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Abstract  28 

Circular economy (CE) offers a pathway towards sustainable, closed-loop resource systems, but 29 

widespread adoption across industrial sectors is limited by fragmented knowledge and varied 30 

implementation approaches. This article reviews sector-specific challenges and opportunities 31 

associated with implementing and measuring the benefits of CE strategies. Literature mapping 32 

highlights progress towards CE implementation in food, chemicals, metals, consumer 33 

electronics, and building and infrastructure sectors, and towards measuring CE outcomes via 34 

systems analysis methods like life cycle assessment (LCA) and material flow analysis (MFA). 35 

However, key challenges were also identified that point to future research and demonstration 36 

needs. First, research on CE adoption typically exists as case studies that are closely linked to a 37 

sector. But literature has not effectively synthesized knowledge gained across domains, 38 

particularly understanding underlying barriers to CE and where they occur in product life cycles. 39 

Second, research on CE outcomes often applies well-established methods without adapting for 40 

unique attributes of CE systems. A key opportunity is in integrative methodological advances, 41 

such as expanded use of consequential LCA, development of physical Input-Output tables 42 

(PIOTs), and integrating MFA with dynamical models.  Finally, regardless of sector, new CE 43 

business models are seen as a critical enabler to realize success, but theoretical frameworks in 44 

literature are not well-tested in practice. The review also highlights opportunities to harness other 45 

emerging trends, such as big data, to provide better information for system modelers and 46 

decision-oriented insight to guide CE stakeholders.  47 

1. Introduction and approach 48 

Circular economy (CE) has gained widespread momentum as a means to achieve sustainable 49 

economic growth that is decoupled from resource extraction and waste generation. Recent years 50 

have seen a significant increase in research to develop and evaluate CE strategies (Kalmykova et 51 

al. 2018), in parallel to concurrent growth of new business models that seek to apply these 52 

strategies in practice. This confluence of interest in the CE paradigm has created unique 53 

opportunities for initiatives that engage diverse actors, including businesses, policy makers, and 54 

the academic community (Ghisellini et al. 2016). A recent article highlighted the importance of 55 

using lessons learned from CE application to establish priorities for future research (Babbitt et al. 56 

2018). Given this motivation, the 2018 International Symposium on Sustainable Systems and 57 
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Technology (ISSST), the longest-run interdisciplinary conference focused on sustainability 58 

science and engineering, held a special session on CE that brought together researchers and 59 

practitioners from industry, state and federal government, academia, community organizations, 60 

and national labs to explore how various groups were approaching this challenge. In 2019, the 61 

CE session coordinators organized a special issue on “Advances in the Circular Economy,” 62 

which sought to understand the progress with which CE concepts were being translated into 63 

policy, business models, and industrial innovations (Singh et al., 2019) .  64 

This contribution aims to provide a perspective on what was learned from these collective efforts 65 

within the context of broader CE literature by focusing on sector-specific challenges as well as 66 

cross-cutting themes. Recent reviews of CE adoption have established challenges faced in 67 

specific sectors, such as manufacturing (Acerbi and Taisch, 2020); business (Centobelli et al., 68 

2020); construction (Osobajo et al., 2020) and waste electric and electronic equipment 69 

(Bressanelli et al., 2020), and proposed unification of circular economy research (Principato et 70 

al., 2019) (Borrello et al., 2020). However, existing literature has not fully compared, contrasted, 71 

or integrated the lessons learned and challenges faced across sectors. Further, existing literature 72 

has not critically explored the gaps in existing methods for analyzing CE outcomes as it relates to 73 

these sectors. Therefore, the goal of this perspective article is to evaluate critical challenges and 74 

opportunities within key sectors and then assess the intersection of those opportunities as a 75 

means to prioritize future research and technology advancement. To this end, we first map 76 

available literature and identify points of convergence and distinction (Section 2). Detailed 77 

sector-specific themes are explored in Section 3 followed by discussion of cross-cutting themes 78 

and enablers in Section 4. The key contribution of this work is in synthesizing the significant 79 

barriers and opportunities in implementing CE across sectors through a critical review of existing 80 

knowledge. 81 

2. Literature Review and Mapping 82 

2.1 Approach 83 

Synthesis of literature to explore key CE themes was carried out in two parts. One part focused 84 

on a scoping analysis of the broad literature to understand core themes and trends, while the 85 

second part applied deeper analysis into key trends to investigate current challenges and 86 

opportunities. The broad literature review focused on CE implementation and application using 87 
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search term circular economy appearing with related terms such as implementation, sector, 88 

application, case study, deployment, operation, or business. These terms were individually 89 

searched with circular economy using the Boolean Operator AND, and each of the above-90 

mentioned terms were truncated to the root using the * operator to ensure all variants were 91 

included. Literature search was carried out in the Web of Science Core Collection for all years, 92 

resulting in approximately 3,000 results. Title, author, keyword, abstracts, and references were 93 

downloaded and analyzed via keyword association using VOSviewer version 1.6.14. A thesaurus 94 

file was used to synchronize similar terms for consistency. For example, LCA, life-cycle 95 

assessment, and life cycle analysis were all recoded as life cycle assessment.  96 

Identified themes were then critically reviewed by experts in each respective field (listed co-97 

authors). Expert input was solicited from the ISSST special session participants and editors of 98 

and contributors to CE special issues. These topical literature reviews were structured and carried 99 

out to synthesize key challenges and opportunities relative to implementing CE strategies in 100 

identified industrial and business sectors and to evaluating CE outcomes using systems models. 101 

Finally, integration by way of thematic analysis was used to discuss common challenges and 102 

opportunities that were identified.  103 

2.2 Identification of themes 104 

The keyword association map generated for literature review on studies of CE implementation 105 

demonstrates four major literature clusters (Figure 1). Studies applied to specific sectoral case 106 

studies are primarily shown as separate nodes on the outer regions of the blue and green clusters 107 

on the right of Figure 1. There was a notable demarcation of studies that focused on topics such 108 

as metals, electronics, construction, and other infrastructure system  (green) and that were 109 

commonly studied from the perspectives of cradle-to-cradle, material flow analysis (MFA), 110 

reuse, and recycling. Studies aimed at food, biomass, energy, and underlying chemical systems 111 

were clustered in the blue region and typically linked more closely with technologies aimed at 112 

recovering the energy contained in bio-based systems (through, e.g., anaerobic digestion) and 113 

carrying out holistic environmental analyses such as life cycle assessment (LCA). One 114 

observation from this high-level snapshot is that sector-specific studies were fairly fragmented, 115 

suggesting that research in this field has not fully undertaken cross-case comparisons or 116 

synthesis to identify commonalities and contrasts between challenges and opportunities for CE 117 
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implementation for different sectors. Other approaches from the field of industrial ecology, such 118 

as input-output methodologies, are not very prominent in either sectoral space, suggesting a need 119 

for developing more connections between existing systems models and CE research. 120 

 121 

Figure 1. Keyword association map for 3,000 literature studies focused on circular economy 122 

implementation. A lack of cross-sectoral analysis in existing literature is shown by the lack of 123 

strong connections across themes. Major thematic groupings: Red: business models for circular 124 

economy; Yellow: Industrial ecology and symbiosis; Blue: food, bio-based, energy, and LCA; 125 

and Green: mineral, metal, and material flow analysis. 126 

The left regions of Figure 1 (red and orange colors) are primarily focused on business and 127 

structural aspects of CE solutions. Industrial ecology as a whole was closely linked to circular 128 

economy, which is logical given the similarity in their conceptual bases and the overlap of 129 

assessment methods applied in each domain. Many industrial ecology-focused CE studies 130 

revolved around eco-industrial parks (EIPs) and industrial symbiosis from the business 131 

perspective. Given the close connection of industrial ecology to both the business node and to 132 
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assessment methods like LCA, subsequent discussions will enfold that theme into respective 133 

analyses of these topics. Note that the strongest connections among business-focused research 134 

studies were amongst themselves (red region), with emphasis on new business models, 135 

innovation, supply chains, and reverse logistics. The keyword framework was central in this 136 

node, and many of the studies in this domain focused on establishing theoretical frameworks, but 137 

did not often carry through these approaches to the level of implementation in various sectors 138 

