
THRESHOLD ELEMENTS AND THE DESIGN OF
SEQUENTIAL SWITCHING NETWORKS

Massachusetts Institute of Technology
Electronic Systems Laboratory

This document is subject to special
export controls and each transmittal
to foreign governments, foreign na-
tionals or representatives thereto may
be made only with prior approval of
RADC (EMIIO), GAFB, N.Y. 13440.

AFLC, GAFB, N.Y., 26 Nov 68-83

FOREWORD

This final report was prepared by the Massachusetts Institute of Technology,
Electronic Systems Laboratory, Cambridge, Massachusetts, under contract
AF 30(602)-3681, Project 5581, Task 09. MIT Project No. is DSR 74631; the
secondary report number is ESL-FR-354.

This report covers the period of work from March 1967 to June 1968. The
RADC Project Engineer is Mr. James Previte, EMIIO.

The following MIT personnel participated in the conduct of the Project:

Research Staff Thesis Students

Prof Alfred K. Susskind, Project Engineer David G. Chapman
Dr. Donald R. Haring William M. Inglis
Robert L. Martin Nicholas J. Pippenger
Charles Ying
Richard Diephuis
Satish Gupta
John M. Mazola

The distribution of this document is limited under the U.S. Mutual Security
Acts of 1949,

This report has been reviewed and is approved.

Approved: S G. MCGINNIS, or, USAF
Chief, Information Processing Branch

Approved: A. E STO , Colonel, USAF
Chief, Intel and Info Processing Division

FOR THE COMMANDEA
IRVIN GABELMAN
Chief, Advanced Studies Group

ABSTRACT

This report on research performed from March 1967 to June 1968 under
Contract AF-30(602)-3681 is divided into six sections. Section I is an
introduction. Section II is concerned with the realization of sequential
machines in the form of a bidirectional shift register and in the form
of a unidirectional shift register augmented with a shift register that
stores inputs. This section also treats techniques for making sequential
machines diagnosable and decomposition of sequential machines with one
submachine in the form of a clock. Section III deals with fault detection
in combinational logic for (a) arbitrary networks with single faults,
(b) single threshold gates with multiple faults, and (c) fault detection
and location based on fault tables. Section IV gives further results in
the synthesis of multivalued logic networks. Section V reports on a
study of two classes of module functions as building blocks in a digital
system. The final section discusses topics in design automation of
digital systems.

iii/iv

TABLE OF CONTENTS
Page

SECTION I INTRODUCTION 1

SECTION II FEEDBACK SHIFT-REGISTER RELATED TOPICS 8

CHAPTER 1 SYNTHESIS OF SEQUENTIAL MACHINES IN THE FORM OF A
FEEDBACK SHIFT-REGISTER AUGMENTED BY AN INPUT-
DRIVEN SHIFT REGISTER 9

