted
there for the rest of the required expressions.

We note at this point that the case of An + Bn
has not been fully analyzed. Although the system will
always be stabilized if the above criteria are met,
it may or may not be stable for An + Bn' The work of
Crowley, Dressler, and others with linear systems of
low gain implies that the violation of An = Bn places
an upper limit in the allowable feedback gain, which

would imply that the null of a bang-bang system will te

unstable.
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5.4 Alcator

The proposed Tokamak-type device now under con-
struction at M.I.T. 1s a possible application of the
above-mentioned feedback scheme. It is a toroidal
device, with the following approximate projected operat-
ing range:(see figure 5.1.1.1)

Major radius R = 0.5

Minor radius of plasma a=o0.l1l3 m,of shell R,,=0.15 m

W

Toroidal field B, = 130 kG (H, @ 107 A/m)

Particle density N_ = 5 x 10°%/m3
Mass density p = 8 x 1077 ka/m3 (protons)
H_a
Zstimated q = Z > a,
Hg(a)R

where (r, 8, Z) are consistent with a periodic cylinder

2.5 without feedback,

model.

The purpose of putting feedback on such a device
would be to alter the dynamics so as to lower the value
of q consistent with stability of the surface. As long
as there is a vacuum region between the conducting shell
and the plasma, g > some q, will be a limitation on the
heating current. Ideally, feedback would allow any
value of heating current without instability of the
surface.

We have a modelling problem in designing this
system. Theoretical predictions of growth rates are

unreliable and depend critically upon the radial current
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distribution, which is difficult to measure. Therefore
we shall choose a simple uniform current distribution
(JZ(F)= constant), and assume these results to be
approximately correct for real situations. We take
our modes to be expressed as a Fourier transform of
the normal surface perturbation and let the radial
variation adapt itself to satisfy the equations of the
system. Thus on S,

© ®

_ 1
g (r) = I I DI X
=0 J’ m=0 n-=-=o

(t)cos(me +

:ULD
N
'_J
N
Nt

44 3imn

where j represents the possible internal structures
possible, and where we have normalized Eijmn(;) so that
the maximum value of Er on S is unity. We expect the
worst situations to occur when the m=-n=1 mode aporoaches

the interchange condition. Therefore our operating point

will be assumed to lie near g 2 41 or Hg(a) 2+ H

+2.5 x lO6 A/m.

a
Z R
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5.4.1 Design

We refer to the work of Shafranov and others for
derivation of the dispersion relation and final form
of the modes. (See Appendix D for details of the deriva-
tion.) For convenience, we define the following quantities:

¢ = m + nag (a measure of deviation from interchange

m2con§étlon)
Y2 = -p imn (growth rate)
mn 2
uoHg (a)

For long-wavelength modes (na/R << 1) the following

dispersion relation applies:

v2 - o[- ¢ 1. (5.4.1.1)

[1 - ( 2y°m g,

W Ry

7 = % (1 - ¢ —3—)2m] when ¢ =
R

M|+

(5.4.1.2)

Inserting Alcator parameters, this gives Y2 = ¢ Q 0.13.
Taking m = n = 1, we see that ¢q 9 -0.87 is in the expected
range. Higher m modes would be unstable at higher a

but experience has shown them to be less of a problem

in terms of confinement. The growth rate, then, is given by
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2

13 -2
-w i11 7 x 10 s

o

lwill’ 8 x 10° s7L.
The time v = 1/w 2 1.2 X 10-7 S represents the maximum
time scale that we can afford to allow in feedback time
lag, because of switching, processing, and so forth.

In addition to these modes, there are others (3
with the same m and n, but more complex radial dependence.
For a description of these internal modes, see Appendix D,
Section 7. 1In certain ranges of operation near ¢ S
theory predicts that these modes can combine with the
original kink mode to produce an unstable perturbation,
with zero surface deflection but unstable internal behavior.

Such internal modes represent a severe limitation
on surface-coupled feedback. They represent the limit
of the null Stability test mentioned above, where only
mode amplitudes of the m = n = 1 modes need be considered.
If they combine with the kink modes to grow without
limit with Er(a) = 0, eventually such modes will over-
whelm the feedback, and enter a new phase of growth
dominated by the fast-growing kink. It is quite possible,
nowever, that mechanisms not included in our model will

stabilize such modes before they get out of hand.
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5.4.2 Approximation of Internal Modes

In general, a complete set of orthonormal functions
over the volume V requires a triple infinity of spatial
dependences. Thus for each m and n, there could be an
infinite number of possible radial functions, each
assoclated witn a mode of the plasma. This set is
reduced by the restriction that the perturbations
satisfy the equations of motion. However, the case we
are studying does allow an infinite number of possible
radial variations, as is shown in Appendix D. The
kink modes are one, the internal modes another set,
and the Alfven waveé, purely shear, are a third set
of solutions. The detailed behavior of internal modes
in toroidal geometry is difficult to analyze, since
toroidal effects are significant (see Shafranov).
Therefore, we make some approximations.

It is much easier to deal with the concepts of
feedback stabilization if the mathematics can be simpli-
fied to reflect only the key issues. The modes of 13
Dlasma column can be broken down into the main kink,
with approximate dispersion relation

2
7% =20 ¢ - -2

W (5.4.2.1)
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and the internal modes, plus stable Alfvén waves

As we show in Appendix D, the internal modes

approximately obey a dispersion relation

where BJ is a root of the boundary condition equation

1}
o

A 2
Jm (j K aIBJ -1)

This leads to quite small growth rates for
*
internal modes. /e also show in Appendix D that,

because of the small coupling of these modes to feed-

back at the surface, it is likely that

¥
A plot showing the relative growth rates of the main

kink, the internal modes, and the Alfven waves is given
in Figures D.7.1 through D.7.3.
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before the plasma sgriously threatens to overwhelm the
feedback, the internal unstable modes will be
dominated by nonlinear mechanisms which would presumably
stop their growth.

In toroidal geometry, the most useful stability
condition for internal modes is a local one rather than
an analysis by modes of the entire system. The energy
given by the term integrating over Vi in (5.2.1.3),
representing the local energy, must be positive for all
perturbations, since the other terms vanish for internal
modes. In cylindrical geometry, this constraint reduces
to the Shafranovecriterion. 1In toroidal geometry, assum-
ing that magnetic shear dg/dr is small and dPo/dr < o,
this leads to the 1local condition |q| > 1 everywhere
in the plasma (Mercier). This is first violated on the
magnetic axis (r = o) for realistic current distributions.

Therefore, we can expect that at sufficiently high
neating currents, the interior of the plasma will become
turbulent due to unstable internal modes. This will

oprobably be their main effect.

Therefore, if our hypotheses prove correct, there
is no reason why feedback control of the form specified

would not allow operation of ALCATOR at any desired

value of g. For a first experiment, probably the feedback
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would be arranged to stabilize m = -n = 1 modes, and

investigate the region near Q=1/2 whenm=1, n = -2
modes might become unstable. There is no data available
yet on this range of parameters. However, the heating

current would be quite high before such an operating roint

were reached.
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5.4.3 Calculations

We shall assume that the long-wavelength kink modes
analyzed first are the only ones present. Then we can use
4,1.2.2.2 and 3 to calculate the magnitude of feedback
needed for expected disturbances to lie within the region
of stability.

The first thing we notice is that amo becomes very
small and makes little contribution to Eo when mm2
becomes large and positive. For m/n #-1 this is the
case, So we can ignore the effect of tnese modes. 3o,
for a first approximation, we shall assume that m =-n = 1
are the only modes that we need consider. TIf experiment
proves this wrong, then modification is clearly possible,
but present available results do not contradict this
assumption.

de therefore have two unstable modes, from i = o
and 1 = 1. This implies two current straps if we can
both push and pull on the plasma, or four if we can only
push. The first would be an option if we rely on a forcing

term H_ - ﬁf on S and reverse the current. The second

is possible also from a term HFZ, which can be significant
with bang-bang feedback. All other higher terms can be
ignored if [ﬁFI <<|ﬁol . The first option would appear

to require the least current, but, as we shall see, 1its

contribution vanishes at the interchange condition. This
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aspect will be discussed later.

The key to feasibility of this experiment is the
amount of feedback current needed. To find this, we
refer to the equation (4.1.2.2.2) relating the feed-

back force to the region of stability:

(5.4.3.1)

We wlll take the maximum value of allo = %(Rw-a) to
be 107%m. To calculate the left-hand side, we require

Py71> which is approximately

2

no

1 2 o) -8
P13 5 [27° a Rp] = 6 x 10 Kg.
Then we notice that if our bang-bang feedback elements
cover the surface of the Dlasma, and push in but don't
pull out, then the feedback is of the form

D
Fo= 3 (L+—R )

n
D, |

The first term has no effect; it merely adds to the
equilibrium pressure. Hence, the effective feedback

force is divided by two. Assuming that a mode couples



308

to only two of the four feedback statlons, this requires

that

- 3
Fn Anll 8 x 10° N

(5.4.3.2)
We now wish to express Fn Anll in terms of the

feedback current IF. The full expression is

ol

T

+
OSTIE

2 . =
Mo Hp 1 &7 " mds
(5.4.3.3)
We can simplify this expression by using the fact that,

for any Hl and H2,

where V x H2 = J2, Vv x Hl = o0, and Alm is the vector

potential due to the perturbation of ﬁl by E.. It

satisfies boundary conditions that

n x A, =0

The above identity follows by vector manipulations.
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Thus we may rewrite the effective force as

- .= 1
v M1 T Jp t 5 Ay Tp-dy

(5.4.3.4)

where All represents the perturbation vector potential

attributable to Ell without feedback, and A the

F11
perturbation of the feedback field alone. We must then

place wires so that current will flow along vector potential
lines, and so that the current is determined by the flux

linked by the wire.

For velocity feedback, our integ;al becomes E11 ’ 35,
A - -
where Ewl is the electric field - —1l , because of
- ot
the perturbation, without feedback added. Linear

velocity feedback is orooerly applied by any slightly
conducting substance inside the conducting shell, so
that its resulting 3HF/at creates an electric field
much smaller than the perturbation field. Our damping
interpretation corresponds to standard energy verturba-
tion results.

We must now estimate the vector potentials X

11

and AFll at the feedback wires. Since Ry - a << a,
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we may model the vacuum region as a planar geometry.