(note the absence of strong connections between the business domain and the sectoral studies on 139 

the far right). This analysis motivates our analysis of five key sectors (food and food waste, 140 

chemicals, metals and minerals, electronics and e-waste, and buildings and infrastructure) and 141 

four primary cross-cutting themes (data, models, stakeholder engagement, and business and 142 

innovation). Sector-specific thematic analyses are presented first, followed by cross-cutting 143 

thematic analysis. Since the approach is based on network analysis of existing literature for 144 

critical review, we anticipate that the network of existing literature and citations will change in 145 

coming years. This is especially applicable for CE as there is an exponential increase in 146 

publications related to CE. However, this analysis is envisioned to serve as a reference point 147 

against which progress in CE implementation can be assessed in the future. 148 

3. Sector-Specific Themes 149 

Key challenges and opportunities for implementing CE strategies in the five sectors discussed 150 

here are shown in Figure 2. Each sectoral analysis includes a review of literature on CE 151 

strategies for the sector, followed by a discussion on key challenges and opportunities.   152 

3.1 Food systems and food waste  153 

Food systems have been a central part of CE studies for two reasons. First, they are critical to the 154 

well-being and economic vitality of a growing global population, and second, they face 155 

formidable challenges due to systems-level resource inefficiencies. Food supply chains consume 156 

significant energy and freshwater resources ((Pimentel et al., 2008) (Canning et al., 2010) 157 

(Maupin et al., 2010); release excess nutrient loads to vulnerable ecosystems; and contribute 158 

close to 15% of anthropogenic greenhouse gas releases (Pelletier et al., 2011; FAO 2013). 159 

However, 30-50% of food produced using these vast resources is never consumed, amounting to 160 

over 1.3 billion tons of food waste annually(Gustavsson et al., 2011). Food waste is typically 161 

disposed in landfills in many parts of the world, leading to further economic and environmental 162 
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consequences, particularly climate impacts due to methane released as food waste degrades in 163 

landfills (Gunders, 2012).   164 

 165 
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Figure 2 : Challenges and Opportunities for implementing CE Strategies in five sectors  

Legend:  

 166 

 167 

Food supply chains are ripe for transformation through CE strategies that maximize use of 168 

energy, water, and nutrients and transform waste streams into biological and technical resources. 169 

A significant body of CE research on food focuses on closing the loop on food loss and waste, as 170 

guided by the food waste hierarchy (Principato et al., 2019) (Figure 3), which presents strategies 171 

for minimizing losses, returning food losses and wastes to productive use, or converting wastes 172 

into value-added or lower-impact byproducts  (EPA 2018). With the exception of donating 173 

excess but still usable food, circular food recovery is primarily characterized by open resource 174 

loops where organic waste is repurposed or valorized into a new resource outside the food supply 175 

chain.  176 

Challenges Opportunities 
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 177 

Figure 3. Management of food losses and wastes by the U.S. EPA Food Recovery Hierarchy 178 

offers multiple pathway for closed-loop and open-loop circular economy strategies. 179 

 180 

Common examples of waste valorization in CE literature are anaerobic digestion, fermentation, 181 

or transesterification, which convert food waste into bio-natural gas, bio-alcohols, or bio-diesel 182 

respectively (see e.g., (Ebner et al., 2016), (Hegde et al., 2018); (Holm-Nielsen et al., 2009); 183 

(Kayode and Hart, 2019); (Marousek et al, 2020). The primary environmental benefit of 184 

transforming food wastes into value-added products is the expected displacement of fossil fuel 185 

energy carriers, electricity generation, and synthetic fertilizers. This fossil fuel displacement, 186 

coupled with avoided landfilling and attendant methane releases, results in life cycle greenhouse 187 

gas benefits (Bernstad and Cour Jansen, 2012) (Ebner et al., 2018). However, recent studies on 188 

food recovery in the circular economy context demonstrate that these benefits may not be 189 

realized under alternative methodological choices, such as system boundary, functional unit, or 190 

allocation method (Oldfield et al., 2018) (Olofsson and Börjesson, 2018), suggesting a need to 191 

reexamine LCA methods applied to bio-based circular systems.  192 

Realizing the environmental benefits of circular food systems also relies on significant 193 

commitment, coordination, and communication among disparate stakeholders. For example, in 194 

some regions, the business community has been hesitant to adopt circular strategies beyond 195 

traditional waste management (Leipold and Petit-Boix, 2018) and may require a clearer 196 

understanding of the value proposition, such as reframing organic wastes as bio-based resources 197 
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(Perey et al., 2018). Lack of decision-oriented data and inconsistencies in data collection 198 

methods (Xu et al. 2016) are also barriers for stakeholders such as governmental agencies and 199 

waste managers. Overcoming these barriers will require new business models, incentive 200 

structures (Borrello et al., 2017), innovative policy mechanisms, and multi-stakeholder 201 

collaboration (Halloran et al., 2014).  202 

Such collaborations among stakeholders must be mirrored by physical linkages within food 203 

waste management infrastructure, comprised of material separation, collection, hauling, pre- and 204 

final treatment, and distribution of value-added by-products. This infrastructure must be resilient 205 

to variability in waste composition (Fisgativa et al., 2016)  and temporal and spatial shifts in 206 

generation volume (Lebersorger and Schneider, 2014) ; (Armington et al., 2018). Given that 207 

organic waste generation far surpasses the capacity of existing treatment systems, CE research on 208 

economic and environmentally friendly technology siting and deployment is also critical. Siting 209 

organic waste recovery facilities requires optimization of often competing objectives, such as 210 

compliance to local regulations, minimizing transport of waste and byproducts, economic input 211 

from tipping fees, access to road and utility networks, public perceptions, and avenues for 212 

managing residual solid or liquid wastes  (Armington et al., 2018) (Ma et al., 2005) (Thompson 213 

et al., 2013). 214 

Key barriers to implementing technology and infrastructure for circular food systems also 215 

include processing inefficiencies and lack of markets for utilizing the generated energy and 216 

byproducts (Nghiem et al., 2017); (De Clercq et al., 2016). These barriers reflect the fragmented 217 

nature of food recovery processes, wherein technological solutions are aligned to specific waste 218 

streams, as opposed to a more fully integrated circular economy. These challenges also give rise 219 

to opportunity for innovation. A promising avenue is integration of organic waste-to-resource 220 

technologies, whereby food waste streams can be converted into a wide array of value-added 221 

byproducts by way of a “food waste biorefinery” (Armington et al., 2018) . Like a conventional 222 

oil refinery, the incoming feedstocks (food waste instead of petroleum) are converted to multiple 223 

co-products, such as electrical or thermal energy, liquid fuels, fertilizers, soil amendments, 224 

specialty chemicals or solvent-grade alcohols (Hegde et al., 2018), which can make the operator 225 

more competitive, particularly during fluctuating demand for and prices of bio-products  226 

(Cherubini, 2010) (Lohrasbi et al., 2010) (Maroušek et al., 2017). 227 
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3.2 Chemicals 228 

