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Approaches to illuminate content-specific gameplay decisions using open-ended game data 

 

Abstract 

Games can be rich environments for learning and can elicit evidence of students’ conceptual 

understanding and inquiry processes. Illuminating students’ content-specific gameplay decisions, 

or methods of completing game tasks related to a certain domain, requires a context that is open-

ended enough for students to make choices that demonstrate their thinking. Doing this also 

requires rich log data and methods of Game Learning Analytics (GLA) that are granular enough 

to look at the specific choices most relevant to that context and domain. This paper presents 

research done on student exploration of high school level Mendelian genetics in a multiplayer 

online game called The Radix Endeavor. The study uses three approaches to identify content-

specific gameplay decisions and distinguish players utilizing different methods, looking at 

actions and tool use, play patterns and player types, and tool input patterns. In the context of the 

selected game quest, the three approaches were found to yield insights into different ways that 

students complete tasks in genetics, suggesting the potential for a set of more generalized 

guiding questions in the GLA field that could be adopted by learning games designers and data 

scientists to convey information about content-specific gameplay decisions in learning games. 

Keywords: Games; science learning; gameplay patterns; game learning analytics 
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Introduction 

Serious games, games designed for purposes other than pure entertainment, have many 

valuable affordances for learning (Ke, 2016). In addition to presenting experiences for learners to 

build an understanding of content-related concepts and broader skills, they also provide a 

mechanism by which researchers and educators can gain insight into students’ gameplay 

decisions and approaches. This refers to decisions students make about which tools to use, what 

game objects to use them on, and what they do with the resulting information or artifacts. It is 

done by collecting log file data and utilizing Game Learning Analytics (GLA) methods to make 

sense of the data  (Freire et al., 2016; Loh, Sheng, & Ifenthaler, 2015b). In order to provide a 

context in which students can demonstrate various gameplay decisions, it is necessary to have a 

context that is open-ended enough to provide authentic choices to players, and analysis methods 

that look at the content-specific choices they make, rather than more generic achievements in the 

game. Observing content-specific gameplay decisions, or methods of completing tasks within a 

certain domain, can lead to insights for teachers to adjust instruction, but first game designers 

and data scientists must design appropriate metrics relevant to the game’s purpose. This paper 

contributes a set of approaches to GLA that demonstrate how content-specific gameplay 

decisions can be illuminated in the context of The Radix Endeavor (Radix), a game that was 

intentionally designed for open-ended exploration of Mendelian genetics. It will describe the 

process of applying each approach to the specific mechanics of Radix to understand how certain 

types of analyses tease out differences in student gameplay decisions. Based on the results, the 

paper will then discuss potential positive impacts of applying these approaches to content-

specific analysis of other games. 

Background 
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Game Learning Analytics 

In the past decade, a rich body of research has illuminated the many ways that digital games 

can support teaching and learning (Bado, 2019; Qian & Clark, 2016). Given that digital games 

have the potential for much more than just entertainment, they are now being designed and 

implemented specifically for education, and these digital games with a purpose beyond 

entertainment fall into the category of serious games (Loh, Sheng, & Ifenthaler, 2015a). In a 

serious gaming environment the players can interact with the system in multiple ways, and 

learning is considered dynamically contextualized within gameplay. As a result, GLA, using data 

science techniques to analyze multiple types of gameplay data collected from serious games, is 

growing rapidly, with researchers like Freire et al. (2016) and others creating an infrastructure 

for the field. 

GLA, also known as serious games analytics, is the application of statistical metrics to 

analyse gameplay data derived from well-designed log files, and collected from a sequence of 

actions and choices within complex tasks, to provide actionable insights that improve game 

design and learning performance (Loh et al., 2015; Rowe, Asbell-Clarke, & Baker, 2015). This 

kind of rich information can let teachers and researchers observe students’ approaches to a 

problem, and then tailor their guidance for each student to improve learning and teaching, as well 

as contribute to data-driven game design (Alonso-Fernández, Calvo-Morata, Freire, Martínez-

Ortiz, & Fernández-Manjón, 2019). Although learning analytics is well established, there 

remains a lack of understanding of student interactions in games and how the learning process 

occurs (Freire et al., 2016). Few empirical studies have been conducted that speak to the learning 

process (Alonso-Fernández et al., 2019), and there is still a need for more research on learning 

analytics, assessment, and games (Liu, Kang, Liu, Zou, & Hodson, 2017). The lack of 
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standardization or systematization across GLA applications may be preventing more widespread 

use across learning games (Alonso-Fernández, Calvo, Freire, Martinez-Ortiz, & Fernandez-

Manjon, 2017; Alonso-Fernández et al., 2019) . In addition, while some GLA applications utilize 

action specific data and data on student choice sequences, many depend on more generic metrics 

such as task completion, correct question responses, and time spent (Chaudy, Connolly, & 

Hainey, 2014). One important role of digital data in learning games is to provide feedback on not 

only what players have learned and can do, but also how they interact with the tool as they 

engage in the process of learning. Content-specific gameplay decisions are key parts of that 

process and must be considered in the analysis of learning games data. Given the current state of 

GLA and its potential for supporting learning, this study aims to contribute to the field by 

implementing GLA methods on empirical data collected in situ, and proposing a set of guiding 

questions that can be applied to develop metrics that differentiate students’ content-specific 

gameplay decisions. 

