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Abstract 

Autonomous vehicle (AV) technologies are under constant improvement with pilot programs 

now underway in several urban areas worldwide. Modeling and field-testing efforts are 

demonstrating that shared mobility coupled with AV technology for automated mobility on-

demand (AMoD) service may significantly impact levels of service and environmental outcomes 

in future cities. Given these rapidly emerging developments, there is an urgent need for methods 

to adequately quantify the economic impacts of new vehicle technologies and future urban 

mobility policy. In this paper, we show how broader user-centric impacts can be captured by the 

activity-based accessibility (ABA) measure, which takes advantage of the rich data and 

outcomes of utility-maximization activity-based models and its interaction with mesoscale agent-

based traffic simulation frameworks. Using the SimMobility simulator, we evaluate shared 

AMoD strategies applied to a Singapore micromodel city testbed. A near-future strategy of 

exclusive availability of AMoD service in the central business district (CBD), and a further-

horizon strategy of the full operation of AMoD city-wide in the absence of other on-demand 

services, were tested and evaluated. Our results provide insights into the income and accessibility 

effects on the population under the implementation of shared and automated mobility policies. 

The outcomes indicate that the city-wide deployment of AMoD results in greater accessibility 

and network performance. Moreover, the accessibility of low-income individuals is improved 

relative to that of mid- and high-income individuals. The restriction of AMoD to the CBD along 

with the operation of other on-demand services, however, provides a certain level of disbenefit to 

segments of the population in two exceptional cases. The first is to high-income individuals who 

live in a suburban zone and rely heavily on on-demand services; the second is to mid-income 

residents that have excellent public transportation coverage with close proximity to the CBD. We 

further establish the efficacy of the ABA measure, as these findings motivate the need for 

measuring socioeconomic impacts at the individual level. The work presented here serves as a 

foundation for policy evaluation in real-world urban models for future mobility paradigms. 

 

Keywords: accessibility, autonomous vehicles, automated mobility on-demand, simulation, 

agent-based modeling 
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1. Introduction 

Smart shared mobility is poised to dominate the urban transportation landscape in the coming 

decades as cities continue to innovate in a bid to solve pressing problems at the nexus of 

sustainability and efficiency. The emergence of activity-based models, coupled with the massive 

gains in available computing power, has made it possible to simulate urban mobility to a very 

high level of detail (Rasouli and Timmermans, 2014). In the past decade and a half, carsharing 

and ride-sharing have become valid transit modes in major urban centers. Various algorithms 

have been developed, and continue to be improved, to manage fleets and match drivers to their 

would-be customers. Autonomous vehicle (AV) technology is also constantly improving, and 

over 80 cities are now actively hosting pilot schemes (Bloomberg Group, 2018). Researchers 

have been demonstrating the mobility and environmental impacts of shared mobility coupled 

with AV technology—automated mobility-on-demand (AMoD)—at the microscopic, 

mesoscopic, and macroscopic levels (Pernestå & Kristoffersson, 2019). With these new 

developments, there is a growing need to adequately quantify the economic impacts of vehicle 

technology and urban mobility policy. In this paper, we show how user-centric impacts can be 

captured by the activity-based accessibility (ABA) measure, which has been shown to be more 

effective compared to traditional accessibility measures for evaluating the overall performance of 

an urban mobility network, with regard to individual impacts (Dong et al., 2006). The ABA 

measure leverages on the high-fidelity outcomes of the integrated microscopic demand and 

mesoscale agent-based traffic simulation frameworks for detailed policy welfare evaluation. Our 

results provide insights into the income and location effects on the population in the 

implementation of shared and automated mobility policies.   

 

Activity-Based Models (ABMs), the state of the art in travel demand models today, can capture 

the entire picture of an individual’s activities and are able to account for trade-offs among 

various activities and travel alternatives in one’s daily activity pattern. Thus, they provide a 

better understanding of travel behavior, compared to traditional modeling (Kitamura, 1988; Ben-

Akiva and Bowman, 1998a; Timmermans et al., 2002, and Shiftan, 2008).  To date, a large 

number of activity-based travel demand models exist that provide highly detailed spatial and 

temporal measures of person-level accessibility (Bhat et al., 2013; Adnan et al., 2016; Fransen et 

al., 2018, Rasouli and Timmermans, 2014). Rasouli and Timmermans (2014) identified three 

different approaches: (1) constraints-based models, (2) utility-maximizing models, and more 

recently and (3) computational process models. Utility-maximizing models and often 

computational process models utilize econometric models—mainly discrete choice models—in 

order to model household and individual’s travel. In such a framework, a “top” accessibility 

measure, the ABA, capturing the overall utility from all the travel alternatives over the various 

dimensions can be obtained. It is the “logsum” (the log of the denominator of this logit choice 

probability) which gives the expected utility of one choice from a set of alternatives and is used 

to link different choices, as in nested logit models. The sum of all logsums until the very top of 

the hierarchy structure yields the ABA. This measure accommodates individuals’ probabilities of 

participating in a variety of activities, combination of activities through trip-chaining, entire day 

activity patterns, and the scheduling of activities (Dong et al., 2006, de Jong et al., 2007). The 

ABA can also be used in project evaluation as it expresses the consumer benefits. It has been 

shown to be more effective compared to traditional accessibility measures for evaluating the 

overall performance of an urban mobility network with regard to individual impacts (Ben-Akiva 

and Lerman, 1979). Although the theory on using the change in logsum as a measure for the 
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change in consumer surplus was published in the late seventies and early eighties (Williams, 

1977; de Jong et al., 2007), the application of this theory has been quite limited in practice. (For 

a thorough review, see Nahmias-Biran and Shiftan, 2016.) Given the advantages of ABM, the 

ABA can be extremely valuable for examining smart mobility policies. However, there is no 

extant work to date that uses ABA to evaluate the socioeconomic impact of shared and 

automated mobility strategies. This paper is, therefore, a significant contribution to filling this 

gap.  

