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We analyze the effect of synchronization on distributed stochastic gra-
dient algorithms. By exploiting an analogy with dynamical models of
biological quorum sensing, where synchronization between agents is in-
duced through communication with a common signal, we quantify how
synchronization can significantly reduce the magnitude of the noise felt
by the individual distributed agents and their spatial mean. This noise
reduction is in turn associated with a reduction in the smoothing of the
loss function imposed by the stochastic gradient approximation. Through
simulations on model nonconvex objectives, we demonstrate that cou-
pling can stabilize higher noise levels and improve convergence. We pro-
vide a convergence analysis for strongly convex functions by deriving
a bound on the expected deviation of the spatial mean of the agents
from the global minimizer for an algorithm based on quorum sensing,
the same algorithm with momentum, and the elastic averaging SGD
(EASGD) algorithm. We discuss extensions to new algorithms that allow
each agent to broadcast its current measure of success and shape the col-
lective computation accordingly. We supplement our theoretical analysis
with numerical experiments on convolutional neural networks trained on
the CIFAR-10 data set, where we note a surprising regularizing property
of EASGD even when applied to the non-distributed case. This obser-
vation suggests alternative second-order in time algorithms for nondis-
tributed optimization that are competitive with momentum methods.

1 Introduction

Stochastic gradient descent (SGD) and its variants have become the de facto
algorithms for large-scale machine learning applications such as deep neu-
ral networks (Bottou, 2010; Goodfellow, Bengio, & Courville, 2016; LeCun,
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Bengio, & Hinton, 2015; Mallat, 2016). SGD is used to optimize finite-sum
loss functions, where a stochastic approximation to the gradient is com-
puted using only a random selection of the input data points. Well-known
results on almost-sure convergence rates to global minimizers for strictly
convex functions and to stationary points for non-convex functions exist
under sufficient regularity conditions (Bottou, 1998; Robbins & Siegmund,
1971). Classic work on iterate averaging for SGD (Polyak & Juditsky, 1992)
and other more recent extensions (Bach & Moulines, 2013; Defazio, Bach,
& Lacoste-Julien, 2014; Roux, Schmidt, & Bach, 2012; Schmidt, Le Roux &
Bach, 2017) can improve convergence under a set of reasonable assump-
tions typically satisfied in the machine learning setting. Convergence proofs
rely on a suitably chosen decreasing step size; for constant step sizes and
strictly convex functions, the parameters ultimately converge to a distribu-
tion peaked around the optimum.

For large-scale machine learning applications, parallelization of SGD is
a critical problem of significant modern research interest (Chaudhari et al.,
2017; Dean et al., 2012; Recht & Ré, 2013; Recht, Re, Wright, & Niu, 2011).
Recent work in this direction includes the elastic averaging SGD (EASGD)
algorithm, in which p distributed agents coupled through a common sig-
nal optimize the same loss function. EASGD can be derived from a single
SGD step on a global variable consensus objective with a quadratic penalty,
and the common signal takes the form of an average over space and time of
the parameter vectors of the individual agents (Boyd, Parikh, Chu, Peleato,
& Eckstein, 2010; Zhang, Choromanska & LeCun, 2015). At its core, the
EASGD algorithm is a system of identical, coupled, discrete-time dynami-
cal systems. And indeed, the EASGD algorithm has exactly the same struc-
ture as earlier mathematical models of synchronization (Chung & Slotine,
2009; Russo & Slotine, 2010) inspired by quorum sensing in bacteria (Miller
& Bassler, 2001; Waters & Bassler, 2005). In these models, which have typi-
cally been analyzed in continuous-time, the dynamics of the common (quo-
rum) signal can be arbitrary (Russo & Slotine, 2010), and in fact they may
consist simply of a weighted average of individual signals. Motivated by
this immediate analogy, we present here a continuous-time analysis of dis-
tributed stochastic gradient algorithms, of which EASGD is a special case.
A significant focus of this work is the interaction between the degree of syn-
chronization of the individual agents, characterized rigorously by a bound
on the expected distance between all agents and governed by the cou-
pling strength, and the amount of noise induced by their stochastic gradient
approximations.

The effect of coupling between identical continuous-time dynamical sys-
tems has a rich history. In particular, synchronization phenomena in such
coupled systems have been the subject of much mathematical (Wang &
Slotine, 2005), biological (Russo & Slotine, 2010), neuroscientific (Tabareau,
Slotine & Pham, 2010), and physical interest (Javaloyes, Perrin, & Politi,
2008). In nonlinear dynamical systems, synchronization has been shown to
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play a crucial role in protection of the individual systems from independent
sources of noise (Tabareau et al., 2010). The interaction between synchro-
nization and noise has also been posed as a possible source of regulariza-
tion in biological learning, where quorum sensing–like mechanisms could
be implemented between neurons through local field potentials (Bouvrie &
Slotine, 2013). Given the significance of stochastic gradient (Y. Zhang, Saxe,
Advani & Lee, 2018) and externally injected (Neelakantan et al., 2015) noise
in regularization of large-scale machine learning models such as deep net-
works (Zhang, Bengio, Hardt, Recht & Vinyals, 2017), it is natural to expect
that the interplay between synchronization of the individual agents and the
noise from their stochastic gradient approximations is of central importance
in distributed SGD algorithms.

Recently, there has been renewed interest in a continuous-time view of
optimization algorithms (Betancourt, Jordan, & Wilson, 2018; Wibisono &
Wilson, 2015; Wibisono, Wilson & Jordan, 2016; Wilson, Recht & Jordan,
2016). Nesterov’s accelerated gradient method (Nesterov, 1983) was fruit-
fully analyzed in continuous time in Su, Boyd and Candes (2014), and a uni-
fying extension to other algorithms can be found in Wibisono et al. (2016).
Continuous-time analysis has also enabled discrete-time algorithm devel-
opment through classical discretization techniques from numerical analy-
sis (Zhang, Mokhtari, Sra & Jadbabaie, 2018). This article adds to this line of
work by deriving new results with the mathematical tools afforded by the
continuous-time view, such as stochastic calculus and nonlinear contraction
analysis (Lohmiller & Slotine, 1998).

The article is organized as follows. In section 2, we provide some nec-
essary mathematical preliminaries: a review of SGD in continuous time, a
continuous-time limit of the EASGD algorithm, a review of stochastic non-
linear contraction theory, and a statement of some needed assumptions.
In section 3, we demonstrate that the effect of synchronization of the dis-
tributed SGD agents is to reduce the magnitude of the noise felt by each
agent and by their spatial mean. We derive this for an algorithm where
all-to-all coupling is implemented through communication with the spa-
tial mean of the distributed parameters, and we refer to this algorithm as
quorum SGD (QSGD). The appendix presents a similar derivation with ar-
bitrary dynamics for the quorum variable, of which EASGD is a special case.
In section 4, we connect this noise reduction property with a recent analysis
in Kleinberg, Li, and Yuan (2018), which shows that SGD can be interpreted
as performing gradient descent on a smoothed loss in expectation. We use
this derivation to garner intuition about the qualitative performance of dis-
tributed SGD algorithms as the coupling strength is varied, and we ver-
ify this intuition with simulations on model non-convex loss functions in
low and high dimensions. In section 5, we provide new convergence re-
sults for QSGD, QSGD with momentum, and EASGD for a strongly con-
vex objective. In section 6, we explore the properties of EASGD and QSGD
for training deep neural networks and, in particular, test the stability and
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performance of variants proposed throughout the article. We also propose
a new class of second-order in time algorithms motivated by the EASGD
algorithm with a single agent, which consists of standard SGD coupled in
feedback to the output of a nonlinear filter of the parameters. We provide
some concluding remarks in section 7.

2 Mathematical Preliminaries

In this section, we provide a brief review of the necessary mathematical
tools employed in this work.

2.1 Convex Optimization. For the convergence proofs in section 5 and
for synchronization of momentum methods, we require a few standard def-
initions from convex optimization.

Definition 1 (Strong Convexity). A function f ∈ C2(Rn,R) is l-strongly con-
vex with l > 0 if its Hessian is uniformly lower bounded by lI with respect to the
positive semidefinite order, ∇2 f (x) > lI for all x ∈ R

n.

Definition 2 (L-Smoothness). A function f ∈ C2(Rn,R) is L-smooth with L >

0 if its Hessian is uniformly upper bounded by LI with respect to the positive
semidefinite order, ∇2 f (x) < LI for all x ∈ R

n.

2.2 Stochastic Gradient Descent in Discrete-Time. Minibatch SGD has
been essential for training large-scale machine learning models such as
deep neural networks, where empirical risk minimization leads to finite-
sum loss functions of the form

f (x) = 1
N

N∑
i=1

l(x, yi).

Above, yi is the ith input data example, and the vector x holds the model pa-
rameters. In the typical machine learning setting where N is very large, the
gradient of f requires N gradient computations of l, which is prohibitively
expensive.

To avoid this calculation, a stochastic gradient is computed by taking
a random selection B of size b < N, typically known as a minibatch. It is
simple to see that the stochastic gradient,

ĝ(x) = 1
b

∑
y∈B

∇l(x, y),

is an unbiased estimator of the true gradient. The parameters are updated
according to the iteration
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xt+1 = xt − ηĝ(x).

By adding and subtracting the true gradient, the SGD iteration can be
rewritten as

xt+1 = xt − η∇ f (xt ) − η√
b
ζt, (2.1)

where ζt ∼ N(0,�(xt )) is a data-dependent noise term. ζt can be taken to be
gaussian under a central limit theorem argument, assuming that the size of
the minibatch is large enough (Jastrzȩbski et al., 2017; Mandt, Hoffman, &
Blei, 2015). �(x) is then given by the variance of a single-element stochastic
gradient:

�(x) = 1
N

N∑
i=1

[(∇l
(
x, yi)− ∇ f (x)

) (∇l
(
x, yi)− ∇ f (x)

)T]
.

2.3 Stochastic Gradient Descent in Continuous-Time. A significant
difficulty in a continuous-time analysis of SGD is formulating an accurate
stochastic differential equation (SDE) model. Recent work has proved rig-
orously (Feng, Li, & Liu, 2018; Hu, Li, Li, & Liu, 2017; Li, Tai, & Weinan,
2018) that the sequence of values x(kη) generated by the SDE,

dx =
(

−∇ f (x) − 1
4
η∇ ∥∥∇ f (x)

∥∥2
)

dt +
√

η

b
B(x)dW,

approximates the SGD iteration with weak errorO(η2), where W is a Wiener
process, ‖ · ‖ denotes the Euclidean 2-norm,1 and BBT = �. Dropping the
small term proportional to η reduces the weak error toO(η) (Hu et al., 2017).
This leads to the SDE:

dx = −∇ f (x)dt +
√

η

b
B(x)dW. (2.2)

Equation 2.2 has appeared in a number of recent works (Chaudhari, Ober-
man, Osher, Soatto, & Carlier, 2018; Chaudhari & Soatto, 2018; Jastrzȩbski
et al., 2017; Mandt et al., 2015; Mandt, Hoffman, & Blei, 2016, 2017) and is
generally obtained by making the replacement η → dt and

√
ηζ → BdW in

equation 2.1 as a sort of reverse Euler-Maruyama discretization (Kloeden &
Platen, 1992).

1
For the remainder of this article, unless otherwise specified, we will use ‖ · ‖ to denote

the 2-norm.
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2.4 EASGD in Continuous-Time. Following Zhang et al. (2015), we
provide a brief introduction to the EASGD algorithm and convert the result-
ing sequences to continuous-time. We imagine a distributed optimization
setting with p ∈ N agents and a single master. We are interested in solving
a stochastic optimization problem,

min
x

F(x) = Eζ

[
f (x, ζ)

]
where x ∈ R

n is the vector of parameters and ζ is a random variable repre-
senting the stochasticity in the objective. This is equivalent to the distributed
optimization problem (Boyd et al., 2010),

min
x1,...,xp,x̃

p∑
i=1

(
Eζi [ f (xi, ζi)] + k

2
‖xi − x̃‖2

)
, (2.3)

where each xi is a local vector of parameters and x̃ is the quorum variable.
The quadratic penalty ensures that all local agents remain close to x̃, and k
sets the coupling strength. Smaller values of k allow for more exploration,
while larger values ensure a greater degree of synchronization. Intuitively,
the interaction between agents mediated by x̃ is expected to help individual
trajectories escape local minima, saddle points, and flat regions unless they
all fall into the same deep or wide minimum together.

We assume the expectation in equation 2.3 is approximated by a sum
over input data points and that the stochastic gradient is computed by tak-
ing a minibatch of size b. After taking an SGD step, the updates for each
agent and the quorum variable become

xi
t+1 = xi

t − η∇ f (xi
t ) + ηk

(
x̃t − xi

t

)− η√
b
ζi

t,

x̃t+1 = x̃t + ηpk (x•
t − x̃t ) ,

where x•
t = 1

p

∑p
i=1 xi

t and E
[
ζi

t (ζ
i
t )T
]=�(xi

t ). Transferring to the continuous-
time limit, these equations become,

dxi = (−∇ f (xi) + k
(
x̃ − xi)) dt +

√
η

b
B(xi)dWi, (2.4)

dx̃ = kp (x• − x̃) dt, (2.5)

with BBT = �. Note that in equation 2.5, the dynamics of x̃ represent a sim-
ple low-pass filter of the center of mass (spatial mean) variable x•. In the
limit of large p, the dynamics of this filter will be much faster than the SGD
dynamics, and the continuous-time EASGD system can be approximately
replaced by
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dxi = (−∇ f (xi) + k
(
x• − xi)) dt +

√
η

b
B(xi)dWi. (2.6)

We refer to equation 2.6 as quorum SGD (QSGD) and it will be a significant
focus of this work.

2.5 Background on Nonlinear Contraction Theory. The main mathe-
matical tool used in this work is nonlinear contraction theory, a form of in-
cremental stability for nonlinear systems. In particular, we specialize to the
case of time- and state-independent metrics (further details can be found in
Lohmiller & Slotine, 1998).

Definition 3 (Contraction). The nonlinear dynamical system

ẋ = f (x, t), (2.7)

with x ∈ R
n and f ∈ C1(Rn × R,Rn), is said to be contracting with rate λ > 0 and

invertible metric transformation � ∈ R
n×n if the symmetric part of the generalized

Jacobian,

(
�∇ f (x, t)�−1)

s ≤ −λI, (2.8)

is uniformly negative definite for all x ∈ R
n and all t ∈ R. Above, subscript s de-

notes the symmetric part of a matrix, As = 1
2

(
A + AT

)
. Equivalently, the system

is said to be contracting in the corresponding metric M = �T�.