Challenges in genetics learning 

To set the stage for the content-specific gameplay decisions identified in this study, we start 

with some context on known challenges for students studying genetics. Genetics is commonly 

taught yet often challenging for both teachers and students (Bahar, Johnstone, & Hansell, 1999; 

Duncan & Reiser, 2007; Etobro & Banjoko, 2017; Karagoz & Cakir, 2011; Lewis & Kattmann, 

2004). Reasons for this include not only that the structure of the content knowledge is complex, 

but also that this knowledge should be used to solve complex problems. The complex nature of 

genetics knowledge lies in the fact that its concepts inherently involve multiple thought levels: 

the macro (phenotypes of an organism), the micro (cells and chromosomes), the sub-

micro/biochemical (DNAs), and the symbolic (genotypes), each with an inseparable connection 
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to the others (Chu & Reid, 2012; Johnstone, 1991). By definition, a phenotype is an individual’s 

observable trait, and its genetic contribution is the genotype (NHGRI, n.d.). To better construct 

causal explanations of genetic phenomena from a systems perspective, the different levels of 

thought must be appropriately integrated. However, simultaneously dealing with and shifting 

between the levels is no easy task for students (Wilensky & Resnick, 1999), and this confusion 

of levels generally results in numerous misunderstandings about genetics. Knippels, Waarlo, & 

Boersma (2005) suggest four design criteria for teaching and learning genetics, one of which is 

to provide learning activities that allow students to actively explore the relations between those 

levels. 

Problem-solving is essential to genetics. Learning genetics must entail complex problem-

solving across the different thought levels (Knippels & Waarlo, 2018), and understanding of 

genetics is usually assessed by the ability to solve problems. Generally, there are two types of 

genetics problems, cause-to-effect – reasoning from the known data (genotypes, inheritance 

patterns) to a specific solution (the distribution of the genotypes and phenotypes among 

offspring), and effect-to-cause – inferring about inheritance patterns from the observed/desired 

traits of parents and offspring (Collins & Stewart, 1989; Tsui & Treagust, 2010). The cause-to-

effect problems are close-ended ones that can be carried out by applying a set of algorithms 

mechanically, whereas the effect-to-cause problems are open-ended ones that usually have more 

than one solution and oblige students to propose hypotheses and test various strategies (Aznar & 

Orcajo, 2005). Research suggests that open-ended problems work better than close-ended ones, 

because open-ended problems require students to put their knowledge into play and redefine 

their conceptual schema when necessary (Orcajo & Aznar, 2005). However, close-ended 
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problems are common in textbooks and can more easily be taught with conventional methods, 

resulting in open-ended problems appearing less often in educational settings. 

Massively multiplayer online games (MMOGs), a genre of digital games that have been 

shown to provide authentic learning experiences in which players frequently engage in scientific 

thinking and inquiry (Ketelhut, 2007; Steinkuehler & Duncan, 2008), have great potential to 

assess students’ understanding of genetics by embedding effect-to-cause problems into a play 

context in a motivating and non-intrusive way. Typically in a MMOG, a series of quests which 

set specific goals, are presented to players. The players are often equipped with different tools 

that can be used to experiment and interact with the virtual world and its inhabitants. They have 

to propose hypotheses, test strategies, reflect on the results, and repeat these steps to find out 

how to complete the quests to accomplish goals. Through this inquiry-based experience 

involving active exploration and discovery, players can construct an understanding of the 

world’s underlying systems (Rosenheck, Gordon-Messer, Clarke-Midura, & Klopfer, 2016). 

The Radix Endeavor was therefore developed to capitalize on the affordances of MMOGs 

(Klopfer, Haas, Osterweil, & Rosenheck, 2018). It was designed to be a more open-ended 

inquiry environment providing the opportunity to explore in different ways, in which we can 

capture which traits players are interested in, which organisms they choose to cross, and in what 

sequence they decide to conduct experiments. Moreover, because players are equipped with 

different tools that they can use to find out phenotypes and genotypes and breed organisms at 

their own choices, it provides an opportunity to shift between the different levels of genetics 

knowledge to solve problems in Radix. Previous research indicates that students often fail to 

correctly describe the nature of simple dominant and recessive patterns and can depict only 

monogenic inheritance (Shaw, Van Horne, Zhang, & Boughman, 2008), and mostly have 
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difficulties in solving dihybrid cross problems (Awang-Kanak, Masnoddin, Matawali, Daud, & 

Jumat, 2016). For this reason, this research attempted to delve into players’ exploration of the 

inheritance patterns of dihybrid crosses. 

