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Non-parametric Mixed-Manifold Products
using Multiscale Kernel Densities

Dehann Fourie1, Pedro Vaz Teixeira2, and John Leonard1,2

Abstract— We extend the core operation of non-parametric
belief propagation (NBP), also known as multi-scale sequential
Gibbs sampling, to approximate products of kernel density
estimated beliefs that reside on some manifold. The original
algorithm, though multidimensional, implicitly assumes the
beliefs to reside on the Euclidean R𝑑 space only. The proposed
extension generalizes to any mixture of Riemannian manifolds,
provided the primary operations—addition and subtraction—
are defined. Our motivation is primarily focused on state-
estimation using non-Gaussian factor graphs for multimodal
simultaneous localization and mapping in robotics. The paper
presents the method as well as simulation and experimental
results for validation. Our implementation is publicly available
and allows for expansion with user-defined manifold mixtures.

I. INTRODUCTION

Robust state estimation and sensor fusion are critical to
many robotics applications. The ability to combine inertial
navigation data (odometry) with ambiguous sensor measure-
ments requires moving away from typical parametric belief
models and towards more capable representations. While
methods exist that allow for state estimation on certain
manifolds, these are often specialized, and extension to a
different manifold is likely to require time consuming mod-
ifications. Removing the constraints that limit an inference
algorithm to operate on a pre-determined manifold allows for
much greater flexibility in its application. To the best of the
authors knowledge, there is no established generic method
for posterior inference over a heterogeneous combination of
manifolds using a shared belief representation. The aim is
to extend our previous work on multi-modal incremental
smoothing and mapping [1], [2] to handle arbitrary mixed-
manifold belief representations with minimal restrictions. To
this end, we propose a multi-scale Gibbs sampling process
to approximate products from incoming, smooth likelihood
densities defined across combinations of manifolds. This al-
gorithm can readily be used in applications such as Bayesian
filtering, signal processing, and factor graph optimization.
As belief representations and inference methods are inti-
mately related, we consider this extension a step towards
fully functional methods that can be used in large scale
inference problems, such as those found in simultaneous
Localization and Mapping (SLAM) applications. We validate
the proposed method using a simulated a target tracking
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Fig. 1: Four separate examples of approximate products of kernel densities
on single circular manifold. In each case, the orange trace represents the
approximate density functional product (posterior) of the red, blue, or
magenta probability traces (likelihoods). For illustration, the normalized
probability densities are drawn as though wrapped around the unit circle
with some scaling factor.

example, and present experimental results on non-Gaussian
acoustic triangulation.

While the evaluation presented in this paper focuses on
Euclidean, circular, cylindrical, or special Euclidean 𝑆𝐸(2)
manifolds, the proposed technique is readily expandable to
most, or all, mixed-manifold Riemannian spaces for which
addition and subtraction operations can be defined and a
local Euclidean tangent space expansion exists. Moreover,
we aim to provide, by method and example, a guide on how
to incorporate other manifolds not highlighted here.

The remainder of this paper is structured as follows:
section II provides an overview of related work on non-
parametric belief representations on manifolds and the as-
sociated inference tasks. The method is presented in section
III, with simulation and experimental results in Section IV
with canonical application examples that are relevant to many
state estimation problems. Finally, we conclude in section V
with a critical overview of the proposed method and pointers
for future research directions.

II. RELATED WORK

Representation and inference techniques found in the
literature can be broadly classified into one or more of the



following five categories: (i) directional statistics (wrapped
Euclidean distributions); (ii) parametric (manifold-specific
models); (iii) discrete grids; (iv) orthogonal-basis/wavelets
(harmonic analysis); (v) kernel approximation (mixtures and
embeddings).

