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Abstract: A search for nonresonant production of Higgs boson pairs via gluon-gluon and
vector boson fusion processes in final states with two bottom quarks and two photons is
presented. The search uses data from proton-proton collisions at a center-of-mass energy of√
s = 13TeV recorded with the CMS detector at the LHC, corresponding to an integrated

luminosity of 137 fb−1. No significant deviation from the background-only hypothesis is
observed. An upper limit at 95% confidence level is set on the product of the Higgs boson
pair production cross section and branching fraction into γγbb. The observed (expected)
upper limit is determined to be 0.67 (0.45) fb, which corresponds to 7.7 (5.2) times the
standard model prediction. This search has the highest sensitivity to Higgs boson pair
production to date. Assuming all other Higgs boson couplings are equal to their values
in the standard model, the observed coupling modifiers of the trilinear Higgs boson self-
coupling κλ and the coupling between a pair of Higgs bosons and a pair of vector bosons
c2V are constrained within the ranges −3.3 < κλ < 8.5 and −1.3 < c2V < 3.5 at 95%
confidence level. Constraints on κλ are also set by combining this analysis with a search
for single Higgs bosons decaying to two photons, produced in association with top quark-
antiquark pairs, and by performing a simultaneous fit of κλ and the top quark Yukawa
coupling modifier κt.
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1 Introduction

Following the discovery of the Higgs boson (H) by the ATLAS and CMS collaborations [1–3],
there has been significant interest in thoroughly understanding the Brout-Englert-Higgs
mechanism [4, 5]. With the last remaining free parameter, the mass of the Higgs boson
(mH), now measured to be around 125GeV, the Higgs boson self-coupling and the struc-
ture of the scalar Higgs field potential are precisely predicted in the standard model (SM).
Therefore, measuring the Higgs boson’s trilinear self-coupling λHHH is of particular impor-
tance because it provides valuable information for reconstructing the shape of the scalar
potential.

At the CERN LHC, the trilinear self-coupling of the Higgs boson is only directly ac-
cessible via Higgs boson pair (HH) production. This rare process dominantly occurs via
gluon-gluon fusion (ggF). Vector boson fusion (VBF) is the second largest production
mode. In the SM, the ggF production cross section in proton-proton (pp) collisions at√
s = 13TeV is 31.1+1.4

−2.0 fb [6–12], calculated at next-to-next-to-leading order (NNLO) with
the resummation at next-to-next-to-leading-logarithm accuracy and including top-quark
mass effects at next-to-leading order (NLO). For VBF, the production cross section is cal-
culated to be 1.73±0.04 fb [13–15] at next-to-NNLO in quantum chromodynamics (QCD).
The uncertainties in the values of the cross sections include variations of the factorisation
and renormalisation scales, parton distribution function (PDF), and the value of the strong
force coupling constant (αS). The cross sections are calculated for mH = 125GeV.

Contributions from physics beyond the SM (BSM) can significantly enhance the HH
production cross section, as well as change the kinematical properties of the produced Higgs
boson pair, and consequently those of the decay products. The modification of the proper-
ties of nonresonant HH production via ggF from BSM effects can be parametrized through
an effective Lagrangian that extends the SM one with dimension-6 operators [16, 17]. This
parametrization results in five couplings: λHHH , the coupling between the Higgs boson and
the top quark (yt), and three additional couplings not present in the SM. Those three
couplings represent contact interactions between two Higgs bosons and two gluons (c2g),
between one Higgs boson and two gluons (cg), and between two Higgs bosons and two top
quarks (c2). The Feynman diagrams contributing to ggF HH production at leading order
(LO) are shown in figure 1. All five of these couplings are investigated in this analysis.

The VBF HH production mode gives access to λHHH , as well as to the coupling between
two vector bosons and the Higgs boson (HVV) and the coupling between a pair of Higgs
bosons and a pair of vector bosons (HHVV). The Feynman diagrams contributing to this
production mode at LO are shown in figure 2. While λHHH is mainly constrained from mea-
surements of HH production via ggF, and the HVV coupling modifier (cV) is constrained
by measurements of vector boson associated production of a single Higgs boson and the
decay of the Higgs boson to a pair of bosons [18], the HHVV coupling modifier (c2V) is only
directly measurable via VBF HH production. Anomalous values of c2V are investigated to
establish the presence of the HHVV-mediated process as a probe of BSM physics.

Previous searches for nonresonant production of a Higgs boson pair via ggF were
performed by both the ATLAS and CMS collaborations using the LHC data collected
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Figure 1. Feynman diagrams of the processes contributing to the production of Higgs boson pairs
via ggF at LO. The upper diagrams correspond to SM processes, involving the top Yukawa coupling
yt and the trilinear Higgs boson self-coupling λHHH , respectively. The lower diagrams correspond
to BSM processes: the diagram on the left involves the contact interaction of two Higgs bosons
with two top quarks (c2), the middle diagram shows the quartic coupling between the Higgs bosons
and two gluons (c2g), and the diagram on the right describes the contact interactions between the
Higgs boson and gluons (cg).
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Figure 2. Feynman diagrams that contribute to the production of Higgs boson pairs via VBF at
LO. On the left the diagram involving the HHH vertex (λHHH), in the middle the diagram with
two HVV vertices (cV), and on the right the diagram with the HHVV vertex (c2V).

at
√
s = 8 and 13TeV [19–23, 23–29]. Searches in the γγbb channel performed by the

ATLAS [25] and CMS [29] collaborations using up to 36.1 fb−1 of pp collision data at√
s = 13TeV set upper limits at 95% confidence level (CL) on the product of the HH

cross section and the branching fraction into γγbb . The observed upper limits are found
to be 24 (30 expected) and 26 (20 expected) times the SM expectation for the ATLAS
and CMS searches, respectively. Statistical combinations of search results in various decay
channels were also performed by the two experiments [23, 30]. Recently, the first search
for HH production via VBF was carried out by the ATLAS collaboration in the bbbb
channel [31].

This paper describes a search for nonresonant production of pairs of Higgs bosons de-
caying to γγbb using a data sample of 137 fb−1 collected by the CMS experiment from 2016
to 2018. The γγbb final state has a combined branching fraction of 2.63± 0.06× 10−3 [16]
for a Higgs boson mass of 125GeV. This channel is one of the most sensitive to HH produc-

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
2
5
7

tion because of the large SM branching fraction of Higgs boson decays to bottom quarks,
the good mass resolution of the H → γγ channel, and relatively low background rates.

The analysis targets the main HH production modes: ggF and VBF. Both modes are
analyzed following similar strategies. After reducing the nonresonant γγbb background
and the background coming from single Higgs boson production in association with a top
quark-antiquark pair (ttH), the events are categorized into ggF- and VBF-enriched signal
regions using a multivariate technique. The signal is extracted from a fit to the invari-
ant masses of the Higgs boson candidates in the bb and γγ final states. The analysis
described in this paper advances the previous pp → HH → γγbb search [29] by a factor
of four, benefiting equally from the larger collected data sets, and the innovative analysis
techniques. The enhanced sensitivity of the present analysis was achieved by improving
the b jet energy resolution with a dedicated energy regression, introducing new multi-
variate methods for background rejection, optimizing the event categorization, and adding
dedicated VBF categories.

Finally, the search for Higgs boson pair production is combined with an independent
analysis that targets ttH production, where the Higgs boson decays to a diphoton pair [32].
The ttH production cross section depends on yt , and also includes a trilinear Higgs boson
self-coupling contribution from NLO electroweak corrections [33, 34]. The combination
enables λHHH and yt to be measured simultaneously and provides constraints applicable
to a wide range of theoretical models, where both couplings have anomalous values.