 

Thus far, scholarly efforts have been mainly focused on the technological aspects of vehicle 

automation and on the implications for driver and traffic flow characteristics. These efforts have 

ranged from the operation of vehicle automation systems and their associated technologies to the 

investigation of human factor aspects, such as behavioral adaptation, driver workload, and 

situation awareness. (For an extensive review see Milakis et al., 2017). Yet, many aspects of 

travel choice and traffic impacts remain unexamined (Zhao and Kockelman, 2018).  One 

important aspect is the large-scale impact of autonomous and shared vehicles on individual 

accessibilities. Only a few attempts have been made to investigate this impact, as highlighted in 

the remainder of this section. Childress, et al.  (2015) used the Puget Sound, activity-based 

transport model, to study the impact of autonomous vehicles on the Seattle, WA, region. Four 

different scenarios, which envision the progression of AVs transitioning from high-income early 

adopters to total market penetration, were tested: (1) 30% capacity increase on freeways and 

major arterials, which reflects AVs’ efficient usage of existing facilities; (2) on top of Scenario 1, 

travel time perceived as 65% of actual travel time for high value of time household trips, which 

reflects that AV users will perceive the time spent in AVs less negatively than time spent driving 

in regular vehicles; (3) on top of Scenario 2, all cars assumed to be self-driving, and none shared; 

(4) all cars assumed to be automated, and all costs of car usage were passed on to the user as it is 

assumed that AVs have become so common, and shared AVs systems so effective, that personal 

AV ownership is no longer necessary. The researchers found that if self-driving cars are priced 

per mile, vehicle miles traveled (VMT) and vehicle hours traveled could be greatly reduced, by 

as much as 20% and 30%, respectively, with single-occupancy vehicle shares declining 40% and 

transit shares almost doubling. Conversely, model assumptions in the first three scenarios 

indicated a potential for much higher VMT and delay, with more passengers conveyed in single-

occupancy vehicles, generally worse or equivalent network performance, but higher accessibility 

for the whole area including downtown Seattle, WA, were observed. This study, however, 

neglected travel demand by new user groups and changes in regional VMT and in trip lengths.  

 

Liu et al. (2017) provide a large-scale microsimulation of transportation patterns after applying a 

system of shared autonomous vehicles (SAVs) in the six-county region of Austin, Texas. 

Leveraging on former studies (Zhao and Kockelman, 2015; Fagnant and Kockelman, 2016), and 

using the agent-based MATSim toolkit, the SAV mode requests were simulated through a 

stochastic process for four possible fare levels: $0.50, $0.75, $1, and $1.25 per trip-mile. These 

fares resulted in modal splits of 50.9, 12.9, 10.5, and 9.2% of the region’s person-trips, 

respectively. Mode choice results show longer-distance travelers preferring SAVs to private, 

human-driven vehicles (HVs). For travelers whose households do not own an HV, SAVs (rather 

than transit, walking and biking) appear preferable for trips under 10 miles, which is the majority 

of those travelers’ trip-making. Simulations of SAV fleet operations suggest that higher fare rates 

allow for greater vehicle replacement (ranging from 5.6 to 7.7 HVs per SAV, assuming that the 
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average SAV serves 17 to 20 person-trips per day); when fares rise, travel demands shift away 

from longer trip distances. Empty vehicle miles traveled by the fleet of SAVs ranged from 7.8 to 

14.2%, across the scenarios in this study. However, changes in road capacities or additional 

travel demand generated by new user groups are neglected.  

 

Meyer et al. (2017) explored large scale impacts of AVs using a simplified travel time-based 

accessibility measure for Switzerland. Their work addressed some limitations of previous studies 

by considering different levels of road capacity and including additional travel due to new 

customer groups and empty rides. Three scenarios were analyzed: (a) a transition phase, in which 

vehicles could drive autonomously on motorways, but had to be driven manually otherwise; (b) a 

case which assumes private vehicle ownership as today, but with fully autonomous vehicles; and 

(c) a third scenario, in which a fleet of shared autonomous vehicles supersedes public 

transportation and private car ownership. They found that the increase in accessibility is 

strongest in the transition scenario, but also the other two scenarios show a considerable impact. 

The strongest positive impact on accessibility was observed for well-connected exurban and rural 

municipalities, as an increase in capacity on those roads reduces travel times and therefore 

increases the accessibility of such places. Weaker or even negative impacts were observed for 

the larger cities, in which the relative increase in demand to and from the cities exceeds the 

relative increase in road capacity. Azevedo et al. (2016), Basu et al. (2018), and Nahmias-Biran 

et al.  (2019) explored the use of integrated demand (daily activity schedule-based demand) and 

supply (mesoscopic network) models for the evaluation of traveler and network impacts of 

AMoD. Scenarios for the city of Singapore and an urban toy-model were generated for the case 

of the restricted area- and city-wide deployments of AMoD. Changes in travel patterns including 

trip making, departure times, mode choices, VMTs along with multimodal travel and waiting 

times were computed to evaluate the accessibility changes for the considered scenarios. In 

agreement with the aforementioned studies, the results indicated that the accessibility benefits 

were sustained only when AMoD served in a complementary role to mass transit. 

 

The above examples and the wider range of model-based studies reviewed in Milakis et al. 

(2017) and Pernestå & Kristoffersson (2019) show that the current state of the art still relies on 

single dimension AV accessibility measures, lacking the integration of multiple traveler choice 

dimensions and more amenable user-centric economic measures. In this paper, we go further by 

developing a framework for assessing the large-scale impacts of shared and automated mobility 

policies via the ABA measure.  

 

 

2. Data and Methods 

For the purpose of showcasing the application of ABA measures for the evaluation of impacts of 

AV in a utility-maximizing ABM setting, we use the SimMobility Mid-Term (SimMobility-MT) 

simulator (Lu et al., 2015). The SimMobility-MT modeling framework is an integration of daily-

activity-schedule-based demand modeling system, which is where the ABA measure is 

computed, with dynamic traffic assignment used for modeling supply decisions (Li, 2015). There 

are three components in the SimMobility-MT framework that interact with each other leading to 

feedback mechanisms for agent decisions: 
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1. Pre-day: models daily-activity travel patterns at the individual level for a synthetic 

population; 

2. Within-day: simulates departure time choice and route choice decisions incorporating en-

route decisions such as re-scheduling; 

3. Supply: provides network attributes and supply-based models for both private and public 

transportation modes. 

