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1. INTRODUCTION

The main result of the paper is a proof of a significant special case of Soergel’s
conjecture [So2| which provides a categorification for Vogan’s character duality
[Vo5].

Recall that Koszul duality formalism has been introduced to representation
theory by Beilinson, Ginzburg and Soergel [Sol], [BGS]. As these works demon-
strate, deep numerical information about the Bernstein-Gelfand-Gelfand category
O of highest weight representations of a complex semisimple Lie algebra g, in-
cluding Kazhdan-Lusztig conjectures, is related to Koszul property of a finite
dimensional ring A ”controlling” the category. Moreover, a remarkable result
of [Sol|, further generalized in [BGS], asserts that A is in fact isomorphic to
its Koszul dual ring A'. The category O is well known to be equivalent to the
category of Harish-Chandra bimodules. This is a special case of the category of
Harish-Chandra (g, K)-modules, where g and K are, respectively, complexifica-
tions of the Lie algebra of a real reductive group and of its maximal compact
subgroup. A conjectural generalization of the result of [BGS] to the latter set-
ting proposed in [So2| provides a categorical upgrade of Vogan’s character duality
[Vo5]. In the present article we prove this conjecture in the special case when the
real group in question is quasi-split.

To present further details we need some notation. Let Gr be a real semisimple
algebraic group and Kr < Gr a maximal compact subgroup. We write G, K for
the complexifications of Gr, KR, respectively, and g, k for the Lie algebras of G
and K. We fix a block M in the category of Harish-Chandra (g, K')-modules and
we assume that the generalized infinitesimal central character of modules in M
is regular and integral. We also fix a strong real form for G with underlying real
form GR

Let G be Langlands dual complex group. Vogan [Vo5] assigned to the above

data a (strong) real form of G and a block M in the Category of (§, K)-modules
with a regular integral infinitesimal central character We impose an additional
assumption that M is a principal block, i.e., that M contains a finite dimensional
G-representation. This implies that G is qua81 split.

IThe infinitesimal central character is defined up to translation by the infinitesimal central
character of a finite dimensional G-representation, but the equivalence class of the block is well
defined.
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KOSZUL DUALITY FOR QUASI-SPLIT REAL GROUPS 3

By the Beilinson-Bernstein Localization Theorem we can realize M as a cate-
gory of twisted K-equivariant D-modules on the flag variety B = G /B. Moreover,
since M contains a finite dimensional representation, we can (and will) realize M
as a subcategory of K equivariant D-modules on G/ B (i.e. in fact no twisting
is needed). Let D be the full subcategory in the equivariant devrived category

Dy (G/B) consisting of complexes whose cohomology belongs to M.

The Centra;l result of this paper is a Koszul duality between the categories
D’(M) and D conjectured by Soergel [So2]. As observed in [So2] and recalled
below (see Remark 5.6), this categorifies Vogan’s character duality in [Vo5] which
is a canonical isomorphism between the Grothendieck group K(M) and the dual

~

space to K (M) implying an equality between Kazhdan-Lusztig polynomials for
M and inverse Kazhdan-Lusztig polynomials for M. Both Vogan’s isomorphism
and Sovergel’s conjectural equivalence have been stated more generally, when the
block M is not necessarily principal and Ggr may not be quasi-split. The present
work generalizes results and methods of Soergel’s [Sol] which treated the case of
a complex group.

In more detail, we establish a certain relationship between the triangulated
categories on the two Langlands dual sides: the derived category of the block M
for modules with generalized integral regular infinitesimal character for the quasi-
split real group Gr and the block D in the equivariant derived category DK(B)
Namely, we show that the abelian category M is equivalent to the category of
nilpotent modules over the ring A = Ext®*(®L;,®L;), where the L; run over the

set of isomorphism classes of irreducible perverse sheaves in the block D.

By a standard formality argument this implies an equivalence of appropri-
ate graded versions of the triangulated categories. Observe that DK(B) can be
thought of as a derived version of the category of (§, K)-modules with a fixed
infinitesimal central character (when tensoring with the base field over the center
of the enveloping algebra U(g) one needs to take into account higher Tor’s, see
section 5 for details). Thus in general our result does not yield two Koszul dual
rings controlling the representation categories on the two sides; however, we do
get such a picture in special cases, such as the previously known case of a complex
group and the new (to our knowledge) case of the principal block in a split group.

Let us recall the mechanism by which the categorical equivalence yields a du-
ality at the level of Grothendieck groups (as already explained in [So2]). By ele-
mentary algebra the Grothendieck group of nilpotent A-modules K°(A—mod,,)
is dual to the Grothendieck group of all finitely generated A-modules K°(A —
mody,), the dual bases in the two groups are provided by the classes of graded
irreducible modules and indecomposable graded projective modules, respectively.
Our result explained above implies that K(A — mod,i,) = K°(M), while the
Grothendieck group of the block in Dy (B) is identified with K°(A —mody,) by
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4 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

sending the class of an irreducible L; € Dz (B) to the module Ext* (P L;, L,);

thus it yields a duality between the two Grothendieck groups.

We finish the introduction by indicating the key idea of our method. Recall that
a central role in Soergel’s theory is played by the Soergel bimodules, which form a
full subcategory in the category of coherent sheaves on h* xp« ;- h*, where h is the
abstract Cartan algebra of g. An analogous role in our construction is played by
the so called block variety, B = a* /Wy, xnxw h*, where a is a maximal split torus
in g and Wy, < W is a subgroup depending on the block M. The appearance of
the quotient a* /Wy, can be motivated as follows. On the one hand it (or rather its
completion at zero) can be realized as the space parametrizing deformations of an
irreducible principal series module at the singular infinitesimal central character
—p, which belongs to the image of M under the translation functor. On the other
hand, the ring O(B) is identified with the equivariant cohomology ring H;((B)
The argument proceeds then by describing the categories of projective pro-objects
in M, as well as the subcategory of semisimple complexes in the block of Dy (B)
as full subcategories in the coherent sheaves on the block variety (or rather its
completion at zero). In the case when the group is not adjoint one needs to
modify the above strategy by considering coherent sheaves on the block variety
equivariant with respect to a certain finite abelian group.

In this paper we use a generalization of the by now classical approach initiated
in [Sol], [BGS], combining it with combinatorial information from Vogan’s work
[Vo5]. Ben-Zvi and Nadler [BZN] have proposed a way to approach Soergel’s
conjectures via geometric Langlands duality. It would be interesting to relate the
two approaches. We expect that the relation of our construction to Hodge D-
modules (see section 6) may provide a starting point for this line of investigation.

The paper is organized as follows.
In section 2 we recall some combinatorial invariants of our categories. Most of
these appear in [ABV], but we also use [AdC]| as a convenient reference.

In section 3 we give a description of D based on the functor of cohomology
(derived global sections) which turns out to be faithful on the subcategory of
irreducible objects.

In section 4 we provide a description of category M based on the functor of
translation to singular central character which turns out to be faithful on the
subcategory of projective (pro)objects.

In section 5 we formally state and prove our Koszul duality result by comparing
the two descriptions. We end the paper by section 6 where we present a conjecture
on realization of M in terms of coherent sheaves on the cotangent bundle via
Hodge D-modules and explain its relation to our description of M.

Acknowledgements. We are much indebted to David Vogan for many helpful
explanations over the years; in particular, the key "matching” Theorem 2.4 was
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explained to us by him. We also thank Jeff Adams and Peter Trapa for useful
discussions.

2. COMBINATORICS OF A BLOCK

In this section we recall the basic facts about Vogan duality [Vob, ABV, AdC]
and its underlying combinatorics in the setting explained in the introduction.
The duality involves making certain choices and part of the statement is that
those choices can be made consistently.

2.1. The equlvarlant (principal block) side. The combinatorial data related

to the block M is as follows. Let C' be a maximal torus in K and T = Zs(C) be
the centralizer of C' in G: it is a standard fact that C' contains elements regular in
G (this is equivalent to absence of real roots in this case, see e.g. [Kn Proposition
6.70]), thus T is a maximal torus in G. Let W (K) = W(K C) = Ni(C)/C be
the Weyl group. )

We have an involution § on G with GY = K. As the torus T is stable under
0, it induces an involution of the Weyl group W(G,T) = N(T)/T. We write
W (G, T)? for the subgroup of W (G, T) fixed by this involution.

We can choose Borel subgroups By < By of K and G containing C, then
By contains T so this choice yields an identiﬁcation between T and the abstract
Cartan group H. Note that By is f-stable, since 6 fixes a regular element in
Bg. It follows that varying the choice above we get identifications T =~ H which
are permuted by the group W(G T) , in particular the induced involution on
H and on the abstract Weyl group W of G is independent of the choice. This
involution will also be denoted by 6.

Note that the group K may be disconnected. We have a homomorphism
W(K) — (K which is onto. Its kernel is the group W (K?) = W(KO C) where
K is the identity connected component in K. Note that the group mo(K) = m(C)
is an elementary abelian 2-group, i.e., it is isomorphic to (Z/2Z)" for some r. Thus
we have

W(K% c W(K) < W(G,T)°.

Finally, we need a count of the closed K-orbits on the flag manifold B = G / B.
Let (K\B)4 be the set of closed K orbits on B. of T', Wy, W(K)

The set of T fixed points carries an action of W (G, T) x W, where the W (G, T)
action comes from the action of the normalizer of T' by conjugation, while the
action of the abstract Weyl group W is such that the action of a simple reflection
Sq sends a fixed point x to the unique fixed point y # x which has the same image
in the partial flag variety P, parametrizing minimal parabolics of type a. We
write the W (G, T) action as a left action and the W action as a right one. Both
actions are simply transitive. Choosing a point z € BT we get an identification

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature.



6 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

W(G,T) ~ W =~ BT such that the above action of W(G,T) x W on BT is given
by (w,v) :  — wav™!.

For an orbit O € K\B the intersection O N BT is either empty or it is a coset
of W(K ); moreover, the intersection is nonempty if the orbit is closed. Thus we
get an injective map ¢ : (K\B)y — W(K)\BT. Note that the W action on BT

descends to an action on W (K)\B7.
Claim 2.1. The map ¢ identifies (K\B)y with an orbit of the group W¢ < W.

Abusing notation we will write (K\B)y = W(K)\W? where it is understood
that the embedding W (K) — W7 is well defined only up to conjugacy by W?¢.

Let us now consider the above situation on the level of Lie algebras. Then C is
a maximal torus in k and Z4(¢) = t is a maximal f-stable torus in §. We write h
for the abstract Cartan algebra of §. Any fixed point of the f-stable torus 7" on B
gives rise to an identification between t and h and these identifications are related
by the Weyl group action. Hence, there is a canonical identification t/W = h/W.
Thus we obtain a canonical map ¢/W (K°) — h/IV. In this setting we define the
block variety as B., = ¢/W(K°) xp h. The group S, = W(K)/W(K°) acts
on B, via its natural action on the first factor.

2.2. The monodromic (quasisplit) side. Recall from the introduction that
we are considering a quasi-split real form Gr and a fixed block in the category of
(finite length) (g, K')-modules which we denoted by M. All modules in the block
have the same generalized infinitesimal central character which is assumed to be
regular and integral; thus it corresponds to a uniquely defined dominant weight
denoted by A.

We identify M with its image under the localization equivalence between the
category of (g, K')-modules and the category of K-equivariant twisted Ds-modules
on the flag variety B = G/B as in [Bel]; here D5 denotes an infinitesimally
deformed twisted differential operators ring corresponding to the line bundle O(\).

A (K-equivariant) D5 module is by definition the same as a (K-equivariant)
D-module on the extended flag manifold X = G/U, where U denotes the unipo-
tent radical of B, which is weakly equivariant with respect to the right ac-
tion of the universal Cartan H =~ B/U with the generalized eigenvalues of
the log monodromy determined by A. We further identify the latter category,
via the Riemann-Hilbert correspondence, with the category of K-equivariant H-
monodromic perverse sheaves on X where the monodromy is determined by?

exp(2miA). In what follows we mostly work in terms of the (twisted) perverse
sheaves.

2Here by monodromy we mean monodromy on the image under the De Rham functor, rather
than on the dual functor of solutions.

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature.



KOSZUL DUALITY FOR QUASI-SPLIT REAL GROUPS 7

An irreducible object in M is of the form 7, (L) where j : O — X is the embed-
ding of a K x H-orbit and L is an irreducible K-equivariant and H-monodromic
local system.

We say that the pair (O, L) belongs to the block if j1.(L) € M. We let Liu(O)
denote the set of local systems on O belonging to the block M. Let Irr(M) be
the set of irreducible objects in M, thus we have Irr(M) = | J Lm(O).

OeK\G/B

For the rest of this section the orbit O will be the open K x H-orbit Xy on X
which is the inverse image of the open K-orbit By — B.

We have a Cartan involution # on G such that K = GY. We fix a f#-stable
maximal torus 7 of G which is maximally split, i.e. such that 7 is of minimal
dimension. In that case T' has a fixed point in the open orbit By. Fixing such a
point we get an identification between 7" and the abstract Cartan H. This defines
an involution @ on H which is independent of any choices. We let @ be the (—1)
eigenspace of 6 acting in h.

the sense of complexifying the group of points. If you do that then the com-
plexification of the maximal split torus in Gg can be disconnected and so cannot
coincide with A°. T suggest that we only deal with the Lie algebra a and then A
is just the corresponding (connected) group. A < T for the fixed point set of the
involution

As T is a maximally split torus the real Weyl group Wg = W(K,T') coincides
with W, This follows, for example, from [Vo5, Propositions 3.12 and 4.16] as for
T there are no non-compact imaginary roots. A T fixed point x € BT determines
its K-orbit on B; we say that K-orbits arising this way are attached to T'. These
include the open orbit By. We will use this terminology in general, i.e., given any
f-stable maximal torus 7" we say that K-orbits containing fixed points of 7" are
attached to the maximal torus 7.

