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A Bayesian Approach to
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Sample Size
This research studies the use of predetermined experimental plans in a live setting with a
finite implementation horizon. In this context, we seek to determine the optimal experimental
budget in different environments using a Bayesian framework. We derive theoretical results
on the optimal allocation of resources to treatments with the objective of minimizing cumu-
lative regret, a metric commonly used in online statistical learning. Our base case studies a
setting with two treatments assuming Gaussian priors for the treatment means and noise
distributions. We extend our study through analytical and semi-analytical techniques
which explore worst-case bounds, the presence of unequal prior distributions, and the gen-
eralization to k treatments. We determine theoretical limits for the experimental budget
across all possible scenarios. The optimal level of experimentation that is recommended
by this study varies extensively and depends on the experimental environment as well as
the number of available units. This highlights the importance of such an approach which
incorporates these factors to determine the budget. [DOI: 10.1115/1.4045603]
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1 Introduction
Experimentation is an important tool for gaining knowledge

about a system, process, or product. There have been several contri-
butions from the design engineering community toward the better-
ment and usability of experimentation in mechanical systems.
These contributions can be broadly classified into two groups
based on the approach they adopt. The first, and more popular
one, looks at traditional non-adaptive, multi-factor design of exper-
iments (DOEs) to solve problems in multiple domains (examples
include Refs. [1,2]). Other efforts have attempted to use an adaptive
strategy, in which the experimentation is carried out in a sequential
fashion [3–5]. In both the approaches, experimentation is consid-
ered to be carried out in an offline setting. This indicates a scenario
where the output from the experiments is sacrificed toward the goal
of future improvement. By contrast, the field of reinforcement learn-
ing in computer science addresses the problem of online learning
through the multi-armed bandit (MAB) problem [6] (a survey can
be found in Ref. [7]). Here, an agent sequentially chooses treat-
ments with a goal of performing as best as possible in a live envi-
ronment, cumulatively, over a given horizon of time or resources.
Motivated by various real-world examples that span multiple

domains, this study seeks to address an experimentation problem
that essentially lies in the intersection of these two well-studied
fields: randomized experimental designs studied in statistics and
the multi-armed bandit framework from reinforcement learning.
In randomized experimentation, the typical setup requires an
upfront design and commitment of experimental resources. The
DOE approach is suited for an offline, learning-phase, which can
support a parallel deployment of resources since it is non-adaptive

(classic examples are in agriculture, product design, and manufac-
turing). Whereas, the MAB framework, which is intended to be
applied on live systems, typically proposes an adaptive algorithm,
with almost instantaneous feedback from experimenting on
one-resource-at-a-time (typical examples are on online advertise-
ments and recommender systems). Our research considers cases
that are a mix of these two scenarios. In our scenarios, the environ-
ment requires the commitment and planning of a one-shot experi-
ment, but simultaneously needs to in a live setting. Specifically,
the environment we study is characterized by three specific features,
an online environment, finite horizon or scope, and the need for pre-
planned, non-adaptive designs. In this context, the key research
question we answer is in determining the upfront experimental
commitment of resources. Our study seeks to construct a frame-
work for experimentation in the presence of these conditions.
Section 1.1 presents specific examples where such conditions
could arise, and Sec. 1.2 provides the basic mathematical frame-
work for the study.

1.1 Real-World Examples of the Environment. We illus-
trate three concrete examples where the conditions mentioned
above could take place:

(1) A city receives $ 1,000,000 to be used in 1 year for improv-
ing 200 parks ($ 5000 per park). The funding is intended
to increase the usage (footfalls) in the park. The Director of
Parks and Recreation believes that there are two specific
infrastructural interventions that cost $ 5000 each but is
unsure on which one would increase footfalls. However,
she does believe that she can run a pilot on some parks for
6 months, leaving sufficient time to observe the outcome
and implement the superior treatment on the remain-
ing parks. How many parks out of the 200 should she exper-
iment on?
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(2) The marketing division of an organization has identified
10,000 specific customers that are most likely to be interested
in a discount on a particular product. They would like to send
e-mails to these customers indicating a special offer.
However, there are four possible e-mail designs that indicate
the same offer (two different subject lines, and two different
pictures in the body of the email, leading to four combina-
tions). The marketing manager would like to know which
of the four possible e-mail designs is more likely to attract
customers. She would like to conduct an experiment by
sending out each of the four designs to different customers
covering a subset of the 10,000 customers. Following the
recommended wait period of 15 days, she will analyze
the customer response to the e-mails and intend to send the
design showing most promise to the remaining customers.
How many customers out of the 10,000 should be a part of
the experiment?

(3) Building on an example from Ref. [8], a manufacturing plant
has four computer numerical control machines that produce
component parts to be assembled in an aircraft power unit.
The engineer in charge knows that variability in the critical
dimension of interest is affected by the feed rate. In a
given order, there are a total of 2000 parts to be machined,
and the time available for delivery would require all
machines to run continuously, with at most one break for
reconfiguration (as setup times are long and machines need
to run in parallel this obviates any sequential learning).
The engineer uses her domain knowledge to choose four
slightly different feed rates to be applied to the four machines
as an experiment. She is confident that all the parts can be
shipped and are fit for use, but she would like to minimize
the variability as much as possible. Following, her experi-
ment she will apply the feed rate that appears to give the
best result to the remaining three which will continue to
reach the target of 2000 totally. How many parts should be
machined with the different feed rates in the initial phase?