The goal of this study was to identify approaches to GLA for open-ended gameplay, in order 

to gain insight into players’ content-specific gameplay decisions and distinguish students with 

different approaches and varying levels of understanding. The first step was to select high-level 

approaches that reflect the game design elements of exploratory, open-ended games and also 

build on proven methods of GLA. In Radix and other open world games, players have agency to 

choose the best tools to solve a problem, and complete tasks using a variety of strategies, so the 

chosen approaches align with those design choices. They are also based on established GLA 

techniques, many of which have been highlighted as exemplars by Owen & Baker (2019). These 

include looking at tool use to track students’ progress (Butler & Banerjee, 2014), identifying 

player pathways through a simulation (Institute of play, 2013), describing player strategies across 

different levels (Cooper et al., 2010), and comparing the activity of distinct groups of players 

(O'Rourke, Butler, Liu, Ballweber, & Popovic, 2013). Combining the key aspects of our learning 

environment with proven game data techniques, we hypothesized that the following three 

approaches, when applied to the Radix game, would illuminate and differentiate content-specific 

gameplay decisions. The research questions therefore align to each approach to be tested in the 

study: 

RQ1. How can data about actions taken or tools used to help players complete tasks be 

used to identify and distinguish different types of gameplay decisions? 

RQ2.  How can data about play patterns or player types be used to identify and distinguish 

different types of gameplay decisions? 
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RQ3. How can data describing tool input patterns be used to identify and distinguish 

different types of gameplay decisions? 

Materials and methods 

Learning genetics in The Radix Endeavor 

Radix is set in a rich virtual world that contains fictional but realistic ecosystems populated 

with diverse flora and fauna (Figure 1). Embedded in the world are simulated biological and 

mathematical systems which players explore to build their understanding of key concepts in 

science and math. It was designed as an “open-ended simulation game” or “open world game,” 

which are environments in which learning happens by experimenting within a system, coming to 

understand that system and using it for creative expression or problem-solving (Squire & Jan, 

2007). In Radix, player actions are balanced between guided sequences of quests and the open-

ended problems within those quests that they need to solve, embodying both emergence, a wide 

range of explorable possibilities based on a set of rules, and progression, directed challenges of 

increasing difficulty, drawn from Juul’s (2011)  framework. Genetics is one of the content areas 

in Radix. The genetics questline consists of a sequence of tasks that gets players to explore 

important concepts, starting with the traits and varieties of a species, their genotypes and 

phenotypes, and dominant and recessive alleles; and then moving on to more complex 

inheritance patterns and dihybrid crosses. The game focuses on Mendelian genetics and the core 

mechanic of players’ genetic explorations is the ability to breed plants and animals using a 

simulated genetics system. Four tools that let players interact with this system are provided: 

  Trait examiner: This tool lets players examine a plant or animal and find out what its 

phenotypes are. For example, when this tool is used on a myzle flower, a player may find 
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out that its color is red, and its height is tall. Players choose whether to use this tool in 

their exploration and experimentation. 

 Trait decoder: This tool lets players find out the genotype of a plant or animal. For 

example, when used on a glumbug, a player may find out that it has antenna length genes 

LL and toxicity genes Tt. Like the trait examiner, players choose whether to use this tool 

in their inquiry process. 

 Breeding station: This tool lets players choose two parent plants or animals and breed 

them to obtain offspring. After dragging the parents into the breeder, players can then see 

some basic statistics on the genotypes of the brood and interact with the offspring. 

Players choose which parents to use as inputs in the breeding station, but they cannot 

complete quests without using it in some way. 

 Punnett square: This tool lets players fill in a Punnett square with the traits they are 

interested in and drag the alleles into the corresponding cells to complete the diagram. It 

is optionally available during the breeding process to help players make decisions. 
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Figure 1. A player exploring the forest biome of Radix and using tools to interact with the system. 

Content-specific gameplay decisions. Conventional problem sets and test questions in 

genetics, especially at the secondary education level, tend to be straightforward and constrained 

to specific inheritance patterns and prescribed Punnett squares (close-ended problems), therefore 

providing constrained information about what students know and can do (Aznar & Orcajo, 2005). 

In contrast, within a genetics quest in Radix, game characters give players challenges with some 

narrative context, and players must then figure out how to go about solving the problem by 

selecting and breeding organisms. Taking monohybrid crosses as an example, breeding 

organisms requires two parents and each parent might be homozygous recessive (rr), 

heterozygous (Rr), or homozygous dominant (RR). Therefore, for each trait there can be six 

possible parental genotype combinations that players may choose to use in their cross (Table 1). 