We recall, as is rather easy to see, that all blocks have representatives on the
open orbit, i.e., that Ly (Xj) is not empty. As the action of K x H is transitive on
X and the reductive part of the stabilizer is isomorphic to T, the set Ly (Xo)
is identified with a subset in the set of characters of T whose differential is
determined by the infinitesimal central character A\. The latter set is a torsor
over the set of characters of my(Stabr (%)) = mo(Stabg(x)) = mo(T?) for a
point € By and its lift # € X,. The finite group mo(7%) is isomorphic to a
product of a finite number of copies of Z/2Z.

We will make use of the cross-action of W on the set Irr(M), [Vo3, Definition
8.3.1], [AdC, sections 9 and 14]. We will summarize some properties of the cross
action that will be important to us in section 4.3.

In particular, W acts on the set uLp(O) where O runs through the orbits
attached to the Cartan 7. The subgroup Wg = W? of W preserves the subset
Lm(Xo). We will need the following consequence of [Vo5, Theorem 8.5].

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature.



8 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

Claim 2.2. The action of W on the set Ly(Xy) is transitive.

The Claim shows that choosing Lo € Ly(Xo) and setting Wiy = Stabye(Lo)
we get a bijection between the set Ly (Xg) and W9/ Wy.

We will also need a comparison between the relevant data for G and for the
adjoint group G4 equipped with the compatible real form.

Let K’ = G be the subgroup generated by K and the center Z(G) of G. Note
that the finite group Z(G)? = Z(G) n K acts on all modules in M by the same
character which we denote by x. Fix an extension x of x to a character of Z(G).
It is easy to see that the category of (g, K') modules on which Z(G) n K acts
by x is equivalent to the category of (g, K’) modules where Z(G) acts by x.
We identify M with its image under that equivalence; the localization theorem
identifies this category with a subcategory in K’-equivariant D5 modules. In
particular, the elements of L (Xo) can be viewed as K’-equivariant local systems
on the corresponding orbits.

Let K,q denote the fixed points of the involution of G4 compatible with the one
fixed on G. Let f(ad be the preimage of K,; under the homomorphism G — Gggq.
The group Kug/K' = Kuq/Im(K) is abelian, we let Spon = (Kua/Im(K))* be
the dual abelian group.

Let L8(X,) be the set of K equivariant local systems on X, which, viewed
as a K'-equivariant local system, belong to Ly(Xy). For x € By we have a short
exact sequence of abelian groups

(1) = mo(Stabii(z)) — mo(Stabjuu(e)) — St — {1
Thus we have a free action of S,,,, on L{d(Xy), such that LE(X,)/Smen =
Lm(Xo)-
The cross action lifts to an action of W? on L&} (Xj), which is also transitive.
We write Wy, for the stabilizer of a point L§? in L{4(X,) under this action. We
choose the base point Lg% compatibly with the choice of L, fixed in the paragraph

after Claim 2.2. With this choice we have W, € Wu. The considerations above
show that we have a short exact sequence of groups:

(21) {1}_)WI</I — Wnm — Spon — {1}

Finally, we can define the block variety in terms of these data as B,,,, =
a* /Wy, xp=w h*. The group S,,,, acts on B,,,, via its action on the first factor
which comes from the exact sequence (2.1).

Remark 2.3. The definition of B, appears to depend on the choice of L3¢
which determines the subgroup W{, = W{,(L&%). However, we have

(2.2) a* /Wiy = (Li(Xo) x a)/W".

Here the right hand side is independent of any choices, thus we get a canonical
description of Bpon-

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature.
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One can think of the formal completion of (L&H(Xy) x a*)/W? at (L4 (Xy) x
{0})/W? as parametrizing formal deformations of a local system in L (Xy) mod-
ulo the action of W? induced by the cross action.

It 1s also easy to see that the S, action on B, is canonical.

Note, however, that the map a* — B, does depend on the additional choice.

2.3. Matching. In the previous subsections we have defined two versions of the
block variety B., and B,,,, with actions of S, and S,,,,, respectively. We
now make use of the combinatorics of Vogan duality [Vo5] to show that these two
constructions yield the same variety. This is a crucial ingredient in our arguments.

In the discussion above we have defined a set of local systems L{l(X,). We can
also think of these local systems as belonging to a block M2% of (g, K ,4)-modules,
but to do so we have to move to a different infinitesimal character. To this end we
choose an irreducible representation V), of highest weight u such that the center
Z(G) acts on V,, by the character Y. We now make use of the translation functor
Th—x+p (which is an equivalence of categories, of course) to translate our set
up from the generalized infinitesimal character A to the generalized infinitesimal
character A+ p. After the translation the modules L4 (X,) belong to a particular
block M of (g, K,4)-modules. More precisely, we have

Th_ay, carries the set L7 (Xy) to the set Lyjaa(Xp) .

After the translation, the blocks M and M® can be compared directly as the
modules in M consist now of certain (g, /m(K))-modules.

Recall that fixing a K orbit on G/B defines an involution of the abstract Cartan
h and similarly for G; the involution @ of h comes from the open K orbit, while
the involution 6 comes from any one of the closed orbits of K, it is well known
that 6 does not depend on the choice of closed orbit. We have:

Theorem 2.4. a) The canonical isomorphism of abstract Cartan Lie algebras
h* ~ h sends the involution 6 to —0.

b) The isomorphism W = W? arising from (a) sends the conjugacy class of
the pair of subgroups Wi, = W to that of the pair W (K°) c W (K).

Proof. This is a direct consequence of the combinatorial matching underlying
Vogan character duality [Vo5], see also [AdC]. As follows from [AdC, Corollary
10.8] we have a canonical bijection between the sets of irreducible objects I (M)
and [ rr(l\v/l). It is compatible with the cross action of W. Notice that the stabilizer
of point in a closed K orbit on B is connected, so an equivariant local system
on such an orbit is trivial, thus we have an embedding (K\B)y < I rr(|\7|); the
action of W9 on (K\B) in Claim 2.1 is easily seen to be the restriction of the
cross action.

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature.



10 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

~

The bijection between Irr(M) and Irr(M) satisfies the following additional
compatibility. An object L € Irr(M) defines a K-orbit on B which in turn de-
fines an involution @, on the abstract Cartan h, and similar for M. For matching
elements L € Irr(M) and L € Irr(M) we have: 6, = —0; where we have identi-
fied automorphisms of h and of h = h*. It is easy to see that for G quasisplit a K
orbit in B is open if and only if the corresponding involution sends positive roots
to negative roots. Similarly, an orbit is closed if and only if the corresponding
involution sends positive roots to positive roots. Thus the bijection identifies
Lm(Xo) with (K\B)y. This implies (a) and the part of (b) invelving Wy and
W (K). The matching between Wy, and W (K?) follows from existence of a com-
patible bijection for the corresponding blocks for the simply connected cover of
G and the adjoint quotient Gq4. 1

Remark 2.5. The isomorphism of Theorem 2.4 induces a canonical isomorphism
between a* = (h*)=% and h®. Notice that h® =~ ¢ nonecanonically. The resulting
isomorphism a* = € is defined uniquely up to action of W?.

Corollary 2.6. We have isomorphisms Beg = Birion, Seq = Spmon compatible
with the action of the latter on the former.

Proof. We choose compatible base points Sy € (K\B)y, Si¢ € (K°\B), and also
Lo € Lm(Xo), Lg? € L§4(X) so that the subgroups Wy, € Wiy = W? correspond
to W(K®) < W(K) c W% under the canonical identification W? = W?.

This yields a particular choice of an isomorphism a* =~ € intertwining the
action of Wy = W(K), thus inducing an isomorphism between (B,,, S,) and
(Bmona Smon)- L1

We use the isomorphism to identify (B.q, S¢q) with (Bion, Simon) and will

denote the resulting pair by (B, S) from now on.

It follows from the next Lemma that if GG is simply connected then the subgroup
Wnm © W¥is the normalizer® of WY,. Thus the choice of a compatible matching
is unique up to action of the abelian group S = Wu/WY, and the isomorphism
between block varieties is also unique up to S action, resulting in a canonical
equivalence between the categories of S-equivariant coherent sheaves.

Lemma 2.7. If G has trivial center then W(K,C) coincides with the normalizer
of W(K°,C) in W(G, T)’.

Proof. We will abbreviate W(K,C), W(K°,C), W(G,T) to W(K), W(K°),
W(G). Tt is clear that W(K) normalizes W (K?), we only need to check that

the normalizer N = NW(G)g(W(RO)) is contained in W (K).
3In many but not all cases it is also true that Wy is self-normalizing. A counterexample

is provided by the principal block for Gr = Sp(4,R): in this case W? = W, while Wy is
generated by reflections at short roots.
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By [Vo5, Proposition 3.12(c)] we have W? = (WY)? x W where we use
notation of loc. cit., in particular Wi is generated by s,, o € R;. The group
(WE)? is generated by elements sqs4(, for certain roots o such that o # 0(a)
and a + 0(a) is not a root. If 5, € SL(2), is a representative for s, (where
SL(2), is the image of the corresponding homomorphism SL(2) — G) then
500(50) = 0(34)50 € K, s0 (W) « W(K). It remains to show that

(2.3) N nWH < W(K).

Let R be the set of roots for T in G and R; = {a | 0(a) = a} be the subset
of imaginary roots. The involution @ induces a Z/2Z grading € on R; where
e(a) = 0iff flg, = Id. Tt is well known that under the above assumptions
W(K) = Staby,a(€). To prove it one observes that for w € W(G)? with

a representative 10 in the normalizer of 7' we have w € W (K) iff the element
te = O(w)w " € T can be written as t; = 0(t)t =" for some ¢t € T. If W preserves
the grading then tg is annihilated by all imaginary roots. By the choice of T
there exists a @ invariant Borel B > T, so there are no real roots (i.e. roots
with f(a) = —a). We can choose a subset of (complex) simple roots S such
that R = S 1 0(S) U R; and define ¢t by a(t) = a(ty) ! for a € S and aft) = 1
otherwise, then clearly ¢tz and 6(t)t~* have the same pairing with every root, so
they are equal since G is adjoint.

We proceed to check (2.3). Tt is clear that if (o) = 0 then s, € W(K°). We
claim that the converse is true unless « is isolated® in R;, i.e. a is orthogonal to
all e R;, B # ta:

(2.4) sa € W(K®) = €e(a) =0v (a,8) =0VB e Ry, # +a.

If a root o€ Ry is isolated then {£a} is invariant under W% so (2.4) implies

(2.3). To check (2.4) observe that if there exists a root § € R; such that 283

is odd then €(s,(8)) = e(a) + €((), so s, € Stab(e) = e(a) = 0. Suppose now
that no such 3 exists and « is not isolated. Then the irreducible summand in
R containing a has to be of type B, (n = 2) where a € B,, is short. We can
assume without loss of generality that G is simple. Since its Dynkin graph is not
simply laced it has no nontrivial automorphisms, thus Aut(é) = @G, in particular
6 is inner. It follows that C' = T and the roots of C' = T'in K are exactly the
roots « € R; = R with €(a) = 0. Thus by the standard theory of Weyl groups of
reductive groups, reflections in W (K?°) are exactly s, e(a) = 0. 1

4Tt may in fact fail if « is isolated, for example if Ggr = PGL(3,R) then 6 swaps the two
simple roots of the Ay root system, while the highest root « satisfies 6(a) = «, e(a) = 1,
50 € W(K).
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12 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

3. PRINCIPAL BLOCK IN THE EQUIVARIANT DERIVED CATEGORY

In this section we consider a real form of G and we write K for the complex-
ification of the maximal compact subgroup of the real form. We work with the
principal block D in the category Dl}{(B) and make use of the other notation
introduced in section 2. In particular, recall that ¢ stands for a maximal torus
in k, that Zy(¢) = t is a maximal f-stable torus in g, and that we write h for
the abstract Cartan algebra of §. Recall also that W = W, and so we will often
denote the Weyl group just by W.

We begin by considering the case when the group K is connected. In particular,
H*(pt/K) = C[¢]" %9 and we have a canonical map ¢/W (K) — h/IV.

Lemma 3.1. We have a canonical isomorphism: H;(B) = C[B].

Proof. Let us choose a particular Borel B in G. This gives us the following
diagram on the level of spaces

R\G/B —— pt/K

(3.1) l l

pt/B —— pt/G.

Note that up to homotopy we can replace pt/ B by pt/ H so the diagram itself is
independent of the choice of B.

Passing to cohomology and using the canonical isomorphisms H*(pt/K) =
C[e]" ™), H*(pt/G) ~ C[AIW, and H*(pt/H) =~ C[h] give us a canonical map

C[h] ®cpmw Cle]V™®) — HE(B).

On the other hand, the Serre spectral sequence associated with the upper hori-
zontal arrow in (3.1) degenerates, as it has zero terms in odd degrees. This gives
the conclusion. 1

3.1. Global cohomology is fully faithful on simples (statement). Since
global equivariant cohomology of a space acts on the cohomology (derived global

sections) of any equivariant complex, we get a functor RI['j; : D — Coh(B). Let

S = D be the full subcategory of semisimple complexes, i.e. sums of shifts

of simple perverse sheaves. Let S be the category whose objects are semisimple

perverse sheaves in D and morphisms are given by Homs(Ly, Ly) = E:mﬁ'b(Ll, Ly).
One of the main results of this section is the following

Theorem 3.2. Assume that K is connected. The functor RT ; induces full em-

beddings S — Coh(B), S — Coh® (B). Here the action of C* on B comes
from the action on €, h given by t : x — t%z.
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The proof occupies most of this section. Before presenting it we spell out some
properties of the functor RI'j;.

Remark 3.3. In the case when Gr is a complex group the Theorem reduces
to a special case of [BY, Proposition 3.1.6] which is a generalization of [BGS,
Proposition 3.4.2]. A geometric approach to the latter also yielding a proof of the
former has been developed in [Gi]. We did not see a way to prove Theorem 3.2
m a similar fashion and opted for a different strategy.