CE implementation in the chemicals sector must be considered in two separate domains: pre-229 

consumer, where chemicals firms have long been leaders in internal recovery and reuse of 230 

valuable feedstock materials; and post-consumer, where CE practices face significant challenges 231 

and recycling loops are essentially limited to certain plastics and textiles and minerals from non-232 

hazardous industrial wastes  (Garcia and Robertson, 2017) (Eckelman and Chertow, 2009) (Haas 233 

et al., 2015).  A recent material flow map for chemicals constructed (Levi and Cullen, 2018) 234 

gives a holistic mass-based view of the chemicals value chain, totaling 820 million metric tons of 235 

chemical products entering use in 2013.  In a report for the European Chemical Industry, it was 236 

estimated that up to 60% of these molecules could potentially be ‘re-circulated’, through a 237 

combination of substitution, direct reuse of products or molecules, and recycling of molecules 238 

with re-synthesis into useful chemical products. 239 

On the pre-consumer side, CE practices have been in place as long as the modern chemical 240 

factory has existed.  One of the early titans of industrial chemicals production August Wilhelm 241 

von Hoffman (1848) said, “in an ideal chemical factory there is, strictly speaking, no waste but 242 

only products. The better a real factory makes use of its waste, the closer it gets to its ideal, the 243 

bigger is the profit’’ (Cucciniello and Cespi, 2018).   In practice, chemical conversion processes 244 

are not ideal and give rise to co-products or by-products through primary or side reactions, as 245 

well as unreacted reagents, spent catalysts, and solvents. Large-scale integrated biochemical and 246 

petrochemical plants capture these streams through separation processes such as air stripping or 247 

distillation, conduct further purification or regeneration as necessary, and reuse them on-site or 248 

sell to partners (de Jong and Jungmeier, 2015) (Jenck et al., 2004).  In very large chemical 249 

installations, chemical companies can run synthesis processes with linked value chains, so that 250 

byproducts from one process are used directly in another, what the German chemical giant BASF 251 

calls the Verbund concept. 252 

One of the most active areas of research on pre-consumer CE practices is chemical process 253 

development for upgrading or valorization of byproducts from outside the chemicals industry   254 

(Cucciniello et al., 2016)  (Ricciardi et al., 2018), including through participation in eco-255 

industrial parks or industrial symbioses where byproducts are exchanged among firms for mutual 256 

economic and environmental benefit  Guo et al. (2016).  As emphasized by Kalmykova et al. 257 
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(2018), the chemicals industry is uniquely positioned to enable circular economy practices by 258 

using chemical engineering innovations to enable reuse of resources from a range of large-259 

volume waste streams.  Examples include chemical processes for recovery of valuable metals 260 

from e-waste and metallurgical wastes and recovery of nutrients from wastewater treatment 261 

(BASF, 2018; Dow, 2019).  This key role for the chemicals industry has been emphasized in 262 

research (Clark et al., 2016) (Keijer et al., 2019), market studies (Elser and Ulbrich, 2017), and 263 

industry documents c.f. from BASF  (B.A.S.F., 2018), Dow  (Dow, 2019) and the European 264 

Chemical Industry Council  (C.E.F.I.C., 2018) .  Chemical process innovation may enable 265 

greater circularity for resource streams that are currently underutilized, including lignin from 266 

pulp and paper operations that could in theory be used as a feedstock for a wide variety of 267 

aromatic molecules (Clark et al., 2016).  Carbon dioxide has been cited by many as the ‘holy 268 

grail’ of potential byproduct feedstocks, sourced both from within the chemicals industry, which 269 

produces net 137 million metric tons annually (Clark et al, 2016), as well as from other industrial 270 

sources.  271 

On the post-consumer side, the most important barrier to CE practices is chemical contamination 272 

and associated end-of-life safety concerns.  In many cases chemical contaminants are added by 273 

design, such as flame retardants in plastics,  (Leslie et al., 2016) that enhance product 274 

performance but inhibit downstream recycling. Chemists, therefore, have a crucial role in 275 

promoting circular economy by redesigning polymers and other chemical products to achieve the 276 

same desired function without using inherently hazardous or inhibitory substances (Clark et al, 277 

2016). CEFIC and the International Chemical Secretariat (ChemSec) (ChemSec Report, 278 

Accessed 2020) also emphasize the importance of safety for the circular economy and the need 279 

for eliminating hazardous chemicals from the value chains, especially if the products are to be 280 

recycled and reused.  281 

Chemical firms have also been active developers and adopters of metrics in both pre- and post-282 

consumer domains, bolstered by popularization of design frameworks such as the Principles of 283 

Green Chemistry (Zimmerman et al., 2020).  Measures such as E-factor or reaction mass 284 

efficiency (RME) focus on avoiding process wastes are aligned with circular economy goals.  285 

However, green chemistry principles also recognize that designing products to be long-lived or 286 

recyclable may not always be environmentally preferable, and include guidance for ‘targeted 287 
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durability, not immortality’ and ‘design for degradation’, especially for bio-based materials 288 

(Mcdonough et al., 2003). 289 

CE goals in the chemicals sector must not be naïve to other environmental considerations like 290 

energy use or toxicity and other chemical hazards.  Contamination with toxic compounds has 291 

been a common reason why byproducts from the chemicals sector must be disposed of in 292 

controlled landfills, precluding their recycling or reuse  (Geueke et al., 2018). Appropriate 293 

regulations have been applied to hazardous long-lived products when our understanding of 294 

toxicity has improved.  For example, building products containing lead paint or asbestos should 295 

clearly not be targeted for circulation into new products.  The same logic holds true for legacy 296 

chemicals that are highly persistent, bioaccumulative, or otherwise harmful to the environment, 297 

such as chlorofluorocarbon ozone depleting substances. Therefore, the pursuit of CE should 298 

balance the benefits of recovering chemicals and materials against the potential environmental or 299 

health damages of doing so, as is standard practice in LCA in order to avoid “burden-shifting”, 300 

as noted in Section 4.  CE practitioners should recognize that the most prudent course of action 301 

for byproducts or end-of-life products from the chemicals sector will sometimes be to pursue 302 

safe and secure disposal or thermal destruction, and focus their efforts instead on green 303 

chemistry approaches to design the next generation of products for recyclability. 304 

3.3 Metals and Minerals 305 

The potential for the materials, minerals, and metals industries to move toward a circular 306 

economy is highlighted by the strong decline in resource intensity over the last 50 years (more 307 

production output with less inputs of material and energy resources) (Worrell et al., 1997) 308 

(Cleveland and Ruth, 1998) . Although economics are the main driver for this trend in these 309 

industries, literature points to opportunities to decouple resource extraction and economic growth  310 

(Behrens et al., 2007), a key foundation of a circular economy. However, as total consumption 311 

continues to rise and ore grades continue to decline, pressure increases for this sector.  Literature 312 

focuses on opportunities for circular economy in the materials sector, including recycling (Singh 313 

and Ordoñez, 2016), remanufacturing (Lieder and Rashid, 2016),  enabling reuse via lifespan 314 

extension (Bakker et al., 2014)  , critical material mitigation (Gaustad et al., 2017), additive 315 

manufacturing (Giurco et al., 2014) (Despeisse et al., 2017), and innovative product design and 316 

material selection (Bocken et al., 2016) (I.S. Jawahir and Bradley, 2016) (Bradley et al., 2016).  317 
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One of the key challenges, however, is the translation of these practices from theoretical contexts 318 

to real production and manufacturing applications (Babbitt et al., 2018).  319 

While recycling is one of the largest potential areas, and the materials sector can serve as a sink 320 

for end-of-life resources (Allwood, 2014)  ; recovery rates remain low for most materials.  Even 321 

materials with robust collection and recycling infrastructure like copper, steel, and aluminum 322 

have recycling rates that hover around 50% while other key materials like glasses, plastics, rare 323 

earth metals, lithium etc. have rates under 10% and some with little to no recycling occurring. 324 

Key barriers here are material availability and compositional quality and uncertainty (Arowosola 325 

and Gaustad, 2019).  Collection of post-consumer materials and economic prevention of co-326 

mingling remains problematic (Ferguson and Browne, 2001) (Ferguson, 2010).  As products 327 

continue to integrate a wider diversity of smaller amounts of materials, dissipative losses of these 328 

materials will continue to increase without intervention (Zimmermann and Gößling-Reisemann, 329 

