
MIT Open Access Articles

Sorted Fibs in Base 3/2

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s00283-021-10096-4

Publisher: Springer US

Persistent URL: https://hdl.handle.net/1721.1/136838

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/136838


Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Sorted Fibs in Base 3/2

Cite this article as: Ben Chen, Richard Chen, Joshua Guo, Tanya Khovanova,
Shane Lee, Neil Malur, Nastia Polina, Poonam Sahoo, Anuj Sakarda, Nathan Sheffield
and Armaan Tipirneni, Sorted Fibs in Base 3/2, The Mathematical Intelligencer
https://doi.org/10.1007/s00283-021-10096-4

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that
has been accepted for publication but has not been copyedited or corrected. The official version
of record that is published in the journal is kept up to date and so may therefore differ from this
version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full
terms. https://www.springer.com/aam-terms-v1

https://doi.org/10.1007/s00283-021-10096-4
https://www.springer.com/aam-terms-v1


Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Sorted Fibs in Base 3/2

Ben Chen, Richard Chen, Joshua Guo,
Tanya Khovanova, Shane Lee, Neil Malur, Nastia Polina,

Poonam Sahoo, Anuj Sakarda, Nathan Sheffield, Armaan Tipirneni

In memory of John H. Conway.

John H. Conway liked inventing new sequences, mostly because it is fun.1 However, there is
another reason: simple sequences can lead to very deep mathematics.

One simple but puzzling collection of sequences comes from the infamous Collatz problem.
Take a positive integer and iteratively apply the following rule: if a number is odd, triple it
and add one; if it is even, halve it:

tn+1 =

{
3tn + 1 if tn is odd,
tn
2 if tn is even.

It is conjectured that the sequences produced by this rule will always reach an infinite cycle
of 4, 2, 1, 4, 2, 1, . . . .

Paul Erdős is rumored to have said about the Collatz conjecture, “Mathematics is not yet
ready for such problems” [4]. John wanted to create a lot more examples of sequences that
are similar to those in the Collatz problem [8]. He hoped that this would make mathematics
ready for new horizons. At the very least, he wanted to make his sequences as notorious as
the Collatz problem.

Did you know that numbers have destinies, as John Conway called them? To have
a destiny, a number needs to have a life, or in mathematical terms, destinies are defined
with respect to an operation or a function. If the function is the Collatz rule, then every
nonnegative integer’s conjectured destiny is the cycle described above.

Two numbers have the same destiny with respect to the Collatz rule if the tails of the
sequences they generate coincide. Suppose a(n) and b(n) are the two trajectories. Then the
numbers a(0) and b(0) that define these sequences have the same destiny if there exist N
and M such that for every nonnegative integer j, a(N + j) = b(M + j). In particular, all
numbers in the same trajectory a(n) have the same destiny.

Conway tried to invent sequences that produce interesting destinies. One example that
is relevant to this paper is the RATS sequence. RATS is an abbreviation for Reverse Add
Then Sort. To calculate the next term of the sequence, we reverse the digits of the current
term and add the number thus obtained to the current term. We then sort the digits of the

1This section is based on Tanya Khovanova’s personal recollections of encounters with John Conway.
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resulting sum by arranging them in increasing order. For example, to calculate RATS(732),
we reverse 732, getting 237, then add 732 and 237, getting 969, then sort the digits. Thus,
RATS(732) = 699.

Let’s look at the RATS sequence starting with 1: 1, 2, 4, 8, 16, 77, 145, 668, 1345, 6677,
13444, 55778, 133345, 666677, 1333444, 5567777, 12333445, 66666677, 133333444, 556667777,
1233334444, 5566667777, 12333334444, 55666667777, 123333334444, 556666667777, . . . . We
can prove that this sequence is infinite, because its terms fall into a repetitive pattern with
an increasing number of digits. John Conway calls the destiny of 1 “the creeper.” Conway
conjectured that RATS destinies are either the creeper or a cycle [5].

John especially liked tweaking the Fibonacci rule to invent new sequences. He usually
called such sequences “Fibs.” He said that he tried more than 100 different Fibs to see which
of them had exciting destinies. We can naturally extend the term for destinies of numbers to
destinies of pairs of numbers that uniquely define a tweaked Fibonacci sequence. John told
everyone who would listen about his sequences, and some of his definitions were picked up
by his colleagues and studied more thoroughly. We give three examples of such sequences.