This paper is organized as follows: after a brief description of the CMS detector in
section 2, the production of Higgs boson pairs is described in section 3. The data samples
and simulation, event reconstruction, and analysis strategy are discussed in sections 4, 5,
and 6, respectively. Sections 7 and 8 are dedicated to the description of the background
rejection methods. The event categorization is described in section 9. Sections 10 and 11
describe the modeling of the signal and background, respectively. The systematic uncer-
tainties are discussed in section 12. Finally, the results are presented in section 13. The
analysis and its results are then summarized in section 14.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal
diameter, providing a magnetic field of 3.8T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by
the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded
in the steel flux-return yoke outside the solenoid.

A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in ref. [35].

Events of interest are selected using a two-tiered trigger system [36]. The first level
(L1), composed of custom hardware processors, uses information from the calorimeters and
muon detectors to select events at a rate of around 100 kHz within a time interval of less
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than 4µs. The second level, known as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software optimised for fast processing,
and reduces the event rate to around 1 kHz before data storage [37].

The particle-flow algorithm [38] (PF) aims to reconstruct and identify each individual
particle in an event (PF candidate), with an optimised combination of information from
the various elements of the CMS detector. The energy of photons is obtained from the
ECAL measurement. The energy of electrons is determined from a combination of the
track momentum at the main interaction vertex, the corresponding ECAL cluster energy,
and the energy sum of all bremsstrahlung photons attached to the track. The momentum
of muons is obtained from the curvature of the corresponding track. The energy of charged
hadrons is determined from a combination of their momentum measured in the tracker and
the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and
for the response function of the calorimeters to hadronic showers. Finally, the energy of
neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

For each event, hadronic jets are clustered from these reconstructed particles using
the infrared and collinear safe anti-kT algorithm [39, 40] with a distance parameter of 0.4.
Jet momentum is determined as the vectorial sum of all particle momenta in the jet, and
is found from simulation to be, on average, within 5 to 10% of the true momentum over
the whole pT spectrum and detector acceptance. Additional proton-proton interactions
within the same or nearby bunch crossings can contribute additional tracks and calorimetric
energy depositions, increasing the apparent jet momentum. To mitigate this effect, tracks
identified to be originating from pileup vertices are discarded and an offset correction is
applied to correct for remaining contributions. Jet energy corrections are derived from
simulation studies so that the average measured energy of jets becomes identical to that of
particle level jets. In situ measurements of the momentum balance in dijet, photon+jet,
Z+jet, and multijet events are used to determine any residual differences between the
jet energy scale in data and in simulation, and appropriate corrections are made [41].
Additional selection criteria are applied to each jet to remove jets potentially dominated by
instrumental effects or reconstruction failures. The jet energy resolution amounts typically
to 15–20% at 30GeV, 10% at 100GeV, and 5% at 1TeV [41].

The missing transverse momentum vector ~pmiss
T is computed as the negative vector

sum of the transverse momenta of all the PF candidates in an event, and its magnitude is
denoted as pmiss

T [42]. The ~pmiss
T is modified to account for corrections to the energy scale

of the reconstructed jets in the event.

3 Higgs boson pair production

Nonresonant ggF HH production at the LHC can be described using an effective field
theory (EFT) approach [16]. Considering operators up to dimension 6 [17], the tree-level
interactions of the Higgs boson are modeled by five parameters. Deviations from the SM
values of λHHH and yt are parametrized as κλ ≡ λHHH/λ

SM
HHH and κt ≡ yt/y

SM
t , where the

SM values of the couplings are defined as λSM
HHH ≡ m2

H/(2v2) = 0.129, ySM
t = mt/v ≈ 0.7.

Here, v = 246GeV is the vacuum expectation value of the Higgs field, and mt ≈ 173GeV
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1 2 3 4 5 6 7 8 9 10 11 12 SM
κλ 7.5 1.0 1.0 −3.5 1.0 2.4 5.0 15.0 1.0 10.0 2.4 15.0 1.0
κt 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0
c2 −1.0 0.5 −1.5 −3.0 0.0 0.0 0.0 0.0 1.0 −1.0 0.0 1.0 0.0
cg 0.0 −0.8 0.0 0.0 0.8 0.2 0.2 −1.0 −0.6 0.0 1.0 0.0 0.0
c2g 0.0 0.6 −0.8 0.0 −1.0 −0.2 −0.2 1.0 0.6 0.0 −1.0 0.0 0.0

Table 1. Coupling parameter values in the SM and in twelve BSM benchmark hypotheses identified
using the method described in ref. [44].

is the top quark mass. The anomalous couplings c2g , c2, and cg are not present in the SM.
The corresponding part of the Lagrangian can be written as [43]:

LHH =κλλ
SM
HHHvH3−

mt
v

(
κt H+ c2

v
H2
)(

tLtR+h.c.
)
+ 1

4
αS
3πv

(
cg H−

c2g
2v H2

)
GµνGµν ,

(3.1)

where tL and tR are the top quark fields with left and right chiralities, respectively. The
Higgs boson field is denoted as H, Gµν is the gluon field strength tensor, and h.c. denotes
the Hermitian conjugate.

At LO the full cross section of ggF Higgs boson pair production can be expressed by
a polynomial with 15 terms corresponding to five individual diagrams, shown in figure 1,
and their interference. It has been observed in ref. [44] that twelve benchmark hypotheses,
described by various combinations of the five parameters (κλ, κt , c2, cg , c2g), are able to
represent the distributions of the main kinematic observables of the HH processes over the
full phase space. The parameter values for these benchmark hypotheses are summarized
in table 1. The simulated samples generated with the EFT parameters that describe the
twelve benchmark hypotheses are combined to cover all possible kinematic configurations
of the EFT parameter space. The specific kinematic configurations at any point in the full
5D parameter space are obtained through a corresponding reweighting procedure [44, 45]
that parametrizes the changes in the differential ggF HH cross section.

The reweighting procedure described in ref. [44] to obtain the distributions of the
kinematic observables is implemented for LO only, and cannot be applied to the higher-
order simulation because of the presence of additional partons at the matrix element level.
Therefore, the 12 BSM signal benchmark hypotheses summarized in table 1 are investigated
using an LO Monte Carlo (MC) simulation, and only anomalous values of κλ and κt are
studied with the NLO simulation, as described in section 4.

In the SM, three different couplings are involved in HH production via VBF: λHHH ,
HVV, and HHVV. The Lagrangians corresponding to the left, middle, and right diagrams
in figure 2 scale with cVκλ, c2

V , and c2V , respectively, where c2V and cV are the HHVV
and HVV coupling modifiers, normalized to the SM values.
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4 Data sample and simulated events

The analyzed data correspond to a total integrated luminosity of 137 fb−1 and were col-
lected over a data-taking period spanning three years: 35.9 fb−1 in 2016, 41.5 fb−1 in 2017,
and 59.4 fb−1 in 2018. Events are selected using double-photon triggers with asymmetric
thresholds on the photon transverse momenta of pγ1

T > 30GeV and pγ2
T > 18(22)GeV for

the data collected during 2016 (2017 and 2018). In addition, loose calorimetric identifi-
cation requirements [46], based on the shape of the electromagnetic shower, the isolation
of the photon candidate, and the ratio between the hadronic and electromagnetic energy
deposit of the shower, are imposed on the photon candidates at the trigger level.

The ggF HH signal samples are simulated at NLO [47–51] including the full top quark
mass dependence [52] using powheg 2.0. The samples are generated for different values
of κλ. As shown in ref. [49] the dependence of the ggF HH cross section on κλ and κt can
be reconstructed from three terms corresponding to the diagrams involving κλ, κt and the
interference. Therefore, samples corresponding to any point in the (κλ, κt) parameter space
can be obtained from the linear combination of any three of the generated MC samples
with different values of κλ.

