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Abstract: We develop a framework of coupled transport equations for open heavy flavor
and quarkonium states, in order to describe their transport inside the quark-gluon plasma.
Our framework is capable of studying simultaneously both open and hidden heavy flavor
observables in heavy-ion collision experiments and can account for both, uncorrelated and
correlated recombination. Our recombination implementation depends on real-time open
heavy quark and antiquark distributions. We carry out consistency tests to show how the
interplay among open heavy flavor transport, quarkonium dissociation and recombination
drives the system to equilibrium. We then apply our framework to study bottomonium
production in heavy-ion collisions. We include Υ(1S), Υ(2S), Υ(3S), χb(1P ) and χb(2P )
in the framework and take feed-down contributions during the hadronic gas stage into
account. Cold nuclear matter effects are included by using nuclear parton distribution
functions for the initial primordial heavy flavor production. A calibrated 2 + 1 dimen-
sional viscous hydrodynamics is used to describe the bulk QCD medium. We calculate
both the nuclear modification factor RAA of all bottomonia states and the azimuthal angu-
lar anisotropy coefficient v2 of the Υ(1S) state and find that our results agree reasonably
with experimental measurements. Our calculations indicate that correlated cross-talk re-
combination is an important production mechanism of bottomonium in current heavy-ion
experiments. The importance of correlated recombination can be tested experimentally by
measuring the ratio of RAA(χb(1P )) and RAA(Υ(2S)).

Keywords: Heavy Ion Phenomenology

ArXiv ePrint: 2004.06746

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2021)046

mailto:xjyao@mit.edu
mailto:weiyaoke@lbl.gov
mailto:yx59@phy.duke.edu
mailto:bass@duke.edu
mailto:mueller@phy.duke.edu
https://arxiv.org/abs/2004.06746
https://doi.org/10.1007/JHEP01(2021)046


J
H
E
P
0
1
(
2
0
2
1
)
0
4
6

Contents

1 Introduction 1

2 Coupled transport equations 3
2.1 Transport of open heavy quark-antiquark pairs 4
2.2 Transport of quarkonia 4
2.3 Monte Carlo simulations 7

2.3.1 Free streaming 7
2.3.2 Momentum change 7
2.3.3 Dissociation 8
2.3.4 Recombination 8

3 Test simulation inside QGP box 9

4 Treatment of relativistic heavy-ion collisions 10
4.1 Initial conditions 10
4.2 Medium evolution 14
4.3 Feed-down network 15

5 Results 16
5.1 Uncertainty estimates 16
5.2 Results for Υ(nS) 16
5.3 Prediction: χb(1P ) more suppressed than Υ(2S) 22

6 Conclusions 24

A Dissociation and recombination terms in transport equations 26
A.1 g +H ↔ Q+ Q̄ 27
A.2 q +H ↔ q +Q+ Q̄ and g +H ↔ g +Q+ Q̄ 27
A.3 |〈Ψprel |r|ψnl〉|

2 28

B Details on feed-down contributions 29

1 Introduction

Heavy quarkonia are bound states of heavy quark-antiquark pairs QQ̄. The mass spectra
of the ground and lower excited quarkonium states can be reasonably well described by
the nonrelativistic Schrödinger equation with a potential model [1]. Inside a hot nuclear
medium, i.e., the quark-gluon plasma (QGP), the attractive potential can be significantly
suppressed due to the static screening effect in the plasma [2]. As a result, a bound
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QQ̄ can “melt” at sufficiently high temperature [3–5]. Therefore, quarkonium suppression
(compared to a non QGP baseline) can be used as a signal of the formation of a QGP in
heavy-ion collisions. In general, shallower bound states melt at lower temperatures and
one would expect a “sequential” suppression pattern.

However, this simple picture is complicated by other in-medium processes such as the
dissociation of quarkonium states via dynamical scattering (i.e. the dynamical screening
effect, which is related to the imaginary part of the QQ̄ potential [6, 7]) and heavy quark
(re)combination [8, 9]. To account for all these effects, semi-classical transport equations
have been widely applied [10–31]. These calculations typically contain three components:
the first part is a temperature-dependent potential that is parametrized from lattice cal-
culations of the free energy of a QQ̄ singlet [32, 33] or direct lattice calculations of the real
part of the QQ̄ potential [34]. The second input is the dissociation rate of each quarkonium
state. Perturbative calculations of dissociation rates include both the gluo-dissociation pro-
cess [35, 36] and the inelastic scattering with the medium (Landau damping). An effective
field theory of QCD, potential nonrelativistic QCD (pNRQCD) [37–39] has been applied to
study both the static screening of the potential and the dissociation rate [40–42]. Similar ef-
fective theory has also been used to study dark matter bound state formation [43–45]. Some
studies also included viscous effects [46–48] and modifications due to the quarkonium mov-
ing with respect to a static medium [49, 50]. The final component is a recombination model,
for example, a statistical hadronization model [9], a coalescence model based on Wigner
functions [22] or a model that is based on detailed balance and a finite relaxation rate [24].

Unlike the first two effects, recombination contains significant model-dependencies in
most studies. Here, we shall distinguish between two kinds of recombination: uncorrelated
and correlated recombination. In uncorrelated recombination, the Q and Q̄ originate from
differential initial hard vertices. In proton-proton collisions, these heavy quarks and anti-
quarks would almost never (re)combine to form a quarkonium state due to their separation
in phase space. However, in heavy-ion collisions, multiple QQ̄ pairs are produced from the
initial hard scatterings in one collision event. The momenta of these heavy quarks and anti-
quarks change continuously inside the QGP due to diffusion and energy loss. Therefore, the
chance for an uncorrelated pair to come close to each other in phase space is higher. When
they are close, they may combine to form a quarkonium state. The uncorrelated recombi-
nation rate rises with the number of open heavy quarks produced in the collision, which is
crucial to explain the small amount of suppression observed for the J/ψ with rising collision
energy. Naively, one would expect J/ψ to be more suppressed at higher collision energies
due to the hotter medium and stronger plasma screening effects. Therefore, uncorrelated
recombination is important for the phenomenology of charmonium. However, its effect on
bottomonium production is expected to be negligible, since only a few bottom-antibottom
quark pairs are produced in one collision.

In correlated recombination, the Q and Q̄ originate from the same initial hard ver-
tex. For example, a QQ̄ pair in a pre-quarkonium resonance or emerging from a previous
dissociation of a quarkonium state is considered a correlated pair. The phenomenological
effect of correlated recombination for both charmonium and bottomonium has not been
systematically explored yet.
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Most recombination models depend on the uncorrelated open heavy quark distribu-
tions, they can thus only account for uncorrelated recombination. To explore the physical
effects of correlated recombination, we develop a set of coupled transport equations for Q
and Q̄’s as well as for quarkonia, which allows us to study both, uncorrelated and correlated
recombination. The transport equation of quarkonium provides consistent treatment of dis-
sociation and recombination, in the sense that both of them are derived from QCD under
systematic nonrelativistic expansions [51, 52]. The derivation is based on the combination
of the open quantum system framework (in which correlated recombination is taken into ac-
count) and the pNRQCD effective field theory. The application of the open quantum system
framework to studying quarkonium in-medium dynamics [53–65] and its combination with
pNRQCD [66, 67] has recently drawn significant theoretical interest. A quarkonium trans-
port coefficient has been defined in ref. [68]. In the open quantum system approach, quarko-
nium dissociation is caused by the wavefunction decoherence, which also leads to correlated
recombination at the same time. For example, if we start with the 1S state: |ψ(t = 0)〉 =
|1S〉, the wavefunction decoherence leads to |〈1S|ψ(t)〉|2 < 1 for t > 0. But at the same
time, if the 2S state exists as a well-defined bound state, we will also have |〈2S|ψ(t)〉|2 > 0,
i.e., some 2S state is regenerated. Since our transport equation for quarkonium is derived
from the open quantum system approach, it can handle correlated recombination.

The coupled transport equations allow us to study the in-medium transport of both
open and hidden heavy flavor states. In this paper, we will use this framework to study
bottomonium production in heavy-ion collisions. We will include Υ(1S), Υ(2S), Υ(3S),
χb(1P ) and χb(2P ) states in the transport network. By solving the coupled transport
equations via test particle Monte Carlo simulations, we will explore the importance of cor-
related recombination in bottomonium phenomenology. This paper is organized as follows:
in section 2, we will introduce the set of coupled transport equations. Then in section 3,
some simulation tests inside a QGP box will be shown and compared to the system prop-
erties in thermal equilibrium. Details on applying the transport equations to the study
of heavy-ion collisions will be explained in section 4. Results on the nuclear modification
factor (RAA) and the azimuthal angular anisotropy coefficient v2 of bottomonia will be
discussed later in section 5. Finally, we will draw conclusions in section 6.

2 Coupled transport equations

The set of coupled Boltzmann transport equations for the distribution functions of unbound
heavy quark-antiquark pairs QQ̄ and each quarkonium state with the quantum number nls
(n is for the radial excitation, l the orbital angular momentum and s the spin) is given by(

∂

∂t
+ ẋQ · ∇xQ + ẋQ̄ · ∇xQ̄

)
fQQ̄(xQ,pQ,xQ̄,pQ̄, t) = CQQ̄ − C

+
QQ̄

+ C−
QQ̄

(2.1)(
∂

∂t
+ ẋ · ∇x

)
fnls(x,p, t) = C+

nls − C
−
nls , (2.2)

where ẋ = ∂x
∂t . The left-hand sides of these equations describe the free streaming of

distribution functions in phase space while the right-hand sides contain collision terms of
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the heavy particles interacting with the plasma. The collision terms with ± superscripts
represent the quarkonium dissociation (−) and recombination (+) while the term without
any superscript describes the energy and momentum changes of the open heavy quark-
antiquark pairs. In the following, we will explain these collision terms in detail.

