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Abstract Many real-world robotic operations that in-

volve high-dimensional humanoid robots require fast-

reaction to plan disturbances and probabilistic guaran-

tees over collision risks, whereas most probabilistic mo-

tion planning approaches developed for car-like robots

can not be directly applied to high-dimensional robots.

In this paper, we present probabilistic Chekov (p-Chekov),

a fast-reactive motion planning system that can provide

safety guarantees for high-dimensional robots suffering

from process noises and observation noises. Leveraging

recent advances in machine learning as well as our pre-

vious work in deterministic motion planning that inte-

grated trajectory optimization into a sparse roadmap

framework, p-Chekov demonstrates its superiority in

terms of collision avoidance ability and planning speed

in high-dimensional robotic motion planning tasks in
complex environments without the convexification of

obstacles. Comprehensive theoretical and empirical anal-

ysis provided in this paper shows that p-Chekov can

effectively satisfy user-specified chance constraints over

collision risk in practical robotic manipulation tasks.

Keywords Motion Planning · Manipulation · Risk-

Aware Planning · Machine Learning

1 Introduction

Robotic systems deployed in the real world have to con-

tend with a variety of challenges: wheels slip for mobile

robots, lidars do not reflect off glass doors, currents

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.
32 Vassar Street, Cambridge, MA, 02139, USA.
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Mobile Number: 617-528-8954

and turbulence disturb underwater vehicles, and hu-

mans in the environment move in unpredictable man-

ners. However, many state-of-the-art robots, with in-

evitable uncertainties from various sources including

approximate models of system dynamics, imperfect sen-

sors, and stochastic motions caused by controller noise,

are not yet ready to handle these challenges. Although

nowadays feedback controllers can take care of a large

portion of uncertainties during the execution phase, the

remaining deviations can still be problematic, especially

for robots operating in hazardous environments or sys-

tems that collaborate closely with humans. One repre-

sentative example is a manipulator mounted on an un-

derwater vehicle, which faces not only the disturbances

from currents and inner waves, but also the base move-

ments caused by the interaction between manipulators

and the vehicle on which they are mounted. A colli-

sion accident of such manipulators deployed in under-

water scientific exploration tasks can often cost millions

of dollars. Another typical example is a domestic as-

sistive robot surrounded by elder people and children,

which needs to be very careful about collision avoid-

ance. Therefore, in those tasks, it is important that the

motion planner can take uncertainties into account and

can react quickly to plan interruptions.

Fast-reactive risk-aware motion planning for high-

dimensional robots like humanoid robots, however, is a

very challenging task. Unlike car-like robots, a typical

robotic manipulator can have seven degrees-of-freedom

(DOFs), and this high-dimensionality makes it extremely

difficult to quantify uncertainties into collision risks and

to make safe motion plans in real time. Existing sys-

tems that tackle the risk-aware motion planning prob-

lem [71,40,48,67,15,6,43] lack the ability of efficiently

handling high-dimensional robots and non-convex en-

vironments. In order to address these difficulties, we
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propose probabilistic Chekov (p-Chekov), a combined

sampling-based and optimization-based approach that

takes advantage of the fact that most obstacles in a lot

of practical motion planning tasks are static and only

a small number of objects are dynamic during deploy-

ment. In these cases, we can construct sparse roadmaps

based on our prior knowledge about the static envi-

ronment to cache feasible trajectories offline, so that

during plan execution, we only need to optimize so-

lution trajectories according to new observations [19,

49] and adjust plans to satisfy safety requirements [20].

Combining ideas from risk allocation [46,47] and su-

pervised learning, p-Chekov can effectively reason over

uncertainties and provide motion plans that satisfy con-

straints over the probability of plan failure, i.e. chance

constraints [47].

In this paper, we first provide a comprehensive re-

view of the relevant literature and distinguish our ap-

proach in four different aspects, and then describe the

problem formulation and test environments. Then in

Section 5, we provide extensive empirical results to demon-

strate that our deterministic Chekov approach can over-

come the shortcomings of both sampling-based plan-

ners and optimization-based planners and achieve fast-

reaction for high-dimensional motion planning prob-

lems in practical environments. This deterministic Chekov

approach forms a core component in p-Chekov that gen-

erates nominal trajectories in real-time, and lays an

essential foundation for the fast-reaction of the risk-

aware planning approach. Section 6 illustrates the main

technical components in p-Chekov planner, including

the estimation of robot state probability distributions

during execution, two different approaches for collision

probability estimation given robot state distributions,

and the allocation and reallocation of risk bounds dur-

ing planning phase and execution phase. Section 7 then

demonstrates the performance of p-Chekov empirically

and compares the performance of the two collision prob-

ability estimation approaches. Finally we summarize

the main contributions of p-Chekov and discuss poten-

tial directions for future research.

We have previously presented some components of

deterministic Chekov [19] and p-Chekov [20]. The main

contributions of this paper in addition to our previ-

ous publications include: 1) a more detailed theoreti-

cal and empirical analysis on the deterministic Checkov

approach proposed by [19] and the quadrature-based

p-Chekov approach proposed by [20]; 2) an iterative

risk allocation (IRA) approach for plan improvement

during the execution phase of p-Chekov, and its com-

parison with the planning phase risk reallocation ap-

proach; 3) an analysis on the performance of different

machine learning algorithms for estimating trajectory

collision risks; 4) a learning-based p-Chekov approach

that can overcome quadrature-based p-Chekov’s limita-

tions in planning speed and achieve fast-reaction as well

as high chance constraint satisfaction rate for real-world

high-dimensional robotic motion planning tasks. To the

author’s best knowledge, learning-based p-Chekov is

the first motion planning and execution system that

can provide chance-constrained motion plans for high-

dimensional robots in complex environments in real time.

2 Related work

2.1 Fast-reactive motion planning

Approaches for robotic motion planning usually fall into

three categories: search-based [66,31,18], sampling-based

[33,11,29] and optimization-based [28,74,64]. A typical

way search-based (A* like) motion planners formulate

their algorithms is through discretizing the configura-

tion space into grids and applying search algorithms to

find a valid trajectory from the start to the goal. De-

spite that search-based motion planners can guarantee

completeness and optimality, the discretization of the

configuration space means the computational cost could

be very high for complicated high-dimensional planning

tasks.

Sampling-based planning is another powerful ap-

proach that randomly explores a subset of the con-

figuration space (C-space) while keeping track of the

search progress. Although sampling-based planners, e.g.

rapidly exploring random trees (RRTs), are able to solve

some difficult motion planning tasks with the guaran-

tee of probabilistic completeness, their performance in

complicated high-dimensional planning tasks is highly

restricted by the selection of sampled nodes, and their

planning time is often a major concern. In contrast,

optimization-based motion planning shows its advan-

tage in planning speed because they operate on the

space of trajectories and conduct a fast but local search

instead of a global search. However, this also means

that the performance of optimization-based planners,

especially numerical trajectory optimizers which often

suffer from the problem of getting stuck in high-cost

local optima, can be very sensitive to the quality of

the initial seed trajectory, and deeply infeasible initial-

izations can often cause plan failures. Probabilistic in-

ference has also been applied to robotic motion plan-

ning [44], but similar to optimization-based approaches,

inference-based planners are also very sensitive to ini-

tializations.

One way to achieve fast motion planning with high

success rate is to combine optimization-based motion

2            
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planners with offline global planners, such as sampling-

based probabilistic roadmaps, which can provide optimization-

based planners high-quality initializations with the help

of offline pre-computation. The approaches [42] and [14]

proposed can conduct online path shortening for plans

generated by sampling-based planners, but the effect of

trajectory optimization in their approaches is limited to

trajectory smoothing and shortening, whereas real-time

obstacle avoidance and differential constraints were not

incorporated. [56] presented a combined roadmap and

trajectory optimization planning algorithm. However,

their additional focus on avoiding singularities in redun-

dant manipulators and meeting Cartesian constraints

resulted in relatively long planning times.

In this paper, we propose a fast-reactive motion

planning frame work for high-dimensional robots that

combines obstacle-aware trajectory optimization with

sparse probabilistic roadmaps in the C-space. Sparse

global roapmaps are the core to fast reaction and can

provide motion plans that are guaranteed to be collision-

free, while obstacle-aware local optimization helps smoothen

and shorten the trajectories without introducing colli-

sions. Covariance Hamiltonian Optimization for Motion

Planning (CHOMP) [74], Stochastic Trajectory Opti-

mization for Motion Planning (STOMP) [28], Incre-

mental Trajectory Optimization for Real-time Replan-

ning (ITOMP) [54] and TrajOpt [64] are four state-

of-the-art trajectory optimization approaches. Our pro-

posed framework could in theory work with any obstacle-

aware trajectory optimizer, but in this paper we demon-

strate its performance with TrajOpt out of three con-

siderations. First, the convex-convex collision checking

method used in TrajOpt can take accurate object ge-

ometry into consideration, shaping the objective to en-

hance the ability of getting trajectories out of collision.

In contrast, the distance field method used in CHOMP

and STOMP consider the collision cost for each exterior

point on a robot, which means two points might drive

the objective in opposite direction. Second, the sequen-

tial quadratic programming method used in TrajOpt

can better handle deeply infeasible initial trajectories

than the commonly used gradient descent method [65].

Third, customized differential constraints, such as ve-

locity constraints and torque constraints, can be incor-

porated in TrajOpt. This is an important consideration

for the p-Chekhov system presented in this paper which

aims at building a motion execution system that incor-

porates system dynamics models and control policies

while respecting additional temporal constraints.

2.2 Chance-constrained motion planning

Existing motion planners that take uncertainties into

consideration include two classes: some are safety-driven

and provide motion plans that minimize the collision

risks [70,58,57,73], and others, also called chance-constrained

motion planners [48], seek the optimal plans that can

satisfy a user-specified constraint over the probability of

collision. In this paper, we focus on providing chance-

constrained motion plans for high-dimensional robots

in real time. Many uncertainty-aware motion planners

are based on Markov Decision Processes (MDPs) [69,

13,3], and an extension of MDP, Partially Observable

MDP (POMDP), is often applied to address the sens-

ing uncertainties in robotic motion planning tasks [32,

71,43]. Despite their wide application, most of them

require discretization of the state space. Even for ex-

tensions that can handle continuous planning domains,

tractability is still a common issue due to the need of

partitioning or approximation of the continuous state

space [48].

Another class of probabilistic planners formulates

motion planning into an optimization problem through

approaches such as Disjunctive Linear Program (DLP).

[9] introduced a DLP-based approach that can perform

obstacle avoidance under uncertainties, [10] described

a Mixed Integer Linear Programming (MILP) formula-

tion of the robust path planning problem which approx-

imates chance constraints with a probabilistic particle-

control approach, [48] proposed the probabilistic Sulu

planner (p-Sulu) which performs goal-directed planning

in a continuous domain with temporal and chance con-

straints, and [34] adopted trajectory optimization in be-

lief space and formulated collision avoidance constraints

using sigma hulls. However, since p-Sulu encodes fea-

sible regions with linear constraint approximations, it

inevitably suffers from the exponential growth of com-

putation complexity when applied in complicated 3D

environments or tasks with multiple agents. Addition-

ally, both linear approximations and sigma hulls place

restrictions on robot and environment geometry and

also introduce inaccuracies in collision probability esti-

mation.

Uncertainty-aware extensions of search-based [35,

15] and sampling-based [39,12,40,38,67] planners are

also popular in the motion and path planning field.

However, their applications are often limited to car-

like robots in simplified environments due to their dis-

advantages in planning speed and collision probability

estimation ability for high-DOF robots in real-world

complex environments. When the robot has high di-

mensionality, the collision checking happens in the 3D

workspace, whereas the motion planning happens in the
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high-dimensional C-space. Mapping the collision-free

workspace into the C-space is nontrivial, which hence

becomes another barrier for high-dimensional risk-aware

motion planning.

2.3 Collision risk estimation

The estimation of trajectory collision probability has

been widely investigated in the motion planning field,

yet no perfect solution has been proposed due to its

inherent difficulties. In order to approach this prob-

lem, many approximations have been used, including

the discretization of time and the convexification of ob-

stacles. For low-dimensional planning tasks in convex

environments, the estimation of collision risks at dis-

crete waypoints is relatively straightforward. In the p-

Sulu planner presented by [48], each boundary of each

obstacle is formulated into a linear constraint, and the

half-spaces that represent those linear constraints form

the collision-free regions. In this way, the waypoint col-

lision probability becomes the probability of violating

any of the linear constraints, and can be solved through

linear program (LP) solvers. A very different idea is to

take advantage of confidence intervals, which are el-

lipses and ellipsoids for Gaussian distributions [70]. If

the configuration space is 2D, then the maximum factor

by which the elliptical confidence interval can be scaled

before it intersects obstacles gives an indication of the

collision probability at that configuration, where the

scale factor can be computed as the Euclidean distance

to the nearest obstacle in the environment. [59] further

investigate this idea and account for the fact that the

collision probability at each step along a trajectory is

conditioned on the previous steps being collision-free.

They propose that the a priori state probability distri-

butions for different waypoints along a trajectory can

be truncated to better reflect the actual collision prob-

abilities.

However, it is nontrivial to extend the aforemen-

tioned approaches to high-dimensional planning tasks.

Obstacles defined in workspace can not be directly mapped

into a 6-DOF or 7-DOF C-space in closed form [17],

hence the feasible region idea [48] and the confidence

interval scaling idea [70] can not be easily applied. [68]

pointed out a key relation between workspace geome-

try and C-space geometry: configuration q lies on the

boundary of a C-space obstacle if and only if the workspace

distance between the obstacle and the robot configured

at q is zero. Based on this relation, [68] proposed an

approach that looks for the point on the boundary of C-

space obstacles that is closest to the robot’s mean con-

figuration by calculating the gradient of the workspace

signed-distance field. Although this approach builds an

important bridge between workspace obstacles and C-

space obstacles, it relies on the assumption that the

geometries of the C-space obstacles are locally convex.

Since p-Chekov aims at solving high-dimensional mo-

tion planning problems in 3D complex environments

where obstacles maintain their original non-convex shapes,

we explore two different ideas for estimating waypoint

collision risks that overcome the limitations of the afore-

mentioned methods: one relies on a quadrature-based

sampling method to mitigate the inaccuracy of random

sampling and to avoid the difficulty of mapping between

C-space and workspace (quadrature-based p-Chekov),

and the other leverages regression methods with func-

tion approximators to learn risk distributions through

offline sampling and to make predictions during online

planning queries (learning-based p-Chekov).

2.4 Machine learning in motion planning

Machine learning approaches are still not widely ap-

plied in robotic motion planning. Existing applications

include guiding the exploration of sampling-based mo-

tion planners using nearest neighbor and adaptive sam-

pling [5,4,26], accelerating collision detection through

supervised classification [53,52], and pursuing end-to-

end motion planning through learning from demonstra-

tion [72,61,23]. To the author’s best knowledge, this

paper is the first application of learning-based methods

on the collision risk estimation problem for probabilis-

tic motion planning systems. We explore the real-time

collision risk estimation performance of different ma-

chine learning algorithms with different structures in

chance-constrained motion planning tasks for robotic

manipulators. It is shown that neural networks with

appropriate structures can efficiently generate accurate

predictions on collision risks in the environments they

are trained in. The experiment results in this paper

show that p-Chekov with neural networks as collision

risk estimation component performs significantly better

than the quadrature-based p-Chekov in terms of plan-

ning speed.