3.2. Components of B and closed orbits. The irreducible components of B
are indexed by W /W (K) and can be described as follows. Let us recall that we
have fixed a particular bijection ¢ : (K\B)y — W¢/W(K) in 2.1. In particular,
we have fixed a closed K-orbit Sy corresponding to the identity coset. Observe
that in this manner the bijection ¢ extends to a bijection between the K-orbits
on B attached to the torus 7 and W /W (K). Choosing a Borel given by a fixed
point of T on the orbit Sy we obtain an identification 1 : t = h which is well
defined up to conjugacy by W(K).

From the identification v : t = h we obtain an embedding ¢ : ¢ — h which
is well-defined up to conjugation by W(f( ). For an element w € W the map
Y : €= B, vyt x— (z,wor) is obviously a closed embedding and its image B,
is an irreducible component of B. For w’ € w-W(K) we have B,, = B, thus we
obtain a well-defined component. By, B for any w € W /W (K). Note that in
this manner we have also obtained a particular bijection between the irreducible
components of the block variety B and the set of K-orbits on B attached to the
torus 7.

Lemma 3.4. For S e (K\B)y we have
RFK(Cs) = OB¢(S)7
where ¢ is as in Claim 2.1.

Proof. As S'is isomorphic to the flag variety for K, we see that H%(S) = C[c]. By

choosing a T-fixed point on S we obtain a #-stable Borel and that Borel gives rise
to an identification g : t = h. This identification is related to the identification
¢ by the element w = ¢(S) € WY. Thus, the map

- VE b I * .
C[h] = C[t] = HE(B) — HE(S) = C[c]
gives rise to the map w ot : ¢ — h. This gives us the conclusion. L1

3.3. Convolution with a-lines. Recall that for every simple root o we have
the correspondlng minimal parabolic Pa, the partlal flag variety P, and a P!
fibration 7, : B — P,. Set C,, = 7* Mok D - D. By the decomposition theorem
C, acts also on the category SI".
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14 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

Set B, = ¢/W(K) Xhw h/W,, where W, = {1,s,} < W with s, the simple
reflection of type a. We have a degree two map pr, : B — B,.

Lemma 3.5. We have a canonical isomorphism of functors: D — CohCX(B):
RI'je 0 Cy = pripros o R .
Proof. We have a map
RU(F) = R (max(F)) = BRI g (TaxmyTax(F)) = BT g (7m0 (F)) -
It is clear that this map is compatible with the action of H}’;(If’a) = 0O(B,).
Thus we get a map from the right hand side to the left hand side of the required

isomorphism. The direct image of the constant sheaf m,.(Cg) is isomorphic to
Cs, ®Cg_[—2]. It follows that

R g (memax(F)) = RL g (Tax(F)) @ BT i (0 (F))[-2] = BRIz (F) @ RT i (F)[ 2],
which implies that map in the lemma is an isomorphism. L1

3.4. Closed orbits generate the block. The following statement follows from
the structure of the block as described in [Vo5], see Remark 3.7. We present a
geometric argument for completeness.

Proposition 3.6. The objects Cg[dim S], S € (K\B)y generate S9 under the
action of the functors C,, direct sums, summands and homological shifts.

Proof. Introduce a partial order on the set of irreducible K-equivariant perverse
sheaves on B by saying that L < L' if dim(supp (L)) < dim(supp (L)) and L' is a
direct summand in the convolution L+C' for some semisimple complex C' € D5(B).
We will say that an irreducible perverse sheaf is minimal if it is a minimal element
for that partial order. The constant sheaf on a closed orbit is clearly minimal. It
suffices to show that if L is minimal but is not of this form then we have:

EI‘t.(gS * Al,L * AQ) =0

for Ay, Ay € Dy(B), where Cg is the constant sheaf on a closed orbit S. Using
adjunction we reduce to Ay being the unit in the monoidal category D;(B). Then
without loss of generality we can take A; to be an element in a generating set of

the triangulated category Dj(B). Thus we are reduced to showing that

(3.2) Ext*(Cg * Ju, L) = 0

where J,; is the constant sheaf on the Schubert cell associated to w extended by
zero. Let O be the open orbit in the support of L and L the corresponding local
system on O. Let B, be the stabilizer of a point x € O, and let T, < B, be a
f-stable Cartan.

Since O is not closed, B, is not O-stable, so there exists a simple negative root
a for T, such that 6(«) is positive. We claim that in this case 6(a) = —a (i.e. «
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is a real root): otherwise the corresponding P! fibration m,, : B — P, restricted
to O is an A! fibration, so L is a direct summand of 7¥m,.(L")[1] for a simple
perverse sheaf L' whose support is the closure of 7 '7,(O)\O. This contradicts
the minimality of L.

For each a with 6(«) = —a the fibers of 7,|o are isomorphic to C*; moreover,
the local system L is nontrivial on such a fiber, for otherwise one can find a simple
perverse sheaf L' whose support is the closure of either w7, (O)\O or one of its
two components, such that L is a direct summand in 77, (L")[1].

By a result of Speh and Vogan [SpV], see also [Vo3, Theorem 8.6.6] and
[HMSW, Corollary 8.8.], L is a clean extension of L[dim(O)] from O, thus the
left hand side of (3.2) can be rewritten as Hy(Z(w),pr3(L)) where Z(w) =
(S x O) n B2 and pry stands for the second projection (here B?U is the G-orbit in
B? corresponding to w). Fix y € S and let Z,(w) = Z(w) n pri*(y), then (3.2)
would follow if we show that

(3:3) H*(Zy(w), L|z,w)) = 0.

We will prove (3.3) by considering intersections of Z, (w) with a-lines, i.e. fibers
of 7, for a simple root a. To this end we first check that for every w such that
Z(w) is nonempty there exists an o with 6(a) = —« and such that ws, < w.

Assume that z € Z,(w). Let P be the parabolic generated by B, and the root
subgroups corresponding to negative simple roots a with 6(a) = —a, thus P is
O-stable parabolic. Therefore the image of B, n P in the Levi quotient Lp is a
f-stable Borel in Lp. Hence, it cannot coincide with the image of B, in Lp since
the image of B, is in a general position with its image under §. Thus the image
of Lie(B, n P) in Lie(P)/Lie(B,) contains the image of a simple negative root
space, which by the definition of P satisfies 6(a) = —a. It follows that ws, < w.

For a as above consider Z,(w) = 75 74 (Z,(w)) nO. We have Z,(w) = Z,(w)u
Z,(ws,) (note that Z,(ws,) may be empty). Using induction on the length of
w we can assume that (3.3) holds for ws, (it obviously holds if Z,(w) is empty).
Then (3.3) follows from:

(3.4) H*(Z,(w), Lz, ) = 0.

It remains to observe that ma|z () is a C* fibration, while the restriction of L to
a fiber of that fibration is nontrivial. It follows that R(ma|z,(,))(L) = 0 which
implies (3.4) and hence (3.3). 1

Remark 3.7. It is easy to see that the bijection induced by Vogan’'s character
duality [Vob] between irreducible objects in the two dual sides interchanges ir-
reducibles minimal in the above sense with IC extensions from the open orbit.
As observed above, IC extensions from the open orbit in M are in bijection with
closed orbits in B, this yields another proof of Proposition 3.6.
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16 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

Remark 3.8. Similar considerations (see also also [Vob, Theorem 8.5]) show
that given any block there is a 0-stable Cartan T well defined up to conjugacy
with the following property. The minimal elements in the block are local systems
on orbits attached to T'. Moreover, if an object in this block restricted to an orbit
O < B is nonzero then the corresponding 0-stable Cartan is less compact than T,
i.e.® dimension of the space of O-invariants is smaller.

L1

We now embark on the proof of Theorem 3.2.

3.5. Beginning of the proof of Theorem 3.2: reduction to closed orbits.
We need to show that

(3.5) Homs(F,G)—=Homconm)(RI ¢ (F), RL %(G))

for F,G € S, where the isomorphism is compatible with the grading. This implies
both the graded and non-graded statements of Theorem 3.2. Notice that the
functor C,, is self-adjoint (up to a shift) and pripra. is self-adjoint (up to a degree
shift if one considers graded modules). Thus, the validity of isomorphism (3.5)
for a given G = Gy and all F implies its validity for G = C,(Gp) and all F. In view
of Proposition 3.6 we conclude that it suffices to check (3.5) for G = Cg[dim 5],
Se (K\B)a.

3.6. Pointwise purity and reduction to a property of the map on coho-
mology. Fix F e S, S e (K\B), and let ig : S < B be the embedding. Then,
by adjunction,
HomS(F, Cs) = ExtDR(S) (’L;(F), Cs)
We have
(3.6) the complex %(F) is semi-simple .

To see this, one has to work in the category of mixed sheaves. This can be done
directly in this setting by utilizing Saito’s mixed Hodge modules [S1, S2] or, by
passing to the case of a finite base field and using /-adic sheaves. In either case, the
sheaf F is pure. It follows from the arguments in [LV] that F is actually pointwise
pure, i.e., for all z € X the sheaves i*F and i\F are pure; here i, : {z} — X
denotes the inclusion. As S is a closed orbit of K on B it is isomorphic to the
flag manifold of K and hence is simply connected. Therefore, the complex i5(F)
has constant cohomology sheaves, and its stalks are pure because of pointwise
purity of F. Thus ¢%(F) is a pure complex and hence it is semi-simple. As i%(F)
is semi-simple, it is a direct sum of sheaves Cg that have been shifted to various
degrees. From this we conclude immediately that

5There is also a stronger sense in which one Cartan subgroup is more compact than the
other, see loc. cit..
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Extp, (s)(i§(F), Cs) = Hompsx ) (RL g (i5(F)), H(5))
and hence that
(3.7) Homs(F,Cs) = Homys (s)(RU g (i%(F)), H (5)).
Recall now that we are attempting to show that the canonical map
Homg(F,Cg) — Homgcone) (R (F), Hi(S))
is an isomorphism. Hence, by (3.7), it suffices to show that the canonical map
(3.8)  Homy 5)(RTU g (i5(F)), Hg (S)) — Homeonw) (B (F), HE(5)) ,

which is induced by the map RI'i(F) — RI';(i%(F)) on global cohomology, is
an isomorphism. Let us now write down this map in more concrete terms.
It is clear from Lemma 3.4 that the map in (3.8) can be written as

Homeons,) (Rl (i5(F)),Os,)) = Homconw)(RI'(F),0Os,,) ,

where w = ¢(.S) using the notations of Claim 2.1 and Lemma 3.4.
Using adjunction on the right hand side, we are reduced to showing that

(39) Homcoh(ﬁ)(RFR(if;(F)), Oc)) — Hochh(c)(Oc ®OB RFK(F), O(;)

is an isomorphism.
Finally, let us recall that the map in the above formula is induced by the
canonical map of coherent Og-sheaves

(3.10) O: ®og BRI (F) - RT;(i%(F)).

We observe that the map (3.9) is obtained from (3.10) by duality, i.e., by applying
the functor Hom( ,O¢). Thus, to prove that (3.9) is an isomorphism it suffices to
show that

Homgone)(Ker(r),0)) = 0
Homgone)(Coker(r),O¢)) = E:Etéoh(é)(COker(r), O:)) =0
Thus, we conclude that the map in (3.9) is an isomorphism if

a. the support of the kernel of (3.10) has positive codimension and

3.11
(3:.11) b. the support of the cokernel of (3.10) has codimension two or higher.

As coherent Og-sheaves are generically locally free, it suffices to check the state-
ment above on the level of fibers.
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18 ROMAN BEZRUKAVNIKOV AND KARI VILONEN

3.7. Small codimension argument and localization to fixed points. We
will now argue (3.11). To do so we will make use of localization of equivariant
cohomology for torus actions. Thus, we will shift to equivariant cohomology with
respect to the torus C. We recall that, in general,

3 (X, F) = Hy (X, F)V &),

here X is a variety and F is a K-equivariant sheaf in Dy (X).
Thus, to prove (3.11) for the map (3.10) it first of all suffices to prove it for the
map

(3.12) HE(S) ®H§(B) Hg(B, F) — HA(S,ig(F))

and it suffices to check the statement on the level of fibers.

To check the statement on the level of fibers, let us also recall the localization
theorem for equivariant cohomology, see, for example, [GKM, Theorem 6.2]. We
view H%(X,F) as an H}(pt, C) = C[¢] module. Let ¢ € € be generic. In the case
at hand this amounts to ¢ not lying on any root hyperplanes. Then we have:

O¢.c ®o, HE (X, F) = O e ®o, HE(XCF),

where O . stands for the local ring at c. Furthermore, taking the quotient by the
maximal ideal we get an isomorphism on the fibers:

HAE(X,F)e = HE (XS F).,

We will apply the localization theorem in this form.

Let us recall that Zg(€) =t is a maximal torus in §. Recall also that the torus
€ has elements which are regular in g, i.e., elements that do not lie in any root
hyperplane for g. Let us first consider such a c € C.

Then by the above localization theorem for equivariant cohomology we get
isomorphisms of algebras and restrictions as follows:

Hy(B). —=— @C,

zeBe

(3.13) l l
H%(S)e — @ C,.

C
eS¢

Furthermore, we get:

RFC‘(F>C e @Fw

(3.14) l ) l
RT4(i5F). —— @ F..

zeSe
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In the above formulas F, stands for the stalk of the complex F as the point z.
The isomorphisms and restrictions in (3.14) are compatible with the actions of
the algebras in (3.13). Thus, we conclude that for ¢ regular in g we have

(HE(S) ®Hg(B) HE*(Bv F))c = HE(S7 ZZ(F))C

Thus we established part a) of (3.11) and that the cokernel in part b) of (3.11) is
concentrated on root hyperplanes. It remains to prove that the cokernel vanishes
generically on root hyperplanes.

