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Corrective taxes can solve many market failures, but actual policies fre-
quently deviate from the theoretical ideal because of administrative or
political constraints. We present a method to quantify the efficiency
costs of constraints on externality-correcting policies or, more gener-
ally, the costs of imperfect pricing, using simple regression statistics.
Under certain conditions, theR 2 and the sumof squared residuals from
a regression of true externalities on policy variables measure relative
welfare gains frompolicies.We illustrate via four empirical applications:
randommismeasurement of externalities, imperfect electricity pricing,
heterogeneity in the longevity of energy-consuming durable goods, and
imperfect spatial policy differentiation.
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I. Introduction
Many important public policies aim to fix market failures that create
wedges between marginal social costs and benefits. Many prominent ex-
amples are externality-correcting policies, which range from taxes on cig-
arettes, alcohol, or sugary beverages to mandatory immunizations to the
regulation of pollution. Since Pigou (1932), economists have understood
that if there are no additional market failures beyond the externality, mar-
ket efficiency can be fully restored when externalities are taxed directly
and the marginal damage at the optimal quantity is known. Yet relatively
few policies closely follow this prescription. Often it is administratively im-
possible, technologically too costly, or politically infeasible to price ac-
tions according to the externalities that they generate.
Consequently, externality-correcting policies are generally imperfect.

Imperfection often takes the following form: the externality is depen-
dent on a set of variables, but policy is contingent on only a subset of those
variables or their imperfect proxies. For example, the external damages
from sulfur dioxide depend on the amount of pollution emitted, the
weather, and the location of emissions relative to population centers.
But sulfur dioxide regulations are based on only emissions quantities. In
transportation, congestion externalities are highly concentrated in cer-
tain times of day, but most toll prices are uniform or vary only slightly with
traffic conditions. Inhealth, the externalities associatedwith second-hand
smoke depend on many factors, including proximity to other people,
whether the smoking is indoors or outdoors, and so on.But cigarette taxes
are uniform.
In this paper, we develop amodel that characterizes the welfare costs of

using policies that take this form. We show that when certain conditions
are met, familiar statistics from simple regressions of the true externality
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on the variables upon which policy is based have direct welfare interpreta-
tions. Specifically, deadweight loss scales with the sumof squared residuals,
and the R2 summarizes the fraction of the welfare gain from a Pigouvian
benchmark that is achievable by the constrained (which we call second-
best) policy. We demonstrate the usefulness of the method through four
empirical applications.
Our theory posits a standard model of a competitive market with a rep-

resentative consumer who chooses among a variety of related goods, each
of which produces a different level of an externality. A vector of Pigouvian
taxes on these goods can restore efficiency, but we suppose that the plan-
ner faces a constraint, so that taxes must be made contingent upon some
variable that is imperfectly correlatedwith the externality. This induces er-
rors in the constrained optimal tax rates. We build on Harberger (1964)
in deriving a general expression that characterizes the deadweight loss of
some alternative set of taxes that deviates from the Pigouvian benchmark.
Evaluating the full expression requires information about all cross-price
derivatives of demand, which will typically be unavailable. However, under
some conditions regarding the demand matrix, second-best policies will
involve a set of taxes or shadow prices under which cross-product substi-
tution does not affect overall welfare. Intuitively, what is required is that
two products that are closer substitutes for each other do not, on average,
have more similar tax rate errors.
We show that when conditions on the demand matrix are met, welfare

conclusions can be drawn with only limited information. Given data on
the distribution of the externality and its degree of correlation with the
variables upon which policy is based, one can determine the proportion
of the welfare gain achievable by the Pigouvian policy that the second-
best policy achieves. Unlike results in the previous literature, this policy
comparison does not require an estimate of any behavioral parameters.
Givenanestimateof theown-pricederivative for thegoodsand themarginal
damage due to the externality, the welfare costs of employing second-best
policies inlieuof thePigouvianbenchmarkcanbeestimateddirectly indol-
lars (rather than as a proportion).
It may also be the case that the analyst will be comparing a constrained

policy to a product-level benchmark that is already second best. We ex-
tend our method to provide formulas that allow our core result, based
on a Pigouvian benchmark, to be adjusted using only aggregate statis-
tics about the difference between the true externality and the imperfect
benchmark being used in policy. This allows our approach to continue
to provide welfare results in a number of common settings with imper-
fect benchmarks.
To demonstrate the power of this method, we apply it to four distinct

empirical problems. The first application considers random mismea-
surement—energy efficiency is measured according to laboratory test
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procedures that differ from in-use averages, thereby creating mismea-
surement in externalities across regulated products. We take advantage
of a change in the fuel economy test procedure for automobiles in the
United States to quantify the efficiency cost of basing fuel economy regu-
lation on the older, noisier test ratings. We conclude that the second-best
policy is quite efficient; it obtains more than 95% of the gains achieved by
the Pigouvian benchmark.
Our second application regards real-time electricity pricing. Unlike

our other three applications, this does not concern an externality. In-
stead, there is a wedge betweenmarginal costs and benefits due to the fact
that the marginal cost of generating electricity varies hour by hour, but
electricity tariffs do not vary to reflect these costs (Borenstein and Hol-
land 2005).We apply ourmethod to characterize thewelfare gainof tariffs
that vary along some time or date dimensions but fall short of the theoret-
ical ideal of real-time pricing. We find that realistic time-varying tariffs re-
cover only a modest fraction of the gains achieved by real-time pricing.
Our third application concerns the regulation of energy-consuming

durable goods that have heterogeneous total lifetime utilization. The life-
time pollution stemming from a durable good depends on both its energy
efficiency and its lifetime utilization, but policies that regulate energy ef-
ficiency ignore differences in product longevity. We use a novel data set
that indicates the lifetime miles traveled for a large sample of automo-
biles. We quantify that average lifetime miles traveled by individual vehi-
cles of a particular model vary substantially across different models. This
implies that vehicle models with the same fuel economy rating in fact
have very different levels of expected lifetime carbon dioxide emissions.
We conclude that actual fuel economy policies, which treat such vehicles
identically, recover only about one-quarter to one-third of the welfare
gain compared with a policy that considers both fuel economy and vehi-
cle longevity. This result is robust even when we relax key assumptions
about demand.
To illustrate our results, figure 1 shows the relationship between fuel

economy ratings and average lifetime carbon emissions for different types
of automobiles. Each data point represents the average lifetime CO2 emis-
sions across a number of individual vehicles of the same model (e.g., all
2012 Toyota Camry LE observations are combined into one data point).
The line is the linear best fit. Dispersion in the data comes from hetero-
geneity in lifetime mileage; if all vehicles had the same lifetime mileage,
the data would lie on a straight line. Federal fuel economy standards im-
pose implicit taxes on vehicles that are a linear function of each vehicle’s
official fuel consumption rating; they cannot be based on average lifetime
mileage. Our theory shows that under some conditions, the second-best
fuel economy standard creates implicit taxes equal to the ordinary least
squares (OLS) prediction line and the R 2 from this regression—0.29 in
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the case of figure 1—is an estimate of the fraction of the Pigouvian welfare
gain that is achieved by this fuel economy policy.
A fourth application considers spatial differentiation. A given amount

of pollution or energy usemay have quite different health or environmen-
tal consequences depending on where it takes place, but policies often
cannot differentiate their treatment by location. We use our framework
to quantify the welfare costs of imperfect spatial differentiation for the
case of carbon dioxide emissions resulting from the use of electric appli-
ances. Here, differences in emissions across space are due to the fact that
the emissions rate from themarginal power plant differs across regions of
the country. This application also serves to demonstrate the broader ap-
plicability of regression statistics for welfare analysis because our required
demand conditions will not hold for the policy we consider. Instead, we
demonstrate that an alternative regression statistic, the within-R 2 from a
regression with spatial fixed effects, has the desired interpretation. We
FIG. 1.—Relationship between lifetime CO2 emissions and fuel efficiency. Each point
represents a vehicle model. Solid line is an OLS regression line. The X-axis shows each
model’s fuel consumption rating: the number of gallons of gasoline per 100 miles driven.
The Y-axis shows each model’s average lifetime CO2 emissions, calculated by dividing each
model’s average lifetime miles driven by its fuel economy rating to arrive at lifetime gallons
of gasoline consumed and then multiplying by the tons of CO2 per gallon of gasoline. The
sample is restricted to models for which we observe at least 200 retirements from model
years 1988–92. Data are described in detail in section V.
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conclude for this particular case that the welfare costs of failing to spatially
differentiate are small.
Our method in general, and our analysis of fuel economy policy specif-

ically, represents contributions to the evaluation of energy efficiency pol-
icies. No prior research has analyzed the implications of heterogeneity in
lifetime utilization for the design of energy efficiency programs. This adds
a new and apparently economically important dimension to the analysis
of energy efficiency programs. In particular, it points out a new concern
for the comparison between gasoline taxation and fuel economy stan-
dards as competing policies aimed to reducing greenhouse gas emissions
from transportation.1 Similar issues arise for any policy that regulates pol-
lution control technology.
More broadly, our main contribution is to show the relationship be-

tween familiar regression statistics and second-best policies that aim to
fix market failures but are constrained to be imperfect. This relates to
the sufficient statistics literature in public finance, which is similar in
seeking to find ways of characterizing welfare effects of policies that re-
quire information about a minimum number of parameters. Our analy-
sis is unique in focusing on regression statistics and also adds to the small
set of articles in this literature that are focused on externalities.2

Our analysis also connects to an important strand of literature in envi-
ronmental economics that considers heterogeneity in damages from the
same pollutant emitted in different locations. For example, the marginal
damage from a ton of sulfur dioxide will differ depending on whether it is
emitted near a densely populated city. A theoretical literature has noted
1 For reviews of this literature for automobiles, see Parry et al. (2007), Anderson et al.
(2011), and Anderson and Sallee (2016). Existing research, including Fullerton and West
(2002), Fullerton and West (2010), and Feng, Fullerton, and Gan (2013), has considered
how heterogeneity across consumers in driving behavior influences optimal policy design
and welfare consequences, and Knittel and Sandler (2013) examine similar questions re-
lated to heterogeneity across individual automobiles in their local air pollution emissions
rates. But no research considers heterogeneity in average lifetime utilization.

2 Chetty (2009) documents a broad set of topics that have been considered by the litera-
ture on sufficient statistics in public economics, but he cites no papers focused on external-
ities. Recent work has included not only traditional questions in taxation (Feldstein 1999;
Goulder and Williams 2003; Kleven and Kreiner 2006; Saez, Slemrod, and Giertz 2012;
Hendren 2016) but also studies of social insurance (Baily 1978; Chetty 2006), health insur-
ance (Einav, Finkelstein, and Cullen 2010), and limited rationality (Chetty, Looney, and
Kroft 2009; Allcott, Mullainathan, and Taubinsky 2014). Hendren (2016) briefly notes that
in order to fully assess a policy in the presence of externalities, one needs to know the effect
of the policy on the externality net of many general equilibrium (cross-price) effects across a
variety of related goods. But that paper does not propose a way to estimate this net effect,
whereas we described conditions when they will cancel. One study that invokes the sufficient
statistics tradition and does explicitly consider energy is the paper by Allcott, Mullainathan,
and Taubinsky (2014), whichmodels energy efficiency policy when heterogeneous consum-
ersmay undervalue energy efficiency due to limited rationality. Theymodel a discrete choice
between an efficient or inefficient good and derive sufficient statistics for the optimal com-
bination of energy taxes and subsidies for energy efficient products.
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that this type of spatial heterogeneity implies that uniform national poli-
cies are inefficient and suggested an efficiency gain from spatially differen-
tiated regulation (Tietenberg 1980; Mendelsohn 1986; Baumol and Oates
1988). This type of concern has been used to study the potential benefits
of spatial differentiation in policies regarding air pollution (Muller and
Mendelsohn 2009; Muller, Mendelsohn, and Nordhaus 2011; Fowlie and
Muller 2019), renewable energygeneration (Cullen2013;Callaway, Fowlie,
and McCormick 2018), water pollution (Farrow et al. 2005), and electric
vehicles (Holland et al. 2016). As we discuss in section VI, a number of
these models can be understood as special cases of our general setup,
and we suggest that our approach could offer a straightforward way of es-
timating potential gains from counterfactual policies in these contexts.
We investigate four distinct empirical applications in this paper, and we

believe that the methods can be applied more broadly. The key data re-
quirement is somemeasure of the distribution of the externality (or other
efficiency wedge) and its correlation with the variables upon which pol-
icy is contingent. For a few more examples, consider the policies we de-
scribed at the beginning of this introduction. The efficiency of sulfur di-
oxide trading programs could be assessed using estimates of the spatial
distribution of marginal damages generated by Muller and Mendelsohn
(2009) and Muller, Mendelsohn, and Nordhaus (2011).3 The efficiency
of various congestion pricing policies could be estimated using existing
traffic data, such as the high-frequency records from thousands of loca-
tions in the California highway system (Caltrans 2016). Data on second-
hand smoke exposure at home and in the workplace from the National
Adult Tobacco Survey for the United States or the Global Adult Tobacco
Survey could be used to estimate the efficiency of cigarette taxes as tools
for mitigating externalities from second-hand smoke.4

The balance of the paper is as follows. In section II, we develop the the-
ory for deriving sufficient statistics. In section III, we apply our method
to the case of random mismeasurement in externalities, using a recent
change in fuel economy testing procedures for automobiles. Section IV
shows how ourmethod applies tomispricing in electricitymarkets. In sec-
tion V, we apply our results to heterogeneity in the longevity of automo-
biles. Section VI considers spatial heterogeneity in emissions from iden-
tical products used in different locations, using carbon emissions from
refrigerators as an example. Section VII concludes.
3 Spatial heterogeneity is not the only factor that determines the efficiency of SO2 trad-
ing. Montero (1999), e.g., demonstrates that adverse selection in voluntary opt-in to the
SO2 trading program in the United States had significant efficiency impacts in the pro-
gram’s early years.