1.2 Problem Setup. In this section, we first consider a simpli-
fied version of the problem, where the experimenter is given a total
set of units T and has to choose to allocate one of two treatments on
these units. With no prior preferences, she chooses to conduct an
experiment on n units of each of the two treatments. Based on the
results, she picks the treatment with the highest mean and deploys

that on the remaining (T− 2n) units. The critical design question
that we solve is to determine what the sample size (n) should be
for a given (T).
We use expected cumulative regret, a common metric used in the

MAB framework to measure performance in the online environ-
ment. Here, the selection of a sub-optimal treatment on a unit,
during the experiment or post-experiment, leads to some quantifiable
regret. This regret aggregated across all the experimental units is
cumulative regret. In a stochastic framework, where the experimen-
tal outcomes are also a result of irreducible noise, the cumulative
regret for a given plan can be a random variable. We take the
expected value of this variable. Mathematically, the expected cumu-
lative regret is given by

E(CR) = n × X + (T − 2n) × (1 − Pr(L*(n))) × X (1)

where X is the gap between the expected value of the optimal treat-
ment and the suboptimal one. The term Pr(L*(n)) captures the prob-
ability that following the results of conducting 2n balanced
experiments across both treatments we conclude that the optimal
treatment is the best. The first part of the RHS in Eq. (1) corre-
sponds to the idea that for we accrue a regret of X for n units
due to the deployment of n suboptimal units during the experimen-
tation phase. The latter half of Eq. (1) corresponds to the probabi-
listic loss that can be accrued if we fail to choose the optimal
setting.
Intuitively, it can be reasoned that n should not be too high or

too low for minimizing the cumulative regret. If n is extremely
large (say T/2 units), then there would be no units left to apply
our findings from the experiment. If n is too small, it is possible
that we made an incorrect choice of the optimal treatment and
subject the remaining units to this. This is captured in Fig. 1,
which shows the intuition behind a trade-off associated with a
degree of experimentation in the online framework. In this
research, we mathematically formulate and derive the relationship
between sample size and regret for various environments. We then
seek to determine the optimal sample size (n*) which minimizes
the expected regret.
The rest of the paper is structured as follows: Sec. 2 covers the

related literature, Sec. 3 covers the theory for the basic algorithm.
This serves as a framework for all the possible extensions to the
environment and algorithms covered in Sec. 4. We conclude with
Sec. 5 and provide some directions for future work.

Fig. 1 Illustrative figure on the effect of changing sample sizes on expected cumula-
tive regret
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2 Related Work
Studies pertaining to experimentation can be broadly categorized

as offline or online. Offline experimentation, or more specifically
the determination of sample size of non-dynamic experimental
plans, is further divided across Frequentist and Bayesian statistics.
The online environment is discussed extensively by studies in
Reinforcement Learning under the multi-armed bandit (MAB)
framework. Our study considers non-dynamic plans in the online
setting. In this section, we discuss contributions from both of
these fields.
In frequentist statistics, the sample size is extensively discussed

through operational characteristic (OC) curves. With traditional
OC curves, the type II error is described as a mathematical function
of sample size, type I error δ and σ (sometimes δ/σ). Various reviews
of the well-established mathematical interrelationship between
these variables in the context of hypothesis testing and estimation
can be gathered from Ref. [9] or Ref. [10]. This is somewhat
similar to what we are trying to achieve through Fig. 1 for the
online setup. Our environment is, however, different in two ways.
First, at the end of the experiments, the practitioner is required to
choose a treatment (irrespective of statistical significance) to
apply on the remaining units, therefore leaving no scope for Type
II error. The important equivalent metric is the probability of choos-
ing the superior/inferior treatment. This is captured in the Eq. (1).
The other aspect of difference from OC curves is that there exists
an optimal level of experimentation in our setting, as opposed to
an asymptotic relationship between increased samples and reduc-
tion of Type II error. Similar to traditional OC curves, a greater
sample size in our setting does lead to a higher probability of choos-
ing the correct treatment. However, in the finite population online
setting, a large sample allocation to experiments will leave fewer
units to apply the experimental findings (this is often referred to
as the exploration-exploitation dilemma in bandit studies).
Broadly, the idea that the cost of gathering a sample should be

compared with its potential benefits that has been well-studied by
using a Bayesian approach in the decision theory. We can see exam-
ples of this in Expected Value of Sample Information [11,12] and
other studies that build on this idea [13]. The motivation for the
Bayesian approach is that a single sample may not be sufficiently
large to make an inference about the population parameter and
also studies are rarely carried out in complete isolation. A Bayesian
approach enables us to assume prior distributions for the parameters
of interest and thereby explicitly compare the costs of experiment-
ing against the perceived benefits. These have motivated studies
which look at both static plans [9,10,14] as well as sequential
ones [15–17] to optimize experimental decision-making. Our
study adopts a similar idea. However, in our live setting, the cost
of over-experimenting is the allocation of sub-optimal treatments
to units as a part of the experiment, and the cost of under-
experimenting is the increased probability of selecting sub-optimal
treatments for the remaining units. These two costs are directly
comparable, as opposed to the traditional setups where the decision-
making required the practitioner to quantify external costs and
benefits related to the experimental process. This broad idea is
explored in the two-level full and fractional factorial designs by
Ref. [18] using a metric of cumulative improvement.
Experimenting on live systems has been studied since as early as