2.1 Transport of open heavy quark-antiquark pairs

If we neglect the interaction between the heavy quark-antiquark pair, we can write

CQQ̄ = CQ + CQ̄ , (2.3)

i.e., the heavy quark and antiquark interact independently with the medium. In potential
models, the interaction between the QQ̄ pair is attractive for the color singlet and repulsive
for the color octet. For a Coulomb potential, the color-averaged potential vanishes if
we assume the color is in thermal equilibrium. Furthermore, in-medium QQ̄ potentials
are significantly suppressed, so we expect the potential interaction between the QQ̄ pair
to be weak. Therefore, throughout this paper, we will neglect the interaction between
the QQ̄ pair in the open heavy flavor transport equations. As a remark, we note that
a factorized QQ̄ distribution fQQ̄(xQ,pQ,xQ̄,pQ̄, t) = fQ(xQ,pQ, t)fQ̄(xQ̄,pQ̄, t) indeed
leads to eq. (2.3). But the opposite is not true in general. Most recombination models
implicitly assume the factorization of the QQ̄ distributions and thus cannot study the
correlated recombination. But here we only assume eq. (2.3) in this work.

We will use a weak coupling picture for the transport of open heavy quarks [69–72].
The interaction of open heavy quarks (and antiquarks) with the medium is described
by scattering between open heavy quarks and medium partons (which include both light
(anti)quarks and gluons, abbreviated as q and g respectively). The collision term CQ
includes three types of scattering processes: the elastic 2→ 2 scattering q + Q → q + Q

and g+Q→ g+Q, the inelastic 2→ 3 scattering q+Q→ q+Q+g and g+Q→ g+Q+g

and the inelastic 3→ 2 scattering q+Q+ g → q+Q and g+Q+ g → g+Q, and similarly
for CQ̄. In this work, we will use the Monte Carlo simulations in the Lido package [73]
to solve the transport equations of open heavy quark-antiquark pairs. The Lido package
contains both a linearized Boltzmann transport description and a model that is based on
the Langevin equation with radiation corrections. The latter description has been reported
in ref. [74]. We will only use the linearized Boltzmann description in this work.

2.2 Transport of quarkonia

For the dissociation and recombination terms in the transport equations, we will use the
expressions in ref. [75]. Detailed expressions of the relevant collision terms can be found
in appendix A. The calculations therein are based on a version of pNRQCD under the
hierarchy of scales M � Mv � Mv2 & T & mD. Here M is the heavy quark mass, v the
typical relative velocity between the QQ̄ pair inside the bound state, T the temperature
of the QGP and mD the Debye mass. The typical size of quarkonium is roughly give by
r ∼ 1

Mv and the typical binding energy is about Mv2. The last inequality T & mD means
the QGP is weakly-coupled. For charmonium, we have v2 ∼ 0.3 while for bottomonium,
v2 ∼ 0.1 [76]. They both give Mv2 ∼ 500MeV.
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One may worry that the hierarchy is not always true in real heavy-ion collisions. In
the early time of the QGP expansion, the temperature can be & 450MeV. Due to the static
screening effect, the in-medium binding energies of quarkonium states can be much smaller
than their vacuum binding energies, especially for excited states. Thus, our assumed
hierarchy indeed breaks down in the early stage and in principle one has to use a different
version of pNRQCD if there still exists a hierarchy of scales. However, even before the
breakdown of the assumed hierarchy, as the temperature increases, the dissociation rates
of excited quarkonium states such as Υ(2S) and χb(1P) blow up rapidly. What happens
in our calculations is that after a very short time period in the early stage, the excited
quarkonium states have dissociated and evolve then as an unbound, correlated QQ̄ pair.
This is the right physics: when our hierarchy of scales breaks down, we can either have
T & Mv � Mv2 or Mv � T � Mv2. We do not consider Mv � T � Mv2 here
because the real values of v do not allow this hierarchy to happen for both charmonium
and bottomonium. (For� to be valid, one at least needs a factor of three in the ratio.) So
we only need to consider T &Mv �Mv2 here. Whenever this occurs, one expects both the
plasma screening effects to be extremely strong ( 1

Mv gives the rough size of the quarkonium
state) and no bound states can be well-defined. In this case, quarkonium, even if it binds,
binds very weakly and it is reasonable to assume that it behaves more like an unbound QQ̄
pair. Then the correct description is the transport of an unbound QQ̄ pair. Therefore, in
our calculations, whenever the temperature is high enough to break our assumed hierarchy,
the quarkonium state dissociates after a tiny time step and then evolves as an unbound,
correlated QQ̄ pair. This is a good approximation of the correct physics. The transport
of excited quarkonia as well-defined bound states is valid again in the later stage of the
evolution, when the temperature drops and our hierarchy is resumed. In this sense, most
excited quarkonium states are probably generated via recombination in the later stage of
the QGP evolution. Their suppression mechanism is mainly the decorrelation of the QQ̄
pair in coordinate and momentum space (or decoherence of their wavefunction). Those
excited states that are observed may probably come from recombination of QQ̄ pairs that
are still correlated. We will discuss this in more detail in section 5.

For the current calculations, we work to the leading order in the nonrelativistic expan-
sion (the multipole expansion under this hierarchy of scales is equivalent to a nonrelativistic
expansion). At this order, the higher Fock state |QQ̄g〉 of quarkonium (in which the QQ̄ is a
color octet) is suppressed at least by two powers of v with respect to the leading Fock state
|QQ̄〉 (in which the QQ̄ is a color singlet) [76]. Therefore, in our calculations, quarkonium
is always a QQ̄ pair in the color singlet. Unbound QQ̄ pairs can be in the color singlet
or octet states. At the order of the nonrelativistic expansion that we are studying right
now, the transition between a quarkonium and an unbound pair only occurs via a dipole
interaction between the color singlet and octet states. In other words, the dissociation
product is a QQ̄ in the color octet state and only color octet QQ̄ pairs can recombine as
quarkonia via the dipole interaction. Keeping only the dipole interaction in the calculation
works here because of the hierarchy Mv � T . When the quarkonium or the QQ̄ pair is at
rest with respect to the local medium, the typical energy of a medium parton is Eg ∼ T .
The typical size of quarkonium is given by r ∼ 1

Mv . So the quarkonium size is small in the
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sense that rEg � 1 and thus the dipole vertex is a weak-coupling interaction. However, if
the quarkonium or the QQ̄ is moving with respect to the local medium (for example, when
the quarkonium state has a finite transverse momentum), the typical energy of medium
partons in the quarkonium (or QQ̄) rest frame is boosted, Eg ∼ γT where γ is the boost
factor that depends on the relative velocity between the quarkonium (or the center-of-mass
of the QQ̄) and the local medium. The condition rEg � 1 may no longer be true and our
calculations would break down then. Rigorously speaking, our calculations only apply to
quarkonium states at low transverse momentum. In practice, we should be careful when
interpreting our results in the mid and high transverse momentum regions. We will come
back to this issue later in section 5.

The potentials used in the calculations are Coulombic: Vs = −CF α
pot
s
r for color singlet

and Vo = 1
2Nc

αpot
s
r where CF = N2

c−1
2Nc and Nc = 3. We will take αpot

s in the potentials to be
a parameter and choose its value as αpot

s = 0.36. The coupling constant in the scattering
vertices will be taken to be constant αs = 0.3. We will vary these two coupling constants
and discuss the calculation uncertainties in section 5. The effects of running coupling
and nonperturbative potentials will be left to future studies.1 Since the octet potential is
non-zero here, the wavefunction of the unbound octet pair is a Coulomb scattering wave
rather than a plane wave. In this way, we re-sum an infinite number of Coulomb exchanges
between the octet pair in the initial (for recombination) or final (for dissociation) state.
At the leading order in the nonrelativistic expansion, the potential is independent of the
orbital angular momentum and spin. Thus the dissociation rates are the same for states
separated by fine and hyperfine splittings. The recombination rates are also the same up
to a spin degeneracy factor gs = 1

4 or 3
4 .

We include the following scattering channels for the dissociation and recombination:
g +H ↔ Q+ Q̄, q +H ↔ q +Q+ Q̄ and g +H ↔ g +Q+ Q̄ where H can indicate any
quarkonium state. The first process is induced by real gluon absorption (for dissociation)
and emission (for recombination). The last two processes are mediated by virtual gluons
(inelastic scattering). The elastic scattering between quarkonia and medium gluons is
neglected here because it occurs at higher orders in the multipole expansion (or equivalently
here, nonrelativistic expansion) [75]. The direct transitions between different quarkonia
species are also omitted due to the same reason. Expressions of the reaction rates of the
1S, 2S and 1P states can be found in appendix A. For 3S and 2P states, we assume they
cannot exist inside the QGP. In other words, they dissociate immediately after entering
the QGP and cannot be (re)generated inside the hot medium.

One important feature of our framework is the inclusion of correlated recombination
(because we keep track of the evolution of the two-particle distribution of the QQ̄ pair
rather than the distribution of a singlet heavy quark). The correlated recombination leads
to cross-talk between different quarkonium states. When an excited quarkonium state such
as Υ(2P ) or Υ(3S) dissociates, the produced QQ̄ can form a lower excited state or the
ground state Υ(1S). As will be discussed later, this is an important production mechanism

1The different values of αpot
s and αs chosen here already hint at the importance of nonperturbative

potentials.
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for the ground state. When an excited state dissociates at high temperature, the dissociated
QQ̄ pair may form the ground state and then survive the subsequent evolution. When the
temperature drops and a ground state dissociates occasionally (the dissociation rate is
still non-vanishing even if the static screening effect is small at low temperature), the
dissociated QQ̄ pair may form an excited state. The time evolution of the whole system is
a network of reactions among unbound heavy quarks, antiquarks and all quarkonia states.
Our framework can handle this reaction network and study the physical impacts of the
cross-talk recombination.