Directional statistics generally modifies parametric models
from the Euclidean manifold to obtain the desired statistics
on the chosen manifold, notably the 𝑛-dimensional sphere
𝑆𝑛. As an example, the circular wrapped normal distribution
𝑊𝑁𝐾 (𝜃;𝜇, 𝜎) (discussed in greater detail in Section III-
B) assumes an on-manifold difference operator ⊖𝜃 ⊕ 𝜇𝜃,
equivalent to the Euclidean difference −𝑥+ 𝜇𝑥.

Parametric stochastic processes on common manifolds are
well documented in the literature [3]. Examples of manifold-
specific parametric models include Bingham (𝐵 (·)) [4] or
Von Mises (𝑉𝑀 (·)) [5]. Combinations of various manifold
distributions, such as a recently proposed 𝑆𝐸(2) parametric
probability model by Gilitschenski et al. [6], [7], have also
been suggested. Still, it should be noted that combinations of
arbitrary manifold-specific models might not always capture
significant conditional dependence structure between the
dimensions, as required by the probabilistic chain rule, for
example1:

[𝑋,Ψ ] = [𝑋 |Ψ ] [Ψ ] ̸= [𝑋 ] [ Ψ ] (1)

Beyond bespoke parameteric density models—like the
Kalman filter—several non-parametric methods exist: For
example, the particle filter [8] generally builds on the sim-
plicity/effectiveness of importance sampling, used to approx-
imate the product between predicted and measured belief
functions, as demonstrated in Rypkema et al. [9]. Particle
filters are successful with lower dimensional state variables
𝜃 ∈ Ξ, but quickly suffer from the particle depletion problem
when used with high dimensional systems. This effect is
a consequence of the rejection/resampling scheme used by
importance sampling.

Histogram filtering methods [10] discretize some bounded
region of the state variable domain into intervals [11], and
utilize discrete update rules for predictions and measure-
ments on a per-particle basis. Discretized methods are limited
in the resolution and bounded domain over which they can
operate. Examples include bounded circular or spherical in-
tervals, using fixed grid Fourier series [12] or with spherical
harmonics. Further examples include representing belief on
a bounded interval with orthogonal basis functions such as
polynomials or wavelets [13], [14], [15].

Reproducing Kernel Embeddings can readily be applied
to manifold operations, but the techniques developed in
machine learning require training data from the joint distribu-
tion [16], [17]. Unfortunately, many applications of interest,
such as Simultaneous Localization and Mapping (SLAM),
require non-Gaussian posterior estimation for which the joint
distribution is unknown.

Some of the most significant recent work done on func-
tional representations for probabilities on rigid transform

1We use the following shorthand notation for probabilities:∫︀
Ξ 𝑝 (Θ|·) 𝑑𝜃 =

∫︀
Ξ [ Θ | · ] 𝑑𝜃 = 1

manifolds is by Duits et. al. [18], [19]. Ongoing advances in
reproducing kernel embeddings, particle flow homotopy [20],
[21], [22], and wavelet analysis such as those by Duits et
al. [18] allude that fully deterministic approaches to fully-
functional inference may be possible.

Possibilities aside, kernel density estimation (KDE) [23] is
well known and effective methods to compute multidimen-
sional products already exist, for example work by Sudderth
and Ihler et al. [24], [25], [26], [27], or Hanebeck et al. [22],
[21]. Although KDE methods are easily modifiable for a
number of dimensions, they are commonly restricted to the
Euclidean manifold.

Finally, efficient KDEs representations depend on ball tree
representations, which in turn have been extended in areas
such as classification [28]. Here follows an extension—to
mixed-manifold functional products—related to or extending
techniques such as [27], [29], [16]. Note that this paper
chooses to use the term Euclidean manifold rather than
Cartesian coordinates.

III. BACKGROUND AND METHOD

This section discusses some background to mixed-
manifold inference, followed by the method used to approx-
imate products of infinite functionls on mixed manifolds.