3 Problem statement

We define a disturbance as an unexpected change to

task goals, environment, or robot state. It may be due

to an actual physical change, or a change in the esti-

mated state of the environment or robot. Here we dis-

tinguish between severe disturbances and small distur-

bances. Severe disturbances refer to the ones that will

cause significant and qualitative plan changes, such as

changes of the planning goal, the movement of some

4            
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obstacles that obstructs the original plan, or a strong

external force that results in large deviations from the

desired trajectory and the feedback controllers can’t get

the robot back on track due to actuation limits. On the

other hand, small disturbances are mainly caused by

process noises and observation noises, and the control

inputs within limit can get the robot back to the desired

trajectory. In practice, motion planners should account

for the risk of potential plan failure caused by small

disturbances, and react fast and naturally to severe dis-

turbances which would necessitate plan adjustment.

P-Chekov solves robotic motion planning problems

under uncertainty with a guaranteed success probabil-

ity, considering temporal, spatial and dynamical con-

straints. Under process and observation noises, the col-

lision rate during plan executions should not exceed a

user specified chance constraint. The resulting motions

should be locally optimal or near-optimal according to

a specified objective function, which may optimize a

variety of characteristics such as path length or con-

trol effort. With a guaranteed success probability, P-

Chekov allows the robot agents to account for small

disturbances. On the other hand, P-Chekov’s real-time

planning feature is key to providing robots the capa-

bility of operating effectively when facing severe distur-

bances in unstructured and uncertain environments.

3.1 Model definition

Let X = Rnx denote the robot state space and U = Rnu

the system control input space, where nx and nu are

the dimensions of the state space and the control input

space respectively. Consider a discretized series of time

steps t = 0, 1, 2, . . . , T with a fixed time interval ∆T ,

where the number of time steps T is a finite integer.

Let xt ∈ X denote the robot state at time step t. We

assume applying a control input ut ∈ U at time step

t will bring the robot from state xt ∈ X to xt+1 ∈ X ,

according to a given stochastic dynamics model:

xt = f(xt−1,ut−1,mt), mt ∼ N (0,Mt), (1)

where mt is the zero-mean Gaussian distributed pro-

cess noise at time step t with a given covariance matrix

Mt. mt can be modeled based on the prior knowledge

about robot controllers. Function f governs the robot

dynamics and is assumed to be either linear or can be

well approximated locally by its linearization.

The robot states are observed by taking a measure-

ment at each time step t, denoted as zt. We assume that

measurements are provided by noisy sensors according

to a stochastic observation model:

zt = h(xt,nt), nt ∼ N (0, Nt), (2)

where nt is the zero-mean Gaussian distributed obser-

vation noise at time step t with a given covariance ma-

trix Nt.

For each specific planning task, a start state xstart

and a goal state xgoal or a convex goal region X goal will

be given. Let x0 ∈ X denote the initial state of the

robot that follows a Gaussian distribution with mean

xstart and covariance matrix Σx0
:

x0 ∼ N (xstart,Σx0). (3)

An initial condition is defined as a combination of xstart

and Σx0
. A trajectory Π is defined as a sequence of

nominal robot states and control inputs (x∗0,u
∗
0, . . . ,x

∗
T )

that satisfies the deterministic dynamics model x∗t =

f(x∗t−1,u
∗
t−1, 0) for 0 < t ≤ T . We assume that an

objective function J(Π) will be specified for each plan-

ning task, which can implement planning goals such as

minimizing trajectory length.

3.2 Constraint definitions

A valid solution provided by p-Chekov should satisfy

temporal constraints, chance constraints over collision

risks, goal state constraints, control input constraints,

and system dynamics constraints specified by the robot

model. A temporal constraint defines an upper bound

τ on the execution duration of a trajectory:

T ×∆T ≤ τ. (4)

We assume a joint collision chance constraint with

bound ∆c ∈ [0, 1] will be given for each planning task,

which specifies the allowed probability of collision fail-

ure during the execution of the planned trajectory. Let

Ci denote the no-collision constraint for each obstacle

i = 1, . . . , N , then the probability of colliding with ob-

stacle i is P (Ci). The collision chance constraint over

an entire trajectory can then be expressed as:

P

(
N∨
i=1

Ci

)
≤ ∆c. (5)

The control input constraint requires that u∗t ∈ U ,∀t =

1, . . . , T . The system dynamics constraints require that

the robot states at each time step along the trajectory

5            
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are within the robot state space X , and the state tran-

sitions between adjacent time steps satisfy the deter-

ministic system dynamics model:

x∗t = f(x∗t−1,u
∗
t−1, 0) ∈ X , ∀t = 1, . . . , T. (6)

3.3 Problem definition

Problem 1 defines the constrained optimization prob-

lem solved by p-Chekov. It aims at finding a feasi-

ble trajectory Π that minimizes the given objective

J(Π) while satisfying the chance constraint and tempo-

ral constraint. The solution trajectory Π should satisfy

the initial condition and the robot dynamics model, and

the control inputs along the trajectory should fall into

the control input space. If a C-space goal pose xgoal

is given, the robot configuration at the final time step

should be at xgoal; on the other hand, if a convex goal

region of the workspace end-effector pose X goal is speci-

fied, then the end-effector should be in X goal at the end

of Π.

Problem 1

minimize
Π

J(Π)

subject to x0 ∼ N (x̂0,Σx0
)

xt = f(xt−1,ut−1,mt), 0 < t ≤ T
zt = h(xt,nt), 0 < t ≤ T
mt ∼ N (0,Mt), 0 < t ≤ T
nt ∼ N (0, Nt), 0 < t ≤ T
xt ∈ X , 0 < t ≤ T
ut ∈ U , 0 < t ≤ T
x∗T = xgoal or x∗T ∈ X goal

P

(
N∨
i=1

Ci

)
≤ ∆c

T ×∆T ≤ τ
(7)

4 Experiment setup

In this paper, four practical simulation environments

are used in the experiments on different motion plan-

ners: a “tabletop with a pole” environment, a “tabletop

with a container” environment, a “shelf with boxes” en-

vironment and a “kitchen” environment [19], as shown

in Figure 1. We choose environments that are repre-

sentatives of different application domains rather than

using an environment with randomly-placed obstacles

because our goal is to develop a motion planner that op-

erates quickly and provides short paths for real world

applications. The kitchen environment is adapted from

the TrajOpt package, whereas, we designed the remain-

ing three. The “tabletop with a pole” environment,

shown in Figure 1-(a), is a simple tabletop pick-and-

place task environment, with a slender pole in the mid-

dle of the table and a box on each side of the pole.

Empirical results show that planning queries in this en-

vironment are relatively easy for all the tested planners.

The “tabletop with a container” environment is similar,

but with a large container on the table with boxes both

inside and outside of it, as shown in Figure 1-(b). The

“kitchen” environment, shown in Figure 1-(d), models a

typical kitchen scenario which is common in household

domains. The “shelf with boxes” environment, shown in

Figure 1-(c), is a 7-level shelf environment with boxes

on each level of the shelf, which is a common scenario in

the logistic application domain. This scenario is known

to be hard for all the planners because of the relatively

large total number of obstacles and the narrow space

between different layers of the shelf.

For each environment, we generate 5000 feasible plan-

ning queries by randomly sampling start and target

end-effector pose pairs that are collision-free and kine-

matically feasible. For each experiment trial, planners

are provided with the starting C-space position and the

goal end-effector pose. We specify the goal in workspace

to give planners the opportunity to find different C-

space solutions to the planning problem. We have en-

sured that all test queries have a feasible solution by

executing all the planners on each test case, and re-

sampling start and goal poses when no planner could

find a solution. The Baxter robot [63] with its 7-DOF

left manipulator is used as the experiment testbed. All

the experiments shown in this paper are conducted on

a 10-core Intel i7 3.0 GHz desktop with 64 GB RAM.

We noticed that the TrajOpt package also provides a

“swept-out volume” method in addition to their discrete-

time collision costs approach which only takes into ac-

count waypoint collisions, in order to ensure continuous-

time safety when executing the planned trajectories [65].

However, during our experiments we found out that

collisions can still occur on the edges between way-

points even when the continuous-time collision cost is

utilized, and it is not obvious how to use TrajOpt’s

reported collision cost to detect collisions consistently

since large cost values can indicate either an actual col-

lision or simply the trajectory being close to some ob-

stacles. Hence for the sake of time-efficiency, we use Tra-

jOpt with discrete-time collision costs, and implement

an independent collision checking process to evaluate

continuous-time safety on solution trajectories. In par-
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Fig. 1: Simulation Environments for Motion Planner Evaluation Experiments

(a) The “tabletop with a pole”
environment

(b) The “tabletop with a con-
tainer” environment

(c) The “shelf with boxes” en-
vironment

(d) The “kitchen” environment

ticular, we interpolate 100 intermediate points between

each pair of adjacent waypoints and check collisions on

each of them using OpenRAVE. For our work, we as-

sume this fine-grained discrete-time collision test can

approximate continuous-time safety sufficiently well.

5 Fast-reactive motion planning approach:

deterministic Chekov

Real-world robotic systems usually cannot spend an un-

bounded amount of time searching for an optimal mo-

tion plan – a plan that might soon be invalidated by the

next sensor reading or a slipping wheel. The problem of

moving a robot safely and efficiently in uncertain envi-

ronments, however, is a challenging one. In this section,

we propose a roadmap-based fast-reactive motion plan-

ning approach called deterministic Chekov in order to

address this issue. We first describe the deterministic

Chekov approach in Section 5.1, then present a system-

atic evaluation of several popular motion planners in

typical manipulation scenarios in Section 5.2, includ-

ing the basic version of TrajOpt [65] with straight-line

C-space initializations, BasicRRT from OpenRAVE, as

well as LazyPRM [11], PRM* [29] and RRT* [29] from

the Open Motion Planning Library (OMPL). The eval-

uation exposes issues including long planning time and

high failure rate, thus in Section 5.3 we demonstrate

the performance of our approach which addresses the

aforementioned issues. All experiments are conducted

in the four simulation environments introduced in Sec-

tion 4 with 5000 test queries each. This deterministic

Chekov planner then forms the core foundation of p-

Chekov and is key to p-Chekov’s fast-reaction feature.

5.1 Deterministic Chekov: the roadmap-based

fast-reactive motion planner

The deterministic Chekov motion planner achieves a

fast-reactive capability through constructing a sparse

probabilistic roadmap and storing the all-pair-shortest-

path solutions between each pair of nodes offline [19].

The roadmap represents the static collision-free space

and is re-used across planning instances. We construct

very sparse probabilistic roadmaps with a small num-

ber of nodes (1000 nodes for a 7-dimensional C-space)

so that the online queries can be fast. For each pair

of nodes in the roadmap, k shortest paths (k ≥ 1) are

calculated and stored offline, so that when dynamic ob-

stacles invalidate some of the edges in the roadmap,

the probability of finding a collision-free trajectory for

the planning task can be enhanced as we increase k.

Because we hope to consider the entire solution space

rather than the very sparse one provided by the roadmap,

we combine this offline roadmap with an online obstacle-

aware optimizer in order to improve trajectory smooth-

ness and achieve fast reaction to disturbances. The key

ideas of this fast motion planning approach are the

reuse of the offline cached all-pair-shortest-path solu-

tions of sparse roadmaps during online queries and the

combination with fast obstacle-aware online trajectory

optimization.

The core of the roadmap framework for determinis-

tic Chekhov is a simplified probabilistic roadmap (PRM)

variant combined with a cache of all-pair-shortest-path

solutions. The roadmaps are constructed by randomly

sampling points in C-space until a pre-defined number

of collision-free points have been sampled. In the test

environments introduced in Section 4, the sampling is

uniform over the four most proximal joints of the ma-

nipulator, and fixed values are assigned to the remain-

ing joints for all nodes. Then, each node is connected to

the n nearest neighbors for which collision-free edges ex-
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ist. This approach is taken to more completely cover the

workspace with random samples in the C-space. Tests

were conducted to observe the failure rates of roadmaps

in different environments relative to the number of ran-

domly sampled points in the roadmap. As the number

of randomly sampled points increased, we observed sig-

nificant improvement in how often the roadmap was

connected to in all environments, particularly in the

“shelf with boxes” environment. For the tests in this

paper, the roadmaps start out with 1000 collision-free

nodes and n = 10 is used. The resulting roadmap is

pruned of any nodes and edges disconnected from the

largest subgraph. For the environments tested, no more

than five of the 1000 points were disconnected from the

main subgraph. Then an all-pair-shortest-path solution

set is constructed for the pruned roadmap and stored

for rapid online queries. During online planning, the

start and goal poses are connected to the nearest nodes

in the roadmap and the shortest path between these two

nodes is added to the solution trajectory. This solution

trajectory is then fed into the trajectory optimizer as

the initialization in order to generate a smooth final

solution trajectory quickly.

For the purposes of evaluating the key aspects of

our approach, we have assumed that all obstacles in

the test environments are static. We focus here on static

rather than dynamic obstacles because static obstacles

occupy the majority of the workspace in many practi-

cal applications. Dynamic obstacles could be handled

through storing redundant roadmap paths and by cou-

pling these paths with fast online obstacle-aware opti-

mization. In addition, the incremental Chekov approach

introduced by [49] is an extension to the deterministic

Chekov approach illustrated in this paper that high-

lights the handling of dynamic obstacles in the envi-

ronment. Incorporating incremental Chekov’s ability of

handling dynamic obstacles into the chance-constrained

motion planning framework described in this paper is

a potential direction of our future research.

5.2 Limitation of existing motion planners

Sampling-based motion planners can operate stand-alone

but are usually not fast enough for real-time high-dimensional

planning tasks, and some of them (like PRM and PRM*)

cannot incorporate constraints on robot dynamics. On

the other hand, optimization-based motion planners lo-

cally optimize a seed trajectory and their performance

is very sensitive to initializations. This section provides

a systematic empirical study on four popular sampling-

based planners and one optimization-based planner, Tra-

jOpt, comparing their performance in terms of failure-

rate, length of solutions and average planning time.

Table 1: Evaluation of Existing Sampling-based and

Trajectory Optimization Motion Planners

Environ-
ments

Planners1
Failure
Rate

Average
Runtime

(s)2

Average
Path Length

(rad)

Tabletop
with a
Pole

RRT 2.30% 17.88 0.77
LazyPRM 0.22% 7.32 1.76

RRT* 5.32% 300.19 0.63
PRM* 1.00% 300.71 0.79

TrajOpt 17.38% 0.56 0.71

Tabletop
with a

Container

RRT 19.50% 44.90 0.92
LazyPRM 1.11% 15.04 1.92

RRT* 0.86% 300.29 0.80
PRM* 1.28% 300.73 1.04

TrajOpt 35.96% 1.33 1.14

Shelf with
Boxes

RRT 10.00% 63.86 1.06
LazyPRM 16.94% 63.85 2.08

RRT* 26.78% 300.37 0.93
PRM* 24.34% 300.79 1.16

TrajOpt 32.06% 1.59 1.51

Kitchen

RRT 12.28% 45.95 0.78
LazyPRM 0.85% 18.03 1.67

RRT* 0.51% 300.27 0.71
PRM* 1.33% 300.89 0.87

TrajOpt 8.80% 0.74 0.94

1 For each planner, the data shown are averaged from 5000
planning queries in each environment.

2 The runtime upper-bound is set to 300s. RRT* and
PRM* always use the full amount of time – the small
deviation from 300s shown in the table is due to small
timing errors during simulation. Note that the runtime
here refers to the planning time and doesn’t include the
execution time.

Note that the runtime upper bound for sampling-based

planners are set to 300s in this experiment so that the

optimal planners (RRT* and PRM*) are provided with

enough time to optimize the solutions. This also means

the runtime for RRT* and PRM* will always be around

300s because optimal planners keep optimizing their so-

lutions until timeout.

