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Abstract

Purpose of Review The era of robotics-based environmental monitoring has given rise
to many interesting areas of research. A key challenge is that robotic platforms and their
operations are typically constrained in ways that limit their energy, time, or travel distance,
which in turn limits the number of measurements that can be collected. Therefore, paths
need to be planned to maximize the information gathered about an unknown environment
while satisfying the given budget constraint, which is known as the informative planning
problem. This review discusses the literature dedicated to information-driven path planning,
introducing the key algorithmic building blocks as well as the outstanding challenges.
Recent Findings Machine learning approaches have been introduced to solve the information-
driven path planning problem, improving both efficiency and robustness.
Summary This review started with the fundamental building blocks of informative planning
for environment modeling and monitoring, followed by integration with machine learning,
emphasizing how machine learning can be used to improve the robustness and efficiency of
informative path planning in robotics.
Keywords informative path planning, environmental sensing and modeling, mapping and
exploration

1 Introduction

Path planning is one of the most critical capabilities for autonomous robots operating in com-
plex unstructured environments [57]. Particularly, in many outdoor missions the robots (shown
in Figure 1) need to leverage information perceived from environments to look ahead and plan
actions for the subsequent steps. Such information-driven path planning has been extensively
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Figure 1: (a) Autonomous surface vehicle for water quality sensing and modeling. (b) Unmanned
aerial vehicle for air quality monitoring. (c) Autonomous ground vehicle for 3D mapping.

investigated by integrating with information theoretic and decision theoretic paradigms as well
as learning based frameworks. The goal of this paper is to provide a survey on the most recent re-
search of the information-driven path planning, and also to provide insights on future challenges
of related directions. Since the information-driven planning involves interactions with environ-
ments, we will base our discussions on two parts: i) environmental sensing and modeling where
informative knowledge is continuously retrieved and utilized for planning during the long-term
autonomy; ii) exploration in unknown environment where a map is built autonomously for robot
accurate navigation.

Environmental sensing and modeling is a process that given a certain environmental attribute
of interest (e.g., elevation of an uneven terrain, concentration of some pollutant), corresponding
measurement samples are collected from different locations so that a continuous map describing
the levels and variations of environmental attribute can be constructed [42]. In other words, the
map is not simply the averaged value of collected samples, but a continuous map that describes
or predicts the variance across an entire spatiotemporal field. The environmental sensing and
modeling allow scientists to assess the processes of a particular environment, and have been used
in a broad range of applications. For instance, stationary sensor networks [1] have been used to
perform fixed-location sampling to detect forest fires [78] and volcanic activity [125]. However,
such sensor networks lack flexibility for capturing high resolutions in critical regions that might
change spatially and temporally, and this limitation can be addressed by using mobile robots,
which can also significantly reduce the costs of sensor deployment and maintenance. To date,
unmanned aerial vehicles (UAVs) have been used to estimate yields of crops or fruits [94, 131] and
to study spatial ecology and its spatiotemporal dynamics [3]; with a capacity for performing long-
range and long-duration tasks, marine robots can collect large-area ocean data [113, 29] and trace
chemical plumes [46, 59]; autonomous boats have been used to monitor fish schools [121]. Our ap-
plication examples are also shown in Fig. 1. However, a drawback that cannot be neglected when
using robots is that the collection of environmental data requires a series of sequential motion
actions (and measurement operations), and the whole course takes time because the measure-
ments typically need to spread across many different spatial locations [36]. This requires that
a robot’s sensing must be adaptive to environmental attributes (e.g., spatiotemporal variations
or distributions). Also, because sensor data is continuously collected, learning methodologies
therefore also play an important role in equipping robots with intelligent sensing behaviors to
aid the measurement (or sampling) process.
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2 Informative Planning

Navigating robots to collect environmental data samples offering the largest amount of new in-
formation is called informative planning [13, 87, 112]. The goal is to maximize information gain
(or informativeness), which may be derived from a robot’s evolving map, its estimation uncer-
tainty, and/or prediction models of environmental phenomena being sampled. Compared with
lawnmower-based sampling of the environment, which focuses on spatial resolution, informative
planning methods tend to achieve spatial coverage quickly, while managing estimation uncer-
tainty [112]. Due to these reasons, informative planning has been widely used for spatiotemporal
environmental sensing, modeling, and monitoring.