See Appendix E for details. Analysis of A the

11°
Derturbation vacuum potential, shows that it divides
into two parts, one irrotational and one solenoidal.

The irrotaticnal part produces an electric field with

E = -V¢, where for any mode m and n,

(% Hg(a)-g Hz) sinh K(r—Rw)Ermn(a)

¢(P,9,Z)=Uommn

K2 sinh K(Rw-a)

(5.4.3.5)

where

Coupling tothis field would have to be electric, and
so 1s relatively small for realistic feedback fields.
The solenoidal part produces the verturbation

magnetic field. This vector potential is given by

A A
uy( %ﬁ - 25)(m+nq)Hg(a) sinh K(r-R)E. . (2)

All(r,e,z) =

<° a sinh K(R, - A)

(5.4.3.6)
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This is the term to which we can couple.

We should notice several things about the potential.
First, it points along flutes of the surface perturbation
and parallel to the equilibrium surface. Thus, this is
the direction in which our feedback current should go,
as far from R, as possible, to maximize the term ﬁo ‘ ﬁF
(see Figure 5.4.3.1). Second, the term vanishes when
m + ng = 0, so such feedback will not affect the inter-
change modes. Thus, this term will dominate situations

far from the interchange situation.

Finally, we note that this term is proportional to

m n.. _ -+ .5 =

7 Hgla) + g iy =K ™H_ atr a, where we define the
= m4 n % . .

wave vector K = 59 + = Z., This gives us an easy way to

evaluate AFll’ the vector potential attributable to the
perturbations of the feedback field. We can simply
replace the factor with X ° ﬁF(a). This means that,

fto maximize the Hp2 force term, the feedback field
should be perpendicular to the flutes, and the feed-
back currents parallel to them. We therefore see that
this geometry is also optimum for feedback contributions

of the HF2 term. To the extent that ﬁF(a) can be approxi-

mated as a constant, this geometry gives

N

A
uo( B2 - 2% (@ (a) * K) sinh K(r-Ry) £, (a)

K sinh K(R, - a)

(5.4.3.7)
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If the total current in the strap is limited, then
clearly we want it all to flow in a wire sitting at
maximum vector potential, to maximize (4 ). Let us assume
that the HF . Ho term dominates. The length of wire

is approximately 2 wR. This gives a current needed of

2Fn A 0 4
I., = I 2 x 107 A.

3|
1

2mR[Ay) | (5.4.3.8)

Now let us assume that the sz term dominates. This

leads to an estimate

0 2F A o}
Ip = n_n = 3 x 10" a.

2TRAg, | (5.4.3.9)

The two are quite close. In fact, the value of g at which
we assumed we were operating is close to the "break

point" between the two extremes. As 9 - 1, the non-
linear term dominates.

When designing the feedback straps, a major con-
sideration will be to minimize the inductance, to avoid
arcing during switching transients. This involves
maximizing Au while minimizing the integral over
VO of % “o HF . Je can see that a single wire, or

impulse of current, would cause very large local magnetic
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field energy and so is not a good choice. To explore
the modification, we assume Kf to be distributed in a
plane parallel to the equilibrium plasma surface. Its
Fourier components produce corresponding components of
magnetic fleld and, since they are orthogonal over the
vacuum region, their energies add. Thus, to minimize
inductance, we want to distribute the current sinusoidally
to match the vector potential and surface perturbation.
This 1s just the distribution of current that ocecurs

on the conducting sheath, a form of linear feedback.
Thus the effect of the ﬁé ’ ﬁ5 type of feedback is to
make the conducting sheath appear arbitrarily close tc
the plasma, as increasing the gain of a linear feedback
system, if such were contemplated. Its maximum effect
is that of a wall as Rw + a, and this is the effect of
bang-bang on the modes m =-n = 1.

Note that the use of HFZ feedback lets us do even
better, by stabilizing interchange modes that are un-
affected by a wall arbitrarily close to the plasma.

Ne also note that the spreading of feedback currents
over a sinusoid results in a decrease in effectiveness
because not all the current is at maximum A. This will
roughly cancel the addition of terms in our calculation
of current, if the current in a strap is equated to the

vositive half-cycle of a sinusoid. The resulting in-

ductance for such a scheme is approximately 1.3 x 1077w,
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Assuming the rise time of 1.2 < 10-75, this gives
voltages of 33 kV during switching; difficult but not
impossible to work with.

We can use our estimate of the inductance of the
feedback straps to get a good picture of the power-
output requirements for our current source. We need

Inductance L € 1.3 x 1077

Current I 2 3 X 10” amps

0
Switching time t = 1.2 x 107/ sec.

Thus the energy needed to create the fields is

2 o]

about LI® = 60 joules giving a power output of

0o N

5 x 107 watts for 1.2 x 10—7 seconds. Thus we will
need a very efficient switeh. Even assuming a 1%

duty cycle and a maximum dissipation of 50 watts, we

. . Power passed,switchin continuously
would need an efficiency n = D 2 g

= Power handled
of (1 - 107°). This doesn't even consider the problems

of steady-state dissipation.

Thus, we would design our feedback so that the
currents flow just above flutes in the surface
(Tﬁ X ﬁo "r >0). For l-cm perturbations, we require
that approximately 30,000 A be switched in less than
a tenth of a microsecond. This would be difficult, but
not impossible. Certainly at these currents, linear

feedback would be far more difficult. Our experiment

would look for increased confinement time, and
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check assumptions that modes with fast spatial varia-
Cions will be damped.

In conclusion, we can see that the analysis of non-
linear feedback to continuous systems is quite workable,
and can be used with various degrees of approximation.
In application to Alcator, it appears feasible to use
bang-bang feedback in order to allow lower values of aq,
while preserving finite separation between plasma and
conducting shell. The region of a-operation desired

will determine the feedback mode of operation.
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5.4.4 Implementation
This section will investigate the feasibility of
severa. schemes for implementation of feedback for use

in ALCATOR.

5.4.4,1 Sensors

One way in which the sensing of Dn(t) could be
realized would be by use of H-field probes. These would
have to be placed and weighted so as to give an output
with spatial distribution similar to that of the force
generated by the feedback currents. Such schemes have
been employed in other feedback experiments.

Other methods would use the feedback straps them-
selves to sense motions of the plasma, by monitoring the
inductance of the straps. As the plasma moved closer
to the strap, the inductance should be reduced

-2K(Rw-a)
-2K e

|
o

-2K(R,-a) &

1 - e

or for K(Rp-a) << 1 and £ = % (Rw-a)

o}

VLo _ _ &
L R,,-a

Ho

In effect, the inductance is proportional to the

volume of vacuum between the Plasma surface and the



318

wall near the feedback electrode. By using a high-frequency

signal and a tuned circuit, the output could be con-

tinuously available. However, hoise from the plasma

and switching transients could be a serious problem.
Perhaps the best possibility would be to take

advantage of the fact that Dn is proportional to the

flux linked by the strap. Therefore, by measuring the

voltage induced across the strap, not including the feed-

back-field part, and integrating this voltage to find

the flux (with the intention of keeping the flux at its

equilibrium value) the outp;t would be available with

Just the right spacial weighting built in. Integration

could be done on a time scale long compared to switching

times but short compared to the total experiment (say

over several oscillations at expected mode amplitudes)

so that long-term drift need not be a problem. Sensing

with this method would break down at interchange condition.
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5.4,4,2 Processing

The processing involved in this experiment is very
simple: the output, and perhaps its derivative, at four
independent feedback stations must be amplified, converted
to a digital signal, and fed to the switching elements.
High-speed digital logic could easily handle this problem

with appropriate conversion of the input signal.



320

5.4.4.3 Switching Elements

The switching elements are the critical ones in
the feasibility study. The needed combination of power
and speed will be difficult to realize. There is little
tradeoff possible, since the most critical parameter
is the switching time, which is also the most difficult
to achieve. The switching element must switch on and
off a current of approximately 30 kiloamps through a
load of about .13 microhenries with a rise and fall
time of less than .12 microseconds. This requires a
capacitor bank with at least 30 kilovolts and at least
.13 microfarods capacitance, which can be obtained
(Maxwell Capacitor Corp.). This voltage allows fast
enough turn-on. The turn-off problem may be oprohibitive.
It might be accomplished by pulsed feedback, using a
rectifier or one-way conducting switch and the L-C
resonance time of approximately .13 microseconds. This
allows the possibility of merely using the capacitor
45 an energy storage bank and avoiding any steady-state
bower drain to the feedback, by reversing the capacitor
polarity between pulses.

The required switching time is faster than state-
of-the-art systems presently in use or under construction,

which all switch on in times approaching one microsecond
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but cannot switch off once an arc is established in any
reasonable time. However, there appears to be no theoreti-
cal limitation which rules out such a switch. Lead
inductances can be made considerably less than the strap

inductances (see, for instance, Les Champs Magnetigues

InteNses, Grenoble, 1966, pp. 361-370). Even for con-
ventional coaxial geometry with internal radius about
nalf the external radius, inductance of about 1.3 x lO°7

henries/meter 1is not too discouraging. (See Pulsed High

Magnetic Fielids, H. Xnoepfel, 1970.) The problem is in

finding a fast switching mechanism which can turn off.

Another hopeful point is that the actual measured
current profiles in TOKAMAK devices tend to be sharoly
peaked at r = 0, which gives longer growth times for
unstable modes, and so relaxes the switching time require-
ment. As much as a factor of ten increase is not un-
likely, if numerical studies mentioned earlier are appli-
cable. A lesser reduction in required currents would also
follow. This would make the requirements similar to
those used for SYLLAC.

There appear to be two methods which might prove
feasible for current turn-on.

1) Spark-gap methods including Ignitron tubes,

involving triggered breakdown in a gap, and using
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zero-current point for turn-off. All such tubes

currently available appear to require 1 to 10u-

sec. ionization times, making them too slow for

this application.

2) Amplifier-chain devices, employing hard vacuum

tubes and decoupling transformers, such as those

used in SYLLAC.

None of these methods at present give switching
times of much less than 1 microsecond. Therefore, the
proposed scheme for feedback control of ALCATOR appears

Lo be possible but beyond the state of the art.



323

5.4.4.4 Comparison with SYLLAC

The best picture of state-of-the-art systems is the
Los Alamos Scientific Laboratory's design for feedback
control of SYLLAC. They base their philosophy on the
fact that no bang-bang switching element is available
which allows any choice of current turn-off time.
Therefore, they use a high-gain linear amplifier scheme
for the feedback.