The first example is Conway’s subprime Fibonacci sequences [6]. Each element in such
a sequence depends on the previous two terms. As in the Fibonacci sequence, we first sum
the previous two terms. Then there is a tweak: if the result is composite, we divide it by
its smallest prime factor. For example, if we start with 0 and 1, we get the sequence 0, 1,
1, 2, 3, 5, 4, 3, 7, and so on. Similar to the Collatz conjecture, there are indications and
arguments that subprime Fibonacci sequences, regardless of the initial terms, have to end in
a cycle, but this has not yet been proved.

The second example is the n-free Fibonacci sequences [1]. Such a sequence is determined
by its two starting terms and an integer n > 1. As in all Fibs, each element in such a sequence
depends on the previous two terms. As in the Fibonacci sequence, we first sum the previous
two terms. But then there is a tweak: if the result is divisible by n, we repeatedly divide it
by n until we get a term that is not divisible by n. Thus, except for the two initial terms, the
rest of the sequence is n-free, meaning that none of the calculated terms are divisible by n.
The behavior of such sequences is very different for different values of n. For example, 2-free
Fibonacci sequences end in a cycle of length 1. It is conjectured that all 3-free Fibonacci
sequences end in a cycle. It is also conjectured that with probability 1, a 4-free Fibonacci
sequence does not cycle. If we look at 5-free Fibonacci sequences, some of them end in a
cycle and some do not. For example, consider the Lucas sequence: the sequence that follows
the Fibonacci rule but starts with integers 2 and 1. The Lucas sequence begins with 2, 1, 3,
4, 7, 11, and continues growing exponentially. Taken modulo 5, this sequence turns into a
cycle 2, 1, 3, 4, 2, 1, and so on. Because this cycle doesn’t include zeros, the Lucas sequence
is a 5-free Fibonacci sequence.

The third example is a sorted Fibonacci sequence. Each element in such a sequence
depends on the previous two terms. As in the Fibonacci sequence, we first sum the previous
two terms. But then there is a tweak: we sort the digits of the result in increasing order. For
example, suppose the first two terms are 0 and 1 as in the Fibonacci sequence. For a while,
the sorted terms continue as in the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . . However,

2



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

the next term is not 21, but 12. It is followed by 25, 37, 26 (for the sum of 62), and so on:

0, 1, 1, 2, 3, 5, 8, 13, 12, 25, 37, 26, . . . .

One might continue the calculation and check that we end in a cycle of 120 terms. The
largest value in the cycle is 667.

If we start with 1 and 1, 1 and 2, or any other two consecutive numbers from the sequence
above, we clearly get the same result. Starting with a different pair of numbers can produce
a different destiny. There are known cycles of lengths 3, 8, 24, 96, and 120. For example,
you get a cycle of length 3 if you start with 27 and 27.

Conway conjectured that the destinies of all pairs of nonnegative integers under the
sorted Fibs rule are cycles. The first observation that supports this conjecture is that the
sequences can’t grow as fast as the Fibonacci sequences. Each time we sort, the result doesn’t
increase and almost always decreases, especially for large numbers. Moreover, as soon as a
zero appears as a digit in a sum, the result decreases tenfold. As in many other sequences
invented by Conway, there is a shaky probabilistic argument supporting the conjecture. If
the numbers are sufficiently large, we expect zeros to appear with high probability, decreasing
the sequence. The problem with this argument is that the terms of the sequence, with digits
being in increasing order, are very structured, and thus are highly nonrandom.

There are many conjectures related to sequences that John Conway invented. Quoting
Erdős again: “Mathematics is not yet ready for such problems.”

* * *

One of the authors of this paper, Tanya Khovanova, runs a program called PRIMES
STEP, which conducts math research with gifted students in grades 6 through 9. The other
authors were students in this program.

The project resulting in this paper was done in the 2017–2018 academic year. The topic
of our research was base 3/2. We first studied properties of base 3/2, and then we explored
various sequences written in that base. Our results are available in a paper posted at arXiv
[3].

The students loved the Fibonacci sequence, but translating it to base 3/2 is not very
interesting, for we just need to convert every term to base 3/2. This is where Conway’s
multitude of Fibs sequences comes in handy. The examples of subprime Fibs and n-free Fibs
presented above, while beautiful, are not very exciting in base 3/2 for the same reason as
for the Fibonacci sequence: the next element depends only on the previous two terms.