2013).  On the compositional quality side, material mixing also causes tramp element 330 

accumulation in many material streams; this forces dilution and downcycling to meet 331 

compositional specifications of new products. The key needs here point toward a research 332 

roadmap that aims to better collect, identify, and sort materials in preparation for reuse, 333 

remanufacturing, and recycling. 334 

Match-making across industries will also be critical to increasing utilization rates; industrial 335 

symbiosis has already occurred where co-location enables little to no transportation of these 336 

materials (Mathews and Tan, 2011).  Advances in data system are a key enabler here, as 337 

databases that can provide such match-making have been shown to be successful at promoting 338 

partnerships (Sun et al., 2017) (Herczeg et al., 2018)  .  Other industrial ecology approaches are 339 

finding new applications in the material based circular economy, for example, electronic 340 

disassembly and shredding decisions (Ryen et al., 2018), waste management (Tisserant et al., 341 

2017), mining and metals recovery (Corder et al., 2015), and resource efficiency goals  (Ma, Hu 342 

et al. 2015).  Literature also points to the importance of innovation in systems to recover 343 

industrial and manufacturing byproducts as resources in closed-loop systems. Slags, dross, coal 344 

combustion byproducts, mine tailings, red mud, and other materials formerly considered as 345 

“wastes” are being reexamined for resource recovery potential in addition to their use as 346 

additives in many applications (Liu and Li, 2015) (Qin et al., 2015) (Hower et al., 2016) (Lèbre 347 

et al., 2017). Like many other sectors, however, implementing these solutions will require 348 
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concurrent investigation into mechanisms for engaging policy and industry stakeholders to 349 

enhance circularity (Hagelüken et al., 2016) .  350 

3.4 Electronics and E-waste 351 

The electronics sector has emerged as a common topic for materials-focused CE case studies, 352 

both in terms of enhancing loop-closing activities such as recycling and as a backdrop for 353 

analyzing specific materials, such as printed circuit boards, rare earth elements (REE) and other 354 

metals (Fig. 1). Initially comprised of a few single use, large devices, electronics have emerged 355 

as a vast ecosystem of mobile, smart, and connected devices (Internet of Things). This system 356 

continues to evolve as electronics are embedded in non-traditional products like jewelry, 357 

clothing, household appliances, toys, and health monitoring wearables for people and pets 358 

(Saner, 2017) (Bonato, 2010) (Association, 2018)  (Ryen et al., 2014) (Ryen et al., 2018) ( CTA, 359 

2016;).  While CE has achieved success with recycling, products continue to be designed and 360 

produced for a linear system, material recovery is limited, and current systems/attitudes 361 

discourage reuse (Singh and Ordoñez, 2016) .     362 

Collectively, innovations in technology and design strategies play an influential role in CE 363 

strategies for the electronics sector. For example, enhancing strategies to eliminate toxic or 364 

emerging containments and integrate new, biodegradable, nontoxic materials (carbon and 365 

pyrene) have been identified as key opportunities to push the industry towards a zero-waste 366 

pathway (Bakhiyi et al., 2018) (Fu et al., 2016) (Li et al. 2015). Design strategies in literature 367 

focus on extending product lifespan and enabling reuse options through durability, elimination of 368 

high failure rate parts, preventing perceived or planned hardware obsolescence induced by the 369 

software , strengthening emotional connections with devices and enhancing modularity (Bocken 370 

et al., 2014) (Wever, 2012) (Coughlan et al., 2018) (Egenhoefer, 2017) (Komeijani et al., 2016)  371 

(GEC 2018, p.8;). Standardized connectors (snaps rather than glue) and accessories (power 372 

cords) are seen as critical for enabling reuse/repairing and access to high value components 373 

(Parajuly et al., 2016) . Material choices like single plastics would allow for purer material 374 

streams and improve recycling rates (Laurenti et al., 2015) .  375 

However, success of these CE strategies in the electronics sector depends heavily on the 376 

behavior and decisions of end users as a key stakeholder group. For example, modest energy 377 

efficiency and material reduction gains from technological advancements dematerialization, 378 
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material and product substitution, or reducing standby energy continue to be offset by increasing 379 

product functionality, increasing ownership, and use behaviors (Babbitt et al., 2018) (Kasulaitis 380 

et al., 2018) (Kasulaitis et al., 2015) (Ryen et al., 2015). Because consumers lack awareness or 381 

control of factors causing impacts (e.g., material and energy intensity), holistic, human-centered 382 

design strategies are critical to nudging users towards behaviors that will facilitate a more 383 

circular economy (Lilley, 2009) (Komeijani et al., 2016). Sparking consumer interest in used 384 

products may require innovations to communicate distinctiveness or provide unique consumption 385 

experiences (Weelden et al., 2016)  (Wieser, 2016) (GEC 2018).   386 

Similar to challenges identified for food waste, CE in the electronics sector is also heavily 387 

dependent on concurrent changes in waste collection and management infrastructure needed to 388 

promote reuse and enable greater material recovery, thus enhancing environmental and economic 389 

benefits (Williams et al., 2008)  (Williams et al 2008; Kumar et al. 2017; Zeng et al. 2017; 390 

Benton and Hazell 2015). This requires clearly defined stakeholder responsibilities and 391 

meaningful collaborations among parties involved (Zhang et al., 2015) (Parajuly and Wenzel, 392 

2017) . Japan’s CE success has been attributed to manufacturers financially invested in 393 

repair/recycling industries, consumer friendly and convenient collection systems, and upfront 394 

consumer fees (Salhofer et al., 2016) (Borthakur and Govind, 2017)   (Benton and Hazell 2015). 395 

Proper handling and storage for reuse items is needed to minimize damage (Coughlan et al., 396 

2018) and tools are needed to test and prepare items for reuse  (Bovea et al., 2016), enabling 397 

third parties to repair, remanufacture or recycle devices (Laurenti et al., 2015) (Vanegas et al., 398 

2018)  and limit use of heuristics (e.g., model or color)  (Ryen et al., 2018) ( GEC 2009). 399 

Information and decision tools ease uncertainty from material stream volatility stemming from 400 

introduction of new plastics, lower quantities of high valued precious metals, larger quantities of 401 

low value plastics, and supply chain disruptions (Chancerel et al., 2013) (Sprecher et al., 2014) 402 

(Cucchiella et al., 2015). Data plays a key role in this challenge, particularly as new technologies 403 

like data analytics, sensing technologies, and artificial intelligence (Nobre and Tavares, 2017) 404 

may contribute to greater stakeholder information and communication.  These technologies can 405 

encourage more efficient, flexible material management systems that can adapt to the quickly 406 

changing product and material stream (Ryen et al., 2018) and provide much-needed data for 407 

assessing environmental benefits via LCA and MFA methodologies.  408 
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Literature has also emphasized the connection between CE strategies for electronics and existing 409 

e-waste management take back and extended producer policies. Some of the key challenges 410 

include mass-based policy standards that only focus on recycling and recovery  of heavier, 411 

legacy devices (Gui et al. 2013), outsourcing responsibility to third party collection systems   412 

(Singh and Ordoñez, 2016), confusing responsibility among stakeholders  (Li et al 2015).  413 

Consideration how  consumers value used devices can influence policies; point of sale fees may 414 

be more effective in the U.S. as devices have little to no value, in comparison to consumers in 415 

China or India who can sell obsolete devices  (Borthakur and Govind, 2017) .  Recent National 416 

Sword policies restricting export of e-waste to China and other Asian countries  (Peterson, 2018) 417 

(Ramodetta, 2018) may be the tipping point to formalize recovery and reuse structures (Eng, 418 

