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Diffusion in Stochastic Nanonetworks

Dung Phuong Trinh, Youngmin Jeong, Hyundong Shin, and Moe Z. Win

Abstract

Molecular communication in nature can incorporate a large number of nano-things in nanonetworks

as well as demonstrate how nano-things communicate. This paper presents molecular communication

where transmit nanomachines deliver information molecules to a receive nanomachine over an anomalous

diffusion channel. By considering a random molecule concentration in a space-time fractional diffusion

channel, an analytical expression is derived for the first passage time (FPT) of the molecules. Then,

the bit error rate of the ℓth nearest molecular communication with timing binary modulation is derived

in terms of Fox’s H-function. In the presence of interfering molecules, the mean and variance of the

number of the arrived interfering molecules in a given time interval are presented. Using these statistics,

a simple mitigation scheme for timing modulation is provided. The results in this paper provide the

network performance on the error probability by averaging over a set of random distances between the

communicating links as well as a set of random FPTs caused by the anomalous diffusion of molecules.

This result will help in designing and developing molecular communication systems for various design

purposes.
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I. INTRODUCTION

The internet of things (IoT) is rapidly gaining attention as a new paradigm in the modern field

of communications and networks, where the things—all types of physical elements, e.g., sensors,

tags, electronic devices, mobile phones, and home appliances—are capable of interconnecting

with a large number of networks for various applications such as machine communication,

smart cities, and intelligent transportation [1]. As the demands of IoT continue to grow towards

a hyper-connected world and the internet of everything, recent developments in nanotechnology

have promised that nano solutions compose a new concept of IoT—called the internet of nano-

things (IoNT)—by using biologically embedded computing devices [2], [3]. However, realizing

IoNT requires developing new communication and networking techniques and solving various

technical challenges [3].

Molecular communication is a new communication paradigm for transmitting information

between machines that are typically a few nanometers to a few micrometers in size, where the

information is carried using molecules in a nanonetwork. This new communication system is

expected to be practical for use in various IoNT applications such as drug delivery systems,

healthcare systems, nano-materials, and nano-machinery [4]–[8].

Brownian motion (normal diffusion) has been widely used for ideal diffusion environments

since the free movement of molecules is well described in a fluid medium [9]–[13]. However,

various potential applications of molecular communication cannot be limited to those ideal

environments and we may meet extraordinary diffusion in crowded, heterogenous, and complex

structure environments, e.g., water molecules in human tissue, turbulent plasma, bacterial motion,

amorphous semiconductors, the porous system, and the polymeric system [14]–[18].

The extraordinary diffusion phenomenon was first discovered by Lewis F. Richardson in

1926 in his large volume of experimental data, and this so-called anomalous diffusion does

not obey normal diffusion theory [19].1 It was shown that the random propagation of molecules

no longer depends on time t linearly but instead time t3/2 in a turbulent medium. Since the late

1960s, many researchers have been interested in examining this diffusion for various propagation

environments [20], [21], and some mathematical models were built in the presence or absence

of an external velocity or force field to describe anomalous dynamic behavior (see, [16], [22]–

1The terminology “non-Fickian diffusion” first referred to a representation of the modified Fick’s second law of diffusion

equation.
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[25], and references therein). Subdiffusion is used to explain the divergence property of waiting

time with finite moments of the jump length distribution of the particles. It has been found in

various contexts—e.g., the movement of lipids in membranes, cytoplasmic macromolecules in

living cells, proteins in the nucleoplasm, and the translocation of polymers [14], [15]—and the

mean squared displacement of molecules scales slower than a linear relation in time. For a finite

mean waiting time and divergent jump length variance of particles, superdiffusion (also known

as Lévy flights) has been explored in [16], which can be observed in turbulent flows or bacterial

motions [17], [18]. The mean square displacement of superdiffusing molecules increases more

rapidly in time than for normal diffusion.

In the context of molecular communication, anomalous diffusion can appear when the con-

centration of molecules is very high since the collisions between molecules lead to anomalous

movement of the molecules in a given medium. For example, calcium signaling based molecular

communication [26], [27] cannot avoid anomalous diffusion since calcium ions interact with

each other due to the electrostatic forces. Furthermore, experimental studies of molecular com-

munication showed that the channel response is nonlinear and does not obey theoretical results

from previous works [28]. These results motivate the use of extraordinary diffusion in molecular

communication for many applications [23]–[25].

Since the molecular system can consist of a vast number of molecules, it is difficult to

characterize the dynamic behavior of the system analytically. Specifically, the modeling of a

dynamic concentration (density) of molecules that undergo absorption, reaction, elastic collision

and libration is challenging when designing a dynamic nanonetwork for molecular communi-

cation. Over the last decade, extensive work on molecular communication systems has spurred

researchers to propose diverse solutions for how to deliver information in diffusive propagation,

where transmit nanomachines (TNs) emit information molecules depending on their encoding

scheme [9], [10], [23], [24], [29]–[32]. Co-channel interference introduces inevitable uncertainty

into the diffusion-based molecular nanonetwork when multiple TNs emit molecules simultane-

ously [10], [31]. These interfering molecules can lead to dynamic variation of the molecule

concentration in the nanonetwork and degrade the performance of molecular communication.

For example, the concentration of interfering molecules at reference time t1 is different from

that at time t0 (t0 < t1) depending on the nanonetwork environment [33]. The density of TNs also

can vary in the medium. The moving TNs governed by the law of diffusion lead to dynamic

changes in the number of TNs. Therefore, it is crucial to model the dynamic concentration
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of TNs and interfering molecules in a stochastic way [10], [34]–[37]. A statistical-physical

model of interference in nanonetworks was introduced in [10] where the co-channel TNs are

randomly distributed according to a homogeneous Poisson point process (PPP). The expected

number of interfering molecules at the receive nanomachine (RN) has been analyzed under a

stochastic geometry framework [34]. However, to the best of the authors knowledge, there is

no literature considering a general diffusion channel model for heterogeneous propagation of

molecules considering the dynamic behavior of random locations of molecules in large-scale

nanonetworks.

In wireless networks, the PPP has been shown to be a good model for random positions of

communicating nodes [38]–[42]. This spatial model is fully described by the spatial (determinis-

tic) density. However, this model often fails to capture the network dynamics arising from node

mobility, the network geometry, and network scheduling in space and time. In traffic theory,

the traffic flow is well fitted to a negative binomial distribution for high-variant traffic in the

space and time domains [43]. Specifically, the gamma-distributed TN concentration can explain

the cyclic-variants and dense concentration scenarios. Hence, we consider a versatile family of

statistical distributions for a general distributional structure of the molecule concentration in a

stochastic spatial model.

In this paper, we consider molecular communication in a stochastic nanonetwork. Specifically,

we are interested in characterizing the performance of the ℓth nearest molecular communication

from the viewpoint of the network rather than the performance of specific communication links.

To this end, we embody the spatial randomness of TNs and interfering molecules according to

a stochastic process with random distances between communicating nanomachines. To account

for the extraordinary propagation of molecules, we consider anomalous diffusion based on the

space-time fractional diffusion equation, which encompasses various types of diffusion scenarios,

including Brownian motion. The main contributions of this paper can be summarized as follows.

• We characterize the first passage time (FPT) in the (α, β)-anomalous diffusion with random

distances determined by the H-molecule concentration (see Proposition 1). We first derive

the probability density function (PDF) of the FPT, where the H-variate is chosen for

an arbitrarily distributed random distance (H-distance) between the information molecule

emitted from the stochastic field of TNs in the region R and the RN. Due to the Mellin

convolution operators of the H-function, the FPT with random distances is again an H-

variate (see Theorem 1). The (α, β)-anomalous diffusion encompasses various diffusion
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scenarios depending on the diffusion parameters α and β. We particularize the statistical

properties of FPT for the normal diffusion with and without spatial randomness of molecule

locations (see Remark 1).

• In the absence of interfering molecules, we analyze the bit error rate (BER) for molecular

communication between the ℓth nearest TN and the RN with timing modulation when the

distance between each TN and the RN is perfectly estimated and known by the RN (see

Theorem 2). Then, we provide a BER expression in terms of a single H-function when the

RN uses a fixed detection threshold (see Theorem 3). This enables us to evaluate the BER

while neither estimating the distance nor determining the optimal detection threshold (see

Remark 2). We further show that the low-rate slope of the BER curve is a function of the

diffusion parameters α and β, and a subset of the H-parameters of the random distance (see

Corollary 1). Specifically, the low-rate slope depends only on the diffusion parameters α

and β in the Poisson field of TNs, and the Cox (a, b)-gamma field of TNs when the shape

parameter a > 0.5 (see Remark 3).