TrajOpt formulates the kinematic motion planning

problem as non-convex optimization over a T×K-dimensional

vector, where T is the number of time steps and K is

the number of DOFs. Every trajectory in TrajOpt con-

sists of T waypoints, where the number T is set by the

user. We ran 16 sets of tests, each with an increasing

total number of waypoints, and observed that TrajOpt

runtime increased approximately linearly with number

of waypoints while the collision rate dropped quickly

with more waypoints. During these tests on TrajOpt

with straight-line seed trajectories, we found that set-

ting T = 30 provided a good balance between low col-

lision rates and algorithm runtimes. Henceforth, in this

section, we use 30 total waypoints (including the start

and target waypoints).
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Table 1 summarizes the performance of the five tested

motion planners. The reported failure rate includes fail-

ures in finding a solution and failures in passing our

independent collision test after returning a solution.

From the shown failure rates we can see that in most

environments, TrajOpt fails more frequently in finding

collision-free solutions than other planners. The four

sampling-based planners can find collision-free solutions

for most of the queries in the relatively simple “table-

top with a pole” environment, but fails much more in

the complicated “shelf with boxes” environment, espe-

cially the optimal planners RRT* and PRM*. Despite

sampling-based planners’ relatively high success rate,

the “average runtime” column in Table 1 shows their

limitations. In terms of the average path length, op-

timal planners have noticeable advantages in finding

shorter solutions, especially in more complicated en-

vironments. Among the remaining planners, LazyPRM

tends to return longer solutions, which is reasonable due

to the intrinsic mechanism of lazy searching algorithms.

TrajOpt’s performance in path length is comparable to

sampling-based planners, especially in relatively easy

environments. In conclusion, although sampling-based

planners are good at avoiding collision, they are too

slow to be applied in most practical real-time motion

planning tasks. In contrast, TrajOpt shows advantage

in terms of runtime, but the high collision rate makes

it an unsatisfactory planner in practice.

5.3 Deterministic Chekov performance

Due to TrajOpt’s sensitivity to initialization conditions,

we propose that the performance of TrajOpt can be

dramatically improved if we pass in collision-free tra-

jectories as seeds instead of using C-space straight-line

seeds. Therefore, we use the sampling-based planners

from Table 1 as well as the Chekov roadmap to provide

initializations to TrajOpt and evaluate the performance

of the combined planners. Here we consider only the

queries where the sampling-based planner successfully

found a collision-free solution, and evaluate TrajOpt’s

runtime, solution trajectory length and collision rate.

We first demonstrate in Table 2 the performance of

the Chekov roadmap planner alone in the four environ-

ments introduced in Section 4. Compared with Table 1,

Table 2 shows that our roadmap performs comparably

or better than all other tested sampling-based planners

in terms of failure rate. In the most difficult environ-

ment, only RRT was able to produce a solution more

often than our roadmap planner. In addition to failure

rate, our roadmap planner’s average runtime is sub-

stantially better than other sampling-based planners’

Table 2: Chekov Roadmap Performance in All Environ-

ments

Environ-
ments1

Failure
Rate2

Average
Runtime

(s)

Average
Path Length

(rad)

Best
Average3

(rad)
Tabletop
with a
Pole

0.18% 0.14 1.24 0.63

Tabletop
with a

Container
0.76% 0.18 1.32 0.80

Kitchen 1.92% 0.38 1.29 0.71
Shelf with

Boxes
12.06% 0.39 1.30 0.93

1 In each environment, roadmap performance is tested on
5000 planning tasks and the data shown in this table are
averaged from the 5000 results.

2 For these roadmaps, failure occurs when no collision-free
straight-line connection was found to an existing point
on the roadmap from the start or goal pose of a test case.

3 Best average is the shortest average path length between
all tested sampling-based planners in that environment.
Shown here to provide context for the roadmap perfor-
mance.

in all cases. It is faster by more than an order of magni-

tude in most observed cases, which is a result of caching

the all-pair-shortest-path solution sets offline. For path

length, the roadmap planner performs worse than the

optimal planners and RRT, but better than LazyPRM.

In general with roadmap-based planners, the sparsity of

the roadmap restricts its ability to obtain short paths.

With only 1000 nodes, we consider the roadmaps we

are using to be relatively sparse for the 7D C-space.

Since these paths will be used as seeds for TrajOpt and

their lengths are well within an order of magnitude of

one another, the discrepancies in path length are not a

concern here.

TrajOpt requires the number of waypoints in the so-

lution trajectory to be the same as in the seed. There-

fore, if we pass in seeds directly from sampling-based

planners without any pre-processing, the number of way-

points in different queries will fluctuate drastically. As

mentioned in Section 5.2, TrajOpt’s runtime increases

approximately linearly as the number of waypoints in-

creases, which means the variation of waypoint num-

bers will influence runtime. Additionally, seeds taken

directly from the sampling-based planners with a fewer

number of waypoints might result in higher collision

rates after shortening and smoothing through TrajOpt

compared to those with more waypoints. This is be-

cause such seed trajectories usually have longer edges

in-between waypoints and are more likely to be very

close to obstacles. Hence, before passing the seeds into

TrajOpt, we interpolate them by setting a upper bound
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Table 3: TrajOpt Seeded with Sampling-based Planner

Solution compared to Chekov Roadmap Solution

Environ-
ments

Seed
Planners

Average
TrajOpt

Run-
time
(s)

Average
Seed

Length
(rad)

Seed + TrajOpt Planner
Average
Run-
time
(s)1

Average
Path

Length
(rad)

Colli-
sion
Rate2

Tabletop
with a
Pole

RRT 0.63 0.77 18.51 0.70 1.29%
LazyPRM 0.98 1.76 8.30 1.28 0.12%
RRT* 0.29 0.63 300.48 0.54 0.02%
PRM* 0.36 0.79 301.07 0.64 0.10%
Chekov 0.45 1.24 0.59 0.82 0.06%

Tabletop
with a
Contain-

er

RRT 1.02 0.92 45.92 0.85 2.18%
LazyPRM 1.55 1.92 16.59 1.44 0.96%
RRT* 0.44 0.80 300.73 0.70 0.90%
PRM* 0.49 1.04 301.22 0.84 1.12%
Chekov 0.52 1.32 0.70 1.02 0.90%

Shelf
with

Boxes

RRT 0.92 1.06 64.87 0.98 4.20%
LazyPRM 1.36 2.08 65.21 1.60 1.57%
RRT* 0.46 0.93 300.83 0.81 1.17%
PRM* 0.67 1.16 301.46 0.95 1.98%
Chekov 0.61 1.30 1.00 1.02 1.98%

Kitchen

RRT 0.99 0.78 46.95 0.72 0.52%
LazyPRM 1.28 1.67 19.31 1.11 0.35%
RRT* 0.45 0.71 300.72 0.62 0.37%
PRM* 0.54 0.87 301.43 0.70 0.46%
Chekov 0.70 1.29 1.08 0.86 0.73%

1 Sum of seed planner runtime and TrajOpt runtime averaged
from 5000 test cases.

2 Continuous-time collision rate.

of 0.16 rad for the distance between adjacent waypoints.

This pre-processing dramatically reduced the collision

rate of TrajOpt solutions and narrowed down the vari-

ance of TrajOpt’s runtime among different cases. Al-

though the average TrajOpt runtime is increased due

to the increased number of waypoints after interpola-

tion, it is still under 1s in most environments.

Table 3 provides a comparison between the com-

bined “sampling-based + TrajOpt” planners with ex-

isting sampling-based planners and with our Chekov

roadmap planner. Comparing the TrajOpt runtime col-

umn in Table 3 and the straight-line seed TrajOpt run-

time in Table 1, we see that TrajOpt’s runtime usu-

ally decreases when provided with a collision-free seed.

Specifically, in the cases where TrajOpt with a straight-

line seed failed to push the trajectory out of collision,

we found a 50% - 70% runtime drop after provided

with sampling-based planners’ solutions as initializa-

tions. Although a small percentage of cases end up in

collision after TrajOpt’s smoothing and optimization, a

significant improvement in average C-space path length

is observed if we compare the “average path length”

column in Table 1 and in Table 3. However, the “aver-

age runtime” for combinations with existing sampling-

based motion planners indicates that it is infeasible to

use them as seed planners in real-time motion planning

tasks. In contrast, the “Chekov roadmap + TrajOpt”

combination shows an average run-time for about 1 s

in all four tested environments.

When the roadmap planner produces a solution,

TrajOpt in turn produces a collision-free trajectory more

than 98% of the time. Additionally, these optimized tra-

jectories are on average more than 10% shorter than

their corresponding seed trajectories. Figure 2 shows

the four proximal joints for three different trajectories

to help visualize the improvements TrajOpt is making

on the seed trajectories. The solid lines are the roadmap

seeds and the dashed lines are the outputted trajec-

tories by TrajOpt when provided those seeds. From

Figure 2 we can see that TrajOpt fulfilled the task

of smoothing and shortening the sub-optimal trajec-

tories produced by the Chekov roadmap. In Table 3,

the difference in average runtime of the different seed

planner coupled with TrajOpt is most notable for high-

lighting the performance improvements provided by our

roadmap planner, but runtime as a metric does not re-

veal the whole picture for many of these planners. As

noted earlier, the optimal planners like RRT* will al-

ways use the full allotted time but may have a good non-

optimal solution far sooner than that. Also, in our test

cases, LazyPRM constructs its roadmap online for one

time use and then searches for a path in that roadmap.

In general, a PRM does not lend itself to single-query

problems. Our roadmap planner precomputes the roadmap

and all-pair-shortest-path solutions, but is also essen-

tially a PRM. It would be interesting to compare the

performance of our roadmap planner to faster RRT

variants, but it is clear to us that the speed provided by

querying precomputed solutions from a PRM of some

form outweighs any optimization to be had in online

search.

Overall, our roadmap planner performs as well as if

not better than the off-the-shelf sampling-based plan-

ners we tested. Average runtime is where we saw the

greatest improvement when using our roadmap plan-

ner to provide seed solutions rather than using other

traditional sampling-based planners, which is promis-

ing given that one of our main goals is to establish a

fast-reactive motion planning and execution system for

high-dimensional robots. Although we are currently not

using dynamic obstacles in our experiments, our aver-

age online planning time leaves us optimistic that our

planner will be able to handle disturbances in planning

tasks with fast reaction.
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Fig. 2: Roadmap seed trajectories shown with corresponding trajectories optimized by TrajOpt to illustrate im-

provement on the seed [19]. The solid lines are the roadmap seeds and the dashed lines are the outputted trajectories

by TrajOpt when provided those seeds.

6 Chance-constrained motion planning

approach – probabilistic Chekov

This section introduces the probabilistic Chekov (p-

Chekov) risk-aware motion planning and execution sys-

tem that accounts for the potential uncertainties during

execution while making plans and returns solutions that

can satisfy user-specified chance constraints over plan

failure. Figure 3 shows the system diagram of p-Chekov,

which can be divided into a planning phase and an exe-

cution phase. The goal in the planning phase is to find a

feasible solution trajectory along which the estimated

risk of collision is smaller than or equal to the given

joint chance constraint ∆c. Since this initial solution

is not guaranteed to be optimal and can sometimes be

overly conservative, p-Chekov will keep improving it in

an anytime manner during the execution phase in order

to achieve better utility.

In p-Chekov, time is discretized into fixed-interval

time steps, and the collision risk at each waypoint is

considered separately through risk allocation. When the

planning phase starts, p-Chekov first uniformly distributes

the joint chance constraint into the allowed collision risk

bounds for each waypoint along the trajectory. Pro-

vided with a risk allocation, p-Chekov then uses the

deterministic Chekov approach described in Section 5.1

to generate a nominal trajectory that is feasible and

collision-free under deterministic dynamics. Given the

estimated model of controller and sensor noises dur-

ing execution, p-Chekov then estimates the a priori
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Fig. 3: System diagram for p-Chekov [20]

probability distribution of robot states along this nom-

inal trajectory, which will be introduced in Section 6.1.

With this state distribution information, p-Chekov pro-

vides two different approaches for estimating the proba-

bility of collision at each waypoint along this trajectory:

a quadrature-based sampling approach and an offline-

trained function approximation approach, which will

both be explained in Section 6.2.1. After that, we can

compare the allocated risk bound and the estimated

probability of collision at each waypoint along the nom-

inal solution trajectory, shown as the “risk test” step in
Figure 3. If the nominal trajectory fails to pass the risk

test, the robot configurations at the waypoints where

the estimated risk of collision exceeds the allocated risk

bound will be viewed as conflicts. Before p-Chekov goes

back to the “plan generating and risk estimation” stage

in Figure 3, constraints associated with the conflict con-

figurations and conflict waypoints will be added so that

deterministic Chekov can be guided to find safer nom-

inal trajectories. Additionally, p-Chekov will also real-

locate the waypoint risk bounds, as will be explained

in detail through Algorithm 2 in Section 6.3.1. This

risk reallocation takes risk bounds from the waypoints

where they are underutilized to the ones where they

are violated, so that feasible trajectories can be found

in fewer iterations. With the above new constraints, p-

Chekov will then replan and improve the nominal tra-

jectory from the previous iteration. This cycle will keep

going until the solution trajectory satisfies the chance

constraints at all waypoints or the iteration number hits

its upper bound.

When the nominal trajectory passes the risk test,

p-Chekov will transition to the execution phase, where

it optimizes the solution it found in the planning phase

while the robot is executing the trajectory. This plan re-

finement is based on the iterative risk allocation (IRA)

algorithm, which would be illustrated in Section 6.3.2.

Through gradually reallocating the risk from inactive

constraints to active constraints, IRA provides less con-

servative risk allocations and allows for higher quality

motion plans. After that, p-Chekov will go back to the

“plan generating and risk estimation” stage with zero

penalty hit-in distance and find a new feasible solution

which satisfies the new risk allocation. When it finds a

valid plan, the robot will keep executing based on the

updated plan. This risk reallocation and plan refine-

ment process is conducted iteratively, which will help

the planner to converge to a locally optimal solution if

given enough number of iterations.

6.1 Approach for estimating robot state probability

distributions

The “estimate state probability distributions” compo-

nent in Figure 3 plays a significant role of estimat-

ing the robot state probability distributions along the

nominal trajectory during execution based on the given

noise level. In this paper, we present a linear-quadratic

Gaussian motion planning (LQG-MP) approach [70]

which can act as this state probability estimator in p-

Chekov. LQG-MP connects control theory and prob-

abilistic motion planning by taking into account the

controllers and sensors that will be used during exe-

cution and characterizing the a priori probability dis-

tributions of robot states when making motion plans.

In our implementation of LQG-MP, it is assumed that

a discrete-time Kalman filter [22] and a finite-horizon

discrete-time LQR controller [8] will be used during ex-

ecution, and the deviation from the desired trajectory

during execution is small enough so that the control ef-

fort needed to bring the robot back on track will not

exceed the controller limit. In order to achieve opti-

mal control policies according to the separation theo-

rem [41], it is also assumed that both process noises

and observation noises have Gaussian distributions. In

real-world scenarios, noises often accumulate from in-

consistent, random sources, and based on the Central

Limit Theorem [25], thus the Gaussian noise assump-

tion are appropriate in many applications. However, de-

veloping a state probability estimator that can incorpo-

rate non-Gaussian noises to replace LQG-MP is a very

interesting future work direction.
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We express the system model in terms of the devia-

tions from the desired trajectoryΠ = (x∗0,u
∗
0, . . . ,x

∗
T ,u

∗
T ):

x̄t = xt − x∗t ,

ūt = ut − u∗t ,

z̄t = zt − h(x∗t , 0).

(8)

Since robot motions will be controlled to closely follow

the planned trajectory during execution, it is reasonable

to linearize the system dynamics model and observation

model as:

x̄t = Atx̄t−1 +Btūt−1 + Vtmt, mt ∼ N (0,Mt),

z̄t = Htx̄t +Wtnt, nt ∼ N (0, Nt).
(9)

where At, Bt, Vt, Ht and Wt are the Jacobian matrices

of f and h along the desired trajectory Π.