3.8. The small rank case. Let us then assume that ¢ € ¢ n H, is a general
element; here H, < h is the root hyperplane corresponding to the root a of h in
g. We write C, for the codimension one sub torus of C' corresponding to the root
a. In other words, C,, is the torus generated by c.

Let us write Z’ for the derived group of the centralizer of ¢ in G. Then, by
construction, the involution f restricts to Z/ and the group (Z’)? of fixed points of
6 has rank 1. This imposes a very severe restriction on Z /. It can only happen if Z
has rank one or if it has rank two and the Cartan involution is not inner. Thus Z
corresponds (up to isogeny) to one of the following real groups: SL(2,R), SU(2),
SL(2,C), SL(3,R). It is also easy to see this from the geometric point of view
as follows. Because (Z7)? has rank one and it has to have an open orbit on the
flag manifold of Z, it follows that the flag manifold can have at most dimension
three. Thus, we recover the list above. Furthermore, as we have assumed that K
is connected, it follows that (Z7)? is connected.

The fixed point set B¢ isa union of connected components each one of which
is isomorphic to the flag variety of Z/. It follows from the discussion above that
the components of B¢ are either P! or P! x P! or the quadric Q < P? x P2.

Let us recall that we have to argue that the map in (3.12) is surjective in
codimension one, i.e., that for the ¢ € C,, generic we have surjection:

(HE(S) ®pxg) HE(B,F))e — HE(S, 75(F))..

It of course suffices to prove that H;(B, F)e = HX(S,i5(F)). is a surjection. Ap-
pealing once more to the localization theorem for equivariant cohomology [GKM,
Theorem 6.2] we get

H%(B,F), —— HX(S,i%(F))e
(3.15) H H
H%(BC,F), —— HE(S,i%(F))e

As was pointed out above, the fixed point set B¢ is a union of connected com-
ponents Y which are isomorphic to the flag variety of Z/. Thus, finally, we are
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reduced to proving the surjectivity of

(3.16) Hi, ., (YF) — H_ (S nY,ig(F))

for the components Y of B¢ . To do so, we first claim that:
For F € S9" the complex i3 (F) is semi-simple.

As F is pointwise pure, we conclude from lemma 3.9 below that i%(F) is pure.
Hence it is semi-simple. We state the lemma using more general notation. Let X
be the flag manifold of reductive algebraic group G and let C' be a sub torus of
a maximal torus T of G. Then:

Lemma 3.9. Let F € Do (X) be pure. Then its restriction F|xc to the fixed point
set X of C is also pure.

Proof. The centralizer Z;(C') is a connected reductive group which acts transi-
tively on the components of X©. Let us write Y for one of the components. As
T acts on Y, let us consider a point y € Y which is fixed by T. Let us consider
the root space decomposition

g =t® P -

aed(G,T)

The choice of the point y picks a particular choice of positive roots ®(G,T), .
Let us now consider the tangent space T, X. We can perform the following iden-
tifications:

T,X = @ Jo and T,Y = @ Ja-
aed(G,T)y ae®(G,T)y
ale=0

Let us now choose G,, < T in such a way that alg,, is positive for all « €
®(G,T), for which afc # 0. Then XC6m = X% and the G,, action is contracting
near Y. It is obviously contracting near y, but then it is contracting everywhere
because Zg(C') acts transitively on Y and commutes with G,,.

Of course F is G,, equivariant. By [Br, Theorem 2|, hyperbolic localization
preserves purity. As our action is attracting, hyperbolic localization reduces to
ordinary restriction.

L1

We conclude that it suffices to prove (3.16) with F replaced by an irreducible
K n Z!-equivariant sheaf G on Y, i.e., that

is surjective where Y is the flag manifold of Z!. As S is a closed orbit it consists
of f-stable Borels in B. Therefore SnY consists of f-stable Borelsin Y. As SnY
is connected on general grounds we conclude that S nY is a closed (Z!)%-orbit.
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Recall that we have the following possibilities. When Y = P! then Z! is,
up to isogeny, SL(2) or C*. When Y = P! x P! then Z! is, up to isogeny,
SL(2) and when Y = @ then Z! is, up to isogeny, SO(3). We first observe
that in each of these cases the closures (Z’)%-orbits on Y are smooth. If G is an
intersection homology complex associated to a non-constant local system then
Z! corresponds to SL(2,R) or SL(3,R) and the support of G is all of Y. As we
will argue below, in this case i%(G) = 0 and the surjectivity in (3.17) obvious.
When Z! corresponds to SL(2,R) one sees immediately that ¢%(G) = 0 for the
non-trivial rank one local system. When Z! corresponds to SL(3,R) there are
three non-trivial local systems. When the rank one local system is non-trivial
only around one of the codimension one orbits the smoothness of the closures
of the codimension one orbits immediately implies that i§(G) = 0. When the
local system is non-trivial around both of the codimension one orbits a short
calculation shows that i%(G) = 0, or, alternatively, it also follows from the fact
that G corresponds to the irreducible principal series and in this case G is clean.

We are now reduced to consider the case when G is an intersection homology
complex associated to a trivial local system. The smoothness of closures of the
orbits then imply that G is a constant sheaf on a closure of an orbit. Let us write
R for an orbit closure. Considering the composition

Hngé(K C) - Hgmzé(Ry C) - H(*j'r\Zé(S @ Y, C)

we are reduced to showing that

HY, ,(Y.C) — H, (S Y,C)

is surjective. This follows from:
Proposition 3.10. Let G be a semisimple algebraic group with an involution 60
such that the fized point set K of 0 is connected. Let us write Y for the flag

manifold of G, S for a closed K-orbit on'Y and C for a Cartan of K. Then we
have a surjection

HE(Y,C) — HA(S,C).

Proof. Y =Y, sothereisnothingtoprove.
Proceeding in an analogous manner as in the proof of Lemma 3.1 we see that

H:(Y,C) = C[t] ®cpyw Clc],

where t = Zy(c). Now Y n S is a flag manifold of K and we can think of the
map S NnY c Y as an inclusion K/K n B < G/B for a particular Borel B in G.
Proceeding as above, we see that

Héf(S, C) = C[C] ®C[C]W(K) C[C] .
proving the surjectivity of HA(Y,C) — HE(S,C).
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This completes the proof of Theorem 3.2.

3.9. The case of disconnected K. Let us now consider the general case, i.c.,
the case when K is possibly not connected. We define the block variety B using
the group K°, i.e.,
B = ¢/W(K°,¢) xpm h
We note that we have the following exact sequence
1 - W(K°¢) - W(K,t) >SS —1,

where S = K/K°. Furthermore, recall again that Zy4(¢) = t is a maximal torus
in g and that the torus ¢ contains elements which are regular in g, i.e., elements
that do not lie in any root hyperplane for g. Thus, Ng(t) = Ns(€). This implies
that W (K,¢) c W(G,€) c W(G,t) = W. Thus:

We have an action of S on ¢/W (K°,¢) such that
the induced action on the quotient ¢/W (G, ¢) is trivial .

Therefore the action of S on B takes place on the factor ¢/W (K°,¢).
We define a functor from D to Coh®(B) by sending F € D to RT . (F). The
case of connected K immediately implies the general case:

Theorem 3.11. The functor RT . induces full embeddings S — Coh®(B), S —
CohS*¢"(B).

3.10. The description of the principal block. The following Theorem sum-
marizes the results of this section. To state it recall that the components of B
are in canonical bijection with W /Wy,. Let us call components corresponding to
elements in the subset W?/W}, preferred components. These are in bijection with
the set of closed K° orbits on B and also with the set of L{#(X,).

Theorem 3.12. Let A < Coh(B), A, < Coh® (B) be the full subcategories gen-
erated by the structure sheaves of preferred components of B under the action of
the functors pripra., direct sums and direct summands (respectively, direct sums,
summands and shifts). Let AS be the full subcategory in Coh™(B) defined as the
preimage of A under the forgetful functor Coh®(B) — Coh(B) and similarly for
AS.

Then the functor RI o induces equivalences
STSAS,
~AS
ST—=A,
where S, S were defined in section 3.1.
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Proof. The second equivalence follows from the first one provided that the iso-
morphisms on Hom'’s induced by the equivalence are compatible with the gradings
on the two sides. We proceed to construct such an equivalence.

Assume first that K is connected. Then the functor RT ;| is fully faithful by
Theorem 3.2. Its image is generated under the functors pripr,. by the images
of constant sheaves on closed orbits in view of Lemma 3.5 and Proposition 3.6.
These images are exactly the structure sheaves of components of B by Lemma
3.4. This proves the Theorem for connected K.

Turning to the general case, we see that the functor is fully faithful by The-
orem 3.11. We claim that an object F € Coh®(B) lies in the image of R z|_
iff Forg(F) € Coh(B) lies in the image of RI'j.|_ -, where the notation is self-
explanatory. The "only if” part of the statement is clear from the commutative
diagram

Ly, —— L%
RFkl erko

CohS(B) —2%, Coh(B)
The "if” part follows by considering adjoint to functors in the last diagram and
observing that F € L is a direct summand in Indf, o Res (F). 1

4. INTEGRAL REGULAR BLOCKS FOR A QUASI-SPLIT GROUP

4.1. Statement of results. In this section we provide a description of a block M
in the category of (g, K') modules with a regular integral generalized infinitesimal
character for a pair (g, K') coming from a quasi-split real group Gr.

It will be convenient to enlarge the category M to the category M of pro-objects
in M. Every irreducible object in M admits a projective cover in M which is
unique up to an isomorphism. Let P < M be the full subcategory formed by
finite sums of projective covers of irreducible (equivalently, any) objects in M. Tt
is easy to

see that P can be also realized as a full subcategory in the category of finitely
generated modules over U(g) ®z(q) Z(9)5 equipped with a compatible K-action,
where Z(g)j is the completion of the center of the enveloping Z(g) at the maximal
ideal corresponding to .

Let B denote the completion of B at zero, by which we understand the spec-
trum of the completion of the coordinate ring O(B) at the corresponding maximal
ideal. Define a full subcategory Ac Coh(é) as the image of the category A in-
troduced in Theorem 3.12 under the completion functor Coh(B) — Coh(B).
Likewise, AS ¢ Cohs(é) is defined as the essential image of AS.

The goal of this section is the following
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Theorem 4.1. There exists a canonical equivalence P =~ AS.

The proof of this theorem follows from propositions 4.2, 4.4, and 4.6 which we
state in this subsection. The proof of these propositions occupies the rest of the
section.

Along with M we will need to consider the singular category of Harish-Chandra
modules My;,,,. To define it assume first that G is simply connected and thus K
is connected. Then we have an irreducible G-module with highest weight A + p
which can be used to define the translation functor T)_,_, from the category
of (g, K)-modules with generalized infinitesimal character A to the category of
(9, K')-modules with generalized infinitesimal character —p. We write My, for
the Serre subcategory generated by the image of M under Th_,_,.

We now drop the assumption that G is simply connected. Let G. be the simply
connected cover of G and let K, be the preimage of K under the covering map
Gsc — G. Recall that the finite group Z(G) n K acts on all modules in M by a
fixed character, which we denote by x. Let X be the pull back of y to the group
Z(Gse) N K. The pull back functor from (g, K)-modules to (g, Ks.)-modules is
fully faithful and Z(G,.) n K. acts on the modules in the image by ¥.

Set ¥’ = X - x5 where y, is the character by which Z(G,.) n K. acts on the
irreducible G, module of highest weight V) ,. Consider the category of (g, K.)
modules with generalized infinitesimal character —p, where Z(G,.) N K. acts by
the character X’. The translation functor T)_,_, sends M to that category; we let
Ming denote the Serre subcategory generated by the image of M under Th_,_,.

We write Pg;,, for the category of projective pro-objects in Mg;,, which are
finite sums of projective covers of irreducible objects. Let us write Cohg (a*/W},)
for the category of S-equivariant coherent sheaves on a*/Wj, set theoretically

supported at zero. We denote by a*//W,(,l the completion of a*/Wjy, at zero and
then write Coh?r(a* JW{,) for the category of projective (equivalently, free) S-

equivariant coherent sheaves on a*/Wy{,.

Proposition 4.2. We have canonical equivalences: My, = CohS(a*/Wy,) and
Pying = Coh3,(a*/Wy,).

Recall the extended enveloping algebra U (9) = U(9) ®z(g) Sym(h), where the
action of the center of the enveloping algebra Z(g) on Sym(h) comes from the
Harish-Chandra isomorphism, see, for example,

[BeGi].

Let I\N/Ismg be the category of (U(g), K )-modules, such that restricting the action
of U (9) to U(g) one gets a module in My;,,. We will call I\N/Ismg the extended
singular block.
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Corollary 4.3. The extended singular block I\N/Ismg 15 naturally equivalent to

Cohg (B).

The arguments in section 1 of [BeGi] show that the translation functor 7' =
T\-._, admits a natural lifting to the “extended translation functor” T": M —
Mging. If we write res : Mgy — Myipg for the restriction functor then

(4.1) T =resoT.

By Corollary 4.3 the extended translation functor can be viewed as a functor
T : M — Coh3(B). The functor T extends to the category of pro-objects and we
continue to write T" for the resulting extension.

Proposition 4.4. The functor f\p 15 fully faithful.

Before describing the last ingredient of the proof we define an important set of
objects in M. Let L = Ji=(L[dim X ]) be an irreducible object in M, where we
have written j : X; — X for the embedding of the open K-orbit in the support
of L and L for the corresponding irreducible local system. Let E be the free
pro-unipotent local system on the torus Ay, = X /K (see [Be2] for the original
reference and [BY] where it was used in a closely related context).

Definition 4.5. The deformed principal series module 11 s given by:

We consider II| as an object in M. We will only be interested in the deformed
principal series modules attached to the maximally split Cartan, i.e., in the cases
when dimension of the torus A; is maximal. It is casy to see that II, is a
projective cover of L in the full abelian subcategory of M consisting of sheaves
supported on the closure of X ;. In particular, II, € P when X7, is the open orbit.