Two genotypes (RR and Rr) contribute to a dominant trait and one genotype (rr) contributes to a 
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recessive trait. In this case five possible parental combinations (crosses 1 to 5) can produce 

offspring with a dominant trait, and three possible combinations (crosses 4 to 6) produce 

offspring with a recessive trait. Players can even choose to breed many generations to obtain the 

offspring with desired traits. If players don’t know which variety of a trait is dominant, or which 

inheritance pattern that trait adheres to, with the use of equipped tools they can conduct 

experiments and make inferences based on the outcomes to those experiments. In other words, 

there are many possible approaches for solving an open-ended problem within a Radix genetics 

quest. We therefore define content-specific gameplay decisions in this study as ways of selecting 

tools and using them on different game objects to solve open-ended genetics problems. 

Table 1 

Possible parental combinations for monohybrid cross. 

Cross Parental combination Offspring 

1. RR x RR RR 

2. RR x Rr ½ RR, ½ Rr 

3. RR x rr Rr 

4. Rr x Rr ¼ RR, ½ Rr, ¼ rr 

5. Rr x rr ½ Rr, ½ rr 

6. rr x rr rr 

 

“Mold in the Mines” quest in Radix 

A detailed discussion about the design of Radix and its classroom implementation can be 

found in Klopfer et al. (2018) and Rosenheck et al. (2016). This study focuses on the 12th quest 

in the genetics series, entitled “Mold in the Mines,” in which a character named Parslicus asks 

players to figure out how to predictably breed milkflies that have both tastebuds on their feet and 

pointed probosces, and bring him two of those flies along with a Punnett square to show their 
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method. To do this, players need to catch milkflies and examine their traits, then determine 

which ones to breed. They choose whether to observe genotypes using the trait decoder tool, 

and/or phenotypes using the trait examiner tool (Figure 2). Either way they must figure out 

which genotypes code for which phenotypes, and which milkflies they should breed to result in 

the desired offspring. Tool choice is closely tied to the strategy a player elects to use, and players 

can find success in various ways as long as they develop a conceptual understanding of how each 

trait is inherited before creating the Punnett square and coming up with the required milkflies. 

The flow of quest tasks for “Mold in the Mines” is shown in Figure 3. 

 

Figure 2. A player using the trait examiner (left) and trait decoder (right). 
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Figure 3. The flow of quest tasks for “Mold in the Mines.” 

In order to make sense of the gameplay decisions and sequences of genetic explorations that 

we care about, it is important to lay out the specific game-related insights that players grapple 

with. Milkflies have two salient traits: presence of foot tastebuds, and proboscis shape. Which 

varieties are dominant and recessive is not immediately obvious and must be ascertained through 

experimentation. However, if a player successfully turns in flies with the desired traits, does it 

confidently indicate that they have explored all possible outcomes and built a robust 

understanding of complete dominant traits? Or might they have completed the task by 

understanding one part of the system—perhaps the most obvious solution, or the most sure-

fire—without having fully explored the possibility space?  

Content-specific gameplay decisions for “Mold in the Mines” quest. As mentioned 

previously, there can be six possible parental genotype combinations for each trait. Since we care 

about two traits in this quest, there are a total of 36 possible combinations that could be bred, and 

this dihybrid cross table is shown in Figure 4. In this diagram, the correct combinations, that 

result in at least some offspring with both desired traits, are indicated with a , and the incorrect 

combinations are marked with a . Because players can use different tools to obtain phenotype 

and genotype information, we take tool use into account. In some of these combinations, if a 

player knows the phenotypes of the parents, then the phenotypes of the offspring can be 

accurately predicted. For example as the presence of taste buds is a dominant trait, crossing two 

homozygous recessive parents (bb, bb) will definitely result in recessive offspring, without taste 

buds, and players can predict this by knowing that the parents had the recessive phenotype, even 

without having genotype information. The other five genotype combinations (any cross 

involving at least one BB or Bb) all have a chance of producing some offspring with taste buds, 
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the desired trait, and this too can be predicted if you know that at least one parent has the 

dominant trait. So we call all of these examiner identifiable crosses. On the other hand, a pointed 

proboscis is a recessive trait, so while players know that two pointed parents will produce 

pointed offspring, they can’t know what offspring parents with round probosces will produce. 

This is because the outcome of a cross with a round proboscis depends on whether that parent 

was actually homozygous dominant (PP) or heterozygous (Pp), which can only be determined by 

using the trait decoder tool. We call these crosses examiner unidentifiable, because players 

cannot be sure of the outcome if they have only used the examiner. Looking again at Figure 4, 

the examiner identifiable crosses have been outlined in green, and the examiner unidentifiable 

crosses are outlined in red. By analyzing players’ choices of parental combinations based on this 

dihybrid cross table using log files, we aimed to understand players’ tool input patterns and 

broader approaches to the problem, including whether players were able to shift between the 

different macro/micro thought levels in order to paint a more complete picture of what they 

know and can do. 
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Figure 4. Dihybrid cross table for the two relevant traits, showing correct and incorrect, and 

examiner identifiable and examiner unidentifiable genotype combinations. 