The sensors are essentially a series of stations
around the torus, each consisting of two pairs of light-
sensitive elements 90° apart around the minor axis.

The plasma in equilibrium casts a beam of light between
the two elements of a pair, so that their outputs give
a difference signal relating plasma position perturba-
tions.

This signal is amplified, differentiated, and
filtered by fast transistorized circuitry and logic
elements. The resulting signal is fed to a three-stage
vacuum tube amplifier chain with isolating transformers
between stages. The output of this chain has a 35 kv
swing with 700 amp capacity, and an accumulated delay
olus rise time of .25 microseconds, mainly due to the
coupling transformers.

This signal then goes to an output transformer to

give a secondary current of 4.9 kiloamps at 5 kv. The
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inductance of the 2 = o feedback windings is .23 micro-
henries each, and they are driven in pairs in series by
the .03 microhenry transformer secondary. This gives

a rise time of .49 microseconds, for a total lag of .TH
microseconds. Using an estimated growth time of l/y =
1.3 microseconds for SYLLAC parameters, excursions of
approximately one centimeter are to be controlled with
YT 2 .7. The final configuration is still subject to
change, and the inductively loaded amplifier chain is
untested. (Source: K. I. Thomassen, consultant to

L. A. S. L. )
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6.0 Conclusions

The feasibility of nonlinear control of continuous
systems must depend upon the characteristics of the
systems involved. However, this thesis provides guiding
principles for analysis of such control systems, so that
the important questions involved can be posed and answered
clearly. Most aspects of a practical control systenm
can be analyzed explicitly, and tne remaining points
are subject to reliable approximation. The advantages
and disadvantages of nonlinear control are also clearly
visible using these tools.

In the case of feedback control for plasma confine-
ment, it appears that nonlinear control of the bang-
oang type is the most feasible form of control. Our
present MHD model of the problem does not suggest any
theoretical reasons why such control should not be
possible. The answers call for switching devices beyond
the state of the art. However, a feedback control system
for Alcator or a similar device could orobably be built
given sufficient money and time.

The purpose of this thesis was to reduce the non-
linear continuum control problem to a workable set of

approximations, in full knowledge of their limitations.
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That has been done, and in the process a number of related
problems have been solved. The next step is to build
a practical control system based on these principles.
Future controls research could take a number of
directions. The dynamical form assumed for a distributed
system in this thesis was rather restrictive; the
generalization to other important tyoes of systems
could be quite rewarding. These might include systems
governed by partial differential equations with co-
efficlents which are functions of the dependent variables.
The general problem of system control without a complete
picture of the state is poorly understood. It may be
possible to formulate some type of optimization strategy
without complete state estimation in limited situations.
Also, the possibilities of scanning controls with finite
spatial extent or other variations in the form of control
or system will bear investigation. 1In addition, it
may well be possible to deal with many systems using
an expansion in terms of a set of orthogonal, but not
characteristic, functions. Alternatively, the techniques
of measuring modal structure need further development.
For the physicist, there remain numerous types of
instabilities which will not respond to the type of
feedback presented here. These should provide a rich

source of control problems for many yvears to come.
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Appendix A
Energy Loss Mechanisms
ALl Viscosity
One form which b might take is that of the viscous
force density in a fluid. We can show that this is self-
adjoint by showing that v ° ¥ < o for all V.

v o, .
Let Tij oe the viscous stress tensor,

F'V - E_Ei/
4 ng

We must show that

v
Voo 9%
is the viscous dissipation

~ J/ EZ— (JU? 1:J/)¢l7' - }”rf/ 2:82 A'q'
- v 9x3 X

V; (A.1.3)
S
wL\QV‘Q .
v . z 5
- h- 7T M . K lc
TCJ, = Lp et ( 5 ) J

e . = -(- < 2—-{(- + 9&

“5 2 ?X; J X
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(A.1.7)
but Q¢ € 5o
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f'Zeu €12 fz C‘L'Léaj f’Z-C“Q33>
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The Livet term iw (8)  reduces to

. . .2
é‘/« ( e,: “2e,%,, 1-6,_,_)
. " . . . =
-r%,o\( CZ—L‘:'Q-LL e—:,a 1—653)
7 . . - 7—)
f’;’/«( SR T A T
. . 2 . X 2 . . 2
= 33‘-;4[( e, "sz> r (ezz‘e33) "(eln-ej.?)]
-1 - o )

So £, M (e, v re,

g (€ Bt dy,)

(A.l.9)
. z - - * - -é 1]
' - d
t —?—M}:(e‘,-e“) r(ell e’33> f( h 33>
\_./L\(‘CLI c-S (bbJ("ILL:VQ {Oy- ul{ nonwaerv é‘..

J

vy represents positive dissipation ‘or

> o, n >o

Now let's examine the first term of (3)

)/ 4/". Tc: o A. T
5

: . 7 .
To nave a first-order term T,. at S we Tequlre sone

obalancing force by the surface force equilibrium equation,

The additional term above is then incorvorated into the

infernal pressure. Thus the oresence of viscosity does

not change the final form of the energy equation.
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A.2 Electrical Conductivity

The addition of viscosity to a fluid system model
resulted in the appearance of damping terms in the energy
equation. We would expect that a small electrical
resistivity in the fluid or other conducting parts, or a
small conductivity in the resistive regions, would
also have as a first effect the addition of damping
terms. The assumption that no other effect would appear
1s dependent on the v =_ =n=rgy verturbation arguments;
namely, that the first-oi -=» -~r-gzero fields, currents,
fluid displacements, etc. are .ot significantly changed
by these effects. So, only those quantities which vanished
in the idealized case such as the electric field in the
fluid or parallel to the shell, or the current in the
vacuum, would be changed by these effects. The resulting
energy loss could be calculated ¢then from direct evalua-

tions of the local power dissipation.
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Appendix B
Energy Velocity of a System

The energy velocity of a disturbance may be defined
for linear systems as the ratio of €ime-averages of
energy flux to energy, and for quasi-monochromatic signals,
1s equal to the group velocity (Jeffries and Jeffries).
Alternatively, it may be defined in terms of local wave-
number and frequency of slowly varying wavetrains (Ramo,
et. al.) as the velocity of characteristics of constant
wavenumber. The energy between two points moving at
that velocity then remains constant in an asymptotic
expansion of the perturbation.

We will define the energy velocity as a single
quantity representing the rate of change of the "center
of energy" of a perturbation. We assume a positive
definite local energy density function w(r,t) which

satisfies a conservation relation of the form

2w

¢ fVSeP =0 (3.1)
for any energy flux S and dissipation P. %e then

define the first moment of the energy density

[(¢) = f rw(Ft) dv (B.2)
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and the total energy

E(¢) = f w(Ft)dv (B.3)

Vo{ufMQ
We define the energy velocity as

Vet %[%] (B.1)

It follows from Equation (1) that, if the dissipation
is a linear function of w, for example, P = w/t, and
the disturbance is bounded in spatial extent, then our
definition reduces to a ratio of the spatial average
energy flux to energy,

7. (4] < !Ef S(FRt)dv
Velume (B.5)
Note that this is true, even for T < 0, an unstable
system.

If the system is linear, homogeneous, and time-
invariant, more can be said. We will restrict our
notation to one spatial dimension; the generalization
dbresents no problem. Let the physical variables in the

system be denoted Yq(z,t), with

o0 -kK=z2
Y. (30) =_£ 7, (K< Qer/: (B.6)

Y - = Y% 1 $
and ;n( k) £n (k) since all variables are real.



333

If w = w(k) has more than one branch, then we will
assume that the equations describing the system have
been used to separate the solutions on different branches
of the dispersion relation. (We usually are interested
in one branch.) Then, we treat each such solution as

a separate Yn(z,t) and write

20 '[wh(k)f-/(%]
V () [V, e de
n o T (B.T)

It is often the case that both the energy density
w(z,t) and the dissipation P(z,t) are additive. We may
then write

wiet) - 5 o, Y. (=, ¢) a, >0

(B.8)
P(ajf} -3 % \/Ml(}}f)

"
Tf only one branch is excited, the above will, of course,
be true in any linear case.

Using Parseval's theorem, we may rewrite Eauation (3)
in terms of integrals over k instead of over z. By (1)

we equate dE/dt to the total dissipation and conclude

that )
1 - + w,, (-
'/—Y—H = ‘) [ V\(K/ C k)]

(B.9)
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and rewrite

~ SN Ak
E({) N g A { [:/n()() / ¢ i
=~ " 27 (B.10)
~©
Jw (k)t
Note now that gn(k)e n is the Fourier transform of

Yn(z,t). Writing the transform out and differentiating
both sides with resvect to k gives the resulting inverse

trans form

“ ;[w it k]
= —1-9 (K) an(k> K 4
2 Y, (31) l[;%“,—(—*é e e

(B.11) 27

This relation may be used to rewrite Eas. (2) and (4)
as an integral over k. With a little algebra, the terms

involving agn /3k cancel, giving the result

~ _to
Pn |y ()] ¢ Ak
K AT (B.12)

Ve le) = — e
Ele - %
Note that the imaginary vart of wn(k) will make no con-
Cribution to Ve, since it is an odd function of k.
If the excitation is on only one branch, or if
T, =T for all i, then our expression for Ve is time-
independent and reduces to a weighted average of the

group velocity. Thus, the quasi-monochromatic signal
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is a limiting case in which gn(k) is nonzero only in
the neighborhood of ko and the energy velocity is
Ve = Bw/ak(ko). The same result is obtained if the
group velocity is constant over the range of nonzero
gn(k).