1930s under the terminology of the sequential design of experi-
ments [19–21]. This has been advanced extensively in the multi-
armed bandit framework discussed in the reinforcement learning
literature. Here, an agent is tasked with sequentially choosing a
treatment (referred to as arms) for each trial, with the goal of max-
imizing the cumulative reward across t trials [6,22]. Since the agent
does not have perfect knowledge of which treatment is superior,
there is an inherent need to explore (experiment) across treatments.
Also, since the horizon is finite (t trials) or discounted, there is a cost
to conducting too many experiments. As discussed in Sec. 1, there
are various settings where the bandit framework is not entirely sui-
table. These are broadly summarized as the need to parallelize the

experimental effort and the concern that a fully sequential approach
is harder to implement. The later concern comes about since the
practitioner is unaware of the number of actual experiments that
each alternative will be subject to, prior to experimentation. In
this study, these observations motivate us to consider environments
where a randomized experiment along with the sample sizes is fixed
up front.
Similar algorithms and analyses from the bandit community have

predated our work. Reference [23] have made a study on the
Batched Bandit problems. However, their analysis differs from
ours in that they provide only worst-case bounds (whereas this
study minimizes expected cumulative regret), do not make any dis-
tributional assumptions on the gap (whereas this study models the
gap as a random variable), and finally, their work seeks to
provide a dynamic stopping point (whereas ours reflects a
common real-world setting that requires a planned budget).
Another set of bandit studies that allow for the parallel deployment
of treatments are round-based algorithms [24]. Here, each treatment
is tried once in a given round and criteria for the elimination of sub-
optimal treatments enable the convergence to the optimal treatment
asymptotically. Again, our work allows for multiple experimental
units to be subject in parallel to the same treatment in a given round.
It is also noteworthy that many of the extensions considered in

this study are inspired by similar extensions in the offline environ-
ment or MAB algorithms, although none of these directly talk about
our problem context. For instance, worst-case scenarios have been
looked at by few studies in statistical experiments [25,26] and is
almost a standard practice in bandit studies. Similarly, the extension
of sample size calculations to multiple treatments are well studied
through the use of the ANOVA, and the cases of using different dis-
tributions are also common [27]. Finally, multiple rounds or phases
of pilots have also been considered by various authors in frequentist
and Bayesian setups [28–30].

3 Theory: Analytical Results for Two-Treatments With
Gaussian Assumptions
In this section, we introduce a theoretical analysis for the simple

case where there are two treatments. We are tasked with picking one
of the two treatments for each of the T available units. We have an
added constraint that our commitment of treatment to resources can
only be done in two phases. It can be easily shown that with no prior
preferences between treatments, the first phase would ideally allo-
cate resources in a balanced fashion between the two treatments.
Similarly, based on the results of the first phase, the allocation of
all resources to the ostensibly superior treatment would be an
optimal strategy for the second phase. We, therefore, undertake
the key question of how to divide resources across the two
phases. Following the structure shown in Eq. (1), it is clear that
the optimal number of experiments (n*) is a function of the gap
(X) between optimal and sub-optimal treatment, the total number
of units (T), and probability of identifying the optimal treatment
after the experiments (which are in turn a function of X and the
noise in the system). Of these, the exact knowledge, or even esti-
mates, of the value of X could be an unrealistic requirement. Essen-
tially, we are conducting experiments to determine which treatment
has a superior mean, and our assumptions on X imply that the prac-
titioner knows the quantum of difference between the two means.
While these assumptions are standard in typical OC curve calcula-
tions, in the offline environment an increase in X translates to a
monotonic decrease in sample size for fixed Type II error. This
helps to facilitate the understanding that a given sample size trans-
lates to a given Type II error for a given minimum value of X (larger
values will only translate to lower Type II errors). However, in the
online setting, a given X translates to an optimal recommendation of
sample size and any differences in value, larger or smaller, will nec-
essarily translate to suboptimal behavior. A more flexible and feasi-
ble assumption would be to model X as a random variable, rather
than as a fixed value. This could capture the uncertainty in the
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prior belief of the likely magnitude of the difference in means. For
instance, take an advertising firm which is proposing to experiment
with two advertising initiatives to increase sales (on a fixed target
audience or cities), it is unlikely that they know which treatment
is superior (which is the reason for the experiment) or the magnitude
of the difference in the mean effect of the initiatives. However, it is
possible that prior experience with such initiatives, in general, could
be used to inform them of the likely distribution of effect seen when
such initiatives are taken. This can then be used to derive the distri-
bution of the difference in means of the two randomly selected treat-
ments. Here, we assume that the true mean of each treatment, μ1 and
μ2, has a prior Gaussian distribution N(μ, (σm/

��
2

√
)2). Then, the dis-

tribution of μ1− μ2, referred to as X ∼ N(0, σ2m), or in other words,
the magnitude of the difference between the two treatments is dis-
tributed as a half-normal, a special case of the folded normal. We
also assume a setup where the error/noise per experimental trial
follows the Normal distribution N(0, σ2e ). The probability of choos-
ing the superior treatment is then formulated by representing the
distribution of |X| as a half-normal distribution and computing the
probability that the estimate represented as a conditional random
variable fY |X(y) ∼ N(|x|, 2σ2e/n), takes on a value greater than 0. If
L* is the superior treatment, then the formulation below captures
the probability of choosing L*:

Pr(L*)=
∫∞
0

∫∞
0

1
σe��
n

√ 2
��
π

√ exp −
(y− x)2

4σ2e
n

⎛
⎜⎜⎝

⎞
⎟⎟⎠dy

��
2

√

σm
��
π

√ exp −
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2σ2m

( )
dx

(2)

The expected cumulative regret (E(CR2n)) is given by
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∫∞
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��
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+
∫∞
0
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1

σe��
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��
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⎛
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⎞
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2

√
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��
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On solving we get,

E(CR2n)=

σmn
σm�����������

2σ2e
n

+ σ2m

√ + 1

⎛
⎜⎜⎝

⎞
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���
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√

+
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���
2π

√

(4)

It could be convenient to express this regret in percentage terms.
We achieve that by defining the maximum-expected regret, which is
the regret experienced when the suboptimal treatment is applied
over the entire horizon T. However, the gap between the optimal
and suboptimal treatment is a random variable. Therefore, we
take the expected value of the gap between the optimal and subop-
timal treatment, which can be shown to be

�����
2/π

√
σm (this is essen-

tially the mean of the half-normal distribution) and assume that
this regret is experienced over the entire horizon. Therefore, the

normalized regret for this case is

NECR2n

=

σm n
σm�����������

2σ2e
n

+ σ2m
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⎛
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Let Ω= σm/σe, then, the above equation becomes

NECR2n =
1+

2n
T

− 1

( )
σm

����������
n

2+ nΩ2

√( )
2

(6)

From Eq. (6), it can be seen that normalized expected cumulative
regret is a function of n, T, and Ω= σm/σe. Figure 2 illustrates this
for different values of n, while fixing T= 100 and analyzing three
ratios of Ω.
There are various insights that can be gleaned from these results.