Data collection 

The game collected back-end data for all users as they played, storing data securely in a 

database hosted on an Amazon cloud server. This study focuses on the player usage data, in 

particular tool usage and quest attempts. In terms of tool usage, an event was logged every time a 

user used the trait examiner, trait decoder, breeding station, or Punnett square functions in the 

game. An event was also logged every time a player attempted to turn in a quest (hand in 

required objects to complete a quest). For all of these events, the inputs to the tools, that is the 

plants or animals the player chose to manipulate and their attributes, were logged as well. This 

enabled us to conduct more quest-specific and content-specific analysis probing players’ 

understanding and strategies. Finally, each quest attempt was logged and marked as a success or 

failure. 

All events logged are associated with a unique user id and a timestamp. Using this 

information each player’s tool usage and quest attempts could be sequenced to examine not only 

their action frequencies but their quest progression as well. For example, the data can show how 

many times a player submits the wrong type of object, and how many times they submit the 

wrong variety, before ultimately succeeding. In addition, the data can also show which tools 

players use, how often, and in what order. All of this information has enabled researchers to find 

play patterns across all users who worked on this genetics quest.  

Participants 

The Radix project included a pilot that ran from January 2014 through August 2015. During 
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this time high school math and biology teachers were invited to use the game as part of their 

curriculum, implementing it in whatever way they felt best fit their students’ needs. This meant 

some required students to play a certain amount of time or certain number of quests, while others 

let students explore any parts of the world that interested them as more of an enrichment activity. 

Across these contexts, this study includes data from 238 participants who undertook the “Mold 

in the Mines” quest. We chose this particular quest for analysis because it challenges players to 

think through a dihybrid cross, breeding for two desired traits, which creates a problem space 

with a wider variety of possible approaches and strategies. 

Data analysis 

Unless stated otherwise, student-level data, including the cumulative tool use up to the last 

quest event, genotypes/phenotypes of milkflies identified by each tool, and quest completion 

status, were used throughout the following analyses. Event-level data, collected at intermediate 

points throughout the data collection period, were utilized as appropriate. Descriptive statistics 

and visual illustration were provided to summarize the amount of tool use stratified by students’ 

quest completion status. The association between quest completion, a binary outcome, and tool 

usage, an ordinal outcome, was evaluated using polychoric correlation (Ekström, 2011). A 

Gaussian mixture model (Hastie, Tibshirani, & Friedman, 2009)  was utilized to cluster students 

into homogeneous subgroups based on the amount of tool use. The number of clusters was 

chosen using a likelihood ratio test. Upon completion of clustering, all subsequent analyses were 

conducted stratified by subgroup. Frequency distributions, including the number and percentage 

of milkfly genotypes identified by various tools, were summarized. Contingency tables were 

utilized to investigate patterns of tool use and milkfly genotypes/phenotypes. All statistical 

analyses were conducted in R version 3.3.0 or later (R Core Team, 2013). Two R add-on 
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packages polycor (Version 0.7-9) and mxitools (Version 1.1-0) were used to calculate 

polychromic correlations and optimize the clustering algorithm, respectively. 

The data and analyzing codes that support the findings of this study are openly available in 

Figshare (Cheng, 2020). 

Results 

Tool use for all participants 

The first research question and analytic approach focuses on actions that help players 

complete tasks, which in the context of Radix is operationalized as their choice of tools and 

amount of tool use, and whether those actions contributed to success on the quest. To implement 

this, we began by splitting participants into groups based on whether they completed the quest. 

In the “completers” group, there were 212 (89%) who completed the quest eventually, with 102 

(102/212=48.1%) of them without any failed attempts. Next we looked at the cumulative number 

of uses of each tool by quest completion category, to understand more about what players in each 

group were doing. Figure 5 shows that for completers, the tool that was used most often was the 

trait examiner (mean=7.7), which was used more than twice as much as the trait decoder 

(mean=3.0). This suggests that the trait examiner is an important tool for completing the quest. In 

contrast, non-completers used the examiner (mean=3.8) and decoder (mean=4.0) almost the 

same amount, showing that players’ choice of tools could be related to their quest outcomes. We 

further examined the association between successful turn-ins and the number of uses of each tool 

(Table 2). The results show significantly positive correlations between quest completion and 

greater use of the examiner (r*=0.56, p<0.01) and breeding station (r*=0.46, p<0.01), while the 

use of the decoder (r*=-0.09, p>0.05) and Punnett Square (r*=0.03, p>0.05) were only slightly 

correlated with successful turn-ins. The game requires players to use the breeding station in order 
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to complete the quest because that is the only way to breed milkflies, so the more salient result 

here is the fact that the examiner, and not the decoder, appears to be the major tool choice for 

completing this quest—even though the decoder provides more detailed genotype information 

that could be useful to players. 

Figure 5. Cumulative number of uses of each tool by quest completion category. 

 

Table 2. 

The correlation coefficients between successful turn-ins and the number of uses of each tool 

(n=212). 