If condition 2.8 is satisfied, all trajectories exponentially converge to one
another regardless of initial conditions. That is, for two solutions x1(t) and
x2(t) of equation 2.7,

‖x1(t) − x2(t)‖M ≤ e−λt‖x1(0) − x2(0)‖M, (2.9)

where ‖x‖M =
√

xTMx. Intuitively, because of property 2.9, a nonlinear sys-
tem is called contracting if differences in system trajectories due to ini-
tial conditions and temporary disturbances are exponentially forgotten.
This behavior is proved differentially by considering the time evolution of
the squared Euclidean norm of the virtual displacement δz = �δx, which
formally obeys the differential equation δż = �∇f(x)�−1δz (Lohmiller &
Slotine, 1998). As an immediate and powerful corollary, if the system is con-
tracting and a single trajectory is known, then all trajectories must converge
to the single known trajectory exponentially.

In this work, we interchangeably refer to f, the system, and the gen-
eralized Jacobian as contracting depending on the context. In particular,
for stochastic differential equations, we refer to f as contracting if the
deterministic system is contracting. Two specific robustness results for
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contracting systems needed for the derivations in this work are summa-
rized below.

Lemma 1. Consider the dynamical system 2.7, and assume that it is contracting
with metric transformation � and contraction rate λ. Let χ = ‖�−1‖‖�‖ denote
the condition number of �, where ‖�‖ = sup‖y‖=1‖�y‖ denotes the induced ma-
trix 2-norm. Consider the perturbed dynamical system:

ẋ = f (x, t) + ε(x, t). (2.10)

Then, for a solution x1 of equation 2.7 and a solution x2 of equation 2.10, with
R = ‖� (x1 − x2) ‖,

Ṙ + λR ≤ ‖�ε(x, t)‖. (2.11)

Furthermore, if ‖ε‖ ≤ Ae−at + B with A, B ∈ R and a ∈ R
+, then after exponential

transients of rates a and λ,

‖x1(t) − x2(t)‖ ≤ χB
λ

. (2.12)

Proof. See point vii of “linear properties of generalized contraction anal-
ysis” in Lohmiller and Slotine (1998) for the derivation of equation 2.11.
From equation 2.11, Ṙ + λR ≤ ‖�‖‖ε‖ ≤ ‖�‖ (Ae−at + B

)
. Convolving e−λt

with the right-hand side yields the inequality

R(t) ≤ ‖�‖
(

B
λ

+ Ae−λt

a − λ
− Be−λt

λ
− Ae−at

a − λ

)
. (2.13)

Noting that ‖x1(t) − x2(t)‖ = ‖�−1� (x1 − x2) ‖ ≤ ‖�−1‖‖� (x1 − x2) ‖ =
‖�−1‖R yields the equation 2.12. �
Theorem 1. Consider the stochastic differential equation,

dx = f (x, t)dt + σ(x, t)dW , (2.14)

with x ∈ R
n and where W denotes an n-dimensional Wiener process. Assume

that there exists a positive-definite metric M = �T� such that xTMx ≥ β‖x‖2

with β > 0 and that f is contracting in this metric. Further assume that
Tr
(
σ(x, t)TMσ(x, t)

) ≤ C where C ∈ R
+. Then, for two trajectories a(t) and b(t)

driven by independent sources of noise with stochastic initial conditions given by
a probability distribution p(ζ1, ζ2),

E
[‖a(t) − b(t)‖2] ≤ 1

β

(
E

[(
‖a(0) − b(0)‖2

M − C
λ

)+]
e−2λt + C

λ

)
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where (·)+ denotes the unit ramp (or ReLU) function. The expectation on the left-
hand side is over the noise dW (s) for all s < t, and the expectation on the right-hand
side is over the distribution of initial conditions.

See Pham, Tabareau, and Slotine (2009, theorem 2) for a proof. The following
corollary will be useful in section 5.

Corollary 1. Assume that the conditions of theorem 1 are satisfied. Then for a
trajectory xn f (t) of equation 2.7 and a trajectory x(t) of equation 2.14,

E
[‖x(t) − xn f (t)‖2] ≤ 1

β

(
E

[(
‖x(0) − xn f (0)‖2

M − C
2λ

)+]
e−2λt + C

2λ

)
.

Corollary 1 is obtained by following the proof of theorem 2 in Pham
et al. (2009), with the restriction that one system is deterministic. To reduce
the appearance of decaying exponential terms, in applications of theorem
1, corollary 1, and other related contraction-based bounds, we will simply
state the final constant and the corresponding rate of exponential transients.
The conditions of theorem 1 are worthy of their own definition.

Definition 4 (Stochastic Contraction). If the conditions of theorem 1 are satis-
fied, system 2.14 is said to be stochastically contracting in the metric M (or with
metric transformation �) with bound C and rate λ.

In this work, we will also make use of an extension of contraction known
as partial contraction originally introduced in Wang and Slotine (2005). The
procedure is summarized in theorem 2:

Theorem 2. Consider the nonlinear dynamical system 2.7—not assumed to be
contracting—and consider a contracting auxiliary system of the form

ẏ = g(y, x, t) (2.15)

with the requirement that g(x, x, t) = f (x, t).2 Assume a single trajectory y(t) of
equation 2.15 is known. Then all trajectories of equation 2.7 converge to y(t).

Proof. By assumption, equation 2.15 is contracting, and so all trajectories
converge to y(t). Because g(x, x, t) = f(x, t), any solution x(t) of equation 2.7
is also a solution of equation 2.15, and hence must converge to y(t). �

We will commonly refer to the auxiliary y system in theorem 2 as a vir-
tual system, and f is said to be partially contracting. Theorem 2 enables the

2
For example, say f(x, t) = −P(x)x with P(x) a symmetric and uniformly positive-

definite matrix. Then g(y, x, t) = −P(x)y satisfies this restriction requirement. The y
system is also contracting in y, as the symmetric part of the Jacobian Js = −P(x) < 0 uni-
formly. The f(x, t) system has Jacobian ∂ fi

∂x j
= −Pi j (x) −∑k

∂Pik (x)
∂x j

xk, which has a symmet-
ric part with unknown definiteness without further assumptions on P.



A Continuous-Time Analysis of Distributed Stochastic Gradient 45

application of contraction to systems that in themselves are not contracting
but can be embedded in a virtual system that is.

This notion also extends to stochastic systems through the use of stochas-
tic contraction. If a stochastically contracting system,

dy = g(y, x, t)dt + �(y, x, t)dW, (2.16)

can be found such that g(x, x, t) = f(x, t) and �(x, x) = σ(x, t), then trajecto-
ries of equation 2.16 can be compared to trajectories of equation 2.7 through
the application of corollary 1, or to the trajectories of equation 2.14 through
the application of theorem 1.

2.6 Assumptions. We require two main assumptions about the objec-
tive function f (x), both of which have been employed in previous work
analyzing synchronization and noise in nonlinear systems (Tabareau et al.,
2010). The first is an assumption on the nonlinearity of the components of
the gradient.

Assumption 1. Assume that the Hessian matrix of each component of the
negative gradient has bounded maximum eigenvalue, ∇2

[
(−∇ f (x)) j

] ≤ QI
for all j.

The second assumption is a condition on the robustness of the distributed
gradient flows studied in this work to small, potentially stochastic pertur-
bations.

Assumption 2. Consider two dynamical systems,

ẋ = −∇ f (x) + k(z − x), (2.17)

dy = (−∇ f (y) + k(z − y) + Pl ) dt + βqdW, (2.18)

where Pl is a continuous-time stochastic process dependent on a parame-
ter l and βq ∈ R is a real coefficient dependent on a parameter q. Denote
by x(t) the solution to equation 2.17 and by yl,q(t) the solution to equa-
tion 2.18 with the same initial condition, x(0) = yl,q(0). We assume that
liml→∞ E (‖Pl‖) = 0 and limq→∞ βq = 0 implies that liml→∞ limq→∞ ‖x −
yl,q‖ = 0 almost surely.

Continuous dependence of trajectories on the parameters of the dynam-
ics in the sense of assumption 2 can be characterized for deterministic sys-
tems through continuity assumptions on the dynamics (see, e.g., section 3.2
in Khalil, 2002). Here we assume a natural stochastic extension. Assumption
2 has been verified for FitzHugh-Nagumo oscillators where Pl is a white
noise process (Tuckwell & Rodriguez, 1998) and validated in simulation for
more complex nonlinear oscillators (Tabareau et al., 2010). We remark that



46 N. Boffi and J.-J. Slotine

E [‖P‖] → 0 implies that ‖P‖ → 0 almost surely, and hence that P → 0 al-
most surely.

3 Synchronization and Noise

In this section, we analyze the interaction between synchronization of the
distributed QSGD agents and the noise they experience. We begin with a
derivation of a quantitative measure of synchronization that applies to a
class of distributed SGD algorithms involving coupling to a common ex-
ternal signal with no communication delays. We then present the section’s
primary contribution, which will serve as a basis for the theory in the re-
mainder of the article, as well as for the intuition for various experiments.

3.1 A Measure of Synchronization. We now present a simple theorem
on synchronization in the deterministic setting, which will allow us to prove
a bound on synchronization in the stochastic setting using theorem 1.

Theorem 3. Consider the coupled gradient descent system,

ẋi = −∇ f (xi) + k(z − xi), (3.1)

where z represents a common external signal. Let λ̄ denote the maximum eigenvalue
of −∇2 f (x). For k > λ̄, the individual xi trajectories synchronize exponentially
with rate k − λ̄ regardless of initial conditions.

Proof. Consider the auxiliary virtual system,

ẏ = −∇ f (y) + k(z − y), (3.2)

where z is an external input. Note that with y = xi, we recover equation
3.1—that is, equation 3.2 admits the trajectories of each agent xi as particular
solutions. The Jacobian of equation 3.2 is given by

J = −∇2 f (y) − kI. (3.3)

Equation 3.3 is symmetric and negative definite for k > λ̄ for any external
input z. Because the individual xi are particular solutions of this virtual sys-
tem, contraction implies that for all i and j, ‖xi − x j‖ → 0 exponentially. The
contraction rate is given by k − λ̄. �

This theorem motivates a definition.

Definition 5 (Global Exponential Synchronization). We will say the agents
in a distributed algorithm globally exponentially synchronize if they all converge
to one another exponentially regardless of initial conditions.
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Theorem 3 gives a simple condition on the coupling gain k for synchro-
nization of the individual agents in equation 3.1. Because z can represent
any input, theorem 3 applies to any dynamics of the quorum variable: with
z = x•, it applies to the QSGD algorithm, and with z = x̃, it applies to the
EASGD algorithm. Under the assumption of a contracting deterministic
system, we can use the stochastic contraction results in theorem 1 to bound
the expected distance between individual agents in the stochastic setting.

Lemma 2. Assume that k > λ̄ and that Tr(BBT ) = Tr(�) < C uniformly. Then,
after exponential transients of rate 2(k − λ̄),

E

[∑
i

‖xi − x•‖2

]
≤ (p − 1)Cη

2b (k − λ̄)
, (3.4)

where each xi is a solution of equation 2.4 or 2.6.

Proof. Consider the systems for i = 1, . . . , p,

dxi = (−∇ f (xi) + k
(
z − xi)) dt +

√
η

b
B(xi)dWi, (3.5)

which reproduces equation 2.4 with z = x̃ and equation 2.6 with z = x•.
Each solution xi to equation 3.5 is a solution of the stochastic virtual
system,

dy = (−∇ f (y) + k (z − y)) dt +
√

η

b
B(y)dW,

which has contracting deterministic part under the assumptions of the
lemma and by theorem 3. For fixed i and j, applying the results of theo-
rem 1 in the Euclidean metric leads to

E
[‖xi − x j‖2] ≤ Cη

b(k − λ̄)
(3.6)

after exponential transients of rate 2(k − λ̄). Summing equation 3.6 over i
and j leads to

E

⎡
⎣∑

i< j

‖xi − x j‖2

⎤
⎦ ≤ p (p − 1) ηC

2b (k − λ̄)
.



48 N. Boffi and J.-J. Slotine

Finally, as in Tabareau et al. (2010), we can rewrite

∑
i< j

‖xi − x j‖2 = p
∑

i

‖xi − x•‖2,

which proves the result. �
We will refer to equation 3.4 as a synchronization condition.

3.2 Reduction of Noise Due to Synchronization. We now provide a
mathematical characterization of how synchronization reduces the amount
of noise felt by the individual QSGD agents. The derivation follows the
mathematical procedure first employed in Tabareau et al. (2010) in the study
of neural oscillators.
Theorem 4 (The Effect of Synchronization on Stochastic Gradient
Noise). Let x•

k,p(t) denote the center of mass trajectory of the continuous-time
QSGD system 2.6 with coupling gain k and p agents. In the simultaneous limits
k → ∞ and p → ∞, the difference between x•

k,p(t) and a trajectory of the noise-free
dynamics,

ẋnf = −∇ f (xnf), (3.7)

tends to zero, limk→∞ limp→∞‖x•
k,p − xnf‖ → 0 almost surely, with xnf(0) =

x•
k,p(0).

Proof. Summing the stochastic dynamics in equation 2.6 over p, we find

dx• =
[
− 1

p

∑
i

∇ f (xi)

]
dt +

√
η

bp2

∑
i

B(xi)dWi. (3.8)

To make clear the dependence of the dynamics on x•, we define the distur-
bance term,

ε = − 1
p

∑
i

∇ f (xi) + ∇ f (x•),

so that we can rewrite equation 3.8 as

dx• = [−∇ f (x•) + ε
]

dt +
√

η

bp2

∑
i

B(xi)dWi. (3.9)

Each term
√

η

bp2 B(xi)dWi is a gaussian random variable with covariance
η

bp2 �(xi), and each dWi is independent of all other dW j. Hence, the sum over
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the noise terms in equation 3.9 can also be written as a single gaussian ran-
dom variable with covariance η

bp2

∑
i �(xi),

√
η

bp2

∑
i

B(xi)dWi =
√

η

bp2 TdW, (3.10)

where T = T(x1, . . . , xp) and TTT =∑i �(xi). Equation 3.10 leads to an ad-
ditional simplification of equation 3.9:

dx• = [−∇ f (x•) + ε
]

dt +
√

η

bp2 TdW. (3.11)

Equation 3.11 shows that the effect of the additive noise is eliminated as the
number of agents p → ∞.3 We now let F j denote the gradient of (−∇ f (x)) j,
and we let H j denote its Hessian. We apply the Taylor formula with integral
remainder to (−∇ f (x)) j:

(−∇ f (xi)
)

j + (∇ f (x•)) j − FT
j (x•)(xi − x•)

=
∫ 1

0
(1 − s)

(
xi − x•)T H j

(
(1 − s)xi + sx•) (xi − x•) . (3.12)

Summing equation 3.12 over i and applying the assumed bound H j ≤ QI
leads to the inequality

∣∣∣∣∣p (∇ f (x•)) j −
∑

i

(∇ f (xi)
)

j

∣∣∣∣∣ ≤ Q
2

∑
i

‖xi − x•‖2.