2.3 Monte Carlo simulations

We solve the coupled transport equations by test particle Monte Carlo simulations. We
sample a certain number of QQ̄ pairs and quarkonia according to the distribution functions
at the initial time. Mathematically, the distribution function for each particle species is
represented by

f(x,p, t) = (2π)3∑
i

δ3(x− xi)δ3(p− pi) , (2.4)

and similarly for the two-particle distribution functions. Here xi and pi are the position
and momentum of the i-th sampled test particle. The integral of a distribution function
over the whole phase space gives the total number of the particle associated with that
distribution. The positions and momenta of the sampled particles obey their initial distri-
bution functions. Then we evolve the positions and momenta of all particle species step
by step. The time step size is chosen as ∆t = 0.01 fm/c in the laboratory frame. At each
time step, we consider each of the following processes.

2.3.1 Free streaming

The position of the particle changes according to

x(t+ ∆t) = x(t) + ∆t p(t)
E(t) , (2.5)

where E(t) and p(t) are the energy and momentum of the particle at the current time step.

2.3.2 Momentum change

This process is implemented via the Lido package. For given heavy quark (antiquark)
momentum and local temperature, the package calculates the scattering rate of the heavy
quark (antiquark) with the medium in each scattering channel. If a certain scattering
process occurs, the package generates a light scattering partner utilizing local medium
properties (temperature and flow field). Its outgoing momentum is sampled from the
differential scattering rate. The outgoing momentum of the heavy quark (antiquark) can
be obtained from energy and momentum conservation. Then we can update the momentum
of the heavy quark (antiquark).

– 7 –
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2.3.3 Dissociation

For a quarkonium state nls with a certain momentum (velocity) and a position at some
local temperature, we calculate its dissociation rate in the laboratory frame. The method
to obtain the dissociation rate from the collision term C− can be found in ref. [75]. The rate
times the time step size leads to the dissociation probability in this step. If it is determined
(by Monte Carlo sampling) that the quarkonium state dissociates, we sample the incoming
and/or outgoing momenta of the relevant light particles and obtain the momenta of the
outgoing QQ̄ pair from energy and momentum conservation. The positions of the unbound
Q and Q̄ are given by the position of the quarkonium before dissociation. Then we remove
this quarkonium state from the relevant particle list and add the produced QQ̄ pair to the
list of heavy quarks and antiquarks.

2.3.4 Recombination

For each unbound QQ̄ pair, we need to calculate their recombination rate. In the Monte
Carlo simulation, the two-particle distribution function of the unbound QQ̄ pair is repre-
sented by

f(xQ,pQ,xQ̄,pQ̄, t) = (2π)6∑
i,j

δ3(xQ − xi)δ3(pQ − pi)δ3(xQ̄ − x̃j)δ
3(pQ̄ − p̃j) . (2.6)

The recombination rate of a specific pair can be obtained by the following replacement

δ3(xQ − xi)δ3(pQ − pi)δ3(xQ̄ − x̃j)δ
3(pQ̄ − p̃j) (2.7)

→ δ3
(
xcm −

xi + x̃j
2

)
δ3(pcm − (pi + p̃j)

)
δ3
(
prel −

pi − p̃j
2

) 1
(2πσ2)

3
2
e−

(xi−x̃j)2

2σ2 ,

where xcm, pcm, xrel and prel are the center-of-mass (cm) and relative positions and mo-
menta. This Gaussian ansatz is motivated by the recombination formula derived in ref. [51],
in which the recombination term for a QQ̄ far away from each other is suppressed expo-
nentially by the bound state wavefunction. The width of the Gaussian is chosen to be the
typical size of the bound state. More specifically, for 1S, σ = aB where aB = 2

αsCFM
is

the Bohr radius. For 2S and 1P state, we have σ = 2aB. The recombination rate of this
specific pair can be obtained by doing the following replacement in the recombination term
C+ in the Boltzmann equation (The expression of C+ can be found in appendix A.)

f(xQ,pQ,xQ̄,pQ̄, t)→ (2π)3δ3
(
prel −

pi − p̃j
2

) 1
(2πσ2)

3
2
e−

(xi−x̃j)2

2σ2 . (2.8)

In practice, for each unbound QQ̄ pair with positions xi, x̃j and momenta pi, p̃j , we
first boost the pair into their cm frame. Then we compute their relative momentum and
calculate their recombination rate in the cm frame and then boost the rate back into the
laboratory. If the recombination into a specific quarkonium state occurs, we sample the
momentum of the outgoing quarkonium state based on the differential rate and energy-
momentum conservation. The position of the quarkonium state is given by the cm position
of the unbound pair before recombination. Finally we remove the unbound pair from the
list of heavy quarks and antiquarks and add a new quarkonium state to the relevant list of
quarkonium states.

– 8 –
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3 Test simulation inside QGP box

Before we study quarkonium production in heavy-ion collisions, we validate our test particle
Monte Carlo simulations for the coupled transport equations. We solve the equations inside
a cubic volume of QGP matter at fixed temperature with a side length L = 10 fm. The
box has periodic boundary conditions, i.e., when a particle reaches the boundary of the
box, it appears on the opposite side. In other words, the medium behaves as an infinitely
large QGP with a finite heavy flavor density (which include both open and hidden heavy
flavor states).

We focus on the bottom system, since the nonrelativistic expansion works better for
bottom than for charm. We will sample a fixed number of unbound bb̄ pairs initially. Their
positions are randomly distributed in the volume while their momenta obey thermal or
uniform distributions (other distributions can also be specified). In the mode of uniform
momentum distribution, each component of the bottom quark’s momentum, pi, i = x, y, z,
is sampled from a uniform distribution between 0 and 3GeV. In the uniform momentum
distribution mode, if we turn off the transport equation of unbound pairs and only simulate
the transport equations of quarkonia, we find that the system does not properly thermalize.
It is the transport of open heavy flavors that drives the kinematic thermalization of all
heavy quark states. These findings have been reported in refs. [27, 77]. Here we extend
the previous studies to the case of excited states. For simplicity, we will simulate all the
cases with the open heavy flavor transport equations turned on. The lessons we learn by
comparing the case with open heavy flavor transport equations turned on and that off
have been discussed before. We focus on demonstrating the consistency of the numerical
implementation of dissociation and recombination here.

We initialize Nb,tot = 50 bottom quarks and Nb̄,tot = 50 antibottom quarks in the
QGP volume. Their positions are random and their momenta are sampled in the uniform
distribution mode, as described above. We consider the following three cases:

1. The temperature of the QGP box is fixed to be 300MeV throughout. We only simu-
late the Υ(1S) channel for quarkonium, i.e., only the dissociation and recombination
of Υ(1S) are allowed.

2. Only the Υ(2S) channel is turned on. Here, the temperature is fixed at 180MeV.2

3. Same as case 2, but only χb(1P ) is studied.

We will compute the hidden bottom fraction as a function of time, which is defined by

Nb,hidden
Nb,tot

= Nb,hidden
Nb,open +Nb,hidden

= NH

50 , (3.1)

2In principle, since we use a Coulomb potential here, excited bottomonia states exist at high temperature.
In the simulation tests, one can choose a higher temperature. But at high temperature, the hidden bottom
fraction from excited bottomonia is tiny in thermal equilibrium and one requires large statistics to obtain
reasonable results. Furthermore, reaction rates become bigger as temperature increases, so a smaller time
step is required.
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where NH is the total number of all bottomonium states. For the three cases listed above,
only one bottomonium state contributes to NH . We will compare simulation results of
the hidden bottom fraction with that in thermal equilibrium, which can be calculated
as follows. In thermal equilibrium, the numbers of open bottom quarks and a specific
quarkonium state H are given by

N eq
i = giVol

∫ d3p

(2π)3λie
−Ei(p)/T , (3.2)

with i = b, b̄ or H, Ei(p) =
√
M2
i + p2 relativistically and Mi + p2

2Mi
nonrelativistically.

Here gi is the spin and color degeneracy factor and λi is the fugacity. We have gb = 6
for the bottom quark, gH = 3 for Υ(nS) and averaged χb(nP ). Since the total number
of bottom quark is equal to that of antibottom, λb = λb̄. In detailed balance, we have
λH = λbλb̄ = λ2

b . With this relation, one can solve the fugacities from the balance equation
with a given volume:

Nb,tot = N eq
b +N eq

H . (3.3)

Once we obtain the fugacities, we can compute the hidden bottom fraction in thermal
equilibrium:

N eq
H

Nb,tot
. (3.4)

The comparison between our simulation results and the system properties in thermal equi-
librium is depicted in figure 1 for the three cases listed above. The results are obtained from
averaging 10000 simulation events. As can be seen from the plots, the interplay between
dissociation and recombination can drive the system to equilibrium. The relaxation rate of
the system is about 7− 8 fm/c for the system conditions used here. This number is on the
order of the lifetime of QGP in real collisions. But in general, the relaxation rate depends
on the initial pT spectrum and density of the heavy particles, as well as the temperature
of the medium. Our simulations can reproduce the correct limit of the hidden bottom
fraction in thermal equilibrium. These tests serve as consistency checks in our studies and
we are now ready to move on and simulate real collision systems.

4 Treatment of relativistic heavy-ion collisions

In this section we will describe our numerical setup to study bottomonium production in
heavy-ion collisions. We include Υ(1S), Υ(2S), Υ(3S), χb(1P ) and χb(2P ) states in the
quarkonium transport equations. To solve the coupled transport equations, we need an
initial condition and a bulk QGP medium. For the calculations of RAA, we also need to
include all feed-down contributions from excited states to the ground and lower excited
states in the hadronic gas stage. We will explain the calculation of the initial phase space
distribution, the bulk QGP evolution and the feed-down network in a sequence below.