4 Fordetailsonthosedatasources, seehttp://www.cdc.gov/tobacco/data_statistics/surveys
/nats/index.htm and http://www.who.int/tobacco/surveillance/gats/en/.
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II. Theory for Deriving Sufficient Statistics
The goal of our model is to facilitate analysis of the efficiency costs of
policies that correct an externality or another wedge between marginal
costs and benefits but that deviate from the theoretical ideal. Actual pol-
icies may be less efficient than an ideal policy for a variety of reasons, in-
cluding political constraints, technological cost, and administrative fea-
sibility. After presenting our model setup and notation, we first derive a
general expression for the welfare loss from using some alternative, con-
strained policy in lieu of the ideal. We then specify sufficient conditions
under which this general expression collapses so that simple regression
statistics have welfare interpretations. Finally, we describe what can be
learned from simple regression statistics even when our sufficient condi-
tions are not met, and we present formulas for adjusting the welfare re-
sults in three common settings in which we compare a constrained policy
against a benchmark that is already second best.
A. Model Setup
We emphasize a simple model in which there is only one market failure.
We model a representative consumer in a perfectly competitive market.
The economy has products indexed j 5 1, ... , J. The consumer chooses
quantities of each, denoted xj. The consumer derives utility, U, from the
consumption of these products according to the function U(x1, ... , xJ),
which we assume is twice differentiable, increasing, and weakly concave
in each argument. We denote the cost of production by C(x1, ... , xJ),
which we assume is twice differentiable, increasing, and weakly convex
in each argument. There is an exogenous amount of income in the econ-
omy, M, and all remaining income is consumed in a quasilinear numer-
aire, n. We assume no technological change and do not model the en-
dogenous entry and exit of products into the market.5 As such, ours is a
short-run model, although one could allow for zero quantities so that
the product vector represents potential products.
We posit that there is some market failure that leads the market, ab-

sent policy, to choose quantities so that there is a wedge, denoted fj, be-
tween the marginal private benefit and themarginal private cost of a unit
of xj. Our first assumption is that fj is fixed and unchanging with respect
to policy intervention and that the total social inefficiency is the sum of
these wedges across goods, multiplied by quantities: f 5 oJ

j51fj xj . The
simplest interpretation is that fj is an externality, as is the case in three
of our four applications. In one of our applications, fj is a gap between
5 For a treatment of how product redesigns can influence the design of a tax system that
is limited in its ability to assign unique tax rates to each product, see Gillitzer, Kleven, and
Slemrod (2017).
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marginal cost and marginal benefit due to coarse pricing, where the cost
of producing a good varies over time but the price is constrained to be
constant.6 Inspired by the externality interpretation, we refer to fj as the
marginal social damage per unit of xj.
Assumption 1. Marginal social damages from each product, fj, are

fixed with respect to the tax vector t.
A natural way to think of our setup is that it models a sector of the

economy—for example, j indexes types of refrigerators, and n is a separa-
ble bundle that represents all other goods. Each of the goods in the sector
contributes varying amounts, fj, to a common externality—for example,
the use of each refrigerator over its lifetime leads to a different amount of
carbon dioxide, discounted to the present. The consumer ignores the ex-
ternality whenmaking choices, and the goal of the planner is to use taxes
to internalize the externality.
The planner can impose product taxes, denoted tj. We describe poli-

cies as taxes on products, but this is equivalent to regulatory policies that
create implicit taxes (shadow prices). We assume that consumers remit
taxes, so that the price to consumers is pj 1 tj . Revenue is recycled lump
sum to consumers through a grant D. The consumer acts as a price taker.
The consumer’s optimization problem is

max
x1, ::: ,xJ

Z 5 U ðx1, ::: , xJ Þ 1 n such that o
J

j51

ðpj 1 tjÞxj 1 n ≤ M 1 D: (1)

The consumer’s first-order conditions imply that ∂U =∂xj 5 pj 1 tj , which
we assume holds at an interior solution.
Social welfareW is the utility from the product bundle, the numeraire

(substituted out for the budget constraint), and the externality:

W 5 U ðx1, ::: , xJ Þ 1 M 2 Cðx1, ::: , xJ Þ 2o
J

j51

fj xj : (2)

We say the planner is unconstrained when she can set a unique tax rate
on each product. In this case, the planner’s problem is

max
t1, ::: ,tJ

W 5 U ðx1, ::: , xJ Þ 1 M 2 Cðx1, ::: , xJ Þ 2o
J

j51

fj xj : (3)

The first-order condition for product j is

dW

dtj
5 o

J

k51

∂U
∂xk

2
∂C
∂xk

2 fk

� �
∂xk
∂tj

5 o
J

k51

ðtk 2 fkÞ ∂xk∂tj
5 0, (4)
6 The wedge could come from other sources, such as market power, but our derivation
assumes that fj is fixed with respect to the policy vector. Markups will generally shift with
policy intervention, so application of our framework to market power would require
modifications.
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where the second equality follows from substituting the consumer’s first-
order condition and from our assumption of marginal cost pricing.
For wedges other than an externality, the same expression will arise as

long as the wedge satisfies assumption 1. For example, one of our applica-
tions relates to coarse pricing—electricity prices are constant at all hours
of the day, whereas marginal cost varies. In this case, fj is the gap between
the price faced by the consumer (which equals marginal utility) and the
true marginal cost. To consider that case, drop the externality term from
equation (2). Then, differentiating W with respect to tj yields the same
oJ

k51ðtk 2 fkÞð∂xk=∂tjÞ.
Equation (4) shows that all J first-order conditions for the planner will

be met if and only if tj 5 fj 8 j . That is, the planner’s optimum is a vec-
tor of Pigouvian taxes; each product’s tax rate is set equal to its marginal
external damage. Establishing this Pigouvian benchmark empirically will
require a measure of the externality associated with each product. We
derive the core theoretical results assuming that such data exist and then
relax this in section II.E to show how our results can be adjusted when
the benchmark policy itself is not Pigouvian.
We wish to characterize how welfare under the Pigouvian benchmark

compares with that under a policy subject to some constraint. The differ-
ence represents the cost of the constraint on policy design. The con-
straint is a restriction on the vector of taxes that the planner can choose.
We write this constraint as a function tj 5 g ð fj ; vÞ, where f is some vector
of exogenous attributes of the products, v are parameters to be chosen
by the planner, and g is some function. The planner’s problem can now
be written as

max
v

W 5 U ðx1, ::: , xJ Þ 1 M 2 Cðx1, ::: , xJ Þ
2o

J

j51

fj xj  such that tj 5 g ð fj ; vÞ 8 j :
(5)

We call the solution to this policy, denoted tj 5 g ð fj ; v*Þ, the second-
best, or constrained, tax vector. Recall that our goal is to provide welfare
interpretations of regression statistics. Motivated by this, we restrict atten-
tion to situations where g( fj; v) can be written as linear in parameters,
noting that this is nomore restrictive than it is in any application of (mul-
tivariate) linear regression, where variables can be transformed and inter-
acted. For example, in our third application, we consider fuel economy
regulations that impose a shadow tax on vehicles that is an affine function
of their fuel economy ratings. Thus, g ð fj ; vÞ 5 tj 5 a 1 bfj , where v con-
sists of twoparameters,a andb, and fj is the fuel economy rating.Our four
applications demonstrate a variety of policy design constraints that fit into
this framework.
Ourobjective is todescribe thewelfare cost of suchpolicy constraints rel-

ative to the Pigouvian benchmark. We note that the Pigouvian benchmark
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itself is not necessarily first best in the presence of other market failures or
margins of adjustment that product-based taxes cannot correct.7 For ex-
ample, taxes on new vehicles cannot induce optimal scrappage behavior.
Therefore, our Pigouvian new vehicle tax vector falls short of a first-best
tax on gasoline. We discuss this in more detail in section V. In such cases,
ourmethodconsidersthewelfaregainalongaparticulardimensionof inter-
est that is targeted directly by the tax, assuming that other distortions are
held constant. We return to this point in the applications.
To describe the welfare consequences of such policy constraints, we

now proceed to deriving a generic expression that characterizes the loss
of social welfare caused by moving from the Pigouvian benchmark policy
to some arbitrary tax vector. We then use this expression to relate second-
best policies that would arise given a particular constraint.
B. Characterizing Deadweight Loss
Let a generic tax schedule be denoted as t1, ... , tJ. We characterize the
welfare loss of moving from the Pigouvian benchmark tj 5 fj to tj 5 tj
by specifying a weighted average of the two tax schedules and then inte-
grating the marginal welfare losses of moving the weights from fj to tj.
We denote the difference in welfare between the two schedules as
DWLðt 5 tÞ.8 To do so, we assume local linearity.
Assumption 2. Demand derivatives ∂xj=∂tk are constant between fj

and tj for all j and k.
Under the assumption of constant demand derivatives, the efficiency

loss incurred from imposing any arbitrary tax schedule t in lieu of the
Pigouvian tax schedule can be written as

W ðt 5 fÞ 2 W ðt 5 tÞ ; DWLðt 5 tÞ

5 2
1

2o
J

j51
o
J

k51

tj 2 fj

� �ðtk 2 fkÞ ∂xj∂tk
:

The proof, along with all others, is in appendix A (apps. A–Dare available
online). This formula is in the form of a set of Harberger triangles, and
indeed the same result (although without externalities) is in Harberger
(1964). When tj 5 fj , each term in the summation will be zero.

(6)
7 For simplicity, even though the Pigouvian benchmark will not be first best in all set-
tings, we refer to the constrained policy as second best.

8 We consider relative benefits of policies, but the final policy choice also depends on
relative costs (e.g., administrative or technology costs). Our method provides a bound
on the costs that would make the less precise policy better overall. Note that in our four
empirical examples, the Pigouvian benchmark is technically feasible and requires only a
set of tax rates or prices, where taxes and prices are already being charged. It seems unlikely
then that administrative costs would be a major factor in comparing policies in our settings,
but this may not be true in other situations.
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In line with the traditional use of Harberger triangles, we assume that
demand derivatives are constant over the relevant range of taxes. In our
discussion here, we also assume that producer prices are unchanged,
which implies constant marginal cost. In this case, ∂xj=∂tk represents only
a demand derivative, not a combined effect of supply and demand.
Where marginal cost is increasing but linear, our mathematical results
are all the same, but ∂xj=∂tk is interpreted as the combined response of
supply and demand (see app. A).
Where demand or marginal costs are convex, our results represent a

local approximation in the same way that Harberger triangles normally
do. Thus, our derivations can also be understood as indicating incre-
mental welfare losses from small movements away from the Pigouvian
benchmark. Note that we relax both the linearity and the constant mar-
ginal cost assumptions in our electricity pricing application, but we pre-
serve them here for the exposition.
To better understand the content of equation (6), we substitute ej ;

tj 2 fj , where ej is the error in the tax rate, and decompose the own and
cross effects:

22 � DWLðt 5 tÞ 5 o
J

j51
o
J

k51

ej ek
∂xj
∂tk

(7)

5 o
J

j51

e2j
∂xj
∂tj|fflfflfflffl{zfflfflfflffl}

own effects

1 o
J

j51
o
k≠j
ej ek

∂xj
∂tk|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

cross effects

: (8)

Equations (7) and (8) are quite general expressions. But using these for-
mulas to evaluate policy alternatives requires knowledge of the complete
demandmatrix, includingall cross-pricederivatives. This informationwill
frequently be unavailable.
Under some conditions, however, the expression will simplify further

and policy evaluation will require less information.9 Specifically, the cross
effects in equation (8) will be zero when there is no substitution between
goods, so that cross-price derivatives are all zero. Alternatively, the cross
effects will be proportional to the own effects when the errors in the tax
rates are mean zero and products of errors are uncorrelated with cross-
price derivatives. Note that we refer to ∂xj=∂tk as cross-price derivatives
and the contribution of the ej ek∂xj=∂tk to deadweight loss as cross effects.
Zero cross-price derivatives are a sufficient condition for the cross effects
to simplify, but so are the alternative conditions listed below.
9 Goulder and Williams (2003) also build from the general Harberger formula and pre-
sent a simplified expression for the excess burden of taxation that does not require esti-
mates of all cross-price derivatives. They study interactions between commodity and labor
taxes, a very different setting from ours.
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We state these possibilities formally as assumption 3. We then proceed
to derive results under the case where assumption 3 holds before return-
ing to a detailed discussion of these conditions.
Assumption 3.

a. Tax errors ej are uncorrelated with own-price derivatives:
covðej , ∂xj=∂tjÞ 5 0.