In addition, LO signal samples are generated for the BSM benchmark hypotheses
described in section 3 using MadGraph5_amc@nlo v2.2.2 (2016) or v2.4.2 (2017 and
2018) [53–55]. The simulated LO signal samples, corresponding to the 12 BSM benchmark
hypotheses, are added together to increase the number of events, and then reweighted to
any coupling configuration (κλ, κt , c2, cg , c2g) using generator-level information on the
HH system.

The VBF HH signal samples are generated at LO [53] using MadGraph5_amc@nlo
v2.4.2. The simulated samples are generated for different combinations of the coupling
modifier values (κλ, cV , c2V). Similarly to what is done for the ggF HH samples generated
at NLO, samples corresponding to any point in the (κλ, cV , c2V) parameter space can be
obtained from the linear combination of any six of the generated samples.

We apply a global k-factor to the generated ggF HH and VBF HH signal samples to
scale the cross section to NNLO and next-to-NNLO accuracy respectively. The k-factor is
obtained for the cross section prediction in the SM and applied to all considered scenarios.
The k-factor for the ggF HH cross section depends on the invariant mass of the two Higgs
bosons, however, within the region of sensitivity of this analysis, this effect is covered by
the total scale uncertainty.

The dominant backgrounds in this search are irreducible prompt diphoton production
(γγ+jets) and the reducible background from γ+jets events, where the jets are misidentified
as isolated photons and b jets. Although these backgrounds are estimated using data-driven
methods, simulated samples are used for the training of multivariate discriminants and the
optimization of the analysis categories. The γγ+ jets background is modeled with sherpa
v.2.2.1 [56] at LO and includes up to three additional partons at the matrix element level.
In addition, a b-enriched diphoton background is generated with sherpa at LO requiring
up to two b jets to increase the number of simulated events in the analysis region of interest.
The γ + jets background is modeled with pythia 8.212 [57] at LO.
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Single Higgs boson production, where the Higgs boson decays to a pair of photons,
is considered as a resonant background. These production processes are simulated at
NLO in QCD precision using powheg 2.0 [47, 58–60] for ggF H (ggH) and VBF H, and
MadGraph5_amc@nlo v2.2.2 (2016) / v2.4.2 (2017 and 2018) for ttH, vector boson
associated production (VH), and production associated with a single top quark. The cross
sections and decay branching fractions are taken from ref. [16]. The contribution from the
other single H decay modes is negligible.

All simulated samples are interfaced with pythia for parton showering and fragmen-
tation with the standard pT-ordered parton shower (PS) scheme. The underlying event is
modeled with pythia, using the CUETP8M1 tune for 2016 and the CP5 tune for 2017–
2018 [61, 62]. PDFs are taken from the NNPDF3.0 [63] NLO (2016) or NNPDF3.1 [64]
NNLO (2017 and 2018) set for all simulated samples except for the signal simulated at LO,
for which the PDF4LHC15_NLO_MC set at NLO [63, 65–68] is used. The response of the
CMS detector is modeled using the Geant4 [69] package. The simulated events include
additional pp interactions within the same or nearby bunch crossings (pileup), as observed
in the data.

Additionally, the simulated VBF HH signal events are also interfaced with the pythia
dipole shower scheme to model initial-state radiation (ISR) and final-state radiation
(FSR) [70]. The dipole shower scheme correctly takes into account the structure of the
color flow between incoming and outgoing quark lines, and its predictions are found to
be in good agreement with the NNLO QCD calculations, as reported in ref. [71]. These
simulated samples are used to derive the uncertainties associated with the pythia PS ISR
and FSR parameters.

5 Event reconstruction and selection

The photon candidates are reconstructed from energy clusters in the ECAL not linked to
charged-particle tracks (with the exception of converted photons). The photon energies
measured by the ECAL are corrected with a multivariate regression technique based on
simulation that accounts for radiation lost in material upstream of the ECAL and imperfect
shower containment [46]. The ECAL energy scale in data is corrected using simulated
Z → ee events, while the photon energy in simulated events is smeared to reproduce the
resolution measured in data.

Photons are identified using a boosted decision tree (BDT)-based multivariate analysis
(MVA) technique trained to separate photons from jets (photon ID) [46]. The photon ID
is trained using variables that describe the shape of the photon electromagnetic shower
and the isolation criteria, defined using sums of the transverse momenta of photons, and
of charged hadrons, inside a cone of radius ∆R =

√
(∆η)2 + (∆φ)2 = 0.3 around the

photon candidate direction, where φ is the azimuthal angle in radians. The imperfect MC
simulation modeling of the input variables is corrected to match the data using a chained
quantile regression method [72] based on studies of Z → ee events. In this method, a set
of BDTs is trained to predict the cumulative distribution function for a given input. Its
prediction is conditional upon the three kinematic variables (pT, |η|, φ) and the global
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event energy density [46], which are the input variables to the BDTs. The corrections
are then applied to the simulated photons such that the predicted cumulative distribution
function of the simulated variables is morphed onto the one observed in data.

Events are required to have at least two identified photon candidates that are within the
ECAL and tracker fiducial region (|η| < 2.5), excluding the ECAL barrel-endcap transition
region (1.44 < |η| < 1.57) because the reconstruction of a photon object in this region is not
optimal. The photon candidates are required to pass the following criteria: 100 < mγγ <

180GeV, pγ1
T /mγγ > 1/3 and pγ2

T /mγγ > 1/4, wheremγγ is the invariant mass of the photon
candidates. When more than two photon candidates are found, the photon pair with the
highest transverse momentum pγγT is chosen to construct the Higgs boson candidate.

The primary pp interaction vertex in the event is identified using a multivariate tech-
nique based on a BDT following the same approach described in ref. [73]. The BDT is
trained on simulated ggH events and has observables related to tracks recoiling against
the identified diphoton system as inputs. The efficiency of the correct vertex assignment is
greater than 99.9%, thanks to the requirement of at least two jets in the γγbb final state.

Jet candidates are required to have pT > 25GeV and |η| < 2.4 (2.5) for 2016
(2017–2018) and to be separated from the identified photons by a distance of ∆Rγj ≡√

(∆ηγj)2 + (∆φγj)2 > 0.4. The jet η range is extended for the 2017 and 2018 data-taking
years because of the new CMS pixel detector installed during the Phase-1 upgrade [74]. In
addition, identification criteria are applied to remove spurious jets associated with calorime-
ter noise [75]. Jets from the hadronization of b quarks are tagged by a secondary vertex
algorithm, DeepJet, based on the score from a deep neural network (DNN) [76, 77]. We
will refer to the output of this DNN as the b tagging score.

In addition to standard CMS jet energy corrections [78], a b jet energy regression [79]
is used to improve the energy resolution of b jets and, therefore, the mjj resolution. The
energy correction and resolution estimator are computed for each of the Higgs boson can-
didate jets through a regression implemented in a DNN and trained on jet properties. The
regression simultaneously provides a b jet energy correction and a resolution estimator.

In events with more than two jets, the Higgs boson candidate is reconstructed from
the two jets with the highest b tagging scores. The dijet invariant mass is required to
be 70 < mjj < 190GeV.

An additional regression was developed specifically for the γγbb final states to further
improve the dijet invariant mass resolution. This regression exploits the fact that there
is no genuine missing transverse momentum from the hard-scattering process in the γγbb
final state, and follows a similar approach as used in ref. [29]. The regression targets the
dijet invariant mass at the generator level, and is trained using the kinematic properties
of the event and pmiss

T . The regression is trained on a simulated sample of b-enriched
γγ + jets events.