A. Non-Gaussian Factor Graphs & Bayes (Junction) Tree

Factor graphs [30] are bipartite graphs of variables Θ𝑖 ∈
Ξ𝑖 and factors, offering a convenient language for describing
the data-fusion inference task. Figures 4 and 7 each show
small canonical factor graph examples. Each factor repre-
sents a noisy measurement (relative observation) z̃𝑖 ∈ 𝒵𝑖

that sparsely interconnects a small set of system variables Θ′
𝑖,

and is expressed through probabilistic conditional likelihood
models such as [Z𝑖 = z̃𝑖 |Θ′

𝑖 ]. Prior probabilities are unary
(assumed absolute) and could apply to any variable – i.e.
[ Θ𝑗 | z𝑗 , · ], which themselves could be based on observations
Z𝑗 = z̃𝑗 ∈ 𝒵𝑗 . The notation (·) is used to emphasize
the dependence on some outside—or potentially iterative—
process that was used to produce the prior factors [ Θ𝑗 | · ].

The multimodal-iSAM [2] approach to data-fusion is
to approximate—through incremental/quasi-fixed-lag & dis-
tributed smoothing [1]—the marginal posterior belief[︁
Θ̂𝑚 | z̃

]︁
of the full joint probability [ Θ𝑚 | z̃ ]:

[ Θ𝑚 | z̃ ] =
∫︁
∖Ξ𝑚

[ Θ |Z = z̃ ] 𝑑𝜃∖𝑚

∝
∫︁
∖Ξ𝑚

∏︁
𝑖

[ z𝑖 |Θ′
𝑖 ]

∏︁
𝑗

[ Θ𝑗 | · ] 𝑑𝜃∖𝑚, (2)

with events 𝜃𝑚 ∈ Ξ𝑚 (stochastic variables) and observations
𝑧𝑖 ∈ 𝒵𝑖 (measurements). Eq. (2)—an algebraic refactored
joint probability product—assumes that all measurements are
uncorrelated z̃𝑘 ⊥ z̃𝑙|Θ𝑖, ∀𝑘 ̸= 𝑙, since the structure between
measurement observations is systematically modelled by the
factor graph.

Furthermore, the mm-iSAM method also relies on the
construction of a specialized Bayes (Junction) tree [31], [32],



[33], [1] of cliques. The Bayes tree specialization allows ad-
vanced features, such as incremental (recycled computation)
/ quasi-fixed-lag / distributed (federated) inference. A clique
𝑐 is an algorithmic refactoring—Bayes network [33]—of
several factors (likelihoods & priors) into groups {𝐶}; which
is represented by frontal Θ𝐹,𝑘 and separator variables Θ𝑆,𝑘

that describe an acyclic statistical (and exact) independence
structure within the original factor graph – also known as
the chordal property:

[ Θ |Z ] ∝
∏︁

𝑐∈{𝐶}

[ Θ𝐹,𝑐 |Θ𝑆,𝑐 ] . (3)

The particular nature of Θ𝐹,𝑐,Θ𝑆,𝑐 depends on each specific
factor graph and tree. The theoretical product of all cliques
would produce the same original factor graph joint distribu-
tion, but is explicitly never calculated due to its significant,
high-dimensional complexity:

The mm-iSAM [1], [2] inference algorithm proceeds
to find/estimate the marginal beliefs of each clique—
also known as the Chapman-Kolmogorov transit integral—
through a message passing (belief propagation/sum-product)
upward process that assembles information from the leaves
to root of the tree. A downward pass follows to spread all
measurement information back to all variables back from the
root until numerical changes become negligible.

[ Θ𝐹,𝑐 |Θ𝑆,𝑐 ] ∝
∏︁

𝑐∈{𝐶}

[ z̃𝑐 |Θ𝑐 ]
∏︁

𝑑∈{𝐶}

[ Θ𝑑 | z̃𝑑, · ] . (4)

For the upward pass, at each clique the Chapman-
Kolmogorov integral is computed (estimated) and the frontal
variables are marginalized out and the separator variables
are sent as a message [ Θ𝑆,𝑐 |Y𝑐 ], where Y𝑐 represents
all measurements z𝑖 lower down on that branch of the
tree. At each point during the inference process, partial &
marginal posterior beliefs must be approximated, specific
to the particular mixture of manifolds present in each state
variable, where the product of several proposal distributions
is a core operation.