• In the presence of interfering molecules, we characterize the effect of interference on the

BER for molecular communication between the ℓth nearest TN and the RN in (α, β)-

anomalous diffusion. Applying Campbell’s theorem, we characterize the mean and variance

of the number of interfering molecules arriving in a given time interval (see Theorem 4).

Since the interfering molecules significantly degrade the BER in timing modulation (see

Theorem 5), we propose a simple mitigation scheme using the mean and variance of the

number of interfering molecules (see Theorem 6). It is shown that BER degradation depends

on the variance of the number of interfering molecules (see Remark 6).

The rest of this paper is organized as follows. In Section II, we present the stochastic

nanonetwork model and anomalous diffusion channel model based on the space-time fractional

diffusion equation. The FPT is analyzed in Section III with a general random distance distribution.

In Sections IV and V, we characterize the BER for the ℓth nearest molecular communication

with and without interfering molecules, respectively. Finally, conclusions are given in Section

VI.

Notation: Throughout the paper, we shall adopt notation in which random variables are

displayed in sans serif, upright fonts; and their realizations in serif, italic fonts. We collect the

glossary of notation and symbols used in the paper in Appendix. Readers who are not familiar

with the H-function, H-variate, or H-transform can find their basic identities and properties in
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�

receive nanomachine (RN)

transmit nanomachine (TN)

information molecule

interfering molecule

boundary

the nearest TN

the �th nearest interfering molecule

�

�
nanonetwork

internet intraconnection

internet interconnection

Fig. 1. Architecture for the IoNT and an example of a realized nanonetwork in a circular region R of radius ω according to

stochastic fields of the TNs and interfering molecules, which obey the anomalous diffusion law.

[44].

II. SYSTEM MODEL

We consider a stochastic nanonetwork, as illustrated in Fig. 1, where TNs that are diffused

continuously in a two-dimensional region R emit molecules to deliver information to an RN

located at the origin in the presence of interfering molecules randomly scattered through out the

space.2 We assume that the RN acts as a perfect absorbing boundary [9]; hence, our attention

can be focused on the distances between TNs and the RN, considering that the FPT of molecules

depends on the random distances between TNs and RN. The random distance between a TN

and the RN, which depends on the spatial dimensions and the stochastic process of TNs, can be

found using the mapping theorem [45].

A. Stochastic Nanonetwork Model

The TNs and interfering molecules are assumed to be scattered according to stationary Cox

processes in the two-dimensional plane R2. Specifically, we consider that the random intensity

λ of a Cox process is an H-variate with λ ∼ H
m,n
p,q (PPP = (k , c,aaa,bbb,AAA,BBB)). We consider a fixed

average intensity of TNs or interfering molecules in space. This is valid when the topology of

nanonetwork rapidly changes in a short time due to the high mobility of TNs or molecules while

2Since the molecules emitted from the TN deliver information to the RN via a diffusion process, our framework can also be

extended to a stochastic network model under the assumption of spatial random deployment of information molecules.
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keeping their average intensities. This scenario is also valid when molecules in the medium can be

degraded by chemical reactions [34]. We begin by introducing a random molecule concentration

and the corresponding ordered random distance to capture the dynamics of the nanonetworks.

These are invoked to develop the analysis framework for the ℓth nearest molecular communica-

tion, e.g., the FPT with the random distance and interference characteristics in nanonetworks.

Proposition 1 (H-Molecule Concentration): Let λ ∼ H
m,n
p,q (PPP) be the random molecule density.

Then the probability of ℓ molecules inside the region R, ℓ ∈ Z+, is given by

P {ℓ molecules in R} = Hn+1,m
q ,p+1

(

|R| ;
(

k

|R| ℓ! ,
1

c
, 1q − bbb,

(

1 + ℓ, 1p − aaa
)

,BBB, (1,AAA)

))

. (1)

The distance of the ℓth nearest molecule from the origin, denoted by rℓ, is the H-variate rℓ ∼
H

n+1,m
q ,p+1 (PPP ℓ), where PPP ℓ is given by

PPP ℓ =

(

k
√
π

c
3

2 (ℓ− 1)!
,

√

π

c
, 1q − bbb − 3

2
BBB,

(

ℓ− 1

2
, 1p − aaa − 3

2
AAA

)

,
1

2
BBB,

(

1

2
,
1

2
AAA

)

)

. (2)

Proof: The proof is an almost verbatim copy of the proof of [46, Theorem 1] in a two-

dimensional Cox field of molecules.

We can make the following remarks on the molecule density λ for special cases.

• Gamma Molecule Concentration (Cox (a, b)-Gamma): Let λ ∼ Gamma (a, b) and v (R) be

the number of molecules inside the region R. Then v (R) is the negative binomial variable

v (R) ∼ NB

(

a,
b |R|

b |R| + 1

)

(3)

and the distance of the ℓth nearest molecule from the origin is the H-variate rℓ ∼ H
1,1
1,1 (PPP ℓ),

where

PPP ℓ =

( √
πb

Γ (a) (ℓ− 1)!
,
√
πb,−a +

1

2
, ℓ− 1

2
,
1

2
,
1

2

)

. (4)

• Deterministic Molecule Concentration (Poisson): When the molecule density has a de-

terministic concentration, the Cox process boils down to a homogeneous PPP. Let λ ∼
Gamma (a, b = λ0/a). Then as a → ∞, we have λ = λ0 with probability one. Hence, the

number of molecules v (R) and the distance of the ℓth nearest molecule from the origin are

respectively

v (R) ∼ Poisson (λ0 |R|) (5)
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and

rℓ ∼ H
1,0
0,1

(

PPP ℓ =

(
√
λ0π

(ℓ− 1)!
,
√

λ0π,−, ℓ− 1

2
,−,

1

2

))

= GG
(

ℓ, 1/
√

λ0π, 2
)

. (6)

Note that for ℓ = 1, we have [47, Remark (a)]

r1 ∼ H
1,0
0,1

(

PPP 1 =

(

√

λ0π,
√

λ0π,−,
1

2
,−,

1

2

))

= Rayleigh
(

1/
√

2λ0π
)

(7)

as expected.3

B. Anomalous Diffusion Channel Model

We consider an (α, β)-anomalous diffusion propagation based on a space-time fractional

diffusion equation without skewness (or asymmetry) such that

∂β

∂tβ
w (x, t) = K

∂α

∂ |x|αw (x, t) (8)

where w (x, t) is a fundamental solution; K is the diffusion coefficient; 0 < α 6 2 is related to

the divergence of jump length; and 0 < β 6 1 is related to the waiting time divergence. With

the boundary conditions w (±∞, t) = 0 for t > 0 and an initial condition w (x, 0) = δ (x), the

solution of (8) for α > β is given by [16], [22], [23], [48], [49]4

w (x, t) =
1

α |x|H
2,1
3,3





|x|
K1/αtβ/α

∣

∣

∣

∣

∣

∣

(

1, 1
α

)

,
(

1, β
α

)

,
(

1, 1
2

)

(1, 1) ,
(

1, 1
α

)

,
(

1, 1
2

)



 . (9)

The solution w (x, t) represents a probability density of the molecule location x at a given

time t. The (α, β)-anomalous diffusion can encompass subdiffusion (2β
α

< 1), superdiffusion

(2β
α
> 1), and normal diffusion (2β

α
= 1) scenarios depending on the mean squared displacement

3It follows from the mapping theorem [45] that the squared distance for R follows the Erlang distribution r
2
ℓ ∼ Erl (ℓ, λ0π)

and represents Poisson arrivals on the line R+ with the arrival rate λ0π. For the gamma molecule density, it can be interpreted

as the Compound gamma arrivals on the line R+ with the scale parameters a and πb, following the beta prime distribution (beta

distribution of the second kind) r
2
ℓ ∼ BP (ℓ, a, πb).

4We obtain the solution (9) by introducing the Caputo derivative [22], [23]. Note that when α < β, the H-function

representation of the fundamental solution can be found in [48, eq. (4.2)], which has a different form from (9) due to the

singularity of the H-function at x → ∞.
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in the asymptotic limit of large t as 〈∆x2〉 ∝ t
2β

α .5 The (α, β)-anomalous diffusion can also

be classified into particular cases—namely, standard diffusion (α = 2, β = 1), space fractional

diffusion (0 < α 6 2, β = 1), time fractional diffusion (α = 2, 0 < β < 1), and neutral fractional

diffusion (α = β) [48], [49].6 Fig. 2 shows various types of diffusions, defined through the

diffusion parameters α and β in the (α, β)-domain.