The two regression techniques were validated on data collected by the CMS experiment.
The two-step regression technique improves the dijet invariant mass resolution of the SM
HH signal by about 20%, and the mjj peak position is shifted by 5.5GeV (5%) closer to
the expected Higgs boson mass.
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To select events corresponding to HH production via VBF, additional requirements
are imposed. The VBF process is characterized by the presence of two additional energetic
jets, corresponding to two quarks from each of the colliding protons scattered away from
the beam line. These “VBF-tagged” jets are expected to have a large pseudorapidity
separation, |∆ηVBF

jj |, and a large dijet invariant mass, mVBF
jj . VBF-tagged jets are required

to have pT > 40 (30)GeV for the leading (subleading) jet, |η| < 4.7, and be separated from
the selected photon and b jet candidates by ∆Rγj > 0.4 and ∆Rbj > 0.4. Jets must also
pass an identification criterion designed to reduce the number of selected jets originating
from pileup [75]. The dijet pair with the highest dijet invariant mass mVBF

jj is selected as
the two VBF-tagged jets. We will refer to these requirements as “VBF selection criteria”.

6 Analysis strategy

To improve the sensitivity of the search, MVA techniques are used to distinguish the ggF
and VBF HH signal from the dominant nonresonant background. The output of the MVA
classifiers is then used to define mutually exclusive analysis categories targeting VBF and
ggF HH production. The HH signal is extracted from a fit to the invariant masses of the
two Higgs boson candidates in the (mγγ , mjj) plane simultaneously in all categories.

We study the properties of the HH system, built from the reconstructed diphoton and
dijet candidates, to identify observables that can help us distinguish between the signal
and background. The invariant mass distributions are shown in figure 3 for diphoton and
dijet pairs in data and in signal and background simulation after imposing the selection
criteria described in section 5. The signal has a peaking distribution in mγγ and mjj. The
data distribution, dominated by the γγ + jets and γ + jets backgrounds, exhibits a falling
spectrum because of the nonresonant nature of these processes. In this analysis, these
characteristics are used to extract the signal via a fit to mγγ and mjj.

The distribution of M̃X, defined as:

M̃X = mγγjj − (mjj −mH)− (mγγ −mH), (6.1)

wheremγγjj is the invariant mass of the two Higgs boson candidates, is particularly sensitive
to different values of the couplings described in section 3. The M̃X distribution is less
dependent on the dijet and diphoton energy resolutions than mγγjj if the dijet and diphoton
pairs originate from a Higgs boson decay [80]. In figure 4, the distribution of M̃X is shown
for several BSM benchmark hypotheses affecting ggF HH production (described in table 1)
and for different values of c2V affecting the VBF HH production mode. The SM HH process
exhibits a broad structure in M̃X, induced by the interference between different processes
contributing to HH production and shaped by the analysis selection. The signals with
c2V = 0 and c2V = 2 have a much harder spectrum than the SM VBF HH signal.

7 The ttH background rejection

Single Higgs boson production is an important resonant background in the γγbb final state,
with ttH production being dominant in high purity signal regions. To reduce ttH back-
ground contamination, a dedicated classifier (ttHScore) was developed. The classifier is
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Figure 3. The invariant mass distributions of the reconstructed Higgs boson candidates mγγ (left)
and mjj (right) in data and simulated events. Data, dominated by the γγ + jets and γ + jets
backgrounds, are compared to the SM ggF HH signal samples and single H samples (ttH, ggH,
VBF H, VH) after imposing the selection criteria described in section 5. The error bars on the
data points indicate statistical uncertainties. The HH signal has been scaled by a factor of 103 for
display purposes.
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Figure 4. Distributions of M̃X. The SM ggF HH signal is compared with several BSM hypotheses
listed in table 1 (left), and the SM VBF HH signal is compared with two different anomalous values
of c2V (right). All distributions are normalized to unity.

trained on a mixture of SM HH events and events generated for the twelve BSM benchmark
hypotheses (described in table 1) as signal, and ttH events as background. The discrim-
inant uses a combination of low-level information from the individual PF candidates and
high-level features describing kinematic properties of the event. The kinematic variables
used in the training can be classified in three groups: angular variables, variables to distin-
guish semileptonic decays of W bosons produced in the top quark decay, and variables to
distinguish hadronic decays of W bosons. The ttHScore discriminant is implemented with
a DNN combining feed-forward and long short-term memory neural networks [81], based
on the topology-classifier architecture introduced in ref. [82]. The network is implemented
in Keras [83] using the TensorFlow [84] backend, and the hyperparameters are chosen
through Bayesian optimization. The ttHScore output is shown in figure 5 (left) for data
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and simulated events. The events entering the analysis are required to pass a selection
based on this classifier, which is optimized as described in section 9.

8 Nonresonant background rejection

8.1 Background reduction in the ggF HH signal region

An MVA discriminant implemented with a BDT is used to separate the ggF HH signal
and the dominant nonresonant γγ + jets and γ + jets backgrounds. We select several
discriminating observables to be used in the training. They can be classified in three
groups: kinematic variables, object identification variables, and object resolution variables.
The first group exploits the kinematic properties of the HH system, the second helps to
separate the signal from the reducible γ+ jets background, and the third takes into account
the resonant nature of the γγ and bb final states for signal. The following discriminating
variables were chosen:

• The H candidate kinematic variables: pγT/mγγ , pj
T/mjj for leading and subleading

photons and jets, where pγT and pj
T are the transverse momenta of the selected photon

and jet candidates.

• The HH transverse balance: pγγT /mγγjj and pjj
T/mγγjj, where pγγT and pjj

T are the
transverse momenta of the diphoton and dijet candidates.

• Helicity angles: |cos θCS
HH |, |cos θjj|, |cos θγγ |, where |cos θCS

HH | is the Collins-Soper an-
gle [85] between the direction of the H → γγ candidate and the average beam direction
in the HH center-of-mass frame, while |cos θjj| and |cos θγγ | are the angles between
one of the Higgs boson decay products and the direction defined by the Higgs boson
candidate.

• Angular distance: minimum ∆Rγj between a photon and a jet, ∆Rmin
γj , considering

all combinations between objects passing the selection criteria, and ∆Rγj between
the other photon-jet pair not used in the ∆Rmin

γj calculation.

• b tagging: the b tagging score of each jet in the dijet candidate.

• photon ID: photon identification variables for leading and subleading photons.

• Object resolution: energy resolution for the leading and subleading photons and jets
obtained from the photon [46] and b jet [79] energy regressions, the mass resolution
estimators for the diphoton and dijet candidates.

The BDT is trained using the xgboost [86] software package using a gradient boosting
algorithm. The γγ+jets and γ+jets MC samples are used as background, while an ensemble
of SM HH and the 12 BSM HH benchmark hypotheses listed in table 1 is used as signal.
Training on an ensemble of BSM and SM HH signals makes the BDT sensitive to a broad
spectrum of theoretical scenarios. During the training, signal events are weighted with the
product of the inverse mass resolution of the diphoton and dijet systems. These resolutions
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Figure 5. The distribution of the ttHScore (left) and MVA output (right) in data and simulated
events. Data, dominated by γγ + jets and γ + jets background, are compared to the SM ggF HH
signal samples and single H samples (ttH, ggH, VBF H, VH) after imposing the selection criteria
described in section 5. The error bars on the data points indicate statistical uncertainties. The HH
signal has been scaled by a factor of 103 for display purposes.

are obtained using the per-object resolution estimators provided by the energy regressions
developed for photons and b jets. In the training, the mass dependence of the classifier is
removed by using only dimensionless kinematic variables. The inverse resolution weighting
at training time improves the performance by bringing back the information about the
resonant nature of the signal. Independent training and testing samples are created by
splitting the signal and background samples. The classifier hyperparameters are optimized
using a randomized grid search and a 5-fold cross-validation technique [87]. The BDT
is trained separately for the 2016, 2017, and 2018 data-taking years. The BDT output
distribution is very similar among the three years, leading to the same definitions of optimal
signal regions based on the BDT output. Therefore, during the event categorization, a
single set of analysis categories is defined using data from 2016–2018. The distributions
of the BDT output for signal and background are very well separated. In order to avoid
problems of numerical precision when defining optimal signal-enriched regions, the BDT
output is transformed such that the signal distribution is uniform. This transformation is
applied to all events, both in simulation and data. The distribution of the MVA output
for data and simulated events is shown in figure 5 (right).

