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1 Introduction

Jets, the collimated showers of particles produced by fragmentation and hadronization of
hard-scattered quarks or gluons, are long established experimental probes for studies of
quantum chromodynamics (QCD) [1]. The internal structure of the jet, defined by the
energy, momentum, and spatial distribution of its constituents, is sensitive to the details
of the evolution from an initial hard scattering through fragmentation and hadronization
into observable hadrons in the final state. The angular distributions of constituent parti-
cle yields and jet shapes, studied in this work, are affected by parton fragmentation and
hadronization processes. At high transverse momenta (pT) with respect to the beam di-
rection in the core of the jet, the dominant contribution to these distributions is set by
the initial branching of the hard scattered parton which is calculable in perturbative QCD
(pQCD). However, for lower pT particles and those at larger radial distances from the jet
direction, higher order corrections and nonperturbative processes become of major impor-
tance. Characterizing the effect of these additional contributions on the internal structure
of jets remains challenging for theoretical calculations [2–4].

In this paper, the internal structure of jets is studied at the charged particle level using
the data from proton-proton (pp) collisions at a center-of-mass energy of

√
s = 5.02TeV.

These data, corresponding to an integrated luminosity of 27.4 pb−1, were collected by the
CMS experiment in 2015. For this study, b jets are defined by the presence of at least one
b quark, which is inferred from the properties of b hadron decays. A b jet sample selected
via a combined secondary vertex (CSV) discriminator [5], is composed of jets initiated by
a single bottom quark, as well as of a contribution from bb pairs produced from gluon
splitting. Jet-correlated charged particle transverse momentum distributions, referred to
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as jet shapes, are measured as a function of radial distance ∆r =
√

(∆η)2 + (∆φ)2 from the
jet axis. Here ∆η = ηjet − ηtrk and ∆φ = φjet − φtrk are the pseudorapidity and azimuthal
differences between the jet axis and a given charged particle, respectively. To extend the
jet shape measurements further into the region where nonperturbative effects dominate, we
use a jet-track correlation technique [6, 7]. This method has been shown to reliably subtract
the part of the event unrelated to the hard scattering (the underlying event), as well as the
contribution of additional pp interactions in the same or nearby bunch crossings (pileup).
We study the pT-differential distributions of jet shapes and particle yields for b jets. By
comparing these measurements with the results for inclusive jets and with herwig++ [8]
and pythia [9, 10] simulations for the b jet and inclusive jet shapes at large angles from
the jet axis, this study provides new constraints on pQCD calculations, as well as on the
nonperturbative contribution to jet shapes. This measurement also constitutes a baseline
for future measurement of the same observable at the same per-nucleon center-of-mass
energy in PbPb collisions, which will probe the parton flavor dependence of the interaction
of jets with the quark-gluon plasma [11] that is created in high energy heavy-ion collisions.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal
diameter, providing a magnetic field of 3.8T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter (HCAL), each composed of barrel and endcap sections.
Two forward hadron (HF) steel and quartz-fiber calorimeters complement the barrel and
endcap detectors, extending the calorimeter from the range |η| < 3.0 to |η| < 5.2. Events
of interest are selected using a two-tiered trigger system [12].

In the region |η| < 1.74, the HCAL cells have widths of 0.087 in both pseudorapidity
η and azimuth φ. Within the central barrel region of |η| < 1.48, the HCAL cells map onto
5×5 ECAL crystal arrays to form calorimeter towers projecting radially outwards from the
nominal interaction point. Within each tower, the energy deposits in ECAL and HCAL
cells are summed to define the calorimeter tower energies, which are subsequently used in
the particle flow algorithm to reconstruct the jet energies and directions [13]. In this work,
jets are reconstructed within the η range of |η| < 1.6.

The silicon tracker measures charged particles within |η| < 2.5. It consists of 1440
silicon pixel and 15 148 silicon strip detector modules. For nonisolated particles with 1 <
pT < 10GeV in the barrel region, the track resolutions are typically 1.5% in pT and 25–90
(45–150)µm in the impact parameter direction transverse (longitudinal) to the colliding
beams [14]. A detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in ref. [15].