2.1 Environment Modeling

To model spatial phenomena in continuous domains, a widely adopted method is the Gaussian
Process (GP), which is a generic supervised learning method capable of solving regression and
probabilistic classification problems [102, 112, 95]. Built on an environmental model learned
with the aid of GPs the path planning and motion control can be developed. The regression
capability of GPs has been proven a powerful tool for predicting environment states based on
the subset of the environment that can be monitored. In the geostatistics or spatial statistics
literature, the GP regression technique is often called kriging [60], and is mostly used to analyze
spatial properties. Oftentimes kriging relies on the knowledge of certain spatial structure, which is
modeled via second-order properties, e.g., the variogram or covariance, of the underlying random
function [74]. There are many applications where GPs have been utilized as a framework for
modeling the environment. For instance, GPs have been used to design placement patterns of
static sensors in a sensor network so that the environment model can be predicted with a solution
that is near-optimal [56]. GP-aided optimization of static sensor placement has been applied to
modeling indoor 3D environments [45] and outdoor urban environments [77] using appropriate
kernels (covariance functions).

For robotics information-driven planning, the GP modeling is usually combined with Bayesian
learning property to assimilate data collected online. For example, GPs have been used on a
mobile robot to build a spatial model describing gas distribution [116], to provide a measure of
uncertainty to guide sensor-centric robot localization [17], and by modeling mutual information
with the aid of Bayesian optimization, GPs have been used to guide robots to explore unknown
static environments [5]. In dynamic settings, variants of GPs have also been employed to learn
uncertainty models of environmental processes, to aid the operation of autonomous underwater
vehicles (AUVs) in the ocean [62, 61]. By integrating with vehicle routing and communication
constraints, methods have been developed for informative ocean sampling and monitoring in
complex ocean environments with multi-robot systems [84, 65, 51].

To improve the prediction accuracy of GPs, the choice among different prior covariance
functions and the update of its hyperparameters are crucial, especially in scenarios involving
spatiotemporal dynamics. This problem is typically referred to as model selection and adaptation
of hyperparameters [102]. Specifically, the adaptation of hyperparameters can be achieved using
a data-driven approach. The most common approach is to maximize the marginal likelihood,
or minimize the generalization error, using a cross-validation approach. For the case of GP
classification, other optimization criteria such as alignment [34] can also be adopted.

2.2 Myopic vs. Non-myopic Planning

A variety of methodologies have been proposed to tackle the informative planning problem,
among which the most investigated approaches belong to the nonmyopic framework. Formally,
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the term myopic means that the path waypoints are computed individually and greedily, without
considering the cost and consequences of making observations over a long horizon into the future.
Instead, a nonmyopic strategy performs optimization and computes a series of waypoints by con-
sidering the effect of later time-steps [87, 134]. Representative nonmyopic informative planning
approaches include, for example, a recursive-greedy based algorithm [112] where the informative-
ness is generalized as a submodular set function, upon which a sequential-allocation mechanism
is designed in order to obtain subsequent waypoints. This recursive-greedy framework has been
extended by taking into account the avoidance of shipping lanes [12] and diminishing returns [13]
in the marine planning environments. Differing from the above mechanisms where the path way-
points are built by separate searching techniques with the informativeness as a utility function,
Low [79] proposed a differential entropy-based planning method in which a batch of waypoints
can be obtained through solving a dynamic program. Such a framework has been extended to
approaches incorporating mutual information [22] and Markovian [80] optimization criteria. An
informative planning method based on dynamic programming was recently proposed to compute
informative waypoints across an arbitrary continuous space [83]. This nonmyopic method has
also been combined with Markov Decision Processes to cope with a robot’s action uncertainty
caused by external disturbances. In addition, there are also many methods that optimize over
complex planning and information constraints (e.g., [114]).