As expected, there is an optimal level of experimentation that
minimizes regret, any more or lesser experimentation is suboptimal.
However, it is clear that the cost of under-experimenting is worse
than over-experimenting. Also, a higher value of Ω (or σm/σe)
leads to lower normalized regret and requires a lower commitment
to experimental resources. In other words, the higher signal-to-noise
ratio is generally a favorable environment and requires a lesser
commitment to exploration for the same certainty. While Fig. 2
computes the regret for various levels of experimentation, a practi-
tioner could be interested in directly determining the optimal level
of experimentation. As a next step, we determine the n* which min-
imizes Eq. (6). This gives us the optimal sample size.

Min
n

σm n
σm�����������

2σ2e
n

+ σ2m

√ + 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ + (T − n) 1 − σm

������������
n

2σ2e + nσ2m

√( )⎛
⎜⎜⎝

⎞
⎟⎟⎠

���
2π

√
(7)

To find the maxima, we solve the ∂NECR2n/∂n= 0, which results in

n* =
−3σ2e +

����������������
9σ4e + 2Tσ2eσ

2
m

√
2σ2m

(8)

Let Ω= σm/σe, then the optimal sample size becomes

n* =
−3 +

�����������
9 + 2TΩ2

√

2Ω2 (9)

The use of the Gaussian assumption on X results in a closed-form
expression for the optimal sample size as a function of only T
and Ω. Figure 3 shows the sensitivity of the optimal size for differ-
ent values of Ω. This is illustrated for different values of T= 100,
1000, and 10,000. Figure 3 shows that for all values of T, an
increase in Ω translates to a decrease in the required sample size
for optimal performance. In absolute terms, the optimal level of
experimentation (n*) increases with an increase in T (since there
are more units at stake when we choose to commit). However, it
is noteworthy that the optimal n* as a percentage of T becomes
smaller with an increase in T, for all values of Ω. For instance,
the optimal sample size for T= 100 at Ω= 1 is 5.72, resulting in a
ratio of approximately 6%, whereas, when T= 10,000, the
optimal sample size is 69.2, resulting in a ratio of 0.7%.
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4 Extensions to the Base Model
In this section, we present three extensions to the base model

which increases the scope for application of this study. Section
4.1 explores the scenario where a practitioner is not interested in
minimizing the expected value of cumulative regret, but would
instead like to implement a risk-averse approach and would there-
fore minimize the worst-case scenario. Section 4.2 explores the sce-
nario where the practitioners priors of the treatments are unequal.
This could come about due to subjective beliefs, analysis of histor-
ical data, or even an additional pilot phase of experiments that were
conducted prior to this analysis. The key emphasis in this section is
in understanding the requirement for conducting unbalanced exper-
iments in the online setting. Finally, Sec. 4.3 extends the analysis to
cases where three or more treatments of the same variable might be
present. This is a common occurrence in many real-world problems,
and we derive analytical solutions for the optimal sample size.

4.1 Analysis of the Worst-Case Scenario. The base case
analysis presented in Sec. 3 presents an optimal sample size

based on averaging outcomes and therefore uses the expected
value of cumulative regret. The experimenter might, in many
instances, not be interested in minimizing the regret on average,
and could instead be looking at reacting to the worst-case scenario.
This approach is typical in bandit studies that look at worst-case
regret bounds. We use the Gaussian setup to quantify this scenario
represented by various percentiles of the entire distribution associ-
ated with cumulative regret. We present results for the case of the
90th, 95th, and 99th percentiles/bounds when T= 100 and Ω= 1
(we can take any pair of values for σm and σe which satisfy this
ratio). We adopt the following steps to find an optimal sample
size through worst-case analysis: (i) model the entire distribution
of total cumulative regret variable, (ii) construct an upper bound
for it by fixing a percentile, and (iii) find a sample size that opti-
mizes this bound.
We follow the same assumptions as we made for average-case

analysis. The true mean of each treatment, μ1 and μ2, has a prior
Gaussian distribution N(μ, (σm/

��
2

√
)2). Then, the distribution of

μ1− μ2, referred to as X ∼ N(0, σ2m). Let FC|N(c) be the CDF of
total cumulative regret for a given n (each treatment is subject to

Fig. 2 Normalized expected cumulative regret over different sample sizes

Fig. 3 Optimal sample size over different Ω
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n trials therefore 2n resources are used for experimentation). This is
essentially the P(C≤ c|N= n). The inverse of the cumulative distri-
bution function can be written as F−1

C|N (p) = c. This tells us we can
expect to see a cumulative regret below the value of c with proba-
bility p (for any given p). The n* which minimizes this function
gives the optimal sample size for the given worst-case bound char-
acterized by p. In other words, min

n
F−1
C|N(p). However, without a

closed form for F−1
C|N (p), we numerically determine c in by equating

p=FC|N(c) for given bound values p for various values of n. We
determine the optimal n through this method.
The CDF of FC|N(c) can be constructed by breaking down the

probability into two parts.