B. On-Manifold, Arbitrary Function Estimation

The inference process requires a method of approximating
the marginal beliefs for each of the variables during different
stages of the inference processes. State variables must exist
in some smooth metric space 𝜃𝑖 ∈ Ξ𝑖 (containing an identity
element 𝜃0) where on-manifold addition and subtraction are
defined (Ξ, 𝜃0,⊕,⊖), as well as a metric distance 𝑑 (𝜃, 𝜃′) =
⊖𝜃′ ⊕ 𝜃 – i.e. a Riemannian manifold.

Kernel representations 𝑘 (𝜇, 𝜃) utilize the local tangent
space around 𝜇 ∈ Ξ𝑖 and manifold smoothness conditions
to approximate probabilistic events 𝒫 (Ξ𝑖) on the local
manifold tangent space. The kernel 𝑘 is located by parameter
𝜇, with assumed local support (spread) defined by bandwidth
parameter Λ. By design, the representation is limited to a
Hilbert space subset of all probability densities P (Ξ) ⊂

𝒫 (Ξ):

[ Θ | · ] ≈
[︁
Θ̂𝑖 | ·

]︁
, [ Θ𝑖 | · ] ∈ 𝒫,

[︁
Θ̂𝑖 | ·

]︁
∈ P∫︁

Ξ𝑖

[︁
Θ̂𝑖 = 𝜃 | ·

]︁2
𝑑𝜃 <∞, ∀𝑖 (5)

with multivariate density

𝜃 ∈ Ξ𝑖 : [ Θ𝑖 = 𝜃 | · ] → R+. (6)

Finite dimensional—i.e. 𝑁 ′ degrees of freedom—
approximations of probability densities are taken as the
sum of smooth normal (or radial basis) kernels, which are
specifically chosen for their congruent property:

[︁
Θ̂ | ·

]︁
=

1

𝑁

𝑁∑︁
𝑛=1

𝑘 (𝑑 (𝜇𝑛, 𝜃)) . (7)

Congruency is required so that the product of normal kernels
produce yet another normal. This in turn allows all belief
representations required during inference to be constructed
in similar Hilbert spaces.

Additional numerical benefits might be attained on certain
bounded domains—such as circular—by using a wrapped
normal kernel:

𝑘 (𝜇𝑖, 𝜃) =𝑊𝑁𝐾 (𝑑 (𝜇𝑖, 𝜃) ; Λ) (8)

where theoretically 𝐾 → ∞ recovers infinite periodicity. In
this work, however, we will restrict to 𝐾 = 1 during practical
computations that can use wrapped kernels. As an example,
the circular manifold has distance 𝑑 (𝜇, 𝜃) = Δ𝜃 ∈ Ξ𝑖 and
Λ′ = Λ

√
2𝜋:

𝑊𝑁𝐾 (Δ𝜃; Λ) =
1

Λ′

𝐾∑︁
𝜅=−𝐾

𝑒𝑥𝑝

(︂
−‖Δ𝜃 ⊕ 2𝜋𝜅‖2

2Λ2

)︂
(9)

The generic normal (or wrapped) kernel density definition
allows introduction of new manifolds, on which to apply
the method, after the inference algorithm development has
completed; this is in stark contrast to many previous non-
Gaussian (functional) methods that require prior knowledge
of the domains before the algorithm is developed.

To summarize, the (as yet undefined) on-manifold proba-
bility density domain is approximated by eq. (7) with oper-
ations relating to 𝑑 (𝜇𝑖,𝑛, 𝜃𝑖) and Λ𝑖 depending on manifold
operations ⊕ and ⊖.