The left-hand side of the above inequality is p|ε j|. Squaring both sides and
summing over j provides a bound on p2‖ε‖2. Taking a square root of this
bound, we find

‖ε‖ ≤
√

nQ
2p

∑
i

‖xi − x•‖2,

3
Indeed, the covariance η

bp2

∑
i �(xi ) ≤ η

bp �̄, where �̄ = maxi �(xi ) and the max and

≤ are with respect to the positive semidefinite order. The covariance η
bp �̄ tends to zero as

p → ∞, so that gaussian random variables drawn from a distribution with this covariance
will become increasingly concentrated around zero with increasing p. Because the true
covariance η

bp2 TTT is less positive semidefinite, random variables drawn from the true

distribution will also become concentrated around zero as p → ∞.
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where the factor of
√

n originates from the sum over the components of ε.
Performing an expectation over the noise dW(s) for all s < t and using the
synchronization condition in equation 3.4, we conclude that after exponen-
tial transients of rate 2(k − λ̄),

E [‖ε‖] ≤ (p − 1)
√

nQCη

4p (k − λ̄) b
. (3.13)

The bound in equation 3.13 depends on the synchronization rate of the
agents k − λ̄, the dimensionality of space n, the bound on the third deriva-
tive of the objective Q, and the bound on the noise strength η

bC. In the limit
of large p, the dependence on p becomes negligible. The expected effect of
the disturbance term ε tends to zero as the coupling gain k tends to infinity,
corresponding to the fully synchronized limit.

By assumption 2 and theorem 1, as k → ∞ and p → ∞, the difference be-
tween trajectories of equation 3.11 and the unperturbed, noise-free system
tends to zero almost surely, as the effects of both the stochastic disturbance
ε and the additive noise term are eliminated in this simultaneous limit. �

3.3 Discussion. Theorem 4 demonstrates that for distributed SGD algo-
rithms, roughly speaking, the noise strength is set by the ratio parameter η

bp
at the expense of a distortion term, which tends to zero with synchroniza-
tion. Whether this noise reduction is a benefit or a drawback for non-convex
optimization depends on the problem at hand.

If the use of a stochastic gradient is purely as an approximation of the true
gradient (e.g., due to single-node or single-GPU memory limitations), then
synchronization can be seen as improving this approximation and elimi-
nating undesirable noise while simultaneously parallelizing the optimiza-
tion problem. The analysis in this section then gives rigorous bounds on the
magnitude of noise reduction. The ε term could be measured in practice to
understand the empirical size of the distortion, and k could be increased
until ε tends approximately to zero and the noise is reduced to a desired
level.

Many studies have reported the importance of stochastic gradient noise
in deep learning, particularly in the context of generalization performance
(Poggio et al., 2017; Zhu, Wu, Yu, Wu & Ma, 2018; Chaudhari & Soatto, 2018;
Zhang et al., 2017). Furthermore, large batches are known to cause issues
with generalization, and this has been hypothesized to be due to a reduction
in the noise magnitude due to a higher b in the ratio η

b (Keskar, Mudigere,
Nocedal, Smelyanskiy, & Tang, 2016). In this context, reduction of noise may
be undesirable, and one may be interested only in the parallelization of the
problem. Our analysis then suggests choosing k high enough such that the
quorum variable represents a meaningful average of the parameters, but
low enough that the noise in the SGD iterations is not reduced. Indeed, in
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section 6, we will find the best generalization performance for low values of
k that still result in convergence of the quorum variable. For deep networks,
the level of synchronization for a given value of k will be both architecture
and data set dependent.

The condition in theorem 3 is merely a sufficient condition for synchro-
nization, and synchronization may occur for significantly lower values of k
than predicted by contraction in the Euclidean metric. However, indepen-
dent of when synchronization exactly occurs, so long as there is a fixed up-
per bound as in equation 3.4, the results in this section will apply with the
corresponding estimate of E[‖ε‖].

3.4 Extension to Multiple Learning Rates. Our analysis can be ex-
tended to the case when each individual agent has a different learning rate
ηi (or, equivalently, different batch size), and thus a different noise level. In
effect, this is because each agent still follows the same dynamics, though
with different integration errors and at a different rate. In this case, the syn-
chronization condition, equation 3.4, is modified to

E

[∑
i

‖xi − x•‖2

]
≤ C

2pb(k − λ̄)

∑
i< j

(
ηi + η j

)
,

so that

E [‖ε‖] ≤
√

nQC
4p2b(k − λ̄)

∑
i< j

(
ηi + η j

)
. (3.14)

The noise term
∑

i

√
ηi

bp2 B(xi)dWi becomes a sum of p independent gaus-

sians, each with covariance ηi

bp2 �(xi), and can be written as a single gaussian

random variable
√

1
bp2 TdW with TTT =∑i η

i�(xi). An analogous argument

as given in section 3.2 shows that the effect of this additive noise will tend
to zero as p → ∞. This could allow, for example, for multiresolution opti-
mization, where agents with larger learning rates may help avoid sharper
local minima, saddle points, and flat regions of the parameter space, while
agents with finer learning rates may help converge to robust local minima
that generalize well. Standard learning rate schedules can also be applied
agent-wise using the validation loss of individual agents rather than de-
creasing all learning rates using the validation loss of the quorum variable.

3.5 Extension to Momentum Methods. Our analysis can also be ex-
tended to momentum methods, modeled using the differential equation (Su
et al., 2014),
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ẍi + μ(t)ẋi + ∇ f (xi) = 0,

in component-wise form:

ẋi
1 = xi

2,

ẋi
2 = −∇ f (xi

1) − μ(t)xi
2.

Coupling the agents in both position and velocity leads to the dynamics,

ẋi
1 = xi

2 + k1(x•
1 − xi

1), (3.15)

ẋi
2 = −∇ f (xi

1) − μ(t)xi
2 + k2(x•

2 − xi
2), (3.16)

where x•
l = 1

p

∑
j x j

l .

Lemma 3. Consider the QSGD with momentum system given by equations
3.15 and 3.16. Assume that f is λ-strongly convex and λ̄-smooth. For k1 >

1

4
(

inftμ(t)+k2

)max
(
(1 − λ̄)2, (1 − λ)2

)
, the individual xi systems globally exponen-

tially synchronize with rate ξ , where

ξ ≥ k1 + inftμ(t) + k2

2

−

√√√√(k1 − (inftμ(t) + k2)
2

)2

+
max

(
(1 − λ̄)2

, (1 − λ)2
)

4
. (3.17)

Proof. The virtual system,

ẏ1 = y2 + k1(x•
1 − y1), (3.18)

ẏ2 = −∇ f (y1) − μ(t)y2 + k2(x•
2 − y2), (3.19)

has system Jacobian,

J =
(

−k1I I

−∇2 f (y1) − (μ(t) + k2) I

)
,

and will be contracting for (inft μ(t) + k2) k1 > supx

(
σ 2
( 1

2

(−∇2 f (x) + I
)))

,
where σ 2(·) denotes the largest squared singular value (Wang & Slotine,
2005). Because I − ∇2 f is symmetric, the squared singular values are sim-
ply the squared eigenvalues. This leads to the condition (inft μ(t) + k2) k1 >
1
4 max

(
(1 − λ̄2), (1 − λ)2

)
, which may be rearranged to yield the condition

in the theorem.
Equations 3.18 and 3.19 also admit the xi

l as particular solutions, so that
the agents globally exponentially synchronize with a rate ξ = |λmax(J)|. The
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lower bound on ξ can be obtained by application of the result in Slotine
(2003, example 3.8). �

Hence, a bound similar to equation 3.4 can be derived just as in lemma
2. Because the x•

1 dynamics are linear and because the x•
2 dynamics are non-

linear only through the gradient of the loss, assumption 1 does not need to
be modified. For inft μ(t) > 0, k2 can be set to zero, so that coupling is only
through the position variables.

4 An Alternative View of Distributed Stochastic Gradient Descent

In this section, we connect the discussion of synchronization and noise re-
duction with the analysis in Kleinberg et al. (2018), which interprets SGD
as performing gradient descent on a smoothed loss in expectation. Specif-
ically, we show that the reduction of noise due to synchronization can be
viewed as a reduction in the smoothing of the loss function. This provides
further geometrical intuition for the effect of synchronization on distributed
SGD algorithms. It furthermore sheds light as to why one may want to use
low values of k to prevent noise reduction in learning problems involving
generalization, where optimization of the empirical risk rather than the ex-
pected risk introduces spurious defects into the loss function that may be
removed by sufficient smoothing.

Defining the auxiliary sequence yt = xt − η∇ f (xt ) and comparing with
equation 2.1 shows that xt+1 = yt − η√

b
ζt , yielding

yt+1 = yt − η∇ f
(

yt − η√
b
ζt

)
− η√

b
ζt,

so that

Eζt

[
yt+1

] = yt − η∇Eζt

[
f
(

yt − η√
b
ζt

)]
.

This demonstrates that the y sequence performs gradient descent on the loss
function convolved with the η√

b
-scaled noise in expectation.4 Using this ar-

gument, Kleinberg et al. (2018) show that SGD can converge to minimizers
for a much larger class of functions than just convex functions, though the
convolution operation can disturb the locations of the minima.

4.1 The Effect of Synchronization on the Convolution Scaling. The
analysis in section 3 suggests that synchronization of the xi variables should
reduce the convolution prefactor for a y variable related to the center of

4
Kleinberg et al. (2018) group the factor of

√
1/b with the covariance of the noise.
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mass, and we now make this intuition more precise for the QSGD algorithm.
We have that


xi
t = −η∇ f (xi

t ) + ηk(x•
t − xi

t ) − η√
b
ζi

t,

so that


x•
t = −η∇ f (x•

t ) + ηεt − η√
bp

ζt,

with εt = ∇ f (x•
t ) − 1

p

∑
i ∇ f (xi

t ) as usual. Define the auxiliary variable y•
t =

x•
t − η∇ f (x•

t ), so that

x•
t+1 = y•

t + ηεt − η√
bp

ζt . (4.1)

Equation 4.1 can then be used to state

y•
t+1 = y•

t − η∇ f (x•
t+1) + ηεt − η√

bp
ζt,

= y•
t − η∇ f

(
y•

t − η√
bp

ζt + ηεt

)
+ ηεt − η√

bp
ζt .

Taylor-expanding the gradient term, we find

∇ f

(
y•

t − η√
bp

ζt + ηεt

)
= ∇ f

(
y•

t − η√
bp

ζt

)

+ η∇2 f

(
y•

t − η√
bp

ζt

)
εt + O(η2),

which alters the discrete y• update to


y•
t = −η∇ f

(
y•

t − η√
bp

ζt

)
+ η

(
1 − η∇2 f

(
y•

t − η√
bp

ζt

))
εt

− η√
bp

ζt + O(η3). (4.2)

Equation 4.2 says that in expectation, y• performs gradient descent on a con-
volved loss with noise scaling reduced by a factor of 1√

p . The reduced scal-
ing comes at the expense of the usual disturbance term ε, which decreases
to zero with increasing synchronization in expectation over the noise ζs for
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s < t. Equation 4.2 differs from the non-distributed case by an additional
O(η2) factor of the Hessian.

4.2 Discussion. To better understand the interplay of synchronization
and noise in SGD, we can consider several limiting cases. Consider a choice
of η corresponding to a fairly high noise level, so that the loss function is
sufficiently smoothed for the iterates of SGD (k = 0) to avoid local minima,
saddle points, and flat regions, but so that the iterates would not reliably
converge to a desirable region of parameter space, such as a deep and robust
minimum.

For k → ∞ and p sufficiently large, the quorum variable will effectively
perform gradient descent on a minimally smoothed loss and will converge
to a local minimum of the true loss function close to its initialization. Due
to the strong coupling, the agents will likely get pulled into this minimum,
leading to convergence as if a single agent had been initialized using deter-
ministic gradient descent at x•(t = 0), despite the high value of η.

With an intermediate value of k so that the agents remain in close proxim-
ity to each other, but not so strong that ‖ε‖ → 0, the x variables will be con-
centrated around the minima of the smoothed loss (the coupling will pull
the agents together, but because ‖ε‖ �= 0, the smoothing will not be reduced
in the sense of equation 4.2). The stationary distribution of SGD is thought
to be biased toward concentration around degenerate minima of high vol-
ume (Banburski et al., 2019); the coupling force should thus amplify this
effect and lead to an accumulation of agents in wider and deeper minima
in which all agents can approximately fit. Eventually, if sufficiently many
agents arrive in a single minimum, it will be extremely difficult for any one
agent to escape, leading to a consensus solution chosen by the agents even
at a high noise level.

4.3 Numerical Simulations in Non-Convex Optimization. In this sec-
tion, we consider simulations on a model one-dimensional non-convex loss
function, as well as one possible high-dimensional generalization. There are
several goals of the discussion. The first is to show that the intuition pre-
sented in section 4.2 is correct. The second is to provide a setting where vi-
sualization of the loss function, its analytically smoothed counterpart, and
the distribution of possible convergent points is straightforward. The third
is to elucidate qualitative trends in distributed non-convex optimization
as a function of k in low- and high-dimensional settings, and to show to
what extent properties of the low-dimensional setting translate to the high-
dimensional setting. We consider the loss function

f (x) =
(
x4 − 4x2 + 1

5 x + 2
5

(
3 sin(20x) − 7

2 sin(2πx) + cos
( 10ex

3

)))
F

,

(4.3)
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where the sinusoidal oscillations in equation 4.3 introduce spurious local
minima. The constant factor F ∈ R

+ is used for numerical stability for a
wider range of η values in order to reduce the large gradient magnitudes in-
troduced by the high-frequency modes. We simulate the dynamics of QSGD
using a forward Euler discretization,

xi
t+1 = xi

t − η∇ f (xi) + ηk(x•
t − xi

t ) − ηζ i
t i = 1 . . . p, (4.4)

with f (x) given by equation 4.3. We include 1000 agents in each of 250 sim-
ulations per k value. Each simulation is allowed to run for 20,000 iterations
with η = .15.5 The corresponding distributions of final points, computed via
a kernel density estimate, are plotted over a range of k values in Figure 1.
In each panel of the figure, the true loss function is plotted in orange and
the loss function convolved with the noise distribution is in blue. The loss
functions are normalized so they can appear on the same scale as the distri-
butions, and the y scale is thus omitted. The agents are initialized uniformly
over the interval [−3, 3], and each experiences an independent and identi-
cally distributed (i.i.d.) uniform noise term ζ i

t ∼ U(−1.5, 1.5) per iteration.
F is fixed at 150.