FC|N (c) = P(C ≤ c and Picks the optimal treatment|N = n)

P(C ≤ c|N = n and Picks the sub-optimal treatment)

(10)

We can state that P(C≤ c|N= n and Picks the optimal treatment)
occurs if X takes on a value such that the total regret n× x≤ c.
This is because the only regret we experience when we pick the
optimal treatment is the n resources that were committed to the sub-
optimal treatment during the experimental phase. Rearranging the
terms, we get the inequality that X≤ c/n. Similarly, we can state
that P(C≤ c|N= n and Picks the sub-optimal treatment) occurs
if X takes on a value such that the total regret n× x+ (T− 2n) ×
x≤ c. This is because, in addition to the regret from the n units
during the suboptimal phase,we deploy (T− 2n) units sub-optimally.
Rearranging the terms, we get the inequality that x≤ c/(T− n). We
use these inequalities to determine c for a given p, T, σm, σe for
various values of n through the formulation below:

p=
∫c/n
0

∫∞
0

1
2σe��
n

√ ��
π

√ exp −
(y− x)2

4σ2e
n

⎛
⎜⎜⎝

⎞
⎟⎟⎠dy

��
2

√

σm
��
π

√ exp −
x2

2σ2m

( )
dx

+
∫c/(T−n)

0

∫0
−∞

1
2σe��
n

√ ��
π

√ exp −
(y− x)2

8σ2e
n

⎛
⎜⎜⎝

⎞
⎟⎟⎠dy

��
2

√

σm
��
π

√ exp −
x2

2σ2m

( )
dx

(11)

Similar to Sec. 3, we can normalize this regret by dividing it by the
maximum-expected regret which can be defined by T

�����
2/π

√
σm.

As explained in Sec. 3, we assume that the suboptimal treatment is
selected over the entire trial horizon T, and the average gap
between the optimal and sub-optimal treatment is

�����
2/π

√
σm.

Figure 4 shows the 90th, 95th, and 99th percentiles of normalized
cumulative regret and compares this to the expected value for T=
100 and Ω= 1. There are three interesting findings from Fig. 4
which we discuss here. First, the normalized worst-case regret can
and does exceed a 100%, and this is because our definition is
based on maximum-expected regret (see Sec. 3), which is a normal-
ization over the maximum possible regret for the average gap
between optimal and sub-optimal treatments. The true distribution
for the cumulative regret would also account for the uncertainty in
the gap between the treatments, and therefore, a worst-case scenario
could be worse than the maximum-expected regret. The second
finding is that as p increases (the degree of pessimism), this leads
to an overall increase in cumulative regret andmotivatesmore exper-
imentation. Informally stated, if one expects to be unlucky in our
guess of the optimal treatment, we prefer to hedge for this by becom-
ing more conservative, and this is achieved by experimenting more.
Finally, the third finding we discuss is that the expected value of
cumulative regret is similar to the 90% worst-case scenarios
plotted in the graph. In fact, the use of an 85% bound would result
in lower regret at optima than the expected value. The reason for
this is the nature of the distribution of cumulative regret. The cumu-
lative regret is bimodal in nature, corresponding to the two modes of
(i) guessing the optimal treatment, in which case the regret is con-
fined to the experimental phase, or (ii) failing to guess the optimal
treatment, in which case the regret is experienced over the remaining
units. Under conditions close to the optimal level of experimentation,
the majority of the density lies in the lower mode, with the remaining
(minor) portion of the density at a much higher value. This has the
effect of the long, heavy tail resulting in the expected value being
close to the 85% percentile mark in the density function. In other
words, the use of expected value inherently serves to prescribe a
risk-averse behavior.

4.2 Unequal Priors on Treatment Means. In Sec. 3, we
determine the sample size for a balanced experiment under the
assumption that the true mean of each treatment, μ1 and μ2, is ran-
domly sampled from a Gaussian distribution N(K, (σm/

��
2

√
)2), and

therefore the gap between means X ∼ N(0, σ2m). In this section, we
explore the case where X has a non-zero mean. This could arise
from historical data or experimenter’s priors that favor one treat-
ment over the other, probabilistically. While it would be fairly

Fig. 4 Normalized cumulative regret over different sample sizes
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straightforward to show that a non-zero mean for Xwould still favor
balanced experimentation in the offline environment (where the
goal is the only maximization of information), this setting has
some interesting implications for experimentation in the online
environment. Here, we no longer favor balanced experimentation
of the treatments. Intuitively, there is now an added trade-off
even in the experimental phase, where favoring the ostensibly
superior treatment (as suggested by the prior distributions) will
probabilistically lead to lower regret, whereas continuing to stay
as close to a balanced design will provide the highest scope for
identifying the truly superior treatment (which can be exploited
in the next phase).
In line with terminology and formulation from Sec. 3, here we

assume that the prior on mean of treatment A is fA(a) ∼
N(μA, σ

2
m/2) and treatment B is fB(b) ∼ N(μB, σ

2
m/2) if μm= μA−

μB then the gap X=A−B is given by fX(x) ∼ N(μm, σ
2
m). If the

noise in the system follows N(0, σ2e ). After n1 samples of A and
n2 samples of B, the conditional distribution of the estimate is
fY|X(y) ∼ N(x, σ2e/n1 + σ2e/n2). When μm= 0 (the special case
studied in Sec. 3), a decision to choose the treatment with the
higher sample mean is in line with both a frequentist and Bayesian
decision-making process. This is the analysis we carried out in
Sec. 3. However, when μm≠ 0, a Bayesian decision-making frame-
work would use the samples to update the posterior means and
choose the treatment with the higher posterior mean.
Using the Gaussian assumptions, the conjugate posterior of the

mean is

μ post =

1
1
σ2m

+
1

σ2e
n1

+
σ2e
n2

⎛
⎜⎜⎝

⎞
⎟⎟⎠

μm
σ2m

+
y

σ2e
n1

+
σ2e
n2

⎛
⎜⎝

⎞
⎟⎠ (12)