 Examiner use Decoder use Punnett tool use Breeding station use 

Correlation (r*) 0.56** -0.09 0.03 0.46** 

95% CI (0.36, 0.76) (-0.28, 0.11) (-0.19, 0.25) (0.19, 0.73) 

**p<0.01 
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Separation into discrete player types 

The second research question addresses play patterns, which we identified as player types 

distinguished by completion status combined with amount of tool use. In order to unpack the 

play patterns of the completers, we used the two-dimensional scatter diagrams that compare the 

level of usage across tools (Figure 6). Here we found that completers actually seem to fall into 

two subgroups: the first group, in the solid circles, used tools fewer times in total, whereas the 

second group, in the dotted circles, used tools a greater number of times in order to succeed. 

Based on this general pattern, we then followed a more formal procedure to identify the two 

types of completers. Gaussian mixture model was used as the analytic method to select the 

number of subgroups as well as identify the membership of each completer and assign them into 

the most likely subgroup. As anticipated, two subgroups resulted, with “low tool use completers” 

(N=117) generally using fewer tools and “high tool use completers” (N=95) using more tools 

(Table 3). In addition, we see that low tool use completers experienced fewer failures 

(mean=0.44, SD=0.64) than high tool use completers (mean=2.52, SD=3.25). These results 

imply that low tool use completers might be those who fully understood the utility of each tool 

and had a better understanding of the genetics concepts, whereas high tool use completers were 

still trying to figure out how best to use the tools and did not have a full understanding of 

genetics. This could explain why the high tool use completers repeatedly used the tools and used 

more attempts before succeeding. 
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Figure 6. Comparison of level of usage across tools among quest completers. (Solid circles show 

low tool use completers and dotted circles show high tool use completers.) 

 

Table 3. 

Descriptive statistics of mean number of failures and different tool uses by each group. 

 Low tool use 

completers 

(N=117) 

 High tool use 

completers 

(N=95) 

  

Non-completers 

(N=26) 

 Mean SD  Mean SD  Mean SD 

Failures 0.44 0.64  2.52 3.25  1.46 2.20 

Breeding station use 1.29 0.51  4.61 4.82  1.54 1.21 

Punnett square use 1.21 0.41  3.43 2.35  2.11 1.86 

Examiner use 5.69 2.76  10.18 7.49  3.85 3.51 

Decoder use 1.04 1.55  5.34 6.47  3.96 6.78 
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Consistent with tool use results described above, both low and high tool use completers used 

the examiner more than the decoder. Within the low tool use completers, the examiner was used 

five times as much as the decoder. In addition, when we looked more deeply into the tools 

players used after their first failed attempt, we again found that both completer groups tended to 

use the examiner more than other tools, with mean uses of 1.92 and 1.94 (Table 4). This is 

meaningful because a failed attempt often provides players with feedback or insights into what 

they need to do to correct their errors, and we see here that completers still choose to use the 

examiner more than the decoder. On the other hand, after the first failed attempt, non-completers 

continued to be more likely to use the decoder than the examiner (mean=1.75 and 1.13 

respectively). This behavior pattern could well be related to the reasons that non-completers 

never figure out their solutions to the quest. When taken together, this set of results implies that a 

player’s choice to use the examiner or the decoder, and therefore whether to work with 

phenotypes or genotypes, is related to their ability to solve genetics problems. 

Table 4. 

The mean number of additional tool uses among participants after the first failed attempt. 

 

 

 

 

 

 

 

 

Distinguishing players’ tool input patterns 

The third research question looks at players’ various tool input patterns, which in this quest 

meant the choices about which individual organisms they used with which tools, and for which 

 Low Tool Use 

Completers 

(N=117)  

High Tool Use 

Completers 

(N=95)  

 

Non-completers 

(N=26) 

Breeding station use 0.72 0.77 0.34 

Punnett square use 0.36 0.69 0.61 

Examiner use 1.92 1.94 1.13 

Decoder use 0.32 0.77 1.75 
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types of problems. In some ways, it is surprising that the quest can be completed more easily by 

using the trait examiner instead of the trait decoder, given that the decoder provides more 

detailed information about a creature’s genotype, and the examiner only provides its phenotype. 

To understand why these players’ approaches involved choosing to use the examiner so often 

and to confirm whether the quest can be solved by mainly using the trait examiner, we looked 

further into their interactions with the genetics content—namely which combinations of 

genotypes they chose to use for breeding and creating Punnett squares. These decisions are at the 

heart of characterizing tool input patterns, and identifying content-specific gameplay decisions. 

From Figure 4 we understand the possibility space for genetic crosses in this quest, and now 

we dig into the genotype combinations that players chose for breeding and creating Punnett 

squares, and differences between low tool use completers, high tool use completers, and non-

completers. In Figure 7 we can see that for both low and high tool use completers, almost three 

fourths of crosses that students chose for breeding were both examiner identifiable and correct 

(73.5% and 72.6% respectively). But for non-completers, more than 80% of crosses chosen were 

examiner unidentifiable, and 50% were incorrect. The crosses players used for creating Punnett 

squares, shown in Figure 8, reveal a very similar pattern. 75.2% of crosses chosen by low tool 

use completers, and 81.8% chosen by high tool use completers, were examiner identifiable. But 

the opposite is true for non-completers, where 85% of crosses were examiner unidentifiable, and 

50% were incorrect. So we see that completers find success with the examiner not necessarily 

because it’s the most informative tool, but because they know that in certain situations it gives 

them just enough information. Their choice seems to revolve around optimizing the information 

they have and using it efficiently, rather than trying to uncover all the information possible. 