2.3 Online Planning

A critical problem for persistent tasks (long-term, or even life-long autonomy) is the large-scale
data accumulated. Although “big” data might predict the most accurate model, in practice large
amounts of data can exceed a robot’s onboard computational capacity. Methods for reducing the
computing burdens of GPs have been previously investigated. For example, GP regression can be
performed in a real-time fashion where the problem can be estimated locally, with local data [92].
Another potentially suitable framework is a sparse representation of the GP model [35, 85, 29]
which is based on a combination of a Bayesian online algorithm together with a sequential
construction of the most relevant subset of the data [82]. This method allows the model to be
refined in a recursive way as the data streams in. This framework has been further extended to
many application domains, such as visual tracking [101] and spatial modeling [116].

To reduce both the length of a path and the probability of collisions, pareto optimization
has been used in designing path planners [33]. Recently, a sampling-based method has also been
proposed to generate Pareto-optimal trajectories for multi-objective motion planning [72]. In
addition, multi-robot coordination also benefits from multi-objective optimization. The goals
of different robots can be simultaneously optimized [54, 70]. To balance the operation cost
and the travel discomfort experienced by users, multi-objective fleet routing algorithms compute
Pareto-optimal fleet operation plans [23]. Related work also includes multi-objective reinforce-
ment learning [103], including multi-objective Monte Carlo tree search (MO-MCTS). However,
MO-MCTS is computationally prohibitive and cannot be used for online planning. Vast compu-
tational resources are needed in order to maintain a global Pareto optimal set with all the best
solutions obtained so far. Recently, a framework was developed which maintains a local approx-
imate Pareto optimal set in each node which can be processed in a much faster way [31]. This
approach is also flexible and adaptive with regard to capturing environmental variability [30].

2.4 Dealing with Motion Uncertainty

If the environment is complex, unstructured, and even dynamic, then the robot motion/action
outcomes can become highly uncertain. When motion uncertainty is considered, stochastic meth-
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ods, e.g., decision theoretic planning based on the Markov Decision Process [16, 98], stochastic
optimal control [11, 47], stochastic model predictive control [108, 100], have been broadly used
to cope with the stochasticity.

Comparing with deterministic and many probabilistic motion planners, an advantage of the
decision theoretic framework is that it exploits the stochastic structure of the world model to
formulate the motion uncertainty using a stochastic state transition function and to enforce re-
wards/penalties for outcomes of future actions. Building upon the MDP architecture, a partially
observable MDP (POMDP) is a generalization of MDPs to situations where an agent cannot
reliably identify the underlying environment state [64]. Such an extension dramatically increases
the computational complexity, making exact solutions virtually intractable. Planning in dynamic
environments in the presence of other non-stationary objects can be modeled with the MDP or
POMDP frameworks. For example, existing methods [52, 86, 37] formulate this problem as
POMDPs where the behavior of other dynamic objects are not observable but assumed to be
selected from a fixed number of closed-loop policies. The deterministic rollouts are then used
to determine the best policy to execute. A similar work [8] models this problem as a mixed
observability MDP, which is a variant of POMDP [68]. A more general framework is proposed
in [40] where the authors combine motion prediction and receding horizon planning to reduce the
uncertainty during planning. An important performance metric for decision-theoretic methods is
the computational efficiency especially in robot online planning scenarios. Recently, reachability
based methods have been exploited [39, 128] to mitigate the computational challenges where the
key idea is to identify a small subset of states that contribute most to the reward optimization
and then prioritize exploitation of this subset of states.

3 Autonomous Mapping and Exploration

The informative planning focuses on the spatiotemporal information of the environment and
can work particularly well for non-continuous, sparse and limited sensing data. Apart from the
previously discussed environmental modeling and informative planning, there is another type of
information gathering framework which focuses on more accurate representation (usually 3D) of
the environmental structure. This is based on environment mapping and exploration which are
also crucial for precisely controlling robot motion in GPS-denied environments.

Building an accurate map requires the robot to a) localize itself while mapping; b) generate
a path consist of informative view points. In this section we survey robot state estimation
methods and include different exploration approaches for efficient mapping. We highlight the
recent development on machine learning related approaches and extend to outstanding challenges
in the next section.