 

While different modeling features can be found in other ABM frameworks, SimMobility MT 

relies on a multi-level architecture with several feedback loops linking the different travel 

decisions, allowing us to showcase the benefits of our proposed ABA method for the evaluation 

of AV deployments. For a review of existing generic ABM frameworks, the reader is referred to 

Rasouli and Timmermans (2014) and Viegas de Lima et al. (2018). 

 

The rest of this section is organized as follows. First, we explain in greater detail the simulation 

framework used in this paper, SimMobility-MT. In the following subsections (2.1 and 2.2), we 

then describe the activity-based accessibility measure and its computation process in the context 

of random utility-based ABMs such as SimMobility-MT. In Subsection 2.3, an overview of the 

study area is presented. Finally (Subsection 2.4), an explanation of the experimental design 

approach used in implementing the scenarios considered. 

 

2.1 Simulation framework 

In this section, we describe each module of SimMobility-MT, which enables the evaluation of 

different ride-sharing strategies. A synthetic population and land use characteristics are an input 

for the Mid-Term simulator, and more specifically, the Pre-day models (Adnan, et al., 2016). At 

the Pre-day level, AMoD services are introduced to allow individuals from the synthetic 

population to choose AMoD modes. In addition to the existing modes, which are single 

occupancy car (Car), pooling with one extra passenger (Carpooling 2), sharing with two extra 

passengers (Carpooling 3), public bus (Bus), Mass Rapid Transit (MRT), traditional taxis (Taxi), 

motorcycle (Motorcycle), and walking (Walk). The following AMoD modes were added: (1) 

AMoD as a single ride, (2) AMoD as a shared ride, (3) AMoD as a first/last connector to Mass 

Rapid Transit (MRT) stations, (4) AMoD as a first/last connector to MRT stations as a shared 

ride. These modes are included in the joint mode and destination choice models as part of an 

individual’s choice set. To reflect individuals’ preference towards AMoD we assume that the 

new service is a driverless point-to-point taxi service, i.e. the taxi utility function was modified, 

similar to the modification made for MoD service, but with further travel cost reduction (For the 

detailed specification, see Subsection 2.4).  

In Pre-day, the individual makes a chain of decisions following the random utility approach (Li, 

2015). From the decision whether to participate in an activity, through to the exact number of 

tours and stops, mode and destination choice models, time of day choice and intermediate stops 

choices (see Figure 1). The Pre-day architecture allows for the simulation of not only the above 

mentioned mode features but also of other AMoD implementation strategies, such as its 

restricted operation in certain urban areas, such as a Central Business District (CBD), making it 

available to all individuals only if the origin and destination are within the operational area. The 

implications of such a restriction is that individuals traveling by Carpooling 2 and 3, Taxi or 
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MoD will have to be dropped off at CBD entrance and will require to switch to PT or AMoD to 

reach their destination. Individuals traveling by Car or Motorcycle will have to park their vehicle 

outside the CBD and switch to PT or AMoD. If parking is not available, they would not choose 

these modes.  Another option is to use the MRT as the main mode while AMoD is used as an 

access/egress mode under the condition that the MRT station is located inside the CBD. When all 

mobility-on-demand services are operated by an automated fleet city-wide, for example, AMoD 

is thus available for any origin and destination while other MoD modes are removed from the 

choice set. The outcome of Pre-day models is the Daily Activity Schedule (DAS), which is 

generated from a Monte Carlo simulation based on the estimated parameters of the hierarchical 

discrete choice models, and the ABA measure which will be discussed in detail in Subsection 

2.2. 

Figure 1: Shared mobility framework in the SimMobility Mid-Term simulator 

The DAS is an input to the Within-day models which is where the exact route is determined. 

Public and private transport route choice models are applied for best path choice selections (Lu 

et al., 2015). At the Supply level, the DAS of all individuals are simulated and AMoD or MoD 

trips are handled by the Smart Mobility Service (SMS) controller. In the SMS controller 

framework, the passenger sends a request to an AMoD/MoD service, specifying the intended 

pick-up and drop-off locations. The requests directed to an AMoD/MoD service are periodically 

processed by the respective controller, thus creating a schedule for each vehicle subscribed to 

that service. A schedule is a sequence of vehicle/driver instructions, of which there are three 

types: 

i) PICKUP: pick up a passenger from the location where the request was generated. 

ii) DROPOFF: drop off a passenger at the desired location as determined by Pre-day 

models. 
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iii) CRUISE: drive to a random location in the network until the next schedule is 

received. 

 

Each schedule is then sent to a matching available vehicle/driver for execution. The algorithm of 

the AMoD/MoD controller performs the assignment of each incoming request to an available 

vehicle periodically as in Basu et al. (2018). In summary, the match is feasible if adding the pick-

up and the drop-off of the new passenger to the schedule of the vehicle/driver satisfies the 

waiting time of up to 15 minutes for all passengers already included in the schedule, as well as of 

the new passenger. In addition, the delay for the passengers sharing the vehicle will not be more 

than 15 minutes. Supply link travel times are then fed-back into the Within-day models to replace 

the historical travel time and update the agents’ route choice. As a day-to-day learning 

mechanism, these travel times are also aggregated to zonal travel times and fed back to the Pre-

day level, replacing the historical one, to update the agent’s daily activity plan. The ABA 

measures are re-computed after each day-to-day iteration is completed. For the graphical 

description of the shared mobility framework in SimMobility-MT please see Figure 2.  

 

These ABA’s are then scaled and translated into both time and monetary terms to allow 

comparison among individuals. In the following subsection, we explain in detail how the ABA 

measure is computed and scaled within the SimMobility framework. 

 

2.2 The activity-based accessibility measure in the SimMobility simulator 

Disaggregate utility-based accessibility measures originating from random utility theory are 

included within the Pre-day activity-based modeling framework. The accessibility measure    is 

defined for an individual   as the expected value of the maximum utility across possible activity 

schedules, given the choice of alternatives (Ben-Akiva and Bowman, 1998):  

 

           
 

 
             

    

   

 

where     is the systematic component of utility     for individual n choosing alternative 

activity schedule   from choice set   . 