These illuminating insights into player behavior show that examining the content-specific 
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decisions made by players reveals a more complete picture than analyzing their tool use alone. 

Knowing that a student completed the quest indicates a certain level of genetics knowledge, and 

knowing which tools they used describes their gameplay. To go deeper, knowing exactly how 

they used those tools and for what purposes can more fully explain their content-specific 

gameplay decisions, which tells us much more about their understanding of genetics as a system, 

and about their ability to solve complex problems. 
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Figure 7. Cross tables showing the genotype combinations for breeding that are examiner 

identifiable and unidentifiable. 
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Figure 8. Cross tables showing the genotype combinations for Punnett tool use that are examiner 

identifiable and unidentifiable. 

Discussion 

The analysis presented here shows that all three approaches did in fact contribute to 
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identifying gameplay decisions related to genetics, and helped to distinguish students using 

different approaches to complete game tasks. In particular, the examination of tool input patterns, 

which also incorporated tool use and player types, illuminated the most meaningful distinctions 

between students making different types of decisions.  

In response to RQ1 and RQ2, the data on tool use and player types show that these 

approaches can be useful in presenting a picture of different players’ experiences, by revealing 

the three qualitatively different player groups described above. The low tool use completers are 

players that demonstrate an efficient strategy—they know what they’re trying to do, and it 

doesn’t take them very many tool uses or quest attempts to accomplish it. High tool use 

completers may not know right away how to solve a problem, but they have some idea of a 

strategy and they are willing to try things and figure it out. They go through more failed attempts 

and need to use the tools more times before they get it right, but they are willing and able to go 

through that problem-solving process, demonstrating another effective strategy with a few more 

steps in the thought process. The non-completers on the other hand, seem to struggle in two 

ways. They likely lack an understanding of the genetic system, and perhaps also the tools 

available to them. But more significantly they don’t seem to try as many times or as many 

different ways as the high tool use completers. They may not have the problem-solving mindset 

that would make them comfortable experimenting and figuring things out on their own. 

With the identification of these patterns and a method to classify them based on player 

actions, real-time analytics could be built into Radix or other serious games to classify each 

player’s style or strategy. Designers could use this information to tailor the game’s feedback and 

scaffolding to each player, for example allowing high tool use completers to engage in 

productive struggle on subsequent quests, while letting the quest-giver give more guidance or 
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feedback to non-completers at risk of giving up. Or they could revise the design of the quest, 

constraining the task further to make it impossible to complete without utilizing genotype 

information. In this case the quest might go further than requiring a trait, instead asking 

specifically for milkflies that are heterozygous for one or both traits, or asking for a whole brood 

of offspring with certain distributions of traits. Equally important to these design decisions, the 

classifications could be shared with teachers. Combined with what they already know about 

students, this additional level of data would prepare teachers to address individual students’ 

needs in terms of genetics knowledge and problem-solving strategies, in ways best suited to each 

type of learner. Further, knowing which crosses students had conducted and which were left 

unexplored would mean that a teacher could challenge them to explore those in other ways both 

in and outside of the game. One of the unique aspects of Radix is that it is an inquiry-based game 

that presents opportunities to explore multiple solutions to a task, and for this reason being able 

to identify whether players are struggling with that exploration process, and what their process 

looks like, is essential. Because of the open-ended nature of this learning environment, evidence 

of students’ varying decisions can be captured and differentiated, and in answer to RQ3 we see 

that it can be classified into distinct tool input patterns that tell us about players’ approaches to 

the task and understanding of genetic inheritance. 

For the low tool use completers, the group that seems to have a good grasp of genetic 

inheritance patterns, we not only want to know that they can use genetics to solve problems, but 

how they are thinking about those problems. The learning objective for the “Mold in the Mines” 

quest was to understand how genotypes in dominant and recessive traits combine to result in 

each phenotype. This quest involved a dihybrid task, with two desired traits, which we expected 

would necessitate more use of the trait decoder. However, players didn’t approach the task this 
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way—instead it seems that players were not even looking at the milkflies’ genotypes. Rather 

than setting a goal of gathering genetic information about the milkflies and then choosing the 

appropriate tool for the job (the decoder), players seem to choose the tool they want to use (the 

examiner) and then figure out how to accomplish the task within the constraints of what that tool 

can do. While the data logs don’t tell us why players make these choices, we can guess that it 

may be due to a perception of the examiner as being easier to use, compared with digging into 

genotypes which seem more complex. Phenotypes are visible and therefore more concrete, 

whereas genotypes are more abstract and require the manipulation of symbols (Johnstone, 1991).  