2018) .  Inspiration from a true circular economy, our natural system, can stimulate innovative 419 

resource management Laurenti tools based on the concepts of foraging or searching for food 420 

(Ryen et al, 2018) or role of ‘scavengers’ to process resources  (Ghisellini et al., 2016) . Sharing 421 

is an untapped opportunity to reduce consumption with subscription, sharing, or product service 422 

systems (PSS) models like smartphone PSS  (Bridgens et al., 2017) , software enabling computer 423 

sharing among users, but require policy support, integration of design and business strategies 424 

(Moreno, et al., 2016)  , a mindset of collaboration (Vanegas, et al., 2018).  Successful transition 425 

towards a CE centers on consumers and approaches that integrate changes in technology, design 426 

strategies, infrastructure, policy, and business models. 427 

3.5 Buildings and Infrastructure 428 

Construction of the built environment (including buildings and infrastructure) consumes 429 

significant resources and demolition in the sector generates a lot of waste. Global extraction of 430 

construction minerals exceeds 10 billion metric tons annually and has had the fastest growth rate 431 

of any sector over the past century (Fischer-Kowalski, et al., 2011) . The United States generates 432 

over 550 million tons of construction and demolition (C&D) waste per year, which is more than 433 

twice the amount of generated municipal solid waste  (US Environmental Protection Angency, 434 

2018). Thus, the built environment is a critical sector to consider in discussions of sustainable 435 

materials management. However, CE principles are challenging to apply in the built environment 436 

because of buildings’ and infrastructure’s long life, size, location (i.e., adjacent to other buildings 437 

or infrastructure), and complexity (i.e., commingling of materials and assemblies).  438 
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There have been numerous proposals for CE frameworks and strategies in the built environment 439 

as a means of improving resource efficiency in the sector (Foster, 2020; Pomponi & Moncaster, 440 

2017). The strategies are generally proposed within the ReSOLVE framework proposed by the 441 

Ellen MacArthur Foundation that includes six ways to apply circularity: regenerate, share, 442 

optimize, loop, virtualize, and exchange  (Foresight, 2016) (Carra and Magdani, 2017a)  (Ellen 443 

Macarthur Foundation, 2016). Specific strategies for the built environment include reducing 444 

C&D waste, maximizing value from C&D waste, designing for material and component reuse, 445 

designing for long life and adaptability, enabling CE design and construction practices through 446 

increased use of digital technology and advanced automation, and transforming finance 447 

mechanisms and regulations to incentivize CE strategies. Case studies for buildings have been 448 

presented to demonstrate the feasibility of implementing some of the strategies (Leising et al., 449 

2018a)  (Ellen Macarthur Foundation, 2016; Leising et al., 2018). There is a dearth of case 450 

studies for infrastructure, although case studies involving paving materials are emerging in the 451 

context of CE (Mantalovas and Di Mino, 2019) (Mantalovas et al., 2020) (Calabi-Floody et al., 452 

2020). Research on CE strategies for the built environment is typically focused on a single 453 

strategy, such as the use of recycled content in new materials, reuse of components, or 454 

modularization (Mantalovas and Di Mino, 2019) (Minunno et al., 2018) (Calabi-Floody et al., 455 

2020) (Mignacca et al., 2020). Such analyses are an important for guiding implementation of CE 456 

strategies because they provide insight on technical and design issues. However, it is now 457 

essential that the scope of CE research on the built environment expand to quantitatively evaluate 458 

trade-offs among various strategies and other performance objectives in a holistic fashion. For 459 

example, there may be trade-offs between the use recycled content and the durability of 460 

infrastructure, or between design for adaptability and the energy efficiency or resiliency of a 461 

building. There also may be trade-offs among environmental impacts (e.g., a reduced greenhouse 462 

gas footprint but an increased water footprint).  463 

Evaluating the environmental impacts of CE strategies requires the comparison of innovative 464 

design solutions for buildings and infrastructure using life cycle assessment and industrial 465 

ecology methods  (Hossain and Ng, 2018). Given the hypothetical nature of evaluating strategies 466 

not currently used and the systems implications of changing secondary material streams, 467 

consequential LCA will be an important tool for quantifying impacts. In addition, MFA and 468 

systems dynamics will be required to understand the implications of shifts in materials markets 469 
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due to increases or decreases in secondary material flows. However, it is important not to 470 

overlook the vital role that new and innovative building and infrastructure design, materials, and 471 

construction solutions will have in improving resource efficiency. New business models will also 472 

be required to implement CE strategies in the marketplace (Munaro et al., 2020) . Using the 473 

ReSOLVE framework for buildings and infrastructure in new and effective ways will be 474 

challenging, but quantitative assessments of the life cycle environmental impacts of CE 475 

strategies will be a key component of their implementation.  476 

4. Cross-cutting themes 477 

The keyword mapping analysis (Figure 1) and the sectoral-specific analysis illuminated several 478 

cross-cutting themes that are critical to addressing the sectoral CE challenges and implementing 479 

CE strategies. These four themes and their challenges and opportunities related to increasing CE 480 

adoption are shown in Figure 4. There is more extensive literature on the use of models and 481 

business/innovation in support of CE analyses and hence, they are treated more in-depth.  482 

 483 

 484 

 485 

Figure 4: Key Challenges and Opportunities for cross-cutting themes that are critical to 

implementing CE strategies in the sectors.    Legend :      
 Challenges Opportunities 
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4.1 Decision-Oriented Data 486 

The challenge of obtaining high quality, transparent data spans all sectors and methods reviewed. 487 

In some cases, CE analyses require highly resolved data, such as compositional profile of 488 

materials feeding into CE pathways, variability of resource flows over time, or presence of 489 

contaminants that may limit recycling or reuse, particularly in the case of chemicals and metals. 490 

In several sectors, data on alternatives are scarce, limiting the ability to identify functionally-491 

equivalent chemical and metal substitutes or make “matches” with secondary markets to either 492 

obtain recovered resources or find an end-of-life pathway. Particularly in the case of buildings 493 

and electronics, data to characterize realistic user behavior are required to analyze the full 494 

outcomes of CE strategies, where consumers may ultimately use products in ways that limit 495 

environmental benefits. Regionally-resolved data are also critical for advancing dynamic and 496 

spatially-explicit models, which are not yet widely used in CE studies.  497 

On the other hand, the current boom in data science initiatives and improved computing 498 

infrastructures may provide new opportunities to overcome these data challenges. An open 499 

source or collaborative approach not only improves the availability of data but also democratizes 500 

the process of data scrutiny and validation. Harmonization of data within and across sectors 501 

using such platforms may also lead to greater comparability and consistency across studies. 502 

However, incentives may be required to encourage researchers to participate. The Virtual 503 

Industrial Ecology laboratory (https://ielab.info/) provides a successful example of a 504 

collaborative platform used to overcome data challenges in implementing a theoretical 505 

framework. 506 

4.2 Modeling to Assess Circular Economy Outcomes 507 

Implementing CE solutions across the diverse sectors described above introduces new challenges 508 

of modeling multiple systems interacting at different spatial and temporal scales and evaluating 509 

implementation to ensure it leads to net environmental benefits. Systems modeling methods such 510 

as LCA and material flow analysis MFA are natural choices to analyze the costs and benefits of 511 

reconfiguring sectors to achieve CE goals. LCA and MFA are widely used in the field of 512 

industrial ecology, which shares the aspirations of closing resource loops and converting wastes 513 

to resources. These methods have a clear role in informing holistic decisions for CE transitions 514 

but also face key modeling challenges that have yet to be fully addressed.  This section reviews 515 
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the current applications of LCA, MFA and IO based models in CE and also raises opportunities 516 

for methodological innovation.  517 

4.2.1 Life Cycle Assessment 518 

LCA is a holistic system modeling approach for assessing environmental impacts of a product 519 

system throughout its entire life. This method can be applied to evaluate circularity interventions 520 

designed to minimize or recover waste in product systems (Edwards et al., 2017)  (Edwards et al., 521 