In LQG, since the true state x̄t is unknown, the

state estimation x̃t from the Kalman filter is used to

determine the control input at each time step during

the trajectory execution. This is reasonable because the

separation theorem tells us that observer design and

controller design can be separated into two indepen-

dent processes with the guarantee of LQG optimality.

During the execution of the whole desired trajectory,

optimal state estimations based on the Kalman filter

and optimal control policy computations based on LQR

take turns and cycles until the execution is complete,
so as to optimize the execution and track the desired

trajectory.

If we denote the Kalman gain as Lt and the con-

troller gain as Kt, then the evolution of the true state

x̄t and the estimated state x̃t at each time step t can

be predicted as follows [70]:

[
x̄t
x̃t

]
=

[
At BtKt

LtHtAt At +BtKt − LtHtAt

] [
x̄t−1

x̃t−1

]
+

[
Vt 0

LtHtVt LtWt

] [
mt

nt

]
,

(10)

where

[
mt

nt

]
∼ N (0,

[
Mt 0

0 Nt

]
). (11)

If we define

Xt ,
[
x̄t
x̃t

]
,

Et =

[
At BtKt

LtHtAt At +BtKt − LtHtAt

]
,

Ft =

[
Vt 0

LtHtVt LtWt

]
,

Gt =

[
Mt 0

0 Nt

]
,

(12)

and initialize the variances for estimate states with 0

and the variances for true states with Σ0, then the vari-

ance matrix Ct for Xt can be expressed as:

Ct = EtCt−1E
T
t + FtGtF

T
t , C0 =

[
Σ0 0

0 0

]
. (13)

Therefore, the matrix of true states and estimated

states Xt has the distribution:

Xt ∼ N (0, Ct). (14)

Substitute into Equation 8, we can get the a priori dis-

tributions of the true states and control inputs during

the execution of the desired trajectory:

[
xt
ut

]
∼ N (

[
x∗t
u∗t

]
, ΛtCtΛ

T
t ), (15)

where

Λt =

[
I 0

0 Kt+1

]
. (16)

With these a priori distributions of robot states,

we can then evaluate the probability of collision along

the desired trajectory to find feasible solutions that can

satisfy the given chance constraint.

6.2 Collision probability estimation approach

Continuous-time collision risk is difficult to represent,

so most collision probability estimation approaches di-

vide the entire trajectory into discrete waypoints, es-

timate the collision probability at each waypoint, and

then use additive or multiplicative approximations to

represent the collision risk along the entire trajectory. In

the additive approach, Boole’s inequality tells us that:

P

(
T∨
t=1

St

)
≤

T∑
t=1

P
(
St

)
, (17)
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where St is the no-collision constraint at waypoint t.

Therefore,

T∑
t=1

P
(
St

)
≤ ∆c (18)

is the sufficient condition for

P

(
T∨
t=1

St

)
≤ ∆c, (19)

where ∆ is the joint chance constraint for all the way-

points along a given trajectory. Similarly, the multi-

plicative approach assumes independence between the

collision probabilities at different waypoints, and uses

1−
T∏
t=1

(
1− P

(
St

))
≤ ∆c (20)

to approximate

P

(
T∨
t=1

St

)
≤ ∆c. (21)

Note that neither of these two approaches can ac-

count for edge collisions between waypoints. In addi-

tion, both approximations have made strong assump-

tions about the complex high-dimensional correlation

between collisions at different waypoints. Specifically,

the additive approach assumes that the collisions at

different waypoints are mutually exclusive, whereas the

multiplicative approach assumes they are independent
from each other. If we don’t take edge collisions into

consideration, then the additive approach is always guar-

anteed to be conservative, but the multiplicative ap-

proach only has the conservativeness guarantee when T

approaches infinity. In p-Chekov, we adopt the additive

discretization approximation and estimate the collision

risk at individual waypoints, then alleviate the con-

servative shortcoming of additive approaches through

risk reallocation. We present two different approaches

for estimating waypoint collision risk in Section 6.2.1

and Section 6.2.2 respectively: a quadrature-based ap-

proach and a learning-based approach. Note that both

approaches still inherit the conservativeness from addi-

tive risk approximation and tend to fail at finding fea-

sible solutions in environments with narrow spaces, e.g.

the shelf with boxes environment introduced in this pa-

per. How to take the mutual correlation between way-

point collisions into consideration and relax the conser-

vativeness issue in p-Chekov is a very interesting direc-

tion for future research.

6.2.1 Quadrature-based collision probability estimation

Given the state probability distribution around a nom-

inal configuration, the collision probability can be ap-

proximated by sampling from this distribution and check-

ing the percentage of configurations that are in colli-

sion. However, as with all Monte Carlo methods, this

approach would suffer from inaccuracy when the sam-

ple size is small and high computational cost when the

sample size is large. We tested the speed of the Flex-

ible Collision Library (FCL) collision checker [51] p-

Chekov uses in the “kitchen” environment with 55 ob-

stacles, and results show that 100 collision checks take

about 0.2 s. Although FCL is one of the fastest collision

checking tools, it is still infeasible for p-Chekov to be a

real-time motion planner if we use simple Monte Carlo

in the 7-dimensional C-space. Therefore, an intelligent

sampling method that can closely approximate the col-

lision probability with only a small number of samples

is very important [20].

This Monte Carlo collision probability estimation

approach is essentially estimating the expectation of a

collision function:

c(xt) =

{
0, if xt is collision free

1, if xt is in collision

along the distribution xt ∼ N (x̂t,Σxt) estimated in

Section 6.1, where xt ∈ Rnx is the nominal configura-

tion at time step t. Since expectations can be written as

integrals, non-random numerical integration methods

(also called quadratures [24]) can be applied to solve

this problem. Assume xt is d-dimensional and let xit
denote its ith component whose distributions are inde-
pendent from each other. This assumption is reason-

able because correlated noise components can be trans-

formed through robot state space coordinate transfor-

mation so that the covariance matrices will become di-

agonal. Since xt is Gaussian distributed, we can write

xit ∼ N (µi, σ
2
i ). Then, based on the conditional distri-

bution rule of multivariate normal distribution [21], the

probability density function of xt can be expressed as:

p(xt) = p(x1:d
t ) = p(x1

t )p(x
2:d
t |x1

t ) = p(x1
t )p(x

2:d
t ),

x1
t ∼ N (µ1, σ

2
1),

x2:d
t ∼ N (µ2:d,Σ2:d),

(22)

where µ2:d and Σ2:d denote the mean and variance of

x2:d
t respectively. Then we can write the expectation of

the collision function as:

E(c(xt)) =

∫ ∞
−∞

p(x1
t )

∫
Rnx−1

p(x2:d
t )c(xt)dx

2:d
t dx1

t .
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(23)

Let g(x1
t ) =

∫
Rnx−1 p(x

2:d
t )c(xt)dx

2:d
t and apply the prob-

ability density function of Gaussian distributions, we

have:

E(c(xt)) =

∫ ∞
−∞

p(x1
t )g(x1

t )dx
1
t

=

∫ ∞
−∞

1

σ1

√
2π

exp
(
− (x1

t − µ1)2

2σ2
1

)
g(x1

t )dx
1
t .

(24)

Gauss-Hermite quadrature approximates the value

of an integral by calculating the weighted sum of the in-

tegrand function at a finite number of reference points,

i.e.

∫ ∞
−∞

e−y
2

h(y)dy ≈
n∑
j=1

wjh(yj), (25)

where n is the number of sampled points, xj are the

roots of the Hermite polynomial Hn(x) and the associ-

ated weights wj are given by [2]:

wj =
2n−1n!

√
π

n2[Hn−1(yj)]2
. (26)

A quadrature rule with n sampled points is called a

n-point rule.

E(c(xt)) in its form in Equation 24 still doesn’t cor-

respond to the Hermite polynomial, therefore we con-

duct the following variable change:

y1 =
x1
t − µ1√

2σ1

⇔ x1
t =
√

2σ1y1 + µ1. (27)

Applying Equation 27 to Equation 24 yields:

E(c(xt)) =

∫ ∞
−∞

1√
π
e−(y1)2g(

√
2σ1y1 + µ1)dy1. (28)

If we iteratively conduct this Gauss-Hermite quadra-

ture approximation procedure from x1
t through xdt , we

will be able to approximate the value of E(c(xt)) through:

E(c(xt)) ≈ π−
d
2

n1∑
j1=1

n2∑
j2=1

. . .

nd∑
jd=1

(
d∏
i=1

wi,ji

)
g(
√

2σ1y1,j1

+ µ1,
√

2σ2y2,j2 + µ2, . . . ,
√

2σdyd,jd + µd).

(29)

In one-dimensional space, a n-point rule yields 2n

parameters and it is possible to integrate polynomials

of degree up to 2n − 1 without error. For a < x < b

and h(x) with 2n continuous derivatives, the error in a

Gauss rule is:

(b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3
h(2n)(x). (30)

Note that although quadrature methods are well tuned

to one-dimensional problems, extending them to multi-

dimensional problems through iterated one-dimensional

integrals still can’t escape the “curse of dimensional-

ity” [7]. The result of a d-dimensional quadrature rule

can not be better than the worst of the rules we use

in each dimension. If we use the same n-point one-

dimensional quadrature rule for each of the d-dimensions,

then we need N = nd function evaluations. If the one-

dimensional rule has error O(n−r), then the combined

rule has error

|Î − I| = O(n−r) = O(N−r/d). (31)

Even a modestly large d can give a very inaccurate re-

sult [50]. Additionally, the collision function c(xt) we

are trying to evaluate is not smooth, which adds to the

inaccuracy of the approximations through this quadrature-

based sampling method. Consequently, this quadrature-

based collision probability estimation approach is a rel-

atively rough one.

To achieve fast online motion planning for a 7-DOF

manipulator, in p-Chekov, the number of quadrature

points at each dimension shouldn’t be too large. Table

4 shows the abscissas and weights of the two- and three-

point Gauss-Hermite quadrature rules. We hypothesize

that the two-point rule will generate more conserva-

tive risk estimations, because the three-point rule places

higher weights on the mean values, which in p-Chekov

are the nominal configurations that are guaranteed to

be collision-free. Empirical results proved that using the

two-point rule is safer and also much faster, thus it is

used in our implementation.

Table 4: Gauss-Hermite Quadrature Abscissas and

Weights

n xi wi

2 ±1
2

√
2 1

2

√
π

3

0 2
3

√
π

±1
2

√
6 1

6

√
π
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Note that the state probability distribution com-

puted from LQG-MP doesn’t fully reflect the true prob-

ability distribution of joint states due to joint limits. In

p-Chekov, this issue is addressed by using the upper or

lower bound of joint values instead of the actual point

sampled from the estimated distribution when the joint

limit is exceeded. We choose to handle it this way be-

cause in practice, deviations from the desired configu-

ration are usually caused by internal or external distur-

bance to robot joints. When the disturbance tends to

push one of the joints towards a point which exceeds

its upper bound, this joint will end in its upper bound

position instead of exceeding the joint limit.

This sampling-based approach of estimating the col-

lision probability based on Gauss-Hermite quadrature

theory can be summarized in Algorithm 1. Given a

nominal trajectory and the corresponding state prob-

ability distributions, it first calculates the abscissas and

weights for each DOF of the target manipulator through

applying the n-point Gauss-Hermite quadrature rule

to each one-dimensional Gaussian distribution. After

checking joint limits, it stores the sampled abscissas

and weights in a NodeList (line 7-11), and then evalu-

ates the collision risks of the robot configured at all the

combinations of these DOF values according to Equa-

tion 29. Algorithm 1 iteratively conducts this quadrature-

sampling and collision probability evaluating procedure

for each waypoint along the nominal trajectory, and

then returns the collision probabilities as a list r. These

probabilities are then compared with the allocated risk

bound at each waypoint in order to determine whether

the joint chance constraint for the whole trajectory is

satisfied. A detailed description of the risk allocation

approach will be provided in Section 6.3.

6.2.2 Learning-based collision probability estimation

The quadrature-based sampling approach introduced in

Section 6.2.1 mitigates the inaccuracy of random sam-

pling and avoids the difficulty of mapping between C-

space and workspace. Although it can significantly re-

duce the number of samples required for collision risk

estimation at each time step in the trajectory, its com-

putation time in high-dimensional planning space still

obstructs its application in real-time motion planning

tasks. Even though only two quadrature nodes per di-

mension are used to estimate the collision risk for each

waypoint, the total number of collision tests conducted

online is still very big when the manipulator have 7

DOFs (27 × nwaypoints collision tests for each nominal

trajectory). Additionally, two-node quadratures have

very limited ability of approximating non-smooth func-

tions, whereas the collision functions here are highly

Algorithm 1: GHCollisionProbabilityEstima-

tion
Input:
Π: desired trajectory
D: robot state distribution along desired trajectory
R, E:
robot and environment collision models respectively
dof : robot degrees of freedom
n: number of samples used in quadrature rule
lu, ll:
upper and lower limits of active joints respectively
Output:
r:
collision risk at each waypoint along desired trajectory

1 Initialize r to a list of zeros
2 for i = 1, 2, . . ., len(Π) do
3 Initialize NodeList to an empty set
4 for d = 1, 2, . . . , dof do
5 (µ, σ)← D[i, d] /* Draw from D at the

ith waypoint dth joint */

6 (nodes, weights)←
QuadratureSampling(µ, σ, n)

7 for node in nodes do
8 if node > lu[d] then node← lu[d]
9 if node < ll[d] then node← ll[d]

10 Append (nodes, weights) to NodeList

11 Estimate r(i) by taking nodes from NodeList,
checking collision with E,R, and averaging the
collision number

non-smooth. Therefore, quadrature-based p-Chekov in-

evitably suffers from errors when approximating the

collision risk, and the efficiency and accuracy of risk es-

timation becomes its bottleneck that restricts its appli-

cation in uncertainty-sensitive real-time manipulation

planning tasks. Therefore, this section introduces ma-

chine learning approaches into the collision risk esti-

mation component of p-Chekov in order to improve its

efficiency and accuracy.

We hypothesize that if we take enough samples con-

taining nominal configurations with their probability

distributions and risks of collision from the environ-

ment that the robot will be interacting with in order

to train a regression model offline, then this model can

act as the “Approximate Risk of Collision” component

in Figure 3 in the online planning phase which makes

accurate predictions given a nominal trajectory and the

state distributions outputted by the “LQG-MP” com-

ponent. In order to test this hypothesis, 60000 data

points are collected in each of the tabletop environ-

ments, each of which contains a nominal joint config-

uration that is randomly sampled from the uniform

distribution defined by the manipulator’s joint limit,

a randomly sampled standard deviation whose range

is decided according to the real experiment data from

quadrature-based p-Chekov tests, and a collision risk
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scalar that is viewed as the “ground-truth” risk associ-

ated with this configuration distribution. This collision

risk is estimated using a simple Monte Carlo method:

randomly sample 100000 nodes from the Gaussian dis-

tribution defined by the nominal joint configuration and

the standard deviation, and compute the average colli-

sion rate. The nominal configuration together with its

standard deviation forms the input vector to the regres-

sion algorithm, and the collision risk is its label.