 

In our hierarchical modeling system, accessibility measures are essential for capturing the 

sensitivity of activity and travel decisions modeled in lower levels of the choice hierarchy. In 

formal nested modeling hierarchies, such as the one for the Pre-day model, the upward integrity 

comes from the composite measure of expected utility across the lower level alternatives, or the 

so-called “logsum”. The logsum, the log of the denominator of this logit choice probability, 

gives the expected utility from a choice (from a given set of alternatives) and can be used to link 

different choices. (See de Jong, et al. (2007) for a thorough review of the logsum definition and 

its usage).  

 

The Pre-day model adopts a simple accessibility measure structure where disaggregate logsum 

measures from tour mode or mode and destination choice models are fed to the Exact Number of 

Tours model. This model predicts the number of tours performed by each individual according to 

(1) 
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four activity types: Work, Education, Shop and Other. From that level of decision, logsums are 

fed to the choice models in the day pattern level – the Day Pattern Tours model and the Day 

Pattern Stops model, which predict the availability of making a tour/stop according to the four 

activity types. 
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The Exact Number of Tours model results are provided to the Intermediate Stop Generation 

model to constrain the availability of each activity purpose. The Day Pattern level generates a 

list of tours as well as intermediate stop availabilities for each individual in the synthetic 

population. From this level, the logsums are passed to the Day Pattern binary model which 

predicts whether a person will travel. The accessibility measures, or logsums, introduced in the 

Pre-day model are shown in Figure 2 with dashed arrows. The ABA—a measure of accessibility 

obtained at the top of the hierarchy from the day pattern binary model—captures the relative 

attractiveness of various activity types, the number of tours and stops to perform, and mode and 

destination alternatives for individual  . Note that while SimMobility-MT models were 

estimated in a bottom-up fashion, the implementation here described relies on a top-down 

approach. It relies on an iterative simulation process between the first step of logsum 

computation and a joint choice simulation and logsum update step. 

 

For the ABA measure to be considered useful for project evaluation and comparison across 

individuals, it must satisfy both the scale and level conditions (Dong et al., 2006). To level or 

normalize the accessibility, it must be benchmarked to an extreme value that retains 

heterogeneity across individuals. To achieve this, we compute   
 , the day pattern binary logsum 

for individual   in the hypothetical case where the total travel time and cost are taken to be zero. 

The ABA is then given as the difference between    and   
 , and scaled to convert it to units of 

time or cost
1
. The multiplying scaling factor     approximates the inverse of the marginal utility 

with respect to the variable of choice (time or cost) for individual   is defined by model variable 

x, e.g. travel time or cost, uniformly across income levels, and given by: 

 

     
  

    
   

  
 

  

 

 

The term   
    

    represents the change in accessibility when the value of a particular model 

variable x is perturbed (i.e. increased) for all trips and for all activity schedules. For this 

experiment, we take    as 1 minute (for time conversion) and as SG$1 (or 0.735 US Dollars for 

monetary conversion).  

 

The ABA is then given as the scaled and normalized (leveled) individual accessibilities, thus: 

 

              
   

 

2.3 Study Area 

                                                             
1
 If done with respect to cost, then the ABA is proportional to the [change in] consumer surplus and can be used 

directly in project evaluation. However, computing the consumer surplus directly from the logsum is more 

straightforward (de Jong, et al., 2007). 

Figure 2: The activity-based accessibility (ABA) measure computation procedure in 
SimMobility-MT 

(2) 

(3) 
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This case study was tested using a prototypical “Virtual City” (VC), which consists of a 

moderately sized network and population, generated by sampling households, buildings, jobs and 

activity locations from Singapore, along with their characteristics.  The VC network was chosen 

for demonstration purposes, the method presented in this paper can easily be applied to a full-

scale system, at some computation cost. Virtual City was calibrated to represent the land use 

patterns, travel behavior, and activity patterns observed in Singapore (Adnan et al., 2016) on a 

typical day. Selected attributes for validation are shown in Figure 3: person’s main tour activity 

share (in terms of number of tours), Figure 4: person’s mode share (in terms of number of trips), 

and Figure 5: net household monthly income distribution (in SGD). The starting points for the 

VC Pre-day model parameters were obtained from the model calibrated for Singapore, based on 

data from the Household Interview Travel Survey (HITS) 2012 (Li et al., 2015; Azevedo et al., 

2016).). A Monte Carlo simulation of the estimated ABM generated the DAS for the full 

population, which consists of the output of pre-day model. Then, in the Within-day and Supply 

components, a full-scale mesoscopic simulation was performed, and actual network capacities 

were used. 

The total population in Virtual City is 351,000 (~7% that of Singapore) with an average tour rate 

of 1.14 per individual per day. The road network consists of 95 nodes (intersections), 286 

segments (road sections with homogeneous geometry), 254 links (groups of one or more 

segments between nodes) and 24 Traffic Analysis Zones (TAZs) overall. There are 12 bus lines, 

each having a constant service headway that ranges from 3 minutes to 9 minutes, spanning the 

region with 86 bus stops. Virtual City also has 4 Mass Rapid Transit (MRT) lines with a total of 

20 subway stations.  
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Figure 3: Main tour activity share comparisons between Singapore and Virtual City

 

Figure 4: Mode share comparisons between Singapore and Virtual City 

 

Figure 5: Income distribution (in SGD) comparisons between Singapore and Virtual City  

In Figure 6, the supply network and TAZ-resolution maps of population, employment and 

income are presented. The central business district (CBD), marked by the red ring, is 

characterized by excellent public transportation coverage and high number of employment 

opportunities. The outermost zones are more isolated with low PT coverage. Most of VC 

residents live in the zones immediately surrounding the CBD as shown in Figure 6. 
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Figure 6: Maps of Virtual City: Supply network (a), monthly income (b), population (c), employment (d), 
and distributions at the Traffic Analysis Zone (TAZ) level. 

 

2.4 Experimental Design 

CBD 
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We implement the ABA measure in the SimMobility MT simulation environment in which we 

demonstrate the accessibility outcomes of the AMoD restriction and rideshare dominance 

scenarios. Thus, three scenarios were designed and tested, as described below. 