The sorted Fibs sequence, however, depends on the base, and it is interesting to see
the destinies of pairs of numbers under the sorted Fibs rule in base 3/2. We are following
John’s tradition of calling our sequences “Fibs” to emphasize that these are not Fibonacci
sequences.

In this paper, we study sorted Fibs written in base 3/2. What is base 3/2? How does
one even think about a fractional base anyway? Our readers will be familiar, of course, with
base 10, but there are many uses for other bases, such as 2, 12, and 60. Base 2, or binary,
is useful because there are only two states for each place value, meaning that a number can
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be represented easily by a series of transistors that are either on or off, and as a result forms
the basis for machine languages. Bases 12 and 60 are useful because they have many factors
and hence can be divided nicely into smaller increments. We use these bases to partition
time.

One way of thinking about how integer bases such as these work, invented by Propp
[9] and popularized by Tanton [10], is the idea of exploding dots, which allows a natural
extension into fractional bases. A more rigorous discussion of such fractional bases is covered
in [2] and also in [7]. We explain exploding dots and base 3/2 in detail below.

In the next section, we give examples of the destinies of pairs of numbers with respect to
the sorted Fibs rule. We call the example that starts with 0 and 1 and ends in an infinite
sequence the Pinocchio sequence. An example that starts with 2 and 22 ends in a cycle of
length 3: 112, 1122, 1122. At the end of this section, we state the main theorem that all the
destinies are either the Pinocchio sequence or the above-mentioned 3-cycle.

In the following section, we discuss how to sum two terms in sorted Fibs and what we
can say about the previous two terms given the current term. We then turn our attention to
the maximum number of twos in two consecutive terms of sorted Fibs and study sequences
in which this number is constant. This allows us to finish the proof of the main theorem
about destinies in sorted Fibs.

We next describe the rule for reverse sorted Fibs and list their destinies. Each sequence
of reverse sorted Fibs ends in one of a series of cycles or in the infinitely growing sequence
called the Oihcconip sequence.

We see that sorted Fibs and reverse sorted Fibs have similar destinies to those of RATS
sequences. Each of these rules produces one special destiny that grows to infinity and
other destinies that cycle. The analogues of the creeper sequence are the Pinocchio and
Oihcconip sequences. The good news is that while the destinies of the RATS sequence are
only conjectured, in the case of sorted and reverse sorted Fibs, we have a proof.

Exploding Dots and Base 3/2

Propp [9] and Tanton [10] explained the algorithm of exploding dots, in which boxes are
arranged in a line. We place N dots in the rightmost box. After that, the dots explode
according to a rule that depends on the base. Here is the base-10 rule. Whenever there are
ten dots in one box, they explode into one dot, which is placed in the next box to the left.
This continues until no boxes with ten or more dots remain. By writing down the resulting
number of dots in each box, starting from the left, we get a representation of N in base 10.

We can apply this to other integer bases as well. To write 11 in base 3, we start with 11
dots in the rightmost box, as in Figure 1.

Figure 1: 11 base 3: step 1.
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Then each group of three dots in the rightmost box explodes, and one dot per group
appears in the box to the left, as in Figure 2.

Figure 2: 11 base 3: step 2.

Finally, the three dots in the second box explode into one dot to its left, as shown in
Figure 3.

Figure 3: 11 base 3: step 3.

By reading the number of dots in each box from left to right, we see that 11 is written
as 102 in base 3. We denote the base-b representation of N by (N)b and the evaluation of
a string of digits w written in base b by [w]b. From our previous example, we have that
(11)3 = 102 and [102]3 = 11.

Interestingly, this algorithm can be extended easily from integer bases to fractional bases
[10]. We can use a rule in which b dots in one box explode into a dots in the next box to
represent integers in base b/a. In this paper, we work in base 3/2, which means that every
triplet of dots explodes and creates two new dots in the box to the left. To represent 11 in
this base, we use the process shown in Figure 4.

Figure 4: 11 base 3/2.

Using this system of exploding dots, we have that (11)3/2 = 2102. We can see that every
integer is written using the digits 0, 1, and 2.