Leave-one-out-cross-validation [23], [34] is used to select
the bandwidth parameter Λ* that has the minimum entropy,

Λ* = 𝑎𝑟𝑔𝑚𝑖𝑛Λ − �̂�𝐶𝑉 ({𝜇}1:𝑁 ,Λ) (10)

with equal weighting and bandwidth parameter for all ker-
nels, and �̂�𝐶𝑉 as the cross validation version of estimated
entropy. Beirlant et al. [35] provides an overview of several
entropy estimation techniques, as well as optimizations by
Schwartz et al. [36].



1) Utilizing On-Manifold (Metric) Ball Trees: Kernel
density estimates can be constructed with a binary ball tree
algorithm [37], [38], such that multiple scales of the belief
is captured at each of the depths of the ball tree. The root
of the tree represents the on-manifold mean of all kernel
centers combined, while the leaves of the ball tree represent
the actual kernel center value across each of the manifolds.
We modify the ball tree construction simply by ensuring that
addition and subtraction manifold that meets the conditions
discussed in III-B.

Ball tree construction starts at the root by finding the
dimension along which the largest spread of points occur, and
proceeds by splitting along that dimension at the equidistant
mean. The measure of spread is proportional to the variance
from the on-manifold mean for a given set of points. The
mean is calculated as the on-manifold center of all associated
points:

For example, if the split occurs on a circular dimension,
then a relative exponential parameterization

[︁
𝜓×

]︁
∈ 𝑠𝑜 (𝑛)

(Lie algebra) [3] of the equivalent rotational (Lie) group
𝑎
𝑏R = exp [𝑎𝑏𝜓×] ∈ 𝑆𝑂(𝑛) can be used to define the signed
distance between elements;

𝜇
𝑖 𝜓 = 𝑑

(︀
0
𝑖R,

0
𝜇R

)︀
= log𝑆𝑂(𝑛)

(︁
0
𝜇R

𝑇 0
𝑖R

)︁
(11)

The on-manifold mean element is found when all distances
from the mean to each kernel center accumulate to zero

𝑑∑︁
𝑖=1

Λ−1
𝑖

𝜇
𝑖 𝜓 = 0. (12)

Each dimension of the ball tree could potentially be on
a different manifold, where we assume the scale on each
dimension is comparable; and while this is not strictly true
in general, our empirical study shows that this does not
seem like a significant limitation. Methods such as prescaling
dimensions for improved balance may improve performance,
but are not addressed in this paper. The kernel centers are
then split in the direction according greater or smaller signed
distance from the mean – i.e. elements landing ”before” or
”after” the local tangent plane expansion, see [38]. Figure 2
illustrates the ball tree construction process with a canonical
example on the 𝑆𝑂(𝑛 = 2) (circular) manifold.

C. Proposed Multiscale Gibbs Sampling Extension
The approximate product of infinite functionals through

multi-scale Gibbs sampling [27], [25]—also known as non-
parametric belief propagation (NBP)—leverages the ball tree
representation to cascade the sampling procedure from coarse
to fine as computation nests from root to leaves and promotes
exposure of multiple modes. Incoming (likelihood) densities[︁
Θ̂𝑖 | ·

]︁
are kernel density estimates, each with 𝑁 wrapped

normal kernel centers, bandwidths, and weights as in eq. (7).
The product is approximated by drawing a number of

samples from the product of 𝑠 incoming kernels and recon-
stituting a new kernel density estimate from those samples:[︁

Θ̂𝑖 | ·
]︁
∝

𝑠∏︁
𝑞=1

[︁
Θ̂𝑖 | ·

]︁
𝑞
. (13)
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Fig. 2: Illustration of two contrasting ball trees. Top: shows a mixture
probability density on the Euclidean or Circular manifolds. Bottom: shows
the respective ball trees with (subset mean) binary divisions. The three kernel
locations are (1, 2, 3) ≡ (−3.0, 1.5, 3.0), with equal bandwidth 0.1 and
equal weight 0.333̇. On the circular manifold, the first division (mean for
points (1, 2, 3)) occurs at 2.594 𝑟𝑎𝑑, contrasted to an assumed Euclidean
mean of 0.5.