4.1 Initial conditions

The initial phase space distributions are determined as follows. The momenta of heavy
quark-antiquark pairs and each quarkonium state are calculated and sampled utilizing
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(c) Case 3: χb(1P ) in a 180MeV QGP box.

Figure 1. Comparison of the hidden bottom fraction between simulations and properties in
thermal equilibrium. The system approaches equilibrium due to the interplay between quarkonium
dissociation and recombination.

Pythia [78]. The quarkonium production calculation in Pythia is based on the NRQCD
factorization [76]. We use the nuclear parton distribution function (nPDF) parametrized
by EPPS16 [79]. The nPDF is the only cold nuclear matter (CNM) effect we include.
The suppression factors caused solely by the CNM effects RCNM for the Pb-Pb collisions
at 5.02TeV are shown in figure 2 for different bottomonia states. We use the same bins
in the transverse momentum pT and rapidity y as the CMS measurements, which will be
shown later. The uncertainty bands are estimated by the following method: we calculate
the CNM effect for each set of the nPDF’s in the EPPS16 parametrization, by using the
LHAPDF interface [80]. The set 1 corresponds to the central value while the sets 2 − 41
are error sets. (In the LHAPDF interface, the set 0 corresponds to the central value while
the sets 1− 40 are error sets.) The uncertainty is given by (41) of ref. [79]:

∆RCNM = 1
2

√√√√ 20∑
i=1

[
RCNM(2i)−RCNM(2i+ 1)

]2
, (4.1)

where RCNM(i) denotes the CNM effect calculated from the i-th error set.
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The production of χb(2P ) is not available yet in Pythia, so we will assume the CNM
effect on χb(2P ) is the same as that on χb(1P ). Furthermore, Pythia with nPDF EPPS16
cannot describe the nuclear modification factor RpAu = 0.82± 0.10(stat)± 0.08(syst) mea-
sured by the STAR collaboration [81]. So we use RCNM = (RpAu)2 = 0.67 as the central
value of the CNM effect for the 200GeV Au-Au collision. We estimate the uncertainty in
the RpAu as ∆RpAu =

√
0.112 + 0.082 ≈ 0.128, and the uncertainty of RCNM in Au-Au

collisions as 2×RpAu×∆RpAu = 0.21. We assume the RCNM here is pT -independent since
the pT range covered by the STAR measurement is limited. The y-dependence of RCNM
is not needed here because the STAR measurements are carried out in the mid-rapidity
region (|y| < 0.5).

The position distribution of the initial production vertices of heavy quark-antiquark
pairs and quarkonia are calculated and sampled using the TRENTo model [82]. The
TRENTo model assumes the entropy density deposited by the collision at mid rapidity
is given by

s(τ0,x⊥) ∝
((TA)p + (TB)p

2

)1/p
, (4.2)

where TA = TA(x⊥) and TB = TB(b⊥ −x⊥) are the nuclear thickness functions of the two
projectiles separated by the impact parameter b⊥, p is a parameter that has been calibrated
on bulk observables of the QGP and τ0 is the thermalization time of the system after the
initial collision. We choose τ0 = 0.6 fm/c, before which the system is just free streaming.
The parametrized entropy density will be used as the initial condition of the hydrodynamic
equation, which will be explained in the next subsection. The production of heavy quark-
antiquark pairs and quarkonia are thought to be hard processes because of the large mass
scale. Therefore, their initial production probability is assumed to be proportional to the
binary collision density in the transverse plane, which is proportional to TATB. Since the
nuclear thickness function is used in both the initial entropy density and the initial heavy
quark-antiquark production, the corona effect is taken into account in our calculations.

All heavy particles are assumed to be produced at τ = 0 and they propagate via free
streaming until τ = τ0 = 0.6 fm/c. Production at τ = 0 is considered a valid assumption for
heavy quark-antiquark pairs because their production time is about 1

M in their rest frame.
But this may no longer be true for quarkonia, whose formation time is estimated as 1

Mv2 in
their rest frame, which is the time for the heavy quark-antiquark pair to develop the quarko-
nium wavefunction of the relative motion.3 For bottom quarks and bottomonia, 1

M ∼
0.05 fm/c while 1

Mv2 ∼ 0.4 fm/c. For excited quarkonia states, the formation time would
be even longer because of the smaller binding energies. For the ground state, it is probably
formed before τ0. Since we assume particles are free streaming before τ0, it does not mat-
ter whether the ground state is free streaming as a fully formed quarkonium state or an
unbound pre-resonant heavy quark-antiquark pair. But it matters for excited quarkonium

3For heavy quark-antiquark pairs and quarkonia with finite transverse momenta, their formation times
in the laboratory frame will be boosted by a γ-factor. So even the ground quarkonium state may form
inside the thermal medium. But it should be noted that the total dissociation rate in the laboratory frame
increases with the transverse momentum. The effect of the finite formation time is small. See the following
main text for the arguments.
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Figure 2. CNM effects on bottomonia originated from nPDF at 5.02TeV Pb-Pb collisions as
functions of transverse momentum and rapidity.
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states, because they may be formed inside the thermal QGP. In other words, at τ0, we may
only have pre-resonant excited quarkonium states. But this is just a tiny effect in our calcu-
lations. The excited states have very large dissociation rates when the temperature is high.
They will dissociate in one time step after entering the QGP and becoming correlated un-
bound pair to evolve further. It really does not matter if we have pre-resonant or completely
formed excited quarkonium states, because they evolve as unbound QQ̄ pair when entering
the thermal QGP. Improvements can be done by including the relative momentum broad-
ening of the QQ̄ pair in the pre-thermalization stage, which will be left to future studies.

For our calculation on bottomonia, we will only initialize quarkonia states but not
unbound bb̄ pairs, because the number of such pairs produced in current heavy-ion collision
experiments is very small (for central Pb-Pb collisions at 5.02TeV, the average number
of unbound bb̄ pairs is less than one per rapidity). So unlike charmonium production,
uncorrelated recombination is negligible for bottomonium production. Since most of the
unbound heavy quark-antiquark pairs are produced back-to-back in the transverse plane
initially, correlated recombination of these unbound pairs is also negligible. Due to the
even smaller production cross section of bottomonium, we will assume in our calculations
at most one bottomonium state is produced initially in one heavy-ion collision event.

4.2 Medium evolution

We use a 2 + 1 dimensional viscous hydrodynamic model VISHNew [83, 84] to describe the
evolution of bulk QGP matter. The package numerically solves

∂µT
µν = 0 (4.3)

with the energy-momentum tensor

Tµν = euµuν − (P + Π)(gµν − uµuν) + πµν , (4.4)
Π = −ζ∇ · u, (4.5)

πµν = 2η∇〈µuν〉 (4.6)

for given initial conditions. Here e and P are the local energy density and pressure, gµν is
the metric and uµ is the local four-velocity of the medium. Π is the bulk stress with the
bulk viscosity ζ, and πµν is the shear stress tensor with the shear viscosity η. The angle
bracket means traceless symmetrization.

Both the bulk and shear viscosities are parameters here and can be temperature-
dependent. We will use the parametrizations and calibrations in ref. [85]. Ref. [85] uses the
TRENTo model to calculate the initial entropy density s and then obtain the energy density
and pressure with an equation of state calculated by lattice QCD. To obtain the initial
stress-energy tensor at τ0, ref. [85] further assumes the initial flow velocity and the viscous
terms vanish at τ0. All parameters in the TRENTo model and the hydrodynamic equations
are calibrated to experimental observables on light hadrons. For 2.76TeV Pb-Pb collisions,
we will use the parameters calibrated to charged particles shown in table III of ref. [85]
with the exception of the parameter p in the TRENTo model. We choose p = 0, which is
consistent with the calibration in ref. [85] (the calibrated value of p is 0.03+0.16

−0.17). For the
parameter calibrations in other collision energies and systems, we will follow ref. [74].
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4.3 Feed-down network

We terminate the transport evolution when the local medium temperature drops to Tc =
154MeV, i.e., we neglect the dissociation of quarkonium states in the hadronic gas. The
final nuclear modification factor RAA(i) for i = Υ(1S), Υ(2S), Υ(3S), χb(1P ) and χb(2P )
includes both the CNM effect RCNM and the hot medium effect. The evaluation of the
CNM effect has been discussed in section 4.1. We will now discuss how we compute the
hot medium effect.

Our calculation includes, unlike many others, correlated recombination and we find
that this effect plays a crucial role. We need to take into account the following situation:
some quarkonium state produced initially may end up as a different quarkonium state.
For example, a 2P state produced initially, melts inside the QGP and recombines as a 1S
state which survives the following in-medium evolution. To this end, for each centrality
bin, we simulate N init

i events in each of which one i-quarkonium state is initialized. After
the in-medium evolution, among these N init

i events, there are Ni→j events that have a j-
quarkonium state in the end. We note in general

∑
j Ni→j ≤ N init

i . For example, N1S→2S is
the number of Υ(2S) states generated from those N init

1S events where the initial quarkonium
state is a Υ(1S). Ni→i is the “surviving” number whose physical meaning is well-known (it
also has contribution from the correlated recombination), and has been calculated in many
studies. Ni→j with j 6= i is the contribution from correlated, cross-talk recombination.