5
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This representation behaves quite a bit as one would expect from base 3/2. The rightmost
box represents (3/2)0, the next (3/2)1, then (3/2)2, and so on. The number 2 · (3/2)3 + 1 ·
(3/2)2 + 0 · (3/2)1 + 2 · (3/2)0 is indeed equal to 11. We can use this just like any other base
to represent numbers.

More formally, we express a nonnegative integer N in base 3/2 recursively: (N)3/2 =
dkdk−1 . . . d1d0. The last digit d0 is the remainder of N modulo 3. The rest of the digits,
dkdk−1 . . . d1, are

(
2(N−d0)

3

)
3/2

. See [7] for more details.

The first few nonnegative integers are expressed in base 3/2 as follows:

0, 1, 2, 20, 21, 22, 210, 211, 212, 2100, 2101, 2102, 2120 .

There are many fascinating properties of base 3/2. See [10] for those we discuss here and
more. For example, integers greater than 1 have 2 as the leftmost digit in their base-3/2
representation. This is true because each carry adds 2 to the previous place. For the same
reason, a proper prefix of any integer written in base 3/2 evaluates to an even integer. One
might notice that the beginnings of integers are very restricted, but their endings are not.

We see that integers in base 3/2 look like integers in base 3 and base-10 integers written
using only the digits 0, 1, and 2. However, if we take a string of digits consisting of 0, 1,
and 2 and evaluate it as a number written in base 3/2, we do not always get an integer. As
we mentioned before, a string of length greater than 1 starting with the digit 1 cannot be
an integer. For example, [112]3/2 = 23/4 = 5.75. Strings written with the digits 0, 1, and
2 in base 3/2 are called 3/2-integers. They look like integers, but they do not necessarily
evaluate to integers.

Examples of Sorted Fibs

We shall now study sorted Fibs in base 3/2. We begin with the sorted Fibs sequence fn with
the same two initial values as in the Fibonacci sequence: f0 = 0 and f1 = 1. To calculate
fn+1, we add fn−1 and fn in base 3/2 and sort the digits in increasing order. It follows that
the numbers in the sequence are written as several ones followed by several twos.

In contrast to base 10, the sequence is not periodic and grows indefinitely:

0, 1, 1, 2, 2, 12, 12, 112, 112, 1112, 1112, 11112, . . . .

This sequence plays a special role among sorted Fibs in base 3/2. In recognition of its
constant growth, like the nose of Collodi’s mendacious marionette, we call this Fibs sequence
the Pinocchio sequence.

From now on, we use the notation δk to denote a string of k digits in a row that are all
δ. If there are only one or two digits in a run, we sometimes drop the exponential notation.
The following lemma proves the pattern that can be seen in the Pinocchio sequence above.

Lemma 1. In the Pinocchio sequence, we have f2k−1 = f2k = 1k−22, where k > 1.

6
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Proof. We prove this by induction. The base case is for k = 2, in which we have f3 = f4 = 2.
Thus, the base case holds.

To calculate f2k+1, we need to add f2k−1 and f2k, which can be represented as 1k−22 and
1k−22 respectively. The sum is equal to 2k−24 before carrying. The digit four is written as
21, so we can replace the 4 with 1 and add 2 to the next digit to the left. After continually
carrying 2, we end up with 21k−1. Sorting gives us the desired result.

To calculate f2k+2, we need to add f2k and f2k+1. By the induction hypothesis, f2k+1 =
f2k +10k = f2k−1 +10k−1. Using the previous calculation yields f2k +f2k+1 = 21k−1 +10k−1 =
201k−1. After sorting, we get the desired result.

We are interested in destinies of this sequence depending on the two initial terms. After
them, all terms of the sequence are sorted. From now on, we assume that we start with
sorted numbers. Here are examples of two starting numbers that end in the same pattern
as above: (1, 1), (2, 112), (1, 12). We note that the starting numbers might not be evaluated
as integers; they are 3/2-integers.

However, not all starting numbers end in the Pinocchio sequence. Starting with 2 and 22,
we get 2, 22, 112, 122, 1122, 122, 122, 112, 1122, 1122, 112, 1122, and so on. The sequence
becomes periodic with a period-3 cycle: 112, 1122, 1122.

Our goal is to show that all possible destinies for any starting terms that are 3/2-integers
are either the Pinocchio sequence or the 3-cycle above.

Theorem 2. Every sorted Fibs sequence eventually turns into either the Pinocchio sequence
or the 3-cycle 112, 1122, 1122.