In Figure 1a, there is no coupling and the distribution of final iterates for
the agents is nearly uniform across the parameter space, with a slightly in-
creased probability of convergence to the two deepest regions. The distribu-
tion of the quorum variable is sharply peaked around zero.6 As k increases
to k = 0.4 in Figure 1b, the agents concentrate around the wide basins of
the convolved loss function and avoid the sharp local minima of the true
loss function. The distribution for the quorum variable is similar, but is too
wide to imply reliable convergence to a minimum with loss near the global
optimum.

As k is increased further to k = 0.8 in Figure 1c and k = 1.0 in Figure 1d,
performance increases significantly. The distribution of the agents is cen-
tered around the global optimum of the smoothed loss, and the distribu-
tion of the quorum variable is very sharp around the same minimum; this
represents the regime in which the agents have chosen a consensus solu-
tion. As demonstrated by Figure 1a, this improved convergence is not pos-
sible with standard SGD. As k is increased again in Figures 1e and 1f, the
coupling force becomes too great, and performance decreases. There is no

5
We choose a relatively high value of η so that the convolved loss will be qualitatively

different from the true loss to a degree that is visible by eye. This enables us to distinguish
convergence to true minima from convergence to minima of the convolved loss. An alter-
native and equivalent choice would be to choose η smaller, with a correspondingly wider
distribution of the noise.

6
Note that without coupling, each agent performs basic SGD. Hence, the results in Fig-

ure 1a are equivalent to p × n single-agent SGD simulations, where n is the total number
of simulations and p is the number of agents per simulation.
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Figure 1: A demonstration of the effect of coupling in the high-noise regime.
As the gain is increased, the agents transition from uniform convergence across
parameter space, to sharply peaked convergence around deep minima of the
smoothed loss, to convergence around minima of the smoothed loss near the
initialization. The true loss is shown in orange, the smoothed loss is shown
in blue, and the distributions of final iterates for the agents and the quorum
variable are shown in purple and green, respectively. These simulations use a
value of η = 0.15. Each plot contains the final iterates over 250 simulations with
20,000 iterations each and 1000 agents per simulation. The figure is best viewed
in color.

initial exploratory phase to find the deeper regions of the landscape, and
convergence is simply near the initialization of x•.

These simulation results suggest a useful combination of high noise, cou-
pling, and traditional learning rate schedules. High noise levels can lead to
rapid exploration and avoidance of problematic regions in parameter space,
such as local minima, saddle points, or flat regions, while coupling can
stabilize the dynamics toward a distribution around a wide and deep min-
imum of the convolved loss. The learning rate can then be decreased to im-
prove convergence to minima of the true loss that lie within the spread of
the distribution. In the uncoupled case, similar levels of noise would lead
to a random walk.
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Figure 2: A demonstration of the effect of combining a learning rate schedule
with coupling in the high-noise regime. The combination of coupling and learn-
ing rate scheduling significantly improves convergence for values of k that con-
centrate around the global optimum of the smoothed loss in the non-annealed
case (k = 0.8 and k = 1.0), and the combination leads to sharp peaks around the
minima of the true loss function. The true loss is shown in orange, the smoothed
loss is shown in blue, and the distributions of final iterates for the agents and
the quorum variable are shown in purple and green, respectively. These simula-
tions use an initial learning rate of η = 0.15. Each plot contains the final iterates
over 250 simulations with 20,000 iterations each and 1000 agents per simulation.
The figure is best viewed in color.

This intuition is supported by the simulation results in Figure 2. The
same simulation parameters are used, except the learning rate is now de-
creased by a factor of two every 4000 iterations until η ≤ 0.001, where it
is fixed. In the uncoupled case in Figure 2a, the schedule only slightly im-
proves convergence around minima of the smoothed loss when compared
to Figure 1a. Figure 2b again reflects a mild improvement relative to Fig-
ure 1b. For the two best values of k = 0.8 and k = 1.0 in Figures 2c and
2d, convergence of the agents and the quorum variable around the deep-
est minimum of the true loss that lies within the distribution of the agents
in Figures 1c and 1d is excellent. In the very high k regime in Figures 2e and
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Figure 3: Simulations for the momentum method iteration given by equations
4.5 and 4.6 with η = 0.1 and δ = 0.9. The true loss is shown in orange, the
smoothed loss is shown in blue, and the distributions of final iterates for the
agents and the quorum variable are shown in purple and green, respectively.
The results are qualitatively similar to QSGD without momentum, except that
higher k values are tolerated without degradation of performance. Each plot
contains the final iterates over 250 simulations with 20,000 iterations each and
1000 agents per simulation. The figure is best viewed in color.

2f, the coupling force is too strong to enable exploration, and convergence
is again near the initialization of x•, but now to the minima of the true loss.

The preceding results also qualitatively apply to momentum methods.
We now turn to simulate the following iteration

v i
t+1 = δv i

t − η∇ f (xi
t + δv i

t ) − ηζ i
t , (4.5)

xi
t+1 = xi

t + v i
t+1 + ηk

(
x•

t − xi
t

)
, (4.6)

with the loss function again given by equation 4.3. The distributions of final
iterates after 20,000 steps with η = 0.1, computed from 250 simulations per
k value with 1000 agents per simulation, are shown in Figure 3.

Figure 3a is identical to Figure 1a except for the difference in learning
rate: the agents converge uniformly across the parameter space. As k is
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increased to k = 2 in Figure 3b, the distribution of the agents becomes more
localized around the center of parameter space but not around any minima.
When k is increased to k = 4 in Figure 3c, k = 8 in Figure 3d, and k = 10 in
Figure 3e, the distributions of the agents and the quorum variable become
localized on the two deepest minima of the convolved loss but are still too
wide for reliable convergence. The value k = 15 in Figure 3f leads to reliable
convergence around the deep minimum on the right and would combine
well with a learning rate schedule as in Figure 2. Overall, the trend is sim-
ilar to the case without momentum, though much higher values of k are
tolerated before degradation in performance. Despite high k values rapidly
pulling the agent positions close to x•(t = 0), significant differences in the
velocities of the agents prevent convergence to a local minimum nearby
x•(t = 0) in the high k regime.

To demonstrate that these qualitative results also hold in higher dimen-
sions, we now consider a d-dimensional objective function inspired by the
one-dimensional objective function in equation 4.3. The loss function is
given by

f (x) =
(

d∑
i=1

x4
i − 4x2

i + 1
5

xi + 2
5

(
d∑

i, j=1

3 sin(20xi) sin(20x j )

+ cos
(

10e
3

xi

)
cos
(

10e
3

x j

)
− 7

2
sin(2πxi) sin(2πx j )

))
/F. (4.7)

Equation 4.7 represents a separable sum of double well loss functions
with pairwise sinusoidal coupling between all parameters. We include 1000
agents in each of 250 simulations per k value with d = 250. Each simulation
is allowed to run for 10,000 steps with 1000 agents per simulation. The pa-
rameters are updated according to the vector forms of equations 4.5 and 4.6
with η = .15 and δ = .9. No learning rate schedule is used. The agents are
all randomly initialized uniformly in [−4, 4] × [−4, 4], and each experiences
an i.i.d. noise term ζ i

t ∼ U(−.75, .75). F is fixed at 50.
For visualization purposes, we plot the contours of a two-dimensional

cross section of the loss function by evaluating the last d − 2 coordinates
at the value −1.2. This value was chosen to represent the bottom-left clus-
ter apparent in Figures 5 and 6; it also lies close to the global minimum of
the uncorrupted loss function (−1.426,−1.426, . . . ,−1.426)T ∈ R

d. Visual-
ization of high-dimensional loss functions is difficult, and using such a cross
section has its drawbacks; in particular, a saddle point may show up as a lo-
cal minimum, correctly as a saddle point, or as a local maximum depending
on the cross section taken. Nevertheless, the employed cross sections enable
qualitative visualization of the clustering of the quorum variable and the in-
dividual agents and provide assurance that the general phenomena seen in
one dimension in Figures 1 to 3 generalize naturally to higher dimensions.
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Figure 4: (a) A cross section of the loss function equation 4.7, evaluated at
xi = −1.2 for i = 3, . . . , d. (b) The same cross section as in panel a, now of the
smoothed loss function given by equation 4.7 convolved with the η-scaled uni-
form noise distribution. (c) The loss function value over time for the quorum
variable, averaged over all simulations (see text), for a range of k values. The
curves demonstrate that there is an optimum value of coupling, in this case
around k = 2.5, for minimizing the loss function. The figure is best viewed in
color.

The loss function itself is shown in Figure 4a, and the smoothed loss is
shown in Figure 4b, which has significantly reduced complexity. Figure 4c
displays the loss value of the quorum variable, averaged over all simula-
tions, as a function of iteration number for a set of possible k values. The
results are much the same as was described qualitatively in one dimension.
Low values of k such as k = 0 and k = 0.5 do not successfully minimize the
loss function as the agents are too spread out. Despite a significant ability to
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explore the loss landscape with such small coupling, the agents are not con-
centrated enough for x• to represent a meaningful average. As k increases,
the ability to optimize the loss function at first significantly improves. While
better than k = 0 and k = 0.5, k = 1.5 still represents the regime of too little
coupling. k = 2.5 and k = 3.5 obtain much lower loss values than k = 0 and
k = 0.5, with k = 2.5 achieving the lowest loss of the displayed k values. As k
is increased further, performance starts to degrade. k = 4.5 performs worse
than k = 2.5, and k = 3.5 obtains similar performance to k = 1.5. Increasing
k to k = 7.5, k = 9.5, and k = 11.5 continues to deteriorate the ability of the
algorithm to minimize the loss. The optimum k value represents, for the
given noise level and loss function, the correct balance of exploration and
resistance to noise.

As in the case of any algorithmic hyperparameter, it is natural to expect
that there will be an optimum value of k. To see that the manifestation of this
optimum is precisely a high-dimensional analog of the qualitative behavior
observed in the one-dimensional simulations in Figures 1 to 3, we visualize
the final points found by the quorum variable and a random selection of 25
agents per simulation in Figures 5 and 6, respectively, for a representative
subset of the k values seen in Figure 4c.

Figure 5a shows that k = 0 results in essentially uniform convergence of
the agents across the parameter space to local minima and saddle points,
and hence the quorum variable simply converges near the origin in Fig-
ure 6a. The small amount of coupling k = 0.5 in Figure 5b leads to increased,
but still insufficient, clustering of the agents. This manifests itself in Fig-
ure 6b as a shift of the ball of quorum convergence points toward the bot-
tom left corner. k = 1.5 and k = 2.5 in Figures 5c and 5d have significantly
improved convergence, with strong clustering of the agents in four balls
around (±1.2,±1.2)T . These clusters are located near the minima of the un-
corrupted loss function, which occur at (±1.426,±1.426, . . . ,±1.426)T .

k = 1.5 and k = 2.5 have similar quorum convergence plots in Figures 6c
and 6d, though the value of the loss in Figure 4c is noticeably different at
iteration 10,000. The differences in the loss function values for the quorum
variables are likely hidden by the low-dimensional visualization method.
Figures 5c and 5d show that k = 1.5 has more “straggler” agents between
the four corner clusters than k = 2.5, which may shift the quorum conver-
gence points uphill. From a qualitative perspective, both are good choices
for tracking minima of the uncorrupted or the non-smoothed loss functions
and could be combined with a learning rate schedule to improve conver-
gence from the cloud of “starting points” in Figures 5c and 5d.

As k is increased further to k = 7.5, the coupling begins to grow too
strong. The distinct agent clusters attempt to merge, as seen in Figure 5e.
The result of this is seen in Figure 6e, where there are scattered quorum
convergence points between the clusters. Finally, for k = 11.5, the coupling
is too great, and convergence of both the agents and the quorum variables
in Figures 5f and 6f, respectively, are both near the origin.
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Figure 5: Contour plots displaying the location of 25 agents per simulation
(multicolored dots) at the final iteration on top of the smoothed loss. See the
text for the overall simulation setup. The figure is best viewed in color.

Taken together, Figures 1 to 6 provide significant qualitative insight into
the convergence of distributed SGD algorithms, both with and without mo-
mentum. In one-dimensional and high-dimensional simulations, there is
an optimum level of coupling that represents an ideal balance between the
ability of the agents to explore the loss function and the concentration of
the distribution of final iterates. Pushing k too high will lead to conver-
gence near the initialization of x• and ultimately to reduced smoothing of
the loss function, while setting k too low will lead to poor convergence of
the quorum variable due to a lack of clustering of the agents. Intermediate
values of k lead to concentration of the agents around deep and wide min-
ima of the smoothed loss, which will generally lie close to the minima of the



64 N. Boffi and J.-J. Slotine

Figure 6: Contour plots displaying the location of the quorum variable (black
x) in each simulation at the final iteration on top of the smoothed loss. See the
text for the overall simulation setup. The figure is best viewed in color.

uncorrupted loss; convergence can be improved from here with a learning
rate schedule.

The optimum value of k is set by the size of the gradients in comparison
to the noise level. In the simulation setup used here, this corresponds to a
trade-off between the value of F, which sets the gradient magnitudes, and
the width of the noise distribution. By setting the width of the noise distri-
bution very high, the optimum k value can be shifted to a large value, so
that numerical stability issues arise before performance begins to degrade.
Similarly, with small width and small F, the optimum value of k can be very
small. In section 6, we will see a manifestation of a similar phenomenon in
deep networks for the testing loss.
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5 Convergence Analysis

We now provide contraction-based convergence proofs for QSGD and
EASGD in the strongly convex setting. In the original work on EASGD, rig-
orous bounds were found for multivariate quadratic objectives in discrete-
time, and the analysis for a general strongly convex objective was restricted
to an inequality on the iteration for several relevant variances (Zhang et al.,
2015). The results in this section thus extend previously available conver-
gence results for EASGD and contain new results for QSGD. We further-
more present convergence results for QSGD with momentum.

A significant theme of this section is that the general methodology of
theorem 4 can be applied to produce bounds on the expected distance of the
quorum variable from the global minimizer of a strongly convex function,
again split into a sum of two terms—one based on the averaged noise and
one based on bounding the distortion vector ε. We also demonstrate in this
section that an optimality result obtained for EASGD in discrete-time in
Zhang et al. (2015) can be obtained through a straightforward application
of stochastic calculus in continuous-time, and that the same result applies
for QSGD.

5.1 QSGD Convergence Analysis. We first present a simple lemma de-
scribing the convergence of deterministic distributed gradient descent with
arbitrary coupling.

Lemma 4. Consider the all-to-all coupled system of ordinary differential equa-
tions,

ẋi = −∇ f (xi) +
∑
j �=i

(
u
(
x j)− u

(
xi)) , (5.1)

with xi ∈ R
n for i = 1, . . . , p. Assume that −∇ f − pu is contracting in some met-

ric with rate λ1, and that −∇ f is contracting in some (not necessarily the same)
metric with rate λ2. Then all xi globally exponentially converge to a critical point
of f .