This paper compares the performance of three dif-

ferent classes of regressors in the Scikit Learn [60] pack-

age (kernel ridge regressor, random forest regressor, and

Gaussian process regressor) as well as neural networks

through the Keras [16] interface with TensorFlow [1]

back engine. Kernel ridge regression [45] learns a linear

function in the space induced by the respective kernel

and the data, and minimizes the objective:

J = ||y − wTX||2 + α||w||2, (32)

where X is the input vector, y is the true label, w is the

weight vector given by the regressor and α is the param-

eter that determines the regularization strength. In the

kernel ridge regression tests in this paper, the perfor-

mance of three different classes of kernels are compared:

radial basis function (RBF) kernel, polynomial kernel

and Matern kernel. In RBF kernels, each element in the

kernel matrix between datasets X and Y is computed

by:

K(x, y) = exp(−γ||x− y||2) (33)

for each pair of rows x in X and y in Y . Therefore, the

parameter γ represents how far the influence of a sin-

gle training example reaches, with low values meaning

“far” and high values meaning “close”. In polynomial

kernels, degree is a parameter that represents the or-

der of polynomials used in the kernel. A degree − d

polynomial kernel is defined as:

K(x, y) = (xT y + c)d, (34)

where c ≥ 0 is a free parameter trading off the influence

of higher-order versus lower-order terms in the kernel.

Matern kernel is defined by:

K(x, y) =
1

2ν−1Γ (ν)
(
2
√
ν||x− y||
θ

)νHν(
2
√
ν||x− y||
θ

),

(35)

where the length scale parameter θ is similar to the γ in

RBF kernels, Γ is the Gamma function, the ν parame-

ter controls the smoothness of the learned function, and

Hν is the modified Bessel function of the second kind of

order ν. When ν approaches infinity, the Matern ker-

nel becomes equivalent to the RBF kernel, and when

ν = 0.5 it’s equivalent to the absolute exponential ker-

nel.

Random forest regression [37] constructs an ensem-

ble of decision trees using a different bootstrap sample

of the data for each tree (also called bagging), and se-

lects a random subsets of the features at each candidate

split in the decision tree learning process. Gaussian pro-

cess regression [62] defines a collection of random vari-

ables, any finite number of which have a joint Gaus-

sian distribution, and then conducts probabilistic infer-

ence directly in the function space. Here we choose to

use Matern kernels in the Gaussian process regression

tests. Artificial neural network is another powerful tool

for conducting supervised regression on large datasets.

Section 7.3 compares the performance of different re-

gression methods and shows that neural networks with

appropriate configurations have the best performance

in this collision risk regression task, thus we apply them

to p-Chekov and compare their performance with the

quadrature-based p-Chekov.

6.3 Risk allocation approach

Using discretizations to estimate trajectory collision prob-

ability inevitably faces sensitiveness to the location and

number of discrete waypoints. [27] addresses this is-

sue by introducing a Monte Carlo Motion Planning

(MCMP) approach which solves the deterministic mo-

tion planning problem with inflated obstacles and then

adjusts the inflation so that the solution trajectory is

exactly as safe as desired. However, since MCMP in-

flates obstacles in the whole planning scene with the

same amount, it doesn’t account for the different colli-

sion probabilities at different locations along the trajec-

tory due to different robot configurations and velocities.

Furthermore, MCMP require obstacles with simple ge-

ometries, which limits the application of this approach

to simple low-dimensional motion planning tasks. [47]

addresses the conservative shortcoming of the additive

discretization approach through an iterative risk alloca-

tion (IRA) algorithm, which divides the whole chance-

constrained optimization problem into two stages and

seeks the optimal risk allocation that allows for a fea-

sible solution.

Inspired by the concept of risk allocation and bi-

stage motion planning, p-Chekov decomposes the joint

chance constraint into individual risk bounds at each

time step, and then compares the estimated collision

risk with the corresponding risk bound to determine
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whether the joint chance constraint is satisfied or vio-

lated. The planning phase algorithm of p-Chekov starts

with a uniform risk allocation and aims at finding a

feasible trajectory that can satisfy this specific risk al-

location. However, a feasible solution that satisfies this

uniform risk allocation might not exist or might need

too many iterations to find, thus p-Chekov uses a risk

reallocation approach during the planning phase to in-

telligently speed up the process of finding an initial fea-

sible solution. Since this initial solution can sometimes

be overly conservative and highly sub-optimal due to

the additive discretization assumption, in the execution

phase p-Chekov iteratively improves the trajectory by

optimizing the upper stage risk allocation. The risk al-

location approaches in p-Chekov planning phase and

execution phase are presented in Section 6.3.1 and Sec-

tion 6.3.2 respectively.

6.3.1 P-Chekov planning phase risk reallocation

Risk allocation decomposes a joint chance constraint ∆

by allocating risk bounds δi to individual constraints,

where
∑N

1 δi = ∆. The planning phase of p-Chekov

starts with a uniform risk allocation and a nominal tra-

jectory from deterministic Chekov which is collision-free

in the static environment with no noise. When pro-

vided with process noises and observation noises, the

collision risk estimation component described in Sec-

tion 6.2 gives us the collision risk at each waypoint along

the nominal trajectory. If the allocated risk bounds are

violated at some waypoints, besides adding more con-

straints to those waypoints, p-Chekov also reallocates

the risk bounds to allow for higher collision risks at the

violated waypoints. This risk reallocation procedure, as

shown in Algorithm 2, not only reduces the number of

iterations to get initial feasible solutions but also pro-

duces less conservative trajectories.

The planning phase risk reallocation relies on the

classification of different constraints. Denote the esti-

mated collision risk at waypoint i as ri, and the allo-

cated risk bound as δi. When ri exceeds δi, we define the

chance constraint at the ith waypoint as a violated con-

straint, otherwise it is viewed as satisfied. Satisfied con-

straints are divided into active constraints and inactive

constraints by introducing a risk tolerance parameter

η. If the difference between δi and ri is larger than the

risk tolerance, we view this underutilized chance con-

straint as inactive. Otherwise, the constraint is viewed

as active. In short, the classification of constraints at

different waypoints is as follows:

Constraint Violated: δi − ri < 0

Constraint Satisfied:

{
Active: 0 < δi − ri < η

Inactive: δi − ri > η

(36)

Algorithm 2 first identifies inactive constraints where

the risk bounds are underutilized, and then takes part

of their risk bounds out based on the risk reallocation

parameter α (line 1-7). After that, it calculates the to-

tal residual risk δresidual (the total unallocated chance

constraint) and the total excessive risk TotalV iolation

(sum of the risk violation on each violated constraint).

It then reallocates δresidual to each violated constraint

proportional to the excessive risk at this waypoint (rpj−
δpj ) (line 10 - 12). The key idea of this risk realloca-

tion method is to take risk from inactive constraints

and give it to those violated constraints. This is differ-

ent from the IRA algorithm introduced by [46]. IRA

requires an initial feasible solution that satisfies the

uniform allocation to start with, and reallocates risk

from inactive constraints to active constraints. Since

IRA doesn’t help to find the initial feasible solution,

it is only applicable to p-Chekov’s execution phase but

not the planning phase.

Algorithm 2: RiskReallocation

Input:
ri: estimated collision risks at each waypoint;
i = 1, 2, . . . , N
δi: risk allocations at each waypoint; i = 1, 2, . . . , N
pj : waypoint indices where risk allocation is violated
α: risk reallocation parameter
∆: joint chance constraint for the whole trajectory
η: risk tolerance
Output:
δnew
i : new risk allocations for each waypoint;
i = 1, 2, . . . , N

1 for i = 1, 2, . . . , N do
2 if δi − ri > η then
3 δnew

i ← αδi + (1− α)ri
4 else
5 δnew

i ← δi

6 δresidual = ∆−
∑N

i=0 δ
new
i

7 TotalV iolation← Sum of excessive risk for all
waypoints where collision risk violates the allocated
risk bound

8 for j = 1, 2, . . . , Nviolated do
9 δnew

pj
← δpj

+δresidual(rpj
−δpj

)/TotalV iolation
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6.3.2 P-Chekov execution phase iterative risk

allocation

In the execution phase, p-Chekov adapts the IRA algo-

rithm to improve the trajectory in an anytime fashion,

as described in Algorithm 3. This IRA-based approach

takes as input the estimated collision risks and allocated

risk bounds for each waypoint from the planning phase,

and then determines active constraints using the Ac-

tiveContraint() function shown in Algorithm 4. It then

takes part of the allocated risks for inactive constraints

and reallocates them to the active constraints (line 6 -

12). After this risk reallocation procedure, we run the

planning phase algorithm with the new risk allocation,

and then compare the utility of the new solution J(Π)

with that of the previous solution J(Πprevious). The al-

gorithm terminates when the improvement is too small.

Otherwise, we say IRA effectively improved the solution

and repeat this procedure.

Algorithm 3: IterativeRiskAllocation

Input:
ri: estimated collision risks from planning phase;
i = 1, 2, . . . , N
δi: risk allocations from planning phase;
i = 1, 2, . . . , N
α: risk reallocation parameter
∆: joint chance constraint for the whole trajectory
η: risk tolerance
ε: convergence tolerance
Output:
Π: a solution trajectory

1 J ←∞
2 while |J(Π)− J(Πprevious|) < ε do
3 Πprevious ← Π
4 Nactive, r =ActiveConstraint(δ, r)
5 if 0 < Nactive < N then
6 for i = 1, 2, . . . , N do
7 if δi − ri > η then δi ← αδi + (1− α)ri

8 δresidual = ∆−
∑N

i=0 δ
new
i

9 foreach j where constraint is active at jth
waypoint do

10 δj ← δj + δresidual/Nactive

11 Run p-Chekov planning phase algorithm
with new δ and get new r associated with
the new solution trajectory Π

12 else
13 break

P-Chekov’s execution phase risk allocation optimiza-

tion approach differs from the original IRA algorithm

introduced by [46] in terms of the active constraint de-

termination method. The way original IRA defines ac-

tive constraints is the same as the constraint classifi-

cation method for satisfied constraints in Equation 36.

Algorithm 4: ActiveConstraint

1 Function ActiveConstraint(δ, r):
2 Nactive ← 0
3 while Nactive == 0 do
4 rprevious ← r
5 if No constraint to relax then break
6 Relax the safety constraint for each waypoint

by dstep
7 Find new solution Π with planning phase

algorithm and re-evaluate collision risk r
8 for i = 1, 2, . . . , N do
9 if ri > δi then Nactive ← Nactive + 1

Here in p-Chekov, however, we use a constraint relax-

ation approach to find active constraints, as shown in

Algorithm 4. When ActiveConstraint() is called, it re-

laxes a small part of the safety constraint for each way-

point and runs the planning phase algorithm again to

calculate the new ri for each waypoint and conducts a

risk test (line 7). If some of the risk bounds are vio-

lated, they will be viewed as active constraints (line 8

- 10). Otherwise, Algorithm 4 repeats line 4 - 10 until

it detects active constraints.

6.4 Detailed p-Chekov algorithm illustration

Algorithm 5 summarizes the p-Chekov motion planning

and execution system. Line 1 - 5 illustrates the deter-

ministic Chekov planner, which first calls the roadmap

planner to find a seed trajectory between the start and

the goal. If the roadmap planner fails to find a seed, it

returns failure. Otherwise, it calls the trajectory opti-

mizer to locally optimize this seed trajectory. Given this

nominal trajectory from the deterministic planner, line

6 calls the state probability distribution estimation al-

gorithm, and line 7 calls one of the collision probability

estimation approaches introduced in Section 6.2. With

the estimated collision risk and risk allocation, line 8

conducts a risk test to see whether the risk bounds are

satisfied at all waypoints. If all the risk bounds are satis-

fied, Algorithm 5 goes to the execution phase and calls

the execution phase IRA algorithm (Algorithm 3) to

improve the solution trajectory. Otherwise, the config-

urations at the violated waypoints will be added as con-

flicts and new safety constraints will be added at these

waypoints. A new risk allocation will be calculated by

Algorithm 2, and a new solution will be computed from

the deterministic planner. This plan improvement pro-

cedure will iterate until the chance constraint is satis-

fied.

The main innovation of p-Chekov includes the fast-

reactive deterministic Chekov planner that can gener-
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Algorithm 5: P-Chekov

Input:
start, goal: start and goal configuration of the query
R, E:
robot and environment collision models respectively
Mt: covariance matrix of process noises
Nt: covariance matrix of observation noises
α: risk reallocation parameter
∆: joint chance constraint for the whole trajectory
η, ε: risk tolerance and convergence tolerance
dstep: step size for penalty hit-in distance increase
Output:
Π: a solution trajectory

1 seed = RoadmapFindSolution(start, goal)
2 if seed is not None then
3 Initialize risk allocation δ with uniform

allocation
4 Initialize list of conflicts Clist to be empty
5 Π = Optimizer(seed, Clist)
6 D =StateEstimation(Π, Mt, Nt)
7 r = CollisionProbabilityEstimation(Π,D,R, E)
8 violation = RiskTest(r, δ)
9 while violation is True do

10 foreach waypoint i where risk bound is
violated do

11 Add the configuration at waypoint i to
Clist

12 δ = RiskReallocation(r, δ, α,∆, η)
13 Π = Optimizer(Π, Clist)
14 violation = RiskTest(r, δ)

15 Chance constraint satisfied, start execution
16 Π = IterativeRiskAllocation(r, δ, Π, α,∆, η, ε)
17 Execute the updated trajectories from IRA
18 return Success

19 else
20 return Failure

ate nominal trajectories for high-dimensional robots in

real-time, as well as the idea of risk allocation which

plays the role of extracting conflicts and guiding the

deterministic planner to approach to a feasible solution

whose execution failure rate is bounded by the chance

constraint. In addition, the application of quadrature-

rule and supervised learning techniques in collision risk

estimation is key to the speed of p-Chekov’s conver-

gence to a feasible solution trajectory.

7 Chance-constrained motion planning

experiments

To demonstrate p-Chekov’s performance, 500 pairs of

start and goal poses in each of the two tabletop envi-

ronments introduced in Section 4, the “tabletop with

a pole” environment and the “tabletop with a con-

tainer” environment, are used for simulation experi-

ments. Note that the second environment not only has

the narrow spaces inside the container which are diffi-

cult for chance-constrained motion planners, but also

include difficult test cases where the robot joints are

close to their limits. Section 7.1 describes the dynamics

and observation models used in the experiments, Sec-

tion 7.2 shows the performance of p-Chekov with col-

lision estimation module based on the Guass-Hermite

quadrature rule, and Section 7.3 demonstrates the ex-

periments on p-Chekov with the learning-based colli-

sion estimation module.

7.1 Experiment modeling

We simplify manipulator dynamics into a discrete-time

linear time-invariant dynamics model and use accel-

erations as control inputs at each time step. All the

joints are assumed to be fully actuated and indepen-

dent from each other, corrupted by process noise mt,j ∼
N (0,Mt,j), where j = 1, 2, . . . , 7 denotes the degree of

freedom (DOF) index, and

Mt,j =

[
σ2
x,j 0

0 σ2
v,j

]
. (37)

Using the linearization from Equation 8, we have:

x̄t,j =

[
1 ∆T

0 1

]
x̄t−1,j +

[
∆T 2/2

∆T

]
ūt−1,j + mt,j , (38)

where x̄t,j includes the position and velocity of the jth

joint at time step t. We consider two different system

observation models in this paper: a joint configuration

observation model and an end-effector pose observation

model.