3 Event selection and simulated event samples

The data used in this analysis were taken in a special low-luminosity running period in
which there were reduced levels of pileup (approximately 1.5 events per bunch crossing
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assuming a total inelastic cross section of 65mb−1 [16]). The jet samples are collected with
a calorimeter-based trigger that uses the anti-kT jet clustering algorithm with a distance
parameter of R = 0.4 [17]. This trigger requires events to contain at least one jet with
pT > 80GeV, and is fully efficient for events containing jets with reconstructed pT >

90GeV. The data selected by this trigger are referred to as “jet-triggered” and are used
to study the jet-related particle yields and for data-driven estimation of acceptance effects
via an event mixing technique as described in section 5. To reduce contamination from
non-collision events, such as calorimeter noise and beam-gas collisions, vertex and noise
reduction selections are applied as described in refs. [18, 19]. These selections include a
requirement for events to contain at least 3GeV of energy in one of the calorimeter towers
in the HF on each side of the interaction point, and to have a primary vertex (PV) with at
least two tracks which are consistent with originating from the same vertex within 15 cm
of the center of the nominal interaction region along the beam axis (|vz| < 15 cm).

Monte Carlo (MC) simulated event samples are used to evaluate the performance of
the event reconstruction, particularly the track reconstruction efficiency, and the jet energy
response and resolution. The MC samples of two different pythia tunes (version 6.424 with
the Z2 tune [20] and version 8.230 with the CP5 tune [21]) were used to simulate the hard
scattering, the parton showering, and the hadronization of the partons. A sample of b jets
in MC simulations is obtained from the inclusive simulated QCD jet sample by selecting the
jets that are matching to a generator-level b quark within a cone of radius ∆R = 0.3 [22].
The jets from gluon splitting to bb are considered as b jets based on this flavour definition.
The Geant4 (10.02p02) [23] toolkit is used to simulate the CMS detector response. An
additional reweighting procedure is performed to match the simulated vz distribution to
that observed in data. Another QCD jet MC sample is generated using the herwig++
2.7.1 with the EE5C tune [20] and is also used as a theoretical reference.

4 Jet and track reconstruction

Jets are reconstructed offline from the particle-flow (PF) candidates [24], clustered using
the anti-kT algorithm [17, 25] with a distance parameter of R = 0.4. The PF candidates are
reconstructed by the PF algorithm, which aims to reconstruct and identify each particle
in an event, with an optimized combination of information from the various elements of
the CMS detector. Simulation-derived corrections have been applied to the reconstructed
jets to correct the measured energy distortion arising from the limited detector resolution,
to the particle level [13, 26]. Jets with pT > 120GeV and |η| < 1.6 are selected to be
consistent with a previous study [7].

A widely used type of the jet axis, the anti-kT E-Scheme jet axis, is calculated by
merging all the jet candidates, as well as input particles to the jet clustering by simply
adding the four-momenta during the clustering procedure in the anti-kT algorithm [27].
However, the jet axis for this work is re-calculated by the winner-takes-all recombination
scheme [28, 29], which is applied to the constituents found by the nominal anti-kT E-Scheme
algorithm for this jet.
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The b jet candidates for this work are selected by the CSV discriminator [14, 22].
The CSV discriminator is a multivariate classifier that makes use of information about
reconstructed secondary vertices (SV) as well as the impact parameters of the associated
tracks with respect to the primary vertex, to discriminate b jets from charm-flavor and
light-flavor jets. The working point selected for this analysis leads to a 65% b jet selection
efficiency and 69% purity (the b jet fraction of all jets that passed the CSV selection
criteria) from the multijet sample (referring to the background of charm jets and light jets).
Possible differences in the purity between data and MC are assessed using a negative-tag
technique [5]. This technique selects non-b jets using the same variables and techniques
as the standard CSV algorithm both in data and the simulation to extract a scale factor,
which indicates the data-to-MC difference. A correction for a bias resulting from the
discriminator is discussed in section 5.

In both data and simulation, charged particles are reconstructed using an iterative
tracking method [14] based on the hit information from both the pixel and silicon strip
subdetectors, permitting the reconstruction of charged particles within |η| < 2.4. The
tracking efficiency ranges from approximately 90% at pT = 1GeV to no less than 90% for
pT > 10GeV. Tracks with pT > 1.0GeV and |η| < 2.4 are used in this study.