Proof. Consider the virtual system:

ẏ = −∇ f (y) − pu(y) +
p∑

j=1

u(x j ).

This system is contracting by assumption, and each of the individual agents
is a particular solution. The agents therefore globally exponentially syn-
chronize with rate λ1. After this exponential transient, the dynamics of each
agent is described by the reduced-order virtual system,

ẏ = −∇ f (y).
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By assumption, this system is contracting in some metric with rate λ2 and
has a particular solution at any critical point x∗ such that ∇ f (x∗) = 0. �
Remark 1. This simple lemma demonstrates that any form of coupling can
be used so long as the quantity −∇ f (y) − pu(y) is contracting to guarantee
exponential convergence to a critical point. A simple choice is u(x j ) = k

p x j,
where k is the coupling gain, corresponding to balanced and equal-strength
all-to-all coupling. Then equation 5.1 can be simplified to

ẋi = −∇ f (xi) + k
(
x• − xi) , (5.2)

which is QSGD without noise. Note that all-to-all coupling can thus be im-
plemented with only 2p directed connections by communicating with the
center of mass variable.
Remark 2. If f is l-strongly convex, −∇ f will be contracting in the identity
metric with rate l.
Remark 3. If f is locally l-strongly convex, −∇ f will be locally contracting
in the identity metric with rate l. For example, for a nonconvex objective
with initializations xi(0) in a strongly convex region of parameter space, we
can conclude exponential convergence to a local minimizer for each agent.

If f is strongly convex, the coupling between agents provides no advan-
tage in the deterministic setting, as they would individually contract toward
the minimum regardless. For stochastic dynamics, however, coupling can
improve convergence. We now demonstrate the ramifications of the results
in section 3 in the context of QSGD with the following theorem.

Theorem 5. Consider the QSGD algorithm,

dxi = (−∇ f (xi) + k(x• − xi)
)

dt +
√

η

b
B(xi)dW ,

with xi ∈ R
n for i = 1, . . . , p. Assume that the conditions in assumption 1 hold,

that BBT = � is bounded such that Tr(�) ≤ C uniformly, and that f is λ-strongly
convex. Then, after exponential transients of rate λ and λ + k, the expected differ-
ence between the center of mass trajectory x• and the global minimizer x∗ of f is
given by

E [‖x∗ − x•‖] ≤ Q(p − 1)C
√

nη

4pbλ(λ + k)
+
√

ηC
2bpλ

. (5.3)

Proof. We first sum the dynamics of the individual agents to compute the
dynamics of the center of mass variable. This leads to the SDE,

dx• = (−∇ f (x•) + ε) dt +
√

η

bp2 TdW,
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with ε = ∇ f (x•) − 1
p

∑
i ∇ f (xi) and TTT =∑i �(xi) defined exactly as in

section 3. Consider the hierarchy of virtual systems:

ẏ1 = −∇ f (y1),

ẏ2 = −∇ f (y2) + ε(x1, . . . , xp),

dy3
t = (−∇ f (y3) + ε(x1, . . . , xp)

)
dt +

√
η

bp2 T(x1, . . . , xp)dW.

The y1 system is contracting by assumption, and admits a particular solu-
tion y1 = x∗. As in the proof of lemma 1, we can write with R = ‖y1 − y2‖,

Ṙ + λR ≤ ‖ε‖, (5.4)

which shows that R is bounded. Hence, by dominated convergence,

˙
E[R] + λE[R] ≤ E[‖ε‖]]. (5.5)

As shown in section 3, E[‖ε‖] ≤ Q(p−1)Cη
√

n
4p(λ+k)b after exponential transients of

rate λ + k.7 Hence by lemma 1, the difference between the y1 and y2 systems
can be bounded as

E[‖y2 − x∗‖] ≤ Q(p − 1)Cη
√

n
4p(λ + k)λb

after exponential transients of rate λ. The y2 system is contracting for any
input ε, and the y3 system is identical with the addition of an additive noise
term. By corollary 1, after exponential transients of rate λ,

E[‖y3 − y2‖2] ≤ ηC
2bpλ

.

By Jensen’s inequality and noting that
√· is a concave, increasing function,

E[‖y3 − y2‖] ≤
√
E[‖y3 − y2‖2] ≤

√
ηC

2bpλ
.

7
In section 3, the denominator contained the factor k − λ̄ rather than k + λ. Strong con-

vexity of f was not assumed, so that the contraction rate of the coupled system was k − λ̄.
In this proof, strong convexity of f implies that the contraction rate of the coupled system
is k + λ.
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Finally, note that x• is a particular solution of the y3 virtual system. From
these observations and an application of the triangle inequality, after expo-
nential transients,

E[‖x• − x∗‖] ≤ Q(p − 1)C
√

nη

4pbλ(λ + k)
+
√

ηC
2bpλ

.
�

As in section 3, the bound 5.3 consists of two terms. The first term orig-
inates from a lack of complete synchronization and can be decreased by
increasing k. The second term comes from the additive noise and can be de-
creased by increasing the number of agents. Both terms can be decreased
by decreasing η

b , as this ratio sets the magnitude of the noise, and hence the
size of both the disturbance and the noise term.

State- and time-dependent couplings of the form k(x•, t) are also imme-
diately applicable with the proof methodology above. For example, increas-
ing k over time can significantly decrease the influence of the first term in
equation 5.3, leaving only a bound essentially equivalent to linear noise av-
eraging. For non-convex objectives, this suggests choosing low values of
k(x•, t) in the early stages of training for exploration and larger values near
the end of training to reduce the variance of x• around a minimum. By the
synchronization and noise argument in section 3 and the considerations in
section 4, this will also have the effect of improving convergence to a min-
imum of the true loss function rather than the smoothed loss. If accessible,
local curvature information could be used to determine when x• is near a
local minimum and therefore when to increase k. Using state- and time-
dependent couplings would change the duration of exponential transients,
but the result in theorem 5 would still hold.

It is worth comparing equation 5.3 to a bound obtained with the same
methodology for standard SGD. With the stochastic dynamics,

dx = −∇ f (x)dt +
√

η

b
BdW,

and the same assumptions as in theorem 5, the expected difference after
exponential transients between a critical point of f and the stochastic x is
given by corollary 1 and an application of Jensen’s inequality as

E [‖x − x∗‖] ≤
√

ηC
2bλ

.

In the distributed, synchronized case described by theorem 5, the deviation
is reduced by a factor of 1√

p in exchange for an additional additive term.
This additive term is related to the noise strength Cη

b , the bound Q, and the
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number of parameters n, and is divided by λ(λ + k)—that is, it is smaller for
more strongly convex functions and with more synchronized dynamics.

5.2 EASGD Convergence Analysis. We now incorporate the additional
dynamics present in the EASGD algorithm. First, we prove a lemma demon-
strating convergence to the global minimum of a strongly convex function
in the deterministic setting.

Lemma 5. Consider the deterministic continuous-time EASGD algorithm,

ẋi = −∇ f (xi) + k(x̃ − xi),

˙̃x = kp (x• − x̃) ,

with xi ∈ R
n for i = 1, . . . , p. Assume f is λ-strongly convex. Then all agents

and the quorum variable x̃ globally exponentially converge to the unique global
minimum x∗ with rate

γ ≥ λ + k + kp
2

−
√(

λ + k − kp
2

)2

+ k2 p. (5.6)

Proof. By theorem 3 and strong convexity of f , the individual xi trajectories
globally exponentially synchronize with rate λ + k. On the synchronized
subspace, the system can be described by the reduced-order virtual system:

ẏ = −∇ f (y) + k(x̃ − y),

˙̃x = kp (y − x̃) .

The system Jacobian is then given by

J =
(

−∇2 f (y) − kI kI

kpI −kpI

)
.

When a metric transformation � =
(√

pI 0

0 I

)
is chosen, the generalized

Jacobian becomes

�J�−1 =
(

−∇2 f (y) − kI
√

pkI
√

pkI −kpI

)
,

which is clearly symmetric. A sufficient condition for negative definiteness
of this matrix is that (λ + k) kp > k2 p (Wang & Slotine, 2005; Horn & John-
son, 2012). Rearranging leads to the condition λ > 0, which is satisfied by
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the strong convexity of f . The virtual system is therefore contracting. Fi-
nally, note that y = x̃ = x∗, where x∗ is the unique global minimum, is a
particular solution. All trajectories thus globally exponentially converge to
this minimum. The lower bound on the contraction rate in the statement of
the theorem can be found by applying the result in Slotine (2003, example
3.8). �

Just as in theorem 5, we now turn to a convergence analysis for the
EASGD algorithm using the results of lemma 5:

Theorem 6. Consider the continuous-time EASGD algorithm,

dxi = (−∇ f
(
xi)+ k

(
x̃ − xi)) dt +

√
η

b
B(xi)dW i

dx̃ = kp (x• − x̃) dt,

for i = 1, . . . , p. Assume that f is λ-strongly convex and that the conditions in as-
sumption 1 are satisfied. Let γ denote the contraction rate of the deterministic, fully
synchronized EASGD system in the metric M = �T� with � the metric trans-
formation from lemma 5, as lower bounded in equation 5.6. Further assume that
Tr(BTMB) ≤ C(p) with C a positive constant potentially dependent on p through
the dependence of M on p. Then, after exponential transients of rate γ and λ + k,

E [‖z − z∗‖] ≤ Q(p − 1)C(p)
√

nη

4b
√

pγ (λ + k)
+
√

ηC(p)
2bpγ

, (5.7)

where z = (x•, x̃) and z∗ = (x∗, x∗).

Proof. Adding up the agent dynamics, the center of mass trajectory
follows,

dx• = (−∇ f (x•) + ε + k (x̃ − x•)) dt +
√

η

bp2 TdW,

with the usual definitions of ε and T. Consider the hierarchy of virtual
systems:

ẏ1 = −∇ f (y1) + k
(
ỹ1 − y1) ,

˙̃y1 = kp
(
y1 − ỹ1) ,

ẏ2 = −∇ f (y2) + k
(
ỹ2 − y2)+ ε(x1, . . . , xp),

˙̃y2 = kp
(
y2 − ỹ2) ,
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dy3 = (−∇ f (y3) + k
(
ỹ3 − y3)) dt + ε(x1, . . . , xp) +

√
η

bp2 T(x1, . . . , xp)dW,

dỹ3 = kp
(
y3 − ỹ3) dt.

The first system is contracting toward the unique global minimum with
rate γ by the assumptions of the theorem and lemma 5. The second system
is contracting for any external input ε, and we have already bounded E[‖ε‖]
in section 3 (the application of the bound is independent of the dynamics
of the quorum variable; see the appendix for details). Let zi = (yi, ỹi

)
and

z∗ = ( x∗, x∗ ). By an identical argument as in the proof of theorem 5 and
noting that the condition number of � is

√
p,

E
[∥∥z2 − z∗∥∥] ≤

√
p

γ
E [‖ε‖] ≤ Q(p − 1)C(p)η

√
n

4
√

p(λ + k)γ b

after exponential transients of rate γ and λ + k. Note that λmin(M) = 1.
Hence we can take β = 1 in corollary 1 and

E
[‖z3 − z2‖] ≤

√
ηC(p)
2bpγ

after exponential transients of rate γ . Combining these results via the trian-
gle inequality and noting that x•, x̃ is a solution to the y3, ỹ3 virtual system,
we find that after exponential transients of rate γ ,

E [‖z − z∗‖] ≤ Q(p − 1)C(p)
√

nη

4b
√

pγ (λ + k)
+
√

ηC(p)
2bpγ

,

where z = ( x•, x̃
)
. �

Theorem 6 demonstrates an explicit bound on the expected deviation
of both the center of mass variable x• and the quorum variable x̃ from the
global minimizer of a strongly convex function. As in the discussion after
theorem 5, the results will still hold with state- and time-dependent cou-
plings of the form k = k(x̃, t), and the same ideas suggested for QSGD based
on increasing k over time can be used to eliminate the effect of the first term
in the bound.

Theorem 6 is strictly weaker than theorem 5. The metric transformation
used adds a factor of

√
p to the first quantity in the bound, and the as-

sumption Tr(BTMB) ≤ C(p) now depends on p through the factor of p in
the top-left block of M. Indeed, writing the matrix B in n × n block form,
Tr(BTMB) = C + (p − 1)Tr(BT

11B11 + BT
12B12) where C = Tr(BTB) as in theo-

rem 5. Thus, the dependence of C(p) on p is in general linear.
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Because of this linear dependence on p, the first term in the bound scales
like p3/2, while the second is asymptotically independent of p. This is not
the case in theorem 5, where the first term is asymptotically independent of
p and the second term scales like 1

p . The unfavorable scaling of the bound
in theorem 6 with p implies that higher values of p do not improve con-
vergence for EASGD as they do for QSGD. These issues can be avoided by
reformulating lemma 5 in the Euclidean metric, but this leads to the fairly
strong restriction k <

4λp
(p−1)2 .

These observations highlight potential convergence issues for EASGD
with large p which are not present with QSGD. In line with these theoreti-
cal conclusions, we will empirically find stricter stability conditions on k for
EASGD when compared to QSGD for training deep networks in section 6.
Nevertheless, in the context of non-convex optimization, higher values of p
can still lead to improved performance by affording increased paralleliza-
tion of the problem and exploration of the landscape.

Less significantly, unlike in theorem 5, the bound in theorem 6 is applied
to the combined vector z rather than the quorum variable x̃ itself, and the
contraction rate γ is used rather than λ in the virtual system bounds.8 Both
of these facts weaken the result when compared to theorem 5. γ will in
general be less than λ, as exemplified by the lower bound, equation 5.6.

5.3 QSGD with Momentum Convergence Analysis. We now present
a proof of convergence for the QSGD algorithm with momentum. We first
prove a lemma demonstrating convergence to the global minimum of a
strongly convex, λ̄-smooth function. We consider the case of coupling only
in the position variables; coupling additionally through the momentum
variables is similar. We also restrict to the case of constant momentum co-
efficient for simplicity.

Lemma 6. Consider the deterministic continuous-time QSGD with momentum
algorithm

ẋi
1 = xi

2 + k
(
x• − xi

1

)
,

ẋi
2 = −∇ f (xi

1) − μx2,

with xi
j ∈ R

n for i = 1, . . . , p. Assume that f is λ-strongly convex and λ̄-smooth.

For μ > 2
√

λ + λ̄ − 2
√

λλ̄ and k > 1
4μ

max
(
(1 − λ̄)2, (1 − λ)2

)
, all agents glob-

ally exponentially converge to the unique minimum with zero velocity, (xi
1, xi

2) →

8
The factor of λ + k in the first term remains, as this factor originates in the derivation

of the bound on E [‖ε‖], where the synchronization rate is λ + k.
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(x∗, 0) for all i. The exponential convergence rate κ can be lower-bounded as

κ ≥ δμ + (1 − δ)μ
2

−
√√√√(δμ − (1 − δ)μ

2

)2

+ 1
4

(
(λ̄ − λ)2

2
(
λ + λ̄ + 2(δ − 1)δμ2

)
)

(5.8)

with δ = δ(μ) ∈ (0, 1).