As explained in section 4.1, we only initialize one bottomonium state in each relevant
collision event. For simplicity of the expressions, we will assume all N init

i ’s are the same
and equal to N init = 30000 in our calculations of RAA. The total final number of the
i-quarkonium state produced from N init’s collision events (N init events for each state we
consider) is given by (we include CNM effect here)

Nfinal
i =

∑
j

RCNM(j)σj
σi
Nj→i , (4.7)

where RCNM(j) is the CNM effect on the primordial production of the j-quarkonium state
and σi is the initial primordial production cross section of the i-quarkonium state (without
any feed-down contributions). The ratios of the initial production cross sections are listed
in appendix B. Now we include the feed-down contributions for Υ(1S) and Υ(2S):

N init,fd
2S = N init +

∑
j=3S,2P

σj
σ2S

N initBr[j → 2S] (4.8)

N init,fd
1S = N init + σ2S

σ1S
N init,fd

2S Br[2S → 1S] +
∑

j=1P,3S,2P

σj
σ1S

N initBr[j → 1S] (4.9)

Nfinal,fd
2S = Nfinal

2S +
∑

j=3S,2P
Nfinal
j Br[j → 2S] (4.10)

Nfinal,fd
1S = Nfinal

1S +Nfinal,fd
2S Br[2S → 1S] +

∑
j=1P,3S,2P

Nfinal
j Br[j → 1S] , (4.11)

where we have used N init
i = N init for all i’s. The branching ratios in vacuum are listed in
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appendix B. Finally the nuclear modification factors for i = 1S, 2S are given by

RAA(i) = Nfinal,fd
i

N init,fd
i

. (4.12)

For j = 3S, 1P and 2P , we do not consider any feed-down contributions. Then their
nuclear modification factors are given by

RAA(j) =
Nfinal
j

N init
j

=
Nfinal
j

N init . (4.13)

5 Results

5.1 Uncertainty estimates

We will discuss three uncertainty sources here. The first source is the uncertainty in the
EPPS16 parametrizations of the nPDF. The uncertainty bands of the CNM effect caused
by the nPDF have been estimated in section 4.1 and will be included in the plots to be
shown in the next subsection.

The second uncertainty originates in the values of αs = 0.3 and αpot
s = 0.36. We

will vary these two coupling constants by ±10% to estimate the uncertainty caused by the
parameter values. In the next subsection, we will show three curves for the RAA calculation
results, where the middle curve corresponds to the central values of the parameters αs = 0.3
and αpot

s = 0.36. The lower curve corresponds to αs = 0.27 and αpot
s = 0.32 while the

upper one represents αs = 0.33 and αpot
s = 0.4.

The final source of uncertainty is in the experimental measurements of cross sections
and branching ratios, which are listed in appendix B and used as inputs in the calculations.
We expect the first two uncertainty sources will dominate over the last one, so we exclude
the last uncertainty source in the following analysis.

5.2 Results for Υ(nS)

We first show the results of RAA as a function of centrality at 5.02TeV Pb-Pb collisions.
The comparison between our calculation and the measurements by the CMS collaboration
is shown in figure 3. The three curves in the plot correspond to the three sets of parameters,
as discussed in the previous subsection. The uncertainty band is solely from the uncertainty
of the nPDF and is centered at the middle curve, which corresponds to the central values
of the parameters αs = 0.3 and αpot

s = 0.36. As can be seen in the plot, the nPDF
uncertainty dominates over the uncertainty of the parameters. To explicitly demonstrate
the importance of correlated recombination, we show the full calculation results in figure 3a
and the results without any contribution from the cross-talk recombination in figure 3b,
i.e., in the latter case, the contribution from an initial i-quarkonium state ending up as a
final j-quarkonium state (j 6= i) is excluded. Remaining same-species (i → i) correlated
recombination is still included in the latter case, though we expect its contribution to be
much smaller than the cross-talk recombination. As can be seen from the comparison of
the two figures, the cross-talk recombination is crucial to describe the data, even if one
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Figure 3. Bottomonia RAA as functions of centrality at 5.02TeV Pb-Pb collisions. The upper and
lower curves correspond to calculations with parameters that differ by ±10% respectively from the
parameters used in the middle curve. The band indicates the nPDF uncertainty that is centered at
the middle curve. Experimental data are taken from ref. [86].

takes into account the uncertainties from the nPDF and parameter values. Furthermore,
it seems unlikely to describe the data for 1S and 2S simultaneously without including the
cross-talk recombination, by further increasing the coupling constant in the potential, since
the change of RAA(2S) from the parameter variation is tiny. For the 1S state production,
most excited states dissociate quickly when entering the QGP because of the initial high
temperature. These melted correlated bb̄ pairs may form 1S state after the dissociation
because the 1S state can exist at high temperature. For the 2S production, most of the
primordially produced 2S states cannot survive the in-medium evolution in most centrality
bins. They are regenerated when the temperature cools down and allows their existence
in the medium. At low temperature, a 2S state can be formed from a correlated unbound
bb̄ pair (which may come from a dissociated quarkonium state such as a 1S state). For
the 3S production, since we assume they cannot exist inside QGP (melting temperature is
below 154MeV), correlated recombination does not affect its production. The 3S state is
only produced in very peripheral collisions due to the corona effect.

Next we discuss the results of RAA as a function of the transverse momentum, shown
in figure 4a. First we notice that the experimental results of RAA are almost flat as a
function of pT . This is a highly non-trivial result because the CNM effect has a dramatic
dependence on pT , as shown by the central values in figure 2, though the uncertainty band
is quite large. The pT variation of the CNM effect can be understood as follows: at mid-
rapidity, the energy fraction carried by the two gluons that fuse to produce quarkonium
(in the collinear factorization, for a non-zero pT , a recoil particle is produced back-to-
back to the quarkonium state in the transverse plane), is given by x = 2mT√

s
where mT =√

p2
T +M2

H . Bottomonium mass is about MH ≈ 10GeV. So at 5.02TeV Pb-Pb collisions,
x goes from 0.004 to 0.009 as pT increases from 0 to 20GeV. As x increases, the nuclear
modification factor Rg(x) of the gluon PDF increases. The CNM effect on the production
cross section grows as [Rg(x)]2. This growing trend is true for every fitting set in the
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(a) RAA(pT ) with CNM effects and with
cross-talk recombination.
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(d) RAA(y) with CNM effects and with cross-
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Figure 4. Bottomonia RAA as functions of transverse momentum and rapidity at 5.02TeV Pb-Pb
collisions. The upper and lower curves correspond to calculations with parameters that differ by
±10% respectively from the parameters used in the middle curve. The band indicates the nPDF
uncertainty that is centered at the middle curve. Experimental data are taken from ref. [86].

EPPS16. Furthermore, the scale mT used in the perturbative calculation also increases as
pT increases. At higher energy scales, the nPDF modification factor Rg is expected to be
closer to unity, which further increases its pT dependence.

The final flat RAA means for bottomonium, the pT -dependent CNM effect is washed
out by the hot medium effect. To show this more explicitly, we plot the calculation results
of RAA without the CNM effects in figure 4b. We see the hot medium effect leads to a
raise of RAA at low transverse momentum. The reason behind is related with correlated
recombination: suppose a quarkonium state dissociates and then recombines later (via
correlated recombination). After dissociation but before recombination, the correlated QQ̄
pair interacts with the medium and loses energy. When the pair recombines, it has a
smaller pT than that right after the dissociation. This leads to an increase of quarkonium
states at low pT . Furthermore, low pT quarkonium states stay inside the medium for a
longer time and probably go through the low temperature part of the QGP expansion.
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Since recombination at high temperature is ineffective, quarkonium states at low pT have a
higher chance to recombine (via correlated recombination) if they dissociate than those at
high pT . To demonstrate this point more clearly, we plot the calculation results without any
CNM effects and without any cross-talk recombination in figure 4c, where the suppression
has only a mild pT dependence.

Our calculations can describe the RAA for pT < 10GeV and start to deviate from
the data as pT becomes bigger. This may indicate the breakdown of the nonrelativistic
expansion that our calculations are heavily replied on. For a finite pT , the typical energy
of medium light particles in the rest frame of quarkonium is given by T√

1−v2
T

rather than
T , where vT is the transverse velocity of the quarkonium with respect to the local medium.
Our calculations are valid if rT√

1−v2
T

� 1 where r ∼ 1
Mv is the typical size of quarkonium.

Under our assumed hierarchy rT � 1, the condition rT√
1−v2

T

� 1 is valid when vT is small.
Higher order contributions in the nonrelativistic expansion become important and have
to be included consistently as pT increases.4 Our calculations probably indicate that this
happens when pT > 10GeV. One should note that for charmonium this can happen at a
much smaller pT because what matters in the argument is the transverse velocity rather
than the transverse momentum. Since most bottomonia are produced at low transverse
momentum, the deviation at mid and high pT does not affect the centrality and rapidity
dependence of RAA in our calculations.

Then we show the results of RAA as a function of the rapidity in figure 4d. Our calcula-
tions are consistent with the experimental measurements. Since we use a 2+1 dimensional
viscous hydrodynamics, the hot medium effect is independent of y. Furthermore, we see in
figure 2 that the y dependence of the CNM effect is also mild. Therefore, the final RAA is
almost flat in the rapidity.