Recall that the we have fixed a bijection between W?/Wy and the set of K x H-
equivariant local systems on Xy such that ji, (L) € M. For v € W?/Wy let L, be
the corresponding local system and L, be the corresponding irreducible object.

Our next goal is to describe the image of the fully faithful functor T on P. To
that end we recall the notion of wall-crossing functors, we use [BeGi] and [Hu,
Chapter 7] as a general reference. Recall that R, = T, o Th_,, where p is
a (generic) weight on the a-wall. The translation functors T)_,, are defined in
the same manner as the T)_,_, introduced earlier. It is a standard fact (see e.g.
[BeGi, Proposition 3.1(a)]) that for an irreducible module L its translation to the
wall T)_,,(L) is either zero or irreducible. Furthermore, if we are given another
irreducible module L' 2 L we have Ty_,,(L) % Th_,(L') unless Th_,,(L) = 0 =
Ty—,(L"). Using adjointness between 7),_, 5 and T)_,,, we see that for an irreducible
module L the module R, (L) has a simple socle isomorphic to L, thus it belongs
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to the block of L and we get the wall-crossing functor R, : M — M. We note
further that R, : P — P.

Also, recall from subsections 3.2 and 2.3 that the components of B are in
bijection with W /W},, let B, be the component corresponding to v € W?/Wy,.
The notation W, = {1, s,} € W was introduced in subsection 3.3.

Proposition 4.6. a) P is generated by the deformed principal series modules
Iy, ve W°/W}, under the action of the functors R, and taking direct sums and
summands.

b) We have a natural isomorphism

To Ry = PrEpros © T.

Here we identified the target category off with Cohy(B), notation pr, h* /Wshasbeenintroducedinsect
¢) If G is adjoint (so that Wy = W},) then T sends 11, to Og,, ve W9/W},.

For a general G the functor T sends I, to @@, where U runs over the set
b

of elements in W /W{, projecting to v e W?/W; the sheaf (—D@ is equipped
B
with the obvious S-equivariant structure.

Proof. Recall that (see e.g. [BeGil), for M € M its wall-crossing R, (M) fits in
the distinguished triangle

(4.2) M = Ro(M) — I,(M) — M[1],

where [, is the intertwining functor corresponding to the simple root «, see section
4.3.

This allows us to employ the method of the geometric proof of Casselman’s
submodule theorem in [BB]. Let us consider the projective cover P, of the irre-
ducible object: L in M. There exists a sequence of simple roots a, ..., a,,, such
that R,, o+--o R, (L) has nonzero restriction to the open orbit in X. We see
this as follows. Using induction on the codimension of support of L, we reduce
to showing that for every irreducible L € M with supp (L) & X, there exists a
simple root «, such that supp (R,(L)) 2 supp (L). It is easy to see that this is
the case when dim(supp (L)) = dim(m, (supp (L)), which obviously does happen
for some simple root « unless supp (L) = X.

It follows from the above that there exists an L such that Hom(II, R, o+ -©
R,, (L)) # 0. Thus, by adjunction, Hom(R,,, o -0 Ra, (II.), L) # 0. Therefore
P, embeds in the projective R, o -0 R, (II_) proving (a).

Part (b) follows from a general property of translation functors proved in [BeGi,
Proposition 3.5]: the functor Ty_,, o T}, is isomorphic to the functor N —

U(9) ®pgwa N = Sym(h) ®symmwa N (In the notation of [BeGi] W, is called
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W,). Now,
ToR(M)=T\poTrxoTny (M)=T,, ,0T 0T, \0Tr,, (M)

~ ~

= Ty p(Sym(N) @symnmywe Tonopu(M)) = Sym(h) @symmywe Tjms—pTrmu(M)
= pTZp?“a* o f(M>
Part (c) will be verified in section 4.4 after the proof of Proposition 4.2.

4.2. Fully faithful translation to My;,,: proof of Proposition 4.4. We have
to show that

(4.3) Hom(P, Q) = Hom(T(P),T(Q))
for P,Q) € P.

First we claim that (4.3) holds when either P or @ is of the form 7, (M)
for some M € I\7I_p. This follows directly from results of [BeGi, §3]. In more
detail, [BeGi, Proposition 3.1] implies that (4.3) holds if either P = ;" (M) or
Q = 07 (M) where 8 and 8; are (the notation of [BeGi] for) the left and the
right adjoint to the extended translation functor 7', respectively: for P = 9~l+ (M)

this is recorded in [BeGi, Corollary 3.3], the case Q = 6 (M) is similar. Since
T_,. is biadjoint to T\_,_, and in view of (4.1) we see that

T = é;r o Ind = 6 o colnd,

where Ind and colnd are the left and right adjoint to res respectively. Thus the
essential image of 7', is contained in those of both éz+ and 6 which yields the
claim made in the first sentence of the paragraph.

We now turn to the general case. It suffices to prove the statement for a
projective generator (). To this end it suffices to show that for the projective
generator () we can find an exact sequence of the form

0— Q - T,pﬁ)\Ml - TprAMz

In fact we claim that we obtain such a sequence by setting M; = Th_,_,(Q),
My =T\_,_,(C), where C' = coker(Q) — T_,,x(M;)). The maps are the canonical
adjunction arrows. One sees easily that we are reduced to showing that the maps

(44&) Q - Tfpﬂx\T/\pr(Q)
and
(4.4D) C =T, \Tray(O)

are injective.

We prove the statements above for a specific projective generator which we
construct as follows. Let us write by Q = U(9) ®u ) V', where V is a finite dimen-
sional K-representation, U(g) acts naturally from the left and K acts diagonally:
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k(u®v) = Ad(k)(u) ® kv. The module Q is a projective (g, K )-module (no con-
ditions on the central character) as it represents the exact functor Homg (V) ).
We get a projective generator of M by choosing V' so that it includes at least
one K-type from each irreducible module in M and then setting @ € M to be
the formal completion of Q. More precisely, the pro-object () € M is defined by
Q = lim(Q/m}Q)m, where mj is the ideal in the center of the enveloping Z(g) cor-

responding to A and the subscript y denotes the projection of the (g, K)-module
to the block M. The corresponding module over U(Q); is clearly

a direct summand in Q ®z() Z(g); (see §4.1 for notation).

Let us write g = k@ p for the Cartan decomposition with respect to . By
a result of Kostant and Rallis, see [KR, Theorem 15] and also [BBG, Theorem
1.6], Q is a free module over the algebra Sym(p)* = Sym(a)"®. Furthermore, the
center Z(g) of U(g) acts on Q via the projection Sym(h)"' — Sym(a)"r, i.e.,
via the closed subscheme a*/Wgr < h*/W. In particular, @ = Qs is torsion free
over O(a*/Wgr);. Note also that the considerations above show that the center
Z(g) acts on any finitely generated (g, K)-module via the quotient Sym(a)"®,
i.e., the category of finitely generated (g, K)-modules is supported on the closed
subscheme a*/Wgr < h*/W.

We have the following:

Lemma 4.7. If M € M is torsion free over O(a*/Wr)5 then M — T_, ,\Tr_,_,(M)
18 injective.

Proof. We write K5 for the fraction field of O(a*/Wg)5 and similarly K_; for
the fraction field of O(a*/Wgr)_5. Let us write M/ for the category we obtain
by base changing M to the generic point Spec(Ky) via the functor N — Nk =

N®o(a# /we); K3 and similarly we write Mg,’f ; When we apply this functor to Mying.
The objects in M/™ are U (9)®z(g) Ks-modules. Furthermore, the category M /frae
is semisimple as it consists of Harish-Chandra modules at a generic infinitesimal
character. In particular, the standard modules in M associated to irreducible local
systems on orbits attached to the maximally split Cartan become irreducible in
M/7e¢ and all the other standard modules go to zero. Using the fact that we are
working at generic points, we note that the translation functor T_,_, from M/rae
to Mgfﬁ; does not send any objects to zero.

Because M is torsion free we have M MK;‘ The discussion above implies

that

My; is a direct summand of 7", \Th—,—,(Mk,) -

Now,
T pd Do (M) = T ponTrop (M) @@ w5 K
Thus, M — T_,_,\T_,_,(M) is injective. 1
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Now, as @ is torsion free over O(a*/Wg)5 we conclude by the lemma that (4.4a)
is injective. Next, to show injectivity of (4.4b) it suffices to show that C' is torsion
free over O(a*/Wg)5. Concretely, we have to show that for f € O(a*/Wg)5 the

multiplication map C' Ioois injective. By a diagram chase this reduces to
showing that the map Q/fQ — T_, . Th_,(Q/fQ) is injective.

If Q/fQ — T, Th._,(Q/fQ) is not injective then its kernel is a nonzero
submodule M < Q/fQ such that T)_,_,(M) = 0. Let us write N for the nilpotent
cone in g. It is a standard fact that Th_,_,(N) = 0 for N € M if and only if the
dimension of the support variety of N, the Gelfand—Kirillov dimension of N, is
less than dim(B) (see also Remark 4.13 below). Since G is quasi-split we have
also dim(B) = dim(N n p). Thus, for the pro-object M = lim M, the Gelfand-
Kirillov dimension of each M, is less than the dimension of the K-nilpotent cone
N np.

However, using the canonical filtration of Q generated by 1 ® V over U(Q), we
see that gr(Q) = V ® (Sym(p)) as a Sym(g)-module. Therefore,

(4.5) gr(Q) =V ® (Sym(p) o+ /we) O(%/Wr)5) -

Let us write m for the maximal ideal of O(a*/Wgr)y and Q,, for Q;/m™*'. Then,
using the fact that Sym(p) is flat over O(a*/Wgr) we see that

(4.6) gr((Q/fQ)n) = V ® (Sym(p) ®o(ar/we) O(@"/Wr)o/(M™*, f))

is a Cohen-Macauley module with maximum dimensional support on the K-
nilpotent cone N n p. Thus, (Q/fQ), has no submodules of lower dimensional
support. This implies that M,, = 0 and hence M = 0.

4.3. Cross action and intertwining functors. We will use the cross action
introduced in [Vo3, Definition 8.3.1] on the set of irreducible objects in M, denoted
by w : L — w x L and its relation to intertwining functors I, : D*(M) — D*(M)
of [BB]. Recall that, as A is dominant, the latter can be characterized by:

(4.7) RUyx (1, (M)) = RT\(M),

where I', (M) denotes the direct summand in I'(X, M) on which the abstract
Cartan h acts through the generalized infinitesimal character z.°

We will also need the alternative geometric description of [,. Assume for
simplicity that w is a simple reflection s,. Let us write B,, for the variety of pairs
(', 2”) in B x B in relative position s,, and p, ¢ for the natural projections

(4.8) B -2 B, 2~

SIf the h action on I'(X,M) is diagonalizable then T'y(M) can also be described as
I'(G/B, M) where M) is the corresponding sheaf of modules over the twisted differential op-
erators ring on G/B corresponding to A.
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to the two factors. As is explained in [SV] section 10 we extend (4.8) into a
commutative diagram

X <2y, _1.,x

Lo

B -2 B, %> B
In this diagram Y,, — B, is also an H-torsor and the maps satisfy:
(4.9) ph-y) = h-ply) and q(h-y) = sa(h)-q(y)

for all y € ?a and h € H. We also note that the two outer squares in the above
diagram are Cartesian. The intertwining functors I, : Dg(B) — Dg(B) and
I, : Difmen(X) — Difmen (X)) (which by abuse of notation we denote by the same
symbol) are given by the formulas
(4.10) I, = q.p*[1] or I, = @p*[1];
here : Dimn (X)) stands for the category of K-equivariant, H-monodromic D-
modules (or constructible sheaves) on X. These functors are known to be equiva-
lences satisfying the braid relations (see [De2]” where this observation is attributed
to Broué and Michel [BrMi|, although in some form it goes back to [BB]), thus
they extend to an action of the braid group on the two categories; the functor I,
is then the action of the canonical lift of w to the braid group.

Note that D*(M) can be realized as a full subcategory in Dimor(X). This
follows once one checks that the realization functor [Be3] D(Pervii—™"(X)) —
Difmen (X)) induces an isomorphism

Extpgat-mon x)y (P Q) = Bt () (P Q)

where P, () run over sets of generators of the triangulated category.

Embedding both categories as full subcategories in the corresponding categories
of pro—objects,Awe are reduced to showing the isomorphism for P in a set of
generators of M (for various blocks M). Thus we can let P run over the set of

indecomposable projective objects in M and @ run over the set of costandard
objects. In that case Ext'(P,Q) = 0 for i # 0 in both categories: this holds in
Db(Pervii=™"(X)) since P is projective and it holds in Dim"(X) since P is
filtered by deformed standard objects: this follows by an inductive construction
of a projective cover of an irreducible L € M parallel to the one in the proof
of [BGS, Theorem 3.2.1] (see [BGS, p. 498]); in the present context the step of
induction consists in taking the universal extension of a previously constructed
object by a deformed principal series object I, instead of a standard object used
in [BGS]| (see [BR1, §5.5] for a similar construction of deformed tilting objects).

"The discussion in loc. cit. focuses on sheaves on G/B rather than monodromic sheaves on
X but the same proof applies to that latter case.
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H—mon

For i = 0 the isomorphsim holds since Pervy (X) is a full subcategory in
Difren (X).

It was pointed out before Proposition 4.6 that wall crossing functors R, pre-
serve the block, in view of (4.2) it follows that so do the intertwining functors /I,
and I, we W, ie. I, preserves the subcategory D*(M) < DHmen(X). Tt is clear
from the above that the actions of intertwining operators on Dme"(X) and on
Dk (B) are compatible via the pull back functor.

We are primarily interested in local systems on the orbits attached to the
maximally split Cartan. In this case the relationship between the cross action and
the intertwining functors is easier to state. In particular, the following statement
characterizes the cross action on such local systems uniquely in terms of the
functors I,. It is not used in the body of the paper, but we include it for
completeness. Its proof makes use of Proposition 4.10 below.