Proof. By lemma 3 and according to the assumption on k, the agents will
globally exponentially synchronize with rate ξ , where ξ may be lower
bounded as in equation 3.17. On the synchronized subspace, the overall
system can be described by the virtual system

ẋ1 = x2,

ẋ2 = −∇ f (x1) − μx2,

where the superscript has been omitted and the coupling term vanishes.
Note that this system admits the particular solution (x1, x2) = (x∗, 0). This
system has Jacobian

J =
(

0 I

−∇2 f −μI

)
,

which is clearly not contracting. Define the metric transformation � =(
aI 0

δμI I

)
with 0 < δ < 1 and a ∈ R. The resulting symmetric part of the

generalized Jacobian is given by

(
�J�−1)

s =⎛
⎜⎜⎜⎝

−δμI
1
2

(
aI − 1

a
∇2 f − (δ − 1)δ

a
μ2I
)

1
2

(
aI − 1

a
∇2 f − (δ − 1)δ

a
μ2I
)

(δ − 1)μ

⎞
⎟⎟⎟⎠.

For contraction, we require that

δ(1 − δ)μ2 >
1
4

max

((
a − δ(δ − 1)

a
μ2 − λ

a

)2

,

(
a − δ(δ − 1)

a
μ2 − λ̄

a

)2
)

.
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Choosing

a =
√

1
2

(
λ + λ̄ + 2(δ − 1)δμ2

)
(5.9)

ensures that the two arguments of the max are equal. For a to be real, we

require that μ <

√
λ+λ̄

2(1−δ)δ . The condition for contraction then reads that

4δ(1 − δ)μ2 >

(
(λ̄ − λ)2

2
(
λ + λ̄ + 2(δ − 1)δμ2

)
)

,

leading to the condition on μ,

1
2

√
λ + λ̄ − 2

√
λλ̄

δ(1 − δ)
< μ < min

⎛
⎝1

2

√
λ + λ̄ + 2

√
λλ̄

δ(1 − δ)
,

√
λ + λ̄

2(1 − δ)δ

⎞
⎠ .

The lower bound is always real and positive by the arithmetic-geometric
mean inequality. There is always a gap between the lower and upper bound,
regardless of which argument of the min is chosen in the upper bound.
The lower bound is minimized for δ = 1

2 , leading to the condition that μ >

2
√

λ + λ̄ − 2
√

λ̄λ. With μ satisfying this minimal lower bound, the valid
range of μ can be shifted arbitrarily large by choosing

δ(μ) =

⎛
⎜⎜⎝
√

μ2 + 4
(

2
√

λ̄λ − (λ̄ + λ)
)

+ μ

2μ
− α

⎞
⎟⎟⎠ ∈ (0, 1)

with α > 0 an arbitrarily small positive constant, thus eliminating the up-
per bound. The lower bound on the contraction rate κ of the system can be
obtained by application of the result in Slotine (2003, example 3.8). �

Note that in general, so long as μ is chosen to satisfy the lower bound of
the preceding lemma, the QSGD with momentum system will be contract-
ing in some metric. The given metric will depend on the value of δ(μ)—for
example, chosen as suggested in the proof.

With Lemma 6 in hand, we can now state a convergence result for QSGD
with momentum.
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Theorem 7. Consider the continuous-time QSGD with momentum algorithm,

dxi
1 = (xi

2 + k(x• − xi
1)
)

dt,

dxi
2 = (−∇ f (xi

1) − μx2
)

dt +
√

η

b
B(xi

1)dW i,

for i = 1, . . . , p. Assume that the conditions of lemma 6 and assumption 2 are
satisfied. Let κ denote the contraction rate of the deterministic, fully synchronized
QSGD with momentum system as lower bounded in equation 5.8 and let ξ denote
the synchronization rate of the QSGD with momentum system as lower bounded in
equation 3.17. Further assume that Tr(BTMB) ≤ C with C > 0 where M = �T�

and � is the metric transformation from lemma 6. Let ψ = 1
2 (1 + a2 + δ2μ2 −√

(1 + a2 + δ2μ2)2 − 4a2) denote the minimum eigenvalue of M with a given by
equation 5.9 and let � = 1

2 (1 + a2 + δ2μ2 +
√

(1 + a2 + δ2μ2)2 − 4a2) denote the
maximum eigenvalue. Then, after exponential transients of rate κ and ξ , with z =
(x•

1, x•
2) and z∗ = (x∗, 0)

E [‖z − z∗‖] ≤ Q
√

�(p − 1)C
√

nη√
ψ4bpκξ

+
√

ηC
2bpψκ

. (5.10)

Proof. Summing the agent dynamics, the center of mass trajectory follows

dx•
1 = x•

2dt

dx•
2 = (−∇ f (x•

1) + ε − μx•
2) dt +

√
η

bp2 T(x1, . . . , xp)dW

with the usual definition of ε and T. Consider an analogous hierarchy of
virtual systems as in theorems 5 and 6:

ẏ1
1 = y1

2,

ẏ1
2 = −∇ f (y1

1) − μy1
2,

ẏ2
1 = y2

2,

ẏ2
2 = −∇ f (y2

1) − μy2
2 + ε(x1

1, . . . , xp
1 ),

dy3
1 = y3

2dt,

dy3
2 = (−∇ f (y3

1) + ε(x1
1, . . . , xp

1 ) − μy3
2

)
dt +

√
η

bp2 T(x1, . . . , xp)dW.
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The first system is contracting toward the global minimum with zero veloc-
ity and will arrive after exponential transients of rate κ by the assumptions
of the theorem and by lemma 6. The second system is contracting for any
external input ε, and as argued in section 3, the bound on E [‖ε‖] can be
applied as is to the momentum system with a suitable replacement of con-
traction rates. As in theorem 5, and noting that the condition number of �

is
√

�
ψ

,

E
[‖z2 − z∗‖] ≤ (p − 1)Cη

√
nQ

√
�

4pξκb
√

ψ
,

after exponential transients of rate κ and ξ . Similarly, an application of corol-
lary 2 gives

E
[‖z3 − z2‖] ≤

√
ηC

2bpψκ

after exponential transients of rate κ , where we have noted that xTMx ≥
ψ‖x‖2. An application of the triangle inequality leads to the result. �

Equation 5.10 is similar to the results for EASGD and QSGD. The bound
is closer in spirit to the bound for QSGD without momentum, in that the
two terms do not have poor dependencies on p as they do for EASGD. How-
ever, the statement of the theorem is complicated by the expressions for the
contraction rates κ and ξ , the expressions for the minimum and maximum
eigenvalues of the metric ψ and �, and the expression for a in the metric
transformation. Together, these four quantities create a more complex de-
pendence of the bound on hyperparameters such as μ and k. Nevertheless,
the spirit is still the same as theorem 5, in that the first term originates from
the ε disturbance and can be eliminated with synchronization, while the
second term originates from the additive noise and can be eliminated by
including additional agents.

5.4 Extensions to Other Distributed Structures. Similar results can be
derived for many other possible distributed structures in an identical man-
ner. We present one general formalism here, involving local state- and time-
dependent couplings.

Lemma 7. The state-dependent all-to-all coupled system,

ẋi = −∇ f (xi) +
∑

j

k j(x j, t)(x j − xi), i = 1, . . . , p, (5.11)

will globally exponentially synchronize with rate
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inf
x1,...,xp,t

⎧⎨
⎩
∑

j

k j(x j, t)

⎫⎬
⎭− sup

y

{
λmax

(−∇2 f (y)
)}

(5.12)

whenever this value is positive.

Proof. The weighted sum
∑

j k j(x j, t)x j now plays the role of the quorum
variable, so that one has

ẋi = −∇ f (xi) −
∑

j

k j(x j, t) xi +
∑

j

k j(x j, t)x j i = 1, . . . , p. (5.13)

The virtual system,

ẏ = −∇ f (y) −
∑

j

k j(x j, t) y +
∑

j

k j(x j, t)x j,

shows that the individual xi trajectories globally exponentially synchronize
if the conditions of the theorem are met. �

We note that the condition 5.12 is independent of the number of agents.
With noise, the center of mass of equation 5.11 satisfies

dx• = (−∇ f (x•) + ε)dt +
√

η

pb
BdW,

where now ε = ∇ f (x•) − 1
p

∑
i ∇ f (xi) +∑ j k j(x j, t)x j − x•∑

j k j(x j, t). As
usual, ε → 0 in the fully synchronized state.

Individually state-dependent couplings of the form 5.11 or its quorum-
mediated equivalent, equation 5.13, allow for individual gain schedules
that depend on local cost values or other local performance measures. This
can allow each agent to broadcast its current measure of success and shape
the quorum variable accordingly. For example, the classification accuracy
on a validation set for each xi could be use to select the current best param-
eter vectors and increase the corresponding ki values to pull other agents
toward them.

5.5 Specialization to a Multivariate Quadratic Objective. In the orig-
inal discrete-time analysis of EASGD in Zhang et al. (2015), it was proven
that iterate averaging (Polyak & Juditsky, 1992) of x̃ leads to an optimal
variance around the minimum of a quadratic objective. We now derive an
identical result in continuous-time for the QSGD algorithm, demonstrat-
ing that this optimality is independent of the additional dynamics in the
EASGD algorithm.
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For a multivariate quadratic f (x) = xTAx with A symmetric and positive
definite, the stochastic dynamics of each agent can be written as

dxi = (−Axi + k
(
x• − xi)) dt + BdWi.

To make the optimal result clearer, we group the factor of
√

η

b into the def-
inition of B, unlike in previous sections. We furthermore relax the state de-
pendence of B in this section and assume it to be a constant matrix; this
matches the case handled in Zhang et al. (2015).

The assumption of state-independence can be justified in several ways.
Theoretical analyses have demonstrated that the specific form of positive
semidefinite B does not affect the O(η) weak accuracy of the approximating
stochastic differential equation 2.2 for SGD (Feng et al., 2018; Hu et al., 2017;
Li et al., 2018), though it does affect the constant.9 For relevance to general
non-convex optimization, we can assume that all agents have arrived suffi-
ciently close to a minimum of the loss function that it can be approximately
represented as a quadratic and that the noise covariance is approximately
constant (Mandt et al., 2016, 2017). For deep networks, the noise covariance
has been empirically shown to align with the Hessian of the loss (Sagun,
Evci, Guney, Dauphin, & Bottou, 2017; Zhu et al., 2018), with theoretical
justification for when this is valid provided in appendix A of Jastrzȩbski
et al. (2017). For all agents in an approximately quadratic basin of a local
minimum of a deep network, B can then be taken to be constant such that
BBT = A, where A is the approximately state-independent Hessian.

With this assumption, x• satisfies

dx•
t = −Ax•

t dt + 1√
p

BdW.

This is a multivariate Ornstein-Uhlenbeck process with solution

x•(t) = e−Atx•(0) + 1√
p

∫ t

0
e−A(t−s)BdWs. (5.14)

By assumption, −A is negative definite, so that the stationary expectation
limt→∞ E[x•(t)] = 0. The stationary variance V is given by

AV + VAT = 1
p
�

9
The state-dependent version used earlier in this work has been empirically shown

to have a lower constant (Li et al., 2018), and is closer to the O(η2) approximating SDE,
which is why it has been used up to this point.
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(see, e.g., Gardiner (2009, p. 107). We now define

z(t) = 1
t

∫ t

0
x•(t′)dt′,

and can immediately state the following lemma:

Lemma 8. The averaged variable z(t) converges weakly to a normal distribution
with mean zero and standard deviation 1

p A−1�A−T :

lim
t→∞

√
t (z(t) − x∗) → N

(
0,

1
p

A−1�A−T
)

.

In particular, for the single-variable case with A = h and � = σ 2,

lim
t→∞

√
t (z(t) − x∗) → N

(
0,

σ 2

ph2

)
.

Proof. From equation 5.14,

√
tz(t) = 1√

t

(
A−1 (1 − e−At) x•(0)

)+ 1√
t p

∫ t

0
dt′
∫ t′

0
e−A(t′−s)BdWs,

the mean of which is asymptotically zero. In computing the variance, only
the stochastic integral remains. Interchanging the order of integration,

∫ t

0

∫ t′

0
e−A(t′−s)BdWsdt′ =

∫ t

0

∫ t

s
e−A(t′−s)dt′BdWs,

= A−1
∫ t

0

(
1 − e−A(t−s)

)
BdWs.

After an application of Ito’s isometry, the variance is given by

V

[√
tz(t)

]
=

A−1

t p

(∫ t

0

(
� − e−A(t−s)� − �e−AT (t−s) + e−A(t−s)�e−AT (t−s)

)
ds
)

A−T .

In the limit, the only nonvanishing quantity after the computation of the
integral is the linear term �t. Then,

lim
t→∞

V

[√
tz(t)

]
= 1

p
A−1�A−T . (5.15)

�
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As in the discrete-time EASGD analysis, equation 5.15 is optimal in the
sense of achieving the Fisher information lower bound and is independent
of the coupling strength k (Polyak & Juditsky, 1992; Zhang et al., 2015). The
lack of dependence on the coupling k is less surprising in this case, as it is
not present in the x• dynamics. The optimality of this result, together with
the comparison of theorems 5 and 6, suggests that the extra x̃ dynamics
may not provide any benefit over coupling simply through the spatial av-
erage variable x• from the perspective of convex optimization. However, in
section 6, we will show through numerical experiments on deep networks
that EASGD tends to find networks that generalize better than QSGD. The
benefits of EASGD must then go beyond basic optimization, and the extra
dynamics may have a regularizing effect.

We can also make a slightly stronger statement about equation 5.15, as
in Mandt et al. (2017).10 If we precondition the stochastic gradients for each
agent by the same constant invertible matrix Q, then the stationary variance
remains optimal. To see this, note that we can account for this precondi-
tioning simply by modifying the derivation so that A → QA and B → QB.
Then,

lim
t→∞

V

[√
tz(t)

]
= 1

p
(QA)−1 (QB) (QB)T (QA)−T

,

= 1
p

A−1Q−1QBBTQTQ−TA−T ,

= 1
p

A−1�A−T .

If different agents are preconditioned by different matrices Qi, this result
will not hold. Using adaptive algorithms based on past iterations for each
agent such as AdaGrad (Duchi, Hazan, & Singer, 2011) thus may eliminate
the optimality, as each agent would compute a different preconditioner.