3.1 Localization without Prior Map

Mobile robots relies on robust state estimation to perform accurate motion control. The SLAM
[20] has been a standard framework to real-time estimate robot state and map environments of
all kinds. As a ranging sensor, LiDAR, which stands for light detection and ranging, is invariant
to environmental lighting and can capture the environment’s fine details in a long range. There-
fore, range-based state estimation methods that utilize LiDAR have achieved great success in
accuracy. Among them, the LiDAR odometry and mapping method proposed (LOAM) in [135]
is the most widely used. LOAM divides the state estimation problem into two sub-problems:
a scan-to-scan matching is performed at high frequency but with low accuracy; a scan-to-map
matching is performed at low frequency but with high accuracy. A lightweight LiDAR odometry
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Figure 2: Representative results of LIO-SAM [111]. (a) An operator carries the sensor suite
and performs a mapping task. (b) A point cloud map built using only LiDAR and IMU data.
Changes in color indicate elevation change.

and mapping (LeGO-LOAM) approach is proposed in [110] that further improves LOAM’s effi-
ciency and accuracy by introducing point cloud segmentation. Both LOAM and LeGO-LOAM
use IMU for point cloud de-skew and obtaining motion prior. However, the measurements from
IMU are not involved in the optimization stage of the algorithms. Thus these two methods can
be categorized as loosely-coupled LiDAR odometry methods. Lately, tightly-coupled LiDAR
odometry methods [71, 99, 133] draw more attention as they provide better accuracy and ro-
bustness in LiDAR degraded environments, such as a long corridor. A tightly-coupled LiDAR
inertial odometry and mapping framework, LIO-mapping, is introduced in [133]. LIO-mapping
jointly optimizes measurements from IMU and LiDAR and achieves high robustness when com-
pared with LOAM. However, LIO-mapping’s performance suffers in a feature-rich environment
as its global voxel map becomes dense for scan-matching. LIO-SAM [111] overcomes the issue
by introducing a sliding window-based scan-matching approach. Performing scan-matching at a
local scale instead of a global scale significantly improves the system efficiency without sacrificing
accuracy. Some representative results of LIO-SAM are shown in Figure 2.

Vision-based SLAM approaches usually incorporate monocular or stereo cameras, inertial
measurement units (IMU) and other modes of odometry sensing (such as wheel encoders) when
available. A system involves only visual information is called visual odometry [106], which
can be solved either by extracting sparse features (indirect method [90]) or use the intensity
of each pixel directly (direct method [48]). Indirect methods use feature descriptors such as
SIFT [75] or FREAK [2] to find correspondences between different frames, which pays the cost
of feature extraction and assumes the motion of the camera can be recovered by the selected
feature points. Direct methods however take pixel intensity directly and tend to use more pixels
(sometimes all of the pixels) for robustness and accuracy, which can be very computationally
expensive. Recently improvements on direct method [49] significantly improved efficiency while
preserving the accuracy. After the correspondences of visual appearances are determined in a
series of representative frames (key frames), a joint optimization can be performed to further
improve on accuracy, this process is called bundle adjustment [117]. Both the 3D location of the
visual features and the pose of each key frame are solved in bundle adjustment by minimizing
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the re-projection error of the features. While visual odometry can recover the motion as well
as the 3D location of the feature points, it does not sense the scale [50, 73], which is usually
estimated with IMU (and other odometry sensing if available).

Also, the localization uncertainty of the robot may grow unbounded if the SLAM system solely
depends on dead reckoning (e.g, through wheel odometry, LiDAR odometry, or visual odometry).
Fully developed SLAM frameworks [110, 111] could utilize either global position systems (GPS),
or loop closure, to eliminate the drift incurred during motion. Therefore, many planning methods
have been proposed in the last two decades to reduce the uncertainty of localization by choosing
constrained paths or re-visiting landmarks that was previously seen. Among those planning
under uncertainty algorithms, sampling-based methods have drawn great attention due to their
capability in high-dimensional settings. The belief roadmap (BRM) [97] finds paths with lower
uncertainty by utilizing extended Kalman filter (EKF) covariance factorization when searching
for a valid path. By propagating an EKF over rapidly-exploring random graphs (RRG), rapidly-
exploring random belief trees (RRBT) [19] yield shortest paths subject to constraints on collision
probability. Chance-constrained RRT* (CC-RRT*) [81] incorporates collision risk as an objective
during planning and reduces a robot’s collision probability. The robust belief roadmap [14]
introduces a novel uncertainty metric, which is an upper bound on the maximum eigenvalue of the
EKF covariance matrix. This eigenvalue bound metric provides optimal substructure property,
which is not available in EKF-based methods. Utilizing this new metric, a min-max rapidly
exploring random tree (MMRRT*) [44] proposes a framework with lexicographic optimization
for planning under uncertainty. A belief roadmap search method is discussed in [109] that
improves the computation efficiency by utilizing a best-first search scheme.