From the posterior mean, we can make a claim that if y is greater
than (−(σ2e/n1 + σ2e/n2)μm)/σ

2
m, then our μpost will be greater than

zero leading to a decision to pick treatment A, which was subject
to n1 samples in the experimental phase.
The expected cumulative regret can be written as

E(CR2n)=
∫∞
0
n2 × xfX(x)

∫∞
(−(σ2e/n1+σ2e/n2)μm)/σ2m

fY |X(y)dydx

+
∫0
−∞

(T − n2)×−xfX(x)
∫∞
(−(σ2e/n1+σ2e/n2)μm)/σ2m

fY |X(y)dydx

+
∫0
−∞

n1 ×−xfX(x)
∫(−(σ2e/n1+σ2e/n2)μm)/σ2m
−∞

fY|X(y)dydx

+
∫∞
0
(T − n1) × xfX(x)

∫(−(σ2e/n1+σ2e/n2)μm)/σ2m
−∞

fY|X(y)dy dx

(13)

Where, as previously mentioned, fX(x) ∼ N(μm, σ
2
m) and

fY|X(y) ∼ N(x, σ2e/n1 + σ2e/n2). The pair (n1*, n2*) which minimizes
the above equation gives the optimal sample allocation for the treat-
ments. This can be numerically evaluated. We explore a few illus-
trative values to provide readers with the intuition of how an
unequal prior motivates the experimenter to utilize more resources
in experimenting on the favorable treatment, in the online context.
We adopt the case where T= 100, σm= 1, and σe= 2. This is one of
the settings explored in Sec. 3 and shown in Fig. 2. Also, it repre-
sents the more pathological environment, which requires more
experimentation. For these values, we explore three different
values of μm= 0, μm= 0.4316, and μm= 0.9678. These values
have been specifically selected such that they result in a mean
and variance combination which translates to the probability that
treatment A is better than treatment B by 0.5, 0.6667, and 0.8334,
respectively. Contour plots in Figs. 5–7 show the results of the
cumulative regret (contour lines) for different values of n1 and n2.

Figure 5 is a baseline case where both priors are equally likely. In
essence, this would conform to the results of Sec. 3. While Sec. 3
assumes that the experiments need to be balanced for optimal per-
formance, or in other words n= n1= n2, this analysis confirms
that the balanced trials result in the best performance. The 45◦ diag-
onal from the origin indicates the cases where n1= n2 and in Fig. 5
we see that the optimal values are reached at n1= n2= 9.5 (which is
inline with Fig. 2. It can also be seen that the balanced designs are
also best possible allocation for any given budget (note that the 45◦
diagonal perpendicular to the one from the origin, connecting the
positive and x and y-axes represents a contour line of a given
budget for total experimentation or n1+ n2= constant). Further-
more, this graph shows us the rate at which regret increases when
experiments are conducted in an unbalanced way.
In other cases, we have priors that imply that one treatment mean

is greater than the other (μm≠ 0). When priors indicate this, in an
online environment, a new trade-off takes place. On the one hand,
a balanced experiment continues to have the steepest gain in deter-
mining which treatment is truly superior. This would contribute the
most in minimizing regret during the post-experimental phase. By
contrast, a commitment to the purportedly superior treatment pro-
vides benefits of minimizing regret during the experimental
phase. Overall, this results in leaning toward more experiments
on the preferred treatment. In Fig. 6, for instance, when μm=
0.4316, corresponding to the likelihood that the first treatment is
66.66% likely to be the optimal one, we see that optimal allocation
is seen when n1= 13 and n2= 6. As we keep increasing the likeli-
hood that a treatment is better than the other we find that this
results in minimal motivation to experiment on the inferior treat-
ment. This is seen in Fig. 7 where the μm= 0.9678, corresponding

Fig. 5 ECR contour plot for μm = 0

Fig. 6 ECR contour plot for μm = 0.4316
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to the probability that the mean of the first treatment is 83.33%
more likely than the second one to be superior. Here, the
optimal allocation is in expending no resources on the probabilis-
tically inferior treatment (our constraints require 1 unit as a base).
Interestingly, we are largely indifferent to the commitment of
experimental resources to the ostensibly superior treatment for a
given commitment of resources to the inferior one (the contour
curves in Fig. 7 are almost horizontal). These two findings stem
from the same phenomena. Given the priors in such an environ-
ment, exploration has little effect on changing the decision from
the superior to the inferior treatment based on sample evidence
(the relatively large μm would imply that �x would have a lesser
effect on μpost in Eq. (12)). Therefore, low experimentation, with
a high probability, will lead to expending all resources on the
seemingly superior treatment. Similarly, experimenting blindly
on the seemingly superior treatment has the same effect, and
risk. This results in a flattish response to varying degrees of exper-
imentation on the treatment which is theoretically expected to have
a higher mean.