Base Case Scenario 

In the Base Case, we consider all ten available modes in Singapore in 2017, namely: single 

occupancy private vehicle (Car), private vehicle with one extra passenger (Car Sharing 2), 

private vehicle with two extra passengers (Car Sharing 3), Public Bus, Private Bus, Mass Rapid 

Transit (MRT), traditional taxis (Taxi), motorcycle (Motorcycle), walking (Walk), Mobility on 

Demand service (Uber-like service) as a non-shared ride (MoD Single), and Mobility on Demand 

service as a shared ride (MoD Shared). In order to generate the demand for MoD modes, given 

the absence of appropriate data in HITS 2012, we assumed that individual preferences towards 

MoD are similar to those for Taxi, with some modifications. Regarding the level of service, the 

first set of assumptions is that a single MoD ride will be 28% cheaper as compared to taxi, and 

that a shared ride will be 30% cheaper than a single ride (Lee, 2017; Uber Statistics Report, 

2017). Second, based on Uber statistics for Singapore, we calibrated our models so that 25% of 

all MoD trips are shared trips and that 25% of all MoD trips end at MRT stations (Uber Statistics 

Report, 2017). We also implemented a distance based additional in-vehicle travel time for the 

passengers who share the vehicle with other passengers (based on the Uber app information). 

Furthermore, we have added the expected additional waiting time for the share rider. All 

assumptions regarding MoD are valid where such a service is available (i.e. in scenarios 1 but 

not in scenarios 2). 

Scenario 1 

In this scenario, a possible near future for Singapore is simulated such that AVs are exclusively 

operated in the CBD of Singapore. The available AMoD modes are: AMoD as a non-shared, 

driverless ride (AMoD Single), and AMoD as a shared driverless ride (AMoD Shared). 

Motorized private modes (Car, Carpooling 2 and 3, Taxi, Motorcycle and MoD) are forbidden 

from entering the CBD area. However, Bus and MRT are available in the CBD. In order to 

generate the demand for AMoD modes, given the absence of appropriate data, we assumed that 

individual preferences towards AMoD are similar to those for MoD, with travel cost 

modifications. We assumed the travel cost for AMoD Single is 33% of that of MoD Single 

(Litman, 2017). As this scenario encourages the use of AMoD, we would like to determine the 

extent to which this service will be used and the consequences of such a policy on individual 

accessibility and service efficiency. Furthermore, it is important to note that public transit is still 

available in the CBD under this scenario. Hence, we can also determine how different income 

levels and other population segments are affected by this policy.  

Scenario 2 

In Scenario 2, a long-term vision for Singapore is realized, where all mobility-on-demand 

services are operated by an automated fleet city-wide. Specifically, MoD modes (both single and 

shared) and traditional taxis will no longer be available. The AMoD cost assumptions for this 

scenario are the same as those in Scenario 1.  

We conducted 24-hour of VC simulations for each scenario in SimMobility. The initial 

simulation was used to generate real-time parameter estimates such as travel times for different 

modes, which were then used as feedback for the choice models in the Pre-day component. This 
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day-to-day learning feedback methodology was already described in Subsection 2.1 and was 

utilized in all scenarios. The results of subsequent simulations, with special emphasis on the 

ABA measure results, are presented and discussed in Section 3. 

3. Results and discussion 
 

3.1 Demand 

Tours mode share distribution for each scenario is shown in Figure 7. In the Base Case, MRT 

and Public Bus each account for up to 20% of the share, while single private car accounts for 

15% of the share and additional 3.6% will share the Car with other passengers. Walk takes 20% 

of the share, and Private Bus about 8%. Taxis and MoD services account for 12% of the share.  

In Scenario 1, where AMoD is exclusively operated in the CBD, and all private and MoD modes 

cannot enter the CBD, we see a large increase in PT mode share from 40% in the Base Case to 

56%, which will come mainly from Car modes. A dramatic reduction in Car usage from more 

than 19% in Base Case to 6.4% is observed, as well as significant reduction in Walk and Private 

Bus mode share, which were cut by half as compared to Base Case. Although Walk and Private 

Bus were not restricted in Scenario 1, the attractive cost of AMoD services caused a shift from 

Walk and Private Bus demand to AMoD. We also observe a reduction in MoD demand from 

11.7% in base case to 7% due to the CBD restriction and the competing AMoD services and its 

attractive travel fares. In Scenario 1, AMoD modes will take 15.2% of the share. In Scenario 2, 

where AMoD modes will replace the traditional and Uber-like services city-wide, AMoD 

consists of 12.7% of the demand, while all other mode shares are similar to those in the Base 

Case. 

 

3.2 Activity-based accessibility impacts 

We compute individual-specific ABA values for each of the three scenarios discussed. We 

consider the ABA change in Scenarios 1 and 2 with respect to the base case, as this enables us to 

measure the time and monetary gains or losses for each individual under the scenario of interest. 

We summarize the following terms to be used in the discussion from here onward in Table 1. 

 
Symbol Description 

        Difference in time-based ABA between Scenario 1 and 
Base Case 

        Difference in monetary-based ABA between Scenario 
1 and Base Case 

        Difference in time-based ABA between Scenario 2 and 
Base Case 

        Difference in monetary-based ABA between Scenario 
2 and Base Case 

Table 1: Summary of terms used in activity-based accessibility (ABA) results discussion 

In Figure 8, we plot the 25% trimmed histograms of the relative ABA change in each of these 

cases. Given the heavy tails of the logsums, we trim each ABA by 25% at both tails in order to 

clearly show the differences in central tendency between the two scenarios relative to the Base 

Case. The median relative accessibility is a loss under Scenario 1, while the opposite is the case 

in Scenario 2. The motivation for individual-level measurements is given by the mean ABA 

changes, which show a gain in monetary accessibility under both scenarios (and more so in 

Scenario 1). Summary statistics are provided in Table 2. These results suggest that further 
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analyses at the income and spatial levels based on individual characteristics can provide insights 

into the socio-economic impacts of the strategies across various segments of the population that 

may not be observed at the aggregate level. 