The phenomena involving multi-level thinking are usually confusing to students (Wilensky & 

Resnick, 1999), and it seems that in Radix players did not shift between the different 

macro/micro thought levels. Using the simpler tool, and identifying which are the sure-fire 

crosses—the ones that are examiner identifiable and can avoid seemingly unpredictable 

heterozygotes—may be preferable to dealing with genotypes and the decoder. While this is not 

the best method in terms of genetics learning, it is valid given the framing and goals of the game.  

Using a combination of the three approaches we hypothesized would be illuminating, our 

analysis has revealed learners’ tendency to choose sure-fire crosses that are simpler to 

understand. This is an example of how players will adapt a learning environment to their own 

goals and purposes, a pattern that is more difficult to ascertain with small-scale observations than 

with large-scale in situ data analysis. While the task does provide an environment to explore all 

possible crosses, the motivation is only there to explore the most sure-fire, examiner identifiable 

crosses. So for players that choose those crosses right away and breed them correctly, we can 

feel confident that they understand that aspect, for example homozygous recessive crosses. But, 

we can’t assume anything about their understanding of what offspring would result from 
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heterozygous parents. In a more traditional paper-based problem set, each concept would be 

targeted individually so knowing which crosses a student worked with would be a given. 

However, real-world scientists do not have such specific instructions and student-centered 

pedagogy greatly values the cognitive task of figuring out which experiments to do and how to 

set them up. While it may not be surprising that students will use the simplest tool possible to 

solve a problem, this content-specific approach to analysis illuminates who is thinking in which 

way, so that students can reflect on their choices and teachers can further challenge them. While 

much is already understood about students’ challenges in thinking about genetics, these 

approaches could likely be used to distinguish types of decisions and interaction patterns in 

biology or various other domains. Making sense of complicated sequences of events is an 

affordance of GLA that can strengthen how people learn using digital experiences. 

 Taking the “Mold in the Mines” data analysis as a case study, we can see that GLA can help 

us describe inquiry processes that don’t always occur in more traditional pedagogies. The ability 

to understand students’ choices around which tools to use and what experiments to run means 

that teachers and designers have more information with which to support student-centered 

pedagogies such as inquiry learning. From this example of game design and data analysis, it is 

clear that game data can tell us a great deal—but it needs to be content-specific and granular 

enough to get at what students are doing in relation to the key concepts involved. Completion 

data and tool use could easily be analyzed across all quests in the game, but it wouldn’t help us 

understand how students go about exploring genetics in an inquiry environment—that they have 

a tendency to work with phenotypes over genotypes, even when it doesn’t provide as much detail 

about a problem. With the use of more generalized metrics, for example simple quest 

completion, many of the distinctions identified in this study would go unnoticed. Data collection 
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at the level of content-specific decisions is more challenging to design and time-consuming to 

analyze because there is no one size fits all formula, but this is where the rich evidence for 

learning lies. Too often we see game analytics that report on completion, perhaps number of 

attempts and time spent, and infer from that what the players have learned or can do. This is only 

the first step in embedding assessment into games, but is not enough to provide evidence of 

content-specific skills and processes. As we have seen, more detailed data on player decisions, 

combined with general play patterns, can provide insights into players’ problem-solving 

approaches. This could be further developed into a robust way to assess inquiry and problem-

solving skills and other related science practices.  

The work discussed in this paper is meant to be a start to identifying types of analyses that 

can illuminate content-specific gameplay decisions in a wider variety of serious games. In this 

study we used three key methods. The first was to identify actions that help players complete 

tasks, thereby painting a picture of what successful players are doing that others aren’t. The 

second was to classify play styles—based on actions, progress, or other factors. And the third 

was to examine tool input patterns that players demonstrated, paying special attention to the 

inputs certain groups did not use, thereby revealing the concepts they did not fully explore and 

strategies they did not utilize, which in turn presents opportunities for deepening their 

understanding. While these types of analyses must be tailored to any individual game and its 

tasks, and specific statistical methods must be selected, this study has shown their utility in the 

context of one game. We therefore present them as guiding questions for designing analysis of 

open-ended game experiences, while recognizing the need for future work to expand on these 

approaches and test their application to other learning games. 
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Illuminating students’ content-specific gameplay decisions requires a context that is open-

ended enough for students to make choices that demonstrate their thinking. Doing this also 

requires analysis methods that are granular enough to look at the specific choices across player 

types most relevant to that context. This paper has shown how the context of Radix and analysis 

of choices in genetic crosses can make visible how students think about using phenotype and 

genotype information to perform dihybrid crosses. With the development of more open-ended, 

inquiry-based games and interactive learning environments, along with the establishment of 

guiding questions for analysis, rich patterns in solving content-specific problems can be brought 

to light, thereby deepening the reflection and learning in technology-rich environments. 
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