b. Products of tax errors ejek are uncorrelated with cross-price deriva-
tives: covðej ek , ∂xj=∂tkÞ 5 0 8 j ≠ k. (A stronger version of this, b0,
assumes that cross-price derivatives are zero: ∂xj=∂tk 5 0 8 j ≠ k.)
Here covðej ek , ∂xj=∂tkÞ is calculated for all nondiagonal elements of the
demand matrix ( j ≠ k). Version b0 of this assumption holds if there is
no substitution across products. Version b assumes that cross-price deriv-
atives between each pair of products are uncorrelated with the product
of their tax errors. This holds if externalities, conditional on policy, are
orthogonal to substitutability. As we discuss further below, this is a plau-
sible property of second-best policies. To provide a more intuitive eco-
nomic interpretation, we note that one way that this assumption can
be satisfied is if (1) for each product j the errors of its substitutes are un-
correlated with the cross-price derivatives and (2) across products j the
tax errors are uncorrelated with average cross-price derivatives.
In our empirical applications, we provide examples where part b0 is

likely to hold by approximation (electricity pricing) as well as cases in
which part b is reasonable (fuel economy standards and noisy energy ef-
ficiency ratings). Nevertheless, assumption 3 will not hold in all cases, so
we review what can be learned when the conditions do not hold after es-
tablishing our primary results that obtain under assumption 3. More-
over, we provide numerous robustness checks throughout our empirical
applications.
C. Welfare Statistics When DWL Is Proportional
to Squared Tax Errors
Under assumptions 1 and 2 and the strong version of assumption 3 (parts a
and b0), and assuming unbiasedness on average so that oJ

j51ej 5 0, the
deadweight loss of an arbitrary tax vector is given by

DWL 5 2
1

2

∂xj
∂tj o

J

j51

e2j , (9)

which foreshadows a central role for minimizing a sum of squared tax er-
rors. When we use the weaker variant of assumption 3 (parts a and b), the
welfare loss expression remains very similar:

DWL 5 2
1

2

∂xj
∂tj

2
∂xj
∂tk

� �
o
J

j51

e2j , (10)
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where the average cross-price derivative (over the nondiagonal entries of
the demand derivative matrix) ∂xj=∂tk 5 f1=½ J ð J 2 1Þ�gðoJ

j51ok≠j∂xj=∂tkÞ.
Note thatDWL in equation (10) is still proportional to the sumof squared
tax errors, but it is multiplied by the difference in the average own-price
and the average cross-price derivative. Because the proportionality of the
DWL is maintained, all propositions and corollaries below hold exactly
using either variant of assumption 3. The algebra leading to equations (9)
and (10) appears in appendix A.
When the number of goods J is large, ∂xj=∂tk will become small. Thus,

equation (9) will be a close approximation of the DWL in equation (10)
even in cases where only the average own-price elasticity is known. More-
over, even for smaller values of J, ∂xj=∂tk will shrink if the substitution to
the outside good becomes larger.
The solution to the planner’s constrained problem in equation (5) is

the same as from minimizing the deadweight loss in equation (10) sub-
ject to the same constraint.10 This makes the link between policy and re-
gression obvious. Whenever the policy constraint tj 5 g ð fj ; vÞ can be
written as a function that is linear in parameters, minimization of dead-
weight loss is the same as minimizing the sum of squared residuals in a
regression of the true externalities on the tax rates.
When assumptions 1–3 hold, the second-best policy will be to choose a

and b to be the OLS solutions from fitting the externality to the policy
variable. This is stated in proposition 1:11

Proposition 1. Under assumptions 1–3, the second-best policy is the
OLS fit of fj to fj, and the deadweight loss is proportional to the sum of
squared residuals:

DWL 5 2
1

2

∂xj
∂tj

2
∂xj
∂tk

� �
SSR : (11)

The proof is in appendix A. The intuition is as follows. When the exter-
nalities, conditional on characteristics that are in the policy function, are
uncorrelated with product substitutability, then the deadweight loss is a
linear function of the sum of squared tax errors and the sum of errors
(bias in the tax) squared. We show that this objective function is mini-
mized by the same line that minimizes the sum of squared tax errors: a
simple OLS fit. We show below how weighted least squares provides a sim-
ilar solution when own-price derivatives may be correlated with the error.
10 Deadweight loss is just the objective function evaluated at the Pigouvian benchmark
minus the objective function evaluated at an alternative tax vector, so the original objective
function is just deadweight loss plus a constant term.

11 For expositional ease, we derive results for the case where policy is contingent on one
exogenous variable, denoted fj, and the tax policy takes the form of a linear function of fj.
Then the policy choice is to choose a and b, where tj 5 a 1 bfj . It is straightforward to
modify our derivation to include many variables.
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In turn, the resulting deadweight loss is the sum of squared residuals
from the OLS regression scaled by the average demand derivative and an
average cross-price derivative factor that is close to zero when the num-
ber of products J is large. Thus, given data on the externality and own-
price derivatives and the attributes upon which policy is based, an analyst
can run a simple linear regression and assign direct welfare interpreta-
tions to the regression output.
Moreover, the R 2 from this regression is a sufficient statistic that sum-

marizes the percentage of welfare gain that could be achieved by the
Pigouvian benchmark that is achievable by the second-best constrained
policy. The percentage gain in welfare must be defined relative to some
benchmark. The R2 is defined relative to a benchmark policy that imposes
a uniform unbiased tax rate �t that is the same for all products.12

Corollary 1. Under assumptions 1–3, the R 2 from the OLS fit of fj

to fj represents the percentage of the welfare gain of the Pigouvian tax
(relative to a baseline of a uniform unbiased tax �t) that is achieved by
the second-best linear tax on fj (relative to the same baseline):

R 2 5
DWLðt 5 aOLS 1 bOLS fj Þ 2 DWLðt 5 �tÞ

DWLðt 5 fÞ 2 DWLðt 5 �tÞ : (12)

Under our assumptions, the R 2 relaxes the information requirement
of knowing own-price derivatives and also eliminates the small adjustment
factor involving the average cross-price derivative. No moments of the de-
mand system are required to calculate this sufficient statistic. This makes
assessing the relative welfare gain very intuitive and easy: all that is re-
quired is running a simple OLS regression of the actual externality for
each product on the variables used in the policy function.
We now relax part a of assumption 3 to allow correlation between er-

rors and own-price derivatives. This leads to a very intuitive relationship
with weighted multivariate regression:
Proposition 2. Under assumptions 1, 2, and 3 (b), the second-best

policy is the weighted least squares fit offj to a vector of attributes fj, where
the weighting matrix is diagonal with each entry equal to the own-price
derivative for product j.
Given information about the own-price derivatives of each product, a

researcher could calculate the weighted least squares (WLS) estimator
and derive parallel welfare results for this case. The second-best policy
is still a linear best fit; the deadweight loss is the weighted sum of squared
residuals from that regression. The proof appears in appendix A. Fur-
ther, when relaxing assumption 3 altogether, the second-best policy is
12 The application of the deadweight loss formula in eq. (10) to this benchmark requires
applying assumptions 1–3. When we relax assumption 3 in sec. II.D, we also relax its appli-
cation to the benchmark policy.
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the generalized least squares fit of f to f where the weighting matrix is
the full demand matrix. We do not emphasize this result because it re-
quires additional information about the demand system, but in many in-
stances this formula would be useful for robustness analysis. We demon-
strate such a calculation in section V.F, using estimates on the full matrix
of demand elasticities for automobiles.
Corollary 2. Suppose A and B are second-best policies with attri-

bute vectors fA,j and fB,j, as given by proposition 1 under assumptions 1–3.
The welfare difference between A and B is proportional to R 2

A 2 R 2
B .

Corollary 2 (see app. A for the derivation) compares two imperfect pol-
icies against a Pigouvian benchmark. This allows an intuitive and straight-
forward ranking of constrained policies by directly comparing their R 2’s.
Policies that better match to the true externality are more efficient, and
the R 2 allows for the gains to be quantified. The welfare difference be-
tween two policies is a collection of trapezoids, the rectangle-shaped
portions of which grow larger the farther the two imperfect policies are
from fj.
Interpreting the assumptions about cross effects.—We now discuss the key

economic implications of the assumptions needed for the results above.
Part a of assumption 3 says that the strength of own-price derivatives is not
correlated with a product’s tax error; that is, whatever factors that deter-
mine the externality but are omitted from the policy function do not also
indicate stronger or weaker own-price responses. Proposition 2 relaxes
this assumption. Doing so is important in empirical applications where
some products are demanded in much larger quantities than others (and
so have larger own-price derivatives, all else equal).
The second part of assumption 3 has more economic content. The

strong version of 3 (b0) applies to markets where products are not substi-
tutes or complements. This assumption is unlikely to hold, although we
argue in section IV that it applies, at least by approximation, to electricity
pricing. Evenwhen cross-price derivatives are not zero, corollary 1 will still
apply as long as the weaker version of 3 (b) holds: this says that the dif-
ference between the errors in the tax rates between two products is no
smaller or larger when the two products are closer substitutes. The errors
in tax rates represent the residual variation in the externality, after condi-
tioning on the attributes upon which policy is contingent, f. Consider the
vehicle example. Two vehicles with similar externalities (f) will be closer
substitutes, provided that vehicle fuel economy ( f ) is a factor that deter-
mines vehicle choice, because f is mechanically related to f. But assump-
tion 3 can still be met if, after conditioning on fuel economy, the resid-
ual variation in the externality f is not correlated with substitutability.
Whether this will be true depends on the variables that are included in
the policy and the source of residual variation in the externality. We dis-
cuss assumption 3 in more detail for each of our empirical applications.
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The results in this section demonstrate that—under assumptions that
are often plausible—the deadweight loss of deviating from the Pigouvian
benchmark can be calculated with limited information about the mar-
ket. The welfare gains possible in the second-best relative to those in the
Pigouvian case can be calculated with even less information. In the next
four sections, we demonstrate that these theoretical results have empiri-
cal relevance by illustrating four situations in which a sufficient statistic
useful for evaluating policy can be derived from this framework.
D. What Information Remains in the R 2

When the Cross Effects Do Not Simplify?
In this subsection, we explore cases where the R 2 is biased (because our
assumptions do not hold) but that bias can be signed, so the R 2 is inter-
pretable as a bound on welfare effects. To be precise, we consider what
the R 2 indicates about the welfare gains from the linear best-fit policy,
showing when this overstates or understates welfare gains. When our as-
sumptions do not hold, this linear best-fit policy may not be second best.
But we still think it is the most interesting candidate policy to analyze for
many situations where the policy maker lacks the detailed information
about demand needed to determine how the second best deviates from
the best fit. We first present a formula that highlights how different forces
push the true welfare ratio away from R 2 in different directions. We then
make suggestions for how empiricists might investigate the potential bias
on the basis of the type of violation.13

When we do not impose assumption 3 so that cross effects do not sim-
plify, we can still write out an expression for the relative gain in welfare
achieved by the linear best-fit policy over a uniform tax policy, divided by
the gain from the Pigouvian benchmark over the same uniform tax. We
denote this welfare gain by S and compare it with the R 2:

S 5 1 2
2 1=2ð Þ ∂xj=∂tj

� �
SSRsecond‐best 2 1=2ð Þojok≠j ej ek ∂xj=∂tk

� �
2 1=2ð Þ ∂xj=∂tj

� �
TSSsecond‐best 2 1=2ð Þojok≠jljlk ∂xj=∂tk

� � , (13)

where lj are the residuals in the regression of f on a constant (the uni-
form policy). Note that lj 5 gj 1 ej , where gj is defined as the explained
portion in the linear regression: gj 5 aOLS 1 bOLS fj 2 �f. Because g is a
function of f, the tax errors in the uniform policy depend on f. Thus, equa-
tion (13) allows cross-price derivatives to be correlated either with e or with
f (and thus l).
13 Another approach is to derive bounds on the deadweight loss from eq. (7). We have
constructed analytical bounds based on properties of quadratic forms and their eigen-
values, but they will be informative in only special cases. This may be a promising area
of future research.
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We now consider two types of correlation that determine the direction
of the bias in R2: first, correlation between products of constrained policy
errors and cross-price derivatives covðej ek , ∂xj=∂tkÞ (type 1), and second,
correlation between products of the policy variable and cross-price deriv-
atives covðgjgk , ∂xj=∂tkÞ (type 2).
Proposition 3. Under assumptions 1 and 2, (1) R 2 < S if type 1 cor-

relation is positive (but type 2 correlation is zero) and (2) R 2 > S if type 2
correlation is positive (but type 1 correlation is zero).
The proof is in appendix A. First, consider part 1 of proposition 3. If

cross-price elasticities are larger for goods with similar tax errors (e.g., ve-
hicle durability in application 3), then the true fraction of welfare recov-
ered in the second-best policy increases relative to the R 2 measure. The
intuition here is that when goods with similar tax errors are good substi-
tutes, the Pigouvian benchmark loses some of its advantage: consumers
donot substitutemuch along this dimension anymore, and so the two pol-
icies become more similar, acting mostly along the margin of reducing f.
Now consider part 2. If cross-derivatives are large when lj and lk (a

function of the observable attribute f, such as fuel economy in applica-
tion 3) are similar, then the true fraction of welfare recovered by the
second-best policy S will decrease relative to R 2. The intuition for this fol-
lows from observing that correlation of substitutability with f makes the
second-best policy less effective because consumers now substitute mainly
among products with similar f. The Pigouvian benchmark is still based
on both f and the tax error, and so its effectiveness is not damaged as
much.
It is important to note that in many common settings, both types of