2017, Maga et al., 2019, Morris, 2005), such as anaerobic co-digestion of organic waste (Edwards 522 

et al.,  2017), mechanical and chemical recycling for waste polylactic acid (PLA) (Maga et al., 523 

2019), curbside recycling programs (Morris, 2005), and e-waste management systems (De 524 

Meester et al., 2019). LCA research has also been applied to product systems that incorporate CE 525 

principles to production operations or supply chains. For example, LCA has been applied to 526 

confirm the environmental benefits of industrial symbiosis (Daddi et al., 2017, Deschamps et al., 527 

2018, Eckelman and Chertow, 2013, Mathur et al., 2020) and guide process development of 528 

byproduct and waste valorization systems (Robertz et al, 2015; Seto et al., 2017; Khoshnevisan et 529 

al.,2020; Lam et al., 2018). LCA has been applied to a wide array of waste repurposing cases, 530 

such as agricultural products (Hong et al., 2015), aquaculture systems (Strazza et al., 2015), 531 

aerospace alloys (Eckelman et al, 2014), grey water systems (Yoonus and Al-Ghamdi, 2020), 532 

algae biodiesel (Gnansounou & Raman, 2016),  aluminum cans (Niero & Olsen, 2016), municipal 533 

food and solid waste management (Edwards et al., 2017; Saraiva et al., 2017), product service 534 

systems (Brezet et al, 2016), the construction industry (Rios et al., 2019), and regional 535 

development (Eckelman and Chertow, 2009). CE-oriented waste-to-energy systems, discussed 536 

more in the context of food waste in section 4.1, have also been analyzed extensively using LCA 537 

(Lazarevic et al., 2010 , Aziz et al., 2019, Esteves et al., 2019, Ingrao et al., 2019, Rajendran and 538 

Murthy, 2019) primarily to evaluate effectiveness of these systems for relieving energy-related 539 

environmental burdens (IEA,2020). 540 

The application of LCA to loop-closing approaches demonstrates the versatility of the method for 541 

evaluating CE strategies at all stages of implementation (Morago et al., 2019). A review on CE 542 

implementation tools highlights the role of LCA in sourcing materials to reduce supply chain 543 

impacts (Yuliya Kalmykova et al., 2018) and guiding design for closing loops through reuse, 544 

recycling or remanufacturing. LCA helps to highlight interactions between complex systems, 545 
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such as the food-energy-water nexus (Del Borghi et al., 2020), and determine if a CE intervention 546 

creates net environmental benefits (Mohammed et al., 2018; Morago et al.,  2019; (Chen et al., 547 

2019). Metrics like the Material Circularity Indicator (MCI) (Ellen MacArthur Foundation, 2019) 548 

can be combined with LCA to provide parallel analysis of a product’s circularity and 549 

environmental performance. Additionally, expanding LCA to incorporate 6R elements (reduce,  550 

reuse, recycle, recover, redesign, remanufacture), can facilitate evaluation of product lifespan 551 

extension strategies (I S Jawahir and Bradley, 2016). LCA-based CE indicators can contribute to 552 

standardization efforts in evaluating CE performance  (Pauliuk, 2018), particularly when coupled 553 

with multi-criteria decision analysis to assess solutions under conflicting scenarios (Niero and 554 

Kalbar, 2019). 555 

While research has demonstrated that LCA is of value in building a CE framework (Bakker et al., 556 

2010), challenges exist in its implementation. Data availability and quality continue to be major 557 

challenges, potentially limiting accuracy of results (Cucurachi et al., 2018) and result in difficulty 558 

using LCA to evaluate if CE strategies create net environmental benefits. Another persistent 559 

concern is the choice of LCA system model. Even before LCA was widely applied in the CE 560 

context, experts and practitioners debated the circumstances that call for using either attributional 561 

LCA (ALCA) or consequential LCA (CLCA) (Brander et al., 2019; Weidema et al., 2018). 562 

ALCA assigns the cumulative environmental impacts to all flows attributable to a product system 563 

at a fixed point in time, whereas CLCA measures the marginal impacts due to fulfilling the 564 

functional unit over time (Curran et al., 2005).  In the CE context, CLCA may be essential to give 565 

a complete perspective on economy-level transitions or innovative services designed to disrupt 566 

and rearrange existing supply chain networks (Haupt and Zschokke, 2017). On the other hand, 567 

ALCA may be better for describing environmental tradeoffs of a specific product or design 568 

alternative or to provide straightforward information to decision makers and aid in ecolabeling to 569 

promote CE adoption in the market. Considering the broader literature, some studies bridge the 570 

gap by carrying both an ALCA and CLCA (Jones et al., 2017; Venkatachalam et al., 2018; Yang, 571 

2016; Zanten et al., 2018), but this approach would magnify existing data challenges. To our 572 

knowledge, no literature has yet demonstrated the application of CLCA for modeling or decision 573 

making on CE implementation.  574 

4.2.2 Material Flow Analysis and Dynamics  575 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature.

23 
 

MFA is “the systematic assessment of the flow and stock of materials within a system defined in 576 

space and time; it connects the sources, the pathways, and the intermediate and final sinks of a 577 

material”  ( Wen and Li, 2010)  . As early as 1999, MFA was being used to describe and analyze 578 

sustainable development challenges, and by extension promoting CE (Ii et al., 1999). MFA can 579 

facilitate CE strategies by describing the location and composition of waste streams in the 580 

economy (Kuczenski and Geyer, 2010), virgin resources yet to be extracted (Kesler et al., 2012), 581 

the accumulation of “urban mining” stocks  (Eygen et al., 2016), the routes of resource loss 582 

(NRDC, 2012), sites of high consumption (UNEP International Resource Panel) and the 583 

secondary resources not suitable for reuse because of their compositional quality or in-use 584 

dissipation  (Ciacci et al., 2015). More recently, MFA has found extensive application in 585 

analyzing waste minimization and material flows in the context of recycling (Haupt et al., 2016) 586 

(Pivnenko et al., 2016).  MFA has been applied to evaluate CE strategies for many of the sectors 587 

described in earlier sections, including biomass systems (Marques et al., 2020) e-waste  588 

(Cordova-Pizarro et al., 2019) (De Meester et al., 2019)    metals such as copper  (Gorman and 589 

Dzombak, 2020) and rare earth elements (REE) (Guyonnet et al., 2015), and highway 590 

infrastructure (Z. Wen and Li, 2010)   . Recent literature has also connected MFA to business 591 

and innovation studies, for example, examining plastic flows as a precursor to CE innovation in a 592 

small island developing state (Millette et al., 2019).  593 

Despite methodological advances, the data-intense nature of MFA is a major barrier to more 594 

widespread application, as data quality and availability remain a challenge ( Laner et al., 2015) 595 

(Wang and Ma, 2018). For example, CE implementation requires data that are highly resolved at 596 

the regional or material level (Virtanen, 2019), but insufficient information about specific 597 

materials or processes makes it difficult to generate regional MFAs (Haas et al., 2015) (Haas et 598 

al, 2016) to aid project development. In broader applications, MFA has been integrated with 599 

other tools; for instance, combining MFA and thermodynamic analysis to determine benefits of 600 

industrial symbiosis and thereby provide evidence to stakeholders on the value of CE (Sun et al., 601 