6 Deep Network Simulations

We now turn to evaluate EASGD, QSGD, and one possible state-dependent
variant of QSGD, equation 5.13, as learning algorithms for training deep
neural networks on the CIFAR-10 data set. A significant goal of the sec-
tion is to understand the role of synchronization and noise in training deep
neural networks. We also seek to test the extensions proposed through-
out this article, such as multiple learning rates, synchronization bounds

10
A similar continuous-time analysis for the averaging scheme considered here was

performed in Mandt et al. (2017) for the non-distributed case; the derivation here is sim-
pler and provides asymptotic results.
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allowing for independent initial conditions of the agents, and state-
dependent coupling.

We obtain two primary results. The first is that less synchronization,
when it still leads to reliable convergence of the quorum variable, results
in the best generalization capabilities of the learned network. This is simi-
lar to the results of the model experiments performed in section 4.3, though
those experiments revealed this to be true for general optimization rather
than generalization. The observation of better generalization with reduced
synchronization is in line with the comments of section 3.3 regarding noise
and generalization in deep networks.

Our second primary result is the observation of an interesting regulariz-
ing property of EASGD, even in the single-agent case. Unlike QSGD with a
single agent, EASGD does not reduce to standard SGD. We find that EASGD
without momentum outperforms SGD with momentum and EASGD with
momentum in the nondistributed setting.

6.1 Experimental Setup. We use a three-layer convolutional neural
network based on the experiments in Zhang et al. (2015); each layer con-
sists of a two-dimensional convolution, an ReLU nonlinearity, 2 × 2 max-
pooling with a stride of two, and BatchNorm (Ioffe & Szegedy, 2015) with
batch statistics in both training and evaluation. The first convolutional layer
has kernel size nine, the second has kernel size five, and the third has kernel
size three. All convolutions use a stride of one and zero padding. Follow-
ing the three convolutional layers, there is a single fully connected layer
to which we apply dropout with a probability of 0.5. The input data are
normalized to have mean zero and standard deviation one in each channel
in both the training and test sets. Because we are interested in qualitative
trends rather than state-of-the-art performance, we do not employ any data
augmentation strategies. We use an 80/20 training/validation set split, and
we use the cross-entropy loss. The stochastic gradient is computed using
minibatches of size 128. The learning rate is set to η = 0.05 initially unless
otherwise specified. This value was chosen as the highest initial value of
η that remained stable throughout training for most values of p, and the
qualitative trends presented here were robust to the choice of learning rate
(further simulations demonstrating this robustness are available in the sup-
plemental information). We decrease the learning rate three times when the
validation loss stalls:11 first by a factor of five, then a factor of two the sec-
ond and third times. This is done on an agent basis: the agents are allowed

11
More precisely, we keep track of the validation loss for each agent at a reference point,

beginning with the validation loss at the first epoch. If the validation loss at the next epoch
changes by greater than 1% of the reference point, the reference loss is set to the newly
computed validation loss. If the validation loss changes by less than 1%, the reference
point is unchanged. When the reference point has been unchanged for five epochs, we
decrease the learning rate.
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to maintain different learning rates. Because we are focused on the behav-
ior of the algorithms rather than efficiency from the standpoint of a parallel
implementation, the agents communicate with the quorum variable after
each update.

In all methods, we use a Nesterov-based momentum scheme unless oth-
erwise specified (Nesterov, 1983, 2004) with a momentum parameter δ = 0.9
unless otherwise specified and coupling only in the position variables. For
EASGD, this takes the form (Zhang et al., 2015),

vi
t+1 = δvi

t − ηig(xi
t + δvi

t ),

xi
t+1 = xi

t + vi
t+1 + ηik(x̃t − xi

t ),

x̃t+1 = x̃t + k
∑

i

ηi(xi
t − x̃t ),

where g is the stochastic gradient. The equivalent form for QSGD can be
obtained by the replacement x̃t → x•

t and by dropping the dynamics for x̃.
The update for SD-QSGD is similar:

vi
t+1 = δvi

t − ηig(xi
t + δvi

t ),

xi
t+1 = xi

t + vi
t+1 + ηi

⎛
⎝∑

j

k j(x j, t)x j − xi
∑

j

k j(x j, t)

⎞
⎠ .

In SD-QSGD, we use state-dependent gains k j = k j(x j, t) inspired by a spik-
ing winner-take-all formalism (Denève & Machens, 2016; Wang & Slotine,
2006). At the start of each epoch, we find the agent with the current mini-
mum validation loss value. Denoting the index of this agent by j∗, we define

k j∗ = k
p

+ (Mp − 1)
k
p

e−t/τ , (6.1)

k j = k
p

(
et/τ − 1
et f /τ − 1

)
for k j �= k j∗ , (6.2)

for t < t f , with k, τ , t f and M ≥ 1 fixed constants, and where t is reset to
zero at the start of each epoch. Equations 6.1 and 6.2 shape the quorum
variable to be entirely composed of the single best agent instantaneously at
the start of an epoch. The constant M is a magnification factor and sets the
size of the force all other agents feel in the direction of the best agent. The
gains relax exponentially back to the QSGD formalism, which is obtained
when k j = k/p for all j. The constant τ sets the speed of relaxation, and t f

defines the duration of the spike. At t = t f , all k j will have relaxed back to
the original value k

p for all j �= j∗, and with proper choice of τ , k j∗ will be
very close. We introduce a small discontinuity measured by the magnitude
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of (Mp − 1) k
p e−t f /τ and simply set k j∗ = k

p at t = t f . We use a value of M = 10,
choose t f = Nb/4 where Nb is the number of batches in an epoch, and choose
τ = t f /16, corresponding to a rather rapid spike.12

In each of the following simulations, the fully connected weights and bi-
ases are initialized randomly and uniformly Wi j, bi ∼ U (− 1√

m , 1√
m ) where

m is the number of inputs. The convolutional weights use Kaiming initial-
ization (He, Zhang, Ren, & Sun, 2015). In each comparison, the methods
are initialized from the same points in parameter space, but the agents are
not required to be initialized at the same location. In QSGD and SD-QSGD,
the quorum variable is exponentially weighted x̄t+1 = γ x•

t + (1 − γ )x̄t with
γ = .1, and we test the convergence of x̄. Note that because this variable
is not coupled to the dynamics of the individual agents, this is still dis-
tinct from EASGD. Because we use momentum in nearly all experiments,
we will refer simply to QSGD and EASGD. The non-momentum variant of
EASGD, when used, will be referred to as EASGD-WM (EASGD without
momentum).

6.2 Experimental Results. We first analyze the effect of k on classifi-
cation performance. We find that the best performance is obtained for the
lowest possible fixed values of k that still lead to convergence of the quo-
rum variable. This is demonstrated in Figure 7 for the EASGD algorithm
with η = 0.05 initially and p = 8, where we observe the general trend that
test accuracy improves as the coupling gain is decreased. Note that k = 0.01
and k = 0.02, as well as k = 0 (not shown), have too little synchronization
for the quorum variable to reflect a meaningful average, and hence do not
lead to good performance. Similar results hold for QSGD (not shown). We
found not only the best performance for low, fixed k but also the best scaling
with the number of agents.13

There are several plausible explanations for the observation of improved
generalization with reduced coupling. Lower values of k allow for greater
exploration of the optimization landscape, which intuitively should lead to
better performance. As the measure of synchronization in Figure 7d tends to
zero, the ε term in the x• dynamics will also tend to zero, and synchroniza-
tion will begin to reduce the amount of noise felt by the individual agents.
In neural networks, it is expected that this noise reduction will favor con-
vergence to minima that do not generalize as well as those obtained with
higher amounts of noise, as seen in Figure 7c.

12
Another option would be to set k j = (k − k j∗ )/(p − 1) when this is positive and zero

otherwise. This ensures, outside of the initial spiking period, that the total sum of the k j
is constant. We found similar empirical results with both choices.

13
The improvement in test accuracy and in the minimization of the test loss with in-

creasing number of agents is demonstrated in later plots. We found that this trend was
maximized with lower values of k.
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Figure 7: The effect of varying k on the learning procedure for the EASGD algo-
rithm with η = 0.05 initially and p = 8. In general, lower test errors and lower
test loss values are seen for lower values of k so long as convergence is still
obtained. k = 0.01 and k = 0.02 have too little synchronization for the quorum
variable to represent a meaningful average. Insets display a more finely grained
view near the end of learning. The best-performing curve is shown in bold. The
figure is best viewed in color.

Results for a comparison of QSGD and SD-QSGD are shown in Figure 8
for p = 1, 4, 8, 16, 32, and 64 with k = 0.04. QSGD is shown in solid lines,
while SD-QSGD is shown in dashed; color indicates the number of agents
(see the key in Figure 8a). Note that p = 1 simply corresponds to SGD for
both SD-QSGD and QSGD, as the coupling term vanishes for a single agent.
In both cases, we see significant improvement in accuracy as the number of
agents increases, most likely due to an improved ability of the agents to ex-
plore the landscape, along with a decrease in synchronization. The test loss
and test error curves display interesting differences between the two algo-
rithms; for p = 8 and p = 16, the state-dependent formalism obtains mildly
improved generalization relative to QSGD, as expected by the bias toward
minima with lower validation loss. QSGD performs better for p = 32 and
p = 64; SD-QSGD does not converge for p = 64.

We display a comparison of QSGD and EASGD in Figure 9, again for
k = 0.04. QSGD tends to decrease the training loss further and more rapidly
than EASGD; this is in line with earlier comments that, from an optimiza-
tion perspective, the extra dynamics of the quorum variable offer no clear
theoretical benefit. However, consistently across all experiments except for
p = 16 where it does not converge, EASGD generalizes better: the test loss
is driven lower, and the test accuracy is higher than QSGD. A particularly
interesting result is the single-agent case, where EASGD actually performs



A Continuous-Time Analysis of Distributed Stochastic Gradient 85

Figure 8: A comparison of SD-QSGD using a spiking winner-take-all formalism
(see the text) to QSGD with a value of k = 0.04. The state-dependent formal-
ism obtains improved accuracy for the intermediate values of p = 8 and p = 16.
QSGD and SD-QSGD perform similarly for p = 4, and QSGD performs better
for p = 32. SD-QSGD does not converge for p = 64 while QSGD does. Insets
display a more finely grained view near the end of learning. The figure is best
viewed in color.

Figure 9: A comparison of the performance of QSGD to EASGD with k = 0.04
(see the text). QSGD optimizes the training loss further and faster than EASGD,
leading to overfitting. The two algorithms respond differently to fixed k and
have different levels of synchronization. For p = 16, EASGD fails to converge,
though QSGD continues to converge. Nevertheless, for fewer agents, EASGD
obtains improved performance. Insets display a more finely grained view near
the end of learning. The best-performing curves for each algorithm are shown
in bold. The figure is best viewed in color.
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Figure 10: A comparison of EASGD, EASGD without momentum (EASGD-
WM) and SGD with momentum (MSGD) over a range of learning rates for mo-
mentum parameter δ = 0.9 and coupling gain k = 0.054. Surprisingly, EASGD
and EASGD-WM perform better than MSGD in general, and in many cases,
EASGD-WM performs better than EASGD. This motivates considering alterna-
tive dynamics for the quorum variable even for non-distributed optimization.
Insets display a more finely grained view near the end of learning. The best-
performing curve is shown in bold. The figure is best viewed in color.

better than SGD with momentum.14 These observations suggest that the
extra dynamics of the quorum variable may impose a form of implicit reg-
ularization that, to our knowledge, has not been observed before.

Motivated by this observation, we now compare the p = 1 EASGD algo-
rithm with momentum, without momentum, and basic SGD with momen-
tum in Figure 10 across a range of initial learning rates. Each algorithm is
initialized from the same location, and each curve represents an average
over three runs to eliminate stochastic variability. The momentum algo-
rithms use δ = 0.9, and the two EASGD variants use k = 0.054. In gen-
eral, EASGD with and without momentum (dashed and solid lines, respec-
tively) both achieve higher test accuracy than SGD with momentum (dotted
lines). Surprisingly, EASGD without momentum often performs better than
EASGD with momentum.

To show that this trend is not an artifact of incorrectly choosing the mo-
mentum parameter, we have compiled additional data in Table 1 over a
range of momentum parameters and learning rates. Each data point re-
ported is again the result of an average over three independent runs, and

14
Note that unlike QSGD with a single agent, EASGD with a single agent is a different

algorithm from basic SGD. It can be seen as SGD coupled in feedback to a low-pass filter
of its output.



A Continuous-Time Analysis of Distributed Stochastic Gradient 87

Ta
bl

e
1:

C
om

pa
ri

so
n

of
M

in
im

um
Te

st
L

os
s

A
ch

ie
ve

d
an

d
M

in
im

um
E

rr
or

A
ch

ie
ve

d
fo

r
E

A
SG

D
-W

M
,E

A
SG

D
,a

nd
M

SG
D

on
th

e
C

IF
A

R
-1

0
D

at
a

Se
t(

E
ac

h
w

it
h

p
=

1,
Pr

ov
id

in
g

D
et

ai
ls

on
th

e
E

ff
ec

to
fH

yp
er

pa
ra

m
et

er
C

ho
ic

es
N

ot
Se

en
in

Fi
gu

re
10

).

M
in

im
um

Te
st

L
os

s
M

in
im

um
E

rr
or

δ
=

.1
δ

=
.2

5
δ

=
.5

δ
=

.7
5

δ
=

.9
δ

=
.9

9
δ

=
.1

δ
=

.2
5

δ
=

.5
δ

=
.7

5
δ

=
.9

δ
=

.9
9

η
=

.0
05

E
A

SG
D

-W
M

4.
25

4.
26

4.
28

4.
29

3.
22

3.
24

.2
67

.2
66

.2
64

.2
69

.2
68

.2
70

E
A

SG
D

4.
72

4.
83

4.
56

4.
28

3.
17

3.
11

.3
04

.3
13

.3
01

.2
82

.2
80

.2
77

M
SG

D
4.

75
4.

87
4.

64
4.

33
3.

21
3.

29
.3

10
.3

23
.3

06
.2

86
.2

92
.2

95
η

=
.0

1
E

A
SG

D
-W

M
4.

09
5.

15
4.

03
4.

12
3.

15
3.

10
.2

62
.2

59
.2

53
.2

61
.2

67
.2

57
E

A
SG

D
4.

57
5.

75
4.

27
4.

14
3.

04
3.

22
.2

97
.3

00
.2

80
.2

75
.2

63
.2

83
M

SG
D

4.
59

5.
81

4.
48

4.
46

3.
22

3.
33

.3
00

.3
07

.2
94

.2
94

.2
87

.3
01

η
=

.0
5

E
A

SG
D

-W
M

3.
95

3.
96

3.
86

3.
97

3.
07

3.
00

.2
52

.2
58

.2
50

.2
55

.2
62

.2
53

E
A

SG
D

4.
41

4.
27

4.
05

4.
06

3.
19

4.
04

.2
86

.2
83

.2
65

.2
67

.2
76

.4
17

M
SG

D
4.