The comparison between our calculations and experimental measurements for 2.76TeV
Pb-Pb collisions and 200GeV Au-Au collisions is shown in figure 5. Our calculations
can describe most of the experimental data except RAA(2S + 3S) in peripheral Au-Au
collisions at 200GeV. In figure 5b, our calculations of RAA(2S + 3S) are consistent with
the measurements at central collisions, though are slightly lower than the central values.
But our calculation result has a large discrepancy with the data point at the peripheral
collision. The uncertainty of the experimental measurement there is quite large due to
the large uncertainty in the determination of Ncoll. The uncertainty associated with Ncoll
is small for central collisions. This discrepancy with the single data point in peripheral
collisions leads to the discrepancy in the pT dependence of RAA(2S + 3S), as depicted
in figure 5d. We expect that the future sPHENIX collaboration will provide data with
high precision and then the origin of the current discrepancy issue will be more clear:

4Under our assumed hierarchy, the multipole expansion is equivalent to the nonrelativistic expansion.
One should keep in mind that the dipole interaction vertex grows linearly with the quarkonium size and
thus the reaction rate grows with the size. But physically we know there is an upper limit of the rate when
the size is large: the rate cannot be bigger than twice the reaction rate of one heavy quark interacting with
the medium. When the quarkonium size is large enough, the heavy quark and antiquark interact with the
medium almost independently. Therefore, we expect that including higher order terms in the nonrelativistic
expansion will reduce the rate and thus the RAA at large pT will go up.
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(a) RAA(Npart) at 2.76TeV Pb-Pb collisions.
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(c) RAA(pT ) at 2.76TeV Pb-Pb collisions.
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(d) RAA(pT ) at 200GeV Au-Au collisions.
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Figure 5. Bottomonia RAA as functions of centrality, transverse momentum and rapidity at
2.76TeV Pb-Pb and 200GeV Au-Au collisions. The upper and lower curves correspond to calcu-
lations with parameters that differ by ±10% respectively from the parameters used in the middle
curve. The band indicates the nPDF uncertainty that is centered at the middle curve. Data of the
CMS and STAR measurements are taken from refs. [87] and [81] respectively. The pT dependence of
RAA for the 200GeV Au-Au collisions is calculated and compared for the centrality range 0− 60%.
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Figure 6. Azimuthal angular anisotropy coefficient v2 of Υ(1S) at 5.02TeV Pb-Pb collisions. The
experimental results of the ALICE and CMS collaborations are taken from refs. [88] and [89].

either the calculations are consistent with improved measurements or the calculations need
improving. Improvements of the calculations can be carried out in understanding the CNM
effects at 200GeV Au-Au collisions. Since we assume nPDF is the only CNM effect, we
use a constant RCNM = 0.67 for all centrality bins. It is possible that the real CNM effect
is centrality-dependent and RCNM goes up as the collision becomes more peripheral. An
increase of RCNM in peripheral collisions will lessen the discrepancy we see here.

Finally, we study the azimuthal angular anisotropy of Υ(1S). In particular, we compute
the v2 coefficient which is defined by

E
d3N1S

dp3 = 1
2π

d2N1S
pT dpT dy

(
1 + 2v2 cos[2(φ−ΨRP)]

)
, (5.1)

in which we neglect higher order harmonics. Here φ − ΨRP is the azimuthal angle of
the 1S state with respect to the reaction plane, which is defined event-by-event. Our
calculation result for the 5.02 Pb-Pb collision in the centrality range5 10 − 90% is shown
in figure 6. We only show the result from the central values of the parameters. We also
plot the experimental results measured by the ALICE collaboration which are in a different
rapidity and centrality regions, just to show the state-of-art of the current bottomonium
v2 measurements. We stop our calculations at pT = 24GeV because as we have seen in the
RAA comparison, higher order corrections in the nonrelativistic expansion start to become
important as pT increases, which are neglected in our current setup. We can calculate v2
at higher pT values in our current setup but their physical meaning is less robust and we
cannot learn much from doing that. Our calculation result is consistent with the current

5For the v2 observable, the CMS collaboration defines the centrality using hard probe triggers. So in
the v2 calculation, we define the centrality bin in TRENTo by using the number of binary collisions Ncoll

rather than the multiplicity.
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experimental data, though current measurements have large statistical errorbars. The last
CMS data point has a quite large pT range: 10 − 50GeV. Our nonrelativistic expansion
calculation would definitely break down at 50GeV. Furthermore, at such a high pT , the
fragmentation production would start to dominate and the suppression mechanism would
mainly be jet energy loss. Due to the steep pT spectrum in the primordial production of
bottomonium, most of the contribution to the last data point comes from pT ∼ 10−20GeV.
So the comparison we show still has some physical meaning for the last data point.

Several physical processes contribute to the development of the quarkonium v2. The
first contribution is the path dependence. In peripheral collisions, the QGP has a elliptic
shape. Quarkonia moving along the longer axis will be more suppressed. Also, the reaction
rates of quarkonium in the medium depend on the relative velocity between the quarkonium
and the local medium, which has a flow velocity. This also influences the shape of v2 as
a function of pT . Finally, after the dissociation of quarkonium, the unbound QQ̄ pair can
develop some v2 by interacting with the medium. Later if they recombine, the v2 will
be partly or fully inherited by the regenerated quarkonium. Uncorrelated recombination
can also contribute to v2 and is crucially important for charmonium production in heavy-
ion collision. Open charm quarks that develop v2 during the in-medium evolution will
contribute to the charmonium v2 if they recombine. But this v2 generation mechanism is
negligible for bottomonium since the number of unbound bb̄ pairs produced in one collision
event is smaller than one per rapidity in mid-rapidity. Future precise measurements on
the azimuthal angular anisotropy will greatly help us understand the in-medium dynamics
of quarkonium, especially how quarkonia with finite transverse momenta interact with an
expanding medium. These non-equilibrium transport properties of quarkonium are not
easy to study via finite temperature lattice QCD calculations. The interplay between
theory and phenomenology will help deepen our understanding on these, in particular once
experimental data with high precision are available.

5.3 Prediction: χb(1P ) more suppressed than Υ(2S)

One consequence of the important contribution from correlated recombination in bottomo-
nium production would be that the χb(1P ) state is more suppressed than the Υ(2S) state.
If there were no correlated recombination, one would expect RAA(χb(1P )) to be similar
to RAA(Υ(2S)), since the two states have similar binding energies and sizes. However,
correlated recombination can alter dramatically this naive expectation. Since χb(1P ) and
Υ(2S) have similar binding energies and sizes, their recombination rates from a correlated
bb̄ pair are also close. In particular, the probability of an initial χb(1P ) state ending up as
a Υ(2S) state (via first dissociation and then correlated recombination) is similar to that
of an initial Υ(2S) state ending up as a χb(1P ) state. But the primordial production cross
section of χb(1P ) is 4− 5 times that of Υ(2S). Much more χb(1P ) states are produced ini-
tially and thus, the number of Υ(2S) states regenerated from initial χb(1P ) states is much
larger than the number of χb(1P ) states regenerated from initial Υ(2S) states. Therefore,
Υ(2S) is less suppressed than χb(1P ).
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Figure 7. RAA(χb(1P )) compared with RAA(Υ(2S)) from calculations with and without cross-
talk recombination. The RAA’s as functions of centrality are shown in the first row. The ratio of
RAA(χb(1P )) and RAA(Υ(2S)) as a function of pT is shown in the second row. Different curves
correspond to difference choices of parameters and the band indicates the nPDF uncertainty. The
double ratio observable has huge discriminatory power to distinguish calculations with and without
correlated recombination.

To demonstrate this idea, we plot RAA(χb(1P )) and RAA(Υ(2S)) in figure 76 for two
cases: with cross-talk recombination and without it. It can be clearly seen that in the
former case, Υ(2S) is less suppressed while in the latter case, Υ(2S) and χb(1P ) have
similar RAA’s. So we propose a new measurement to test experimentally the importance
of correlated recombination, which is the ratio of RAA(χb(1P )) and RAA(Υ(2S)). We plot
this ratio as a function of transverse momentum in figure 7c for both cases. The difference
is dramatic: in the case without cross-talk recombination, the double ratio is approximately
unity, consistent with the argument based on the quarkonium binding energy and size given
above, while in the case with cross-talk recombination, the double ratio can be as small as
0.2 at low pT and gradually increases at higher pT . The uncertainties due to the choice of
parameters are relatively small in both cases, as can be seen from the variation of the three

6All results in figure 7 are calculated from N init = 105 simulation events rather than 30000 as in other
figures.
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curves. In the case without cross-talk recombination, the nPDF uncertainty does not cancel
out in the ratio, and is very large at low pT , which reflects the difference of the nPDF effects
on 2S and 1P states as shown in figure 2. In the case with cross-talk recombination, the
nPDF uncertainty band becomes much narrower. The reason of the narrowness is two-fold.
First, the CNM effect and the hot medium effect are multiplicative (see eq. (4.7)). When
the central value of the ratio is smaller, as in the case with cross-talk recombination, the
nPDF uncertainty band would look narrower in a plot with a linear scale in the vertical axis.
Furthermore, because of cross-talk recombination, different bottomonium states can turn
to each other during the evolution and thus the difference of the CNM effects in the initial
production is gradually washed out. In a nutshell, after accounting for the calculation
uncertainties, the suppression of χb(1P ) relative to Υ(2S) is still manifest, especially at
low and intermediate pT .

As can be seen from figure 7c, this double ratio observable is of huge model discrim-
inatory power. However, measurements on the double ratio may be challenging at the
moment. Reconstructing the χb(1P ) state requires detecting the low energy photon emit-
ted in its decay to the Υ(1S) state. But a large number of photons at low pT are produced
in heavy-ion collisions due to the neutral pion decay, which leads to a large combinato-
rial background in the χb(1P ) reconstruction. Furthermore, the photon resolution in the
calorimeter is limited. To overcome the resolution problem, one can reconstruct the photon
from its conversion to an electron positron pair due to the interaction with detector mate-
rials, but the conversion reduces the signal by a substantial factor of order 10 [90]. Moving
to intermediate and high pT would help detecting the emitted photon, but at the same
time the interesting signal in the double ratio dies away as pT increases, needless to say the
available experimental statistics at high pT . A tradeoff must be made between the inter-
esting physics, detector resolution and experimental statistics. Considering these factors
and the large nPDF uncertainty at low pT in the case without cross-talk recombination, an
optimal pT window for such a double ratio measurement might be roughly between 5 and
15GeV. Detailed experimental analysis on the pT searching window is needed. With higher
luminosity and improved detector efficiencies, Run 3 of LHC and the sPHENIX program
at RHIC may be able to measure this double ratio observable.