III. FIRST PASSAGE TIME

In this section, we derive the density of FPT while accounting for the random locations of

molecules and anomalous diffusion propagation. Let t (r) be the FPT defined by the time taken

for a molecule at x = 0 to reach distance x = r, r ∈ R+, for the first time:

t (r) = inf {t : x (t) = r} . (10)

The FPT plays an important role in molecular communication. Specifically, it behaves as noise

(uncertainty) in the random propagation time when the information is encoded via molecules

according to the release time or the concentration of the molecules. For a given (deterministic)

distance r and absorbing boundaries at x = −∞ and x = r, the FPT for α > β in (α, β)-

anomalous diffusion is the H-variate [23, eq. (4)]

t (r) ∼ H
1,2
3,3

(

PPP 0

∣

∣

∣

∣

rα/β

K1/β

〉)

(11)

where the parameter sequence PPP 0 is given by

PPP 0 =

(

2

α
, 1,

(

−α

β
,− 1

β
,− α

2β

)

,

(

− 1

β
,−1,− α

2β

)

,

(

α

β
,
1

β
,
α

2β

)

,

(

1

β
, 1,

α

2β

))

(12)

and PPP |a〉 = (k /a, c/a,aaa,bbb,AAA,BBB) denotes the scaling operation on the parameter sequence PPP for

a ∈ R++ [44, Property 2].

Theorem 1 (First Passage Time with H-distance): Let rℓ ∼ H
m,n
p,q (PPP ℓ) be the random distance

of the ℓth nearest molecule from the RN. Then, the FPT tℓ for α > β is the H-variate

tℓ ∼ H
m+1,n+2
p+3,q+3

(

PPP fpt,ℓ

∣

∣

∣

∣

1

K1/β

〉)

(13)

5The term “quasinormal diffusion” would be more appropriate when α = 2β with α < 2 and β < 1. In this case, the spatial

jump length and the waiting time do not lead to Gaussian and Markovian properties, respectively.

6Anomalous diffusion can be characterized by 2β/α, called a diffusion exponent, which was measured by 0.84 or 0.59 in the

cytoplasm of living cell [14], 0.7 in the crowded cellular fluids, and 0.65 or 0.49 in the cellular membranes [50]. Specifically,

(3/4, 1/2)-anomalous diffusion has been observed in a pressure-gradient-driven turbulence model [51].
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Fig. 2. Various types of diffusions in the (α, β)-domain.

where the parameter sequence PPP fpt,ℓ is

PPP fpt,ℓ =

(

2kℓ

αc
1−α/β
ℓ

, c
α/β
ℓ , ȧaaℓ, ḃbbℓ, ȦAAℓ, ḂBBℓ

)

(14)

with






































ȧaaℓ =
(

−α
β
,− 1

β
,aaaℓ +

(

1− α
β

)

AAAℓ,− α
2β

)

ḃbbℓ =
(

− 1
β
,bbbℓ +

(

1− α
β

)

BBBℓ,−1,− α
2β

)

ȦAAℓ =
(

α
β
, 1
β
, α
β

AAAℓ,
α
2β

)

ḂBBℓ =
(

1
β
, α
β

BBBℓ, 1,
α
2β

)

.

(15)

Proof: This follows from the definition and elementary identities of the H-transform [44]

and

ptℓ (t) =
β

α
H

2,1
3,3

{

Hm,n
p,q

(

r;

〈

−α

β

∣

∣

∣

∣

PPP ℓ

)

;

〈

1,
β

α
, 0

∣

∣

∣

∣

(

PPP 0

∣

∣

∣

∣

1

K1/β

〉)−1
}

(

t−
β

α

)

=
β

α
Hn+2,m+1

q+3,p+3

(

t−
β

α ;

〈

1,
β

α
, 0

∣

∣

∣

∣

(

PPP 0

∣

∣

∣

∣

1

K1/β

〉)−1

⊡

〈

−α

β

∣

∣

∣

∣

PPP ℓ

)

(16)

where 〈a, b, r|PPP and 〈r|PPP denote the elementary and conjugate operations on the parameter

sequence PPP for r ∈ C [44, Property 3 and Remark 2], PPP−1 denotes the inverse operation on

the parameter PPP [44, Property 6], and ⊡ denotes the Mellin operation on the two parameter

sequences [44, Proposition 4].
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Fig. 3. CDF of the FPT for the nearest molecule in the normal diffusion channel with the Cox
(

a, 1010/a
)

-gamma field of

molecules when a = 0.2, 0.4, 1, 5 and ∞ (Poisson field of molecules).

Remark 1 (Normal Diffusion): For normal diffusion (α = 2, β = 1), the FPT in Theorem 1

reduces to

tℓ ∼ H
m,n+1
p+1,q+1

(

(

kℓcℓ, c2ℓ , (−2,aaaℓ −AAAℓ) , (bbbℓ −BBBℓ,−1) , (2, 2AAAℓ) , (2BBBℓ, 1)
)

∣

∣

∣

∣

1

K

〉)

. (17)

Given rℓ = r, the location-conditioned FPT for normal diffusion has the PDF

ptℓ (t) =
K

r2
H2,1

3,3





r2

Kt

∣

∣

∣

∣

∣

∣

(2, 1) , (2, 1) , (2, 1)

(3, 2) , (2, 1) , (2, 1)





=
r√

4πKt3
exp

(

− r2

4Kt

)

. (18)

Note that with spatial conditioning, the diffusion process becomes a Wiener process without drift

and its variance is equal to 2K.7

Example 1: To exemplify the FPT between the ℓth nearest molecule and the RN in a stochastic

field of molecules, we consider two nanonetwork scenarios: i) a Cox (a, b)-gamma field of

molecules with a gamma random molecule concentration λ ∼ Gamma (a, b); and ii) a Poisson

field of molecules with a deterministic molecule concentration λ = λ0. We set the diffusion

7The distribution (18) is a Lévy distribution, or special cases of the inverse Gamma and Pearson-V distributions. Note that

the FPT for the Wiener process with drift follows an inverse Gaussian distribution [9].
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Fig. 4. CDF of the FPT for the ℓth nearest molecule in the normal diffusion channel with the Poisson field of molecules when

λ0 = 1010 [molecules/m2] and ℓ = 1, 2, 3, 4, 5.

coefficient K = 10−10 [m2/s] (for a biological environment) for all examples in this paper. For

simulations, we use a Monte Carlo method based on continuous-time random walks [23], [52].

For random FPT in space and in time, 20,000 realizations were used. For each molecule at the

initial random position, we used a random discrete time step with a Mittag-Leffler distribution

associated with the diffusion parameter β, and a random new position is obtained by the stable

distribution associated with the diffusion parameter α and the diffusion coefficient K. Our

simulation method can be understood as a generalized version of a particle-based simulator

for Brownian motion [53].

Fig. 3 shows the cumulative distribution function (CDF) of the FPT for the nearest molecule

in a normal diffusion channel with the Cox (a, 1010/a)-gamma field of molecules when a =

0.2, 0.4, 1, 5 and ∞ (Poisson field of molecules). In this figure, we set the average molecule

concentration as E {λ} = 1010 [molecules/m2] for comparison. We can observe that the molecules

are more dispersed in space with small values of a under the same average molecule concen-

tration. This follows from the fact that the negative binomial arrival (distance) with gamma

random concentration exhibits the over-dispersed statistical property. We can also see that the

FPT in the Cox gamma field of molecules behaves like that in the Poisson field of molecules

with a large value of a due to the loss of randomness in the concentration, as expected. To
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Fig. 5. CDF of the FPT for the nearest molecule in the (α, β)-anomalous diffusion channel with the Cox
(

5, 0.2× 1010
)

-gamma

field of molecules when i) (α, β) = (2, 1) for normal diffusion; ii) (α, β) = (2, 0.8) for subdiffusion; and iii) (α, β) = (1.8, 1)

for superdiffusion.

ascertain the spatial ordering characteristic of the FPT in R, the CDF of the FPT for the ℓth

nearest molecule in the normal diffusion channel is depicted in Fig. 4, with the Poisson field

of molecules with λ0 = 1010 [molecules/m2] and ℓ = 1, 2, 3, 4, 5. We can see from the figure

that the FPT between the ℓth and the (ℓ+ 1)th molecules in the Poisson field exponentially

decreases with the spatial ordering index ℓ. The extraordinary diffusion effects on the FPT can

be ascertained by referring to Fig. 5, where the CDF of the FPT for the nearest molecule in

the (α, β)-anomalous diffusion channel with the Cox (5, 0.2× 1010)-gamma field of molecules

is depicted when: i) (α, β) = (2, 1) for normal diffusion; ii) (α, β) = (2, 0.8) for subdiffusion;

and iii) (α, β) = (1.8, 1) for superdiffusion. We observe that in general, anomalous diffusion has

a large dispersion in propagation compared to normal diffusion. In the superdiffusion scenario,

the discordance between the analysis and simulation results comes from the fact that the FPT is

overestimated in the simulation due to the long jump lengths of the molecule. This phenomenon

can also be interpreted as the first passage leapovers, where the first arrival molecule at the

distance r is slower than it is first across r [54].