positive correlation are likely to be present, and sometimes the bias can-
cels out. For example, as we discuss in section V, cars that are strong sub-
stitutes are relatively likely to have similar fuel economy and similar
durability.
The results above are directional and qualitative. In many cases, as we

illustrate in the applications, simulation of the true welfare gain using a
range of plausible demand elasticities can be highly informative. This usu-
ally does require some knowledge on the structure of the demandmatrix,
for example, from existing empirical work in the literature.
E. Comparisons When the Benchmark Policy Is Imperfect
It may also be the case that the analyst will be comparing a constrained pol-
icy against a benchmark that is already secondbest. This happenswhen the
data used on the left-hand side are an imperfect proxy for the true exter-
nality. In what follows, we will call the value that results from the regression
using an imperfect benchmark R̂ 2 and the true fraction of welfare recov-
ered by the constrained policy relative to a Pigouvian benchmark S. The
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following three scenarios span a range of data limitations an analyst could
be working with, corresponding to different settings in which the bench-
mark policy is not Pigouvian. We show how unbiased estimates of the wel-
fare loss from constrained policies are still recoverable using R̂ 2 and fea-
tures of the scenario:
1. Measurement Error
When the analyst is facing classical measurement error in the externality,
the intuition is fairly simple: the observed f̂j is noisier than the true fj.
Examples are sampling error from limited microdata, errors produced
by engineering test cycles, or other errors made when the analyst pro-
duces a best guess of the product-level externality.
To implement our method in this setting, the analyst needs estimates

of the externalities (or other wedges) and aggregate information on the de-
gree of measurement error. We use the following notation: f̂j ; fj 1 nj ,
where fj is the true wedge, f̂j is the observed or estimated wedge, and nj is
therefore the error in measurement. Consistent with classical errors, sup-
pose that nj is independent of fj (and of any regressors that are used in de-
termining the tax scheme) and is distributed normally with mean zero and
variance j2

n .
Suppose that the analyst regresses f̂j on fj. This is a situation of errors

in the dependent variable, so errors do not cause bias in the coefficients
and the second-best policy is still consistently estimated. However, R̂ 2 is
biased downward because of the noise from mismeasurement. A simple
derivation (seeMajeske, Lynch-Caris, andBrelin-Fornari 2010) shows that
in expectation,

R̂ 2 5 S 1 2
j2
n

j2
f̂

 !
, (14)

where j2
f̂
is the variance in f̂j . In terms of welfare interpretations, it im-

plies that the second-best constrained policy will have larger welfare gains
than indicated by the estimated statistic. In practical terms, where mea-
surement error is a concern and errors are classical, an analyst can inflate
the R 2 upward given an estimate of the signal-to-noise ratio in the data.
Another relevant source of noise in our setting could arise from the

use of microdata in performing the regression. Conceptually, the regres-
sion we have in mind should be run at the same level of detail over which
the policy is being applied; if the benchmark policy differs with product
j, then a data set containing different individual observations for each
product should be collapsed to the product level before computing R 2.
However, it is still possible to adjust the R 2 from a regression run on the
microdata to recover the relevant welfare statistic. The average variance
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in the microdata across products, oj2
j =J , can be substituted into equa-

tion (14) in place of j2
n . The resulting adjustment produces a value that

is computationally equivalent to theR 2 from the product-level regression,
reflecting the welfare statistic we have in mind (see app. A for details).
2. Uncertainty in the Magnitude
of External Damages per Unit
Suppose that the driver of external damage ismeasured well, but themag-
nitude of the externality per unit is unknown. For example, gasoline use
in cars may be measured well, while the social cost of carbon is unknown.
If the researcher or policy maker uses a damage valuation above or below
the true value, this introduces a slope error in the constrained policy,mak-
ing it perform even worse relative to the Pigouvian benchmark. The dif-
ference in tax rate between products is not large enough if the true social
cost of carbon is higher than that used in the analysis, and vice versa. As a
result, R̂ 2 will overstate the welfare gain that the constrained policy pro-
duces relative to the true Pigouvian benchmark.14

The correction needed in this case increases nonlinearly in the dis-
tance to the true damage parameter. Suppose that the damage valuation
used to compute the externality in the regression determining policy is d̂,
while the true damage parameter is d. The welfare gain S of the policy be-
ing put in place (based on d̂) relative to the true Pigouvian benchmark
policy is

S5 R̂ 2 12
d̂

d
21

 !2" #
: (15)

The derivation is in appendix A, and the intuition is as follows. When
d̂=d 5 1, the benchmark policy has the right slope and S 5 R̂ 2. When
d̂=d ∈ ð0, 1Þ, the externality estimate is too low and S < R̂ 2. The adjust-
ment is quadratic. For example, when d̂=d 5 0:5, R̂ 2 needs to be adjusted
downward by 25%. The adjustment is symmetric for the case where d̂

is too high: the policy is now encouraging too much switching among
products.
3. A Missing (Uncorrelated) Component
of the Externality
Finally, suppose instead that there is a missing component of the exter-
nality that is uncorrelated with the observed component. For example,
14 The welfare implications here come from relative tax errors among the J products in
the setup: substitution to goods outside the model is controlled for in the benchmark.
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in a setting where each j represents traffic delay on a bridge in different
hours, it will be the case that random variation in weather conditions can
produce more (i.e., larger fj for that hour) or less (smaller fj) delay sep-
arately from the underlying traffic pattern used to calculate f̂j . In this
case, the observed f̂j has less variance (since only one component of
the externality is included) than the true fj. Given an estimate of the var-
iance of the unobserved component, we can again recover an unbiased
estimate S.
Suppose that fj ; f̂j 1 yj , where fj is the true externality, f̂j is the ob-

served externality, and yj is an unobserved component independent of
f̂j . Write its variance as j2

y. The analyst regresses f̂j on fj, producing R̂ 2.
Rearranging equation (14) for this setting, we have

S5 R̂ 2 12
j2
y

j2
f

� �
5 R̂ 2 12

j2
y

j2
f̂ 1 j2

y

 !
: (16)

Here R̂ 2 becomes an upper bound on the fraction of welfare recovered.
We note that this case, combined with the one above, could also encom-
pass more complex missing externalities that are correlated with the ob-
served component. Consider emissions externalities from vehicles: we
can measure lifetime gasoline consumption (providing a good estimate
of carbon emissions) but may worry about the implications of omitting
lifetime damages from local air pollution. Local emissions are correlated
with weight—and therefore gasoline use—but not perfectly. If the re-
searcher knows this correlation b (e.g., from a second data set or the en-
gineering literature), she could add the predicted air pollution externality
to the observed externality: f̂j ,new 5 f̂j 1 b � gallons-per-mile. This still
leaves out a—nowuncorrelated by construction—piece of the local air pol-
lution externality, which could then be corrected as above.
F. Summary: When Is Our Theory Applicable?
The central point of our theory is that simple regression statistics often
contain intuitive information about the welfare properties of corrective
policies that face some design constraint. Figure 2 provides a visual sum-
mary of the situations under which our results obtain, which is intended
to serve as an initial guide for those considering our methods in other
applications.
All of our theory assumes that in the absence of policy, consumption of

a good deviates from the social optimum because of some wedge f, such
as an externality. Our base assumptions are that these wedges are fixed
with respect to prices and that demand and supply are linear over the rel-
evant range, as is generally assumed in the analysis of Harberger triangles.
Under those assumptions, equation (8) expresses the deadweight loss of
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an arbitrary vector of taxes that deviates from the Pigouvian benchmark.
When demand and supply are not locally linear, it is possible to amend
our results through simulation, which we illustrate in our electricity pric-
ing application.
When the conditions of assumption 3 are met, then our results about

the interpretation of the sum of squared residuals and the R 2 will hold
(proposition 1). We interpret our first two applications—to electricity
FIG. 2.—Schematic of theoretical results.
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pricing andnoisy laboratorymeasures—asmeeting these conditionsmost
closely.
Even when violations of the assumptions are significant, the R 2 may be

a useful bound. As described in proposition 3, particular types of corre-
lations between tax errors and demand will create predictable bias in the
R 2 as a measure of welfare gain. In our vehicle longevity application, we
demonstrate the size of this bias after introducing correlations calibrated
from the literature.
In some cases, the cross effects will not simplify, and the bias will not fit

the special cases embodied in proposition 3. In that case, we suggest two
approaches. One is to look for a modified relationship between regres-
sion statistics and welfare. This is what we do in application 4. There, we
argue that R2 will be substantially biased but that an alternative set of as-
sumptions appropriate to the setting imply that the within-R2 from a fixed
effects regression has the desired interpretation (proposition 3).Other ap-
proaches that incorporate additional market failures, endogenize f, or
consider other relaxations of our assumptions are key topics for future re-
search. The other approach is to use simulation to determine whether cal-
ibrated degrees of correlation between tax errors and the demand system
indicate that the bias in the R2 will be small or large. We demonstrate this
approach in our vehicle longevity application.
Finally, at the bottom of figure 2, we call out a practical consideration.

Here the Pigouvian benchmark is unknown, for example, because of clas-
sical mismeasurement of the wedges or uncertainty in the magnitude of
the external damages, or in the case of a missing component of the ex-
ternality, R 2 will be biased. This can be corrected using equations (14)–
(16) when summary statistics about the difference between the true ex-
ternality and the information that the analyst is using to set policy are
known (or assumed in sensitivity analysis).
III. Application 1: Noisy Energy Efficiency Ratings
One reason that taxes or regulatory incentives for energy-consuming
products may be imperfectly related to the true externalities that they
generate is that the energy efficiency ratings themselves are imperfect.
To determine the energy efficiency rating of a product, governments es-
tablish a laboratory test procedure. The government or themanufacturers
themselves then test a prototype or example product. Actual perfor-
mance in the field can differ from lab test results, and when it does, pol-
icies based on the official ratings will be imperfect indicators of the actual
externalities associated with each product.15 This creates inefficiencies,
15 Such mismeasurement naturally also occurs for nonenergy goods and externalities.
For example, to help prevent obesity, calorie labeling on menus will be mandatory for
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and our theoretical framework can be used to quantify the consequent
welfare losses.
In general, the challenge in studying this phenomenon is that it re-

quires credible measures of average in-use energy efficiency that can
be compared with the official rating. Scattered evidence of in-use perfor-
mance does exist for some products, but we take a different approach
here and analyze a change in the US rating system for automobiles that
was meant to address mismeasurement. The Environmental Protection
Agency (EPA) began measuring fuel economy of automobiles in 1978 in
support of the Corporate Average Fuel Economy (CAFE) program, which
mandates that each firm meet a minimum average sales-weighted fuel
economy of vehicles. The ratings are based on a laboratory test during
which a vehicle is driven on a dynamometer (a treadmill for cars) through
a specific pattern of speeds and accelerations. The test procedure estab-
lished in 1978 included two courses to represent urban and highway driv-
ing. The two ratings were averaged to determine each vehicle’s rating for
the CAFE program. These same ratings were presented to consumers on
fuel economy labels.
In 1986, in response to consumer complaints that the ratings system-

atically overstated fuel economy, the EPA revised the ratings downward
by simply scaling them by the same amount for all vehicles. CAFE contin-
ued to use the original values to determine automakers’ compliance, but
consumer labels wereupdated.Over time, the revised ratingsweredeemed
to be inaccurate as well. The original test used low highway speeds, did not
involve the use of air conditioning, and generally became less accurate as
automobile technology and average driving patterns changed. Yet again,
the EPA instituted a new test procedure in 2008 that changed the ratings
substantially on average and also more for some vehicles than for others.16

For political reasons, however, the CAFE program continues to use the
less accurate original rating system from 1978.17 While consumers are now
provided with the more accurate updated ratings, the regulation (and
hence the regulatory shadow price faced by automakers) are still based
on the noisy original system.
We can use our theoretical framework to quantify the welfare costs of

using the old rating system in lieu of the updated one via simple linear
regression. Our thought experiment is the following. We suppose that
many US restaurants. Using lab tests, Urban et al. (2011) found that while menus are, on
average, pretty accurate, substantial variation exists. About 20% of foods purchased had at
least 100 more calories than what was reported.

16 This procedure involved five separate dynamometer tests—the original two tests and
three new ones. Several tests are combined to determine the highway and city ratings that
appear on fuel economy labels for consumers.