For an irreducible object L € M let us write Ay for the standard cover, i.e.,
the !l-extensions of the corresponding local system on a K x H-orbit on X.

Claim 4.8. a) Assume that L is supported on the open orbit. Then the object
I,(AL) is a perverse sheaf whose support coincides with that of w x L, and we
have:

Lo(AL) 0wy (@ x Lo

wxL — wxL*®

b) If L is supported on the open orbit then w x L is supported on an orbit
attached to the mazimally split Cartan. FEvery irreducible object in M supported
on such an orbit has the form w x L for some L supported on the open orbit.

Proof. Since this statement will not be used in the rest of the paper, we only
include a sketch of the proof.

Part (a) follows from Proposition 4.10(a) once we know that 7,,(Ar) is a per-
verse sheaf. The open K-orbit in By is the quotient of K by K nT for a maximal
torus T' < G, thus it is affine. This allows one to present I,,(Ay) both as a = and
as a | direct image under an affine morphism, which implies perversity, see, for
example, [BM, §5.1]

Part (b) follows from the proof of Proposition 4.10(b). Indeed, under our
assumptions the only situation when the open orbit O in the support of L differs
from the open orbit O’ in the support of s, x L is the complex root situation
(cases (i,ii) in the proof); in these cases O’ is the only orbit in 7 7, (O) different
from O and it is again attached to the maximally split Cartan, which implies the
first sentence in part (b) of the Claim. To verify the second statement observe
that for every orbit O except for the open one there exists a simple root a such
that dim 7, '7,(0) > dim(O). As it is pointed out in the proof of Proposition
4.10(b), if O belongs to the maximally split Cartan then this can only happen in
the complex root situation analyzed in case (ii) of the proof. Thus the support
of s, x L in this case will have larger dimension than L. Applying induction we
find w € W such that w x L is supported on the open orbit. 1
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We will also need some standard properties of the intertwining functors I,,; we
sketch the argument as we were unable to find exact references.

Proposition 4.9. a) Let p be such that (u+ p,«) = 0 for a simple root ov. Then
we have a canonical isomorphism

Trosp(M) = T (15, (M)).
b) We have an action of W on K°(M) given by w : [M] — [L,(M)]. We have

(4.11) KT pnTheaey) = > we Z[W].

Proof. a) follows from (4.7) and [BeGi, Proposition 2.8] (note that in [BeGi| the
requirement that the weights are dominant is imposed but the statement remains
true with the same proof for not necessarily dominant weights if by I'y, I', one
understands the corresponding derived global sections functor).

Part (b) can also be deduced from [BeGi, Proposition 2.8]. In view of loc.
cit., for a D-module M € M the Lie algebra module T_,_,\T)_,_,(M) is given
by pra(Vay, ® RI'_,(M)), where pry denotes projection to the generalized in-
finitesimal central character A and V, denotes the finite dimensional irreducible
g-module with highest weight v; notation I'y(M) is explained at the beginning
of section 4.3. We have a standard filtration on V)., ® Og/p with associated
graded O(v) ® Vi ,|v]; here Vi, |v] stands for the v-weight space. It induces a
filtration on the sheaf V' ® M, which yields an equality in the Grothendieck group
of (g, K)-modules:

[Vay @ RT(M)] = Y[Vas [v] ® R, (M)].

v

Applying pry to the right hand side removes the terms corresponding to non-

extremal weights of V. ,, in view of (4.7) the resulting expression coincides with

the right hand side of the equality in (4.11). L1
For an irreducible object L € M let Oy, denote the open orbit in the support of

L. Recall the deformed principal series modules 11, introduced in Definition 4.5.

Proposition 4.10. Assume that Oy, is attached to the mazimally split Cartan.
a) We have an equality in the Grothendieck group K°(M): [I,(AL)] = [Awxz]-
b) Let u be such that (un + p,a) = 0 for a simple root «. Then we have

1somorphisms:

(412) T)\_)”(ASQXL) = T)\_,#(AL>,
(413) TA—»u(HsaxL) = TA—»;L(HL)-

Moreover, the isomorphisms (4.12), (4.13) lift to isomorphisms in the quotient
category M/Ker(T\_,,):

(414) Isu (ASQXL) = AL)
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(415) ]sa(HsaxL) = HL-

Proof. Let us recall that in the definition of the functors T\_,_, and T)_,, we
pass to the simply connected cover Gg4. Thus, in proving the proposition we
can assume without loss of generality that G is simply connected. Then the
perverse sheaves L, Ay have trivial monodromy along the fibers of the projection
X — B, so they are pull-backs of perverse sheaves on B which we will, by abuse
of notation, denote by the same symbols. In view of the compatibility between
the intertwining functors acting on Dg(B) and D" (X) pointed out above,
part (a) and (4.12) follow from the corresponding statements about sheaves on
B. We now proceed to prove these statements obtaining (4.13) as a consequence.

Let O denote the image of O, in B. We will use the notation and terminology
of [Vo4] which we recall here briefly. We first note that as we are considering
orbits attached to the maximally split Cartan there are no non-compact imaginary
roots. There are no compact imaginary roots either as the group G is quasisplit.
Let us now consider the projection 7, : B — G/F, where P, is the parabolic
corresponding to the simple root «; we are interested in the restriction 7,|p. In
the case the root « is complex m,|o is either an isomorphism onto its image or
it is an Al-fibration. If « is real then m,|o is a C*-fibration. We say that « is of
type I if 7', (O) — O consists of two K-orbits and say that it is of type IT if
it consists of one K-orbit. We say that L (or Ap) satisfies the parity condition,
or, in the terminology of [Vod], s, € 7(AL), if L extends to a local system on

7. 1, (O). Otherwise we say that it does not satisfy the parity condition or that

S & T(AL).

a) It follows from the discussion above that the simple root « is either real or
complex. Thus, one of the formulas (b1), (b2), (¢2), (d2) or (e) in [Vo4, Definition
6.4] applies. These formulas relate the cross action of a simple reflection s to the
operator Ts. According to [LV] the operator —T coincides with the effect of I
on the K-group. In fact, [Vod] is concerned with the action of these operators
on the g-deformed version of the K-group acted upon by the Hecke algebra, to
pass to our present setting one needs to specialize the variable v appearing in
[Vo4, §6.4] to u = 1. Also note that the basis elements v considered in loc. cit.
correspond to classes of the form (—1)?[AL], where d is the dimension of support
of L, while the action of W on the K-group differs from the one introduced in
Proposition 4.9 by the sign twist. Taking into account that for a real type root
and s, ¢ 7, i.e., when a does not satisfy the parity condition, one has s x v = ~,
see [Vo3, Proposition, 8.3.18 f)], we get the statement.

We proceed to prove b). Note that (4.14), (4.15) imply (4.12), (4.13) by Propo-
sition 4.9a), so we focus on (4.14), (4.15). We split the argument into the same
cases as in part a).

In the first two cases we assume that « is a complex root and in the remaining
two cases we assume that « is a real root.
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i) Let a be a complex root such that the map m,|o is an A! fibration. Then it
is easy to see that I (Ar) = Ay, where L' is an irreducible associated to a local
system on the orbit O = 7 7o (O)\O (which is a locally closed codimension one
subvariety in the closure of O). Part (a) shows then that L' = s, x L, so (4.14)
follows. It is also easy to see that I, (II_ ) = II./, which yields (4.15).

ii) Let o be a complex root such that the map m,|o is one to one. In this case
I, (Ap) is supported on the closure of O' = 717, (O)\O (we note that O is a
locally closed codimension one subvariety in the closure of O"). More precisely,
I, (Ar) = jij.(L'[dim O']) for alocal system L’ on O, where j' : O' = 7, '7,(O)
and j : 7, '7,(O) — B are the embeddings. Again, part (a) showsthat L' = s,x L
where L' is the irreducible associated to the local system L’. It is a standard fact
that 1! and I, induce the same functor on the quotient D*(M/Ker(Th-,)), so
the statement follows from (i) by switching the roles of L" and L we arrive at the
situation (i).

iii) Let a be a real root and thus the map m,|o is a C*-fibration. We assume
first that the restriction of L = L], to a fiber ismontrivial, i.e., o does not satisfy
the parity condition. Then it is easy to see that I, (Ar) = Ap, I, (IIL) = II,..
We can again apply part (a) to see that L = s, x L which yields (4.14), (4.15).

iv) Let a be a real root and thus the map 7, |o is a C*-fibration. Now we assume
that the restriction of the local system L = L|p, to a fiber is trivial, i.e., that «
satisfies the parity condition. Then the object I (A}) can be described as follows:
I, (Ar) = jlj«(L)[dim O], where j : O — 7, '7m,(0) and j' : 7, '7m,(0) — B are
the embeddings and L’ is a local system on O; which is also trivial along the
fiber. We apply part (a) once more to conclude that (s, x L)o, = L. We
also obtain a canonical map I, (Ar) — A, .r as follows. Let us write L for
the extension of L’ to a local system on 7 '7,(O) and let us write L” = L|s0
where 00 = 7 '74(0) — O. Note that dO consists of either one or two K-orbits
depending on Whether a is of type I or type II. In any event, we have a canonical
morphism obtained as a composition

jo(L)[dim O] — L"[dim 0] — j(L")[dim O]

whose kernel and cokernel are isomorphic to L[dim O]. By applying j to this
morphism we obtain a canonical morphism I, (Ar) — Ag, . whose cokernel and
kernel are jiL[dim O] which lies in the kernel of Ty _,,. Thus we get (4.14) and
(4.15) is checked in a similar fashion. L1

4.4. The singular block: proof of Proposition 4.2. We start by recalling
some standard facts.

Lemma 4.11. a) The extended translation functor is a Serre factorization.

b) The translation functor T\_,_, sends irreducible objects in M to irreducible
objects in My;,g or annihilates them. Every irreducible object in Mg, comes by
translation from a unique irreducible object in M.
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Proof. Part (b) follows from (a) and (a) is [BeGi, Proposition 3.1.]. —1

Lemma 4.12. Assume that G is adjoint. There exists exactly one irreducible
object Lo in M which does not go to zero under Th_,_,,.

Proof. We deduce the Lemma from the main result of [Vo5, Theorem 1.15].

We claim that the bijection between irreducible objects in M and M con-
structed in loc. cit. sends a module satisfying the property in the statement of
the Lemma into a finite dimensional module. To see this recall that the corre-
sponding duality between the Grothendieck groups is compatible the usual W-
actions up to twisting with the sign character [ABV, Proposition 17.16] or [Vo5,
Proposition 13.10] (see Corollary 5.3(iii) for a categorification of that compatibil-
ity). Now the claim follows since the space of sign invariants of W in K 0(|\7I)W
is generated by the classes of finite dimensional modules in |\7|, while the space
K°(M)y sgn of coinvariants in K°(M) is isomorphic to the image of K°(M) under
the map induced by the functor T\_,_,: here the first first statement is standard
and the second one follows from Proposition 4.9(b) (here we refer to the action
of W as in Proposition 4.9, as pointed out in the proof of Proposition 4.10 it
differs by tensoring with the sign character from the one considered in [Vo5] and
other sources). It is clear that a block in the category of (g, K)-modules can not
contain more than one finite dimensional module as G is simply connected and
therefore K is connected, so the isomorphism class of a (g, K )-module is uniquely
determined by its isomorphism class as a g-module. Thus the Lemma follows. O

Remark 4.13. Another, more elementary result of Vogan [Vo2, Theorem 6.2]
provides a direct classification for irreducible modules of mazimal Gelfand-Kirillov
dimension. It is a standard fact that for G quasi-split this condition is equivalent
to nonvanishing of the image of the module under Tx_,_,: one way to see it is by
using Proposition 4.9(b) and the fact that for we W, M € M the virtual module
M — w(M) has Gelfand-Kirillov dimension less than dim(B).

It would be interesting to deduce the Lemma directly from that classification.

Until section 4.5 we assume that G is adjoint.

Lemmas 4.11, 4.12 show that there exists exactly one irreducible object in
Mying. Let Pging € Mging be its projective cover. To prove Proposition 4.2 in the

present case it suffices to construct an isomorphism End(Pjng) = O/(a\”‘)wM
Recall the deformed principal series module Il , see Definition 4.5, which we
will be denoting by II; 5 to emphasize the infinitesimal character. We define the
corresponding deformed principal series module I} =, € Mying by the formula
I, = = Th~—,(II_3). We make use of deformed principal series modules in the
context when L is an irreducible in the block supported on the open orbit X, and
L is the corresponding local system. In this case the Lie algebra of A;, (notation
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introduced prior to Definition 4.5) is @. Therefore the commutative ring O(a*)
acts naturally on E and hence it acts on I} -. The following key statement
implies Proposition 4.2.

—

Lemma 4.14. a) The action of O(a*) on Hompm

rank one module. Here O(a*) acts on Homw,,,, (I =, Png) via its action on

(HL,f,;v Pying) makes it a free

sing

—

L,—p-
b) We have 1T -, =~ pliml.

sing
[

¢) The group Wwu(L) = Stabye(L) acts on |, so that the natural O(a*)
module structure on 11| = is equivariant with respect to Ww(L).

Proof. Let @) denote the projective cover of the irreducible Ly € M (introduced in
Lemma 4.12). Making use of the identities II| = = T\o, (T 3), T-px(Pring) =
() we see that
HomM HL7:\p7 Psz’ng) = HomM T)\prHLj\a Psing) = HOmM (Hl_ja Q) .
Writing j : Xy — X for the embedding we conclude that
HomMSmg (HL,:\W Psing) = HOmD(X0)<L ® E,j*Q) .