14

IV. ℓTH NEAREST MOLECULAR COMMUNICATION

In this section, we establish a unifying framework to characterize the effects of spatial ran-

domness of TNs in (α, β)-anomalous diffusion for ℓth nearest molecular communication without

interfering molecules, where the distance between the ℓth nearest TN and RN is the H-distance

rℓ ∼ H
m,n
p,q (PPP ℓ). Specifically, we consider timing binary modulation with a single molecule as an

information carrier.

A. Assumptions

We assume that the release time of molecules is perfectly controlled and synchronized between

TNs and the RN [30], [32], [55]–[57].8 Each TN uses different types of molecules for encoding

information for orthogonality of the channel uses. The TN also uses different types of molecules

for each symbol for the inter-symbol-interference free channel. The RN can distinguish molecules

either emitted from each TN or emitted from the same TN in different time intervals, and can

wait for a long time until the molecules are absorbed [9], [23]. This guarantees preservation

of orthogonality among different channel uses and inter-symbol-interference free channels while

allowing for a large number of molecule types. That is, the complexity of the system increases as

the number of TNs and/or the number of channel uses increases. This assumption can be relaxed

by introducing a lifetime of molecules, where the molecules dissipate immediately after a finite

time or with an exponential degradation rate [30], [59]. Hence, the same type of molecules

can be reused. The lifetime of molecules can be observed when enzymes or other chemical

reactions degrade the molecules in the channel [60]. Note that various modulation schemes were

proposed to reduce the complexity of nanomachines and to mitigate inter-symbol-interference

[61], [62]. The motion of molecules is independent of the TNs and any boundary. The molecules

absorbed by the RN at the FPT no longer affect the nanonetworks [9], [10], [30], [31]. We

further assume that the channel state information (such as the diffusion coefficient, anomalous

diffusion parameters, and density of TNs) is perfectly estimated and known by the RN for a

8The problem of synchronization has been investigated using the behavior of individual cells via inter-cell signaling [56], and

the blind synchronization algorithm has been proposed to estimate the channel delay in diffusion-based molecular communication

systems [57]. Optimal and suboptimal symbol synchronization schemes without a molecular clock are proposed in [58]. Note

that synchronization between TNs is not necessary in this paper since the FPT of the molecules emitted from the ℓth nearest

TN only depends on the location of the TN [34].
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reliable detection of the transmitted information [63]–[67].9 Unless these assumptions are not

violated, the considered system is applicable to short-range (from nanometers to millimeters)

molecular communication in anomalous diffusion mediums such as cytoplasm of living cell,

crowded cellular fluids, and cellular membranes [14], [15], [50]. The timing modulation scheme

with a single molecule for communication is promising and essential in practice since a complex

system is difficult to design and implement via biological nanomachines in nature due to the

limited processing capacity of nanomachines [4], [5]. In addition, the use of a single molecule

can be justified from the assumption of independent motion of molecules emitted from multiple

TNs [70].

B. Bit Error Rate Analysis

The information is encoded by release time sℓ ∈ {0, Tb/2} for equally-likely bits ‘0’ and

‘1’, where Tb is the time interval for bit transmission [9]. Then, the arrival time ytm,ℓ for the

information molecule emitted from the ℓth nearest TN can be written as

ytm,ℓ = sℓ + t (rℓ) (19)

where rℓ is the distance between the ℓth nearest TN and the RN and t (rℓ) is the FPT of the

information molecule emitted from the ℓth nearest TN.

Let ŝℓ be the decoded release time of the ℓth nearest TN, which can be found using maximum

likelihood (ML) detection as follows:

ŝℓ = argmax
s∈{0,Tb/2}

pytm,ℓ|sℓ (y|s) (20)

where

pytm,ℓ|sℓ (y|s) =











pt(rℓ) (y − s) , if y > s

0, otherwise.
(21)

9The training-based channel state information estimation method was introduced in [12]. Recently, the non-coherence detection

method was proposed in the absence of channel state information at the RN [68]. Note that the density and intensity estimation

methods in Cox processes were investigated for various applications, e.g., see, [69] and the references therein.
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1) With Distance Knowledge at the RN: We first assume that the distance between each TN

and the RN is perfectly estimated and known by the RN. The knowledge of distance between the

TN and RN is crucial for optimal functionality of molecular communication. Several distance

estimation methods together with signal detection schemes were proposed by measuring the

round trip time, signal attenuation [65], or concentration-peak time [66], [67] using feedback

signals.

Theorem 2 (BER for Timing Modulation): Let rℓ ∼ H
m,n
p,q (PPP ℓ) and R = 1/Tb [bits/s] be the

data rate. With the knowledge of the random distance rℓ at the RN, the detection threshold,

denoted by γ, is the solution of

H1,2
3,3

(

γ − 1

2R
;PPP 0

∣

∣

∣

∣

∣

r
α/β
ℓ

K1/β

〉)

= H1,2
3,3

(

γ;PPP 0

∣

∣

∣

∣

∣

r
α/β
ℓ

K1/β

〉)

. (22)

Then, the BER Pb,ℓ of molecular communication between the ℓth nearest TN and RN for timing

modulation in (α, β)-anomalous diffusion is given in terms of the H-transform as follows:

Pb,ℓ =
1

2

(

1 +
β

α
H

2,2
4,4

{

Hm,n
p,q (r;PPP0) ;

〈

1,
β

α
, 0

∣

∣

∣

∣

PPP ber

}

(

γ−β/α
)

− β

α
H

2,2
4,4

{

Hm,n
p,q (r;PPP 0) ;

〈

1,
β

α
, 0

∣

∣

∣

∣

PPP ber

}

(

(

γ − 1

2R

)−β/α
)

)

(23)

where the parameter sequence PPP ber is given by

PPPber =

(

2

β
,

1

K1/β
, 14, (13, 0) ,

(

α

β
,
1

β
, 1,

α

2β

)

,

(

α

β
,
1

β
,
α

2β
,
α

β

))

. (24)

Proof: For equiprobable bits ‘0’ and ‘1’, the conditional BER Pb,ℓ (rℓ) is given by

Pb,ℓ (rℓ) =
1

2

∫ ∞

γ

pytm,ℓ|sℓ (y|0) dy +
1

2

∫ γ

Tb
2

pytm,ℓ|sℓ

(

y

∣

∣

∣

∣

Tb

2

)

dy

=
1

2

(

1 + Ft(rℓ)

(

γ − Tb

2

)

− Ft(rℓ) (γ)

)

. (25)

The CDF Ft(rℓ) (t) is given in [23, eq. (7)] in terms of the H-function as

Ft(rℓ) (t) = 1−H2,2
4,4

(

r
α/β
ℓ t−1;PPPber

)

. (26)

From (25) and (26), we obtain (23) in terms of the H-transform.

Theorem 2 provides the network performance of the BER by averaging over the random

distances between the TN and the RN as well as the random FPTs caused by anomalous diffusion

of molecules. The distance rℓ should be estimated to find the optimal threshold γ.
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2) Without Distance Knowledge at the RN: Although there exist distance estimation schemes

for molecular communication, it is difficult to estimate the exact distances between moving

TNs and the RN in practice. Instead of measuring the distance as well as calculating the optimal

threshold γ, a fixed detection threshold can be used for a simple but effective scheme, as presented

in the following theorem. In this case, the RN does not require exact distance estimation but

instead only needs synchronization between each TN and the RN.

Theorem 3 (Fixed Detection Threshold): Let rℓ ∼ H
m,n
p,q (PPP ℓ). Then, the BER P̂b,ℓ of molec-

ular communication between the ℓth nearest TN and the RN for timing modulation in (α, β)-

anomalous diffusion with the fixed detection threshold γ = Tb/2 is given by

P̂b,ℓ =
1

2
Hn+2,m+2

q+4,p+4

(

2R; P̂PP ber,ℓ

)

(27)

where the parameter sequence P̂PP ber,ℓ is given by

P̂PP ber,ℓ =

(

2kℓ

αcℓ
,

1

c
α/β
ℓ K1/β

, äaaℓ, b̈bbℓ, ÄAAℓ, B̈BBℓ

)

(28)

with






































äaaℓ =
(

12, 1q − bbbℓ −BBBℓ, 12

)

b̈bbℓ =
(

12, 1p − aaaℓ −AAAℓ, 1, 0
)

ÄAAℓ =
(

1, 1
β
, α
β

BBBℓ, 1,
α
2β

)

B̈BBℓ =
(

α
β
, 1
β
, α
β

AAAℓ,
α
2β
, 1
)

.