17 Evidently, it was determined that changing the rating that entered the CAFE compli-
ance program would require a political battle not worth waging. Changing the CAFE rat-
ings would have created winners and losers among automakers.
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(1) the new rating represents the true fuel economy rating of a vehicle;
(2) after a linear adjustment, the old rating is a white noise mismeasure-
ment of the truth; and (3) the policy maker is sophisticated and is aware
of the inaccuracy in the old rating but must base policy upon it because
of political or legal constraints. In other words, a sophisticated regulator
can take out overall bias/tilt in measurement but does not observe car-
specific mistakes. These assumptions likely hold in practice—reported
on-road fuel economy is close to the 2008 EPA ratings, and the EPA ex-
plicitly presents differences between window sticker and regulatory CAFE
fuel economy values.18
A. The Pigouvian Benchmark
versus the Constrained Policy
In this application, we take a simplified view of the externalities associated
with fuel economy and assume that the externalities associated with an au-
tomobile are proportional to its true fuel consumption per mile. This is
consistent with how fuel economy standards have been designed, as such
standards impose a shadow cost on each vehicle equal to a linear function
of the vehicle’s fuel economy rating (see, e.g., Anderson and Sallee 2016).
(In application 3, we challenge this notion and discuss various complica-
tions, but here we wish to focus on only the issue of mismeasured test rat-
ings, not other problems with fuel economy regulation.)
In terms of our model, each product j is a type of car. The externality fj

is some factor z (e.g., the social cost of carbon times carbon emissions per
gallon of gasoline times total miles driven) times true fuel economy. The
shadow taxes imposed by CAFE will be a linear transformation of the old
ratings, which the regulator is constrained to use in setting policy:

fj 5 z � New Fuel Economy Test Ratingj ,

tj 5 a 1 b � Old Fuel Economy Test Ratingj :
B. Will Cross Effects Simplify?
Where the noise in measurement is uncorrelated with factors that deter-
mine vehicle demand, the weaker version of assumption 3 from section II
will hold, and themain theoretical results in proposition 1 and corollary 1
apply. It is logical to suppose that errors in the tax rates from an unbiased
policy are uncorrelated with cross-price derivatives, as they are likely to be
due to idiosyncratic aberrations from test trials or particular technologies,
18 See http://www.epa.gov/fueleconomy/documents/420f14015.pdf and http://www.epa
.gov/fueleconomy/documents/420b14015.pdf.
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like stop-start systems, that are of little concern to consumers (and there-
fore not correlated with cross-price derivatives).
In this case, the R 2 from a regression of fj on tj has a welfare interpre-

tation. It indicates the fraction of the welfare gain over a flat tax (that cor-
rects for the average externality produced by an automobile) achieved by
a policy that uses the less accurate, noisy fuel economy estimates (the sec-
ond best) in place of the accurate ratings (the Pigouvian benchmark).
Note, however, that because fj is proportional to the old fuel economy
ratings and tj is a linear transformation of the new fuel economy estimates,
the R2 of interest is identical to the R2 from a regression of the new fuel
economy rating on the old one.
C. Data
To estimate this R 2, we use the sample of vehicles that the EPA itself used
to establish the concordance between the old and the new highway and
city test ratings. In determining how to create the new system, the EPA
tested a fewhundred vehiclesmeant to represent the carmarket and com-
pared the results under the new and old regimes. We obtained the data
from these tests from the EPA and use them here to assess the change
in ratings.19
D. Results
We plot these data in figure 3. The old and new ratings are highly corre-
lated, but there is an upward bias in the old ratings (the old miles per gal-
lon ratings were too high on average). In addition, there are noticeable
differences in how the test revision affected different models—there is
dispersion around the fitted line. The rating change is quantitatively im-
portant: the average difference between the old and the new estimated
present-discounted fuel costs in this sample is $1,700. The difference
ranges from $500 to $4,250, with a standard deviation of nearly $700.20

So even if the bias was recognized, it still affected different vehicles to vary-
ing degrees.
TheOLS regression of the new rating on the old one yields anR 2 above

0.97.21 This indicates that along the dimension of test rating quality, the
efficiency gain from removing noise is quite minor. The vast majority of
19 These same data are used by Sallee (2014) to characterize the uncertainty faced by
consumers about true lifetime fuel costs of vehicles under the old regime.

20 This assumes a gasoline price of $2.50 per gallon (roughly the average in 2008) for
vehicles driven 12,000 miles per year for 14 years with a 5% discount rate.

21 The R 2 changes little when modifying the sample. Adding the 13 available hybrid
models to the gasoline-powered sample produces an R 2 of 0.98. The R 2 values for the sub-
samples of cars and trucks are 0.96 and 0.98, respectively.
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the welfare gain from an optimally designed fuel economy policy that
used the new ratings can be achieved by a policy that uses the old rating
system. Interestingly, thismakes the lack of updating relatively innocuous,
despite the fairly large differences between the two rating systems. The
welfare losses from this noise, however, may be substantial if the policy
maker does not take the bias in the old ratings into account and fails to
make a correction (i.e., chooses a policy that is based on the assumption
that the old rating system is accurate and is therefore too lax on average,
causing distortions on the extensive margin). Also, note that the ineffi-
ciency from noisy energy efficiency ratings adds to a long list of existing
distortions from fuel economy standards, including the welfare loss from
ignoring product durability discussed in section V.
IV. Application 2: Real-Time Electricity Pricing
Our second application is to time-varying electricity prices. Electricity
consumers typically pay the same price for electricity regardless of when
they consume it. In contrast, the marginal cost of producing electricity
varies significantly across hours of the day, days of the week, and months
of the year because of variance in the marginal source of generation. At
FIG. 3.—Old and new combined fuel economy ratings. Figure shows the pre-2008 (orig-
inal) combined fuel economy rating and the post-2008 (five-cycle) rating in miles per gal-
lon for a sample of vehicles. Dashed line is linear fit. Solid line is the 457 ray.
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low levels of demand, marginal cost is low because only solar, wind, and
so-called inexpensive base load power plants are needed. At high levels
of demand, higher-cost peaker plants produce the marginal unit. As a
result, the marginal cost of electricity is frequently several times higher
at one hour of the day as compared with another hour in the same day.
Economists have contemplated the efficiency benefits of time-varying

pricing schemes that align price and marginal cost. The theoretical ideal
is called real-time pricing, which is a scheme in which the price of elec-
tricity charged to the consumer is unconstrained and is adjusted at a
high frequency to reflect costs. Real-time pricing provides the right in-
centive to consumers at every moment and therefore achieves the effi-
cient resource allocation, provided that no other markets failures are
present (Borenstein and Holland 2005).22

Historically, it was infeasible to measure electricity consumption hour
by hour for each end user, so this mispricing was a necessary compromise.
However, with the advent and rollout of computerized electricity meters,
high-frequency measurement at the customer level is already a reality in
most parts of the United States. Even so, real-time electricity prices have
met with considerable resistance from utilities and regulators, who fear
that consumers will complain about price surges and unpredictable bills.
As a result, while the technology to implement real-time pricing is al-

ready in place, pricing reforms have been incremental. Instead of real-
time pricing, utilities have experimented with peak pricing for certain
times of the day, seasonal rates, or peak prices only on certain days on
which demand is forecasted to be very high because of weather. A signif-
icant literature in economics has evaluated these programs, primarily with
a focus on how demand responds to price variation ( Jessoe and Rapson
2014; Andersen et al. 2017; Fowlie et al. 2017; Gillan 2017; Ito, Ida, and
Tanaka 2018). A remaining unanswered question in this literature is
whethermost of the efficiency gains from real-time pricing can be achieved
by these intermediate policies. If simpler rate designs can capture most
of the efficiency gains of real-time pricing, then this may present a useful
way forward for the industry that can accelerate reform.
We demonstrate that our model can be used to answer this policy-

relevant question with readily available data and simple OLS regressions.
We use wholesale pricing data from amajor electricity market in the east-
ern United States, which provide a measure of the marginal cost of elec-
tricity at the hourly level. Using our model, we show that the R 2 from a
regression of observed wholesale prices on season, day of week, or peak
22 Although not the focus of this application, pollution externalities can be introduced
to our analysis by adding environmental damages to private marginal costs and running
the regressions with social marginal costs as the dependent variable.
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demand periods measures the proportion of the welfare gain that an
intermediate reform that allows tariffs to vary by those variables would
achieve, relative to the welfare gain that would be achieved by moving
all the way from a flat rate to real-time pricing. As such, our method al-
lows us to rank a wide range of alternative policies with minimal effort, as
stated in corollary 2. This can be quite valuable because the welfare gain
achieved by intermediate policies will vary on the basis of the character-
istics of supply and demand, for example, demand variability and capac-
ity constraints. This increases the value of being able to quickly calculate
potential welfare gains across a number of different markets in terms of
both time and geographic scope.
In our application below, we find that the intermediate schemes per-

form relatively poorly. Fairly complex schemes are required to recover
half of the welfare gains from real-time pricing, and schemes that mimic
real-world policies used to date recover only a small fraction of the poten-
tial gains. These results should prove useful in the ongoing debate about
electricity rate design, which is poised to undergo significant reform in
the coming years.
The insights from this application will also apply to other settings that

feature coarse pricing, where many related goods must be given a com-
mon price because of some exogenous constraint on the pricing policy,
even though social costs differ as a result of production technologies, scar-
city, or externalities. Potential examples includemarkets for parking, traf-
fic congestion, taxis/ride-sharing services, or event tickets.
A. The Real-Time Pricing Benchmark
versus the Constrained Policy
To apply our model to electricity, we interpret each product j as electric-
ity consumed at a specific moment. Empirically, we will consider an hour
to be a unique moment because this is the granularity of our wholesale
pricing data. We focus on a single integrated electricity market, so we do
not need to consider electricity consumed at different locations to be dif-
ferent goods.23

In ourmodel, consumers pay pj 1 tj , where tj is understood as a tax and
pj is a uniform producer price. Here, we interpret tj as the tariff that
23 As discussed further below, we use data from PJM (Pennsylvania, New Jersey, and Mary-
land), an integrated electricity market that spans multiple states. We treat thismarket as a sin-
gle location and use PJM’s reported system price. In reality, there are sometimes transmission
constraints that imply that delivering electricity to one specific location has a higher cost than
delivering to another location at the same time, even within the market. Most US electricity
markets therefore have locational marginal prices that are specific to a particular node in
the grid. We abstract from this issue, as does the bulk of the literature. In principle, however,
ourmethod could beused to gauge the welfare implications of the granularity of prices across
geographical space as well as the time dimension focused on here.
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applies to good j, so that the final price to consumers is just the tariff tj
(equivalent to assuming pj 5 0 in the original notation). Under a flat tar-
iff, tj is the same across all j goods. Under real-time pricing, the tariff is
unique to each j. Intermediary policies will have subsets of j (such as peak
demand periods) for which consumers face a common tariff.
Unlike our other applications, there is no externality. Thus, the full so-

cial cost of producing a unit of good j is just the marginal cost mcj, which
we allow to vary across time. Any mismatch between the tariff and mar-
ginal cost induces an inefficiency, where the wedge is equal to tj 2 mcj .
This wedge plays exactly the same role in our theory as the wedge due
to imperfect correction of an externality (which is denoted tj 2 fj in
the other applications). Thus, in terms of our model,

fj 5 mcj ,

tj 5 a 1 b0zj :

where zj is a vector that includes tariff policy variables, such as on- versus
off-peak or day of week indicators. Note that zj can represent any tariff
scheme that is linear in parameters, including interactions of indicator
variables. The method can thus evaluate highly flexible tariffs.
If our assumptions about demand and supply hold, then the R 2 of a re-

gression of fj on tj will indicate the welfare fraction achieved by the con-
strained pricing scheme (second best) relative to the real-time pricing
benchmark, where both welfare gains are calculated relative to an unbi-
ased flat tariff.24 Even the real-time pricing benchmark is not quite first
best since it is granular on hour, ignores transmission constraints, and
so on. Thus, as usual, wemeasure the efficiency gain frommore granular
pricing along the dimension that policy makers can realistically target: in
this example, average hourly tariffs.
B. Will Cross Effects Simplify?
In this application, increasingmarginal costs are essential. As discussed in
section II, our results still apply in this case, but the assumptions should be
interpreted in terms of combined responses of demand and supply. As
detailed in appendix A, zero cross-price derivatives (the strong version
[b0] of assumption 3) for demand and supply is sufficient for all our
24 It may seem counterintuitive that we can use historical data that come from observed
marginal costs, even though those realized marginal costs depend on the particular flat tar-
iff that was in place during the sample. App. A shows that under local linearity, the R 2 of a
regression of observed marginal costs (under the flat tariff ) on the policy variables equals
the R 2 of a regression of the benchmark marginal costs (under real-time pricing) on the
policy variables. Hence, the relative efficiency gain can be computed from a regression that
directly corresponds to our data.