The proof of this theorem spans the next two sections.

Summing Two Terms

When we add two sorted numbers whose digits are in increasing order, the result is also in
increasing order before carrying. Thus, we can represent the sum as 1a2b3c4d before we do
the carries. The following lemma describes the result after the carries and sorting.

Lemma 3 (Carrying and sorting). Given the string 1a2b3c4d, after performing the carries
and sorting, the resulting string is one of the following:

1. a > 0 and d > 1: 1c+12d.

2. a = 0 and d > 1: 1c+22d−1.

3. d = 1: 1b+12c+1.

4. c > 0 and d = 0: 1b2c.

5. c = 0 and d = 0: 1a2b.

7
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Proof. We start by assuming a > 0 and d > 1. After the carries, we get 20a−120b1c2d−201.
Then, after sorting, we get 1c+12d.

If a = 0 and d > 1, then after the carries we get 210b1c2d−201. Then, after sorting, we
get 1c+22d−1. If d = 1, then after the carries we get 20a1b2c1. When sorted, we get 1b+12c+1.
If d = 0 and c > 0, then after the carries we get 20a1b2c−10. Then after sorting, we get 1b2c.
Finally, if c = 0 and d = 0, there are no carries, so sorting gives us the same result: 1a2b.

We previously denoted the terms of the Pinocchio sequence by fn. We reuse this notation
for any sorted Fibs. The term fn depends on the first two terms of the sequence, which we
will specify if needed.

The numbers a, b, c, and d play a big role in the coming proofs. For this reason, we want
to associate them with every term of the sequence. That is, an, bn, cn, and dn correspond
to the sum of fn−2 and fn−1 before the carries, so we have fn−2 + fn−1 = 1an2bn3cn4dn . By
assumption, all terms of the sequence are sorted. Let yn be the number of ones in the nth
entry, and let zn be the number of twos in the nth entry. This gives us

fn = 1yn2zn .

Integers an, bn, cn, and dn give us some information about fn−2 and fn−1. For example,
we know the minimum of their number of twos:

min{zn−2, zn−1} = d.

For the maximum of the number of twos there are two possibilities:

max{zn−2, zn−1} = c+ d and max{zn−2, zn−1} = b+ c+ d.

The second situation occurs when one of the numbers is 1c2d and the other is 1a2b+c+d.
We can also estimate the total number of digits:

c+ d ≤ min{yn−2 + zn−2, yn−1 + zn−1} ≤ b+ c+ d

and
max{yn−2 + zn−2, yn−1 + zn−1} = a+ b+ c+ d.

Every term in a sorted Fibs sequence, except for the first few terms, has at least one 1 and
one 2, as the following corollary explains.

Corollary 4. For a sorted Fibs sequence that starts with sorted strings, if n ≥ 2, then
zn > 0. Also, if n ≥ 4, then yn > 0.

Proof. The only case in the list in Lemma 3 in which the resulting number of twos is zero
is the last one, when b = c = d = 0. This case is impossible, wince we are summing two
nonzero numbers, and the last digit before a carry must be greater than 1. Hence for n ≥ 2,
we have zn > 0. When there is at least one 2 in each number, the last digit of their sum is
1, so there must be a 1 in the number for n ≥ 4.

8
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We can bound the sequence zn of the number of twos.

Lemma 5 (Number of twos). If n ≥ 4, then zn ≤ max{zn−1, zn−2}.
Proof. If n ≥ 4, then both fn−1 and fn−2 have twos. That means that dn > 0. Therefore,
from Lemma 3, we have zn is one of dn, dn − 1, and cn + 1. In any case, zn ≤ cn + dn. On
the other hand, one of the previous numbers has at least cn + dn twos.

This means that the sequence zn is bounded.

Maximum Number of Twos in Two Consecutive Terms

We are interested in the eventual behavior of zn. As often happens in sequences that depend
on the two previous terms, it is easier to study not zn itself, but its maximum value between
two consecutive terms.

Let us denote the maximum number of twos in two consecutive terms fn and fn+1 by mn:
mn = max{zn, zn+1}. From the previous lemma, it follows that mn+1 ≤ mn for n ≥ 5. Since
our sequence is infinite, it follows that mn stabilizes, and since we are interested only in the
destinies of pairs of numbers, that is, the eventual behavior of sorted Fibs, we proceed by
studying sequences in which mn is fixed and equal to M . We call such sequences M-stable.
As we showed in Lemma 5, every sorted Fibs sequence eventually becomes M -stable.