An illustrative example of this approach in a simple
context 1s called for at this point. Consider a trans-

mission line with series and parallel loss per unit length,

represented as in Fig. B.1l.

dv _ _ ) 2¢ _p -
S L5 ~Re
T A A eV (B-13)
DE 7t
_.Kl = ‘(J'LJL'/'IQ)(J'WC’G)

(B.14)

7L -
D(wjl(): sl -J'w(LGf/QC) -U<+KG) -0

(B.15)
W = W Wy
we: t K _ /¢ _R\F
R Lc ‘1(2 L/)
c (B.16)
. ! G , R
“r oo z[c’L]
, 1. .2 1 2 .
Choose W(z,x) = 7L 1"+ 5C V", Assume that we excite

the line at one point and observe it some distance away,
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Fiju.re B.I

Tran.r mcssion Line Schemabic

() C(ZErag)
e VAVA Ve N LYY, S—
" Raz L&Z ¢

V(Z) Gaz § (a2 —— v(z+02)
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so that causlity makes it clear that the currents and
voltages split into two modes, only one of which is

observed. Thus wsw(k) is unambiguous; we may choose

a “R > o. We can identify Vv = v i=Y ¢ - a

L _
Tl 23 3 1° 2 T @5
3 K

¢ .
C

~ >

’_LT' «und Wse (Il) o foud
J

T dwe [l Jvenlt, s (k) *] Ak
Ve = 4£3 K [ 1 C 02 L b [ LK) 2T

/n[—’c}\/{kjlzv‘iL/[-/?))l]é—{

oo 2 - L - 2T

where the underbarred quantities are the Fourier trans-

forms of the initial waveform. Clearly, this is independent

of signal when g “gr is independent of k, or g = % ,
3 k
the dispersionless line. We have not learned anything

new by this approach, but we have a basic, simple deri-
vation of group velocity in one case, and a way of cal-

culating the energy velocity for a dispersive line in

the other.

We might also explore the possibility of redefining

(2) as

7>
Y

L (€) ) 2’ wizf) gz
/ ‘o (B.17)
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and using a form like Equation (4) to define Vej' We
find that this involves derivatives 3Tw/ak™ up tom < j.
Thus, the series of values of Vej gives information which,
for quasi-monochromatic signals, is the equivalent of

a Taylor series expansion of w = w(k). We therefore

see that, knowing all such velocities Vej allows recon-
struction of the Green's function of the system, as long
as w(k) is analytic.

Thus our definition, Equation (4), of energy velo-
city, which in general involves all of the modes of the
system, has all the properties we would like it to have.
It reduces to other standard definitions in simple cases
and can be extended to other moments of the system if
desired. More important, it has a firm intuitive basis,

and so may serve as a teaching aid in interpreting the

signal velocity concept.
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Appendix C
The Diffusion Equation

C.1 Analysis

The Lyapunov techniques of the previous chapters
can also be applied to processes governed by the diffusion
equation. Such a system might become unstable if a
growth term, analogous to the electric field term in
the spring problem, appears in the dynamics. Suppose,
for instance, that the femperature of a long, thin strip
of material is fixed at both ends. Let there be an
electric current flowing along the strip, heating it
to some equilibrium temperature distribution. Now, if
an increase in temperature caused a local increase in
electrical resistivity, thus resulting in more heat

locally generated, then the linearized dynamics would be

described by

C A s Eljg + P&

)€ D"

(C.1.1)

where C is the heat capacity, £ the femperature variation,
Y the thermal conductivity, and P the parameter relating
local temperature variation to local heating variation.
(This is just the String equation without an inertia term.)

Boundary conditions would be for this case E(z=0) =

E(z=L) = o.
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For the standard linear analysis, we take

E(z¢) - f . lt) & (2)

(Cc.1.2)
_om T
h 2 Scn K ? Ko L
where EW{}) ¢ w 7
St
and Qm({) : C""‘ € (C.1.3)
am and Cm purely real.
This gives a dispersion relation
A
C Sy = -0k, +P (C.1.4)
with stability determined by the lowest mode,
Ty 2
P.(5.) <0 > y(Z) > P
(C.1.5)

An "energy" formulation of the problem can be
achieved, as was done previously, by multiplying equation 1

by %% and integrating z = o to L, to give

£, [ [3rE)-5pe]de

(C.1.6)
L DE'L
B, = [ ¢ (57) 42

3

Since BA > o for all possible ¢, EA is a Lyapunov
function for the system provided that it is positive
definite for all possible £(t,z) # o. This is equivalent
to the condition for stability given above in equation 5.

The following lemma proves this:
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2
Lemma: If y( X )> P, and £(o) =¢(L) = o, then
L

L 2 3
- pe e s

o

EA - for all &# o.

Proof:
Let equation 2 be used to form a Fourier series

for £(t,z). Since the terms are mutually orthogonal

over the interval [o, L], we may write

E - g é[?’k:‘-i’]a: {Lft'h’/(,,z dz

A m =

Clearly this will be positive definite if Y(]._E')2 > P.
We may modify the dynamics by using a feedback
neat source F(t,z), perhaps in the form of N feedback

stations

N
Flae) - -5 8,02 F (D.(F))
" (C.1.7)

with sensor dignal

L R
D (€)= [ A2l Elet)dz =X A, a.lt)
7 " (C.1.8)

Drawing on the previous chapter, we know that best

results will be obtained if Bn(z) = An(z). Letting
FaDp(e)) = —n » We may add the feedback term
a D
n

to the right-nand side of equation 1 gnd proceed with
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!

the energy formulation. This gives iz - - B
E=E, + U |
N
U= s Ullt) (€.1.9)
If Fn(Dn) is linear with Fn(Dn) = Fn Dn’ then
2
- L £
(/M T2 owm D“ (C.1.10)
D
. . i i _ n
while if Fn(Dn) is bang-bang with Fn(Dn) = Fn o
n
Then
U.= F [D.l

(C.1.11)

Jow, let's interpret our results. First, under
what conditions will a "hot spot" develoo in the system?
This corresponds to an instability in the linearized
model, which would grow into some nonlinear final Jevelop-
ment. Hot spots will oceur Spontaneously if the system
J——

is longer than a critical length L =7/

—

-<

:Ul

Second, how can feedback be used to avoid such
instabilities if the system is longer than Le? This means
using Fn(t) to insure that & > o for all possible non-
zero &£(t,z). This is Orecisely the problem of the last

chapter. The results are as follows:
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Let M be the largest number m such that YKm2 - P <

Then the minimum number N of feedback stations needed to
stabilize such a system is M.

The best arrangement of forcing elements, (which
in this case might be heaters operated at some bias
power) is such that Bn(z) = An(z). That is, the heat
input has a spatial distribution equal to the sensor
distribution. If the sensor is a temperature-sensitive
wire resistor and the heater is 2 wire filament, then
they should be interwound.

The best spaftial distribution of the two, An(z),
is that which has maximum coupling to the unstable
(m < M) modes of the system, and minimum coupling to
the stable ones (m > M). This coupling is measured by

Che matrix of coupling coefficients.

L
A = f A GRIE (de, wrl €N
o ° wm s [ fo 20

(c.ta2)

We wish to minimize all values of Anm such that M > M,

and maximize det A, where A is *he square M x M matrix

M M

of coupling coefficents Anm’ L <n,m < M. Also, to
minimize the excursions of the system from equilibrium,

bang-bang control should be employed.

O.
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Once such a control strategy is chosen, we must
test two things about it: First, does it result in
stability for arbitrarily small perturbations? Second,
if it does, what range of perturbations can be controlled?
To answer the first question, the null stability
test previously described must be used. To answer the
second, the critical value EO must be calculated using
feedback amplitudes Fn’ such that all perturbations
E(t = 0,z) 1lying inside the state-space boundary
E(g) = E will be bounded. The given formulas remain

0
correct.
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C.2 Special Properties

It is interesting to note at this point several
oroperties peculiar to the diffusion equation problem.
First, since C, the heat capacity is positive, the
term Bg does not vanish for any trajectory of &(t,z)
in state space. Thus the system is asymptotically stable
if it is stable at all.

Second, it is vpossible to interchange the roles of
EA and BA in our Lyapunov formulation of the problem.

Taking equation 1 and multiolying by & instead of £&,we get

< 2 &
dlice]s -y (B e v plEs

(C.2.1)
-2 € Byl R, (0.06)
Integrating over z, we get
L
Ay A ~ f Leg? dz
o~ - k i
_I’f 33 BF 3 d :

TR
i
]
"Mz
—
¢~
o~y
—
\'N
=
o
3
~
Q2
V)
™~
A\
3
~~
>
—
N~
[
V]

(C.2.2)
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D
_ . n . .
If Bn(z) = An(z) and Fn(t) is Fn TB_ with Dn as given
above, then n

N
Bl: : Z F, 1D.] (Cc.2.3)

Thus the problem has been shifted from one of making
EA positive definite to an equivalent problem of making
(BB + BF) positive definite. EZither is equally tractable
for problems in which Fn(t) depends only on &£(t,z). How-
ever, the first formulation is helpful in interpreting
dependence of Fn(t) on %%-, since such a term becomes part
of the decay term B. The second formulation would be
useful if the feedback Fn(t) depended on the past history
of the perturbation [ tE(t,z)dt,since such 4 term would

o
De incorporated into E

3-
It is also interesting to note that the existence

of these two ways of formulating the energy oroblem are

dependent for their equivalence on the following identity,

which holds for any equation of the form of equation 1

including linear, but not nonlinear feedback:

L ?15, L/)é,L
f:’Lc ﬁlgo‘a:[qz{) de

¢]

(C.2.4)



347

C.3 Three-Dimensional Formulation

The thermal conduction problem can be easily generalized
to three dimensions. Certainly the boundary condition
£ = o on all faces of a volume can be achieved with appro-
priate heat sinks. A material with different thermal con-
ductivities along the orthogonal coordinates is governed

by an equation

rXs ‘e 1€ g
5 L %7 r 4 5}% 7z IRNCIERS

The condition for stability of all modes, of the form

2 = o ,
Eltxye) = 202 5 a, (S Kr Stk Jike
K=o 221w,
where
K N /{_TT K b ﬂ__,—, ,( B y:,z—r
K L, z /.7 - L=
{(C.3.2)
will be determined by the condition
TV L TN Ly (E) AP s 0
/ (fx) LiT) G (C.3.3)

Tiolation of this condition might be remedied by using
feedback in the form of N heat sources with heat input

-Bn(x,y,z) Fn(t), where
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Lzll

Fe=F 2 s D)0 Uf“ oy, AT (ny ) dedyde
- "D, (C.3.4)

The analysis of such a system proceeds just as

did the one-dimensional case, and so will not be described

further.
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Appendix D
Stability Analysis of a Current-Carrying Plasma
Column in a Strong Axial Magnetic Field

I. Introduction

In previous chapters we have described stability
analysis techniques for bang-bang feedback to perfectly
conducting fluid models of plasmas. We required only
a knowledge of the elgenvalues, or growth rates, of the
normal modes of the system without feedback.