1856 journal of political economy
results from section II to go through. In that case, we can characterize the
deadweight loss of using an arbitrary vector of tariffs, denoted tj 5 tj , as
comparedwithusing real-timepricing, as the sumof J Harberger triangles:

22 � DWL ðt 5 tÞ 5 o
J

j51

ðtj 2 mcjÞ2 ∂~xj∂tj
,

where ∂~xj=∂tj 5 ∂xj=∂tj 2 ∂mcj=∂tj . Minimizing this distortion will involve
fitting the tariff schedule so as to minimize the sum of squared errors be-
tween the tariff and theobservedmarginal cost, weightedby thederivative
terms.When ∂~xj=∂tj is uncorrelated with the wedges or common across all
j, then the formula simplifies to its final form and our R 2 result applies.
Does it make sense to assume that cross-price derivatives are zero for

supply anddemand?On thedemand side, the required assumption is that
a change in the tariff in hour j does not affect demand in hour k ≠ j . Sub-
stantial empirical support exists for this assumption. A consistent finding
in the literature is that such cross-price derivatives are quite small and are
often statistically indistinguishable from zero. In other words, the electric-
ity tariff during hour j does not affect the demand for electricity during
hour k ≠ j .
Specifically, a substantial literature has studied experiments that raise

the cost of electricity at specific hours of the day, for example, on week-
days during late afternoons in the summer, when system demand peaks
because of air conditioner use in homes. A common question has been
to what extent consumers will reduce electricity consumption during this
high-price window and substitute this for consumption in shoulder hours
around the experiment. Such studies consistently find that peak tariff
schemes lower consumption during the targeted window but reveal min-
imal shifting of demand into off-peak hours ( Jessoe and Rapson 2014;
Fowlie et al. 2017; Gillan 2017; Ito, Ida, and Tanaka 2018). The exception
is Andersen et al. (2017), who find that a variable pricing scheme does
cause significant shifts of demand into lower-priced windows in Den-
mark. Therefore, the strong version (b0) of assumption 3 is likely appro-
priate in this application, at least inmany circumstances. Bolstered by this
evidence, we proceed by assuming that cross-derivatives are zero, but we
also assess the performance of R 2 using estimates from the literature that
quantify how large cross effects might be in section IV.E.
On the supply side, the corollary question is whether the price of elec-

tricity in time period j affects the cost of production in time period k ≠ j .
It is reasonable and indeed common in the literature to assume that pro-
duction costs in different hours are separate production processes and
are not directly related. Marginal costs are likely to be serially correlated,
but this is because demand is serially correlated, not because production
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in one time causes a shift in cost in other hours.25 (Recall that we allow the
marginal cost of production to be rising at anymoment j. The assumption
is that price in one hour does not affect cost in a different hour.)
C. Other Modeling Considerations
Throughout our theory, we maintain the assumption that demand and
supply curves are linear over the relevant range of prices. Note that we re-
quire only that each good j has locally linear supply and demand, not that
the demand and supply curves across products j have the same slope. Lo-
cal linearity does not seem like a problematic assumption on the demand
side, but electricity supply curves can become convex when a market ap-
proaches capacity limits (although we show empirically that a linear sup-
ply assumption still fits a large part of the supply curve). When supply is
convex, the R 2 statistic will provide an approximation. We investigate its
accuracy via simulation, given data on the shape (convexity) of the market-
level supply curve. In our case, the approximation appears to be quite
good (see sec. IV.E).
D. Data
Our empirical application uses data from the PJM wholesale electricity
market. While originally comprising the states of Pennsylvania, New Jer-
sey, and Maryland (thus, the name PJM), the PJM market is a regional
transmission organization that runs one of the largest wholesale electric-
ity markets in the United States, stretching into 13 states in eastern and
central United States plus the District of Columbia. PJM is one of five re-
gional transmission organizations that run an active market for wholesale
electricity. As in most wholesale electricity markets, PJM runs an hourly
real-time auction for energy, bringing together producers and consumers
(typically, utility companies) of electricity. These auctions yield hourly
wholesale prices for electricity, which are a good measure of marginal
costs. We use hourly pricing data for the year 2012, as this is the year
for which we have data for the supply curve, which we use in the convexity
simulation below.
E. Results
In this section, we report the R 2 for a wide variety of alternative pricing
schemes. We also discuss the results from simulations that introduce
25 Technically, this may not be true for adjacent hours because of startup and ramping
costs for fossil-fueled plants. We follow much of the literature in assuming that their impact
on key results is modest, although we note that Reguant (2014) and Cullen (2015) are ex-
ceptions that model startup costs explicitly.
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cross-derivatives and convex supply (details are in app. B). We run vari-
ants of the following regression:

priceth 5 a 1 b0zth 1 εth,

where t indexes date, h indexes hour, priceth is the observed wholesale
electricity price, and zth is a vector that includes potential tariff policy var-
iables, such as on- vs. off-peak indicators vp, hour of day fixed effects vh,
day of week fixed effects vd, monthly fixed effects vm, season fixed effects
vs, or their interactions.
Table 1 shows the efficiency gain from using increasingly flexible tariff

policies. We find that simple yet commonly used tariff structures, like
on- vs. off-peak prices, do not improve efficiency much. Even the highly
sophisticated—and potentially hard to understand for consumers—pric-
ing schemes that we analyze (such as tariffs that vary by weekday, hour,
andmonth) capture less than half of the efficiency gain of real-time elec-
tricity pricing. This conclusion is similar to Borenstein (2005), who uses
a more detailed simulation model of competitive electricity generation.
We test the robustness of this finding by assessing the performance of

R 2 when cross-price derivatives in demand are not zero. Andersen et al.
(2017) report the largest cross-price derivatives among the studies we dis-
cuss above, with substitution to shoulder hours of approximately 29% of
the own-price effect. Appendix B compares the R 2 with welfare calcula-
tions that account for such substitution. Even with considerable substitu-
tion, the largest bias in the R 2 measure is approximately 2 percentage
points. We also consider the cross-price effects estimated in Ata, Duran,
and Islegen (2016) as well as cases with spillovers across hours, as in Jessoe
and Rapson (2014). We find similarly small biases.
Finally, we evaluate how our results change when we take into account

that electricity supply is convex at high levels of capacity utilization. To
do this, we make use of plant-level engineering data from the same year.
TABLE 1
R 2

from Electricity Tariff Regressions

Pricing Regime R 2

On- versus off-peak fixed effects .040
Hour of day fixed effects .135
Hour of day and day of week fixed effects .153
Hour of day and month of year fixed effects .193
Hour of day, day of week, and month of year fixed effects .211
Day of week � month of year fixed effects .297
Hour of day � day of week � month of year fixed effects .428
Observations 8,784
Note.—Dependent variable is the hourly price of electricity observed
in the PJM market for 2012. Peak hours are defined as 2–6 p.m.
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These data report both capacity and engineering marginal costs for each
plant in the system, forming a step function supply curve.26 We capture
the convexity of supply in two ways. First, we estimate a quadratic supply
curve through the aggregate engineering marginal cost curve. Second,
we use the actual step function.
We then simulate the welfare gains from each of the seven pricing re-

gimes above and compare these with their respective R 2 measures. We
find that R 2 remains a reliable indicator for the efficiency gain of con-
strained policies even whenmarginal costs are convex. R 2 is always within
1% of the simulated welfare gains under our quadratic estimate of supply
and generally within 10% using the step function supply curve. Further-
more, the bias in the R2 when using the step function supply curve is rela-
tively constant across pricing regimes, suggesting that comparisons across
different pricing regimes can still be made. See appendix B for details.
V. Application 3: Automobiles and Longevity
The total externality caused by an energy-consuming durable good de-
pends on both its energy efficiency and its lifetime utilization. For exam-
ple, a car’s lifetime gasoline consumption depends on fuel economy and
miles driven. Were all products utilized the same amount, a set of prod-
uct taxes based on only energy efficiency could accurately target lifetime
externalities, thereby shifting demand across products efficiently. But
heterogeneity in the longevity of products with the same energy efficiency
rating implies that energy efficiency policy is necessarily imperfect.
We demonstrate the empirical importance of this issue using the case

of greenhouse gas emissions from automobiles. We use a novel data set to
estimate the average lifetime mileage of different car models, and we
translate that into lifetime damages from greenhouse gas emissions, ac-
cording to each vehicle’s fuel economy and the social cost of carbon.
We then use simple linear regressionsmotivated by our theory to evaluate
second-best policies that must construct a tax vector for vehicles that de-
pends on a vehicle’s fuel economy but not its longevity. As we explain be-
low, this constrained policy closely resembles the dominant real-world
policy in this sector, fleet-average fuel economy standards, such as the
US CAFE program.
Consistent with our interest in fuel economy standards, we assume that

there are no taxes on used vehicles during resale. This is why the ideal new
vehicle tax should capture lifetime emissions, even if an initial car buyer
sells the vehicle before the end of its life. Capitalization of the new vehicle
26 Data such as these have been used extensively to calculate hourly equilibria within elec-
tricity markets.
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tax will ensure that used buyers face the same prices as they would under a
direct tax on emissions.27

We find that the constrained policies are highly inefficient. There is a
voluminous literature that explores the welfare implications of energy ef-
ficiency policies, but we know of no prior paper that has demonstrated
the importance of heterogeneity in product longevity.28 We speculate
that this issue is a first-order concern not just for automobiles but also
for appliances, building codes, and other efficiency programs.
A. The Pigouvian Benchmark
versus the Constrained Policy
We study the efficiency of a fuel economy standard in correcting green-
house gas emissions in the purchase of new vehicles. In terms of our
model, each type of vehicle is a product j. We model the lifetime green-
house gas related externality from automobiles as proportional to the to-
tal gasoline consumed by each vehicle type j. Total gasoline consumed is
the total lifetime mileage of a vehicle multiplied by its miles per gallon
efficiency. To translate this into a dollar externality, lifetime emissions
are multiplied by a constant, w, which is equal to the social cost of carbon
per gallon of gasoline. Note that a gasoline tax would achieve the Pigou-
vian benchmark, so long as consumers are aware of product durability
and have a rational forward-looking valuation of fuel costs.
In contrast, a fleet-average fuel economy standard will create a shadow

tax scheme where shadow taxes are equal to a linear function of a vehi-
cle’s fuel economy rating.29 Thus, in terms of our model,
27 Suppose, e.g., that one type of car lasts 5 years and typically has one owner, while another
with the same fuel economy typically lasts 10 years and has two owners. Absent taxes on used
car transactions, if each owner pays for only the emissions during their initial 5 years of own-
ership,market prices will fail to reflect the difference in damages between the two vehicles. To
create the correct relative prices via only new vehicle taxes, we need to charge a higher tax on
the long-lived car. Via tax pass through, this will raise the price of the used long-lived car so as
to (imperfectly) correct the externality. Likewise, if the benchmark policy is a gasoline tax, a
new car buyer who will sell the vehicle after only 5 years will account for the impact of the gas-
oline tax on the second owner because the asset value in the used car market will encompass
the second user’s gasoline taxes.

28 Allcott and Greenstone (2012) note that differences in utilization might justify geo-
graphically differentiated appliance standards, but they do not quantify heterogeneity or
calculate potential gains from differentiation.

29 Historically, policies like CAFE were firm specific, so that the shadow price varied across
firms. CAFE and most similar policies in other countries now allow trading, which fits our
description here. However, there is suggestion that trading in CAFE has been thin (Leard
and McConnell 2017), but this may be because trading was introduced alongside footprint-
based standards, which reduces the variation in shadow costs across firms (Ito and Sallee 2018).
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fj 5 w � Fuel Economy Ratingj �  Lifetime Mileagej ,

tj 5 a 1 b � Fuel Economy Ratingj :

If our assumptions all hold, then the R 2 of a regression of fj on tj will in-
dicate the fraction of the welfare gain achieved by a fuel economy stan-
dard (second-best tax), which depends on only fuel economy ratings, as
compared with the welfare gain achieved by a policy based on both fuel
economy and lifetimeusage (the Pigouvian benchmark), whereboth gains
are measured compared with a policy that places a uniform tax on all cars
equal to the average externality. In section V.C, we discuss additional com-
plications related to vehicle-related externalities and ways in which fuel
economy regulation differs from gasoline taxation that are not captured
in this description.
Note that our unit of observation is the vehicle model (e.g., a 1995 Toy-

ota Corolla). Because of accidents and random mechanical failure, in-
dividual units will be scrapped with variable lifetime mileage, but this is
orthogonal to our welfare comparisons. That is, all of our results are ro-
bust to allowing for random product failure, with fj interpreted as the
mean externality—so long as the random failure rates are not endoge-
nous to product taxes (which we return to below). The reason is that
ex ante unknowable variation in damages across identical units cannot
be targeted by any new vehicle policy, so this will not affect our compar-
ison of second-best policies to the Pigouvian benchmark.
B. Will Cross Effects Simplify?
Our main assumptions are about cross-price derivatives across types of
automobiles. In this market, cross-price derivatives are clearly important,
so the strong version of our assumption 3 (b0) will not hold. Instead, we
argue that cross effects will plausibly be small and will cancel out in the
R 2 ratio under a second-best tax policy so long as vehicles that have greater
or lesser longevity, conditional on fuel economy ratings, are not system-
atically closer or further substitutes for each other. In that case, assump-
tion 3 (b) will hold. But we relax that assumption empirically by allowing
vehicles with more similar longevity and more similar fuel economy to
be closer substitutes, following the derivations in section II.D. Introduc-
ing these correlations turns out to have limited impact; our results are
robust.
C. Other Modeling Considerations
Below we find that second-best constrained policies are highly inefficient.
We interpret this as evidence that fuel economy regulations are inefficient



1862 journal of political economy
as compared with a gasoline tax. But this interpretation is generous to fuel
economy regulation because it abstracts from other well-known inefficien-
cies in fuel economypolicies. In particular, fuel economy regulations fail to
incentivize abatement on the intensive margin; for example, a fuel econ-
omy standard can get people to buy the optimal vehicle, but they will not
drive the optimal number of miles. Our model abstracts from that by as-
suming that the externality attached to each vehicle is fixed. Note, how-
ever, that we are concerned with lifetime mileage, so the intensity-of-use
margin that concerns us is only the scrappage decision, notmiles traveled
per year.30 In addition, revenue-neutral energy efficiency policies fail to
get the average price of goods right; for example, a fuel economy standard
can get the relative price of inefficient versus efficient cars right, but all
cars will be too inexpensive and the car market will be too large overall.31

Our welfare analysis considers two alternative tax structures: a second-
best scheme that imposes a tax on each vehicle that is a linear function of
its fuel economy rating, and a Pigouvian benchmark that imposes taxes
according to each vehicle’s externality. As such, we measure welfare loss
along the vehicle purchase margin, which is directly targeted by vehicle-
based taxes. This abstracts from the market size effects (by assuming that
both tax schedules are correct on average) and the intensive margin ef-
fect (which is omitted from both policies and therefore likely has limited
impact on the proportional gains we emphasize) and bases the policy
comparison on only differences related to tax rate errors driven by het-
erogeneity in longevity.
Thus, our R 2 results can be interpreted as an upper bound on the frac-

tion of the welfare gain from a gasoline tax that can be achieved by a
second-best fuel economy regulation. It is an upper bound because a gas-
oline tax would also achieve gains along the scrappage (intensity of use)
margin and because a gasoline tax would correct the overall size of the
car market by raising the average price of automobiles. The Pigouvian
vehicle tax does neither. As discussed in section II.E, R 2 is also an upper
bound if the social cost of carbon used for calculating the carbon exter-
nality is too high or too low; equation (15) quantifies this inefficiency as
a function of the distance between the assumed and true social cost of
carbon.
In brief, our comparison—within which CAFEperforms quite poorly—

understates the real welfare losses incurred from using CAFE instead of a
tax on gasoline.
Another issue regards uncertainty. Knowing the future longevity of du-

rables at the time of their purchase necessarily requires forecasting into
30 See Jacobsen and van Benthem (2015) for evidence on how scrappage decisions influ-
ence the welfare implications of fuel economy regulations.