7.1.1 Joint configuration observation model

One natural way of formulating the system observation

model is to observe the joint values directly through

joint encoders. We assume the value of each joint is

corrupted by Gaussian observation noises from the cor-

responding joint encoder, and the noise at each joint

is independent from each other. With this fully ob-

servable model, all the joints are decoupled from each

other in both the dynamics model and the observation

model, which helps reduce the computation complexity

of state probability distribution estimation. The obser-

vation model at each joint can be expressed as:

z̄t,j = x̄t,j + nt,j , nt,j ∼ N (0, Nt,j), (39)

where Nt,j is the noise covariance matrix of the jth

joint encoder.
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7.1.2 End-effector pose observation model

Although the joint configuration observation model is

very straightforward, in practice the joint encoder noises

are usually not the most significant source of errors. In

comparison, camera observations are often less accurate

due to the inaccuracy of camera itself and the uncer-

tainties from the object it is mounted to. For manip-

ulators mounted on mobile robots, for example, their

head camera is often an important source of observa-

tions. However, unexpected movements of the mobile

base caused by arm movements or external disturbances

can often lead to inaccurate estimations of the rela-

tive position between the manipulator and the object

to be grasped in a pick-and-place task. In addition, in

underwater manipulation tasks, vehicle movements are

inevitable due to movements of the manipulator and

disturbances from ocean currents. In this case, the ob-

servations of the spatial relationship between obstacles

and the manipulator from cameras mounted on the ve-

hicle will inevitably be corrupted. As a result, it is of

more practical significance to incorporate camera ob-

servations compared to using the fully observable joint

configuration observation model.

Ideally, observations of the whole manipulator should

be evaluated. However, this is nontrivial since it re-

quires modeling the forward kinematics mapping of all

the points on each link. In addition, directly modeling

the observation noises for the relative spatial relation-

ship between the entire manipulator and workspace ob-

jects is also difficult. Thus as a start, an end-effector ob-

servation model is introduced in this section to approx-

imate the real-world camera observations. The trans-

formation matrix between workspace objects and the

end-effector can be expressed as:

T eeobj = T camobj · T eecam, (40)

where T camobj is the transformation from the workspace

object to the camera frame, and T eecam is the transforma-

tion from the camera frame to the end-effector. There-

fore, the noises for observing T eeobj can be transformed

into observation noises for T eecam through the transfor-

mation matrix T camobj . Then T eecam can be transformed

into T camee through matrix inversion. Therefore, we can

approximate the observation noises through corrupted

observations of the end-effector pose from the camera.

The observations of the end-effector can be expressed

in C-space through the nonlinear relationship:

zt = h(xt,nt), nt ∼ N (0, Nt), (41)

where h(xt, 0) is the forward kinematics, nt is the ob-

servation noise, and Nt is the covariance matrix of the

observation noise. The linearization of this observation

model around a nominal configuration x∗t can be ex-

pressed as:

zt − h(x∗t , 0) = Jt(xt − x∗t ) +Wtnt, (42)

where

Jt =
∂h

∂x
(x∗t , 0). (43)

Since h(xt, 0) is the forward kinematics, Jt is the end-

effector Jacobian matrix at the nominal configuration

x∗t . In this way, the linearized system observation ma-

trix becomes the Jacobian matrix, which is usually easy

to obtain during computation. Again using the lineariza-

tion from Equation 8, the end-effector pose observation

model given in Equation 42 can be rewritten as:

z̄t = Jtx̄t +Wtnt, nt ∼ N (0, Nt) (44)

Compared with the joint configuration observation

model, this end-effector observation model no longer

decouples different joints, thus it will inevitably require

more computation time in the state probability dis-

tribution estimation step. In addition, since this is a

partially observable model, estimated noise variances

will grow as the robot executes along the desired tra-

jectory. Hence we expect that it will be more difficult

for p-Chekov to find solutions that satisfy the chance

constraint using this end-effector observation model.

Section 7.2 will compare quadrature-based p-Chekov’s

performance with these two different observation mod-

els empirically, whereas Section 7.3 will focus only on

the results for the end-effector observation model when

testing the learning-based p-Chekov since it is the more

realistic yet challenging one.

7.2 Quadrature-based p-Chekov experiment results

We focus on evaluating the initial feasible solution re-

turned by the p-Chekov planning phase algorithm in

Section 7.2.1, and then look at the improvement the ex-

ecution phase IRA algorithm induces in Section 7.2.2.

Baxter’s specification indicates that its worst case ac-

curacy of joints is ±0.25 degree, which is about ±0.0044

rad. Hence in the experiments in this paper, the stan-

dard deviation of noises during execution is set to 0.0044 rad.

The collision risk of a returned solution trajectory is

evaluated with 100 noisy executions.
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To assess the chance constraint satisfaction perfor-

mance of p-Chekov, we provide the definition of chance

constraint satisfied test cases. If p-Chekov works per-

fectly, the 100 independent executions for a particular

solution trajectory should all have their probability of

collision equal to the chance constraint. For example, if

the chance constraint allows for a 10% collision proba-

bility, the probability of collision happening during an

execution should be 10%. Then the number of failures

out of the 100 executions follows a binomial distribution

with the number of independent experiments n = 100

and the probability of occurrence in each experiment

p = 0.1. The cumulative probability distribution func-

tion of binomial distributions can be expressed as:

F (k;n, p) = Pr(X ≤ k) =

k∑
i

(
n

i

)
pi(1− p)n−i (45)

For n = 100 and p = 0.1, we can calculate from Equa-

tion 45 that the probability of having less than or equal

to 10 failures out of 100 executions is only about 56%.

Similarly, if the chance constraint is 5%, then the proba-

bility of having less than or equal to 5 failures in 100 ex-

ecutions is about 59%. However, to better represent the

actual collision risk of solutions returned by p-Chekov,

we want the classification error for chance constraint

satisfied test cases to be small, so that we are confident

to say the test case has violated the chance constraint

when there are more than the corresponding number of

executions end up in collision. If we define chance con-

straint satisfied test cases as the ones where the collision

rate out of 100 executions is lower than or equal to 1.5

times of the chance constraint, Equation 45 shows that

for p = 0.1 the classification accuracy is about 94%, and

for p = 0.05 the accuracy is around 86%. Consequently,

we decide to use 1.5 times of the chance constraint as

the boundary between chance constraint satisfied cases

and chance constraint violated cases.

Since theoretically p-Chekov only has probabilistic

guarantees for waypoints instead of the entire trajec-

tory, we distinguish between continuous-time and discrete-

time chance constraint satisfaction performances. If the

100 noisy executions of a test case shows that the av-

erage continuous-time (or waypoint) collision rate is

within 1.5 times of the collision chance constraint, then

we say this test case satisfies the continuous-time (or

discrete-time) chance constraint. Only the continuous-

time satisfaction is the true criterion for success, but

we use discrete-time performance to show the impact of

edge collisions, i.e. the collisions in between waypoints.

7.2.1 Planning phase experiment results

Table 5 and Table 6 show quadrature-based p-Chekov’s

performance with different chance constraints using joint

configuration observation model in the “tabletop with

a pole” environment and the “tabletop with a con-

tainer” environment respectively. The first six rows of

Table 5 and 6 compare deterministic Chekov and the

quadrature-based p-Chekov planning phase algorithm.

As expected, p-Chekov doesn’t perform as well as deter-

ministic Chekov in terms of planning time and the aver-

age length of execution trajectories, because p-Chekov

usually pushes the solution away from the locally op-

timal solution deterministic Chekov returned in order

to ensure safety. However, the overall collision rate (av-

eraged over 500 test cases with 100 noisy executions

each) shows the superiority of p-Chekov solutions in

the presence of noises. From Table 5 we can see that

the overall collision rate is reduced by more than 20%

compared with deterministic solutions, while the aver-

age path length is only increased by 0.3 rad. Since the

“tabletop with a container” environment is much more

complicated due to the narrow spaces, p-Chekov’s per-

formance shown in Table 6 is much worse compared to

Table 5. Despite the difficulty in this environment, p-

Chekov can reduce the collision rate by about 30% with

both chance constraints.

The remaining rows of Table 5 and 6 focus on the

chance constraint satisfaction performance of p-Chekov.

From both tables we can see that the discrete and con-

tinuous chance constraint satisfaction performances are

very close, which means edge collisions in these exper-

iments don’t have significant influence. Comparing p-

Chekov’s performance in the continuous chance con-

straint satisfied cases and violated cases, we can see

that the satisfied cases take much fewer iterations than

the violated cases and also have much lower average col-

lision rate. In addition, in the satisfied cases p-Chekov

successfully reduces the average collision rate by 0.3 -

0.5, meanwhile in the violated cases the collision risk

actually increased. This means in the violated cases, p-

Chekov is failing to find safe solutions that satisfy the

chance constraint, and might get the trajectories close

to other objects while pushing them away from some

obstacles. For the chance constraint satisfied cases, in

contrast, the collision rate is much lower than the chance

constraint, meaning that p-Chekov is overly conserva-

tive. This is potentially caused by the conservative quadrature-

based collision probability estimation approach and the

conservative risk allocations. Section 7.2.2 will show p-

Chekov’s performance with the execution phase IRA

algorithm, which aims at providing less conservative so-

lutions.
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Table 5: Quadrature-based P-Chekov in Tabletop with

a Pole Environment with Joint Observation and Various

Chance Constraints

Chance Constraint 10% 5%
Planning
Time (s)

deterministic Chekov 1.10 1.38
p-Chekov 5.09 6.44

Overall

Collision Rate1
deterministic Chekov 33.82% 33.84%

p-Chekov 7.70% 7.63%
Average Path

Length (rad)2
deterministic Chekov 0.51 0.51

p-Chekov 0.54 0.54

P-Chekov
Performance

continuous chance constraint satis-
faction rate3

91.57% 91.57%

continuous
satisfied
cases4

average iteration
number

1.41 1.47

average collision rate 0.02% 0.01%
average risk reduction9 32% 32%

continuous
violated
cases5

average iteration
number

2.82 2.93

average collision rate 86.89% 86.30%
average risk reduction -35% -33%

discrete chance constraint satisfac-
tion rate6

93.57% 92.77%

discrete
satisfied
cases7

average iteration
number

1.47 1.52

average collision rate 0.04% 0.01%
average risk reduction 23% 22%

discrete
violated
cases8

average iteration
number

2.50 2.64

average collision rate 84.79% 83.14%
average risk reduction -40% -35%

1 Average collision rate over 100 noisy executions for all 500 test
cases.

2 Average length of actual execution trajectories in joint space (mea-
sured by radian).

3 Percentage of test cases where the average continuous-time collision
rate over 100 noisy executions satisfies the chance constraint.

4 P-Chekov performance over the test cases where the chance con-
straint is satisfied by continuous-time collision rate (viewed as suc-
cess cases).

5 P-Chekov performance over the test cases where the chance con-
straint is violated by continuous-time collision rate (viewed as fail-
ure cases).

6 Percentage of test cases where the average waypoint collision rate
over 100 noisy executions satisfies the chance constraint.

7 P-Chekov performance over the test cases where the chance con-
straint is satisfied by waypoint collision rate, where the average
risk reduction is the collision risk of p-Chekov minus the collision
risk of deterministic Chekov.

8 P-Chekov performance over the test cases where the chance con-
straint is violated by waypoint collision rate.

9 The difference between the average collision rate of p-Chekov solu-
tions and that of deterministic Chekov solutions.

If we compare p-Chekov’s performance with differ-

ent chance constraints, we can see that the overall colli-

sion rate is not necessarily going down when the chance

constraint decreases. One possible cause for this is, when

the chance constraint is getting tighter, more test cases

become infeasible, thus the solutions p-Chekov found

for those cases are likely to end up in collision. This

shows the importance of filtering out infeasible test

cases in order to better see p-Chekov’s performance,

which we will present later in this section.

As described in Section 7.1, the partially-observable

end-effector observation model is more difficult but more

realistic in practical applications. We now investigate

p-Chekov’s performance with this end-effector obser-

vation model. Figure 4 shows the experiment result

breakdown in the “tabletop with a pole” environment

Table 6: Quadrature-based P-Chekov in Tabletop with

a Container Environment with Joint Observation and

Various Chance Constraints

Chance Constraint 10% 5%
Planning
Time (s)

deterministic Chekov 1.29 1.61
p-Chekov 15.47 19.80

Overall
Collision Rate

deterministic Chekov 66.56% 66.75%
p-Chekov 36.29% 36.83%

Average Path
Length (rad)

deterministic Chekov 0.63 0.63
p-Chekov 0.76 0.77

P-Chekov
Performance

continuous chance constraint satis-
faction rate3

61.30% 60.49%

continuous
satisfied
cases

average iteration
number

2.74 2.87

average collision rate 0.09% 0.05%
average risk reduction 54% 54%

continuous
violated
cases

average iteration
number

6.28 6.38

average collision rate 93.64% 92.66%
average risk reduction -8% -7%

discrete chance constraint satisfac-
tion rate6

69.65% 69.04%

discrete
satisfied
cases

average iteration
number

3.58 3.78

average collision rate 0.05% 0.04%
average risk reduction 50% 50%

discrete
violated
cases

average iteration
number

5.31 5.36

average collision rate 92.80% 92.09%
average risk reduction -14% -13%

and the “tabletop with a container” environment re-

spectively, with 10% chance constraint and noise level

0.0044 rad. The test cases are divided into five groups:

(1) chance constraint is satisfied by the initial determin-

istic Chekov solution, (2) continuous-time collision rate

satisfies the chance constraint, (3) continuous-time col-

lision rate violates the chance constraint but discrete-

time collision rate satisfies it, (4) discrete-time collision

rate violates the chance constraint but the p-Chekov al-

gorithm terminated before it hits its iteration number

upper bound, and (5) p-Chekov terminates because it

hit the iteration limit.

From Figure 4 we can see that in 60.64% of the test

cases in the “tabletop with a pole” environment, the

chance constraint is satisfied through the risk-aware p-

Chekov’s effort, meanwhile in 9.84% of the test cases

this constraint is violated by the continuous-time colli-

sion rate but satisfied by the waypoint collision rate. As

mentioned previously, edge collision is one of the draw-

backs of trajectory discretization, thus we need to bal-

ance the computation complexity and plan safety when

deciding the number of waypoints. Figure 4 also shows

that in a small portion (16.87%) of the test cases, the

deterministic Chekov solutions have already satisfied

the chance constraint and no p-Chekov iterations are

needed. No cases hit p-Chekov’s iteration upper bound,

while 12.65% test cases are failures caused by other

reasons than edge collisions. The “tabletop with a con-

tainer” environment shows a similar breakdown, where

11.40% of the test cases fail because of edge collisions,
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Table 7: Quadrature-based P-Chekov in Two Environments with End-effector Observation, 10% Chance Constraint

and Various Noise Levels

Environment Tabletop with a Pole Tabletop with a Container
Noise Standard Deviation (rad) 0.0044 0.0022 0.0011 0.0044 0.0022 0.0011

Planning Time
(s)

deterministic Chekov 1.13 1.36 1.11 1.31 1.52 1.24
p-Chekov 24.17 16.08 8.38 49.60 34.67 17.47

Overall
Collision Rate

deterministic Chekov 35.88% 34.27% 33.40% 66.95% 65.77% 65.04%
p-Chekov 21.46% 17.42% 14.12% 53.11% 48.82% 43.51%

Average Path
Length (rad)

deterministic Chekov 0.51 0.51 0.51 0.63 0.63 0.63
p-Chekov 0.75 0.63 0.57 1.11 0.91 0.76

P-Chekov
Performance

continuous chance constraint satisfaction rate 77.51% 81.33% 85.34% 44.20% 49.08% 54.79%

continuous
satisfied cases

average iteration number 5.41 3.57 2.25 6.90 4.81 3.50
average collision rate 0.13% 0.05% 0.02% 0.20% 0.11% 0.10%
average risk reduction 30% 29% 30% 46% 48% 48%

continuous
violated cases

average iteration number 9.48 6.63 5.01 12.12 9.11 6.26
average collision rate 91.70% 93.05% 96.21% 95.01% 95.02% 95.25%
average risk reduction -37% -37% -40% -12% -12% -11%

discrete chance constraint satisfaction rate 87.35% 86.55% 88.96% 55.60% 59.27% 62.32%

discrete
satisfied cases

average iteration number 5.91 3.80 2.43 7.87 5.74 3.83
average collision rate 0.12% 0.06% 0.05% 0.16% 0.33% 0.14%
average risk reduction 25% 22% 21% 47% 45% 43%

discrete
violated cases

average iteration number 8.99 6.32 4.39 12.20 8.84 6.27
average collision rate 74.10% 85.76% 93.02% 88.27% 92.54% 94.60%
average risk reduction -26% -41% -48% -11% -17% -16%

Table 8: Quadrature-based P-Chekov in Tabletop with a Pole Environment with End-effector Observation, 0.0044

Noise Level and 10% Chance Constraint

Step Size of the Collision Penalty Hit-in Distance Increase (m) 0.03 0.04 0.05 0.06

Planning Time (s)
deterministic Chekov 1.35 1.39 1.13 1.35

p-Chekov 51.92 37.00 24.17 26.08

Overall Collision Rate
deterministic Chekov 35.89% 35.87% 35.88% 36.05%

p-Chekov 21.95% 21.82% 21.46% 23.48%
Average Path Length

(rad)
deterministic Chekov 0.51 0.51 0.51 0.51

p-Chekov 0.72 0.74 0.75 0.78

P-Chekov Performance

continuous chance constraint satisfaction rate 76.91% 76.71% 77.51% 74.50%

continuous
satisfied cases

average iteration number 8.04 6.61 5.41 4.41
average collision rate 0.11% 0.17% 0.13% 0.18%
average risk reduction 30% 30% 30% 29%

continuous
violated cases

average iteration number 13.87 11.38 9.48 8.57
average collision rate 92.28% 92.32% 91.70% 90.13%
average risk reduction -38% -37% -37% -34%

discrete chance constraint satisfaction rate 85.94% 84.74% 87.35% 83.73%

discrete
satisfied cases

average iteration number 8.93 7.04 5.91 4.87
average collision rate 0.19% 0.16% 0.12% 0.11%
average risk reduction 25% 24% 25% 24%

discrete
violated cases

average iteration number 12.27 11.27 8.99 8.62
average collision rate 75.30% 79.85% 74.10% 77.45%
average risk reduction -28% -30% -26% -29%

and 41.35% fail because of other reasons. We picked

some test cases out of this “other failures” category to

closely inspect the failure reason, and noticed that most

of these test cases have either start or goal pose very

close to obstacles. This means a lot of these cases might

be infeasible because the start or goal collision proba-

bility has already violated the chance constraint, which

makes the chance-constrained query infeasible.