5 Jet-track angular correlations

To study the distributions of the charged particles associated with jets, a two-dimensional
(2D) array of the ∆η and ∆φ values of the tracks relative to the jet axis were produced.
This is computed for six bins of ptrk

T bounded by the values 1, 2, 3, 4, 8, 12, and 300GeV.
Each of these 2D correlations is normalized by Njets, the number of jets in the sample. This
procedure, the same one as used in ref. [30], creates a per-jet averaged ∆η-∆φ distribution
of raw charged particle densities for each ptrk

T :

RS(∆η,∆φ) = 1
Njets

d2N same

d∆ηd∆φ, (5.1)

where N same represents the yield of jet-track pairs from the same event. For the jet shape
measurements, the 2D correlations are weighted by ptrk

T on a per-track basis, producing a
per-jet averaged ∆η-∆φ distribution of ptrk

T with respect to the jet axis direction.
An event mixing method [7] is applied following the construction of the raw 2D corre-

lations RS(∆η,∆φ) to account for the shape of single inclusive jet and track distributions
and the effects of the detector acceptance for tracks. For this correction, a mixed-event pair
distribution ME(∆η,∆φ) is constructed by using the jets from one event and the tracks
from a different event, matched in the vertex position along the beam axis in 1 cm bins:

ME(∆η,∆φ) = 1
Njets

d2Nmix

d∆ηd∆φ, (5.2)

where Nmix represents the number of jet-track pairs from the mixed-event.
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The per-jet associated yield is corrected for the jet-track pair efficiency via the following
relation:

S(∆η,∆φ) = 1
Njets

d2N

d∆ηd∆φ = ME(0, 0)
ME(∆η,∆φ)RS(∆η,∆φ). (5.3)

The ratio ME(0, 0)/ME(∆η,∆φ) is the normalized correction factor and ME(0, 0) is the
mixed event yield for jet-track pairs that are approximately collinear and hence have the
maximum pair acceptance.

The signal of b-tagged jets Stag(∆η,∆φ) is then corrected for residual light-flavor jet
contamination. We use an approach partially relying on data for the decontamination
procedure, expressed via the following equation:

Sdecont(∆η,∆φ) =
Stag(∆η,∆φ)− (1− cpurity)Smistagged(∆η,∆φ)

cpurity
, (5.4)

where the Sdecont(∆η,∆φ) and Smistagged(∆η,∆φ) are signals of the (decontaminated) b
jets and the mistagged light-flavor jets, respectively. The Smistagged(∆η,∆φ) is approxi-
mated by the inclusive jet-track correlation signal Sinclusive(∆η,∆φ) from the data, with a
modification for simulating the jet multiplicity bias that is discussed later in this section.
The purity cpurity is defined as the ratio of the number of tagged true jets to the number
of jets tagged by the CSV discriminator in simulations.

The resulting decontaminated signal Sdecont(∆η,∆φ) has the residual underlying event
contribution and uncorrelated backgrounds from tracks unrelated to selected jets. These
backgrounds are then removed in a data-driven manner by using the measured charged-
particle yields far from the jet axis in a large-∆η region. The ∆φ distribution averaged over
1.5 < |∆η| < 2.5 is used to estimate the ∆φ dependence of the background contribution
to the correlations over the entire |∆η| < 4.0 region and is subtracted from the signal
Sdecont(∆η,∆φ). After that, the background-subtracted signal pair distribution S(∆r),
as a function of radius ∆r is obtained from the integration of the corrected signal pair
S(∆η,∆φ), over a ring area with radius ∆r.

The discriminator used for b tagging relies on the properties of the SVs associated
with the jet as input, therefore biasing the jet selection towards jets with a better SV or
tracking resolution. This bias, though slight, is present in distributions for both true b jets
selected by the tagger, and in the mistagged light-flavor jets contaminating the sample.
We calculate corrections for the tagging bias as a function of ∆r from MC simulation by
constructing the following per-jet normalized ratios of radial distributions:

Bmis(∆r) = Sinclusive(∆r)/Smistagged(∆r),
Bb(∆r) = Sall-b(∆r)/Stagged-b(∆r),

(5.5)

where Smistagged(∆r), Sinclusive(∆r), Sall-b(∆r), and Stagged-b(∆r) represent the signal of
tracks correlated with the mistagged jets, inclusive light-flavor jets, and b jets, and the
tagged b jets, respectively. This bin-by-bin correction is applied to the background-
subtracted signal Sdecont to remove the tagging bias.

Finally, simulation-based corrections are applied to account for the jet axis resolution,
tracking reconstruction efficiency, and the bias in the charged particle yield and jet shapes
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that comes from the b-tagging discriminator. A large fraction of tracks associated with
b jets originate from an SV and have a slightly different reconstruction efficiency from
that of tracks originating from a PV. Therefore, we derive the efficiency corrections as a
function of track pT and radial distance ∆r from the MC b jet simulation by taking the
ratio of correlated signals built with reconstructed tracks over those with generated tracks.
This bin-by-bin correction has been applied to the signal data distributions obtained in
the previous step accordingly. All of these procedures correct the data to a particle level
which can be compared with theoretical calculations directly.