4.3 Analysis of Multiple Treatments. In Sec. 3, we use
expected cumulative regret as a performance measure that needs
to be minimized, and we determine the optimal sample size for
an experiment which achieves this objective. However, when
there are more than two treatments or, stated another way, that
the factor of interest has three or more levels, this conception
proves to be challenging. In this section, we explore expected cumu-
lative improvement (E(CIkn)), which is the exact complement of
cumulative regret, with respect to average performance across all
treatments. Essentially, expected cumulative regret is a measure of
the average cumulative regret benchmarked against optimal perfor-
mance (defined by always choosing the optimal treatment), the
expected cumulative improvement captures the average improve-
ment in performance benchmarked against a truly random selection
of treatments. An experimental budget that minimizes expected
cumulative regret would identically be maximizing expected cumu-
lative improvement. Its use can also be seen in other studies such as
Ref. [31]. The cumulative improvement for T when subjecting each
of the k treatments to n replicates is defined as

CIkn = (T − n × k) × Expected Improvement (14)

where the expected improvement is defined as the average improve-
ment in performance that can be expected from picking the treatment
which resulted in the highest mean after n× k experiments. Un-
derstandably, this improvement is exploited only on the remaining
T− n× k units and the first n× k have 0 improvement over the base-
line of a random selection owing to the fact that this is a balanced
experiment. We model each of k levels of a factor’s mean response
as being drawn from a normally distributed population with a

mean of 0 and variance of σ2m/2.
1 We are interested in assessing

the improvement in the outcome attained by estimating those
factor levels through an experiment replicated n times with pure
experimental error σ2e . We assume that n× kwhich is the total exper-
imental budget is less than T.
The expected value of improvements in the results after the

experimentation phase across different values of k are as follows:
using the same terminology adopted in Sec. 3, similar to Eq. (3),
for k= 2 levels the expected improvement can be written as

EI2n =
∫∞
0

∫∞
0

x

2
×

1
σe��
n

√ 2
��
π

√ exp
−
(y − x)2

4σ2e
n

⎛
⎜⎝

⎞
⎟⎠

× dy

��
2

√

σm
��
π

√ exp −
x2

2σ2m

( )
dx

+
∫∞
0

∫0
−∞

x

2
× x ×

1
σe��
n

√ 2
��
π

√ exp
−
(y − x)2

4σ2e
n

⎛
⎜⎝

⎞
⎟⎠

× dy

��
2

√

σm
��
π

√ exp −
x2

2σ2m

( )
dx

(15)

EI2n =
1��
π

√ σ2m

2

����������
σ2e
n

+
σ2m
2

√ (16)

Therefore, the cumulative improvement for two treatments case is

E(CI2n) = (T − 2n) ×
1��
π

√ σ2m

2

����������
σ2e
n

+
σ2m
2

√ (17)

In order to enable the generalization of these results to any number
of treatments, we use the well-established relationship in order sta-
tistics that if Xi, i∈ 1 … k are independent and normally distributed
then E( maxi Xi) = μ + σ

�∞
−∞t(d/dt)(Φ(t)k)dt. We now rewrite

E(CI2n) in a generalizable form

E(CI2n) = (T − 2n) ×
σ2m

2

����������
σ2e
n

+
σ2m
2

√ ×
∫∞
−∞

t
d

dt
Φ(t)2 dt (18)

where it can be shown that
�∞
−∞t(d/dt)Φ(t)2 dt = 1/

��
π

√
.

This allows us to extend our results for k treatments.

E(CIkn) = (T − kn) ×
σ2m

2

����������
σ2e
n

+
σ2m
2

√ ×
∫∞
−∞

t
d

dt
Φ(t)k dt (19)

While our primary objective is to determine the optimal n for any
given k, we first discuss some interesting insights that can be seen
in Eq. (19). The values of

�∞
−∞t(d/dt)(Φ(t)k) dt for various values

of k can be determined analytically for k= 2, 3, …, 6. (summarized
in Ref. [32], refer to Table 1).
A plot of these values (Fig. 8), which essentially captures the

benefit of having more treatments, shows that the relationship is
monotonic but is convex (steep initially but plateaus out). By con-
trast, the experimental effort increases linearly as k increases (the
T − nk term in Eq. (19)). This indicates that for a given value of n,
increases in k could initially lead to an increase in cumulative
improvement (if the curve of

�∞
−∞t(d/dt)(Φ(t)k) dt is steeper than

the linear drop from T− nk), but will certainly lead to a point
where increase in k is detrimental. However, if n* (the optimal n)

Fig. 7 ECR contour plot for μm = 0.9678

1To be consistent with assumptions in Secs. 3, 4.1, and 4.2, the treatment or factor’s
means are sampled from N(μ, (σm/

��
2

√
)2).
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was determined independently, for different values of k, then Fig. 9
shows that n* decreases as k increases. The highlighted points in
Fig. 9 indicate the optimal sample size (n*) for a given number of
treatments (k). This behavior is to be expected since an increase in
replicates eats into the deployment phase at a steeper rate when
there are more treatments. Another finding is that the overall cumu-
lative improvement is greater at the optimal point as k increases.
Finally, it is also noteworthy that the overall experimental expendi-
ture (k × n*) increases with an increase in k. We discuss this in
greater detail following our derivations on n*. While the
optimal n* can be inferred for a given environment, numerically

(as done in Fig. 9), in this section,we analytically derive n*.We iden-
tify n* by solving for n in ∂E(CIkn)/∂n= 0. Differentiating Eq. (19),
we get

σ2eσ
2
m(T − kn)

�∞
−∞

21/2−kke−(t
2/2)terfc −

t��
2

√
( )k−1

��
π

√ dt

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

4n2
σ2e
n

+
σ2m
2

( )3/2 (20)

−

kσ2m
�∞
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2

√
( )k−1

��
π

√ dt

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

2

����������
σ2e
n

+
σ2m
2

√ = 0 (21)

Letting Ω= σm/σe, we have

n* =
−3 +

�����������
9 +

4T
k
Ω2

√
2Ω2 (22)

Table 1 Analytical results of
�����∞∞∞∞∞
−∞∞∞∞∞ttttt(ddddd/////dddddttttt)(ΦΦΦΦΦ(ttttt)kkkkk)dddddttttt for various

values of k from Ref. [32]
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Fig. 8 Constant coefficient across different number of treatments

Fig. 9 Cumulative improvement across different sample size for T=100 and Ω=1
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It can be seen that Eq. (22) is not a function of
�∞
−∞t(d/dt)(Φ(t)k) dt