(29)

Proof: For rℓ ∼ H
m,n
p,q (PPP ℓ) with γ = Tb/2, we have

P̂b,ℓ =
1

2
E

{

1− Ft(rℓ)

(

Tb

2

)}

=
1

2

(

1−
∫ Tb/2

0

∫ ∞

0

pt(rℓ) (t) prℓ (r) drdt

)

=
1

2

(

1− Ftℓ

(

Tb

2

))

. (30)

The CDF Ftℓ
(t) can be found using [44, eq. (87)] in terms of the H-function as

Ftℓ
(t) = 1−Hm+2,n+2

p+4,q+4

(

t;PPP−1
cdf ⊞ 〈1|

(

PPP fpt,ℓ

∣

∣

∣

∣

1

K1/β

〉))

(31)

where ⊞ denotes the convolution operation on the two parameter sequences [44, Proposition 5]

and PPP cdf is given in [44, eq. (58)]. From (30) and (31), we obtain (27), which completes the

proof.
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Remark 2: Since the optimal threshold γ is located near Tb/2 and γ > Tb/2,

∆ =

∫ γ

Tb
2

pytm,ℓ|sℓ (y|0) dy −
∫ γ

Tb
2

pytm,ℓ|sℓ

(

y

∣

∣

∣

∣

Tb

2

)

dy (32)

is guaranteed to be positive and can be negligible. Hence, the use of the fixed detection threshold

γ = Tb/2 results in an upper bound of the achievable BER with timing modulation. Theorem 3

gives three main advantages: i) the RN does not require exact distance information between

each TN and the RN; ii) it provides a closed-form expression of the BER P̂b,ℓ for the timing

modulation in terms of the H-function without calculating the optimal detection threshold γ;

and iii) hence, we can characterize the low-rate slope as in Corollary 1. The optimal threshold γ

approaches Tb/2 when i) the PDF pt(rℓ) (t) of the FPT is less dispersed, ii) the distance between

the TN and RN is small, and iii) low-rate communication.

Corollary 1 (Low-Rate Slope): Let

ζℓ , lim
R→0

log P̂b,ℓ

logR
(33)

be the low-rate slope of the BER P̂b,ℓ. Then, for rℓ ∼ H
m,n
p,q (PPP ), we have

ζℓ = min
j∈{1,2,...,n}

{

β

α
, β,

β

α

(

1− aj

Aj

− 1

)}

(34)

where α > β.

Proof: Using the asymptotic expansion of the H-function [44, Proposition 3] for α > β,

we have

P̂b,ℓ
.
= Hn+2,m+2

q+4,p+4

(

R; P̂PPber,ℓ

)

.
= (1/R)−minj∈{1,2,...,n}{ β

α
,β,β

α
((1−aj)/Aj−1)} (35)

which completes the proof.

Remark 3 (Low-Rate Slope): The low-rate slope ζℓ is a function of the anomalous diffusion

parameters α and β, and the a-, A-parameters of the H-distance.10 For the Cox (a, b)-gamma

field of molecules, the low-rate slope is equal to ζℓ = min
{

β
α
, β, 2β

α
a
}

. Hence when a > 0.5

(for the Poisson field of molecules), the low-rate slope only depends on the anomalous diffusion

parameters α and β, not on the spatial ordering index ℓ and/or spatial concentration λ. For

example, the low-rate slope in normal diffusion for the Cox (a, b)-gamma field of TNs is equal

to ζℓ = 0.5 for a > 0.5 while ζℓ = a for a < 0.5.

10Note that ζℓ > 0 always holds since aj + Aj < 1 for j ∈ {1, 2, . . . , n}, which are necessary conditions such that the

H-function is a density function [44, Remark 7].
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Fig. 6. BERs Pb,ℓ and P̂b,ℓ as functions of the data rate R for the ℓth molecular communication with timing modulation in

the normal diffusion channel with the Poisson field of TNs when λ0 = 1010 [TNs/m2] and ℓ = 1, 2, 3, 4, 5.
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Fig. 7. BER P̂b,1 as a function of the data rate R for the nearest molecular communication with timing modulation in the

normal diffusion channel with the Cox
(

a, 1010/a
)

-gamma field of TNs when a = 0.2, 0.4, 1, 5 and ∞ (Poisson field of the

TNs).

C. Numerical Examples

Fig. 6 shows the BERs Pb,ℓ and P̂b,ℓ as functions of the data rate R for the ℓth molecular

communication with timing modulation in the normal diffusion channel with the Poisson field of
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Fig. 8. BER P̂b,1 as a function of the data rate R for the nearest molecular communication with timing modulation in the

(α, β)-anomalous diffusion channel with the Cox
(

5, 0.2× 1010
)

-gamma field of TNs when: i) (α, β) = (2, 1) for normal

diffusion; ii) (α, β) = (2, 0.8) for subdiffusion; and iii) (α, β) = (1.8, 1) for superdiffusion.

TNs when λ0 = 1010 [TNs/m2] and ℓ = 1, 2, 3, 4, 5. We can see that the BER P̂b,ℓ is extremely

tight relative to the BER Pb,ℓ, due to how the detection threshold γ approaches Tb/2 in the low-

rate regime and/or the TN approaches the RN. We also see that the spatial ordering index ℓ does

not affect the low-rate slope (Remark 3). Fig. 7 shows the BER P̂b,1 as a function of the data

rate R for the nearest molecular communication with timing modulation in the normal diffusion

channel with the Cox (a, 1010/a)-gamma field of TNs when a = 0.2, 0.4, 1, 5 and ∞. We observe

that the BER decreases with a under the same average concentration due to the smaller amount

of dispersion. In this example, the low-rate slopes are equal to ζ1 = 0.2 and 0.4 for a = 0.2 and

0.4, respectively, and ζ1 = 0.5 for the other cases a > 0.5, as noted in Corollary 1 and Remark 3.

To ascertain the effects of anomalous diffusion on the BER, we plot the BER P̂b,1 in Fig. 8 as

a function of the data rate R for the nearest molecular communication with timing modulation

in the (α, β)-anomalous diffusion channel with the Cox (5, 0.2× 1010)-gamma field of TNs

when: i) (α, β) = (2, 1) for normal diffusion; ii) (α, β) = (2, 0.8) for subdiffusion; and iii)

(α, β) = (1.8, 1) for superdiffusion. Together with Fig. 5, the BER performance of subdiffusion

outperforms normal diffusion at a high rate since subdiffusion is less dispersed than normal

diffusion. In this example, ζ1 = 0.50 for normal diffusion; ζ1 = 0.40 for subdiffusion; and



21

ζ1 = 0.56 for superdiffusion.

V. COMMUNICATION IN THE PRESENCE OF INTERFERING MOLECULES

In this section, we consider ℓth nearest molecular communication in the presence of interfering

molecules. The interfering molecules may originate from natural sources in the environment.

There exist TNs that communicate with another RN using molecules that are of the same type

as that used in the ℓth nearest molecular communication. Since individual dynamic behaviors

of interfering molecules such as generation and extinction are unknown at the RN, we consider

interfering molecules scattered in the region R according to a Cox process Ψ independent of

the stochastic field of TNs, denoted by Ψ (R) or simply ΨR.

A. Interference Characterization

Let zT be the number of interfering molecules arriving at the RN during the interval T . Then,

zT |Ψ (R) is a Poisson binomial variable with respective mean and variance:

µT (ΨR) =
∑

x∈Ψ(R)

qT (x) (36)

σ2
T (ΨR) =

∑

x∈Ψ(R)

(1− qT (x)) qT (x) (37)

where qT (x) is the probability that the interfering molecule located at x ∈ Ψ (R) arrives at the

RN during T . For a given x, the probability qT (x) can be obtained from the CDF of the FPT

in (11) using [44, eqs. (86) and (87)] as follows:

qT (x) = 1−H2,2
4,4

(

‖x‖α/β T−1;PPP q

)

= H2,1
3,3

(

‖x‖α/β T−1; ṖPP q

)

(38)

where

PPP q =

(

2

β
,

1

K1/β
, 14, (13, 0) ,

(

α

β
,
1

β
, 1,

α

2β

)

,

(

α

β
,
1

β
,
α

2β
,
α

β

))

(39)

ṖPP q =

(

2

β
,

1

K1/β
, 13, (0, 12) ,

(

1

β
, 1,

α

2β

)

,

(

α

β
,
1

β
,
α

2β

))

. (40)

Theorem 4: Let ω be the radius of R and λ be the random intensity for the Cox process Ψ

of interfering molecules. Then, the mean and variance of zT are given by

E {zT} = Var {zT } = 4πE {λ} T
2β

α

α
H2,2

4,4

(

ωT−β/α;PPPµ

)

(41)
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where

PPPµ =

(

K2/α,
1

K1/α
, áaa, b́bb, ÁAA, B́BB

)

(42)

with






































áaa =
(

1, 1 + 2
α
, 1 + 2β

α
, 2
)

b́bb =
(

2, 1 + 2
α
, 2, 0

)

ÁAA =
(

1, 1
α
, β
α
, 1
2

)

B́BB =
(

1, 1
α
, 1
2
, 1
)

.