Table 7 demonstrates detailed performance of quadrature-

based p-Chekov with end-effector pose observations un-

der different levels of noise disturbance. The same 500

test cases in each environment are evaluated, and the

chance constraint is also set to 10%. Compared with

Table 5, we can see that end-effector pose observa-

tion model makes it much more difficult for p-Chekov

to find feasible solutions that satisfy the chance con-
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Fig. 4: Quadrature-based p-Chekov statistics break-

down for experiments with end-effector observation,

0.0044 noise standard deviation and 10% chance con-

straint

straint. This is expected because, in contrast to fully-

observable models whose variance estimation will con-

verge, end-effector model doesn’t have full information

of robot states and the variance estimation will keep

growing along the trajectory, leading to p-Chekov’s fail-

ure in finding feasible solutions in more test cases. Ad-

ditionally, Table 7 shows a larger difference between

continuous-time and discrete-time chance constraint sat-

isfaction performance compared to Table 5, meaning

that edge collisions occur in more test cases. In Ta-

ble 7, the overall collision rate is reduced at the expense

of average execution trajectory length. Comparing the

results for different noise levels, we can see that the de-

terministic Chekov solutions have similar collision rates

but the p-Chekov solutions collide much less with lower

noise levels. In the constraint satisfied test cases, p-

Chekov is taking many more iterations when the noise

level is high, but the average risk reductions with dif-

ferent noise levels are similar. In the “tabletop with a

container” environment, both the overall collision rates

and the chance constraint satisfaction rates under all

the three noise levels are only about 50%. Despite the

high overall collision rates, p-Chekov still successfully

Fig. 5: Quadrature-based p-Chekov statistics break-

down for feasible cases with end-effector observation,

0.0044 noise standard deviation and 10% chance con-

straint

reduced the collision risk by over 0.45 in the constraint

satisfied test cases.

In the experiments presented in this section, the

constraints added to the waypoints where the allocated
risk bound is violated include an increase in the colli-

sion penalty hit-in distance. Hence the step size of this

increase could potentially influence both the conserva-

tiveness of the solution trajectory and the number of

iterations it takes to find a feasible solution. We com-

pared p-Chekov’s performance with four different step

sizes in the “tabletop with a pole” environment and

show the results in Table 8. The chance constraint is set

to 10% and the standard deviation of noises is 0.0044

rad. Different columns in Table 8 show that using a

smaller penalty distance increase step doesn’t make a

big difference in p-Chekov’s performance except for a

longer planning time. Therefore, in the experiments in

this paper, we set the step size of the collision penalty

hit-in distance increase to 0.05 m.

As previously mentioned, a lot of test queries where

p-Chekov fails have their start or goal very close to

obstacles. In these cases, feasible solutions might not

exist if the collision probability of the start or goal has

already exceeded the chance constraint. Therefore, we
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Table 9: Results in Potentially Feasible Test Cases

with Joint Value Observation, Noise Level 0.0044 and

Chance Constraint 5%

Environment
Tabletop
with a
Pole

Tabletop
with a
Con-
tainer

Planning
Time (s)

deterministic Chekov 1.28 1.29
p-Chekov 5.40 10.44

Overall
Collision Rate

deterministic Chekov 28.98% 43.49%
p-Chekov 1.60% 6.13%

Average Path
Length (rad)

deterministic Chekov 0.51 0.59
p-Chekov 0.52 0.64

P-Chekov
Performance

continuous chance constraint satis-
faction rate

98.40% 93.80%

continuous
satisfied
cases

average iteration
number

1.15 2.02

average collision rate 0.00% 0.01%
average risk reduction 29% 41%

continuous
violated
cases

average iteration
number

4.00 8.19

average collision rate 100.00% 98.68%
average risk reduction -43% -16%

discrete chance constraint satisfac-
tion rate

99.00% 96.20%

discrete
satisfied
cases

average iteration
number

1.18 2.25

average collision rate 0.00% 0.01%
average risk reduction 19% 31%

discrete
violated
cases

average iteration
number

3.20 6.37

average collision rate 100.00% 98.47%
average risk reduction -62% -15%

Table 10: Results in Potentially Feasible Test Cases

with End-effector Observation, Noise Level 0.0044 and

Chance Constraint 10%

Environment
Tabletop
with a
Pole

Tabletop
with a
Con-
tainer

Planning
Time (s)

deterministic Chekov 1.10 1.27
p-Chekov 19.34 31.17

Overall
Collision Rate

deterministic Chekov 27.51% 41.04%
p-Chekov 11.39% 16.46%

Average Path
Length (rad)

deterministic Chekov 0.51 0.60
p-Chekov 0.68 0.84

P-Chekov
Performance

continuous chance constraint satis-
faction rate

87.60% 82.20%

continuous
satisfied
cases

average iteration
number

4.14 5.19

average collision rate 0.08% 0.11%
average risk reduction 25% 33%

continuous
violated
cases

average iteration
number

10.52 10.35

average collision rate 88.50% 88.02%
average risk reduction -44% -13%

discrete chance constraint satisfac-
tion rate

94.40% 86.80%

discrete
satisfied
cases

average iteration
number

4.82 5.49

average collision rate 0.13% 0.10%
average risk reduction 19% 28%

discrete
violated
cases

average iteration
number

6.94 10.32

average collision rate 73.39% 86.59%
average risk reduction -39% -23%

introduce a pre-processing procedure before running p-

Chekov in order to filter out these potentially infea-

sible test queries. We estimate the collision probabil-

ity of the start and goal based on the nominal trajec-

tory computed by deterministic Chekov, and discard

the test cases where the collision probability of either

the start or goal exceeds 1.5 times of the chance con-

straint. Although it is possible that some of these cases

might be feasible since our collision probability estima-

tion approach is conservative, most of them are highly

likely to be infeasible compared to other cases where

the start and goal has low estimated collision proba-

bilities. We pick 500 test cases that have passed this

pre-processing and call them “feasible cases” in short,

to distinguish from the unfiltered 500 test cases used

in previous experiments in this section. Figure 5 shows

the statistics breakdown for the experiments with the

end-effector observation model in the two tabletop en-

vironments after filtering out the potentially infeasible

test cases. The chance constraint is set to 10% and the

noise standard deviation is 0.0044 rad. Compared with

Figure 4, it is obvious that the chance constraint sat-

isfaction rate has significantly increased. In “tabletop

with a pole” environment we can see that in 25.20%

of the test cases, the initial deterministic solution has

already satisfied the chance constraint, and there are

62.40% test cases where the chance constraint is satis-

fied after p-Chekov risk-aware iterations. Only 6.80% of

the test cases fail because of edge collisions, and 5.40%

fail for other reasons. Similarly, the “tabletop with a

container” environment also shows that 65.20% of test

queries can satisfy the chance constraint after p-Chekov

risk-aware iterations, in contrast to the 30.52% shown

in Figure 4. In this environment, the difference between

the experiment results before and after pre-processing

is much more noticeable than in the “tabletop with a

pole” environment, indicating that more cases are in-

feasible in this complicated environment with narrow

spaces.

Table 9 and Table 10 compare p-Chekov’s perfor-

mance with joint configuration observation model and

with end-effector pose observation model in feasible cases

for both environments. Compared with Table 5 to 7, it

is noticeable that the results are significantly improved

after filtering out potentially infeasible cases. In Table 9

we can see that with joint configuration observations,

p-Chekov can achieve a chance constraint satisfaction

rate of above 90% in both environments. Especially in

the “tabletop with a container” environment, p-Chekov

shows powerful collision risk reduction ability by having

an average risk reduction of 0.41 in satisfied cases with

only a small increase in the average execution trajec-

tory length. With end-effector observations, as shown
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Table 11: Improvement from Iterative Risk Allocation for Experiments with Both Observation Models

Environment Tabletop with a Pole Tabletop with a Container
Test Case Filtering All Cases Feasible Cases All Cases Feasible Cases

Observation Model2 Joint
End-

Effector
Joint

End-
Effector

Joint
End-

Effector
Joint

End-
Effector

Continuous Chance
Constraint Satisfaction Rate3

Without IRA 85.62% 69.92% 96.58% 82.16% 53.57% 41.72% 90.94% 76.80%
With IRA 88.44% 69.92% 97.72% 84.21% 55.00% 43.08% 93.44% 77.87%

Discrete Chance Constraint
Satisfaction Rate4

Without IRA 88.44% 81.49% 97.83% 90.35% 64.29% 55.33% 94.06% 82.67%
With IRA 90.00% 82.26% 98.86% 91.23% 63.81% 54.20% 95.94% 83.47%

Average Trajectory Length
(rad)5

Without IRA 0.62 0.85 0.64 0.81 0.81 1.10 0.74 0.94
With IRA 0.60 0.80 0.63 0.77 0.78 1.03 0.72 0.88

1 The results shown are averaged from the test cases where the IRA number of iteration is non-zero only. The test
cases where all constraints are already active in the planning phase solution are not included.

2 The chance constraint for experiments with joint configuration observation model is set to 5%, and the chance
constraint for experiments with end-effector pose observation model is set to 10%.

3 Percentage of the test cases where the average continuous-time collision rate over 100 noisy executions satisfies the
chance constraint.

4 Percentage of the test cases where the average waypoint collision rate over 100 noisy executions satisfies the chance
constraint.

5 Average length of actual execution trajectories instead of nominal solution trajectories.

in Table 10, although the performance is not as good

compared to Table 9, the constraint satisfaction rates

in both environments are still above 80%. The overall

collision risks are significantly reduced compared to de-

terministic Chekov’s solutions, and the average risk re-

ductions in constraint satisfied cases are also very high

in both environments. However, in these constraint sat-

isfied cases in Table 10, the collision risk is much lower

than the chance constraint level, and the average execu-

tion trajectory lengths are much longer compared with

deterministic Chekov’s solutions. This indicates that p-

Chekov’s planning phase algorithm can return overly

conservative solutions, thus in Section 7.2.2, we will use

the IRA algorithm in p-Chekov’s execution phase to im-

prove solution quality.

7.2.2 Improvement from iterative risk allocation

This section presents the improvement from using the

IRA algorithm introduced in Section 6.3.2. Table 11

compare the solutions from p-Chekov’s planning phase

algorithm and from using an IRA procedure after the

planning phase in both environments. The compari-

son considers three main aspects: the percentage of

test cases where the continuous-time collision rate satis-

fies the chance constraint, the percentage of test cases

where the waypoint collision rate satisfies the chance

constraint, and the average trajectory length over 100

noisy executions. The columns of “All Cases” refer to

the results of the original 500 test cases, and the columns

of “Feasible Cases” refer to the results of the 500 test

cases after filtering out potentially infeasible cases based

on the collision probability of start and end poses. Ta-

ble 11 shows that IRA can slightly improve the chance

constraint satisfaction rate, for both continuous-time

and discrete-time satisfactions, especially in the rela-

tively difficult “tabletop with a container” environment.

The improvement on average trajectory length is the

main effect of IRA. From Table 11 we can see that

the solutions with IRA are much shorter, indicating

that the trajectory quality is improved without sac-

rificing the chance constraint satisfaction rate. These

results prove that using IRA during execution phase

can effectively redistribute risk bounds among different

waypoints and improve the solution quality by provid-

ing less conservative trajectories that also satisfy the

chance constraint.

7.3 Learning-based p-Chekov experiment results

The results from Section 7.2 indicate that the planning

time of quadrature-based p-Chekov will severely con-

strain its application in real-time planning tasks that re-

quire fast-reaction. In this section, we first compare the

training performance of four different classes of machine

learning methods in the same two tabletop environ-

ments, and then demonstrate the performance of neural

network-based p-Chekov, the best performer among the

four, with 500 feasible test cases in each environment.

7.3.1 Comparison between different regression methods

In p-Chekov, since the nominal trajectories generated

by the deterministic planner are guaranteed to be collision-

free without the presence of noise, the nominal configu-

rations inputted into the collision estimator component

is more likely to lie in the collision-free configuration
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Table 12: Best Parameters in Kernel Ridge Regression and Random Forest Regression

Regressor 8000 training data 18000 training data 38000 training data
RBF Kernel Ridge Regression α = 0.2, γ = 0.3 α = 0.2, γ = 0.3 α = 0.2, γ = 0.5

Polynomial Kernel Ridge Regression α = 0.1, degree = 5 α = 0.1, degree = 6 α = 0.1, degree = 6

Matern Kernel Ridge Regression
α = 0.1, ν = 2.29,
length scale = 1.5

α = 0.01, ν = 1.14,
length scale = 2.5

α = 0.01, ν = 1.44,
length scale = 1.66

Random Forest Regression
estimators = 300,
min split = 5,
min leaf = 3

estimators = 600,
min split = 5,
min leaf = 3

estimators = 600,
min split = 4,
min leaf = 3

space. Therefore, the 60000 samples in each environ-

ment include two parts: 20000 have their mean configu-

rations sampled from the entire configuration space (re-

ferred to as Sample Set 1 ), and 40000 have their mean

configurations sampled purely from the deterministic

collision-free configuration space (referred to as Sample

Set 2 ). 2000 samples are held out for testing in every

experiment no matter how large the training size is.

Note that even though the mean configuration is not

in collision, the associated collision risk is not neces-

sarily zero if the standard deviation is nonzero. Having

more samples taken from the deterministic collision-free

space can better represent the practical data p-Chekov

faces during online planning. All the 60000 samples

from both environments are used when training neu-

ral networks, while we only use Sample Set 1 and half

of Sample Set 2 to train Scikit Learn regressors because

they get very slow when the data size exceeds 40000.