46
4.

57
4.

48
4.

43
3.

21
6.

91
.2

94
.3

07
.2

95
.2

90
.2

92
0.

9
η

=
.1

E
A

SG
D

-W
M

4.
08

4.
01

4.
04

4.
05

3.
11

3.
15

.2
67

.2
64

.2
68

.2
65

.2
68

.2
69

E
A

SG
D

4.
24

4.
23

4.
14

4.
13

3.
17

6.
91

.2
82

.2
83

.2
77

.2
72

.2
80

0.
9

M
SG

D
4.

62
4.

55
4.

22
4.

47
3.

38
6.

91
.2

88
.3

07
.2

87
.2

88
.3

01
0.

9

N
ot

es
:E

ac
h

ex
pe

ri
m

en
tw

as
ru

n
th

re
e

ti
m

es
,a

nd
th

e
m

in
im

um
w

as
ta

ke
n

ov
er

th
e

av
er

ag
e

tr
aj

ec
to

ry
.I

n
ea

ch
ru

n,
th

e
al

go
ri

th
m

s
w

er
e

in
it

ia
liz

ed
fr

om
th

e
sa

m
e

st
ar

ti
ng

lo
ca

ti
on

.S
ur

pr
is

in
gl

y,
E

A
SG

D
-W

M
co

ns
is

te
nt

ly
ac

hi
ev

es
th

e
lo

w
es

tt
es

te
rr

or
(a

ll
bu

to
ne

se
tt

in
g)

an
d

th
e

lo
w

es
tt

es
tl

os
s

(a
ll

bu
tf

ou
rs

et
ti

ng
s)

in
co

m
pa

ri
so

n
to

E
A

SG
D

an
d

M
SG

D
.F

or
hi

gh
le

ar
ni

ng
ra

te
an

d
hi

gh
δ
,M

SG
D

an
d

E
A

SG
D

ev
en

tu
al

ly
ru

n
in

to
co

nv
er

ge
nc

e
is

su
es

,w
hi

le
E

A
SG

D
-W

M
d

oe
s

no
t(

er
ro

r
of

.9
an

d
te

st
lo

ss
of

6.
91

in
d

ic
at

e
co

nv
er

ge
nc

e
is

su
es

).
B

ol
d

in
d

ic
at

es
th

e
to

p
pe

rf
or

m
an

ce
of

th
e

th
re

e
al

go
ri

th
m

s
fo

r
ch

oi
ce

of
η

an
d

δ
.



88 N. Boffi and J.-J. Slotine

each algorithm is initialized from the same location in each run. For simplic-
ity, we simply report the testing loss and testing error rather than the results
on the training data. For all but one choice of η and δ, EASGD-WM out-
performs both EASGD and MSGD in classification accuracy, demonstrating
that the trend is robust to choice of learning rate and momentum value.

Much like SGD with momentum, single-agent EASGD-WM is a second-
order system in time. It also maintains a similar computational complex-
ity and requires storing only one extra set of parameters for the quorum
variable.

Indeed, this motivates a new class of second-order in time algorithms for
non-distributed optimization given by the feedback interconnection

ẋ = −∇ f (x) + k(x̃ − x), (6.3)

˙̃x = g(x̃, x), (6.4)

where g represents arbitrary dynamics for the quorum variable (Russo &
Slotine, 2010), and in general might be chosen as a nonlinear filter. The
simple linear filter g(x̃, x) = k(x − x̃) recovers EASGD. Figure 9 shows that
while EASGD obtains better performance than QSGD, QSGD maintains
better stability properties. Designing nonlinear filters g that can combine
the regularization of EASGD with the stability of QSGD is an interesting
direction of future research.

Returning to the distributed case, Figure 9d shows that EASGD and
QSGD respond differently to the choice of k.15 EASGD is less synchronized
than QSGD in all cases. Hence, in the context of Figure 7, a possible expla-
nation for the improved performance of EASGD when compared to QSGD
is simply the observation that it tends to remain less synchronized.

To answer this question, we use a scaling factor kEASGD = r × kQSGD to
roughly match the levels of synchronization between EASGD and QSGD.
Results for r = 1.35 are shown in Figure 11, and the synchronization curves
are either approximately equal or EASGD remains more synchronized
across all values of p. Additional values of p = 32 and p = 64 are shown,
and EASGD now converges for all attempted values of p < 64. QSGD con-
tinues to perform worse than EASGD on the test data due to an increased
tendency to overfit. As the number of agents is increased, QSGD improves
up to p = 32; p = 64 obtains roughly the same test performance. EASGD
improves up to around p = 16 and does not converge for p = 64 (see Fig-
ure 11a; the curves in Figures 11b and 11d are covered by the insets, but
EASGD obtains roughly 55% testing accuracy). In general, EASGD with
p agents obtains roughly the same performance as QSGD with 2p agents.

15
Figure 9d shows the distance from x̃ for EASGD. The distance from x• for EASGD is

nearly identical.
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Figure 11: A comparison of QSGD and EASGD with kQSGD = 0.04 and kEASGD =
r × kQSGD with r = 1.35. In this case, EASGD converges and performs better for
all values of p up to p = 64, where it again fails to converge. Nevertheless, per-
formance for EASGD with p = 16 and p = 32 approximately matches that of
QSGD with p = 64. Insets display a more finely grained view near the end of
learning. The best-performing curves for each algorithm are shown in bold. The
figure is best viewed in color.

Interestingly, Figure 11d shows that the high p stability issues for EASGD
are not simply due to a lack of synchronization, as EASGD actually re-
mains more synchronized than QSGD for p = 64 for much of the training
time. We offer a simple possible explanation for these stability issues in the
supplemental information by analyzing discrete-time optimization of a
one-dimensional quadratic objective. Another explanation is afforded by
theorems 5 and 6, which reveal poor scaling with p of both terms in the
bound for EASGD when compared to QSGD. Together, these observations
highlight stability issues in both continuous and discrete-time.

As discussed in the text and the description of the experimental setup,
our theory allows the agents to be initialized in different locations and to
use distinct learning rates through individual learning rate schedules. In the
original work on EASGD, it was postulated that starting the agents at dif-
ferent locations would break symmetry and lead to instability (Zhang et al.,
2015). Similarly, a single learning rate was used for all agents. The above
simulations demonstrate that starting from distinct locations and decreas-
ing the learning rate on an individual basis is nonproblematic. We show
in Figure 12 that starting from a single location leads to decreased perfor-
mance. Surprisingly, Figure 12 also highlights that initializing the agents
from multiple locations is critical for optimal improvement as the number
of agents is increased.
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Figure 12: A comparison between starting the agents from multiple locations
(ML) and one location (OL) for EASGD with a value of k = 0.054. Starting from
multiple locations exhibits better test accuracy, lower test loss, and greater im-
provement as the number of agents is increased. Insets display a more finely
grained view near the end of learning. The best-performing curves for each set-
ting are shown in bold. The figure is best viewed in color.

7 Conclusion

In this article, we presented a continuous-time analysis of distributed
stochastic gradient algorithms within the framework of stochastic non-
linear contraction theory. Through analogy with quorum-sensing mecha-
nisms, we analyzed the effect of synchronization of the individual SGD
agents on the noise generated by their stochastic gradient approximations.
We demonstrated that synchronization can effectively reduce the noise felt
by each of the individual agents and by their spatial mean. We further
demonstrated that synchronization can be seen to reduce the amount of
smoothing imposed by SGD on the loss function. Through simulations on
model non-convex optimization problems, we provided insight into how
the distributed and coupled setting affects convergence to minima of the
smoothed loss and the true loss. We introduced a new distributed algo-
rithm, QSGD, and proved convergence results for a strongly convex objec-
tive for QSGD, QSGD with momentum, and EASGD. We further introduced
a state-dependent variant of QSGD and constructed one specific example
of the algorithm to show how the formalism can be used to bias explo-
ration. We presented experiments on deep neural networks and compared
the properties of QSGD, SD-QSGD, and EASGD for generalization per-
formance. We noted an interesting regularizing property of EASGD even
in the single-agent case and compared it to basic SGD with momentum,
showing that it can lead to improved generalization. Research into similar
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higher-order in time optimization algorithms formed as coupled dynamical
systems is an interesting direction of future work.

Appendix: Interaction between Synchronization and Noise: Extra
Quorum Dynamics

We provide a mathematical characterization of how synchronization re-
duces the noise felt by the agents with arbitrary quorum dynamics. This
is a generalization of what was shown in section 3.2 and does not depend
on the dynamics of the quorum variable. In addition to the assumptions
stated in section 2.6, we require that the gradient workers are stochastically
contracting with rate λ = k − λ̄ and bound η

bC, so that the synchronization
condition 3.4 derived in section 3.1 can be applied. For completeness, we
consider

dxi = (−∇ f (xi) + k
(
x̃ − xi)) dt +

√
η

b
B(xi)dWi, (A.1)

dx̃ = g(x•, x̃)dt. (A.2)

As in the main text, we define x• = 1
p

∑
i xi. Adding up the stochastic dy-

namics in equation A.2, we find

dx• =
[
− 1

p

∑
i

∇ f (xi) + k(x̃ − x•)

]
dt +

√
η

bp2

∑
i

B(xi)dWi.

We then define

ε = − 1
p

∑
i

∇ f (xi) + ∇ f (x•),

so that we can rewrite

dx• = [−∇ f (x•) + ε + k(x̃ − x•)
]

dt +
√

η

bp2

∑
i

B(xi)dWi.

Applying the Taylor formula with integral remainder to the compo-
nents of the gradient (−∇ f (x)) j, we have, with F j denoting the gradient
of (−∇ f (x)) j, and H j denoting its Hessian:

(−∇ f (xi)
)

j + (∇ f (x•)) j − FT
j (x•)(xi − x•)

=
∫ 1

0
(1 − s)

(
xi − x•)T H j

(
(1 − s)xi + sx•) (xi − x•) .
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Summing over i and applying the assumed bound H j ≤ QI leads to the
inequality

∣∣∣∣∣
∑

i

[(−∇ f (xi)
)

j + (∇ f (x•)) j

]∣∣∣∣∣ ≤ Q
2

∑
i

‖xi − x•‖2.

The left-hand side of the above inequality is p|ε j|. Squaring both sides and
summing over j provides a bound on p2‖ε‖2. Squaring both sides, perform-
ing this sum, noting that j runs from 1 to n, taking a square root, taking
an expectation over the noise, and using the synchronization condition in
equation 3.4,

E [‖ε‖] ≤ (p − 1)ηQC
√

n
4pb (k − λ̄)

.

As a sum of p independent gaussian random variables with mean zero and
standard deviations η

bp2 �(xi), the quantity

√
η

bp2

∑
i

B(xi)dWi =
√

η

bp2 TdW

can be rewritten as a single gaussian random variable with TTT =∑i �(xi)
as in the main text. Thus, for a given noise covariance � and corresponding
bound C, the difference between the dynamics followed by x• and the noise-
free dynamics

ẋi
n f = −∇ f (xi

n f ) + k
(

x̃ − xi
n f

)
,

˙̃x = g(x̃, x•
n f ),

tends to zero almost surely as k → ∞ and p → ∞. The limit k → ∞ is
needed to increase the degree of synchronization to eliminate the effect of ε

on x•, while the limit p → ∞ is needed to eliminate the effect of the additive
noise.

Acknowledgments

N.B. was supported by a Department of Energy Computational Science
Graduate Fellowship. We graciously thank the reviewers for helpful feed-
back and for suggestions to improve the work.



A Continuous-Time Analysis of Distributed Stochastic Gradient 93

References

Bach, F., & Moulines, E. (2013). Non-strongly-convex smooth stochastic approxima-
tion with convergence rate o(1/n). In C. J. C. Burgess, L. Bottou, M. Welling, Z.
Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing
systems, 26 (pp. 773–781). Red Hook, NY: Curran.

Banburski, A., Liao, Q., Miranda, B., Rosasco, L., Liang, B., Hidary, J., & Poggio,
T. A. (2019). Theory III: Dynamics and generalization in deep networks. CoRR,
abs/1903.04991.

Betancourt, M., Jordan, M. I., & Wilson, A. C. (2018). On symplectic optimization.
doi:10.1109/LPT.2005.844008

Bottou, L. (1998). On-line learning in neural networks. New York: Cambridge Univer-
sity Press.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of the 19th International Conference on Computational Statistics (pp. 177–
187). Berlin: Springer.

Bouvrie, J., & Slotine, J.-J. (2013). Synchronization and noise: A mechanism for regular-
ization in neural systems. arXiv:1312.1632.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1), 1–122.

Chaudhari, P., Baldassi, C., Zecchina, R., Soatto, S., Talwalkar, A., & Oberman, A.
(2017). Parle: Parallelizing stochastic gradient descent. arXiv:1707.00424.

Chaudhari, P., Oberman, A., Osher, S., Soatto, S., & Carlier, G. (2018). Deep relax-
ation: Partial differential equations for optimizing deep neural networks. Research
in the Mathematical Sciences, 5.

Chaudhari, P., & Soatto, S. (2018). Stochastic gradient descent performs variational
inference, converges to limit cycles for deep networks. In Proceedings of the 2018
Information Theory and Applications Workshop (pp. 1–10). doi:10.1109/ITA.2018
.8503224

Chung, S., & Slotine, J. E. (2009). Cooperative robot control and concurrent syn-
chronization of Lagrangian systems. IEEE Transactions on Robotics, 25(3), 686–700.
doi:10.1109/TRO.2009.2014125

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., . . . Ng, A. Y. (2012).
Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, &
K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp.
1223–1231). Red Hook, NY: Curran.

Defazio, A., Bach, F., & Lacoste-Julien, S. (2014). Saga: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives. In Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.),
Advances in neural information processing systems, 27 (pp. 1646–1654). Red Hook,
NY: Curran.

Denève, S., & Machens, C. K. (2016). Efficient codes and balanced networks. Nature
Neuroscience, 19, 375–382. https://doi.org/10.1038/nn.4243

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12,
2121–2159.



94 N. Boffi and J.-J. Slotine

Feng, Y., Li, L., & Liu, J. G. (2018). Semigroups of stochastic gradient descent and
online principal component analysis: Properties and diffusion approximations.
Communications in Mathematical Sciences, 16(3), 777–789. doi:10.4310/CMS.2018
.v16.n3.a7

Gardiner, C. (2009). Stochastic methods (4th ed.). Berlin: Springer-Verlag.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT

Press.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. CoRR. abs/1502.01852.
Horn, R. A., & Johnson, C. R. (2012). Matrix analysis (2nd ed.). New York: Cambridge

University Press.
Hu, W., Li, C. J., Li, L., & Liu, J.-G. (2017). On the diffusion approximation of nonconvex

stochastic gradient descent. arXiv:1705.07562v2.
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. CoRR. abs/1502.03167.
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