 

 
Figure 7: Tour mode share distributions for the given scenarios 
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Figure 8: Distributions of ABA change, as (a) time savings and (b) monetary savings. The 25% trimmed 
distributions are shown for ease of comparison between the two scenarios. Corresponding statistics are 
shown in Table 2. 

Relative ABA Median 25% Trimmed Mean 

            (min) –3.04 –3.73 

            (SGD) –0.70 –1.81 

            (min) 0.53 0.11 

            (SGD) 1.08 0.63 

Table 2: Median and 25% trimmed mean of ABA change in both temporal and monetary terms for 
Scenarios 1 and 2 relatives to the Base Case 

(a) 

(b) 
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In Table 3, median ABA differences in time and cost are computed for each income category, for 

both scenarios as compared to based case.  In the         column, the accessibility differences 

in time are all negative and increasing as the level of income increases. Except for the first 

income category for which the accessibility is positive in terms of time. The first income 

category suffers from a poor level of accessibility in terms of time at the base case. Following the 

principle of diminishing marginal utility, which can be applied to accessibility as a quantity of 

good or service (Nahmias-Biran, & Shiftan, 2019), these individuals will gain much more from 

an additional unit of accessibility compared to travelers with initial high levels of accessibility. 

In other words, for them, the new service is a significant improvement in time relativity to their 

poor accessibility at the base case, therefore the change in ABA is large and positive.   

For the accessibility differences in cost, the opposite trend is observed. Accessibility differences 

are increasing as the level of income decreases. For        , the temporal accessibility 

differences are decreasing as the level of income increases. The ABA in time is positive for low-

income people, i.e. low-income individual’s accessibility is increasing as compared to Base 

Case, while mid- and high-income individuals lose accessibility in terms of time. This is due to  

In considering the accessibility differences in cost, it can be observed that there is an 

accessibility gain, or positive change in consumer surplus, for all income categories. Mid- and 

high-income individuals are gaining less accessibility as compared to low-income groups. These 

differences are further highlighted in Figure 9 to contrast the variation of ABA change by 

income under Scenarios 1 and 2. While examining distributional effects on different income 

levels, it should be noted that choices of travelers are based on their willingness to pay (WTP) 

for travel options. The WTP of low-income people for (additional) travel is inherently low 

because they require a significant portion of their income for housing, food, clothes and medical 

services, leaving less money for travel. Introducing AMoD service with reduced travel costs 

might thus reduce inequalities more than estimated based on the WTP.  

Income 
Category 

Income 
Range (SGD) 

        (min)         (min)         (SGD)         (SGD) 

1 [1, 1000] 13 25 0.7 1.3 

2 [1001, 1499] –4.2 3.7 –0.8 0.6 

3 [1500, 1999] –3.8 2.0 –1.0 0.7 

4 [2000, 2499] –3.6 0.9 –1.2 0.7 

5 [2500, 2999] –3.4 0.4 –1.4 0.7 

6 [3000, 3999] –3.4 –0.4 –1.7 0.7 

7 [4000, 4999] –3.3 –0.9 –2.1 0.6 

8 [5000, 5999] –3.2 –1.0 –2.5 0.5 

9 [6000, 6999] –3.1 –1.1 –2.9 0.3 

10 [7000, 7999] –3.0 –0.9 –3.5 0 

11  > 8000 –2.8 –1.3 –3.3 0.1 

*Note: The differences in time and cost come from equation 2, where time or cost parameters in the mode and 
destination choice models were changed as part of the scaling process. 

Table 3: Change in activity-based accessibility by income level for Scenarios 1 and 2 relatives to the Base 
Case 
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Figure 9: Chart showing change in activity-based accessibility by income level for Scenarios 1 and 2 with 
respect to Base Case.  

In Figure 10, the median change in accessibility, which was obtained from both scenarios 

compared to Base-Case, is shown as a spatial distribution on the Virtual City map. The time-

based differences are presented in maps (1) and (2). Map (1) indicates that the accessibility 

change in time is negative for all zones except the one labeled   . That is, when private modes 

are restricted from the CBD and AMoD modes fulfill transportation needs, individual 

accessibilities decrease both inside and outside the CBD, as more time is spent in transit. As for 

zone   , it appears that taxis serve a large part of the demand from that remote zone. Thus, 

restricting taxis from entering the CBD allows better taxi service for the remote zones outside the 

CBD.  On the other hand, in introducing AMoD  under Scenario 2, the accessibility in time was 

improved in all areas apart from zone   , which, as earlier identified, relies on MoD service and 

therefore now competes with other remote zones for the same service. The change in consumer 

surplus as captured by the median change in ABA in monetary terms are shown in maps (3) and 

(4). It is clear from map (3) that individuals pay up to SG$9.2 more for transportation services 

under Scenario 1 relative to Base Case. One exception is zone    in which individuals’ median 

change in consumer surplus is SG$1.80 per day. By applying Scenario 2, map (4) shows that for 

some of the riders, the consumer surplus was positive (between SG$0.24 and SG$3.94 savings 

per day), mainly those that are well connected to the rail system.  While for others, the consumer 

surplus was negative (as high as SG$9.2 spending per day). This can be explained by the fact 

that because AMoD offers cheaper service compared to MoD services, some individuals who 

previously used PT shifted to AMoD and hence their transportation cost slightly increased. (See 

Table 4 for a complete summary of the ABA changes by zone). 
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Figure 10: Spatial distribution of relative change in activity-based accessibility by Traffic Analysis Zone, 
measured in minutes and in Singapore dollars (SG$). 