In this appendix, we will examine the growth rates
of vlasmas with various current distributions in order
To get some idea of the magnitude of the feedback oroblem
involved. We consider a cylindrical geometry of radius a
with veriodicity in z to represent a toroidal ‘fusion
machine., We assume a verfectly conducting shell at
radius Rh? 2, and assume all volume currents flow in the
9-z-directions All initial value variables are functions

only of r, so that by symmetry all normal modes will

have dependence:

j(Wf—h46~KEB

E > E(r) e (D.1.1)

Thus over the unperturbed boundary S of the cylinder of

dlasma, the dependence of normal displacements for each

mode 1is known.
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Unless specified otherwise, all initial values of

H, P, p, etc. are constant, and ?6 = 0. Also, assume

m > o by symmetry.
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IT. Transfer relations for a perfectly conducting shell
of fluid, Hy = o, H, = CONSTANT, V ' v =0, b < r < a.

We assume that, inside the fluid,

Hy. = © H., = H. He,

(D.2.1)

Since there are no zero-order currents inside, our force

equation is, to linear Terms,

Dlg - —
P 3T TP X B, (D.2.2)
~ A
where B( S M, ® W{ Heo

‘:': VXA»

J ¢

giving h- = V//Exf#JTZIJké#;g (D.2.3)

Thus gx B Aa[VxVx g&iﬁ]x ﬁf
V[“/«,(if‘/ff L\‘L;Zﬂ (D.2.0L)

PR (RO e rp, (AR + i, (7).

vl
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— 2
For our geometry and H. , i7< HL-) 20 L|L..v ;20
Ujf‘v) L’L' S ¢ ﬁ/("l Haza e

(D.2.5)

Thus we rewrite (2.2) as

[-/owl.» wa, (KN, H99>1]E :-V’f?”t (D.2.6)

where
¥ 2

Po=prd A (D.2.7)

Using V ' v = o, we take the divergence to get

1 x
v P =0 (D.2.8)

¥rom the r-component of (2. 6), we have

A, Ha, ('y» _ Q ) z, ._ng (D.2.9)

r
where
vl '/f__"_‘)_i,.iz d" - (\K«lygf
[ A, nléo ¢

Thus we choose to express solutions as

E(r) - & [J.M’(J‘Kd (-/M’(,‘ké)-Jh’(jkL)HN’[jkr)]
r ra -
Jul () ML Gb) -0 (G k) . Grr)

E *)vn LJ ) w t/JKr) ‘\_)M, (J)(lr) )‘,/,__, (Jk‘-)
S Glea) M (k) -0 (5)8) 1 (o)

(D.z2.(0)

Thus, evaluating the pressure o® at b and a, we

may write transfer relations.
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| [ (e ]
() () SRR

/Pb ’41., A?.?. EV
| b
. I ]
(D.2.11)
where ; s /. _
o Jalik) o (e =00 (ke HL G
A" 'qu De wn
4 - o= Lo () H oo (o) =) (xa) B L k)
o -JK“ Dew
A o Gryd i) )1 Gre) oG
* J(L f')en )
Aos o Dl (e e () =) () 1 G
RE e
Dew = D QR 00l -0 Crd) H 7 {ra)
Special cases:
1 -
¥ (Mg Vg g t) e J,_,(.J Ka)
L~ = T { _" Yo Y. -y
9 - () -> ’{pﬁ \. ar /( 4?1.. / K‘\ JM/ (J.k4> gf'o\
(D.2.12)
b0 Kac<<[ m?#ZO=>
£ / oma Ho 2 1)«
R Gl )(70 ‘P;/;,‘F,.K (D.2.13)
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Kag <<

w\}’o) l)?roj

(D.2.14)

-

g €

)&
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IIT. Transfer relations for Uniform Current Density
H. = H X I J . 2xHe,
b - 80 - o
L o A
[ . b
HZL = Hea /Hc Kb = Flbox A
V.o bcrso
(D.3.1)
[Note: a = o reduces to orevious section. ]
Our force equation is now
T N ) (D.3.2
/) 2 E - _ Vf {.J X bC b J X BL. 3 )
Z 2
J €
. 1 2
Once again we define p% = p + 5 Ho H™ and rewrite
1= £ = 7 7 .
~puw G 7P *f‘*"[’%"VH; tHoVhe | ho33)
p) 9 =
where ”700 _ — TR HaJ 4
lr AT
(D.3.14)
D) 2
or D -
- AN
4 s
for equilibrium. Yow we note that
he= vel€<H,)
_ (D.3.5)

e (57 em)E s bu, B

whe g q> = Kim T f(agj.b/L' (D.3.4)
¢
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M, [ - VH; ¢ H. -VL:L] -
M:[- 6 E 4 Lt x fodpas k8] (23D

. Ax b —owial
&e 'COMQ B ’ D:Cbb?. yol - /Ow &‘L (D 3 8)
Yo "#’f,' /"(° Hpo T

and rewrite

( Moo H9:>( >/°1,. 4(1) E - -V f)fw‘—\). B(yol* (égl)(gap\ Erg)((i;tgf')
P -

(D.3.9)
L s o] %
/“' 9°)(Y ﬁ‘~ Lo /f £ | = /J'_uri?of
o o 1 |[% Zd‘xyfo* J

(D.3.10)

Sclve the set of equations for the disvlacement to get

(D.3.11)

DH ol [
where D = (’ﬂ 2 )(f/—g )(Voa‘¢¢é> = constant

£L7'

Now substitute into the equation of state v ' 7 = o to get
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/ <o

(D.3.12)

0-3 9_1’%7_7,0 [ pr(1-8°) ¢’

We recognize that this is Just V¥ D* = 0 1n cylindrical

coordinates where we replace K2 by K (l—Bz) (a simple stretch-

ing of the z-axis by L ).

Solutions, then, are

of the form of Bessel Tuncglons of imaglinary agreement

i/ 1-38%kr = jKip

e/, o) r’) '/(/r,)
?)*(ﬂ“i) . /,pi [," Jm ()K )HM L)K é) Jm[" {(é/ HM() ,JZ
D¢ m

. 750: [ Jw [J.)(/a) M&.j'( V) J (fJ',’(/V,) HM()’[/[()]
Den

s [ '.’i - /',/6 ”[/V/a_)
Dew = Ju (j) HL(KE) = LK Holj¥a, (0.3.13)

— |

(V): e
&t (MHB,\()“)( -84 (1.6

al
[ p $ KL Hon(0) -J"(/f«'-/J'f’/é}A’M//Jk/‘“)
/a Y
(en) 8o (GH8) = S J (KT 1 GRS

# B |
-

e . e - /V‘ «Ll,'w 'K/a.)
FRE S IR HIGE) =0 (Y ()

/ s H ‘L/K/a‘>}7
» ), ier) - A )L (k) el 7]
t é%"l“(Jk'a>\1"(J 4 ) (D.3.14)
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Thus in matrix form,

A 4 17 ﬂc:r (D 3. /j)

S o |
; 2 2 ,'41, All 7)'
/“0 ) / i 1!‘ . ) b

i (= J(1-8)07

L [ JLE) £ éw ) Ka)HL ()

A, , ,
W De —(J' o U] (Ka F 8l ( kab))‘)w(jkxé)]
T ik Ha KR ()
ALC Y [ ] | | ]
’ ol ) () Hu G
Al e L Ly de ) B ()
o Den - KGR gL Gy ]
A L LG HL (Gr) ¢ B Ho(5K%)) ) (k%)

to L-DQV\

~(5 3G £ B dn (5K ))H,,(,waﬂ
Dew = Ou GENHL (XS =), Grt) HL (k&)

- K JI-8T

2 L

YL ,_/Ow * .’A°Heo

H* - (W\K *f<é-ﬂ)“/i>7-
C %.
5 2f( N
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Special cases

b =0 >

J)(/“\)*/(jkz‘)+6 ] (D.3.16)
o (fu”ea AT NIE: ) JGk | Pa

b =o0o,m#o, K'a << 1 =

- (D.3.17)
B, = —=— P
e )-8

o # o0, m# o, Klac<l

{—b\’-‘“ (D.3.18)
vur I+ Lz 7
A!r ) —;\’ [ -‘\i/— T—-g ;

L] -
Loy 5
m [ b
A" o —O—:) L lm
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IV. Transfer Relations for the Vacuum Region Including
Surface
We assume a fixed, perfectly conducting shell at radius
RW. We wish to find the relation between displacements
Era and pressure variations p*a. This means evaluating the
effects of both surface and volume currents at the plasma
boundary. We therefore. assume exfernal field

and internal field
— A > 7’/'
J.« H, (206 om0 7) 2oe
e -] A :

Also, we note that even if Ka<<l, it is quite

possible in a Tokamak that KaH_ = m.

Since J = o in the vacuum, h = -7§, V% = 0. At the
dlasma surface, ¥ " a1 = o, so by h= e -1 g’é‘_ ‘Zf'jé‘
r2 /2
=~ g c i""’"l :‘ A\n
nzro, & (7o rke) (D.L.2)

we have L:.- f,jHa E'y_ (,f,: "K'flfe)*a of ria (D.4.3)

(D.4.b)

. . Cikr) B G IR =0, (R (Gir)
.~ . . 11' '( ﬁ, )(ﬁ_\ = J —

G = g Hs, B TR ) 32 ke 1,2 (R 3. GiRH ZLyTen)
) - (D.4.5)




"

Magnetic pressure on the plasma is then to first order
M

L J—ll - ) 2) f—f N, h o
IS B O ?%(L["//grm’(”%keo o G5l
V‘:CUFE Fa
Omitting equilibrium terms

B, | -
T Tl le e kel (8
o

+[(7¥e> %(m)

~

- = o ~91 ~ n 2

~ M 2 E’, - HBJ (T: ,»/(%’e') aCo
o

(D.4.7)
- |
0

Inl K KoL (GRR) ) Ko H,. o) ]
ko |

> 0
oy r,. o, n
J GK@HMQQ&)xLQMJngkd(D 8)

Just inside the plasma surface, p¥

-~ = 1'_
IS}
dowever, if there are 70 lume currents, then
/ 7.\1 -~ — ﬂ{
S I A iyl £ =
/O 2 7y_ /’;;Erk‘f\)p /DLO <A {V“ /; (D,I.L,g)
Y:L{k
Thus
£ ot F
70 = 70 + //L° [7[9_9: ra
7 a S

(D.4.10)
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Thus the final result is

4 H * 2
M.o e s
fJ - ° ) -1+ C, /
o ~ ! qge grm_ (D.4.11)

A

where

Cﬁ = oF k747¥t

e

and CO is as given in (4,8)

Special Cases

R - 2 =
w
C - L/m{)ka) >
o - Z 0 (D.L.12)
SKO‘HM {j)(a)
Rw—e | Ka<l im0 =
(D.4.13)
- L
Co - R
Ka(([ v F O =>
a 2 im
c - L[ TR 7 (D.4.14)
o] [Zag? f
L o \am
-y
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V. Eigenvalues for a Surface-Current Screw Pinch
Assume o = o, He # o, Hi #0o,V ' ' v=o0, pand
PO constants, b = o.