8.2 Background reduction in the VBF HH signal region

Similarly to the ggF HH analysis strategy, an MVA discriminant is employed to separate
the VBF HH signal from the background. As for the ggF case, the γγ + jets and γ + jets
processes are the dominant sources of background. For the VBF production mode, the ggF
HH events are considered as background. About a third of the ggF HH events passing the
selection requirements described in section 5 also pass the dedicated VBF selection criteria.
The distinctive topology of the VBF HH process is used to separate the VBF HH signal
from the various sources of background. In addition to the discriminating features of the
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HH signal described in sections 6 and 8.1, the following set of VBF-discriminating features
were identified:

• VBF-tagged jet kinematic variables: pVBF
T /mVBF

jj , ηVBF for VBF-tagged jets.

• VBF-tagged jet invariant mass: invariant mass mVBF
jj of the VBF-tagged jets.

• Rapidity gap: product of and difference in the pseudorapidity of the two VBF-tagged
jets.

• Quark-gluon likelihood [88, 89] of the two VBF-tagged jets. A likelihood discrimina-
tor used to distinguish between jets originating from quarks and from gluons.

• Kinematic variables related to the HH system: M̃X and the transverse momentum
of the pair of reconstructed Higgs bosons.

• Angular distance: minimum ∆R between a photon and a VBF-tagged jet, and be-
tween a b jet and a VBF-tagged jet.

• Centrality variables for the reconstructed Higgs boson candidates:

CH = exp

− 4
(ηVBF

1 − ηVBF
2 )2

(
ηH − ηVBF

1 + ηVBF
2

2

)2 , (8.1)

where H is the Higgs boson candidate reconstructed either from diphoton or dijet
pairs, and ηVBF

1 and ηVBF
2 are the pseudorapidities of the two VBF-tagged jets.

We split events into two regions: M̃X < 500GeV and M̃X > 500GeV. While the region
of M̃X > 500GeV is sensitive to anomalous values of c2V , the M̃X < 500GeV region retains
the sensitivity to SM VBF HH production.

A multi-class BDT, using a gradient boosting algorithm and implemented in the xg-
boost [86] framework, is trained to separate the VBF HH signal from the γγ + jets,
γ + jets, and SM ggF HH background. A mix of VBF HH samples with the SM couplings
and quartic coupling c2V = 0 is used as signal. Training on the mix of samples makes
the BDT sensitive to both SM and BSM scenarios. Although the kinematic properties of
different BSM signals with anomalous values of c2V are similar, the cross section of the
signal with c2V = 0 is significantly enhanced with respect to that predicted by the SM.
Therefore, the signal samples used for the training were chosen to maximize sensitivity of
the analysis to a range of potential signals. Signal events are weighted with the inverse
of the mass resolution of the diphoton and dijet systems during the training, as it is done
for the ggF MVA. The BDT is trained separately for each of the three data-taking years
in the two M̃X regions. As it is done for the ggF MVA output, data from 2016–2018 are
merged to create a single set of analysis categories based on the BDT output. The BDT
output is transformed such that the distribution of the mix of the VBF HH signals with
SM couplings and quartic coupling c2V = 0 is uniform. The transformation is applied to all
events in the two M̃X regions. The distribution of the MVA outputs for data and simulated
events is shown in figure 6.
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Figure 6. The distribution of the two MVA outputs is shown in data and simulated events in the
two VBF M̃X regions: M̃X > 500GeV (left) and M̃X < 500GeV (right). Data, dominated by the
γγ+ jets and γ+ jets backgrounds, are compared to the VBF HH signal samples with SM couplings
and c2V = 0, SM ggF HH and single H samples (ttH, ggH, VBF H, VH) after imposing the
VBF selection criteria described in section 5. The error bars on the data points indicate statistical
uncertainties. The HH signal has been scaled by a factor of 103 for display purposes.

9 Event categorization

In order to maximize the sensitivity of the search, events are split into different categories
according to the output of the MVA classifier and the mass of the Higgs boson pair system
M̃X. The M̃X distribution changes significantly for different BSM hypotheses, as shown in
figure 4. Therefore, a categorization of HH events in M̃X creates signal regions sensitive
to multiple theoretical scenarios. In the search for VBF HH production, the categories in
M̃X are defined before the MVA is trained, as described in section 8.2. For the categories
that target ggF HH production, categories in M̃X are defined after the MVA is trained.

The categorization is optimized by maximizing the expected significance estimated as
the sum in quadrature of S/

√
B over all categories in a window centered on mH : 115 <

mγγ < 135GeV. Here, S and B are the numbers of expected signal and background events,
respectively. Simulated events are used for this optimization. The SM HH process is
considered as signal, while the background consists of the γγ + jets, γ + jets, and ttH
processes. The MVA categories are optimized simultaneously with a threshold on the
value of ttHScore. Two VBF and three ggF categories are optimized based on the MVA
output. For ggF HH in each MVA category a set of M̃X categories is then optimized. The
optimization procedure leads to 12 ggF analysis categories: four categories in M̃X in each
of the three categories in the MVA score. The optimized selection on ttHScore > 0.26
corresponds to 80 (85)% ttH background rejection at 95 (90)% signal efficiency for the
12 ggF (2 VBF) categories. The categorization is summarized in table 2. The VBF and
ggF categories are mutually exclusive, as we only consider events that do not enter the
VBF categories for the ggF categories. Events with VBF MVA scores below 0.52 (0.86)
for M̃X > 500 (M̃X < 500)GeV are not considered in the VBF signal region. Because
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Category MVA M̃X (GeV)
VBF CAT 0 0.52–1.00 >500
VBF CAT 1 0.86–1.00 250–500
ggF CAT 0 0.78–1.00 >600
ggF CAT 1 510–600
ggF CAT 2 385–510
ggF CAT 3 250–385
ggF CAT 4 0.62–0.78 >540
ggF CAT 5 360–540
ggF CAT 6 330–360
ggF CAT 7 250–330
ggF CAT 8 0.37–0.62 >585
ggF CAT 9 375–585
ggF CAT 10 330–375
ggF CAT 11 250–330

Table 2. Summary of the analysis categories. Two VBF- and twelve ggF-enriched categories are
defined based on the output of the MVA classifiers and the mass of the Higgs boson pair system
M̃X. The VBF and ggF categories are mutually exclusive.

of the overwhelming background contamination such events do not improve the expected
sensitivity of the analysis. Similarly, events with ggF MVA scores below 0.37 are not
considered in the ggF signal region.