For comparison, if the exact product were to be computed,
then 𝑁𝑆 new kernel parameters would need to be computed
from all product combinations of incoming kernel compo-
nents. Every one of 𝑀 kernels representing the product
density originates as the product of 𝑆 separate kernels. One
of 𝑁 kernels is selected for each of 𝑆 incoming kernel
densities.

A Gibbs sampling strategy over the indices of incoming
mixture components is used to stochastically select a subset
(of size 𝑀 ≈ 𝑁 ) kernels in the product density from
all possible kernels in the theoretical exact product of 𝑁𝑆

kernels. The selection starts with an initial random label 𝑙(0)𝑠,𝑛

selection for each of the 𝑆 incoming densities
[︁
Θ̂𝑖 | ·

]︁
𝑑
. A

new label 𝑙(0)𝑑,𝑛 is selected for one of the incoming densities,
say 𝑠 = 1. The selection must only depend on information
from the other 𝑆 − 1 densities – i.e. 𝑑 ̸= 1:

𝑙
(1)
1 ∼

[︁
𝐿1 | 𝑙(0)2 , 𝑙

(0)
3 , ..., 𝑙

(0)
𝑆

]︁
= 𝐶𝑎𝑡 ([𝜌1, 𝜌2, ..., 𝜌𝑁 ])

𝑙
(1)
2 ∼

[︁
𝐿2 | 𝑙(1)1 , 𝑙

(0)
3 , ..., 𝑙

(0)
𝑆

]︁
= 𝐶𝑎𝑡 ([𝜌1, 𝜌2, ..., 𝜌𝑁 ])

. . . (14)

The categorical label selection is probabilistically weighted
by {𝜌𝑛}𝑁𝑛=1. The weights 𝜌𝑛 are computed by evaluating
each kernel center 𝜇1,𝑛 of the 𝑠 = 1 incoming density
against the freshly computed temporary near-product kernel
𝑘
(︀
𝑑 (�̄�, 𝜃) ; Λ̄

)︀
:

𝜌𝑛 = 𝑘
(︀
𝑑 (�̄�, 𝜇1,𝑛) ; Λ̄

)︀
, ∀𝑛 ∈ [1, 𝑁 ]. (15)

The temporary near-product kernel is analytically computed
from the remaining 𝑆−1 kernels selected from the incoming



densities, as defined by the labels 𝑙(0)2 , 𝑙
(0)
3 , ..., 𝑙

(0)
𝑆 :

𝑘
(︀
𝑑 (�̄�, ·) ; Λ̄

)︀
=

𝑆∏︁
�̸�=1

𝑘 (𝑑 (𝜇𝑠′ , ·) ; Λ𝑠′) . (16)

with 𝑠′ = 𝑙
(0)
𝑠 . Note that the congruent property has been

invoked on the kernel product. The new weights {𝜌𝑛} are
used to probabilistically sample a new label 𝑙(1)1 index to
replace the now stale label 𝑙(0)1 . The process is repeated
to sample a new 𝑙

(1)
2 , as shown in eq. (14). After a given

number of iterations, the process is frozen and a new product
is calculated from all 𝑆 densities similar to eq. (16) which is
used as an outgoing product kernel At this point the process
drops one level down in the ball tree, and continues until
a component product is obtained at the lowest level. The
process is repeated until 𝑀 outgoing samples have been
generated.

The method for analytically calculating the on-manifold
near-product kernel in eq. (16) is as follows: each selected
kernel component 𝑘 (𝑑 (𝜇𝑠′ , ·) ; Λ𝑠′) is a normal distribution
about 𝜇𝑠′ with bandwidth Λ𝑠′ . Figure 3 illustrates the how
two normal kernels (the blue and red traces) are multiplied on
a circular (𝑆𝑂(2)) manifold. The resulting density (magenta
trace in figure 3) is obtained by calculating the on-manifold
mean �̄� and bandwidth Λ̄ parameters.