6 Conclusions

In this paper, we develop a set of coupled transport equations for open heavy quark-
antiquark pairs and quarkonia. Our framework is capable of calculating observables for
both open and hidden heavy flavors. Dissociation and recombination rates are calculated
from pNRQCD via a systematic weak-coupling and nonrelativistic expansion, with the as-
sumption of a weakly-coupled QGP. Recombination rates depend on the real-time heavy
quark-antiquark distribution function, which is solved by the transport equation for open
heavy flavors. Our framework can handle both uncorrelated and correlated recombina-
tion. By numerically solving the coupled transport equations via Monte Carlo techniques,
we demonstrate how the ground and excited bottomonia states approach thermal equilib-
rium inside a QGP box with a constant temperature. Furthermore, we study bottomonia
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production in heavy-ion collisions using our framework. The initial phase space distribu-
tions are calculated from Pythia with the nPDF EPPS16 and the TRENTo model. The
medium description utilizes a 2 + 1 dimensional viscous hydrodynamic model. The pa-
rameters of the TRENTo model and the hydrodynamic equations have been calibrated to
experimental observables on light hadrons. We include Υ(1S), Υ(2S), Υ(3S), χb(1P ) and
χb(2P ) states in our reaction network. Our calculations demonstrate the importance of
correlated cross-talk recombination in bottomonium phenomenology and can describe most
of the experimental data. Discrepancies are seen at mid and large transverse momenta,
where omitted higher order terms in the nonrelativistic expansion become gradually more
important. We propose a new measurement on the ratio of nuclear modification factors of
χb(1P ) and Υ(2S) to test the importance of correlated recombination in experiments.

The current formalism can be improved in several ways. First, one can include the
effect of the running coupling constant and higher order corrections in the nonrelativistic
expansion. One may also consider extending the calculation of the reaction rates to the
case of a strongly-coupled QGP, which will be more relevant at low temperature. Second,
the simple Coulomb potential can be replaced by a more realistic nonperturbative potential
model. The nonperturbative potential may be parametrized and the parameters can be
calibrated to experimental observables such as RAA and v2, for example, by using the
recently developed Bayesian analysis techniques [91]. A simultaneous description of both
open and hidden heavy flavor observables is also possible in our framework and is worth
exploring. With a nonperturbative potential, the technical challenge would be to develop a
fast numerical algorithm to sample the momenta of the outgoing QQ̄ pair (in dissociation)
or quarkonium (in recombination) from the differential reaction rates. No previous studies
have done this, but it is crucial for a consistent microscopic treatment like our calculation
here. With a Coulomb potential, reaction rates have analytic expressions which are easier
to handle in inverse transform and importance samplings (For the case of how to sample
efficiently with a Coulomb potential, see chapter 4.2 of ref. [92]). For a nonperturbative
parametrization of the screened potential, one has to include its dependence on the relative
velocity between the quarkonium state and the hydro-cell. We use Coulomb potential
here so we do not need to consider the velocity dependence in the potential. Also, the
CNM effect at 200 Au-Au collisions should be better understood and constrained by the
measurements in p-Au collisions. Furthermore, the transport in the pre-thermalization
stage should be investigated. For open heavy flavors, this has been done in ref. [93]. If one
includes the transport of heavy flavors in the pre-thermalization stage, for consistency, one
should also take into account the thermalization process of the medium between the initial
hard collision and the hydrodynamics starting time. Parameter calibrations should be re-
analyzed with free streaming replaced by a more realistic thermalization process. Finally,
we will extend the current study of bottomonium production to charmonium production in
heavy-ion collisions. There, we must also initialize unbound cc̄ pairs, since many of them
are produced primordially and uncorrelated recombination is enhanced.
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A Dissociation and recombination terms in transport equations

We will follow most of the notations used in ref. [75]. We will use k to label the momentum
of the quarkonium involved in a scattering process. q will be used to indicate the momen-
tum of the gluon absorbed or emitted by the quarkonium. This gluon can be real in the pro-
cess g+H ↔ Q+Q̄ or virtual in inelastic scattering. If the gluon is on-shell, q = |q| will be
used to represent its energy. For the process q+H ↔ q+Q+Q̄, p1 and p2 are used indicate
the momenta of the light quarks on the left and right respectively. Similarly for the process
g +H ↔ g +Q+ Q̄, we will use q1 and q2 to represent the momenta of the gluons on the
left and right respectively. In the quarkonium rest frame, the energy of the quarkonium is
given by −|Enl| where Enl is the binding energy. In the rest frame of the unbound QQ̄ pair,
its energy is given by p2

rel
M where prel is their relative momentum. The expressions shown

below are valid in the rest frame of quarkonium for dissociation or the center-of-mass frame
of a QQ̄ pair for recombination. These two frames are not equivalent, but their difference
is negligible (suppressed by T

M ). In real simulations, the gluon distribution is boosted from
the local rest frame of the hydro-cell (where temperature is defined) to these rest frames
of the heavy particles. After calculating the reaction rates in the rest frames of the heavy
particles, one has to boost them back to the laboratory frame where we keep track of the
phase space distributions. In the following, for simplicity, we will only show expressions for
quarkonia or QQ̄ pairs whose center-of-mass motions are at rest with respect to the medium
local rest frame. In practice, we account for the Lorentz boost properly, as described above.

For later convenience, we define a “δ−derivative” symbol, first introduced in ref. [94]

δ

δpi

∫ n∏
j=1

d3pj
(2π)3h(p1,p2, · · · ,pn)

∣∣∣
pi=p

≡ δ

δw(p)

∫ n∏
j=1

d3pj
(2π)3h(p1,p2, · · · ,pn)w(pi) (A.1)

=
∫ n∏

j=1,j 6=i

d3pj
(2π)3h(p1,p2, · · · ,pi−1,p,pi+1, · · · ,pn) ,

where the second δ denotes the standard functional variation and h(p1,p2, · · · ,pn) and
w(pi) are arbitrary independent smooth functions.

– 26 –



J
H
E
P
0
1
(
2
0
2
1
)
0
4
6

A.1 g +H ↔ Q+ Q̄

The dissociation and recombination terms in the transport equation of the quarkonium
state nls can be written as

C±nls(x,p, t) = δF±nls
δk

∣∣∣
k=p

, (A.2)

where we used the “δ−derivative” symbol defined above. The functions F±nls are defined by

F+
nls ≡ g+

∫ d3k

(2π)3
d3pQ
(2π)3

d3pQ̄
(2π)3

d3q

2q(2π)3 (1 + nB(q))fQQ̄(xQ,pQ,xQ̄,pQ̄, t)

×(2π)4δ3(k + q − pcm)δ
(
−|Enl|+ q − p2

rel
M

)∑
|M|2 (A.3)

F−nls ≡
∫ d3k

(2π)3
d3pcm
(2π)3

d3prel
(2π)3

d3q

2q(2π)3nB(q)fnls(x,k, t)

×(2π)4δ3(k + q − pcm)δ
(
−|Enl|+ q − p2

rel
M

)∑
|M|2 , (A.4)

where nB is the Bose-Einstein distribution function, g+ = 1
N2
c
gs and gs is the degeneracy

factor for spin: gs = 3
4 for a quarkonium state with spin s = 1 and 1

4 for spin s = 0. For an
arbitrary QQ̄ pair, its probability of being a spin-1 state is 3

4 . Its probability of being a color
octet is N2

c−1
N2
c

. When computing the scattering amplitude squared, we have summed over
the relevant quantum numbers (color of the QQ̄, gluon polarization and color), so we only
use 1

N2
c
to avoid double counting. In the definition of F−nls, pcm = pQ+pQ̄, and prel = pQ−pQ̄

2
are the center-of-mass and relative momenta of a QQ̄ pair with momenta pQ and pQ̄.

After summing over the relevant quantum numbers (see ref. [75] for details), the scat-
tering amplitude squared is given by

∑
|M|2 ≡ 2

3g
2CF q

2|〈Ψprel |r|ψnl〉|
2 , (A.5)

where CF = N2
c−1

2Nc , |ψnl〉 is the wavefunction of the quarkonium state nls (states with
different spins are degenerate) and |Ψprel〉 is the Coulomb scattering wave for the unbound
QQ̄ pair. For non-S wave states, we average over the polarizations:

1
2l + 1

l∑
ml=−l

∫
d3prel〈ψnlml |r

i|Ψprel〉〈Ψprel |r
j |ψnlml〉 (A.6)

= 1
3δ

ij 1
2l + 1

l∑
ml=−l

∫
d3prel|〈Ψprel |r|ψnlml〉|

2 ≡ 1
3δ

ij
∫

d3prel|〈Ψprel |r|ψnl〉|
2 .