9.1 Combination of the HH and ttH signals to constrain κλ and κt

As discussed in section 3, the HH production cross section depends on κλ and κt . The
production cross section of the single H processes also depends on κλ, as a result of NLO
electroweak corrections [33]. The ggH and ttH production cross sections additionally
depend on κt . Therefore, the HH → γγbb signal can be combined with the single H
production modes to provide an improved constraint on the κλ and κt parameters. In
the case of anomalous values of κλ, the single H process with the largest modification
of the cross section is ttH. For this reason, additional orthogonal categories targeting
the ttH process are included in the analysis: the “ttH leptonic” and the “ttH hadronic”
categories, developed and optimized for the measurement of the ttH production cross
section in the diphoton decay channel [32]. The events that do not pass the selections for
the HH categories defined in table 2 are tested for the ttH categories. This ensures the
orthogonality between the events selected by the HH and ttH categories.

The H → γγ candidate selection is the same as described in section 5. The ttH
leptonic categories target ttH events where at least one W boson, originating from the top
or antitop quark, decays leptonically. At least one isolated electron (muon) with |η| < 2.4
and pT > 10 (5)GeV, and at least one jet with pT > 25GeV are required. The ttH hadronic
categories target hadronic decays of W bosons. In these categories at least three jets are
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required, one of which must be b tagged, and a lepton veto is imposed. In order to maximize
the sensitivity, an MVA approach is used to separate the ttH events from the background,
dominated by γγ + jets, γ + jets, tt + jets, tt + γ, and tt + γγ events. A BDT classifier
is trained for each of the two channels using simulated events. The variables used for
the training include kinematic properties of the reconstructed objects, object identification
variables, and global event properties such as jet and lepton multiplicities. The BDT input
variables also include the outputs of other machine learning algorithms trained specifically
to target different backgrounds. These include DNN classifiers trained to reduce the tt +
γγ and γγ + jets background, and a top quark tagger based on a BDT [90]. The output
scores of the BDTs are used to reject background-like events and to classify the remaining
events in four subcategories for each of the two channels. The boundaries of the categories
are optimized by maximizing the expected significance of the ttH signal.

10 Signal model

In each of the HH categories, a parametric fit in the (mγγ ,mjj) plane is performed. In the
ttH categories, the mγγ distribution is fitted to extract the signal. When the HH and ttH
categories are combined, both the HH and ttH production modes are considered as signals.

The shape templates of the diphoton and dijet invariant mass distributions are con-
structed from simulation. In each HH and ttH analysis category, the mγγ distribution is
fitted using a sum of, at most, five Gaussian functions. Figure 7 (left) shows the signal
model for mγγ in the VBF and ggF CAT0 categories, which are the categories with the
best resolution.

For the HH categories, the mjj distributions are modeled with a double-sided Crystal
Ball (CB) function, a modified version of the standard CB function [91] with two indepen-
dent exponential tails. Figure 7 (right) shows the signal model for mjj in the VBF and ggF
categories with the best resolution.

For the HH signal, the final two-dimensional (2D) signal probability distribution func-
tion is a product of the independent mγγ and mjj models. The possible correlations are
investigated by comparing the 2D mγγ-mjj distributions in the simulated signal samples
with the 2D probability distributions built as a product of the one-dimensional (1D) ones.
With the statistical precision available in this analysis, the correlations have been found
to be negligible.

11 Background model

11.1 Single Higgs background model

The SM single H background shape is constructed from the simulation following the same
methodology as used for the signal model described in section 10. For each analysis category
and single H production mode, the mγγ distributions are fitted using a sum of, at most,
five Gaussian functions. The mjj modeling in the HH categories depends on the production
mechanism, and a parametrisation is obtained from the simulated distributions: for the
ggH and VBF H processes, the mjj distribution is modeled with a Bernstein polynomial;
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Figure 7. Parametrized signal shape for mγγ (left) and mjj(right) in the best resolution ggF
(upper) and VBF (lower) categories. The open squares represent simulated events and the blue
lines are the corresponding models. Also shown are the σeff value (half the width of the narrowest
interval containing 68.3% of the invariant mass distribution) and the corresponding interval as a
gray band, and the full width at half the maximum (FWHM) and the corresponding interval as a
double arrow.

for VH production, a CB function is used to model the distribution of the hadronic decays
of vector bosons; for ttH, where the two b jets are produced from a top quark decay, a
Gaussian function with a mean around 120GeV is used. Like for the signal modeling, the
final 2D SM single H model is a product of the independent models of the mγγ and mjj
distributions.

11.2 Nonresonant background model

The model used to describe the nonresonant background is extracted from data using the
discrete profiling method [92] as described in ref. [73]. This technique was designed as a
way to estimate the systematic uncertainty associated with choosing a particular analytic
function to fit the background mγγ and mjj distributions. The method treats the choice of
the background function as a discrete nuisance parameter in the likelihood fit to the data.

– 17 –



J
H
E
P
0
3
(
2
0
2
1
)
2
5
7

This method is used to model mγγ distribution of the nonresonant background in the ttH
categories. For the HH categories, the method is generalized to the 2D model case as a
product of two 1D models for mγγ and mjj.

A set of MC pseudo-experiments was generated with positive and negative correlations
between mγγ and mjj injected and then fitted with the factorized 2D model. A negligible
bias has been observed, and the correlations have been found to be within the statistical
precision of the analysis.

12 Systematic uncertainties

The systematic uncertainties only affect the signal model and the resonant single H back-
ground, since the nonresonant background model is constructed in a data-driven way with
the uncertainties associated with the choice of a background fit function taken into account
by the discrete profiling method described in section 11.2. The systematic uncertainties
can affect the overall normalization, or a variation in category yields, representing event
migration between the categories. Theoretical uncertainties have been applied to the HH
and single H normalizations. The following sources of theoretical uncertainty are consid-
ered: the uncertainty in the signal cross section arising from scale variations, uncertainties
on αS, PDFs and in the prediction of the branching fraction B(HH → γγbb). The domi-
nant theoretical uncertainties arise from the prediction of the SM HH and ttH production
cross sections. In addition, a conservative PS uncertainty is assigned to the VBF HH
signal, defined as the full symmetrized difference in yields in each category obtained with
simulated samples of VBF HH events interfaced with the standard pT-ordered and dipole
shower PS schemes.

The dominant experimental uncertainties are:

• Photon identification BDT score: the uncertainty arising from the imperfect MC
simulation of the input variables to the photon ID is estimated by rederiving the
corrections with equally sized subsets of the Z → ee events used to train the quantile
regression BDTs. Its magnitude corresponds to the standard deviation of the event-
by-event differences in the photon ID evaluated on the two different sets of corrected
input variables. This uncertainty reflects the limited capacity of the BDTs arising
from the finite size of the training set. It is seen to cover the residual discrepancies
between data and simulation. The uncertainty in the signal yields is estimated by
propagating this uncertainty through the full category selection procedure.

• Photon energy scale and resolution: the uncertainties associated with the correc-
tions applied to the photon energy scale in data and the resolution in simulation are
evaluated using Z → ee events [93].

• Per-photon energy resolution estimate: the uncertainty in the per-photon resolution
is parametrized as a rescaling of the resolution by ±5% around its nominal value. This
is designed to cover all differences between data and simulation in the distribution,
which is an output of the energy regression.
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• Jet energy scale and resolution corrections: the energy scale of jets is measured
using the pT balance of jets with Z bosons and photons in Z → ee, Z → µµ, and
γ + jets events, as well as using the pT balance between jets in dijet and multijet
events [41, 89]. The uncertainty in the jet energy scale and resolution is a few percent
and depends on pT and η. The impact of uncertainties on the event yields is evaluated
by varying the jet energy corrections within their uncertainties and propagating the
effect to the final result. Some sources of the jet energy scale uncertainty are fully
(anti-)correlated, while others are considered uncorrelated.

• Jet b tagging: uncertainties in the b tagging efficiency are evaluated by comparing
data and simulated distributions for the b tagging discriminator [94]. These include
the statistical uncertainty in the estimate of the fraction of heavy- and light-flavor
jets in data and simulation.