31 See Holland, Hughes, and Knittel (2009) for an exploration of how performance stan-
dards create inefficiencies due to their average price effects.
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the future. Where some variation in longevity across products is genuinely
uncertain to all parties, no policy will be able to capture this heterogene-
ity in the new market. Here our results on mismeasurement can be used,
as the benchmark policy will be one that leaves only random error. A
closely related challenge is heterogeneous sorting, which our represen-
tative agent model abstracts from. If policy induces sorting, this could al-
ter the expected lifetime emissions of different products not for me-
chanical factors but because the typical user of each product changes.
Where this equilibrium sorting is predictable, it could be accounted
for in the calculation of the product-level emissions rates and used to ex-
plicitly consider potential bias in R 2.32

Finally, recall that our model is for a representative consumer. Individ-
ual drivers may have different on-road fuel consumption rates for iden-
tical cars due to differences in driving styles and conditions (Langer and
McRae 2014). Differences in maintenance or accident risk may imply
that some drivers use up a vehicle faster than others, so that expected
lifetime mileage for a car depends on driver behavior. We abstract from
these considerations both because of data limitations and because we
doubt their quantitative significance. As discussed above, we are not con-
cerned with random failure that is unpredictable to the consumers them-
selves at the time of purchase. Thus, driver heterogeneity is relevant only
to the extent that different types of drivers sort into different vehicles
systematically in response to changing taxes (see above). Moreover, our
model does permit heterogeneity inmiles drivenper year—all calculations
are done in terms of total miles driven from new until scrappage, regard-
less of calendar age. Heterogeneity in annual usage matters only to the
extent that faster or slower rates of utilization affect the total expected
lifetimemileage of the vehicle. The fact that most cars have several owners
over their life will tend to decouple any individual owner from the vehicle
and will mitigate concerns related to individual heterogeneity.
D. Data
Our data come from the California Smog Check program, which records
the odometer reading for all tested vehicles. We merge these data with a
national registration database that identifies when a vehicle has been
32 One avenue to explore, if parameter estimates from a sorting model are available,
would be an iterative procedure to update the left-hand side externality in the spirit of
Greenstone, Sunstein, and Ori (2017). In that paper, the iteration is on the actual policy
as new vehicle miles traveled data come in. Here, the researcher could calculate the bench-
mark tax policy in the unsorted model, adjust on the basis of the sorting model, recalculate
the benchmark, and so on. Construction of this sorted benchmark would allow the re-
searcher to run a second regression, this time of the sorted benchmark on the rate of fuel
consumption. The R 2 could be reported alongside the R 2 from the original regression,
with similar results making it likely that sorting is an economically small factor.
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retired from theUS fleet and take the last observed odometer reading be-
fore a vehicle’s retirement as the measure of its lifetime mileage. We ag-
gregate individual observations to the VIN10 level (the finest distinction
of a unique car type possible in our data, which delineates a vehicle by
make, model, model year, engine size, and often transmission, drive type,
body style, and trim) andVIN8 level (which encompasses the same vehicle
characteristics as the VIN10 but aggregates acrossmodel years).We divide
lifetime mileage by official fuel economy ratings to estimate lifetime gal-
lons consumed.33 We use this as our measure of the lifetime externality of
each vehicle type (i.e., fj), multiplying by the social cost of carbon per gal-
lon of gasoline when necessary to convert the externality into dollars.34

We do not observe all units, which creates the possibility of measure-
ment error and censorship bias. Regarding the former, we are concerned
with the average mileage at scrappage of cars, but we observe only a sam-
ple. To the extent that this errormay be large, theR 2 value can be adjusted
following the discussion in section II.E. However, we demonstrate that for
our sample the bias is likely to be very small (see sec. V.E and app. C). Re-
garding censorship bias, we do not observe cars under 6 years old (as they
are usually not required to be tested), cars that were retired before our
data began, or cars that were still in the fleet when our data ended. These
missing observations could bias our results in either direction, but we
demonstrate through several procedures that this censorship bias is ap-
parently small and likely causes us to slightly overstate the efficiency of
fuel economy policies. We use comprehensive national registration data
fromR. L. Polk to address concerns related tomissing data. More data de-
tails and robustness checks are included in appendix C.
E. Results
In this section, we report the R 2 from several alternative specifications.
In appendix C, we explore further robustness checks. In section V.F,
we use estimates of the social cost of carbon and the derivative of vehicle
demand with respect to price to convert the R 2 into deadweight loss mea-
sured in dollars.
33 This abstracts from the timing of emissions. That is, we sum total miles driven and do
not discount them into the present value at the time when a car is new. We do so not only
for simplicity but also because many climate models and the current federal guidelines sug-
gest that the time path of the social cost of carbon rises at roughly the rate of interest. This
means that social cost growth offsets discounting.

34 We abstract from carbon emissions related to construction and scrappage of vehicles
because standard estimates suggest that these emissions make up only 8% of life cycle emis-
sions (National Research Council 2010). The remainder is due to gasoline consumption.
Moreover, to the extent that these emissions are the same across models, incorporating
them would have no effect on our welfare calculations. Only heterogeneous life cycle emis-
sions matter.
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Webegin by showing the data for our preferred sample in a scatter plot.
Figure 4 shows a scatter plot of the relationship between a vehicle’s total
lifetime externality (gallons of gasoline) and its official fuel consumption
rating for both cars and trucks, along with the OLS fitted line. A point in
the figure corresponds to the average lifetime gasoline consumption at
the VIN10-prefix level. It ignores within-VIN10 variation in gasoline con-
sumption. The sample in the figure is restricted to model years 1988–92,
the years for which censoring is least problematic (more on this below),
and to vehiclemodels for whichwehave at least 200 observed retirements.
FIG. 4.—Relationship between lifetime gasoline consumption and fuel efficiency. The
unit of observation is a type of vehicle (a VIN10-prefix). Gallons consumed is the average
across observations for that type. The sample is restricted to models for which we observe at
least 200 vehicle retirements and to model years 1988–92. Observations with vehicle miles
traveled above 1 million miles are dropped. Solid lines are OLS prediction lines.
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Wedrop observations withmore than 1millionmiles to limit the influence
of outliers.
There is, as expected, a positive correlation between fuel consumption

ratings (the inverse of fuel economy ratings) and lifetime gasoline con-
sumption. But there is also a great deal of dispersion. Vehicles have substan-
tially different average lifetimemileage, and this translates into variation in
lifetime fuel consumption conditional on the official fuel consumption rat-
ing. The R2 for cars and trucks in this sample is only 0.18 and 0.12, respec-
tively. (The R 2 from a combined sample regression is 0.29.) According to
our theory, this implies that the second-best linear policy captures only
18% and 12% of the welfare gains for cars and trucks that would be achiev-
able with an efficient set of product-based taxes that varies not only with fuel
economy but also with vehicle durability.
Note that the second-best policy will undertax long-lived vehicles (ob-

servations above the regression line), and it will overtax short-lived vehi-
cles (observations below the regression line). Some may find it counter-
intuitive that the efficient policy would raise taxes on long-lived vehicles.
To see the intuition, consider two vehicles with the same fuel economy
rating, where one lasts twice as long as the other. To drive the same num-
ber of miles (same emissions), two short-lived vehicles will be required,
so that the tax will be paid twice. Thus, harmony between the tax paid
and the emissions emitted requires taxing the long-lived vehicle more
heavily.
Table 2 reports the R 2 from a set of regressions that take the form

Average Lifetime Gasoline Consumptionj

5 a 1 bGallons per Milej 1 εj ,

where j indexes a vehicle type (VIN10-prefix or VIN8-prefix). We report a
rangeof estimates inorder to assess the importanceof sample restrictions,

(17)
TABLE 2
Regression R 2

VIN10-prefix VIN8-prefix

OLS WLS OLS WLS

A. All model years:
All models .26 .20 .23 .19
Models with N ≥ 200 .22 .17 .27 .19

B. Model years 1988–92:
All models .27 .26 .28 .27
Models with N ≥ 200 .29 .22 .34 .25
Note.—This table shows R 2 from regressions using VIN-prefix average lifetime gallons
consumed on fuel consumption rating. The unit of observation is either a VIN10-prefix or
a VIN8-prefix in panel A. Observations with vehicle miles traveled above 1 million miles are
dropped. N is the number of observed retirements. WLS weights the regressions by N.
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weighting, censoring, the level of aggregation, and sampling error. WLS
results weight VIN-prefixes by the number of observed retirements N.
These results are useful for assessing the effect of sampling variation, but
they also approximate weighting by sales share, which leads to the pre-
ferred welfare interpretation because it aggregates to total externalities
generated. In all cases, we drop observations with reportedmileage above
1million (1,525observationsoutof roughly 4million, or less than0.05%).
The unit of observation is average gasoline consumption across vehicles
with the same VIN10-prefix or VIN8-prefix, consistent with figure 4.
Table 2 shows that our estimate of the R 2 remains small in all VIN10-

prefix specifications, ranging from a low of 0.17 to a high of 0.29. R 2 is
slightly higher when the data are collapsed at the VIN8-prefix level (0.19–
0.34). Importantly, our estimates change very little when we restrict the
sample to include only 1988–92 model years, which are the years in our
data with the least censorship concerns and therefore our preferred spec-
ification. As thesemodel years span the age range in which themajority of
retirement happens, this provides us with a first indication that our wel-
fare conclusions will be broadly robust to additional measures that ac-
count for censoring in the data.
As discussed above, white noise in the measurement of lifetime mile-

age by type (sampling error) will cause the estimated R 2 to be below the
true welfare gain ratio. To assess the importance of sampling error, we
compare results from OLS with WLS, which weights models by the num-
ber of vehicles scrapped. We also check how our results change when we
limit the sample to vehicles for which we observe relatively many retire-
ments (N ≥ 200). The R 2 changes only modestly when moving between
OLS andWLS and when restricting the sample to N ≥ 200. This suggests
that our qualitative findings are not overly sensitive to sampling consid-
erations. We explore this issue further in appendix C.
Our theoretical results are focused on second-best policies—tax sched-

ules that are set optimally against some design constraint—but actual pol-
icies may deviate from the second best. In appendix C we comment fur-
ther on biased policies, which can come either because the average tax is
wrong (mean bias) or because the slope is wrong (slope bias).
Summary of additional estimates.—Our approach also applies to more

flexible fuel economypolicies; theR 2 from the appropriate regressionwill
have the same welfare interpretation for any policy that is linear in param-
eters. For example, fuel economy policy could put a shadow price on each
model that was a quadratic function of fuel consumption ratings. Or tax
rates could be based on fuel economybins. Then, theR 2 froma regression
of the externality on fuel consumption and fuel consumption squared, or
of discrete bin dummies, would have the desired interpretation. More
flexible fuel economy policy could also base shadow prices on not just
fuel economy but also other attributes, like class (car versus truck),model
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year, or body style. TheR 2 from regressions of lifetime externalities on fuel
consumption and these additional attributes directly indicates the welfare
gains possible from more flexible policies.
We ran a number of such regressions and summarize the results here.