From (2.12)

. 2 , K
Pt - (e )12+ 4, )a Lo (" ) - £(0.5.1)
o~ Coal

From (4.11)

) (D.5.2)
* Ao T og b
f _ o e [~(f Co ?Q ,/'7é;‘k

\

ac

Thus

)(A,”‘)/C"_> L]
io 7 k&) [/ Cbcée (D.5.3)

~

4
Since yO‘ < 0 represents stability, the quantities $€ axd

-
~
~
}

@20 represent stabilizing factors, while the term ] in

(1 - CO ¢ezj representing curveature of the external field

is destabilizing. In particular, if for the interchange modes
defined by ¢e = o, the effect of that ferm dominates, then

as shown by Melcher (1970) no amount of linear feedback will
have any effect, and the plasma is unstable.

If we take the limit Ka<<l, m#o, we have

=~y 7
- Cﬁ % [ [ -/[2) j (D.5.14)

; ) \
Substituting c’:-_1 - {Kq‘%’ﬂl ﬁDQL s kKo Ha )
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1= [ oy (meiett) (I ()) 7

L= (B (D.5.5)

Taking Hi = eHe, %;}a

-~ * aip; %
yol = “[m(w,;))«»lm ka'Me + “/[HE }CK ) (D.5.6)

This is the Kruskal-Shafranov stability criterion when

m=1:
2’ z
YU : = 2 kate = (1+€%) (Katy)
(D.5.7)
with maximum Yol-: 4/7*61
(D.5.8)
} - s
occurring at {a’?'/t : SHE
R Wl JE . S _-l\
for ke-z—stablllty requires % PP
2Ta Ne
= L
Consider the special case H = Eﬁ = 0.

Mote that all modes m > 1 are stable for this approxi-
mation, mainly because they are sufficiently far from the
interchange direction and so are stabilized by the magnetic
fields. This matches the results of Tayler sas well as

our intuition's (remember that for m=

2
0

O our expansion is not

valid; y > 0).
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To examine the effect of Rh,consider € = o and note
that the closer the conducting shell, the more stabilization
due to ¢e # o occurs, but the interchange mode (¢e = 0)
are unaffected. (See 5.14)

Note that if e = o, regardless of g there will always
be an m such that ¢e = 0, unstable. PFor m=o, we may not
expand the Bessel functions as before, and so must consider

the more complex analysis of their behavior.

It is clear, however, that for H, = He =0
R VA
vl kel (ke _
y; - is positive

qu(jka)

for all K > o. Hence the m = o mode can be stabilized
only at the cost of H_ # o, which moves the inferchange
direction to higher m, or H, # o which stabilizes modes

XK # o for large enough H, .
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VI. Eigenvalues for Uniform Current Density

th‘ v-v 0O Hed:Heo ’ét[’-
from (3.16)
[ )(a.,“@ t e kaJf) 10*
So ____,__._——————————" o
S Ko.u)——‘—l?’_
VGL [//((o’ 90 (' 5))[‘]/ (-J (D 6 l)
from (4.11)
x “«. Hs ’*}' 2 L C ¢ > (D.6.2)
. e ° x -1 F£Co Y g
To s L "'] T

Thus

Lt ka8t ),,,G"OJ)_-—V ;-.+CDC#]

Y b
° JulGka =52 ] (D.6.3)

dere we see the effect of the volume current in terms
of @ and R: as o increases, more current flows in the
volume and less on the surface, and 8 also increases.

As o increases, the term from the surface curveature
(a2-l) decreases, going to zero as a = 1 and the surface
current vanishes. However, while this is happening the
Cerm (l—BE) gets smaller and may go negative, representing
an instability in the volume of the plasma, where the

current is.

To examine this more closely, consider the limit

(m#0) Ka >> 1, Zo./ 1-B%>>1.
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6 (157 ]

. R '
y; N "%c [~ A8 ”“(j-(%;f” ) (D.6.4)
2 -2 -
-4 = Yl e (D.6.5)

Votv .t
Substituting and solving for

(o mln) e A BT

o Lim ~ L
[~ () -G

(D.6.6)
Note that the two destabilizing term show the shift

from external to internal factors as & varies from 0 to 1.

Consider the case in which there are no zero-order

surface currents; o = 1, e = 1. Then ¢2i= (m + K, ge)2=¢e2
a P
v e 2 d - 67 ]
° ] 'e (D.6.7)
(R,
This 1is Shafranov's stability results for Kink modes.
If we define g - I He . H, a
§ -

He, (i)
(;bez: (m{fhf‘)l (D.6.8)
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which matches his notation. If R >> a, this reduces to

Y, = 2 [ ¢, - ‘éel) :3[(“‘“5) ‘(w%)L(JD.6.9)

For any given m this is positive for m <n&< m¥1l
and parabolic. Thus the m=1 modes can be stabilized by
a>l , but some higher-m modes are always unstable. An
examination of the special case of the m=o0 mode must

then be made separately.

Note that the maximum growth rate occurs at n+mq = 1/2

when y20 = %-, the same as for a=o0, e=1.
For m=o, we must again consider the full Bessel

function structure.

Ve . ____‘z\
v "'/kq&('y - )_Kij"'?‘)o (JKQ‘}/”S/
° -4 J. (e JTgT )

(D.6.10)

Shafranov shows that, for R>>a, Ka<<l one can
determine the minimum value of Hi assuming stability as

2 function of a. It varies from 1/2 at a=o0 to ﬂfxla, at

a = 1 where Xy = 2.4 is the first gzero of Jo(x).
Going back to the expression (D.6.5) and substitut-

ing for ¢i, ¢e we get

£ A km’Ng)l
Yol :-RW:(;KL-II) + 1z (W“fzk‘\ WL/ = C‘M(f’ /
"GM‘*Kaf7(C> C,

(B yim

1 v

-G )

(D.6.11)

oL
4 - >[
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\/01 . KQM('M——() Pl KaN; (/"”"‘>

7(. [[M _ (Ka.ﬁl"/{yb- C. (W{- /(a.ﬂ‘ﬂ')m_?

(D.6.12)

Notice that, for m=1, Y02 is independent of a.

Lol % :=eW,

for m=1 we have

VL (L, = 2C, KaM ~ (Gre) (KT

£y
(D.6.13)
(Stable for K=o or for He = Hi = 0.)
For stability for all K, we then require
Cyt Jet 1-€*)
K Mo % i /e
C,rer (D.6.1k)
If R>>a, C, = land Ka H, < —%—  or Ka H > o.
e 5 e
1 + ¢
2mTn

Remembering from Shafranov's notation (K =

'/1%: ((a_?/&

)
L

Hence, for m=1, we have for any a the stability requirement

(D.6.15)
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For modes m < 1, stability depends upon «. However,

we write

0t el
Y5 e e (1em) (ar KoY o [y (CF) - GO,
° (D.6.16)

-Ka Hi
Clearly, the worst-case o = for m>1 (the

m
interchange direction inside the surface).

Then
Y ' o=

L
0 vh

[wieloge) =y (mmng) Y/

(D.6.17)

Note stability for ng=o, since 02 > 1

v 1

/
‘o YA

. e 1 t
= AR - PPy - L(Lﬁg)cm’g> ’7
[~ OG0 =1 G g (D.6.15)

for stability, we require

_ N C,a__ L .// CLIT ([-CL>(C.,_I'€,_)
L‘L:‘,él (Du6-l9)
o _ . 2 m
for R>>a, C2 = 1, this becomes -nq >
2

1 + ¢
or

-ng < o (D.6.20)
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We may write also . )
\/07. z “[((C-V\g>\ 2 ”‘g) + [C'L (WF"%) - (MWE>
fKCMMJ)(MM(+2h%6>7 (D.6.21)

We may choose ng < %Z or > o by |af > >
€

but there is no way to make m + n q = ¢e avoid values

between the limits o §7¢e < % s bDecause given g we

can always find a set of integegs (m,n) such that m nq
takes on any desired value (except in the "rational
surface" case, when q is a ratio of intégers). How-

ever, since m > 1, ¢e = o0 implies nq # o, so the first
term fends To add stability. The third term can be

either stabilizing or destabilizing, depending on the

size of a/e . Thus, in order to stabilize all the modes
of the plasma, one would want to choose o/e very different
from one. For instance, a < 1l, € > o, tends to accomplish
this, or € << o, a >> o. In general, this tends to make
¢i and ¢e very different, so that if ¢i becomes comparable

to 1, then ¢e is larger and so YOZ < 0.
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D.7 TOKAMAK Configurations

For realistic considerations of stability of TOKAMAK
Dlasmas, we use the preceeding chapters as an approximate
model. We let L = 27R where R is the major radius of
the toroidal plasma. This allows direct borrowing of
results as long as the effects of this curveature can
be ignored.

Since there is no evidence of any equilibrium
surface current in such plasmas, we choose & = e = 1.

This gives

(D.7.1)
To keep the problem analytically fractable, we will assume

Jz(r) = Jo. The dispersion relation then becomes from

(D.6.3)

o [ (Jm/e) ][ J
.}_,_ (J.k«m) (D.7.2)

where 2(25 and L
57 T TR (D.7.3)
YA 3

The corresponding mode has a Spacial dependence given

by - (me *”‘*)

£ ) ~ L.(krimg)

(D.7.4)
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This description of the plasma admits several sets of
solutions.
One solution, which is probably the most serious
plasma confinement problem, is the kink mode solution:
2

If we assume K a < < 1 and B < 2, the dispersion

relation can be written as (D.¢.7)

(D.7.5)

y"éz'}:cp-ﬁf__]

° [_’(%W)z».

This solution predicts growth rates somewhat higher than
those observed. However, Friedberg finds that correction
of the current density profile to match experimental
results gives numerically calculated growth rates which
match experimental results.