It follows from [Ch], [Vo2] that for an irreducible local system L on X, be-
longing to the block M the dual principal series module j,(L) contains Ly in its
Jordan-Hoelder series with multiplicity one. On the other hand, for such an L
we have:

sing ( sing (

Ext™%(j*(Q), L) = Ext™"(Q, j«(L)) = 0,
which implies that j*(Q) is projective. Thus j*(Q) =~ ®L;QE%, for some d; € Z~,
where L; runs over the set of local systems on X, belonging to the block. Now
we have

d; = dim Hom(j*Q, L;) = dim Hom(Q, j«(Ls)) = [j«(Li) : Lo] = 1.
and hence 7%(Q)) = ®L; ® E. Putting things together we conclude that
HomMsmg (HL,:\pa Psing) = End(E) = bTaT) .

This proves (a).

Because of exactness and adjointness of translation functors they send pro-
jective (pro)objects to projective ones. Since I} =, = Th_,_,(II, 3) and II 5 is
projective, it follows that II; - is projective. Since My, has a unique irreducible

object with projective cover Pg;,g, we see that I} — = Pﬁ{é for some d.
We have
d = dim Hom(T\——,(I1;_3), Th——,(Lo)) =

(4.16) dim Hom(I1, 3, T-p-nTrerp(Lo)) = [T-prTrp(Lo) : ji(L[dim X])]
= [T ponTro—p (i (L[dim XT)) : ji. (L[dim X])],
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where the last equality follows from the isomorphism T, ,(L¢) = Ty, (5 (L[dim X)),
which is a consequence of the result of [Ch], [Vo2] mentioned above.

By Proposition 4.9(b) and Proposition 4.10(a) we have an equality in the
Grothendieck group K°(M):

[T pATr——p(jr(L[dim X])))] = Z M;,

where M; runs over the set of principal series modules coming from orbits at-
tached to the maximally split Cartan, each one appearing with multiplicity |Wy].
(Recall the running assumption that G is adjoint, so Wy = Wy,). Since the ir-
reducible object ji.(L[dim X]) appears once in the Jordan-Hoelder series of a
principal series module coming from the open orbit and does not appear in the
other principal series modules, formula (4.16) shows that d = |Wy|, which yields
statement (b).

It remains to check (c). First note that equation (4.9) implies that I,, induces
the automorphism w on h < End(Idw). Using the isomorphism (4.15) in Propo-
sition 4.10 we see that for w € W? the isomorphism (4.13) is compatible with the

—_—

O(a*)-action via the action of W? on a*.
We fix a minimal K-type ¢ of Th_,_,(Az). The space Homg (1, Th—._,(AL))
is one dimensional by [Vo6, Section 7]; for original reference, see [Vol]. It is also

clear that Homg (¢, Tho,—,(I1, 5)) = Homg (¢, T ,(AL)) ®c O/(aT) Thus we
see that for w € Wiy there exists a unique invertible element f,, in O/(aT) such that
composing the isomorphism constructed in (4.13) with the action of f,, we obtain
an automorphism of Homyg (¢, Th—.—,(II 3)) such that it restricts to identity on

Homg (¢, Tx—._,(Ar)) and to the natural action of w on O(a*). It is clear that
these automorphisms produce an action of Wm(L) on Hom (¢, Tho—,(I1, 3)).
Since the automorphisms are compatible with the g-action and the minimal K-
type generates T)—,_,(II_3) we obtain an action of Ww(L) on Th—,_,(IT, 5). L[]
/[imma 4.1} implies Proposition 4.2. Tt is clear from Lemma 4.14(b) that
O(a*) = Homm,,,, (II_ =, Psing) is an End(Psing) — End(Il_ ~)) bimodule sat-
isfying the second commutant property; by this we mean that each of the two
rings acts faithfully and coincides with the commutant of the other ring. Setting
Ey = End(Pying), Es = End(HL?p)Op, M = HomMSin9<HL7:\p7Psing) the second
commutant property says in particular that £y = Endg,(M). The commutative

w

ring Z = O(a*) maps injectively to the centers of £} and E,. This map arises
from the action of the center of the enveloping algebra. Thus, £ and E, can be
viewed as subalgebras in A = Endz(M).

We know that E, o O(a*) and M is a free rank one module over O/(aT) ; also

L —

by Lemma 4.14(c) Wm(L) maps to Es compatibly with the map from O(a*).

o —

Thus F; — O(a*) ™. It remains to check that this embedding is actually an
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isomorphism. In view of the second commutant property, we have
0

B = (B, ® Frac(0(a) ) n A,

where Frac sgtands for the fraction field and the intersection is taken in A ®

—W ——Wm(L)
Frac(O(a*) ). Thus it suffices to check that the embedding E; — O(a*)
0

w
becomes an isomorphism after base change to Frac(O(a*) ).
The localization End(P);,. is a subextension of the finite field extension
0

——— Wm(L) —W
Frac(O(a*) )/Frac(O(a*) ). If it was a proper subextension we would
have

i, (Frac(O(a®))) = [Wil,

m
Frac(O(a*) )

(Hom(HL7:\p, Psing)lOC) = ‘WM|
L1

dimEnd(Psing)loc (HOm(HL,:p7 Ps’ing)loc) > dl

while Lemma 4.14(b) shows that rank g,qp

sing)loc

4.4.1. Proof of Proposition 4.6(c). For v e W%/Wy consider the space

V = Homg  (U(9) Qu(g) Poing, T(TI,_ 5))

(4.17)
= HomMSmg (Psing) TA—>—P (HLU,X))'

It carries an action of End(Il, 3) = O/(aT) .

—

We claim that this action makes V' a free rank 1 module over O(a*). To see

this recall that V' = Homwmy,,,(Thx——,(IIL, ), Psing) is free rank one over O(a*)
by Lemma 4.14(a); in view of Proposition 4.2 and basic properties of duality for
projective modules over Cohen-Macaulay rings we have:

Wm(Lo) —

V = HOW@WM(LM(VI, O(a*) ) = Hom@(v’, O(a*)),

which shows that V' is also free of rank one. W
It remains to check that the left action of O(a*) M End(Py;png) and the right
action of O(a*) on V agree up to the action of v € vWy. When ¢ = 1 this follows

—W

from the construction of the isomorphism End(Py,,) = O(a*) ™. The general
case then follows by Lemma 4.14(c). 1

4.5. Non-adjoint groups. We now complete the proof of Proposition 4.2 and
Proposition 4.6(c) by reducing the general case to the case when the group G
is adjoint. Recall that the category My;,, consists of (g, K,.)-modules that we
obtained by first viewing M as (g, K,.)-modules and then translating them to
infinitesimal character —p. We can proceed in the same way for the category
M2 Recall, however, as explained in subsection 2.3, that the category M has
infinitesimal character A + u. We can compose the translation of M to —p as
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ad

Thos—p = Thipos—poThrsryy. Therefore the categories My, and Mss,, are related

in the following manner. We have a restriction functor

Res%i:d)“ : M2 — My, having an exact bi-adjoint nd%ﬁ'zd)“

Our goal is to construct a commutative diagram

Mad

sing

—=— Coho(a*/W},)
Res%id)sc l J Avsg
Msing i) COh(\)QJ (a*/Wl(/l>

where Avs is the induction functor (adjoint to the forgetful functor CohS (a*/Wy,) —
Coho(a*/Wy,)). We have already constructed the equivalence in the top row. Each
of the vertical arrows has an exact bi-adjoint and hoth categories on the bottom
row can be described as the category of modules over the corresponding monad
acting on the corresponding category in the top row. Thus we need only to check
that the equivalence in the top row is compatible with the above monads. This
reduces to the following.

Lemma 4.15. The equivalence Mgidng =~ Coho(a*/Wy,) is naturally compatible
with the action of the group S on the two categories. Here S acts on the left
hand side by twisting a module with a character x € S = (K,q/K)*, while the
action on the right hand side comes from the action of S = Wyu /Wy, on B.

e —

Proof. We return to the situation of §2.2. We let Lm(Xp), L (Xo) denote the
formal neighborhood of Ly (Xy) (respectively, L(Xy))

~

in the space of K (resp. Kgq) equivariant T-monodromic local systems® on Xj.
As pointed out in Remark 2.3, we have an identification

(4.18) & Wiy = Ly (Xo)/W*

coming from the choice of a base point L§? in L{d(X) stabilized by W{,.

Given w € Wy let o be its image under the surjection Wy — S, see (2.1).
Then the automorphism L — w; (L ® o) of the set of local systems preserves
the base point L& and induces the natural action of w on a* identified with the
formal neighborhood of {L&¢}. On the other hand, it induces the twisting action
of o on the right hand side of (4.18). This shows the desired compatibility. [

8In more classical terms this can be described as the set of characters of the real torus TR.
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4.6. The principal block for split groups. In this subsection we sketch an
alternative approach to the proof of Proposition 4.4 in the special case when the
group GRr is split and the block under consideration is the principal block. This
material is not used in the rest of the paper, so the details are omitted.

In the case when the group is split and we consider the principal block, there
is a concrete description of indecomposable projective modules P at the singular
infinitesimal central character; this also yields a description of the projective cover
of a special irreducible module at regular infinitesimal central character, namely
it is isomorphic to 7 ,_,\(P). Here by a special irreducible module we mean an
irreducible module which survives translation to —p. Such irreducible modules in
the principal block correspond to constant sheaves on special closed orbits; we call
a closed K-orbit O on B special if for any simple root « the dimension of the image
of O in the partial flag variety G/P, equals dim O. Another characterization of
special orbits is as follows. Let us write 7 : T*B — B for the projection and
i T*B — N for the moment map. The special orbits are precisely the closed K-
orbits such that the image (77 B) of the conormal bundle T5B meets the regular
locus N, of N. Conversely, if we write g.= kK@ p for the Cartan decomposition
then the union of special closed orbits is the closure of 7(u™1(p N N,eg)).

To simplify the discussion, let us assume that K is connected. Given a special
orbit Oy we write is : Oy = K /By — G/B = B, we let Ly denote the irreducible
module associated to the trivial local system on O,. To this situation we can
associate a weight ps = i¥(pg) — 2pk of K and consequently an irreducible K-
representation V. We have

a) ps is a dominant weight of K.

and
b) If &' # s then py is not of the form p, + i¥(A™)

where A1 is a sum of positive roots for G.
The representation V, has the following properties:

(1) The multiplicity of V; in the irreducible module T)_,_,(L,) equals one,
its multiplicity in any other irreducible (g, K')-module with infinitesimal
singular central character —p equals zero.

(2) The representation Vi is fine in the sense of [BGG], i.e., its restriction
to the group C[2] of order two elements in the maximal torus C' ¢ K
is a direct sum of distinct characters and the group Wy permutes these
characters transitively.

Thus, we conclude:

Proposition 4.16. The projective cover of the irreducible module Th—,_,(Ls) is
given by Py = (U(9) Qu Vs)—p, where the subscript denotes completion at the
infinitesimal central character (—p).
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This provides an alternative way to carry out one of the steps of the proof of
Proposition 4.4. More precisely, we can deduce from the above description of
P, that End(P;) is a free module over the completion of O(a/Wgr) = O(h/W)
(recall that G is assumed to be split) of rank |WW/W,|. To this end observe that
End(U(9) ®uw Vs) = Homg(Vs, U(9) ®uy Vs)- The right hand side admits a
filtration whose associated graded is Hom g (Vy, O(p) ® V), thus it suffices to see
that the latter space is a free module over O(t/W) of rank |W/W,| = dim(V5).

The space Homy (V;, O(p) ® V;) can also be thought of as Endg,,x ,,(O(p) ®
Vs). Recall that p = K -a, which shows that Endg,,x ) (0(p) ® V;) embeds
into Endcon@) (0(a) ® Vi); furthermore, the image is contained in the space of
endomorphisms F whose action on the fiber at a point z € a commutes with
the action of the centralizer Zx(z). It is not hard to check that the image is
in fact equal to that space; moreover, it suffices to check the commutation with
the centralizer for regular elements x € a. For such an element the stabilizes
is identified with S, and V; splits as a sum of distinct characters of S due to
Vs being fine. This shows that the generic rank of Endc,,x ) (O(p) ® Vi) as an
O(t/W)-module equals dim(V;) = |W /W, |, which implies the desired property of
End(P;).

5. THE MAIN RESULT

In this section we put the descriptions in sections 3 and 4 together to get a
comparison between the two categories M and M.

5.1. An equivalence of graded versions. For a graded algebra A let A%
denote the corresponding differential graded algebra with zero differential; for a
DG-algebra A* let DG — mod(A*®) denote the subcategory of perfect complexes
in the derived category of differential graded modules over A°.

Theorem 5.1. a) There exists a graded algebra A = ®A? together with

i) an equivalence M =~ A — mod™, where A — mod™ is the category of finite
length nilpotent A-mgdules.

i) an equivalence D = DG —mod(Aj,) sending irreducible perverse sheaves to
direct summands of the free module.

b) The algebra A has the following properties.

The graded components A? are finite dimensional, A* = 0 for d < 0 and A° is
a semisimple algebra.

The center of A contains O(B)S, the ring of S invariant functions on the block
variety. The embedding O(B)S < A is compatible with grading, where the grading
on O(B) is such that linear functions on h, a have degree 2.

Set L = ®L;, where the L; run over the set of isomorphism classes of irre-
ducible perverse sheaves in the block M. We also write P for the direct sum
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of the proprojective covers of the irreducible objets in M. Theorem 5.1 follows
directly from the following more concrete statement: we can set A = Ext*(L, L)
equipped with the natural homological grading, then equivalence in Theorem
5.1(a,i) follows from Theorem 5.2(b), while equivalence in Theorem 5.1(a,ii) fol-
lows from Theorem 5.2(a). The properties listed in Theorem 5.1(b) are clear from
the definition.

Theorem 5.2. a) The differential graded algebra RHomﬁ(L, L) is formal.
b) The algebra End(P) is isomorphic to the completion of the graded algebra
Ext*(L, L) with respect to the augmentation ideal topology.