First, we allow for separate fleetwide average standards for cars and light-
duty trucks (similar in spirit to the initial structure ofUSCAFE standards).
In our framework, this corresponds to adding a truck indicator and its in-
teraction with the fuel consumption rating. This adds very little explana-
tory power. In our preferred specifications usingmodel years 1998–92, R 2

rises by 0.004–0.013 to a range of 0.23–0.35, depending on the specifica-
tion in table 2). This strongly rejects the notion that separate regulationof
cars and trucks was useful in addressing the inefficiency that we identify.
Adding other policy attributes, such as body style and model year, has a
similarly small impact on the R 2; none of these attributes are strongly cor-
related with durability (conditional on fuel economy).
We also considered attribute-based policies based on fuel consumption

and vehicle size, either using the vehicle’s footprint (wheelbase � track
width, where wheelbase is the distance between the front and rear axles
of a vehicle) or by more flexibly including wheelbase and width as sepa-
rate regressors. In both specifications, we also allowed the policy to be dif-
ferent for cars versus light-duty trucks. This mimics current US CAFE pol-
icy, which is based on fuel consumption and footprint, with separate
standards for cars versus trucks. However, including footprint in our re-
gressions has little effect. It raises R 2 by 0.004–0.049 to 0.25–0.35. Includ-
ing wheelbase and width has a somewhat larger effect: R 2 increases by
0.077–0.096 to 0.31–0.43. This suggests that there could be efficiency gains
from more flexible sized-based standards because of the correlation be-
tween size and longevity, although such standards create distortionary in-
centives (Ito and Sallee 2018).
In all cases, the qualitative conclusion remains that there is substantial

variation in lifetime consumption that is not explained by fuel economy,
vehicle type, or size, which implies that policies based on only such vehicle
attributes—but not on average product durability—will raise welfare by
significantly less than would an efficient policy (such as a carbon tax or
a gasoline tax).
F. Estimates of Deadweight Loss
We can translate the relative gains from the Pigouvian and second-best
product-based taxes, expressed above as an R 2, into deadweight loss by as-
signing a dollar value to the externality and considering the pattern of
substitution across vehicles. We begin with the 1990 model year (typical
of the years in table 2), computing the possible welfare gains from a
Pigouvian product-level tax and the deadweight loss from the second-best
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tax based on fuel economy. We then explore the influence of a range of
substitution patterns across vehicles, following the theory in section II.D
that allows correlation between cross-price derivatives and either the tax
error or the efficiency rating. We show that when calibrating to estimates
of this correlation from the literature, the R 2 remains very close to the
true fraction of welfare recovered.
To evaluate the level of deadweight loss—following the formula in

equation (6)—we first assign a value of $40 for the social cost of carbon
(Interagency Working Group on Social Cost of Carbon 2013), leading to
an external cost of 35.5 cents per gallon.35 Using our data on lifetime fuel
use, we find that this implies an average of $3,334 in external costs for
each vehicle sold.We further impose an own-price elasticity of25 (roughly
comparable to the estimates in Berry, Levinsohn, and Pakes 1995) and
cross-price elasticities distributed evenly over the full set of models. We
relax both of these assumptions below, considering higher and lower
own-price elasticities and cross-price elasticities that are correlated with
attributes.
As above, we compute welfare results relative to a baseline that controls

for substitution to an outside good (since a revenue-neutral fuel economy
standard does not directly incentivize switching to an outside good) and
so isolate the welfare effects coming from switching among vehicles. Un-
der these assumptions on elasticities, the welfare gain from a Pigouvian
tax on each of 356 vehicle models amounts to $246 per car sold, or about
$3.5 billion, for model year 1990. The best linear tax on fuel use per mile,
equivalent here to the optimal average fuel economy standard, generates
about $0.8 billion in surplus and so leaves $2.7 billion in deadweight loss.
This corresponds directly to the intuition onR 2 above: for the 1990model
year, the weighted R 2 is 0.24, implying that 24% of possible gains can be
recovered with a single linear policy.
Table 3 presents the central case described above followed by three

panels exploring sensitivity to own- and cross-price elasticities. Panel A
considers changes in the own-price elasticity of demand for individual
vehicle models (25 in the central case). More elastic demand allows a
larger change in the composition of the fleet, and so greater welfare gains
are possible in the Pigouvian benchmark. As expected, the ratio of welfare
gains in the second best versus the Pigouvian benchmark remains fixed at
0.24, the value of R2.
Panel B turns to relaxing assumption 3, investigating how different

correlations between cross-price elasticities and the residuals in the policy
regressions influence the share of welfare recovered by second-best pol-
icy. We first consider the expected direction of bias building on the theory
35 If the cost associated with carbon emissions has been rising approximately at the dis-
count rate, we interpret this value as being in 2013 dollars (looking retrospectively at the
1988–92 vintages).
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in section II.D. Specifically, we demonstrate that R2 is biased upward
or downward in this case as predicted by proposition 3. The first row in
panel B makes vehicles with similar durability better substitutes, leaving
all other attributes uncorrelated. As expected, this reduces the effective-
ness of the Pigouvian benchmark policy, and the true fraction of welfare
gained increases relative to R 2. Here, when elasticities fall in half for each
standard deviation difference in durability, we see that the fraction of wel-
fare recovered increases to 0.27. The second row examines correlation be-
tween cross effects and fuel economy rating, nowmaking cars with similar
miles per gallon better substitutes. This reduces welfare gains in both the
Pigouvian benchmark and the second best; the fraction of welfare recov-
ered falls to 0.19. Finally, the third experiment makes vehicles of similar
price the best substitutes. This introduces both types of correlation to-
gether, since both miles per gallon and durability are related to price.
The effects on the fraction of welfare recovered partially offset, with the
fraction recovered returning toward R 2. This further supports the use of
the R 2 measure.
Finally, in panel C, we calibrate cross-price derivatives using estimates

of brand and class loyalty from the literature. This introduces a whole
range of correlations together, with class loyalty looking most like corre-
lation with miles per gallon and brand loyalty tending to create correla-
tion with durability. The first line of this panel shows the net effects in
our calculation when calibrating to the brand and class loyalty estimates
from the demand system of Bento et al. (2009). The various effects offset
almost completely, with the fraction of welfare recovered falling slightly
to 0.23. The final row doubles the strength of the effects of Bento et al.
(2009), doubling the fraction of buyers who substitute within brand and
class, and again the effects are very close to offsetting. Across a wide range
TABLE 3
Welfare Effects for Model Year 1990

Second Best
Pigouvian
Benchmark Ratio

Central case 817 3,472 .24
A. Own-price elasticity:

23 501 2,128 .24
27 1,126 4,782 .24

B. Cross-price elasticities correlated with:
Durability 811 2,971 .27
Efficiency rating 638 3,385 .19
Price 739 3,523 .21

C. Brand and class loyalty:
Calibrated to Bento et al. (2009) 783 3,431 .23
Doubling relative to Bento et al. (2009) 756 3,396 .22
Note.—Welfare gains are expressed in millions of 2013 dollars relative to a
constant tax at the average externality. For panel B, each standard deviation re-
duction in attribute distance increases the cross-price elasticity by a factor of 2.
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of substitution patterns, R2 remains a robust predictor for the fraction of
welfare that can be recovered in the second best.
VI. Application 4: Spatial Variation in Emissions
Externalities from pollution are typically a function of the amount of pol-
lution emitted as well as location-specific conditions, including pre-
existing pollution levels, weather, and the proximity of vulnerable popu-
lations. This has long been understood as a rationale for location-specific
environmental policies (Tietenberg 1980; Mendelsohn 1986; Baumol and
Oates 1988). Butmany policies are constrained to be uniform across space
because of practical or political considerations. Mendelsohn (1986) stud-
ies this issue in the context of local air pollution and provides a calibrated
example showing the welfare gains from drawing two or three distinct
zones that have differentiated pollutionpolicies.Holland et al. (2016) doc-
ument heterogeneity in the environmental benefit of switching from a gas-
oline vehicle to an electric vehicle in eachUS county and describe the wel-
fare benefits of policies that vary by county or state versus a national policy.
When our assumptions hold, our model can analyze second-best envi-

ronmental policies that are constrained to be uniform across space via
regression statistics. As an example, we consider a tax placed on the pur-
chase of new refrigerators that aims to correct for greenhouse gas emis-
sions. Refrigerators vary in their energy consumption, and the external-
ity of a given refrigerator depends on its location of use, because a unit of
electricity corresponds to different amounts of greenhouse gas emissions
in different locations according to what type of power is used (e.g., coal
vs. renewables). We consider a constrained policy under which the tax
scheme on appliances depends on only the appliance’s energy consump-
tion, not on its location.
We show that our assumptions from section II will not hold in this case

and that the R 2 will be significantly biased. Instead, we offer an alterna-
tive derivation that demonstrates that the within-R 2 from a fixed effects
regression has a welfare interpretation. The main purpose of this exer-
cise is to demonstrate the promise of adapting our core framework to
find alternative relationships between familiar regression statistics and
the welfare properties of constrained externality-correcting policies.
Appendix D presents this application in detail, but the intuition for the

within-R 2 result is as follows. Some regions have clean electricity; others
are dirty. Within each region, a second-best national tax on electricity us-
age creates two types of mispricing. First, the tax will be systematically too
low in dirty regions and too high in clean regions. Second, the single pol-
icy slope will get the relative prices wrong within each region. As long as
total demand for fridges in each region is fixed by approximation, the av-
erage mispricing creates no distortion in choices, and only the second
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inefficiency—the slope errors—matter. The within-R2 from a regression of
product region–specific externalities on electricity usage and region fixed
effects neutralizes the average mispricing by region. The assumption of
nonet substitution to the outside goodwill be plausible in someconditions
but not others. If the latter, the within-R2 provides an upper bound on the
welfare gain.
Our empirical application uses data on the energy efficiency rates of

1,349 refrigerator models from the US Association of Home Appliance
Manufacturers and carbon emissions rates per unit of electricity for each
of the three major power market interconnection regions or the eight
distinct regions defined by the North American Electric Reliability Cor-
poration (Graff Zivin, Kotchen, and Mansur 2014; Holland et al. 2016).
See appendix D for details.
Table 4 shows the R 2 and within-R 2 values from a regression of the car-

bon emissions associated with each fridge in each region on its electricity
consumption rate. We find within-R 2 values of 0.96 and 0.90 (depending
on geographic disaggregation), representing the fraction of the welfare
gain under the Pigouvian benchmark achieved by a national policy that
does no spatial differentiation. For reference, the R 2 values from OLS,
which are far smaller, are also included.
These findings demonstrate a perhaps surprisingly small welfare loss

from the lack of regional policy differentiation for electric appliances.
This result relies on the extensive margin for refrigerator demand being
zero or small. When the extensive margin response grows (and it will be
larger for appliances other than refrigerators), there will be a second wel-
fare loss due to the fact that the overall productmarket will be too large or
small in each region.
VII. Conclusion
Externality-correcting policies rarely take on the ideal form of a direct tax
onmarginal damages. Actual policies are frequently constrained by admin-
istrative feasibility, technological cost, or political constraints so that they
TABLE 4
Sufficient Statistics for Spatially Differentiated Refrigerators

Three Interconnections
(1)

Eight NERC Regions
(2)

Within-R 2, fixed effects .96 .90
R 2, OLS .47 .24
Sample size 4,047 10,792
Notes.—Results are from regressing emissions on electricity consumption,
with the unit of observation a refrigerator model in a particular interconnec-
tion (col. 1) or North American Electric Reliability Corporation (NERC) re-
gion (col. 2).
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must place imperfect marginal incentives on products or actions. We dem-
onstrate that under certain conditions, simple regression statistics have
welfare interpretations that describe the efficiency costs of these constraints.
We demonstrate the usefulness of this approach through four exam-

ples. Three of our applications pertain to environmental externalities,
but they span a number of distinct challenges to policy, including ran-
dom mismeasurement of product attributes, spatial heterogeneity, and
the implications of heterogeneity in the lifetime utilization of energy-
consuming durable goods. Our other application—which is about wedges
between price and marginal cost due to coarse pricing rather than exter-
nalities—suggests the potentially wider reach of our approach. These ap-
plications demonstrate the viability of our theoretical framework, but they
also make contributions in their own right.
Most importantly, our study of the heterogeneity in automobile longev-

ity points out a previously undiscussed efficiency problem with a class of
energy efficiency policies that regulate new durable goods. When differ-
ent products have different average lifetime utilization, energy efficiency
policy—which creates explicit or implicit price incentives according to
only energy efficiency ratings—is inherently imprecise. Through analysis
of unique microdata on automobile mileage, we demonstrate that differ-
ent types of automobiles have widely varying average lifetime mileage,
which implies large inefficiencies in fuel economy policy.
We suspect that there are many additional applications that could ben-

efit from this approach. In the introduction, we mention other possible
applications in energy, environment, health, and transportation, but the
possibilities extend to any setting where data are available on the distri-
bution of an externality (or other wedge) and its correlation with the var-
iables upon which policy is contingent. Some of our results may be rel-
evant to settings where there is heterogeneity in the deadweight loss
of taxation even in the absence of externalities. For example, labor sup-
ply elasticities differ along dimensions such as age—the young supply la-
bor more inelastically than the old (Kleven and Schultz 2014).36 It is gen-
erally politically infeasible to condition income or payroll taxes on age.
Our findings suggest that these restrictions, while perhaps desirable on
the basis of other grounds, increase the overall deadweight loss of labor
taxation and provide a method to quantify the efficiency loss. In apply-
ing our model to other settings, we emphasize that it is important to con-
sider the demand assumptions but also note that it is straightforward to
conduct robustness checks that indicate the degree of error created when
the assumptions do not hold.
36 Best and Kleven (2013) show theoretically that the presence of behavioral career ef-
fects provides another reason why the contemporaneous earnings elasticity of the young
is lower than of the old.
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