2017). MFA in combination with LCA may be useful to analyze both economic and 602 

environmental factors of a CE pathway (F. Pomponi and Moncaster, 2017) . Modeling the 603 

transition towards CE also calls for methods that account for change over time, such as MFA 604 

combined with system dynamics (Gao et al., 2020) or models that reflect changing socio-605 

economic metabolism (Paulik and Hertwich, 2016). Recent work proposed economy-wide 606 
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material flow accounting (ew-MFA) to estimate the generation of in-use stocks and waste 607 

generation over multiple years (Wiedenhofer et al., 2019) and ew-MFA has been integrated with 608 

global dynamic models to simulate circular economy scenarios at the global level (Hanumante et 609 

al., 2019). Data gaps can also be bridged using technology forecasting methods to enable 610 

scenario analysis (Althaf et al., 2019) or uncertainty analysis when detailed material composition 611 

data are not available  (Arowosola and Gaustad, 2019). Key opportunities for future research 612 

include developing and validating MFA models for data-scarce scenarios and coupling MFA 613 

with systems-level environmental or economic tools, as is discussed in the following section.  614 

4.2.3 Input-Output Based Models 615 

The macroeconomic framework of input-output (IO) models provides a robust methodology for 616 

understanding complex interactions and structural interdependence between sectors of an 617 

economic system (Leontief, 1991) and between these sectors and the environment (Leontief, 618 

1970). Since redesigning physical systems towards CE will require systems transformations, IO 619 

models provide a suitable theoretical framework, despite their relatively low use in CE studies to 620 

date. Of particular promise are modifications such as environmentally extended input-output 621 

(EEIO) (Leontief, 1970; (Matthews and Small, 2001) and integration with MFA  (Nakamura et 622 

al., 2007) (Pfaff et al., 2018) (Duchin and Levine, 2019). For example, EEIO-based studies have 623 

assessed economic and environmental impacts CE strategies like waste reuse, product lifetime 624 

extension, closing material loops, and improving resource efficiency (Aguilar-Hernandez, 2018) 625 

(Donati et al., 2020) . Methodologically, using EEIO methods to evaluate CE strategies will also 626 

require more data that capture structural changes due to increasing recycled materials markets or 627 

marginally reducing demand due to product life cycle extension.  628 

Various approaches have been taken to use IO analysis in conjunction with MFA for evaluating 629 

CE scenarios (Surahman et al., 2017) (Schiller et al., 2017), with the waste input-output MFA 630 

model (WIO-MFA) being one of the most established and widely used frameworks for IO-based 631 

CE studies (Towa et al., 2020). The model converts a monetary IO table into a physical input-632 

output table (PIOT), enabling analysis of product composition and material intensity (Nakamura 633 

et al., 2007; Lenzen and Reynolds, 2014). Through its dynamic-MFA extension  (Nakamura and 634 

Kondo, 2018) , based on the MFA model MaTrace (Nakamura et al., 2014) (Nakamura et al., 635 

2017), WIO-MFA also enables consideration of changes in secondary material composition over 636 
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time due to reuse and maintains supply-demand balance for the material under investigation. In 637 

addition, the utility of EEIO and integrated IO-MFA for CE analysis may be further 638 

supplemented by integrating location-specific conditions through multiregional input-output 639 

(MRIO) models (Tisserant et al., 2017) (Stadler et al., 2018) and open source tools (Donati et al, 640 

2020). 641 

However,  one major limitation of applying EEIO approaches to CE is that while these models are 642 

clearly able to simulate the impacts of all the strategies to achieve CE, their monetary-based 643 

analyses do not fully represent actual physical transitions in the economy (Hubacek and Giljum, 644 

2003) (Weisz and Duchin, 2006). One way to improve CE insights gained from EEIO models is 645 

creation of hybrid and physical input-output table (PIOT) models (Hawkins et al., 2007) 646 

(Hoekstra, 2010) (Kovanda, 2018). Recent work focuses on hybrid Supply-Use Tables (HSUTs), 647 

which can form a precursor for IO tables (Merciai and Schmidt, 2018), although implementation 648 

to make such tables available to the research community is still required. PIOTs will be 649 

particularly valuable for optimizing resource flows in the economy, given their ability to track a 650 

specific material flow through the whole system. In this sense, PIOTs share similarity with 651 

MFAs, but can connect underlying mass flows to economic production, leading to calculation of 652 

material intensity per unit of production from any sector (Singh et al., 2017). While this method 653 

can model structural changes as a result of transition to CE, PIOTs are data intensive and not yet 654 

widely used to inform strategic decisions (Hoekstra, 2010).  One solution to this issue may be in 655 

the combination of process engineering models with the IO framework (Wachs and Singh, 2018). 656 

In this approach, process models of production provide physical data to build PIOTs using a 657 

bottom up approach which could then be extended to develop a computational algorithm for 658 

standardizing the “Process to PIOT” approach (Vunnava and Singh, 2019). The strengths of this 659 

bottom up approach are modularity, reproducibility, and potential for automation (Vunnava et al, 660 

2020) (Singh, et al., 2017). Developing these PIOTs may also benefit CE studies by providing 661 

regional data needed to implement MFA and contributing to WIO methods (Lenzen and 662 

Reynolds, 2014) that evaluate the impact of waste recycling. 663 

 664 

 665 

4.3 Stakeholder Engagement 666 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature.

26 
 

Advances in data and modeling cannot be viewed as an end goal, even if that is where much of 667 

the literature stops in CE case studies, but rather as a conduit to providing actionable information 668 

to stakeholders. While stakeholders are an explicit consideration in literature focused on circular 669 

business models, they are typically treated implicitly in sectoral studies (Rothenberg et al 2020) 670 

(Halloran et al., 2014)( Hagelüken et al., 2016) (Zhang et al., 2015). However, industry, 671 

academic, governance, consumers, and supply chain stakeholders, among others, will all play a 672 

key role in generating data, recognizing the value proposition of CE strategies, and ultimately 673 

changing business and innovation practices across the value chain (Moreno, et al., 2016) 674 

(Vanegas et al., 2018) (Perey et al., 2018) (Sun et al., 2017) (Lenzen and Reynolds, 2014) 675 

(Ehrlichman et al., 2018). Literature points to a wide array of technical barriers facing 676 

stakeholders, including challenges identifying functional substitutes for high-impact resources, 677 

creating low-cost cleaner production systems, implementing technical solutions for product 678 

lifespan extension, and deploying more efficient, scalable remanufacturing, recycling, and 679 

material recovery systems (Mantalovas and Di Mino, 2019) (Mantalovas et al., 2020) (Calabi-680 

Floody et al., 2020) (Kumar et al., 2017; (Geisendorf and Pietrulla, 2018) (Bocken et al., 2014) 681 

(Wever, 2012). In parallel, market barriers also hinder stakeholder action on CE that is outside a 682 

primary business function or revenue stream  (Nghiem et al., 2017); (De Clercq et al., 2016). 683 

Parallel research and innovation in Internet of Things, blockchain solutions, and data-driven 684 

analyses along with data-driven manufacturing can enhance models that convey the ‘business 685 

case’ for CE strategies (Nobre and Tavares, 2017) (Carra and Magdani, 2017a)  (Ellen Macarthur 686 

Foundation, 2016) (Kovacova et al, 2020). Further, research into education, engagement, and 687 

incentives will play a key role in understanding how consumers can become part of CE solutions 688 

(Wieser, 2016) ((Midgley and Lindhult, 2017). 689 

 690 

4.4 Business and Innovation  691 

Literature on CE implementation clearly revolves around issues surrounding current business 692 

models and opportunities for innovation (Rothenberg et al 2020); (Fig. 1). Current material use 693 

patterns in economic sectors described in Section 3 are predicated on ideas developed during for 694 

the Industrial Revolution that exploited specialization of labor and economies of scale to increase 695 

efficiency (Hounshell, 1985) . As increased efficiencies allowed for lower prices, unit sales 696 

increased, thereby enabling even greater economies of scale and specialization of labor     697 
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(Taylor, 1911). For decades, the positive feedback loop of industrialization drove pseudo-698 

exponential growth in material demands  (Berkhout and Hertin, 2004).  However, in the late 699 