Zone Code         (SGD)         (SGD)         (min)         (min) 
1 -3.80 -2.94 -8.92 3.12 

2 -2.56 -1.19 -4.88 4.89 
3 -2.08 0.70 -12.06 11.93 

4 -3.68 -0.94 -11.20 14.03 

5 -4.37 -2.28 -9.86 9.61 

6 -3.03 -0.49 -7.71 5.06 

7 -2.14 0.38 -7.96 8.30 

8 -4.12 -1.35 -11.79 7.85 

9 -2.13 0.35 -9.97 7.52 
10 -0.56 1.89 -4.87 7.28 

11 -2.87 -0.58 -10.24 7.11 

12 -5.22 -2.84 -19.93 10.88 

13 -1.69 0.24 -6.11 4.82 

14 -3.61 -1.51 -8.45 1.97 

(    15 1.79 3.94 -4.00 10.48 

16 -2.99 -0.74 -1.32 0.18 
17 -2.69 -0.53 -9.07 11.02 

(    18 -3.51 -2.65 6.79 -3.72 

19 -0.60 1.17 -5.46 8.11 

20 -2.34 -0.44 -7.12 1.16 

21 -4.13 -1.49 -10.63 2.35 

22 -9.19 -8.08 -13.86 9.36 

23 -0.97 1.19 -9.24 4.53 
24 -1.32 0.62 -3.50 3.28 

Table 4:  Zone-based median changes in activity-based accessibility in monetary terms (SGD) and time 
(minutes) for Scenarios 1 and 2 with respect to Base Case 

(1) (2) 

(3) (4) 

  

 

 

* 

 

* 
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3.3 Level of service and network performance analyses 

Overall, we observe that Scenario 2 outperforms Scenario 1 on the bases of average travel and 

waiting times across all modes (Table 5). This is due to the region restriction policy excluding all 

private car trips from the CBD in Scenario 1, thus resulting in a 28% and 25% increase in the 

average car trip distance and average car trip time, respectively, with regard to the Base Case.  

 
Metrics Base Case Scenario 1 Scenario 2 

Average Travel Time 
(min) 

5.6 8.0 5.6 

Average Waiting Time 
(min) 

5.7 12.9 5.4 

Average Car Trip 
Distance (km) 

5.7 7.3 5.3 

Average Car Trip Time 
(min) 

5.2 6.5 5.4 

Table 5: Comparing travel times and car trip time and distance across scenarios 

Given our interest in shared mobility services, we further analyze the on-demand trip statistics. 

In the Base Case, 79,204 on-demand trips are initially requested, but only 45,630 are supplied. 

Hence only 57% of the trips were served. We note that over half of the Rail MoD trips are 

converted to Walk trips in the Within-day module of SimMobility as these are very short trips 

(less than 1 km travel). In Scenario 1, 165,003 on-demand trips are initially requested, while 

108,146 of them are ultimately satisfied. The service rate improves in this scenario to 66%. This 

improvement might be due in part to the restriction of AMoD operations to a smaller area (the 

CBD). Finally, in Scenario 2, where the on-demand service is fully automated and available 

across the entire network, 82,437 trips are completed from the 103,677 initially demanded. The 

level of service in this scenario (percentage of served trips) is 80%, which is the best-performing 

across all three scenarios. A performance summary across the various on-demand services in 

each scenario is given in Table 6. 

 
 On-Demand 

Modes 
Trips 

Request
ed 

Trips 
Supplied 

 %  Ave Wait 
Time (min) 

Ave Travel 
Time (min) 

Ave Trip 
Length 

(km) 

Base 
Case 

MoD 20,943 16,225 77% 3.0 6.0 5.5 

MoD Pool 17,069 12,535 73% 10.5 10.2 12.8 

Rail MoD 41,192 16,870 41% 3.1 4.7 4.3 

Scenario 
1 

MoD 8,229 6,384 78% 21.9 8.7 7.89 

MoD Pool 9,339 7,110 76% 12.1 12.8 13.5 

Rail MoD 30,654 12,144 40% 24.0 6.6 4.32 

AMoD 44,832 41,898 93% 23.6 4.2 2.87 

AMoD Pool 22,059 20,765 94% 11.0 7.6 7.34 

Rail AMoD 29,704 11,856 40% 27.7 3.8 3.36 

Rail AMoD 
Pool 

20,186 7,989 
40% 

12.1 9.1 7.20 

Scenario 
2 

AMoD 56,077  53,715 96% 5.13  6.3   5.35 

AMoD Pool 17,552 16,685 95% 10.7 10.0 12.5 

Rail AMoD 30,048  12,037 40%  6.5  5.4  4.33 

Table 6: On-demand modes level of service across all scenarios. 
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Table 7 shows the driver subscriptions and assignments (supply-side), and passenger requests, 

pick-ups and drop-offs. An assignment indicates that a passenger pick-up schedule has been 

successfully sent to a given vehicle. Since some rides are shared, overall assignments are fewer 

than overall requests. In Scenario 2, the proportion of single rides demanded is the highest, hence 

the 91% request-assignment ratio compared to 81% in Scenario 1. Scenarios 1 and 2 are 

implemented under the initial assumption that the overall on-demand fleet size does not change. 

Thus, across all three cases being compared, the total is 5000 vehicles. This implies that the city 

might regulate the overall fleet size, even while some conventional vehicles are replaced with 

AVs. These assumptions result in the high wait times observed in Table 2 for Scenario 1, even 

though these trips are still ultimately serviced (Table 3). To simulate a more realistic future 

where supply investments are made to meet rising demand (for instance, in Scenario 1, trip 

requests are more than twice those in the Base Case), we simulate Scenarios 1 and 2 with 

increased on-demand fleet sizes of 7500. 

 
 Base Case Scenario 1 Scenario 2 

Driver subscriptions 5,000 5,000 5, 000 

Ride requests 45,772 108,381 82,670 

Driver assignments 40,253 88,203 74,911 

Passenger pick-ups 45,727 108,248 82,582 

Passenger drop-offs 45,669 108,120 82,432 

Ride request: driver 
assignment ratio 

88% 81% 91% 

Ride request: drop-off 
ratio 

99.8% 99.8% 99.7% 

Table 7: On-demand controller performance across scenarios 

 
 Scenario 1 Scenario 2 

Fleet Size: 5,000 7,500 5,000 7,500 

     

Ave Time (min): Wait  In-Vehicle  Wait  In-Vehicle  Wait  In-Vehicle  Wait  In-Vehicle  

         