Other approaches focusing on reducing both uncertainty of a robot’s pose and entropy of the
map were developed. The initial attempt [115] uses the particle filter and captured a trajectory’s
uncertainty using the particle weight. Recent work [122] considered the correlation between local-
ization and information gain to reduce uncertainties. More recently a Expectation-Maximization
(EM) exploration algorithm [123] introduces virtual landmarks to represent the uncertainty of
unknown regions, with a novel utility function it solves for optimal map accuracy given all the
possible sensing actions.

3.2 Data-Driven Exploration

To quickly build a map of the environment, although frontier-based exploration approaches [130]
achieve reasonable efficiency in 2D mapping scenarios (assuming perfect localization), informa-
tion theoretic approaches have shown great advantages with the aid of map entropy, where the
mutual information (MI) between a robot’s sensor observations and the cells of its map is a key
ingredient used to guide a map-building robot to uncover unknown regions. However, as a robot
incrementally reduces the entropy of its map by collecting sensor observations (e.g., from a depth
camera or LiDAR), the updates to the map will also update the mutual information, even when
multiple observations are gathered from the same viewpoint.

3.2.1 Conventional Paradigm

Among the earliest information theoretic exploration strategies are those proposed by Elfes [43]
and Whaite and Ferrie [126]. The former focused on maximizing the MI between sensor ob-
servations and an occupancy grid map, and the later proposed to explore an a priori unknown
environment with minimizing the map entropy. More recent works [15], [115] brought up the
trade-off between maximizing MI and managing the localization uncertainty in a robot’s SLAM
process, in addition to selecting trajectories in favor of map accuracy [67]. In order to reduce
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computational cost of MI, efforts made to consider small, predetermined candidate trajectories,
using a skeletonization of the known occupancy map [66] and the evaluation of information gain
over a finite number of motion primitives [132], [24], 3D viewpoints [127], or compression on
occupancy grid map [91]. There are also learning-based exploration methods which try to make
inferences of the information gain associated with candidate view points, e.g. with Gaussian
Process Regression as the model [7], or through Bayesian optimization to improve on sampling
view points [6].

3.2.2 Deep Neural Networks

Deep neural networks have been successfully applied to challenging problems such as image
recognition [104], robot manipulation [96] and control [38], [136]. Recent work on obstacle
avoidence [118] successfully trained a deep neural network which took RGB images as input
and generated steering angles as output, while a robot was moving forward at constant speed.
A novel approach for visual navigation proposed in [137] also took RGB images as input, and
the learned model was able to recognize the cues for navigation to a target for which only the
apperance of the target was exposed to the network. Another work in [21] used a deep neural
network to detect exit locations from building blueprints.

More recently, in [4] and [25], high-quality exploration solutions can be trained via deep neural
networks with supervised and reinforcement learning using local occupancy maps as input data.
Moreover, in [93], the best next view frontier is estimated via a learned DRL policy using global
occupancy maps as input data.

While convolution neural networks became more and more popular, graphs based networks
can offer generalized topological representations of robot navigation, allowing a much smaller
state space than metric maps. Graph neural networks (GNNs) [107] incorporate graphs into
neural network models to do learning tasks for many fields. Graph Nets [9] is adopted for solving
control problems for dynamical systems [105]. Chen et al. [27], [26] proposed to use GNNs
with supervised learning [27] and reinforcement learning [26] to perform robot exploration under
localization uncertainty. In [28], a novel neural network model is proposed to solve the robot
navigation problem using a camera image and a topological map. Wang et al. [124] proposed a
deep graph neural network with reinforcement learning to learn a scalable control policy.

3.2.3 Reinforcement Learning

Compared to supervised learning, model-based reinforcement learning methods often accelerate
the training process [55] since the agent can obtain training information from a model in addition
to rewards from the environment. A pre-trained policy can also improve the performance of
learning and increase a robot’s learning efficiency [41]. Jaderberg proposed an auxiliary approach
to explore the potentially reward-rich areas of an environment, avoiding low-reward areas [63].
Such methods require a priori knowledge of either the environments or the policy model.