In order to find the best parameters for the regres-

sors, we conduct grid search on kernel ridge regressors

and random forest regressors, and use gradient descent

on Gaussian process regressors. Table 12 shows the best

parameters found for different kernels in kernel ridge re-

gression as well as random forest regression when the

training data have different sizes. Since gradient de-

scent for Gaussian process is applied during training to

maximize the log marginal likelihood, the best param-

eters are not shown in Table 12. All the experiments in

this section use the best parameters we found for the

corresponding data size.

The comparison between different regression meth-

ods on different datasets is shown in Table 13. In each

dataset, 2000 randomly selected data points are used for

testing and the rest are used for training. Mean squared

error (MSE) and R2 score are used to measure the test

accuracy for different regressors. Given the predicted

value ŷi and the true value yi for each test data point,

MSE is calculated by:

MSE(y, ŷ) =
1

nsamples

nsamples∑
i=1

(yi − ŷi)2, (46)

and the R2 score is calculated by:

R2(y, ŷ) = 1−
∑nsamples

i=1 (yi − ŷi)2∑nsamples

i=1 (yi − ȳi)2
, (47)

where ȳ = 1
nsamples

∑nsamples

i=1 yi. Here the R2 scores are

computed using the test data, and the MSE scores and

standard deviations are computed using cross valida-

tion on the training data. In terms of the training time

performance, Gaussian process regression and Matern

kernel ridge regression are the slowest. Gaussian process

regression conducts gradient descent to search for best

parameters during training, and also outputs distribu-

tions instead of single predicted values, which would

explain its low training speed. As for Matern kernel

ridge regression, the best ν parameter found by grid

search is not one of the default values provided by Scikit

Learn, and this would incur a considerably higher com-

putational cost (approximately 10 times higher) since

they require to evaluate the modified Bessel function. In

contrast, random forest regressor tends to take a very

short time to train, and its training time also grows

relatively slowly as the size of training data increases.

In terms of prediction accuracy, Matern kernel ridge

regression and random forest regression have the best

performance when the training data include Sample Set

1 data, while polynomial kernel shows the worst perfor-

mance. RBF kernel ridge regression shows slightly bet-

ter performance compared to random forest regression

when the training data are purely from Sample Set 2.

When provided with 38000 training data, the MSE er-

ror of random forest regressor is relatively satisfactory,

and a number of manually selected test points showed

that the prediction is very close to the “ground truth”

risk value.

If we compare the results between training on Sam-

ple Set 1 and training on Sample Set 2, we can see that

Sample Set 2 tests show a smaller MSE error but a

lower R2 score. This is because the Sample Set 2 data

points are all sampled from the collision-free configu-

ration space, which would tend to have lower collision

risk than the in-collision configurations. Therefore, it is

reasonable that a lower absolute value leads to a lower
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Table 13: Comparison of Different Regression Methods

Data Size
Regression

Method
R2

Score
MSE
Error

Std of
MSE

Training
Time
(s)

Set 1

10000

Kernel
Ridge

RBF 0.792 0.0217 0.0006 5.30
Polynomial 0.731 0.0314 0.0010 7.37

Matern 0.801 0.0210 0.0006 40.83
Random Forest 0.799 0.0217 0.0007 1.76

Gaussian Process 0.791 0.0221 0.0006 140.15

20000

Kernel
Ridge

RBF 0.842 0.0180 0.0005 31.78
Polynomial 0.783 0.0261 0.0007 58.21

Matern 0.851 0.0172 0.0005 311.11
Random Forest 0.854 0.0166 0.0006 4.80

Gaussian Process 0.844 0.0181 0.0005 1108.75

Set 2

10000

Kernel
Ridge

RBF 0.616 0.0077 0.0003 5.29
Polynomial 0.551 0.0097 0.0004 8.29

Matern 0.629 0.0075 0.0003 79.25
Random Forest 0.593 0.0083 0.0003 5.48

Gaussian Process 0.626 0.0077 0.0003 166.39

20000

Kernel
Ridge

RBF 0.682 0.0066 0.0002 33.27
Polynomial 0.603 0.0085 0.0002 42.73

Matern 0.697 0.0063 0.0002 213.28
Random Forest 0.661 0.0071 0.0002 4.23

Gaussian Process 0.689 0.0066 0.0002 1337.29

Both
Sets

40000

Kernel
Ridge

RBF 0.847 0.0117 0.0002 435.60
Polynomial 0.773 0.0165 0.0002 261.03

Matern 0.855 0.0110 0.0002 1619.93
Random Forest 0.868 0.0107 0.0002 18.08

Gaussian Process 0.849 0.0113 0.0002 8833.86

MSE error. However, since R2 scores measures the rela-

tive error compared to the variance of the original data,

it won’t decrease as the absolute values of data points

decrease. One hypothesis about why the R2 score is

lower compared to Sample Set 1 is that Sample Set 2

tends to have “ground-truth” collision risk close to 0,

and there’s not enough variety on the data distribu-

tion to ensure that the regressor can capture the data

structure. This conclusion shows that although in prac-

tical motion planning tasks the configurations that p-

Chekov needs to predict collision risk for are more likely

to be in the collision-free configuration space, having

data from the entire configuration space helps the re-

gressor to learn the data distribution better and achieve

higher prediction accuracy.

The neural networks used in this paper are fully

connected networks with ReLU activation for the in-

put layer and hidden layers. Adam [30] optimizer is

used, and the batch size is set to 64. Sigmoid is used

as the output layer activation function since the output

is collision probability. MSE is used as the loss func-

tion because this regression problem aims at minimiz-

ing the prediction error. All the 60000 data points are

used in the neural network experiments: 58000 are for

training and 2000 are for testing. In all the neural net-

works tested in this paper, the number of units in the

input layer is kept as 1024, and all the output layer

have 1 unit to match the sigmoid output. We compare

the networks’ performance with different numbers of

hidden layers in Figure 6, where the top figure has 512

units in each hidden layer and the bottom one has 216.

Fig. 6: Minimum loss as a function of hidden layer num-

bers

The vertical axis in these two figures shows the mini-

mum training and validation losses within 50 training

epochs. From Figure 6 we can see that when the number

of hidden layers with 512 units lies between 0 and 9, the

neural networks have relatively stable performance, and

the minimum loss has a decreasing trend as the number

of layers increases. However, when the number of hid-

den layer reaches 10, the neural networks start to have

trouble minimizing the MSE loss. One of the potential

reasons for this phenomenon is that when the neural

networks get very deep, the input to the last activation

layer, the sigmoid layer, might get very large. Since sig-

moid function has very small gradient when the input

is large, this could potentially cause the optimizer not

being able to properly conduct gradient descent, which

then causes high training losses and validation losses.

When there are 216 units in hidden layers, the minimum

loss curves show similar trends, but the networks have

a wider range of hidden layer numbers where the op-
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Table 14: Performance of Neural Network with 9 Hid-

den Layers with 512 Units Each

Number
of

Training
Epochs

Final
Training

Loss

Final Val-
idation

Loss

Minimum
Valida-

tion
Loss

Number of
Epoch for
Minimum
Validation

Loss
50 0.001371 0.001698 0.001645 49
70 0.001031 0.001519 0.001437 63
100 0.000426 0.001400 0.001302 99

Fig. 7: Loss and training epoch relationship for net-

works with 9 hidden layers with 512 units each

timization is stable since the layers are narrower. This

is potentially related to the fact that when the width

of each layer is smaller, it takes the networks more lay-
ers to reach saturation where the gradient of activation

function approaches zero. The minimum validation loss

in the bottom figure of Figure 6 is 0.0017, when the

number of hidden layers is 6, and in the top figure the

minimum reaches 0.0016, when the number of hidden

layers is 9. Therefore, the optimal network structure

among all tested ones has 9 hidden layers with 512 units

each, an input layer with 1024 units and an output layer

with one sigmoid activation unit.

Table 14 and Figure 7 show the performance of the

optimal structure network, 9 hidden layers with 512

units each, when more training epochs are provided.

Table 14 compares their performance in terms of the

training and validation loss after the last epoch’s train-

ing (the “Final Training Loss” and “Final Validation

Loss” columns), the minimum validation loss among

all epochs (the “Minimum Validation Loss” column),

and the number of epoch where they reach this mini-

mum (the “Number of Epoch for Minimum Validation

Loss” column). As we can see from Table 14, both the

Fig. 8: Learning-based p-Chekov statistics breakdown

for feasible cases with end-effector observation, 0.0044

noise standard deviation and 10% chance constraint

training loss and the validation loss are decreasing given

more training epochs, but the improvement for valida-

tion loss is much smaller compared to that of training

loss. This means that as we exploit the training data

more, although the performance of neural networks will

gradually improve, this improvement is more about bet-

ter fitting the training data structure than generalizing

to the entire C-space. Therefore, we would expect very

limited improvement or even decreasing validation per-

formance when training more than 100 epochs. Figure 7

also shows that the validation loss decreases drastically

in the first 30 epochs and then starts to drop slowly,

whereas the training loss is still decreasing relatively

fast and diverges from the validation loss in the final 30

epochs.

7.3.2 Neural network learning-based p-Chekov

experiment results

Section 7.3.1 shows that the best performer among all

the tested machine learning methods on this collision

risk regression problem is the neural network with 9

hidden layers with 512 units in each layer, thus it is used

in this section to evaluate the performance of learning-

based p-Chekov. Figure 8 demonstrates the statistics

breakdown of the neural network learning-based p-Chekov
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Table 15: Results in Potentially Feasible Test Cases

with End-effector Observation, Noise Level 0.0044 and

Chance Constraint 10%

Environment
Tabletop
with a
Pole

Tabletop
with a
Con-
tainer

Planning
Time (s)

deterministic Chekov 1.12 1.22
p-Chekov 8.65 10.15

Overall
Collision Rate

deterministic Chekov 31.05% 42.54%
p-Chekov 11.82% 18.53%

Average Path
Length (rad)

deterministic Chekov 0.51 0.61
p-Chekov 0.71 0.85

P-Chekov
Performance

continuous chance constraint sat-
isfaction rate

86.80% 79.40%

continuous
satisfied
cases

average iteration
number

3.49 4.41

average planning time
(s)

6.39 7.96

average collision rate 0.11% 0.12%
average risk reduction 27% 33%

continuous
violated
cases

average iteration
number

10.66 8.82

average planning time
(s)

22.96 18.10

average collision rate 86.19% 85.35%
average risk reduction -28% -9%

discrete chance constraint satisfac-
tion rate

94.20% 83.60%

discrete
satisfied
cases

average iteration
number

4.13 4.59

average planning time
(s)

8.29 8.58

average collision rate 0.10% 0.16%
average risk reduction 22% 29%

discrete
violated
cases

average iteration
number

9.03 9.06

average planning time
(s)

13.54 17.69

average collision rate 65.82% 79.65%
average risk reduction -19% -11%

Improvement
from IRA

(for non-zero
number of

IRA
iteration

cases)

Without
IRA

continuous
satisfaction rate

79.94% 72.31%

discrete satisfaction
rate

91.22% 78.23%

average path length 0.88 0.96

With IRA

continuous
satisfaction rate

81.82% 71.24%

discrete satisfaction
rate

93.42% 77.42%

average path length 0.86 0.97

experiments with 500 feasible test cases, end-effector

pose observation model, noise standard deviation 0.0044

and chance constraint 10%, and Table 15 shows more

detailed performance. Note that the pre-processing here

is conducted with the learning-based collision estima-

tor, which might select slightly different test cases com-

pared to using the quadrature-based collision estimator

because their estimated risk for the same start and goal

pose pair might not be exactly the same. The compar-

ison between Figure 8 and Figure 5 shows that the ex-

periment results from quadrature-based p-Chekov and

learning-based p-Chekov have similar structures. Since

the learning-based collision estimation component is

less conservative than the quadrature-based one, it fil-

ters out fewer difficult test cases, which could explain

the relatively lower chance constraint satisfaction rate

in Figure 8. Comparing Table 15 with Table 10, we can

see that although the collision rate performance and the

path length performance of the two algorithms are sim-

ilar, learning-based p-Chekov’s planning time is signifi-

cantly shorter, especially in the more difficult “tabletop

with a container” environment where it reduced the av-

erage planning time by 67%. From the “improvement

from IRA” section in table 15 we can see that IRA

can slightly improve the planning phase solutions in the

“tabletop with a pole” environment, but it’s not able to

make improvement in the more complicated “tabletop

with a container” environment.

8 Discussion

This paper presents a fast-reactive motion planning and

execution system that can be applied to high-dimensional

robotic operations in the presence of uncertainties and

generate motion plans that satisfy user-specified chance

constraints over collision risks. We first introduce deter-

ministic Chekov, an integrated probabilistic roadmap

and trajectory optimization framework that features

fast online planning for high-dimensional humanoid robots.

We evaluate the performance of deterministic Chekov

together with five other existing motion planning al-

gorithms in four representative manipulation scenarios,

and experiment results show that deterministic Chekov

can find high-quality motion plans with a much shorter

planning time compared to other existing planners.

We then describe two different versions of probabilis-

tic Chekov (p-Chekov): the quadrature-based version

and the learning-based version. P-Chekov uses deter-

ministic Chekov to generate nominal trajectories, prop-

agates process noises and observation noises along the

nominal trajectory in order to estimate the a priori

probability distribution of robot states, and decomposes

the joint chance constraint into allowed collision risk

bounds at discrete waypoints. The risk estimation com-

ponent then predicts the collision risk during execution

based on the estimated state distributions, and then

compares them with the allocated risk bounds to ex-

tract “conflicts” where the risk bounds are violated.

These conflicts are fed back to deterministic Chekov

to guide it to generated safer nominal trajectories. Af-

ter resolving all the conflicts, the solution trajectory

is passed into execution phase and an Iterative Risk

Allocation (IRA) component will improve the solution

through reallocating risk bounds. The only difference

between the two versions of p-Chekov is the risk esti-

mation component. Quadrature-based p-Chekov sam-

ples from the estimated state distribution according

to a quadrature rule during online planning and pre-

dicts the collision risk through numerical integration,
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whereas learning-based p-Chekov samples from the con-

figuration space offline to learn the risk distribution

structure and uses the pre-trained regression models

to make online risk predictions. Empirical results show

that most test cases whose chance constraints are vi-

olated by deterministic Chekov’s solutions can satisfy

their constraints through p-Chekov planning phase’s so-

lutions with only a small increase in their trajectory

lengths. Through the IRA component, a lot of test

cases are able to shorten their trajectory from plan-

ning phase solutions. With the partially-observable end-

effector pose observation model, quadrature-based p-

Chekov shows a slow responding time during the on-

line planning phase, which restricts its application in

time-sensitive planning scenarios that require fast reac-

tion. In contrast, in both environments, learning-based

Chekov takes only about 6-8 s in the chance-constraint

satisfied cases with end-effector observation model, which

is a relatively satisfying time for many practical online

chance-constrained planning tasks.

Although learning-based p-Chekov shows strong risk-

reduction ability and can effectively generate high-quality

trajectories that satisfy the chance constraints, it some-

times still spent a long time to search for feasible plans

in difficult test cases, and the plans they eventually

found often violate the constraints. An interesting fu-

ture work direction would be to quickly and effectively

identify these infeasible test cases where the chance con-

straint can’t be satisfied even though their start and

goal poses are not highly risky. In this way, p-Chekov

won’t need to waste a long time trying to search for

feasible solutions for infeasible cases. Another potential

future work direction is to incorporate online obstacle

avoidance [55,49,36] into p-Chekov so that it can han-

dle dynamic obstacles in the execution environment.

Additionally, real robot experiments with raw sensor

data are also necessary before p-Chekov can be de-

ployed in real-world applications.
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