• Trigger efficiency: the efficiency of the trigger selection is measured with Z → ee
events using a tag-and-probe technique [95]. An additional uncertainty is introduced
to account for a gradual shift in the timing of the inputs of the ECAL L1 trigger
in the region |η| > 2.0, which caused a specific trigger inefficiency during 2016 and
2017 data taking. Both photons and, to a greater extent, jets can be affected by this
inefficiency, which has a small impact.

• Photon preselection: the uncertainty in the preselection efficiency is computed as the
ratio between the efficiency measured in data and in simulation. The preselection
efficiency in data is measured with the tag-and-probe technique in Z → ee events [95].

• Integrated luminosity: uncertainties are determined by the CMS luminosity monitor-
ing for the 2016–2018 data-taking years [96–98] and are in the range of 2.3–2.5%. To
account for common sources of uncertainty in the luminosity measurement schemes,
some sources are fully (anti-)correlated across the different data-taking years, while
others are considered uncorrelated. The total 2016–2018 integrated luminosity has
an uncertainty of 1.8%.

• Pileup jet identification: the uncertainty in the pileup jet classification output score
is estimated by comparing the score of jets in events with a Z boson and one balanced
jet in data and simulation. The assigned uncertainty depends on pT and η, and is
designed to cover all differences between data and simulation in the distribution.

Most of the experimental uncertainties are uncorrelated among the three data-taking
years. Some sources of uncertainty in the measured luminosity and jet energy corrections
are fully (anti-)correlated, while others are considered uncorrelated. This search is statis-
tically limited, and the total impact of systematic uncertainties on the result is about 2%.
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13 Results

An unbinned maximum likelihood fit to the mγγ and mjj distributions is performed si-
multaneously in the 14 HH categories to extract the HH signal. A likelihood function
is defined for each analysis category using analytic models to describe the mγγ and mjj
distributions of signal and background events, with nuisance parameters to account for
the experimental and theoretical systematic uncertainties described in section 12. The
fit is performed in the mass ranges 100 < mγγ < 180GeV and 70 < mjj < 190GeV for
all categories apart from ggF CAT10 and CAT11. In those two categories, a small but
nonnegligible shoulder was observed in the mjj distribution. Therefore, the mjj fit range
is reduced to 90 < mjj < 190GeV to avoid a possible bias with minimal impact on the
analysis sensitivity.

In order to determine κλ and κt , the HH and ttH categories are used together in a
simultaneous maximum likelihood fit. In the ttH categories, a binned maximum likelihood
fit is performed to mγγ in the mass range 100 < mγγ < 180GeV.

The data and the signal-plus-background model fit tomγγ andmjj are shown in figure 8
for the best resolution ggF and VBF categories. The distribution of events weighted by
S/(S+B) from all HH categories is shown in figure 9 for mγγ and mjj. In this expres-
sion, S (B) is the number of signal (background) events extracted from the signal-plus-
background fit.

No significant deviation from the background-only hypothesis is observed. We set
upper limits at 95% CL on the product of the production cross section of a pair of Higgs
bosons and the branching fraction into γγbb , σHHB(HH → γγbb), using the modified
frequentist approach for confidence levels (CLs), taking the LHC profile likelihood ratio as
a test statistic [99–102] in the asymptotic approximation. The observed (expected) 95%
CL upper limit on σHHB(HH → γγbb) amounts to 0.67 (0.45) fb. The observed (expected)
limit corresponds to 7.7 (5.2) times the SM prediction. All results were extracted assuming
mH = 125GeV. We observe a variation smaller than 1% in both the expected and observed
upper limits when using mH = 125.38 ± 0.14GeV, corresponding to the most precise
measurement of the Higgs boson mass to date [103].

Limits are also derived as a function of κλ, assuming that the top quark Yukawa
coupling is SM-like (κt = 1). The result is shown in figure 10. The variation in the
excluded cross section as a function of κλ is directly related to changes in the kinematical
properties of HH production. At 95% CL, κλ is constrained to values in the interval
[−3.3, 8.5], while the expected constraint on κλ is in the interval [−2.5, 8.2]. This is the
most sensitive search to date.

Assuming instead that an HH signal exists with the properties predicted by the SM,
constraints on λHHH can be set. The results are obtained both with the HH categories only,
and with the HH categories combined with the ttH categories in a simultaneous maximum
likelihood fit. The HH signal is considered together with the single H processes (ttH,
ggH, VBF H,VH, and Higgs boson production in association with a single top quark).
The cross sections and branching fractions of the HH and single H processes are scaled as
a function of κλ, while the top quark Yukawa coupling is assumed to be SM-like, κt = 1.
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Figure 8. Invariant mass distributions mγγ (upper) and mjj (lower) for the selected events in
data (black points) in the best resolution ggF (CAT0) and VBF (CAT0) categories. The solid
red line shows the sum of the fitted signal and background (HH+H+B), the solid blue line shows
the background component from the single Higgs boson and the nonresonant processes (H+B),
and the dashed black line shows the nonresonant background component (B). The normalization
of each component (HH, H, B) is extracted from the combined fit to the data in all analysis
categories. The one (green) and two (yellow) standard deviation bands include the uncertainties in
the background component of the fit. The lower panel in each plot shows the residual signal yield
after the background (H+B) subtraction.

One-dimensional negative log-likelihood scans for κλ are shown in figure 11 for an Asimov
data set [101] generated with the SM signal-plus-background hypothesis, κλ = 1, and for
the observed data. When combining the HH analysis categories with the ttH categories,
we obtain κλ = 0.6+6.3

−1.8 (1.0+5.7
−2.5 expected). Values of κλ outside the interval [−2.7, 8.6]

are excluded at 95% CL. The expected exclusion at 95% CL corresponds to the region
outside the interval [−3.3, 8.6]. The shape of the likelihood as function of κλ in figure 11
is characterized by 2 minima. This is related to an interplay between the cross section
dependence on κλ and differences in acceptance between the analysis categories.
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Figure 9. Invariant mass distributions mγγ (left) and mjj (right) for the selected events in data
(black points) weighted by S/(S+B), where S (B) is the number of signal (background) events
extracted from the signal-plus-background fit. The solid red line shows the sum of the fitted signal
and background (HH+H+B), the solid blue line shows the background component from the single
Higgs boson and the nonresonant processes (H+B), and the dashed black line shows the nonresonant
background component (B). The normalization of each component (HH, H, B) is extracted from
the combined fit to the data in all analysis categories. The one (green) and two (yellow) standard
deviation bands include the uncertainties in the background component of the fit. The lower panel
in each plot shows the residual signal yield after the background (H+B) subtraction.
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cross section and B(HH → γγbb) obtained for different values of κλ assuming κt = 1. The green
and yellow bands represent, respectively, the one and two standard deviation extensions beyond the
expected limit. The long-dashed red line shows the theoretical prediction.
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Figure 11. Negative log-likelihood, as a function of κλ, evaluated with an Asimov data set assuming
the SM hypothesis (left) and the observed data (right). The 68 and 95% CL intervals are shown
with the dashed gray lines. The two curves are shown for the HH (blue) and HH +ttH (orange)
analysis categories. All other couplings are set to their SM values.