(43)

Proof: Using the law of total expectation, we have

E {zT} = E

{

E {zT |Ψ (R)}
}

= E

{

∑

x∈Ψ(R)

qT (x)

}

(a)
= 2πE {λ}

∫ ω

0

H2,1
3,3

(

rα/βT−1; ṖPP q

)

rdr

(b)
= 2πE {λ}

∫ ω

0

β

α
T β/αH2,1

3,3

(

rT−β/α;

〈

1,
β

α
, 1

∣

∣

∣

∣

ṖPP q

)

dr

(c)
= 2πE {λ} βT

2β

α

α
H2,2

4,4

(

ωT−β/α;PPP cdf ⊞

〈

1,
β

α
, 2

∣

∣

∣

∣

ṖPP q

)

(44)

where (a) follows from Campbell’s theorem [45], [71]; (b) is obtained from the elementary

operation of the H-function [44, Property 5] and the fact that

〈1, β2, γ2| 〈α, β1, γ1|PPP =

〈

α, β1β2,
γ1
β2

+ γ2

∣

∣

∣

∣

PPP (45)

and (c) follows from the CDF expression for a H-variate [44, eq. (86)]. Note that

E
{

σ2
T (ΨR)

}

= 2πE {λ}
∫ ω

0

H2,2
4,4

(

rα/βT−1;PPP q

)

H2,1
3,3

(

rα/βT−1; ṖPP q

)

rdr (46)

Var {µT (ΨR)} = 2πE {λ}
∫ ω

0

[

1−H2,2
4,4

(

rα/βT−1;PPP q

)]

H2,1
3,3

(

rα/βT−1; ṖPP q

)

rdr (47)

again from Campbell’s theorem. Hence, using the law of total variance, Var {zT } is given by

Var {zT} = E {Var {zT |Ψ (R)}}+Var {E {zT |Ψ (R)}}

= E
{

σ2
T (ΨR)

}

+Var {µT (ΨR)}

= E {zT } (48)

which completes the proof.
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Fig. 9. E {zT } and Var {zT } as functions of the time interval T in the (α, β)-anomalous diffusion channel with E {λ} =

1010 [molecules/m2] and ω = 10−4 [m] when: i) (α, β) = (2, 1) for normal diffusion; and ii) (α, β) = (2, 0.5) for subdiffusion.

Remark 4: As T → ∞, E {zT } and Var {zT } converge to πω2
E {λ} obviously. As ω → ∞,

E {zT } and Var {zT} converge to

2πE {λ} KT β

Γ (1 + β)
(49)

for (2, β)-anomalous diffusion (time-fractional diffusion); increase linearly with ω for (1, 1)-

anomalous diffusion; and increase nonlinearly with ω for other diffusions. Note that for both

large ω and T , the mean and variance of zT asymptotically scale with 2β
α

, i.e., E {zT} .∼T
2β

α

and Var {zT} .∼T
2β

α .

Remark 5 (Interference in Normal Diffusion): For normal diffusion, we have

E {zT } = Var {zT}

= 2πT E {λ}H1,1
2,2

(

ωT−1/2;
(

K,
1

K1/2
, (1, 2) , (2, 0) ,

(

1,
1

2

)

, 12

)

. (50)

As ω → ∞, (49) reduces to 2πE {λ}KT .

Example 2: Fig. 9 shows the mean and variance of zT as a function of the time interval T in the

(α, β)-anomalous diffusion channel with E {λ} = 1010 [molecules/m2] and ω = 10−4 [m] when

(α, β) = (2, 1) for normal diffusion and (α, β) = (2, 0.5) for subdiffusion. As expected, E {zT}
and Var {zT } are monotonically increasing with respect to the time interval T until reaching the

maximum number of interfering molecules (314 [molecules]). Note that E {zT} and Var {zT} for
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Fig. 10. E {zT } and Var {zT } as functions of the radius ω in the (α, β)-anomalous diffusion channel with E {λ} =

1010 [molecules/m2] and T = 10 when: i) (α, β) = (2, 1) for normal diffusion; and ii) (α, β) = (2, 0.5) for subdiffusion.

the superdiffusion scenario have very small values in this example. To demonstrate the behavior

of zT in a large area, we plot E {zT} and Var {zT} as a function of the radius ω in (α, β)-

anomalous diffusion in Figs. 10 and 11, where E {λ} = 1010 [molecules/m2] and T = 10 [s] for

normal diffusion, subdiffusion (Fig. 10) and superdiffusion (Fig. 11). We observe that E {zT } and

Var {zT} increase quickly with ω until reaching their limits in (49) for α = 2. In this example,

the maximum mean and variance of zT are equal to 62.83 [molecules] for the normal diffusion

and 22.42 [molecules] for the (2, 0.5)-anomalous diffusion, respectively. On the other hand, we

see from Fig. 11 that E {zT } and Var {zT } increase nonlinearly with ω for the superdiffusion

scenario except for the case of α = β = 1, where E {zT} and Var {zT} increase linearly with

ω (see Remark 4).

The Poisson distribution proposed in [72] can be applied when the number of interferers goes

to infinity and the probability that interfering molecules arrive at the RN during the interval T

tends to zero. In this paper, we consider a Gaussian distribution with mean µT = E {zT} and

variance σ2
T = Var {zT} to model the number of arriving interfering molecules. This Gaussian

approximation is well fitted to the large number of interfering molecules under Lindeberg’s

condition for the central limit theorem [73].
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Fig. 11. E {zT } and Var {zT } as functions of the radius ω in the (α, 1)-anomalous diffusion channel with E {λ} =

1010 [molecules/m2] and T = 10 when α = 0.2, 0.5, 0.8 and 1.0 (neutral fractional diffusion)

B. Bit Error Rate Analysis in the Presence of Interfering Molecules

Let

t
⋆
I = min

x∈Ψ(R)
t (x) (51)

be the minimum FPT of interfering molecules, where t (x) denotes the FPT of the interfering

molecule located at x ∈ Ψ (R). Then, the arrival time in (19) can be rewritten in the presence

of interfering molecules as

ỹtm,ℓ = sℓ + t̃ℓ (52)

where t̃ℓ = min {t (rℓ) , t⋆I} denotes the FPT of the first arrival molecule.

Theorem 5: Let rℓ ∼ H
m,n
p,q (PPP ℓ) be the random distance from the ℓth nearest TN, ω be the

radius of R, and λ be the random intensity for the Cox process Ψ of interfering molecules.

Then, the BER P̃b,ℓ of molecular communication between the ℓth nearest TN and RN with

timing modulation in (α, β)-anomalous diffusion for a fixed detection threshold γ = Tb/2 is

given by

P̃b,ℓ =
1

2

[

1 +
(

2P̂b,ℓ − 1
)

exp

(

−4πE {λ} (Tb/2)
2β/α

α
H2,2

4,4

(

ω (Tb/2)
−β/α ;PPPµ

)

)]

(53)

where PPPµ is given in (42).
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Proof: Without knowledge of the interference distribution, the information can be decoded

by the first arrival molecule. Since

P {min {t (rℓ) , t⋆I} 6 t|Ψ (R)} = 1−
(

1− Ft(rℓ) (t)
)

∏

x∈Ψ(R)

(1− qt (x)) , (54)

the conditional BER can be formulated as

P̃b,ℓ (ΨR) =
1

2
E

{

P

{

ỹtm,ℓ >
Tb

2

∣

∣

∣

∣

sℓ = 0,Ψ (R) , rℓ

}

+ P

{

ỹtm,ℓ <
Tb

2

∣

∣

∣

∣

sℓ =
Tb

2
,Ψ (R) , rℓ

}}

=
1

2

(

1− E

{

Ft(rℓ)

(

Tb

2

)}

∏

x∈Ψ(R)

(

1− qTb/2 (x)
)

)

. (55)

Therefore, the BER P̃b,ℓ is given by

P̃b,ℓ = E

{

P̃b,ℓ (ΨR)
}

=
1

2

[

1 +
(

2P̂b,ℓ − 1
)

E

{

∏

x∈Ψ(R)

(

1− qTb/2 (x)
)

}]

. (56)

Finally, using (38) and the probability generating functional of the PPP [71, Definition A.5], we

arrive at the desired result.

Theorem 5 shows that the existence of interfering molecules degrades the BER performance

significantly. As a simple interference avoidance technique with knowledge of the interference

distribution at the RN, we can improve the BER performance by using the (µT + 1)-th arriving

molecule to decode the transmit information.