1960s,  the economy began to press against the biophysical limits of technologies for primary 700 

materials extraction, and planetary support systems for waste disposal  (Ayres, 2006) .  This 701 

trend was anticipated by a now-famous article that contrasted the “cowboy” economy predicated 702 

on ever-expanding domestication of an open frontier, and a “spaceship” economy predicated on 703 

reuse and recycling of material streams within “a closed sphere of human activity” (Boulding, 704 

1966) . 705 

The transition to a circular economy is an extension of the spaceship metaphor, in which returns 706 

will not accrue to scale, but from an increased capacity to utilize materials that were previously 707 

discarded  (Ellen Macarthur Foundation, 2019).  More recently, the exploitation of new 708 

information-communication technologies (ICT) in old industries such as hotel, taxi, and 709 

manufacturing may be a new avenue for wringing efficiencies from the economy (Denning, 710 

2014) (Cusumano, 2015)  (Denning, 2014; Cusumano, 2015; Posen, 2015).  In a technologically 711 

optimistic version of the transition to CE, adding information technologies (e.g., waste sorting), 712 

allows improvements in quality of life without pressing against thermodynamic limits that 713 

presage biophysical collapse. Where ICT can substitute for material redundancies and reduce 714 

waste, knowledge becomes the “ultimate resource,” and could hypothetically be unlimited 715 

(Simon, 1981).   716 

In the old model of industrialization, innovation could occur at a single point in the supply chain, 717 

without necessitating management of feedback loops in material flows that increase complexity 718 

and scarcity.  Further, standardization ensured both economies of scale and substitutability of 719 

parts (and labor), allowing innovators to plug into existing production systems provided they met 720 

expectations of compatibility with existing standards. Whereas, a post-industrial model of 721 

innovation for a circular economy must operate at the larger scale of the entire system  (Midgley 722 

and Lindhult, 2017) , because recovery of post-consumer goods for reuse, remanufacturing, or 723 

recycling creates feedback loops that present complicated materials management issues, 724 

including collection, sorting, treatment, and reintegration into the economy. 725 

 Complex challenges, such as circular economy, require a shift in the paradigm of innovation as 726 

described by the early works of  (Kuhn, 1996). Transitions to CE will require overcoming 727 
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barriers to innovation that would be insurmountable without system-wide innovation as shown in 728 

Figure . Despite massive generation of waste materials in American urban centers, the problem 729 

of securing a reliable source of post-consumer feedstock presents extraordinary risks to circular 730 

economy entrepreneurs  (OECD, 2019). Without consistent sources of “waste” material, 731 

technology and business models must be designed for flexibility, adaptability, and agility, at the 732 

expense of efficiency.  These demands drive-up short-term costs and business risks. The 733 

economies of scale typical of centralized production systems have to be replaced by economies of 734 

scope, in which the cost of any item becomes cheaper not as the scale of the market for identical 735 

items expands, but as the diversity of the market of differentiated items increases  (Geisendorf 736 

and Pietrulla, 2018)  . To achieve this economy, advances in technologies for the beneficial reuse 737 

of waste- and by-products must continue to become more sophisticated. 738 

 739 

Figure 5. Overcoming barriers to enable a paradigmatic shift to a circular economy. 740 

Products derived from waste or used materials still suffer from a stigma that makes customers 741 

reluctant to become early adopters (Wieser, 2016). The transition to a circular economy based on 742 

economies of scope will require thousands, if not millions, of customers willing to become early 743 

adopters . Innovative business models will take time to become adopted among consumers and 744 
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organizations  (Rogers, 2010) and will require changing how we view who participates in 745 

innovation, what the process of innovation looks like, and what the outcomes of innovation are   746 

(Midgley and Lindhult, 2017) .  747 

The logistics of material flows, and consumption or use patterns for products and services 748 

currently neglect the “true” holistic value of discarded materials versus virgin materials (Hedberg 749 

et al., 2019) . To resolve these issues, seamless collection, sharing, and integration of data across 750 

value chains is necessary to drive data-informed decisions. Addressing systemic problems 751 

requires coordinated system-wide solutions, and this necessitates a concerted effort from a broad 752 

range of stakeholders that work to create enabling conditions for effective collaborations 753 

(Ehrlichman et al., 2018)  among institutions, industries, and regions. For centuries, the feudal 754 

model of the master architect has dominated our concept of how innovation takes place.  755 

Although it has long been acknowledged that collaboration and knowledge sharing are essential 756 

to creativity and innovation (e.g., Johnson, 2010), the myth of the lone genius has nevertheless 757 

persisted in the public imagination (e.g., Ashton 2015).   758 

An intention-based approach to innovation may be curated, structured, and conform to standards, 759 

even while allowing the result to emerge.  Systemic innovation leverages open source 760 

experiments and porous organizational boundaries (Mazzucato, 2018) .  In systemic innovation, 761 

contributions may not be attributable to any single innovator or inventor, given that at the scale 762 

of the whole system, individual contributions sometimes cannot be disaggregated from the 763 

whole. Paradigm shifts such as these have the ability to drive radical innovation, which could 764 

result in unpredictable and disruptive changes to the industrial paradigm of centralized and 765 

hierarchical control (Kuhn, 1962).  From this, new systems could be developed by changing 766 

stakeholder’s thinking, relationships, interactions and actions. 767 

The concept of a circular economy is a fundamental departure from modern economic theory, 768 

but much of the literature is focused on incremental, rather than radical, innovation. In many of 769 

the sectors reviewed, continued progress along the current trajectory will lead to significant 770 

gains. Several examples are shown in Figure 2 and Figure 4 of innovative opportunities with 771 

significant potential for future research, such as complete depolymerization to recover valuable 772 

raw materials and manage the growing plastic waste challenge or the use of electronics to 773 

fundamentally shift consumers’ daily behaviors towards sustainable choices. Among enablers 774 
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creating automated cloud-based platform that enables stakeholder engagement with insights from 775 

theoretical model will provide significant advancement in implementation strategies. A review of 776 

CE business models also points to critical opportunities and barriers to radical innovation and the 777 

attendant paradigm shift required for this transition. Two such priorities for future CE innovation 778 

research are the ability to achieve economies of scope, rather than economies of scale, and the 779 

potential for ICT and digitization to replace resource-intense products and services. Access to 780 

data, stakeholder collaboration and communication, and clear methodologies to measure 781 

outcomes are also critical elements that enable each industrial sector to address circular economy 782 

challenges and force a shift in the creation and adoption of innovative business models. 783 

5 Conclusion 784 

A wide body of research exists on CE implementation and this breadth points to clear progress at 785 

a theoretical level to both create innovative solutions and develop methods needed to assess the 786 

outcomes of their application. Existing CE reviews focus on definitions of CE, regional 787 

developments or focusing on opportunities in few single sectors. However, evidence of real 788 

implementation in sectors is less prevalent, and the literature remains relatively fragmented, 789 

where lessons learned from one sector are not necessarily conveyed to others and new business 790 

models are not fully validated in realistic case studies. Further methodologies are not consistently 791 

applied or there is a lack of standardization in use of modeling techniques to inform transition to 792 

CE. The findings from this literature review have implications on both fundamental research and 793 

investments in scale-up of clean technologies that can facilitate the transition to CE. The 794 

complex challenges and structure of the CE transition magnify the cross-cutting challenges in 795 

collecting data and implementing methods that have been largely adopted from the industrial 796 

ecology field. However, the diverse nature of CE stakeholders also offers promises for solutions 797 

to these challenges, through new approaches to coordination, data sharing, and estimating the 798 

value proposition of CE solutions. Further, CE pathways provide a novel testing ground to 799 

understand social adaptation for recycling, radical innovation towards economies of scope, and 800 

technical advances that will transform material management and recovery loops.  801 
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