A.2 q +H ↔ q +Q+ Q̄ and g +H ↔ g +Q+ Q̄

For the inelastic scattering channels, we have

C±nls,inel(x,p, t) =
δF±nls,ineq

δk

∣∣∣
k=p

+
δF±nls,ineg

δk

∣∣∣
k=p

. (A.7)
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The inelastic F±nls functions are defined by

F+
nls,ineq ≡ g+

∫ d3k

(2π)3
d3pQ
(2π)3

d3pQ̄
(2π)3

d3p1
2p1(2π)3

d3p2
2p2(2π)3

×nF (p2)(1− nF (p1))fQQ̄(xQ,pQ,xQ̄,pQ̄, t)

×(2π)4δ3(k + p1 − pcm − p2)δ
(
−|Enl|+ p1 −

p2
rel
M
− p2

)∑
|Mineq|2 (A.8)

F−nls,ineq ≡
∫ d3k

(2π)3
d3pcm
(2π)3

d3prel
(2π)3

d3p1
2p1(2π)3

d3p2
2p2(2π)3nF (p1)(1− nF (p2))fnls(x,k, t)

×(2π)4δ3(k + p1 − pcm − p2)δ
(
−|Enl|+ p1 −

p2
rel
M
− p2

)∑
|Mineq|2 (A.9)

F+
nls,ineg ≡ g+

∫ d3k

(2π)3
d3pQ
(2π)3

d3pQ̄
(2π)3

d3q1
2q1(2π)3

d3q2
2q2(2π)3

×nB(q2)(1 + nB(q1))fQQ̄(xQ,pQ,xQ̄,pQ̄, t)

×(2π)4δ3(k + q1 − pcm − q2)δ
(
−|Enl|+ q1 −

p2
rel
M
− q2

)∑
|Mineg|2 (A.10)

F−nls,ineg ≡
∫ d3k

(2π)3
d3pcm
(2π)3

d3prel
(2π)3

d3q1
2q1(2π)3

d3q2
2q2(2π)3nB(q1)(1 + nB(q2))fnls(x,k, t)

×(2π)4δ3(k + q1 − pcm − q2)δ
(
−|Enl|+ q1 −

p2
rel
M
− q2

)∑
|Mineg|2 , (A.11)

where nF is the Fermi-Dirac distribution for fermions. The scattering amplitudes squared,
with summation over relevant quantum numbers are given by (see ref. [75] for details)

∑
|Mineq|2 = 16

3 g
4TFCF |〈Ψprel |r|ψnl〉|

2 p1p2 + p1 · p2
q2 (A.12)

∑
|Mineg|2 = 1

3g
4NcCF |〈Ψprel |r|ψnl〉|

2 1 + (q̂1 · q̂2)2

q2 (q1 + q2)2 , (A.13)

in which TF = 1
2 , q̂i ≡

qi
qi

for i = 1, 2.
We will now list the square of the dipole transition matrix elements for different quarko-

nium states |〈Ψprel |r|ψnl〉|
2.

A.3 |〈Ψprel|r|ψnl〉|2

For non-S wave, we average over the third component of the orbital angular momentum
and |〈Ψprel |r|ψnl〉|

2 is defined in eq. (A.6). The partial wave expansion of the Coulomb
scattering wave |Ψprel〉 is given by

Ψprel(r) = 〈r|Ψprel〉 = 4π
∑
`,m

i`eiδ`
F`(ρ)
ρ

Y`m(r̂)Y ∗`m(p̂rel) , (A.14)
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in which Y`m denotes the spherical harmonics and

ρ = prelr (A.15)
δ` = arg Γ(1 + `+ iη) (A.16)

η = αsM

4Ncprel
(A.17)

F`(ρ) = 2`e−πη/2|Γ(1 + `+ iη)|
(2`+ 1)! ρ`+1eiρ 1F1(`+ 1 + iη; 2`+ 2;−2iρ) , (A.18)

where 1F1(a; b; z) is the confluent hypergeometric function. We use the Wigner-Eckart
theorem to simplify the calculations.

For 1S state, we have

|〈Ψprel |r|ψ1S〉|2 = 29π2ηa7
Bp

2
rel(1 + η2)(2 + ηaBprel)2

(1 + a2
Bp

2
rel)6(e2πη − 1)

e4η arctan (aBprel) , (A.19)

where aB = 2
αsCFM

is the Bohr radius and η is defined in eq. (A.17).
For 2S state, we have

|〈Ψprel |r|ψ2S〉|2 = 218π2ηa7
Bp

2
rel(1 + η2)

(1 + 4a2
Bp

2
rel)8(e2πη − 1)

e4η arctan (2aBprel)

×(−4− 9ηaBprel + 8a2
Bp

2
rel − 4η2a2

Bp
2
rel + 4ηa3

Bp
3
rel)2 . (A.20)

This expression can be further simplified by using ηaBprel = 1
N2
c−1 . These matrix elements

of 1S and 2S have been reported in ref. [41].
For 1P state, we find

|〈Ψprel |r|ψ1P 〉|2 = 216π2ηa5
B

3(1 + 4a2
Bp

2
rel)8(e2πη − 1)

e4η arctan (2aBprel)

×
[(

8η(η2 − 2)a3
Bp

3
rel + 12(2η2 − 1)a2

Bp
2
rel + 18ηaBprel + 3

)2
+16a4

Bp
4
rel(3 + 2ηaBprel)2(η4 + 5η2 + 4)

]
. (A.21)

We do not need the dipole transition matrix elements for 3S and 2P states, since we
assume they cannot be formed inside the QGP. In other words, if a 3S or 2P state enters
the QGP, it melts immediately. In practice, we force them to dissociate in the code when
T > 154MeV and do not allow them to be (re)generated inside the QGP.

B Details on feed-down contributions

We will use the notations σtot
nl and σnl to denote the total and primordial cross sections in

a nucleon-nucleon collision. The former contains the latter and feed-down contributions.
To work out the feed-down contributions from excited states to the ground and lower-

excited states, the first thing we need is the branching ratio in vacuum. The most recent
results reported by the Particle Data Group [95] are summarized in table 1. For the P-wave
states, we need the averaged branching ratio since our transport equations are degenerate
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Channel Branching ratio
Υ(2S)→ Υ(1S) 0.265±0.007
Υ(3S)→ Υ(1S) 0.066±0.002
χb0(1P )→ Υ(1S) 0.019±0.003
χb1(1P )→ Υ(1S) 0.352±0.020
χb2(1P )→ Υ(1S) 0.180±0.010
χb0(2P )→ Υ(1S) 0.004±0.002
χb1(2P )→ Υ(1S) 0.115±0.014
χb2(2P )→ Υ(1S) 0.077±0.011
Υ(3S)→ Υ(2S) 0.106±0.008
χb0(2P )→ Υ(2S) 0.014±0.003
χb1(2P )→ Υ(2S) 0.181±0.019
χb2(2P )→ Υ(2S) 0.089±0.012

Table 1. Branching ratios of different bottomonium states.

in spin. To this end, we use the experimental result on σχb2 (1P )
σχb1 (1P ) in ref. [96] and follow the

assumptions made in ref. [24] to write

σχb2
σχb1

= 0.85 (B.1)

σχb0
σχb1

= 1.5 , (B.2)

for both 1P and 2P states. Then we can work out the averaged branching ratios

Br[χb(1P )→ Υ(1S)]

≡ Br[χb0(1P )→ Υ(1S)]σχb0 + Br[χb1(1P )→ Υ(1S)]σχb1 + Br[χb2(1P )→ Υ(1S)]σχb2
σχb0 + σχb1 + σχb2

= 0.159± 0.010 (B.3)
Br[χb(2P )→ Υ(1S)]

≡ Br[χb0(2P )→ Υ(1S)]σχb0 + Br[χb1(2P )→ Υ(1S)]σχb1 + Br[χb2(2P )→ Υ(1S)]σχb2
σχb0 + σχb1 + σχb2

= 0.056± 0.008 (B.4)
Br[χb(2P )→ Υ(2S)]

≡ Br[χb0(2P )→ Υ(2S)]σχb0 + Br[χb1(2P )→ Υ(2S)]σχb1 + Br[χb2(2P )→ Υ(2S)]σχb2
σχb0 + σχb1 + σχb2

= 0.083± 0.010 (B.5)
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Cross sections in proton-proton collisions Experimental results (nb) from ref. [86]
B × σ(Υ(1S)), |y| < 2.4, 5.02TeV 3.353±0.081(stat)±0.167(syst)
B × σ(Υ(2S)), |y| < 2.4, 5.02TeV 0.873±0.031(stat)±0.046(syst)
B × σ(Υ(3S)), |y| < 2.4, 5.02TeV 0.404±0.017(stat)±0.022(syst)

Table 2. Experimental inputs of cross sections in proton-proton collisions, where B indicates the
branching ratio of the relevant state to µ+µ−.

Primordial cross section ratio Value
σ2S/σ1S 0.35
σ3S/σ1S 0.22
σ1P /σ1S 1.59
σ2P /σ1S 1.26
σ3S/σ2S 0.63
σ1P /σ2S 4.54
σ2P /σ2S 3.58
σ3S/σ1P 0.14
σ2P /σ1P 0.80

Table 3. Ratios of primordial cross sections.

The next thing we need is the primordial cross section ratio. Using the experimental
inputs listed in table 2 and following ref. [24] and references therein, we assume

σtot
2S = 0.33σtot

1S (B.6)
σ3S = 0.15σtot

1S (B.7)
σ1P = 1.08σtot

1S (B.8)
σ2P = 0.86σtot

1S . (B.9)

The total cross sections of 1S and 2S can be written as

σtot
1S = σ1S + σtot

2S Br[Υ(2S)→ Υ(1S)] + σ3SBr[Υ(3S)→ Υ(1S)]
+σ1PBr[χb(1P )→ Υ(1S)] + σ2PBr[χb(2P )→ Υ(1S)] (B.10)

σtot
2S = σ2S + σ3SBr[Υ(3S)→ Υ(2S)] + σ2PBr[χb(2P )→ Υ(2S)] . (B.11)

Using eqs. (B.6), (B.7), (B.8), (B.9) and the branching ratios, we find

σ2S = 0.24σtot
1S (B.12)

σ1S = 0.68σtot
1S . (B.13)

Experimentally it is known that the feed-down contributions to σtot
1S is about 67% (averaged

over the transverse momentum), consistent with our prescription here. Now we are ready
to compute the ratios of the primordial cross sections. The results are listed in table 3.
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