For the same values of m and n, however, there are
three other sets of solutions, corresponding to larger
values of B. As shown by (7.4), these modes have com—
olicated internal structure and small surface perturbation,
hence they are referred to as "internal modes". Clarke
and Dory voint out that these might severely limit

rfeedback stabilization over ranges of small a.

To study these modes, (7.2) can be rearranged by
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eliminating YO2 in favor of ¢. Solving for ¢ gives,

for B2 > 1,

b” 2 ( 81-')
Co B[Bm ¥ Kam\lh{ (K&)E;:T) (D.7.6)
JM(KG\)?‘?)

RS

24 _ & (D.7.7)

3

~
~
1

~.
o

3y sweeping B, various solutions for Y02 as a function
of ¢ are swept out. Solutions and graphs are given

for 1 <V 32-1 La < 11. Note that Y02 > 0 occurs
over the intervals B > 1, o <¢o < %, and 52 < 1,

%» < ¢ < o. Growth rates are almost two orders of

magnitude less than the kink, reaching a maximum of I/B2
at ¢ = 1/B. An additional set of solutions is given

o)
oy ¥ e - -6, |B| » =. These are internal

o)
(purely shear) waves; they are characterized by p¥(r) = o
from (3.16) and Er(a) = o from (4.11). These are always
stable.

The dispersion relations for Alfven waves ,the kink

mcde, and the first internal modes are plotted in figure

D.7.1. Several internal modes are plotted and compared
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with Alfven waves in figure D.7.2 for B > o, and

D.7.3 for B < o. Note that the graphs tell us that

as q is reduced, the first modes to go unstable will

be the internal modes with B < o. As ¢ - o, an

infinite number of them are unstable, although with extremely
small growth rates. Then, at ¢ = 0, the kink goes un-

stable with rapidly increasing growth rate. A second

group of unstable internal modes becomes unstable then

also, with small growth rates. The closer to m+ng=o

one operates, the more modes there are.

A different approach to the analysis of these modes
1s given in the next section, using energy methods. The
energy approach allows examination of effects such as
toroidal geometry, which are not easy to handle
analytically. However, such an approach sometimes
lacks the precision of analytical approximations. We
therefore look for a simplified representation of the

internal modes using our cylindrical model.



378

The internal modes can also be approximately repre-
sented in a simple dispersion relation, if we assume
that the value of B for a given internal mode varies

slowly with (m + nq) in the range of Y° > o. Let B=2¢/(Y02+¢2)

take on the value it has whenY2 = ¢ = o0; BJ is the Jth
root of the equation Jm(Ka v sz-l ) = o. Then the
dispersion relation is essentially parabolic, with

Y2 = ggﬂ‘ - ¢2. Note that this is orecisely the fixed-

boundary problem, and so all wall effects are supopressed

in this approximation. Y2 = o0 at ¢ = %; and §£§3)= o)
it s - %{ 2 gli . 3 4%
o
Table of Bj m=1; Ka = .260

J  ARG: Ka/’E;E:Iw B, 1/8,  2/B, 1/133.2
1 3.8317 14.7  .068  .136 4.6 x 1073
2 7.0156 27.0  .037 074 1.37 x 1073
3 10.1735 39.2  .0255 .051 6.5 x 10~%
-1 3.8317 ~14.7 -.068 -.136 4.6 x 1073
-2 7.0156 ~27.0 =-.037 -.024  1.37 x 1073
-3 10.1735 ~39.2 -.0255 -.051 6.5 x 10~ "

Unstable for [¢[ < —3—-, Max. Y° = —= a¢ o =

L
3, 3 3.
J J J
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For large BJ, approximately

cos ( BJ.2 -1 Ka - i%) = 0
or
[B;| Ka-f 2 35 n
1
T (J + 7)
E 3

= g(uj'f‘l)'ﬂ'

How constant is R over the above interval? Worst case:

2

for § =1, at Y< = o, ¢ = 5.52 x 1073 B = .14.773

ARG = 3.832  J (ARG) = -2.0 x 1073  ¥2 = 7.4 x 10~

4

In other words, the internal modes do not perturb
the surface of the plasma enough to seriously change
their dispersion relation from what it would be in a
fixed-boundary problem (one in which €, =0 at r = a).
This tells us that the coupling coefficients Anm are
50 small for these modes that they will have negligible
coupling to the kink modes via the feedback, for determina-
tion of stability of the plasma. If the internal modes
are stable, then surface feedback can stabilize the
entire plasma. If they are unstable, then the system
with bang-bang feedback at the surface will behave approxi-
mately as an internal mode with boundary condition

£ = 0.
r
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Since it is not feasible to sample or force the inside
of the plasma column, we must hope that either the internal
modes will be stabilized by some effect not yet accounted
for in the model, or that their growth does not grow
so large as to overwhelm the feedback system before being
limited by internal nonlinear mechanisms.

It therefore appears, based on our cylindrical
model with Jz(r) = JO, that stabilization of the surface
for m = n = 1 has two main problems:

1) Internal modes at m=n = 1 may result in an
internally unstable combination with the main kink,
which would have final effects dependent on the nonlinear
saturation mechanisms inside fhe plasma.

2) Modes with m/n = -q for higher m are also
unstable with large growth rates.

However, there are two effects which have not been
considered here which may eliminate these difficulties.
These are the actual current distribution J,(r) in a
Tokamak device, and the effects of nonlinear internal
mechanisms which may cause instabilities to saturate.

1) The actual current distribution falls off
gradually from r = 0 to p = a, rather than being constant

until r = a. The effects of this have been numerically
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investigated, by Friedberg, who finds that the experimentally
measured Jz(r) in Seylla IV results in a much lower growen
rate Y2 that matches eéxperimental growth rate values.
If the current were all concentrated at the core r = o,
then Kadowtsev shows that the entire plasma would be
stable against 311 perturbations. a4 Gaussian current
distribution has been investigated by Shafranov (1969)
who finds that this has little effect on them=n = ]
mode but stabilizes all modes with m > 1. Experimental
Tokamak data shows that although oscillations are observed
at n=1, m> 1 for high values or Q, large losses are
not observed. Thus We conclude that the current distri-
bution Jz(r) vhich occurs in Tokamak devices acts to
stabilize all modes m > 1 which would otherwise be un-
stable at m/n = -q.

2) The effects of nonlinear internal mechanisms,
which may cause Instabilities to saturate, will be
assumed to dominate irfr Predicted plasma displacements
become on the order of the column radius a. The work of
Yoshikawa, for instance, Suggests that the modes with
complex spacial structure represent motion of the plasma
toward a nearby stable helical equilibrium,. Given this
information, 1let us examine the stability of the system

in the bresence of both the kink ang the internal modes.

This can be done in two ways.
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The hard way is to require that the surface
perturbation for m =-n = 1 be Zzero, and solve for the
kink mode amplitude in terms of the internal mode ampli-
tudes. Then, substituting into the energy matrix, we
use Sylvester's test to determine null stability.

However, as the sectim on boundary control showed,
fhere is a much easier way. We simply solve for eigen-
values of a new system with boundary condition Er =0
at r = a. The resulting growth rates are just those
of the internal modes with the approximation B = Bj!

This simply tells us that the surface perturbations
of the internal modes are so small that they couple
weakly to the feedback; Anm << 1. Then, solving for
the kink mode amplitude gives very small values, which
are dominated completely in the energy matrix by the energy
of the internal modes themselves. Nature has made our
system well designed, by making all entries in Kw small,
due to the character of the internal modes.

Hence, the vplasma with bang-bang feedback at the
surface will be unstaktle only if the internal modes are
unstable. It will grow with Er(a) = o untill the cancelling
kink and internal mode amplitudes become so large that

fhey can overwhelm the feedback, entering a rapid second

stage of growth. However, if some nonlinear internal
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mechanism limits the growth of the internal mode before
this point, then the surface will remain stable even if
the interior of the plasma becomes turbulent. To
examine this question, we look at the internal modes
in more detail.

In cylindrical geometry, the maximum growth rate

for the first internal mode is approximately

v 2 L =46 x1073 a4 2 <~ =+ .068.
Bl—”’?‘ !
Jl(Kr Y B°-1) has a maximum of .58 at §-= AT,

Thus the maximum value of

T, (Kr B2_1 )

Ep = C

(r/a)
is approximately 1.23 C.

At the surface .r a, however, the more exact disper-

o}

sion relation gives ¢ .072, B 2 15,1, y2 2 4.3 x 10-3,
and Kav/ B°-1 2 3.92, and cT,(Ka / B°-1) = -.0346C.

Therefore, the ratio of surface displacement to maximum
internal displacement is approximately .028 for the
worst-case internal mode. In order for the cancelling
kink and internal mode surface displacements to reach the
1l cm level, the internal displacement of the internal

mode would have to be 35 cm; clearly ridiculous. Long
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before this would happen, we can assume that nonlinear

mechanisms would dominate the behavior of the system.
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D.8 Energy Method Analysis of Internal Modes

In toroidal geometry, the solution of the equations
of motion of the plasma is extremely complex. Rather
than using a modal approach, it is easier to directly
apply the energy principle to the question of stability.
If all modes of a plasma are stable, then for any allowed
perturbation the potential energy ¥ is positive.

The use of internal modes is in fact simpler to
analyze by energy methods than that of modes of the
Dlasma with a free surface. The boundary condition

Er = o0 on the surface eliminates any contribution to

the energy due to integrals over S or the vacuum Vo
de are left with only the integral over Vi to evaluate.
This 1s done by Mercier for the case of interest, and
the minimum potential energy ¥ is found.