The fully corrected 2D correlations are integrated over annular rings in the ∆η-∆φ
plane (as illustrated in [31]) to study distributions of charged-particle yields Y (∆r):

Y (∆r) = 1
Njets

d2Ntrk

d∆rdptrk
T

(5.6)

with respect to the jet axis as a function of ∆r for b and inclusive-jet samples and, where
Ntrk is the number of the charged particles from jets. The jet shape distributions ρ(∆r),
defined as:

ρ(∆r) = 1
δr

ΣjetsΣtrk∈(∆ra,∆rb)p
trk
T

ΣjetsΣtrkp
trk
T

, (5.7)

where ∆ra and ∆rb define the annular edges of ∆r, δr = ∆rb −∆ra, and p
trk
T stands for

the pT of the charged particles, are also examined.

6 Systematic uncertainties

A number of sources of systematic uncertainties are considered, including the tracking effi-
ciency, tagging bias corrections, decontamination procedure, jet reconstruction, acceptance
corrections, and background subtraction. The systematic uncertainties are summarized in
table 1, and the evaluation of each source of uncertainty is discussed below.

The tracking reconstruction efficiencies for b jet and inclusive jet tracks have been
compared to account for the uncertainty in reconstruction efficiency for displaced tracks,
and a maximum difference of about 4% was observed. The full magnitude of the observed
difference is assigned as a conservative estimation to cover the MC-based tracking recon-
struction uncertainty. To study possible differences in track reconstruction between data
and simulation, a study of D meson decays was used [32]. The D meson branching frac-
tion ratio of 3-prong to 5-prong decays was calculated in data with MC-based efficiency
corrections and compared with the world-average value [33]. The observed difference is
used to derive a 4% systematic uncertainty for this source. For the full tracking-related
uncertainty these two errors were added in quadrature.

The uncertainty for correcting the bias induced by the CSV discriminator is dominated
by the uncertainties in the contributions from gluon-splitting and primary b quarks to the
b jet sample. Jets originating from different mechanisms of b-quark production (i.e. flavor
creation, flavor excitation, and gluon splitting) can be studied individually in pythia sim-
ulations. We note that the fraction of b jets from the gluon splitting in pythia simulation
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is less than that indicated by data. The corresponding systematic uncertainty has been
evaluated by varying this fraction by 20% (as estimated in refs. [5, 34]), and the observed
5% difference in the correction from this variation is propagated as an uncertainty.

The decontamination procedure is affected by the uncertainties in the purity estima-
tion. Using the negative tagging method (described in section 4) we have derived the
data-to-simulation scale factor, which amounted to about 7% difference in estimated con-
tamination levels. We evaluate the related systematic uncertainty by comparing results
obtained with and without the derived scale factor; less than 5% variation is observed in
the correlation results. This 5% maximum variation is taken as a systematic uncertainty
for the decontamination.

The overall jet energy scale (JES) is sensitive to the relative fraction of quark and
gluon jets in the sample. The energy scale uncertainty is found to be 2% for jets in the
study in ref. [26]. Therefore, we varied the energy threshold of selected jets by this amount
in both directions and saw no statistically significant changes in the measured jet shapes.
This is not unexpected since the in-jet multiplicity and the jet fragmentation function
change slowly with the jet pT. We also investigated the effects of a more conservative
5% jet energy scale uncertainty by varying the energy threshold of selected jets by 5% in
both directions and repeating the analysis to uncover any possible differences with respect
to the nominal result. The resulting variations in the correlated track yields are found
to be below 2%. Thus, we assigned a 2% uncertainty for this source. The jet energy
resolution (JER) data-to-MC difference is about 15% based on the γ+jet studies [35]. The
corresponding uncertainty in the reported measurements was evaluated in a data-driven
way by smearing the reconstructed jet pT by 15% and repeating the study. The resulting
variation in correlation distributions was found to be below 3.5%. In total, a systematic
uncertainty of 4% is assigned for the JER- and JES-related effects.