The HH and single Higgs boson production cross sections depend not only on κλ,
but also on κt . To better constrain the κλ and κt coupling modifiers, a 2D negative log-
likelihood scan in the (κλ, κt) plane is performed, taking into account the modification of
the production cross sections and B(H → bb), B(H → γγ) for anomalous (κλ, κt) values.
The modification of the single H production cross section for anomalous κλ is modeled at
NLO, while the dependence on κt is parametrized at LO only, neglecting NLO effects [33].
This approximation holds as long as the value of |κt | is close to unity, roughly in the range
0.7 < κt < 1.3. The parametric model is not reliable outside of this range. Figure 12 shows
the 2D likelihood scans of κλ versus κt for an Asimov data set assuming the SM hypothesis
and for the observed data. The regions of the 2D scan where the κt parametrization for
anomalous values of κλ at LO is not reliable are shown with a gray band.

The inclusion of the ttH categories significantly improves the constraint on κt . The 1D
negative log-likelihood scan, as a function of κt with κλ fixed at κλ = 1, is shown in figure 13
for an Asimov data set generated assuming the SM hypothesis, κt = 1, as well as for the
observed data. The measured value of κt is κt = 1.3+0.2

−0.2 (1.0+0.2
−0.2 expected). Values of κt

outside the interval [0.9, 1.9] are excluded at 95% CL. The constraint on κt is comparable
to the one recently set in ref. [104], where anomalous values of cV were also considered.

Upper limits at 95% CL are also set on the product of the HH VBF production cross
section and branching fraction, σVBF HHB(HH → γγbb), with the yield of the ggF HH
signal constrained within uncertainties to the one predicted in the SM. The observed
(expected) 95% CL upper limit on σVBF HHB(HH → γγbb) amounts to 1.02 (0.94) fb.
The limit corresponds to 225 (208) times the SM prediction. This is the most stringent
constraint on σVBF HHB(HH → γγbb) to date.
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Figure 14. Expected and observed 95% CL upper limits on the product of the VBF HH production
cross section and B(HH → γγbb) obtained for different values of c2V . The green and yellow bands
represent, respectively, the one and two standard deviation extensions beyond the expected limit.
The long-dashed red line shows the theoretical prediction.

Limits are also set, as a function of c2V , as presented in figure 14. The observed
excluded region corresponds to c2V < −1.3 and c2V > 3.5, while the expected exclusion is
c2V < −0.9 and c2V > 3.1. It can be seen in figure 14 that this analysis is more sensitive
to anomalous values of c2V than to the region around the SM prediction. This is related to
the fact that, for anomalous values of c2V , the total cross section is enhanced and the M̃X
spectrum is harder as shown in figure 4 (right). This leads to an increase in the product
of signal acceptance and efficiency as well as a more distinct signal topology.

Assuming HH production occurs via the VBF and ggF modes, we set constraints on
the κλ and c2V coupling modifiers simultaneously. A 2D negative log-likelihood scan in
the (κλ, c2V) plane is performed using the 14 HH analysis categories. Figure 15 shows 2D
likelihood scans for the observed data and for an Asimov data set assuming all couplings
are at their SM values.

We also set upper limits at 95% CL for the twelve BSM benchmark hypotheses defined
in table 1. In this fit, the yield of the VBF HH signal is constrained within uncertainties to
the one predicted in the SM. The limits for different BSM hypotheses are shown in figure 16
(upper). In addition, limits are also calculated as a function of the BSM coupling between
two Higgs bosons and two top quarks, c2, as presented in figure 16 (lower). The observed
excluded region corresponds to c2 < −0.6 and c2 > 1.1, while the expected exclusion is
c2 < −0.4 and c2 > 0.9.
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Figure 15. Negative log-likelihood contours at 68 and 95% CL in the (κλ, c2V) plane evaluated
with an Asimov data set assuming the SM hypothesis (left) and with the observed data (right).
The contours are obtained using the HH analysis categories only. The best fit value (κλ = 0.0, c2V
= 0.3) is indicated by a blue circle, and the SM prediction (κλ = 1.0, c2V = 1.0) by a black star.

14 Summary

A search for nonresonant Higgs boson pair production (HH) has been presented, where
one of the Higgs bosons decays to a pair of bottom quarks and the other to a pair of
photons. This search uses proton-proton collision data collected at

√
s = 13TeV by the

CMS experiment at the LHC, corresponding to a total integrated luminosity of 137 fb−1. No
significant deviation from the background-only hypothesis is observed. Upper limits at 95%
confidence level (CL) on the product of the HH production cross section and the branching
fraction into γγbb are extracted for production in the standard model (SM) and in several
scenarios beyond the SM. The expected upper limit at 95% CL on σHHB(HH → γγbb) is
0.45 fb, corresponding to about 5.2 times the SM prediction, while the observed upper limit
is 0.67 fb, corresponding to 7.7 times the expected value for the SM process. The presented
search has the highest sensitivity to the SM HH production to date. Upper limits at 95%
CL on the SM HH production cross section are also derived as a function of the Higgs boson
self-coupling modifier κλ ≡ λHHH/λ

SM
HHH assuming that the top quark Yukawa coupling is

SM-like. The coupling modifier κλ is constrained within a range −3.3 < κλ < 8.5, while
the expected constraint is within a range −2.5 < κλ < 8.2 at 95% CL.

This search is combined with an analysis that targets top quark-antiquark associated
production of a single Higgs boson decaying to a diphoton pair. In the scenario in which
the HH signal has the properties predicted by the SM, the coupling modifier κλ has been
constrained. In addition, a simultaneous constraint on κλ and the modifier of the coupling
between the Higgs boson and the top quark κt is presented when both the HH and single
Higgs boson processes are considered as signals.

Limits are also set on the cross section of nonresonant HH production via vector boson
fusion (VBF). The most stringent limit to date is set on the product of the HH VBF

– 26 –



J
H
E
P
0
3
(
2
0
2
1
)
2
5
7

Shape benchmark

) 
(f

b
)

b
b

γ
γ 

→
 B

(H
H

 
g

g
F

 H
H

σ

1−10

1

10

CMS  (13 TeV)-1137 fb

95% CL upper limits

Observed

Median expected

68% CL expected

95% CL expected

95% CL upper limits

Observed

Median expected

68% CL expected

95% CL expected

1 2 3 4 5 6 7 8 9 10 11 12

bbγγ →HH 
95% CL upper limits

Observed

Median expected

68% CL expected

95% CL expected

1− 0.5− 0 0.5 1 1.5

2
c

0

0.5

1

1.5

2

) 
(f

b
)

b
b

γ
γ 

→
 B

(H
H

 
g
g
F

 H
H

σ

CMS  (13 TeV)-1137 fb

95% CL upper limits

Observed

Median expected

68% CL expected

95% CL expected

Theoretical prediction

bbγγ →HH 

Figure 16. Expected and observed 95% CL upper limits on the product of the ggF HH production
cross section and B(HH → γγbb) obtained for different nonresonant benchmark models (defined
in table 1) (upper) and BSM coupling c2 (lower). In this fit, the yield of the VBF HH signal
is constrained within uncertainties to the one predicted in the SM. The green and yellow bands
represent, respectively, the one and two standard deviation extensions beyond the expected limit.
On the lower plot the long-dashed red line shows the theoretical prediction.
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production cross section and the branching fraction into γγbb . The observed (expected)
upper limit at 95% CL amounts to 1.02 (0.94) fb, corresponding to 225 (208) times the SM
prediction. Limits are also set as a function of the modifier of the coupling between two
vector bosons and two Higgs bosons, c2V . The observed excluded region corresponds to
c2V < −1.3 and c2V > 3.5, while the expected exclusion is c2V < −0.9 and c2V > 3.1.

Numerous hypotheses on coupling modifiers beyond the SM have been explored, both
in the context of inclusive Higgs boson pair production and for HH production via gluon-
gluon fusion and VBF. The production of Higgs boson pairs was also combined with the
top quark-antiquark pair associated production of a single Higgs boson. Overall, all of the
results are consistent with the SM predictions.
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