(although cumulative improvement is influenced by this term). This
is owing to the fact that this term is not a function of n and can be
thought of as a constant for a given k. Also, as expected, Eq. (22) sim-
plifies to Eq. (9) for k= 2. This corroborates the claim that the optimal
point for theminimization of cumulative regret and themaximization
of cumulative improvement are the same. A closer look at Eq. (22)
shows that the experimental budget k× n* will always increase for
an increase in k (despite the fact that n* decreases with an increase
in k). This is true for all values of T and Ω. It is also interesting to
note that under no circumstances can the overall experimental
budget (n* × k) as a percentage of the trial horizon (T) exceed 1

3,
and this happens when k→∞, or Ω→ 0, or T→ 0 (It is important
to note that there are real-world constraints such as k× n* needing
to be less than T or that n, k and T needing to be integers. Our formu-
lations do not impose these practical consideration with the intent of
understanding the true interrelationship between the variables and
their edge conditions). In other words, n*k/T → 1

3 as k→∞, or
Ω→ 0, or T→ 0. Similarly, n*k/T→ 0 when k→ 0, or Ω→∞, or
T→∞. These edge conditions are important findings of the study.

5 Conclusions and Future Work
This paper recommends an analytical framework to make prede-

termined plans for the learning phase(s) of a project, where the
system is live, and the scope of exploitation is defined. In
essence, it helps practitioners make decisions on the allocation of
time and budget for the experimental phase in this setting. The
study achieves this through theoretical derivations of the optimal
sample under different assumptions of the underlying environment.
We demonstrate, in Sec. 4.3, that the degree of experimentation as a
percentage of the trial horizon ranges from 0% to 33.33%, for any
value of T, k, and Φ for when the priors are equal. These findings
should equally apply to the base case in Sec. 3 and are also seen
in setups explored in Sec. 4.1.
The estimate of Ω= σm/σe is an important input to determine the

experimental budget. Any inaccuracy in the estimate would change
the optimal budget and would, in turn, affect the performance
results we discuss above. There are two major insights that our
study offers in this regard. First, the potential loss due to moderate
inaccuracies in this estimate is relatively minor. By contrast, differ-
ences in the implementation horizon, which is likely to be well-
known, have a much greater impact on the experimental budget.
For instance, when the true environment reflects an Ω= 1, but the
practitioner believes a different Ω = 1

2 or 2, this only causes the
degree of experimentation to be off by approximately 6% on
either side. In the worst case, the normalized expected cumulative
regret (NECR2n) the practitioner will experience is 13.6% as
opposed to the 12% at optima. When this is compared to the base-
line average NECR2n of 28%, experienced through a uniformly
random experimental budget, the reduction in total improvement
drops marginally from 73% to 68%. Whereas, as shown in Fig. 3,
the sample size and performance significantly vary with T. The
second insight, which follows from the results in Secs. 3 and 4, is
that under-experimenting results in a larger loss than over-
experimenting. In our example of using Ω = 1

2 or 2, instead of
Ω= 1, the pathological case occurs when the practitioner believes
that Ω= 2 and therefore under-experiments. This results in a
NECR2n = 13.6%, whereas the regret experienced from over-
experimenting due to an Ω = 1

2 is 12.9%.
Finally, quantifying the exact benefits from the proposed frame-

work and comparing it with other alternative methods poses certain
challenges, as the context is previously unexplored (to the authors’
best knowledge). Hence, we do not have an established baseline
approach for allocating a budget for one-shot experiments in the
online framework, and it is unclear as to what other heuristics prac-
titioners may employ. Despite this, a simple benchmark would be to
compare the improvement in performance (lowering of expected
cumulative regret) that can be availed by experimenting at the

recommended optimal-level versus a uniformly randomly selected
percentage of the horizon. For the two-treatment setting we
explored in Sec. 3, we can see that when Ω= 1, the lowest normal-
ized expected cumulative regret (NECR2n) is approximately 12%
whereas a uniformly random experimental budget allocation from
0 to 100% would have yielded a regret of 28% on average. This
is a reduction in regret of 16% in absolute terms, and in relative
terms translates to a further improvement in performance by 73%
(using NECR2n = 50% as the worst case which is realized when
the experimentation is 0% or 100%). Similarly, we see absolute
reductions in NECR2n of 12% and 20% for Ω = 1

2 and 2, respec-
tively. This translates to an improvement in the performance of
64% and 87%. Our extension discussed in Sec. 4.1 shows similar
ranges of performance.
In terms of future work, a promising next step would be to

explore a deployment that can happen over multiple phases. Our
base case studies two phases of deployment, where the first phase
gets committed to experimentation, and the next phase picks a
winner. Our extension in Sec. 4.2 explores the idea of having
unequal priors. If these unequal priors were to be modeled as the
product of preceding phases of experimentation in an online envi-
ronment, it would lend to a generalization where we could model
more than two phases. Here, an algorithm would generate plans
for a fixed number (m) of phases, over which the T units need to
be deployed. Clearly, when m= T, our problem statement
becomes the same as the multi-armed bandit setup. We currently
explore the m= 2 setting. We believe that generating algorithms
for settings where 2≤m≤ T would be a contribution of immense
practical relevance. Another area of inquiry could be to explore
solutions that make no distributional assumptions. It is also possible
to consider an extension to continuous-value case for the treatments,
where we could model this as an analogy to the infinite armed
bandit setting. Finally, it would be of interest to study the various
assumptions that a practitioner can make in a given environment
and needs to make for a given method of analysis. For instance,
in this work, we explore assumptions on the distributions of both
the true means of the treatments, as well as the noise. One could
study the various modes through which a practitioner can ascertain
these values. It would also be important to understand if the knowl-
edge of the uncertainty in the estimates can be used to make an
experimental strategy more robust.
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