Tai introduced a deep reinforcement learning [119] based obstacle avoidance policy that is
trained and tested using sensor data from the same environment. However, it is ineffective to
use learned policy across heterogeneous environments. Combining an RNN and a DQN, [69]
proposed Deep Recurrent Q-Networks (DRQN) to play First-Person-Shooting (FPS) games in a
3D environment. The DRQN can generate appropriate outputs that depend on the temporally
consecutive inputs. Meanwhile, in [137], the robot learned a target-driven visual navigation policy
in a simulated environment and implemented its policy successfully in a physical environment.
However, it is difficult to predict the information gain of many potential future sensing actions
using a single camera view and the requirement for the simulation environment is significantly
high. ExpLOre algorithm [32] is proposed to gather information using imitation learning. the
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non-myopic solutions are provided by this algorithm but the training and testing environments are
the same, with different view nodes. Besides, for robot navigation problems, learning the topology
of an environment [58] and motion planning [120] can be solved by reinforcement learning.

4 Challenges and Opportunities

While information driven planning and exploration algorithms have been deployed on real robot
platforms [83], it is far from a solved problem. Since the environment is unknown and could
be dynamic, it is hard to estimate the environment model, and thus it is challenging to avoid
myopic decision-making. In addition, the complex and dynamic nature of the environment brings
external disturbances, which makes a robot’s motion stochastic. These external disturbances
need to be considered when planning, otherwise the actual execution result may be far from the
expected result.

An interesting problem for environmental sensing and modeling lies in environmental dy-
namics which require time-varying Markov transition models [76, 129]. The Markov transition
dynamics can be time-varying, and a literature review informs us that time-varying Markov
models have been investigated for pattern analysis of the economic growth [89, 10], which aims
at understanding the dynamics of growth based on a collection of different states corresponding
to different countries. However, these existing models have been constructed on hidden Markov
models, and assume that there is no action to control state transitions. One drawback of state-
of-the-art decision-making methodologies lies in the fact that, the basic model relies on a fixed
and exact form of uncertainty probabilistic distribution. Such frameworks may be upgradable
to some sort of online planning methods through catching up to the latest dynamics and a
series of repetitive replanning processes. However, replanning strategies still cannot properly
take into account future time-varying uncertainty dynamics which if properly considered can be
beneficial. In essence, we believe that the planning and decision-making community still lacks
a general methodology to compute solutions that consider not only a fully known (current and
past) stochastic description, but also a (possibly uncertain) prediction of future dynamics.

To enable a robot to effectively learn to act in complex and especially unknown environments,
transfer learning provides a method for avoiding the expensive training cost in real-world envi-
ronments by doing the training process in simulation environments. An off-line interactive replay
recorded from a real-world environment for one-shot reinforcement learning is proposed in [18].
To fill the gap between robot training in real and simulated environments, domain randomiza-
tion is utilized for transfer learned policy [88]. Zero-shot reinforcement learning for autonomous
vehicle driving problem is proposed in [53] by extracting important features from an input image
with the attention mechanism. While there are more and more datasets for training a neural
network model to perform information gathering tasks, generalization capability remains a key
challenge and requires further extensive investigations.

5 Conclusion

The purpose of this paper is to provide a survey on the most recent research of the information-
driven path planning for mobile robots, and also to provide insights on future challenges of
related directions. In many outdoor missions the robots need to leverage sensed information
of environments to look ahead and plan actions. Using the scenarios of environmental sensing,
modeling and monitoring, we first discuss key information-driven planning modules including
environmental modeling with Gaussian process, myopic vs non-myopic planning, online planning
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and motion with uncertainty. We then discuss the autonomous mapping and exploration, fol-
lowed by integration with data-driven methodologies, emphasizing how machine learning can be
used to improve the robustness and efficiency of existing SLAM frameworks. The enhancement
of these these critical components will lead to more robust and adaptive frameworks with in-
creased functionalities that shall allow mobile robots to perform missions in highly cluttered and
unstructured environments.
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