The product between normal distributions on the Eu-
clidean manifold can be computed by covariance/bandwidth
according to Λ̄ =

∑︀𝑆
𝑠=1 Λ𝑠 while the mean is computed

with Λ̄�̄� =
∑︀𝑆

𝑠=1 Λ′
𝑠𝜇𝑠′ . Through differential analysis we

can see that the following expression also holds:

Λ̄Δ�̄� =

𝑆∑︁
𝑠=1

Λ′
𝑠Δ𝜇𝑠′ (17)

where 𝜇𝐿,Λ
−1
𝐿 are the mean and covariances for each term

𝑠 of the product. Since near-product is the origin of the
differential expansion, Δ�̄� = 0 and implies the terms on the
right hand side should sum to zero, which yields eq. (12).
This can be solved for in any manner – either numerically,
through nullspace methods, or more advanced parametric
optimization such as Smith [39] or Dedieu et al. [40]. The re-
sults presented below used a numerical Newton optimizaton
solution.

Fig. 3: Illustration of a normal kernel density product on a circular manifold.
Red and blue density traces are multiplied together (as congruent kernels)
to produce another normal density – i.e. the magenta curve.

IV. RESULTS

A. Simulation: Cylindrical Data (Tracking Problem)

This simulation example is based on the radar tracking
problem, mechanized in polar coordinates. Polar coordinates
are used as an example of a cylindrical manifold, where
range encompasses the positive reals [+0,+∞) and angle
is on the bounded interval [−𝜋, 𝜋). A simulation of a falling
object with initial position and velocity is conducted, from
where range and bearing measurements are constructed for
the tracking problem. Figure 4 shows the simulated, and
example estimated trajectories. The trajectory is offset about
point 𝐴 to induce cylindrical wrap around behavior that is
seen in Figure 5.

horizontal [m]

-20 -10 0 10

true
mean
max

Legend

-60

-40

-20

0

20

ve
rti

ca
l [

m
] A

Fig. 4: Top: Illustration of classic target tracking example, with mean and
max belief estimates from the inference. The dashed line and arc represent
the polar coordinate tracking station measurements, as well as the coordinate
system used in this example. For demonstrating wrap around behavior, the
tracking and representation origin is offset to point 𝐴. Bottom: Factor graph
representation of the target tracking task, with variable states as larger nodes,
and factors as algebraic/probabilistic relationships between variables.

Figure 5 shows the unwrapped cylindrical manifold used
for this example. The dashed red line shows the true tra-
jectory of the object in range along the horizontal and
angle along the vertical axes. Note the 𝑡 = 0 𝑠 start
and 𝑡 = 5 𝑠 end point of the simulated trajectory. The
density estimates presented as the blue regions along the
true trajectory in Figure 5, and were calculated using the
approximate manifold product method integrated with the
non-Gaussian multimodal-iSAM factor graph solver [2], [1],
[41]. Successive range, bearing measurements are introduced
every couple hundred milliseconds (shown as red factors in
Figure 4), with

B. Experiment: Acoustic Localization, 𝑆𝐸(2)

A physical experiment is is used to demonstrate and
evaluate inference on the 𝑆𝐸(2) = 𝑆𝑂(2) n 𝐸(2) mixed-
manifold. The manifold is composed of 2D Euclidean XY
plane, combined with a bounded circular domain for rotation
on [−𝜋,+𝜋). The experiment intends to measure the speed
of sound in air using inexpensive hardware and performing



Fig. 5: Belief over cylindrical manifold of range and angle to object being
tracked by a simulated radar. The dashed red line indicates the simulated
trajectory, which wraps around at around 𝑇 = 2𝑠. Blue shading indecates
different target marginal posterior belief estimates stacked for visualization.
The target is successfully tracked along the manifold wrap-around, and note
the marginal estimates are coupled across dimensions.

the localization inference using the approximate manifold
products methodology outlined above.