In the Pinocchio sequence, we have zn = 1 for n ≥ 3. Therefore, the tail of the Pinocchio
sequence is 1-stable. In the 3-cycle, we have z3n = 1 and z3n+1 = z3n+2 = 2. In particular, the
3-cycle is 2-stable. It follows that to prove the theorem, it is enough to prove the following
facts.

• Every 1-stable sequence eventually turns into a subsequence of the Pinocchio sequence.

• There is no M -stable sequence with M > 2.

• Every 2-stable sequence eventually turns into the 3-cycle.

We now prove these facts.

Lemma 6 (1-stable sequences). Suppose fn is a 1-stable sequence. Then the sequence fn for
n > 1 forms a subsequence of the Pinocchio sequence.

Proof. It is enough to find two consecutive terms of our sequence that are also consecutive
terms in the Pinocchio sequence. Suppose f0 = 1i2 and f1 = 1j2. If i = j, then fn is
a subsequence of the Pinocchio sequence. If i 6= j, then f0 + f1 before the carry can be
represented as 1|i−j|2min{i,j}4. Thus, by Lemma 3, f2 = 1min{i,j}+12.

If i > j, then j = min{i, j} and f2 = 1j+12. Hence, starting from n = 1, the sequence fn

is a subsequence of the Pinocchio sequence. If i < j, then f2 = 1i+12. If i + 1 = j, we hit
the Pinocchio sequence. If i + 1 < j, we can apply the previous argument to f1 and f2 and
get into the Pinocchio sequence with the next term.

In all cases, we get into the Pinocchio sequence no later than with f2.

9
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Suppose fn is an M -stable sequence for M > 1. Then for any two consecutive terms n
and n+ 1, either zn = M or zn+1 = M . At least every other value of zn has to be M . Now
we show that we can’t have too many M ’s in a row.

Lemma 7 (Dip in the number of twos). Suppose fn is an M-stable sequence for M > 1.
Then if zn = zn+1 = M , then one of zn+2, zn+3, zn+4 equals M − 1.

Proof. Suppose zn = zn+1 = M . Then when we sum fn and fn+1 without carries, we get
cn+2 = 0 and dn+2 = M . Now we look at the same cases as in Lemma 3. Cases 3, 4, and 5,
where d ≤ 1, can be excluded.

If we are in case 2, then zn+2 = M − 1. If we are in case 1, then fn+2 = 12M . Now if we
sum fn+1 and fn+2, we are again in case 1 or 2. If we are in case 2, then zn+3 = M − 1. If
we are in case 1, then fn+3 = 12M . Summing fn+2 and fn+3 gives us 24M before the carries,
which means that fn+4 = 1112M−1 and zn+4 = M − 1.

Lemma 8. There exists no M-stable sorted Fibs sequences with M > 2.

Proof. By Lemma 7, there exist two consecutive elements fn−2 and fn−1 in an M -stable
sequence such that zn−2 = M and zn−1 < M . As a result, cn > 0 and dn = zn−1 > 0. By
Lemma 3, this excludes cases 4 and 5. Thus, zn must equal either dn = zn−1, dn−1 = zn−1−1,
or cn + 1.

On the other hand, we must have zn = M to guarantee M -stability. Therefore, zn =
cn + 1, which is possible only in case 3, corresponding to dn = 1. Therefore, zn−1 = 1. We
have shown that if there is an element fn in the M -stable sequence such that zn 6= M , then
zn = 1.

Now we assume that we have terms fn−2 and fn−1 such that zn−2 = M and zn−1 = 1.
We look at the term n. We have dn = 1 and cn > 0. This means that we are in case 3 of
Lemma 3. Hence zn = cn + 1 > 1. We also have zn = M to guarantee M -stability. Now we
calculate the term zn+1. We have dn+1 = 1 and cn+1 > 0, which means that we are in case
3 of Lemma 3. Hence zn+1 = cn+1 + 1 > 1. By our discussion above, zn+1 = M . Then by
Lemma 7, there exists i > n such that zi = M − 1 > 1. This contradicts the fact that zi

must be either M or 1.

We now look into 2-stable sequences.