The uncertainties from the mixed-event acceptance correction are estimated by looking
for an asymmetry of the sideband regions, which is defined by the difference of the sideband
value between the positive and negative ∆η. Additionally, the sideband regions (1.5 <

|∆η| < 2.5) that are far away from the jet axis are expected to have no short-range
correlation contributions and, thus, to be independent of ∆η. Any deviations from this
expectation and the measured asymmetry are used to quantify the related systematic
uncertainty, which was found to be between 1 and 2%.

Uncertainties associated with the background subtraction are evaluated by considering
the average point-to-point difference between two sideband regions (1.5 < |∆η| < 2.0 and
2.0 < |∆η| < 2.5) following the background subtraction. The background subtraction un-
certainty is found to be roughly 3% for the lowest ptrk

T bin, where the signal-to-background
ratio is the lowest, and decreases to negligible levels as functions of ptrk

T .
These systematic uncertainties are treated as uncorrelated, and the total systematic

uncertainty is calculated by adding the individual sources in quadrature.
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Source of systematic uncertainty b jets Inclusive jets
Tracking efficiency 5.7 4.1
Tagging bias corrections 5.0 —
Decontamination procedure 5.0 —
Residual JES and JER corrections 4.0 4.0
Pair-acceptance corrections 1.0–2.0 1.0–2.0
Background subtraction 0–3.0 0–3.0

Total 10.0–10.5 5.8–6.8

Table 1. Systematic uncertainties in percentage for the measurements of the jet-track correlations.
Where an uncertainty range is given, the upper edge of the range corresponds to the bin with the
smallest ptrk

T values. The sources from the decontamination and tagging bias are exclusive for b jets.

7 Results

Figure 1 presents the charged-particle yields for inclusive and b jets in proton-proton colli-
sions as a function of the radial distance ∆r from the jet axis. The results are shown with
stacked histograms to indicate the intervals in ptrk

T , and dots to denote the total summed
yields in the region 1 < ptrk

T < 12GeV. It illustrates that the high-pT charged particles
are mostly distributed around the small ∆r region while the larger ∆r region is domi-
nated by the low-pT charged particles. Figure 2 compares the radial distributions of the
total charged-particle yields associated with the inclusive and b jets studied in data and in
pythia simulations. Total uncertainties of the measurement are dominated by the system-
atic source. Statistical uncertainties of the signal correlations and data-driven mixed-event
acceptance correction contribute to the total statistical uncertainties of the data. The total
statistical uncertainties are negligible for most data points, except at large ∆r. Statistical
uncertainties of the Monte Carlo samples are accounted for in the evaluation of relevant
systematic sources and propagated as part of the assigned systematic errors. It is also
worth noticing that the systematic uncertainties coming from the event mixing technique
are important in the larger ∆r region. Charged-particle yield distributions for both b and
inclusive jets are found to be generally described by pythia predictions, although pythia
6.424 shows a better agreement with the data than that found using the pythia 8.230
predictions. The herwig++ simulation predicts a smaller excess of hadron yields in b
jets over inclusive jets compared to what is observed in the data and pythia simulations.
Larger charged-particle yields are observed to be associated with b jets as compared with
inclusive jets, particularly in the low-∆r region (see figure 2, right). This larger contribu-
tion in soft tracks at small radial distance ∆r implies the presence of different fragmentation
patterns and decay kinematics between the b jets and inclusive jets.

Measurements of the jet shapes ρ(∆r) are presented in figures 3 and 4.The left and
right panels of figure 3 show pT-differential ρ(∆r) distribution for inclusive and b jets,
respectively. The comparison between data and simulations from both pythia and her-
wig++ is presented in figure 4. We note that, while small-∆r trends are mostly well
described by pythia and herwig simulation for both jet selections, the distributions at
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Figure 1. Charged particle yield distributions Y (∆r) of inclusive (left) and b (right) jets with
pT > 120GeV as functions of ∆r are presented differentially for ptrk

T bins. The shadowed boxes
represent the systematic uncertainties for 1 < ptrk

T < 12GeV, although they are generally too small
to be visible.
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Figure 2. Charged particle yield distributions Y (∆r) of inclusive jets (left) and b jets (middle)
with 1 < ptrk

T < 12GeV are presented as functions of ∆r. Both types of jets with pT > 120GeV
and charged particles with 1 < ptrk

T < 12GeV are used to construct the distributions as functions
of ∆r for data (red), pythia 6.426 (blue line), pythia 8.230 (green dashed line), and herwig++
(purple line) simulations. The right plot shows the particle yield difference of b jets and inclusive
jets as functions of ∆r for pp data, pythia 6.426 (blue line), pythia 8.230 (green dashed line) and
herwig++ (purple line) simulations. The shadowed boxes represent the systematic uncertainties.

larger radial distances are only well-estimated by herwig++, indicating a shortage of soft
radiative contributions. The right panel of figure 4 shows the ratio of b to inclusive jet
shapes for data and simulation.