Mercier first defines an intrinsic coordinate
system which is based on the equilibrium currents and
field lines. Magnetic surfaces SM are surfaces con-
taining flux lines, defined by the parameter F, sc¢ that
F = o at the magnetic axis. Letting n represent the
normal to magnetic surfaces, the potential energy y
can be transformed into an integration over F and Syre

This gives a local energy for each magnetic surface,
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so that a local perturbation which is nonzero only

in the neighborhood of that surface has 2 minimum

votential energy

7= [L/ S Bv:g] [a\ UMZI fVF( ]

(j%n)'(B'vn}ASM (D.B.l)
-2/ [7FT?
S 3 R
Here we have let a(r) = 9 » @' = da/dr and introduce
3 r
the quantities in terms of the cylindrical case:
AF = 2TR B dv AT=2TR )y dv
AF - 1TR 8, dr AT =2TR J dr
1.7 - 4T 3
@=J-%=8 (D.8.2)
2
AV= (2m)5RAr . ALY
A F

then we may rewrite the potential energy as the balance

of two terms:

eo[L A B8 s ]

S (7
- " 8"‘ A S, Y ‘QS- (D.8.3)
L iﬂ l7F)? ][ ( )V J{ [VF(® ]

where the criterion for stability is P > o.
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The crucial role of the specific volume V is thus
made clear, for in order to contain an equilibrium plasma
%% < o. Hence the specific volume V must have a negative
second derivative, making V a minimum, for that term
to represent a stabilizing influence. In general, V"
will divide into two parts, V" = Vo" + VP" where VO"
represents the effect of geometry of the currents while

V," represents simply the magnetic well complementing

the equilibrium pressure.

In cylindrical geometry, if P' = d P/dr,
F,
v, o= R N and so for stability
- r B
z
Ve - 2 131 I
[Lé/-i]r "% pv o0 (D.8.14)
2 @ th RBG"

Mercier amplifies this result in the cylindrical case

to give the SUYDAM criterion,

(D.8.5)

which 1s a local requirement evervwhere in the plasma.
The first term of (D.8.4) represen_s magnetic shear

(corrected by a pressure term) in the equilibrium, and

is purely stabilizing. (Note that in our model of uni-

form current density, magnetic shear vanished.) The
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second is positive for P' < o only if VO' < o; that
is, a magnetic well.

In cylindrical geometry the expression is compli-
cated. However, since internal modes have perturba-
tions near the magnetic axis, an expansion near the
magnetic axis gives a tractable expression. The

orincipal result is that, near the magnetic axis,

V 7 (ToRUS)
[e] - -{

(D.8.6)
V, " (CreivdER)

Therefore, we can expect that the effects of toroidal

geometry will be stabilizing if, on the magnetic axis,

l[a] > 1 and destabilizing if la] < 1. For a realistic

current distribution (dJ_/dr < o) [q| will be 2 or 3 at

the edge r = a2 when [aq| = 1 in the center. Thus, when

we approach some critical value of [aq| from above, we

can expect the plasma to become furbulent, although the

surface may remain fixed by use of bang-bang feedback.
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Appendix E
Filelds in the Vacuum Region Rectangular Geometry

This section examines the structfure of the fields

due to a mode of the plasma.
Aé K:O é&.e Qﬁ,u('[,:ér;uux FOSL'{-t'On OF )PAQ

SL‘VFK-CC a«F 1[-4.( /O[a)'bﬂﬁ, S -

-

ne x A = - H, (E-4;) (E.1)
At x =d Fhe coulucﬁ'nj I[xt[/, S5, ¢
n, A =0 (E.2)
La the vk ccum Vx/i - LTD and VXZ:,:O
Take v A =0 ¢, 9 20 (E.3)
- N (et Ayl M)

I

Let E-%x ou S e Re{G e
: (L] Cos (wf —/"(7-/0& +45)
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A, = & H, Sinh K (xd)
Scnh kd
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A A . _‘{)
JA (NH,-MH Scnh k Cxod) g oy
v - WHy M) T Sente kK d
Ao -5 (WHy M) E Cosk ki Ced)
* ,’( Siub kd
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e ¥o
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Fc'jure. E.l Field P{ot_f

(Without Feedback)

Case [: K i ﬁ,
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PLASMA _.)_,g
g, looks [ike A, shifted 24

- + WA L. - +

k

Lines of A'J. lle <n surfaces of constant ‘ﬁ_r
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Consider the case of Mo HF ' HO feedback.

I. If Vv ° T? = o then we can not interact via the
"static" fields e_ and Ké because they have zero curl,
so integrating them around any closed path in the
vacuum is zero. Also, since they have zero parallel
components at the wall, bringing currents through the
wall will not avoid the problem.

II. Velocity feedback. For Vv ° Jp = 0, JF not

intersecting the wall, interact with 56. Place current
loop in the y-z plane, having flux of loop in + x
direction whenever Ex > 0. This could be done with passive
resistive material!
IIT. Position feedback
3o put current in horizontal plane so that its field
reinforces the o-order field at peaks in Ex’ near the
dlasma (So, flux of loop is opposife the x-directed
self-field flux) essentially like putting perfectly
conducting coils in horizontal plane, for passive feedback.
In practical terms, suppose we want to design a
feedback current system which will have maximum effect
on a mode of the form.&x(y,z) = £ cos (MY + Nz)
0 <y <Ly, 0 < z < Lz’ 0 < X <d in the form of posi-

tional feedback of the H, ° Eé type, subject to the
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constraints.

If < Im x on each wire, as few wires as possible.
JF = o for x < x; <d (We cannot get too close

to the plasma.)

Then we will want to put all the available current
into a wire which closes on itself and is antiparallel
fo the largest available 56 field line which stays above
X = Xg. From our results for Kg, we see that the
value of K6 is the superposition of two travelling
waves, and is of the form

L [ ml o maN (MHG PNV H) Seak k(x-8)
Ao - (/V‘f MZ) 7{——“ S:LlT/gx (E.14)

This is clearly maximum at x = Xps MY + Nz = nt so

we will put the wires there. We can lable the wires

nr _ nL . The

M 5 n ~
direction of the wires is given by @ such @hat M§-+ Nz x =0

by their z-intercept at z = o, Y =

Pl A A . —
or u = + %(Nyr- Mz), antiparallel to Ao. Thus, for

n = even wires, n = o to am - 2, we have current flowing

in the u direction, and in n = odd wires, n = 1 to 2m-1,

we have current flowing in the opposite direction, for

£ > o. We can even join the ends to make one continuous

wire if we wish, although this creates impedance oroblems.
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Or, if the system is periodic in Y and z (a torus)
we might make each wire a loop and bring the ends out
through the wall close together ( f 56 " de o=

I Mg ho n ds - Flux).

Since we are limited to [IF[ < I we'll get

max °
the most force on the plasma by making |I_|

Imax
at all times for £ # o. See Figure E.2 for a sketech
of this arrangement. Thus our prescription for the

current through the nth wire, n = o, to 2m-1, is

T ‘ ("f)h Ex I on X:X':
IF =W o ax (E.15)
h I( _Q_M_.yf ?‘L.; = h
Ly L,
Note that, as a quickcheck, at Yy = z = o we have for
€ >0, £>o0and n = o so fé = Toox 4. Suppose H, = o,
N = o. Then a = -2 so that, at x = o, Hp = +y which

is parallel to ﬁa and so pushes down on the bulging
£ > o.

For N # o, the result is not so intuitive! The
wires are perpendicular to the mode vector K, not the
field H_.

o}

We are placing our wires above the expected peaks

and valleys of Ex for position feedback.

For velocity feedback, we want to maximize
JA
e o)

JF eo, eo = —H, T so we want to place J_, parallel
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to E;. The problem is precisely the same, except that

Weé now place our wires above the expected peaks and
g
valleys of EEE . All that remains to be determined

is the sign, which comes from the expression for 56:

(MH r ML) Sabkle-d) D E

) * Siak kd 2t
K d (E.[€)

Thus we place the wires in the same positions, and

3E ~ Ny - Mm%
let the direction for X > 0 be u =
ot X

» the same as before! Our prescription

parallel to 56

is
— - ~ 8 X = XE
- .y 2 moy 09
I{:" - FL( ) 1< < ['e ;‘”f lh""_h
2T, Ly T Ly (E.17)

This can be realized by just putting vassive resistive

material in the vacuum region.

Now consider %»uo Hmz feedback force.

dE H -H_ 28 ;48
T¢° '§ M e F oy (E.(F)
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Let Al

due to ﬁf and £, h

= vector potential of self-field of plasma

1

P

—

— A - - ::.,\
Vx A, O AV, . «A - -H_ =-n o2
,’;‘3 <A =0 af <.
P L BN £
AR \/F: o IF
— - Q —
If JF = JF v o, HF = Hp z looks 1like Ho locally. So ely

F
ng

is in phase with E ° <

So the force will be in phase

-

with - ° Hé This is nonzero if e # o. So, choose

Jp parallel to the flutes (3@ K) of the mode to be

stabllized. Then, since Al has a component < o parallel

A <

to the ridges, we get JF 0 as desired for position
feedback similarly for velocity feedback. Thus the
geometry for optimum HF2 feedback is the same as for

linear feedback!

T

~
-~
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Appendix F
Proof that Det AN # o for a Useful Geometry

Many systems obey a periodic boundary condition;

Ll(zv) = €(») F1)

In such a case, it is useful to know whether a

feedback geometry with N feedback stations of the form

H(?‘H/ £<2£5L,
A (=) = { %) N N

LIQ)’W(.
®) ot se (F.2)
h=o €o N-i

will produce independent sampling of the first N modes

of the system. A particularly neat proof of this fact

is available, using the wave-train analysis approach.

We must assume that H(z) is real and has a nonzero

components m = o and m = N/2 over the interval

lo, 1/N].

Perturbations of the system may be Fourier

analyzed ~ —5k}.3
E(z) = 5 au(f] e

) (F.3)

where X = 2mm.
m

We wish to prove that det AV # o where

‘ k.=
’Atr\m - 5 AA (}) < iz (F'u)
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for n < N, -N< 2m < N.

We let
A Lo

Ho (k)= (HE & 7 de
° (F.5)

Then we note that by our assumptions on H(z),

H # o for -N < 2m < N, and that
- 2K
JN e
A = e Hﬁ1(VW)

mn (F.6)

Hm(Kng # 0, 1t can be factored out of

Now, since
and leaves entries of

the rows of the determinant Aq,

the form —j am LTT/N

Ao = <
(F.T)

Thus, in any given column m, we have entries forming

a power series
~

n=o t{o N -1
X J (F.8)

Ne also know that all values of xm are distinct,

because
-, 2Tw/N
(F.9)

which means that the Xm are the N distinect roots of

the equation

N
o= (F.10)
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Therefore, our matrix KN is in the form of a Vander

Monde matrix;

1 1 1 1 1
Xy X5 X3 Xy Xy
2 2 >
Xy Xy Xy
3 v 3 3
X X5 L
N > N
4 X5 y

with all x_ distinct. Therefore, det K‘;\I # o and the

oroof is complete.
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