MoD 21.9 8.7 10.8 10.5     

MoD Pool 12.1 12.8 14.9 15.2     

Rail MoD 24.0 6.6 13.5 8.1     

AMoD 23.6 4.2 12.8 4.9 5.1  6.3  3.9 6.3 

AMoD Pool 11.0 7.6 13.8 8.9 10.7 10.1 11.4 10.4 

Rail AMoD 27.7 3.8 15.5 8.1  6.5  5.4 4.8 5.4 

Rail AMoD Pool 12.1 9.1 16.1 11.5     

Table 8: Impact of fleet size on AMoD and MoD waiting and trip times in Scenarios 1 and 2 

While the ABA does not change much with increased fleet sizes in either scenario, we do 

observe considerable improvement in waiting times under Scenario 1. These numbers are 

compared in Table 8. We find that while wait times reduce, in-vehicle travel times do not 

necessarily follow the same trend. One possible explanation might be that there is a bit more 

congestion due to the cruising of the additional fleet vehicles in addition to that induced by the 
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region restriction. Another interesting outcome is that the reduction in waiting times is less 

drastic for the shared on-demand rides. We can rationalize this by considering that the increased 

availability of vehicles does not immediately result in lower pick-up times for shared ride 

requests.   

 

A graphical summary of the service controller performance across all these cases is shown in 

Figure 11. Despite the slight increase in trip times observed with increased fleet sizes, overall 

travel times of on-demand rides in Scenario 1 are lower. This can be seen from the closer 

tracking of the drop-off curve to the request curve in (c) compared to those in (b).  

 

 
Figure 11: Comparing on-demand service controller performance among the scenarios. For Scenarios 1 
and 2, the results from increased fleet size are also shown. 

(a) 

(b) (c) 

(d) (e) 
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4. Conclusion  
In this paper, we have demonstrated how user-centric impacts of new vehicle technologies and 

future urban mobility policies can be captured by the activity-based accessibility (ABA) 

measure, which takes advantage of the rich data and outcomes of the activity-based model and 

the mesoscale agent-based traffic simulation frameworks. This study is the first to utilize the 

ABA for analyzing different ridesharing strategies. We show that the socioeconomic impacts of 

future mobility policies can be analyzed at person-level granularity by calculating the ABA 

changes for useful insights in the evaluation of future urban mobility strategies. We also measure 

the response of current and future mobility-on-demand services under these strategies in a 

Virtual City network that can be regarded as a micromodel of Singapore. Two scenarios were 

implemented and compared to the Base Case. In Scenario 1, a restriction policy was 

implemented in which private vehicles and non-automated on-demand service vehicles were 

excluded from the central business district. In Scenario 2, the cheaper automated mobility-on-

demand service replaced the entire supply of on-demand vehicle fleet network-wide. We 

assessed the impacts on the population at the individual level by comparing the activity-based 

accessibility relative to the Base Case, both in temporal and monetary terms.  

 

In this study, the policy of automating all on-demand services results in the best outcomes in 

terms of accessibility and network performance. Nevertheless, the restriction policy does not 

result in desirable accessibility outcomes except for two exceptional cases: the first is in time 

savings in a suburban zone that relies heavily on traditional mobility-on-demand services for 

non-CBD destinations; the second is in monetary savings for the residents of a zone that has 

excellent public transportation coverage with close proximity to the CBD. We also show that the 

level of service improvements can be achieved with investment in mobility-on-demand services 

if policies similar to that of the restriction strategy explored here are to be aggressively pursued. 

 

The results presented in this paper are an initial step in evaluating a range of future urban 

mobility strategies under a wide range of uncertainty in networks and their inhabitant 

populations. Here, we approximated accessibility by benchmarking on the maximum utility in 

the case of a perfect network (i.e. zero travel cost and zero travel time). However, for a more 

intuitive conceptual definition of accessibility, we propose a new benchmark based on the 

extreme case of the absence of a transportation network (i.e. no consumption of transportation 

services), which can be realized by assuming that walking is the only available mode of transport 

for all individuals. This will enable us to obtain accessibility directly as a measure of consumer 

benefit, which would be more readily apprehended as a measure of accessibility compared to the 

relative cost approach applied here. Furthermore, while the generalization of the methods 

presented here to other utility-maximizing ABM frameworks is straightforward in principle, its 

adjustment to other similar-structure models (such as DaySim, Bradley et al. 2014) or different 

design architectures (such as ActivitySim, Galli et al., 2009) more often applied in practice is yet 

to be showcased. 

 

Our analyses of the on-demand service controller performance indicate immediate avenues for 

future investigation, some of which are underway. In particular, we would like to measure the 

response of the controller under various fleet management strategies. The current version has a 

parking and rebalancing component, which would become critical to deploy in a much larger 

coverage area. We note that there are current efforts in determining the optimal parking strategy 
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for on-demand service vehicles. In a recent contribution, Xu et al. (2017) used a simulation-

based approach to study the tradeoff between parking and cruising under a variety of conditions. 

With our detailed simulation framework, we can also contribute further to this area. Two other 

notable efforts that focus on the impacts of fleet size have been introduced by Boesch et al. 

(2016) and Wang et al. (2018). There is clearly great interest in finding the best pathways for 

optimal on-demand service performance. This is even more critical, given financial constraints 

and environmental concerns relating to the energy needs of future on-demand mobility 

paradigms. Further interests are in the long-term impacts of AMoD scenarios such as location 

effects, which may vary by implementation strategy. These have not been studied as part of this 

work, but such effects can be studied via the ABA using an integration between SimMobility LT 

and MT simulators, which we intend to explore in future research. Furthermore, we only 

considered only the direct effects of AMoD. An extension to this study would entail a full cost-

benefit analysis, thereby accounting for various external effects. 

 

Finally, the simulation platform described in this paper, SimMobility, has been enhanced for 

energy computations and calibrated for urban typologies that represent key mobility 

characteristics on a global scale (Oke et al., 2019). The aim is to develop a new integrated 

framework for analyzing the impacts of future mobility strategies and emerging vehicle 

technologies that account for not only ABA, benefits and costs but also energy consumption and 

level of service. The ABA would especially serve as a versatile and indispensable tool for further 

scenario exploration based on the individual population characteristics and thus contribute to 

robust decision-making by policymakers and planners. 
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