Theorem 6: Let ω be the radius of R and λ be the random intensity for the Cox process

Ψ of interfering molecules. Suppose that the RN decodes the information bit based on the

(n + 1)-th arriving molecule using the detection threshold γ = Tb/2. Then, using the Gaussian

approximation to zTb/2 ∼ N

(

µTb/2, σ
2
Tb/2

)

, the optimal value of n that minimizes the BER P̃ ⋆
b,ℓ

of molecular communication between the ℓth nearest TN and the RN with timing modulation in

(α, β)-anomalous diffusion is equal to n = µTb/2, and the corresponding BER P̃ ⋆
b,ℓ is

P̃ ⋆
b,ℓ ≈

1

2

[

1 +
(

2P̂b,ℓ − 1
)

(

1− 2Q

(

1

2σTb/2

))]

. (57)
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Proof: For equiprobable bits ‘0’ and ‘1’, we have

P̃ ⋆
b,ℓ =

1

2
E

{

P

{(

ytm,ℓ >
Tb

2
∩ zTb/2 = n

)

⋃

(

zTb/2 < n
)

|sℓ = 0, rℓ

}

+ P

{(

ytm,ℓ <
Tb

2
∩ zTb/2 = n

)

⋃

(

zTb/2 > n
)

|sℓ =
Tb

2
, rℓ

}}

= P̂b,ℓP
{

zTb/2 = n
}

+
1

2

(

1− P
{

zTb/2 = n
})

≈ 1

2

[

1− P

{

n− 1

2
< zTb/2 < n+

1

2

}

(

1− 2P̂b,ℓ

)

]

(58)

where the last step follows from the continuity correction such that a continuous distribution

to approximate a discrete one. Using the Gaussian approximation zTb/2 ∼ N

(

µTb/2, σ
2
Tb/2

)

, the

minimum P̃ ⋆
b,ℓ can be obtained by setting n = µTb/2 and we get (57).

Remark 6: Degradation of BER in Theorem 6 depends on the spatial variance of the number

of arrival interfering molecules. As σ2
Tb/2

→ ∞ (strong interference effect), P̃ ⋆
b,ℓ approaches 1/2.

On the contrary, as σ2
Tb/2

→ 0 (no interference effect), we have P̃ ⋆
b,ℓ → P̂b,ℓ.

C. Numerical Examples

Fig. 12 shows the BERs P̃ ⋆
b,1, P̃b,1, and P̂b,1 as functions of the data rate R for the nearest

molecular communication with timing modulation in the normal diffusion channel with the

Cox (5, 0.2× 1010)-gamma field of TNs and ω = 10−4 [m] when (a) E {λ} = 105 and (b)

106 [molecules/m2]. The degradation of BER increases with the average spatial density E {λ},

as expected. As can be seen from both figures, the BER cannot achieve the low-rate slope in

the presence of interfering molecules without knowledge of the interference distribution. This is

because the probability that interfering molecules arrive at the RN within Tb/2 also increases as

the data rate decreases. On the other hand, the interference avoidance scheme with knowledge

of the interference distribution can suppress the interference effect in both situations and can

successfully alleviate the interference effect in low density interfering molecules nanonetworks.

VI. CONCLUSIONS

Using anomalous diffusion-based molecular communication channels and general forms of a

spatial stochastic process, we developed the framework to characterize the ℓth nearest molecular

communication in stochastic nanonetworks. With a versatile family of statistical distributions—

i.e., H-variates—for the random distance between the TNs and RN in anomalous diffusion,
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Fig. 12. BERs P̃ ⋆
b,1, P̃b,1, and P̂b,1 as functions of the data rate R for the nearest molecular communication with timing

modulation in the normal diffusion channel with the Cox
(

5, 0.2× 1010
)

-gamma field of TNs and ω = 10−4 [m] when (a)

E {λ} = 105 and (b) 106 [molecules/m2].

the FPT can be formulated as again an H-variate in a unified fashion. Without accounting for

interfering molecules, we analyzed the BER performance with timing modulation. We further

determined the low-rate slope to characterize the effects of anomalous diffusion and the stochastic

nature of molecules on the BER performance. In the presence of interfering molecules, we
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characterized the mean and variance of the number of interfering molecules arriving in a given

time interval by averaging the spatial process over all space. It was shown that significant BER

performance degradation was caused by interfering molecules with timing modulation, which can

be overcome with statistical knowledge of the interfering molecules. These results are applicable

for various molecular communication systems, each with unique diffusive propagation and spatial

characterizations, such as relay (multihop) molecular communication systems, multiple-input-

multiple-output molecular communication systems, and molecular sensor systems. For example,

a relay molecular communication system is one solution to increase the molecular communication

range. The performance of ℓth nearest molecular communication in a network answers the

question of how many TNs can be reliably connected with the RN given a BER threshold

in a region, or which is the optimal nearest TN for relaying this information. It is challenging to

design and analyze the optimal positioning of relay nodes to increase communication coverage

in nanoscale networks with spatially distributed and moving nanomachines (nanosensors). The

spatial average and ordering of the error rate achieved by the ℓth nearest TNs is applicable for

determining routing strategies in relay and multihop molecular communication systems. It is

also noteworthy that even though we considered a single fixed RN at the origin, the ℓth nearest

molecular communication scenario can be extended to either molecular communication between

two arbitrary nodes or two neighboring nodes.

APPENDIX

GLOSSARY OF NOTATION AND SYMBOLS

R Real numbers

R+ Nonnegative real numbers

R++ Positive real numbers

Z+ Nonnegative integers

1n All-one sequence or vector of n elements

E {·} Expectation operator

Var {·} Variance operator

.∼ Asymptotically equivalent: f (x)
.∼ g (x) ⇔ limx→∞

f(x)
g(x)

= 1
.
= Asymptotically exponential equality: f (x)

.
= xy ⇔ limx→∞

log f(x)
log x

= y

where y is called the exponential order of f (x)

px (x) Probability density function of x
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Fx (x) Cumulative distribution function of x

δ (x) Dirac delta function

Q (·) Q-function

Γ (·) Gamma function [74, eq. (8.310.1)]

Ix (a, b) Regularized incomplete beta function [74, eq. (8.392)]

Hm,n
p,q [·] Fox’s H-function [44]:

Hm,n
p,q (x;PPP ) = k Hm,n

p,q



cx

∣

∣

∣

∣

∣

∣

(a1,A1) , (a2,A2) , . . . ,
(

ap,Ap

)

(b1,B1) , (b2,B2) , . . . ,
(

bq ,Bq

)





= k Hm,n
p,q



cx

∣

∣

∣

∣

∣

∣

(aaa,AAA)

(bbb,BBB)



 (59)

where the parameter sequence is PPP = (k , c,aaa,bbb,AAA,BBB) with






































aaa =
(

a1, a2, . . . , an , an+1, an+2 . . . , ap

)

bbb =
(

b1, b2, . . . , bm , bm+1, bm+2, . . . , bq

)

AAA =
(

A1,A2, . . . ,An ,An+1,An+2, . . . ,Ap

)

BBB =
(

B1,B2, . . . ,Bm ,Bm+1,Bm+2, . . . ,Bq

)

(60)

A Mellin-Barnes type integral form of Fox’s H-function is

Hm,n
p,q (x;PPP ) =

1

2π

∫

L

θ (s)xsds, x 6= 0 (61)

where L is a suitable contour,  =
√
−1, xs = exp {s (ln |x|+  arg x)}, and

θ (s) =

∏m

j=1 Γ (bj − Bjs)
∏n

j=1 Γ (1− aj + Ajs)
∏q

j=m+1 Γ (1− bj + Bjs)
∏p

j=n+1 Γ (aj − Ajs)
(62)

H

m,n
p,q {f (t) ;PPP} (s) H-transform of a function f (t) with Fox’s H-kernel of the order sequence

OOO =
(

m , n , p, q
)

and the parameter sequence PPP = (k , c,aaa,bbb,AAA ,BBB) [44]:

H

m,n
p,q {f (t) ;PPP} (s) = k

∫ ∞

0

Hm,n
p,q



cst

∣

∣

∣

∣

∣

∣

(aaa,AAA)

(bbb,BBB)



 f (t) dt, s > 0 (63)

H
m,n
p,q (PPP) H-variate with the order sequence OOO =

(

m , n , p, q
)

and the parameter sequence

PPP = (k , c,aaa,bbb,AAA,BBB) [44]: if x ∼ H
m,n
p,q (PPP ), then

px (x) = k Hm,n
p,q



cx

∣

∣

∣

∣

∣

∣

(aaa,AAA)

(bbb,BBB)



 , x > 0 (64)
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with the set of parameters satisfying a distributional structure such that

px (x) > 0 for all x ∈ R+ and H
m,n
p,q {1;PPP} (1) = 1

N (µ, σ2) Real Gaussian distribution with mean µ and variance σ2

Rayleigh (σ) Rayleigh distribution with parameter σ: px (x) =
x
σ2 exp

(

− x2

2σ2

)