Here part (a) follows by a standard weight argument (see for example [BF,
Proposition 6]) from the fact that the Ext%(i, L) is pure of weight i where we
either consider corresponding sheaves on the flag variety B over F, or work with
Hodge D-modules, endowmg L with a weight zero Weil (respectlvely, Hodge)
structure. Purity of Extl (L L) follows from Theorem 3.12, since L is pure by
[BBD] and cohomology of a pure complex on'a proper variety is pure by [Del].
Notice that this also applies to equivariant cohomology since the classifying stack
BK has a model which is ind-proper and ind-smooth.

Part (b) follows from theorems 3.12 and 4.1.

We refer to e.g. [BGS] for a definition of a graded version of an abelian category.
By a graded version, or lift of a triangulated (respectively, abelian) category C we

understand another triangulated (respectively, abelian) category C together with
an autoequivalence S of C (the grading shift functor) denoted by S : M — M(1),
the ”degrading” triangulated (respectively, exact) functor d : C — C and an
isomorphism, d o ' = d, such that for M, N € C we have Hom(d(M),d(N)) =
@ Hom(M, N(n)) and C is generated as a triangulated category (respectively,
z

under taking subquoitents) by the image of d.

Corollary 5.3. There exist graded versions Dy ofD M9 of M and an O(h/W)-
linear abelian category M with a graded version Mgr, such that M is identified
with the subcategory of objects in M where the ideal of 0 € h/W acts nilpotently,
while M is identified with the completion of M at the ideal of 0. Furthermore, we
have an equivalence  : D'(M9") = D9", such that

i) K(M(1)) = k(M)(1)[1], where M — M (1) denotes the shift of grading.

ii) Kk sends indecomposable projective objects in M9 o shifts of irreducible
perverse sheaves in M.

ii1) K intertwines the structure of a module category over the respective monoidal

categories: the graded lift of Dy(G/B) acting on DI and the graded lift of
completed unipotently monodromic objects in D(U\G/U) acting on D*(MI"), see
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[BY]. The two monoidal categories Dz(G/B) and D(U\G/U) are equivalent by
[BY]; see also [BeGi].

In particular, the graded lift of the functor F — F « C, where Cy, is the irre-
ducible perverse sheaf corresponding to w € W is intertwined with the functor P,
of convolution with the free-monodromic tilting object T, (the projective functor).

Proof.  Define MY to be the category of finite length (equivalently, finite
dlmensmnal) graded modules over the graded algebra A from Theorem 5.1. Define
M to be the category of finitely generated A modules and Mg’" to be the category
of finitely generated graded A modules. Likewise, define DY to be the perfect
derived category of dg-modules over A3, equipped with an additional grading for
which the differential has degree zero0.

Theorem 5.1 shows that M?" and DY are graded versions of M, D respectively,
while M is related to M, M as described above.

The equivalence Db(I\N/Ig”) ~ D is clear from the definition. It sends an in-
decomposable projective in M to an indecomposable summand in a shift of the
free A3 -module. By Theorem 5.1(ii) such a summand corresponds to a shift of
a graded lift of an irreducible perverse sheatf.

To check (iii) one first observes a similar compatibility for the equivalence
between the additive category of projective objects in M¢" and that of semisimple
complexes in D9, These categories are acted upon by the graded lifts of free
monodromic tilting pro-objects in monodromic U-equivariant sheaves on G /U and
of semisimple complexes in Dj5(G/B) respectively. These two monoidal categories
are equivalent as a special case of the main result of [BY], the idea of the proof in
this case going back to [BeGi]. The compatibility is clear from the construction,
since both the monoidal equivalence and equivalence of the module categories
is characterized by its compatibility with translation to the singular block and
cohomology functors respectively. Now, the compatibility for the equivalence of
triangulated categories follows since each of the four triangulated categories is
equivalent to the homotopy category of the corresponding additive category of
generators. 1

One can summarize the statement of Corollary 5.3 by saying that
D*(M) and D are Koszul dual one to the other.

Remark 5.4. Notice that the compatibility isomorphism in Corollary 5.3(iii) is
compatible with forgetting the grading functors: this follows by the argument of
[BY] where it is shown that the identification of the derived constructible category
with the homotopy category of free monodromic tilting objects and, respectively,
with the homotopy category of semisimple complexes is compatible with convolu-
tion.
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Remark 5.5. We expect that the graded version of categories M, M obtained
here as a formal consequence of Koszul duality admit a more direct, geometric
description via the theory of mixed Hodge D-modules. In particular, the grading
on the Hom spaces between indecomposable projective pro-objects can be inter-
preted as the weight grading for a natural pure Hodge structure on that space; see
section 6 for a related discussion.

The following important property of the equivalence k shows the relation of
our result to equality of Kazhdan-Lusztig polynomials established in [Vob5].

In what follows we will write 1I;, instead of II; where L € M is the minimal
extension an irreducible equivariant local system L.

Proposition 5.6. The equivalence x of Corollary 5.3 sends graded lifts of de-
formed principal series 11, in M to graded lifts (with a homological shift) of co-
standard objects V. Here L — L is a bijection between irreducible objects in M

and i M.

Proof. By inspection it is clear that for an irreducible object L € M we have

K,(pL) = L[m],

where P, is a projective (pro)cover of L, Py is its graded lift, L is an irreducible
object in M and the integer m depends on the choice of a graded lift. The map
L — L is clearly a bijection between irreducible objects in M and in M.

Furthermore, the support of L is the open K-orbit if and only if support of L
is closed. We have

(5.1) codim (supp (L)) = dim(supp (L)) — d,

where d is the dimension of a closed K-orbit on B. To see this observe that by the
proof of Proposition 3.6 the right hand side of (5.1) is the minimal length of w
such that for an irreducible L supported on a closed orbit the convolution Lo+Cl
contains L[m] as a direct summand for some m (here C, is the corresponding
irreducible in Perv B(B)). Likewise, by the proof of Proposition 4.6, the left hand
side is the minimal length of w such that the projective cover of L is a direct
summand in P,(II;,) where L is supported on the open orbit and P, is the
corresponding projective functor, see Corollary 5.3(iii). Thus (5.1) follows from
Corollary 5.3(iii) according to which k sends the graded lift of convolution with
Cy to that of P,.

Let D, be the full triangulated subcategory generated by irreducible objects
whose support has dimension d + ¢ or less. Let D*(M)=. be the full triangulated
subcategory generated by P;, where L runs over irreducible objects in M whose
support has codimension ¢ or less. It follows from (5.1) that x sends the graded

lift of D*(M)s, to that of De..
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It is not hard to see that I\jgc is also generated by costandard objects V;,
where L runs irreducible objects whose support has dimension d + ¢ or less, while
D*(M)s. is generated by Iy, where L runs over irreducible objects in M whose
support has codimension ¢ or less. Moreover,

(5.2) Il e D°(M)L, & TIp = P, mod D*(M)..,

>c

(5.3) V,eD:, & V;=~L modD._,

where ¢ = codim (supp (L)) and notation D+ = {M | Hom(X, M) =0V% X € D}
is used. It is clear that (5.2), (5.3) characterize I, V; uniquely and a similar
characterization applies to their graded lifts and yields the statement. 1

Remark 5.7. By standard BGG reciprocity, the matriz of transformation between
the bases {I1} and Py, in the Grothendieck group K(I\/Ig’") is inverse to the matriz
of transformation between the bases {L} and {V 1} of K(M9"). Thus Corollary 5.3
together with Proposition 5.6 imply equality between Kazhdan-Lusztig polynomials
for M and inverse Kazhdan-Lusztig polynomials for M established in a more
general setting in [Vob].

5.2. The representation theoretic description of the equivariant cate-
gory. The category D can be described in module theoretic terms as follows.
Consider the abelian category |\7|, the principal block of (g, K ) modules with a
fixed generalized infinitesimal central character. Let Q = @ Q; be a minimal

projective generator in the category of pro-objects in that category, here @); are
pairwise non-isomorphic indecomposable projectives (projective covers of irre-

ducible objects). Denoting A = End(Q) we get an equivalence M =~ A — mod™.
The action of the center of the enveloping algebra makes A a Sym/(h)-algebra,

. —e . L
where h is the abstract Cartan of §. Consider the DG-algebra A = A ®gymw) C.
Using e.g: [B, §9.3] it is easy to check the following:

Proposition 5.8. We have D ~ DG — modfl(A ), where the upper index 7!
stands for finite length modules.

To clarify the relation with the result of [So2] we need to present a

slight modification of the above constructions. Let S < h* be a vector subspace
and also consider the complement S+ < h = h*.

Proposition 5.8 allows us to reinterpret Theorem 5.1 as follows: the triangulated

L oL

categories of DG-modules over the DG algebras A ®gymny O(S) and A gy
O(S+) are in a Koszul duality relation described in Corollary 5.3.
Furthermore, assume that S is transversal to a* < h*, i.e. Toro(h )(

),0(@")) =
0. The main result of [BBG] implies then that T orSym(h)(A 0(9)) t

o(s
0, thus the
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first of the two dual triangulated categories discussed in the previous paragraph is
identified with D?(Ag —mod), where Ag = AQon+)O(S). If a similar Tor vanish-
ing condition holds on the dual side, with A, S replaced by A, S*, then the second
category is D'(Ag. — mod), As = A ®onr) O(S*). Observe that Ag — mod/!,
Agi —mod" are the categories of Harish-Chandra modules for (g, K), respectively
(9, K), subject to a certain condition on the action of the center of U(g).

A particularly nice situation occurs when both Tor vanishing conditions hold
simultaneously. In this case Theorem 5.1 implies

The algebras Ag, Agr controlling the categories of Harish-Chandra modules for
(9, K), respectively (9, K), are dual Koszul quadratic algebras.

We mention two examples of that situation.

Koszul duality for category O. Suppose that Gr is a complex semisimple group
viewed as a real group; by a slight abuse of notation we denote that complex
group by G. Then M is a block of (g x g,G)-modules and M is a block of
(§ x 9, G)-modules where G' and G act diagonally. If h is the universal Cartan of
g then h x h is the universal Cartan of g x g and @ < h x h is the anti-diagonal. Let
S = h*x {0} « h*@®h*. Then both transversality conditions hold. The categories
Ag —mod, Agi —mod in this case are identified with the usual category O (with,
say, a fixed integral regular central character and no Cartan diagonalizability
condition). The equivalence from the previous paragraph reduces in this case to
the one constructed in [So2].

Koszul duality for the principal block in a split group. Consider the case when
when the real form of G is split. In this case & = h* and therefore the second
condition holds for any S. Let us choose S = h* and then S+ = 0.Thus, we are
back at a special case of the situation considered in the previous sections of the
paper. We obtain the following

Corollary 5.9. In the situation of Theorem 5.1, assume that Gg is split. Then
there exist two Koszul dual graded rings A, A" with A" finite dimensional such
that:

M= A — mod.¢q D~ Db(A' — modsq) M =~ A — mod,y -

Note that the above considerations show that Dy (G/B) =~ D*(Pervk(G/B))
when G is a split semi-simple group. It would be interesting to obtain a topolog-
ical proof of this fact.

6. FURTHER DIRECTIONS: HODGE D-MODULES

We were led to the idea of the block variety and the interpretation of the functor
T : M — Cohg (B) from Hodge theoretic considerations. We briefly explain the
idea.
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Let us write g = k@ p for the Cartan decomposition and let us recall that
T*X/H = @, the Grothendieck simultaneous resolution. We write p for the in-
verse image of p under the moment map 7*X/H = § — g. We write Coh® X (p),
for the category of C* x K-equivariant coherent sheaves on p set theoretically sup-
ported on P N KI, the union of conormal bundles of K-orbits on B.

Let My, denote the full subcategory of the category of K-equivariant Hodge
D-modules M on X, such that Forg(M) € M; here Forg denotes the functor of
forgetting the Hodge structure.

We have a functor

ar: MHo - COhC*XK(ﬁ)O
taking a Hodge D-module to its associated graded with respect to the Hodge
filtration.

Conjecture 6.1. a) There exists a full subcategory M™* < My, which is a
graded version of M.
b) For M, N € M™ we have

Bt (Forg(M), Forg(N)) = Bt (er(M), gr(N)
for all 7.

In the special case when GR is a complex group the Conjecture will be estab-
lished in [BR], cf. also §11.4, Conjecture 56 in [B].

It may be possible to deduce part (a) of the Conjecture from the result of [AK],
while [SW] may provide other geometric constructions of M™¥,

In order to relate this Conjecture to our present methods we make the following
observation. Let ¥ < p be a transversal slice to a regular nilpotent orbit, thus
> is contained in the set of regular elements g"*. Let 3. denote the set of pairs
(x,x) where x € ¥ and x is a character of the abelian algebraic group Zx (z), the
centralizer of # in K.

One can check that ¥ is naturally equipped with the structure of an ind-
algebraic variety, an infinite union of components, each one of which is a ramified
covering of . For F € Coh™(p) each fiber of the sheaf F|y is graded by the
set of characters of Zk(z); this observation can be upgraded to a definition of
a coherent sheaf Fg on 5. whose direct image to % is identified with Fls. This

clearly extends to a functor x : Coh™ (§) — Coh(Z xpx s 0*) (cf. [Ab] where a
similar construction is used in the context of affine Soergel bimodules).

Note that for a regular semisimple element = € ¥ the abelian group Zg(z) can
be identified with the stabilizer of a point in the open K-orbit By. It is not hard
to check the following.

Lemma 6.2. a) Consider the set of pairs (z,x) < S, where x is reqular semisim-
ple and x is such that the corresponding K -equivariant, T - monodmmzc local SYs-
tem on Xy belongs to M. This is an open subset in a component ZM =
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b) We have iM ~ a*/Ww.
¢) For M € My, the coherent sheaf o gr(M) is supported on Xm Xnxw h*.

We can now state:

Conjecture 6.3. Let M™> be as in Conjecture 6.1. For M, N € M™* we have
a canonical isomorphism:

[Ab]
[AK]
[ABV]

[AdC]

[BB]

[Bel]

[Be2]

[Be3]

[BBD]

[BeGi]
[BGS]
[BZN]

[BBG]

[BGG]

ko gr(M) = T (Forg(M)).
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