Observed variations in the ratio of jet shapes indicate a shift of transverse momentum
from small to large ∆r for the constituents of the b jets compared to that carried by the
particles from inclusive jets. These differences may arise from the dead-cone effect, the
suppression of radiation from a charged particles with mass mq and energy Eq in the
region with emission angle θ . mq/Eq [36, 37], as this phenomenon is expected to be more
apparent in b jets than in inclusive jets, which mostly originate from light partons.

pythia and herwig simulations show very different jet shape predictions at large
angular distances, where nonperturbative contributions are likely to dominate. herwig++
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Figure 3. The jet shape distribution ρ(∆r) of inclusive jets (left) and b jets (right) with pT >

120GeV as functions of ∆r are presented differentially for all ptrk
T bins for data. The shadowed

boxes represent the systematic uncertainties for ptrk
T > 1GeV, although they are generally too small

to be visible.

simulations have better performance capturing the details of jet shapes for both inclusive
and b jets distributions in this region, comparing to pythia simulations. Additionally, we
observe that a higher fraction of transverse momentum is distributed towards the higher
radial distances from the center of the jet for the b jets as compared to the inclusive
jet sample.

A similar tendency, albeit insufficient to fully capture this trend, is seen in pythia
simulations. pythia 8.230 simulations show a slightly better description than that from
pythia 6.426 in the larger ∆r region. On the other hand, herwig++ 2.7.1 predictions
capture this trend well, as illustrated in the right panel of figure 4. The observed data to
pythia discrepancy in the b-to-inclusive jet shape ratios at large radii may arise from the
difference in the gluon splitting contributions between data and simulation, as mentioned
earlier [38]. We note that Monte Carlo studies show that b and b jets from gluon splitting
result in significantly broader jet shapes than those of inclusive jets.

8 Summary

The first measurements of charged-particle yields and jet shapes for b jets in proton-proton
collisions are presented, using data collected with the CMS detector at the LHC at a
center-of-mass energy of

√
s = 5.02TeV. The correlations of charged particles with jets are

studied, using the particles with transverse momentum ptrk
T > 1GeV and pseudorapidity

|η| < 2.4, and the jets with pT > 120GeV and |η| < 1.6. Charged-particle yields associated
with jets are presented as functions of the relative angular distance ∆r =

√
(∆η)2 + (∆φ)2

from the jet axis. In these studies, a large number of associated charged particles at
low ∆r are found for b jets compared to those for inclusive jets, which are produced
predominantly by gluons and light flavor quarks. The trends observed in pp data for
particle yield distributions associated with both types of jets are reproduced by pythia
calculations (in versions 6.426 and 8.230).
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Figure 4. The jet shape distribution ρ(∆r) of inclusive jets (left) and b jets (middle), both with
pT > 120GeV and ptrk

T > 1GeV are presented as functions of ∆r for data(red markers), the pythia
6.426 (blue line) and the pythia 8.230 (green dashed line) simulations. The right plot shows the
b-to-inclusive jet shape ratio as functions of ∆r for data, pythia 6 (blue line) and pythia 8.230
(green dashed line) simulations. The shadowed boxes represent the systematic uncertainty.

In addition to the charged-particle yields, we examine the jet transverse momentum
profile variable ρ(∆r), defined using the distribution of charged particles in annular rings
around the jet axis, with each particle weighted by its ptrk

T value. The measured shapes
of b jets are broader than those of inclusive jets. The shapes for both types of jets are
reproduced by herwig and pythia calculation in the small ∆r region, with herwig++
2.7.1 giving a better agreement. Moreover, measured transverse momenta distributions at
larger ∆r are consistent with the herwig simulations for b and inclusive jets, with at most
1.2 σ data-to-simulation differences observed for b jets. However, this trend is generally
underestimated by pythia simulations.

This result provides new constraints on perturbative quantum chromodynamics calcu-
lations for flavor dependence in parton fragmentation and gluon radiation, as well as the
relative contributions of different processes to b quark production. These measurements
are also expected to offer an important reference for future studies of flavor dependence for
parton interactions with the quark-gluon plasma formed in relativistic heavy-ion collisions.
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