, x > 0

Gamma (a, b) Gamma distribution with shape parameter a > 0 and scale parameter b > 0:

px (x) =
xa−1

Γ(a)ba
e−x/b, x > 0

GG (a, b, r) Generalized gamma distribution with shape parameters a > 0 and b > 0 and

scale parameter r > 0: px (x) =
rxar−1

Γ(a)bar
e−(x/b)r , x > 0

BP (a, b, r) Beta prime (or beta distribution of the second kind) distribution with

shape parameters α > 0 and β > 0, and scale parameter γ > 0:

px (x) = ra Γ(a+b)xa−1

Γ(a)Γ(b)(1+rx)a+b , x > 0

Erl (n, λ) Erlang distribution with order n and hazard rate λ: px (x) =
λnxn−1e−λx

(n−1)!
, x > 0

Poisson (λ) Poisson distribution with mean λ: P {x = x} = λx

x!
e−λ, x ∈ Z+

Binom (n, p) Binomial distribution with mean np and variance np (1− p):

P {x = x} =
(

n
x

)

px (1− p)n−x , x ∈ Z+

NB (r, p) Negative binomial (or Pólya) distribution with mean pr
1−p

and variance pr

(1−p)2
:

P {x = x} = Γ(x+r)
x!Γ(r)

(1− p)r px, x ∈ Z+
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[22] Ž. Tomovski, T. Sandev, R. Metzler, and J. Dubbeldam, “Generalized space–time fractional diffusion equation with

composite fractional time derivative,” J. Phys. A:Statis. Mech. Apps., vol. 391, no. 8, pp. 2527–2542, Apr. 2012.

[23] T. N. Cao, D. P. Trinh, Y. Jeong, and H. Shin, “Anomalous diffusion in molecular communication,” IEEE Commun. Lett.,

vol. 19, no. 10, pp. 1674–1677, Oct. 2015.

[24] M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, “Concentration-encoded subdiffusive molecular communication: Theory,

channel characteristics, and optimum signal detection,” IEEE Trans. NanoBiosci., vol. 15, no. 6, pp. 533–548, Sep. 2016.

[25] T. C. Mai, M. Egan, T. Q. Duong, and M. D. Renzo, “Event detection in molecular communication networks with anomalous

diffusion,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1249–1252, 2017.

[26] D. E. Clapham, “Calcium signaling,” Cell, vol. 131, no. 6, pp. 1047–1058, Dec. 2007.

[27] M. S. Kuran, T. Tugcu, and B. O. Edis, “Calcium signaling: Overview and research directions of a molecular communication

paradigm,” IEEE Wireless Commun., vol. 19, no. 5, pp. 20–27, Oct. 2012.

[28] N. Farsad, N.-R. Kim, A. W. Eckford, and C.-B. Chae, “Channel and noise models for nonlinear molecular communication

systems,” IEEE J. Sel. Areas Commun., vol. 32, no. 12, pp. 2392–2401, Dec. 2014.

[29] M. T. Barros, S. Balasubramaniam, B. Jennings, and Y. Koucheryavy, “Transmission protocols for calcium–signaling-based

molecular communications in deformable cellular tissue,” IEEE Trans. Nanotechnol., vol. 13, no. 4, pp. 779–788, Jul. 2014.



33

[30] A. Singhal, R. K. Mallik, and B. Lall, “Performance analysis of amplitude modulation schemes for diffusion-based

molecular communication,” IEEE Trans. Wireless Commun., vol. 14, no. 10, pp. 5681–5691, Oct. 2015.

[31] M. S. Kuran, H. B. Yilmaz, T. Tugcu, and I. F. Akyildiz, “Interference effects on modulation techniques in diffusion based

nanonetworks,” Nano Commun. Netw., vol. 3, no. 1, pp. 65–73, Mar. 2012.

[32] A. Noel, K. C. Cheung, and R. Schober, “A unifying model for external noise sources and ISI in diffusive molecular

communication,” IEEE J. Sel. Areas Commun., vol. 32, no. 12, pp. 2330–2343, Dec. 2014.

[33] S. Jeanson, J. Chadoeuf, M. N. Madec, S. Aly, J. Floury, T. F. Brocklehurst, and S. Lortal, “Spatial distribution of bacterial

colonies in a model cheese,” Appl. Environ. Microbiol, vol. 77, no. 4, pp. 1493–1500, Dec. 2010.

[34] Y. Deng, A. Noel, W. Guo, A. Nallanathan, and M. Elkashlan, “Analyzing large scale multiuser molecular communication

via 3-D stochastic geometry,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 3, no. 2, pp. 118–133, Jun. 2017.

[35] M. Pierobon and I. F. Akyildiz, “Diffusion-based noise analysis for molecular communications in nanonetworks,” IEEE

Trans. Signal Process., vol. 59, no. 6, pp. 2532–2547, Jun. 2011.

[36] Y. Lu, M. D. Higgins, A. Noel, M. S. Leeson, and Y. Chen, “The effect of two receivers on broadcast molecular

communication systems,” IEEE Trans. NanoBiosci., vol. 15, no. 8, pp. 891–900, Dec. 2016.

[37] Y. Lu, M. D. Higgins, M. S. Leeson, Y. Chen, and P. A. Jennings, “Revised look at the effects of the channel model on

molecular communication systems,” Micro & Nano Lett., vol. 12, no. 2, pp. 136–139, 2017.

[38] H. ElSawy, A. Sultan-Salem, M.-S. Alouini, and M. Z. Win, “Modeling and analysis of cellular networks using stochastic

geometry: A tutorial,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 167–203, First Quarter 2017.

[39] A. Rabbachin, T. Q. S. Quek, H. Shin, and M. Z. Win, “Cognitive network interference,” IEEE J. Sel. Areas Commun.,

vol. 29, no. 2, pp. 480–493, Feb. 2011.

[40] T. M. Nguyen, Y. Jeong, T. Q. S. Quek, W. P. Tay, and H. Shin, “Interference alignment in a Poisson field of MIMO

femtocells,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2633–2645, Jun. 2013.

[41] Y. Jeong, T. Q. S. Quek, J. S. Kwak, and H. Shin, “Multicasting in stochastic MIMO networks,” IEEE Trans. Wireless

Commun., vol. 13, no. 4, pp. 1729–1741, Apr. 2014.

[42] D. P. Trinh, Y. Jeong, and H. Shin, “MIMO capacity in Binomial field networks,” IEEE Access, vol. 5, pp. 12 545–12 551,

Jun. 2017.

[43] D. L. Gerlough and M. J. Huber, Traffic Flow Theory: A Monograph. Washinton: Transportation Research Board National

Research Council, 1975.

[44] Y. Jeong, H. Shin, and M. Z. Win, “H-transforms for wireless communication,” IEEE Trans. Inf. Theory, vol. 61, no. 7,

pp. 3773–3809, Jul. 2015.

[45] D. Stoyan, W. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, 2nd ed. John Wiley and Sons, 1996.

[46] Y. Jeong, J. W. Chong, H. Shin, and M. Z. Win, “Intervehicle communication: Cox–Fox modeling,” IEEE J. Sel. Areas

Commun., vol. 31, no. 9, pp. 418–433, Sep. 2013.

[47] M. Haenggi, “On distances in uniformly random networks,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3584–3586, Oct.

2005.

[48] F. Mainardi, G. Pagnini, and R. K. Saxena, “Fox H functions in fractional diffusion,” J. Comp. Appl. Math., vol. 178, pp.

321–331, 2005.

[49] F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fract.

Calcul. Appl. Anal., vol. 4, no. 2, pp. 153–192, 2001.

[50] F. Hofling and T. Franosch, “Anomalous transport in the crowded world of biology cells,” Rep. Prog. Phys, vol. 76, no. 3,

p. 046602, Mar. 2013.



34

[51] D. del Castillo-Negrete, B. A. Carreras, and V. E. Lynch, “Fractional diffusion in plasma turbulence,” Phys. Plasma, vol. 11,

no. 8, pp. 3854–3864, Aug. 2004.

[52] D. Fulger, E. Scalas, and G. Germano, “Monte Carlo simulation of uncoupled continuous-time random walks yielding a

stochastic solution of the space-time fractional diffusion equation,” Phys. Rev. E., vol. 77, no. 2, p. 021122, 2008.

[53] A. Ahmadzadeh, V. Jamali, and R. Schober, “Stochastic channel modeling for diffusive mobile molecular communication

systems,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6205–6220, Dec. 2018.

[54] T. Koren, M. A. Lomholt, A. V. Chechkin, J. Klafter, and R. Metzler, “Leapover lengths and first passage time statistics
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