The experiment consists of two acoustic beacons (speak-
ers) placed at two corners of a equilateral triangle with the
microphone array making the third. The microphone array’s
position [𝑋,𝑌,Θ |Z ] (a marginal posterior) can be estimated
by measuring the actual angles using ultra-short-baseline
beam forming [42] – a computational process to determine
the amount of signal energy received per angular direction,
based on constructive/destructive interference that is induced
by the geometry of the received signals (phase shifts). The
two up-chirps—shown in figure 6—are used to distinguish
transmitted signals from each beacons (i.e. matched filtering
[43]). Time separated chirps can also be used.

The captured energy per look-angle from the beam form-
ing and matched filtering correlator is approximated with an
on-manifold kernel density estimate function – an example
is shown in figure 7. Assuming the four-element microphone
array is pointed exactly perpendicular to the baseline between
the two beacons, the acoustic wavefronts will arrive from
either +30𝑜 or −30𝑜, respectively.

A speed of sound parameter is usually known, however,
this experiment will do a line search over the sound speed
based on a comparison of localized vs. known geometry.

The estimated in air sound speed is around 350 𝑚/𝑠 (at
sea level at around 18𝑜𝐶), which is within 3% of the known
value around 341𝑚/𝑠. The measurement error is most likely

Fig. 6: Illustration of experiment where two acoustic sources transmitting
unique chirps and recording microphone array. Left: example spectrogram
of recorded up chirps from beacon A/B respectively, indicated in 𝑘𝐻𝑧.
Chirps could be time separated or simultaneous.

-2 -1 0 1 2
-2

-1

0

1

2

Fig. 7: Left: two beam patterns blue and green from beacon A and B. The
shaded region is the symmetric (multi-modal) possibility behind microphone
array. Right: The accompanying factor graph used for non-Gaussian acoustic
localization with blue and green bearing factors with the non-Gaussian
acoustic measurements. Red factors are priors on beacons, and a partial Y
dimension constraint on the array location. X and orientation Θ are freely
estimated.

due to experimental setup, and could be pursued as an ex-
perimental method to study algorithmic errors including bias
or parasitics. Regardless of the 3% measurement tolerance,
the trend in localization error when sound speed is altered in
computation is consistent with our expectations, as illustrated
in Figure 8.
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Fig. 8: Result of estimating the speed of sound with a US$5 acoustic
4-element microphone array (Sony PS3eye), by monitoring the array lo-
calization error while varying the speed of sound parameter. The setup is
illustrated in figures 6 and 7. Vertical axis represents the localization error of
the array and horizontal axis is the chosen sound speed for each calculation,
with the final estimate at the line-fit zero crossing near 350 𝑚/𝑠. See text
for details.

V. CONCLUSION

This paper presents a manifold extension of the multi-
scale Gibbs sampling method for approximating products
between kernel density estimates – i.e. extending NBP [27].
The on-manifold extension is designed to accommodate
most, if not, all Riemannian manifolds, allowing posterior
Bayesian inference on many common and useful manifolds
using the same methodology. Definition/implementation of
an on-manifold ⊕ and ⊖ operator is the only additional
requirement. Although comparisons to existing on-manifold
parametric or MCMC methods are important, we feel that
task is somewhat out-of-scope in this presentation since the
method is a general (rather than specific) inference tool
which should simplify many challenging inference tasks
currently faced in robotics today: a user may directly use



this implementation on a new problem for which other full-
functional methods likely first require a development cycle
to build the necessary samplers or belief representations.
Furthermore, the proposed method was validated on both real
data and simulation canonical examples, and is currently used
with the mm-iSAM method [1]. In future work, we wish to
explore robust visual-inertial odometry by performing non-
Gaussian posterior (belief) inference by propagating mixed
manifolds of 20 dimensions or more.
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