Lemma 9. Every 2-stable sorted Fibs sequence eventually turns into the 3-cycle 112, 1122,
1122.

Proof. By Lemma 7, there exists a term fn in a 2-stable sequence such that zn = 1. As a
result, zn+1 = 2. Now we calculate the term zn+2. We have dn+2 = 1 and cn+2 > 0, which
means that we are in case 3 of Lemma 3. Hence zn+2 = cn+2 + 1 > 1. Thus zn+2 = 2. By
Lemma 7, there exists i > n + 2 such that zi = 1. We denote by m the smallest such i. In
this case, zm−2 = zm−1 = 2 and zm = 1.

Consider the sum fm−2 + fm−1 before the carries. We have dm = 2 and cm = 0. The fact
that zm = 1 means that we are in case 2 of Lemma 3. It follows that am = 0 and fm = 112.
For the next term, we get bm+1 = cm+1 = dm+1 = 1. This corresponds to case 3 of Lemma 3,
and fm+2 = 1122. Thus we have gotten into our desired cycle.
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Now we are ready to prove our Theorem 2 about the destinies of sorted Fibs.

Proof of Theorem 2. We have shown that every sorted Fibs sequence eventually becomes
M -stable. Then we showed that every 1-stable sequence’s destiny is the Pinocchio sequence.
After that, we showed that M -stable sequences do not exist if M > 2. Finally, we showed
that the destiny of every 2-stable sequence is the 3-cycle. This concludes the proof.

Reverse Sorted Fibs

There are two natural ways to sort the digits of a number: in increasing or decreasing order.
Naturally, there is another sequence worth considering.

The reverse sorted Fibs sequence rn in base 3/2 is defined as follows: to calculate rn+1,
we add rn−1 and rn in base 3/2 and sort the digits in decreasing order, ignoring zeros. It
follows that after the initial terms, numbers in the sequence are represented by several twos
followed by several ones.

We call the sequence that starts like the Fibonacci sequence with r0 = 0 and r1 = 1 the
proper reverse sorted Fibs. Here are several terms of the proper reverse sorted Fibs: 0, 1, 1,
2, 2, 21, 21, 221, 2211, 221, 221, 2211, 221, 221, 2211. This sequence becomes cyclic starting
from r7.

We want to study the eventual behavior of the reverse sorted Fibs depending on the
starting terms. By computational experiments, we found a series of 3-cycles that such a
sequence can turn into:

2k1, 2k1, 2k12,

where k > 1.
We also found a sequence growing indefinitely:

2k12, 2k12, 2k+112, 2k+112, 2k+212, 2k+212,

and so on, where k > 1. The similarity between the sorted Fibs and the reverse sorted Fibs
surprised us. They both have exactly one sequence that grows indefinitely. To emphasize
this similarity, we reversed the word Pinocchio and named this growing reverse Fibs sequence
the Oihcconip sequence.

We were able to find all the destinies of reverse sorted Fibs sequences, which are sum-
marized in the following theorem.

Theorem 10. For any two starting numbers, the reverse sorted Fibs sequence always ends
in a cycle listed above or the tail of the Oihcconip sequence.

The proof is done by cases. It is too long to include here, but it is available in our paper
[3].

11



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Figure 5: John Conway breaks into Fine Hall.

Concluding Remarks

The photograph in Figure 5 was taken in 2009 and is from Tanya Khovanova’s private
collection. It shows John’s playful nature. In this photo, John wanted to get to his office at
Fine Hall, the building hosting Princeton University’s math department. It was the weekend
and the back door was locked, so John was breaking in. John came prepared: he had all the
necessary tools in his pocket, for he had done this many times before. There was another
door—the main door—which was open but required an extra one-minute walk to get to it.
Plus, breaking into a locked door was way more fun.

Despite their appearance, the above paragraph and picture are both really about math-
ematics, because for John, it was essential that mathematics be fun.

Indeed, John Conway would have been happy to see young students continuing to explore
interesting sequences that exhibit fascinating destinies. The sequences in this paper were

12



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

inspired by the sequence of Sorted Fibs suggested by John and are a variation of Sorted Fibs
in a different base. Curiously, the destinies of these new sequences resemble the destinies
of the aforementioned RATS sequence, a different sequence that was also invented by John.
The Pinocchio and Oihcconip sequences are analogues of the creeper sequence: a RATS
sequence that is not a cycle.
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