1.1 THE ASSUMED CIRCUIT FORM 9

1.2 BACKGROUND 11

1.3 THE SYNTHESIS TECHNIQUE 13

1.4 REDUCING THE REGISTER LENGTHS 18

1.5 A HEURISTIC TECHNIQUE 25

CHAPTER 2 FEEDBACK SHIFT-REGISTERS AND THE DIAGNOSIS OF
SEQUENTIAL MACHINES 30

2.1 DIAGNOSING fiSR REALIZATIONS 33

2.2 FLOW-TABLE MODIFICATION BY COLUMN ADDITION 38

2.3 FLOW-TABLE MODIFICATION BY OUTPUT ADDITION 41

2.4 SUMMARY 45

REFERENCES 46

CHAPTER 3 BI-DIRECTIONAL FEEDBACK SHIFT-REGISTER SYNTHESIS
OF SEQUENTIAL MACHINES 47

3.1 THE SYNTHESIS ALGORITHM 49

3.2 EQUIVALENT STATES 54

REFERENCES 58

CHAPTER 4 REALIZATION OF SEQUENTIAL MACHINES IN A CIRCUIT
FORM CONTAINING A CLOCK 59

4.1 STATE DIAGRAM OF A CLOCK 60

4.2 TEST FOR EXISTENCE OF A CLOCK 61

V

TABLE OF CONTENTS (Continued)
Page

4.3 AN ASIDE REGARDING FSR SYNTHESIS 64

4.4 USE OF EQUIVALENT STATES IN DECOMPOSITION 64

4.5 CONCLUSIONS 71

REFERENCES 72

SECTION III FAULT DETECTION AND LOCATION IN COMBINATIONAL LOGIC 73

CHAPTER 1 AN ALGORITHM FOR FINDING APPROXIMATELY MINIMAL
FAULT-DETECTION TEST SETS FOR COMBINATIONAL LOGIC 74

1.1 ASSUMPTIONS 75

1.2 PATH SENSITIZING 75

1.3 NOTATION 81

1.3.1 Specification of the Network Behavior -
The Singular Cover 81

1.3.2 Representation of a Sensitized Path -
D-Cubes 84

1.3.3 Primitive D-Cubes 89

1.3.4 Representation of a Test - T-Cubes 91

1.3.5 The Operation of Intersection 92

1.4 CONSTRUCTION OF D-CUBES FOR SENSITIZED PATHS OF
A NETWORK 97

1.4.1 Formation of Incomplete D-Cubes 97

1.4.2 Completing the D-Cubes 98

1.5 FORMATION OF TESTS FROM COMPLETED D-CUBES 101

1.5.1 Formation of Primitive T-Cubes from
Completed D-Cubes 102

1.5.2 Formation of Composite T-Cubes from
Primitive T-Cubes 104

1.6 ALGORITHM FOR FINDING AN APPROXIMATELY MINIMAL
TEST SET FOR A GIVEN NETWORK 106

vi

TABLE OF CONTENTS (Continued) Page

1.7 FAULTS WHICH CANNOT BE DETECTED BY SENSITIZING
SINGLE PATHS FROM AN INPUT TO AN OUTPUT 107

1.7.1 Class 1 108

1.7.2 Class 2; Sensitizing Multiple Paths 108

1.7.3 The Modified Algorithm 111

1.8 CONCLUSIONS AND DISCUSSION 112

REFERENCES 115

APPENDIX 1.1 NETWORKS WITH FAULTS FOR WHICH TESTS CANNOT
BE FOUND BY THE METHOD DESCRIBED 16

CHAPTER 2 CHECKING OF SINGLE THRESHOLD ELEMENTS 119

2.1 THE FAILURE MODEL 119

2.2 UNATENESS AND POSITIVE WEIGHTS 121

2.3 PRELIMINARIES 122

2.4 ALGORITHM FOR FINDING SHORT TEST SETS 127

2.5 BOUNDS ON THE LENGTH OF THE CHECKING SET 137

2.6 FINDING TEST SEQUENCES FOR RELATED FUNCTIONS 140

REFERENCE 147

APPENDIX A UPPER BOUND ON THE NUMBER OF PRIME IMPLICANTS
OF UNATE FUNCTIONS 148

CHAPTER 3 AN ALTERNATIVE APPROACH TO CHECKING BASED ON A
RESPONSE-TABLE 154

3.1 ILLUSTRATIONS OF APPROACH 155

3.2 FINDING SHORTEST CHECKING TESTS 160

3.3 FINDING DIAGNOSING TESTS 163

3.4 CONCLUSIONS 166

SECTION IV MULTI-VALUED LOGIC 168

CHAPTER 1 INTRODUCTION 169

vii

TABLE OF CONTENTS (Continued)
Page

CHAPTER 2 THE MUHLDORF SYSTEM OF MULTI-LEVEL SWITCHING 173

CHAPTER 3 SYMMETRY IN M-VALUED FUNCTIONS 188

3.1 DEFINITIONS OF SYMMETRY IN M-LEVEL FUNCTIONS 189

3.2 PROPERTIES OF SYMMETRIC FUNCTIONS 191

3.3 ALGORITHM TO DETECT SYMMETRIC FUNCTIONS 209

REFERENCES 215

SECTION V MODULE SYNTHESIS OF SWITCHING FUNCTIONS 217

CHAPTER 1 INTRODUCTION 218

1.1 THE M1 MODULE 218

1.2 OUTLINE OF THIS REPORT 219

CHAPTER 2 THE M2 MODULE 221

2.1 INTRODUCTION TO THE M2 MODULE 221

2.2 COMPLETENESS AND ASYMMETRY OF M 222

2.3 LOGIC COMPLEXITY OF ~M AND M: 224

2.4 SEARCH OF ALL THREE-VARIABLE FUNCTIONS FOR
MODULE FUNCTIONS 236

CHAPTER 3 OPERATIONS ON M AND 240

3.1 BIASING AND DUPLICATING OPERATIONS 240

3.2 SINGLE-ELEMENT-REALIZABLE FUNCTIONS 242

3.3 STANDARDIZATION OF A WELL-ORDERED SEQUENCE 244

3.4 REALIZATION PROCEDURE 245

3.5 REALIZATION OF EX-OR, AND, and OR FUNCTIONS 250

3.6 REALIZATION OF M 1 AND M 1 FROM M AND M: 252

3.7 REALIZATION OF M1 AND nJ FROM M1 AND

MODULES WITH AT MOST n PINS 253

viii

TABLE OF CONTENTS (Continued)

CHAPTER 4 SYNTHESIS BY M2 256

4.1 A TWO-LEVEL SYNTHESIS APPROACH 256

4.2 TREE SYNTHESIS APPROACH 258

CHAPTER 5 SYNTHESIS OF ALL THREE-VARIABLE SWITCHING
FUNCTIONS 265

CHAPTER 6 SYNTHESIS OF FOUR-VARIABLE FUNCTIONS 271

6.1 CASCADE OF TWO M1 MODULES 272

6.2 CASCADE OF TWO) M2 MODULES 281

CHAPTER 7 CONCLUSIONS 290

REFERENCES 292

APPENDIX A SOME DECOMPOSITIONS OF SWITCHING FUNCTIONS 293

SECTION VI DESIGN AUTOMATION FOR DIGITAL SYSTEMS 300

CHAPTER 1 OVERVIEW 301

1.1 THE DATA STRUCTURE DESCRIBING THE DESIGNED
SYSTEM 302

1.2 THE DATA STRUCTURE DESCRIBING AVAILABLE PRINTED
CIRCUIT BOARDS 305

1.3 ASSIGNMENT OF DESIGNED CIRCUITRY TO AVAILABLE
CIRCUIT BOARDS 305

1.4 PLACEMENT OF PC BOARDS ON A BACKPLANE 309

1.5 DETERMINATION OF OPTIMUM WIRE ROUTING 310

1.6 SIMULATION OF THE DESIGNED SYSTEM 311

1.7 AUTOMATIC PREPARATION OF LOGIC DIAGRAMS 314

CHAPTER 2 AN ASSIGNMENT ALGORITHM BASED ON LINEAR
PROGRAMMING 318

2.1 A COMPARISON-ORIENTED DATA STRUCTURE 318

2.2 COMPARISON OF CANONICAL GATING EXPRESSIONS 321

2.3 THE OPTIMIZING ASSIGNMENT ALGORITHM 322

ix/x

I

SECTION I

INTRODUCTION

A. K. Susskind

-1-

This is the final report published under Contract AF30(602)-3681.

It covers in considerable detail most of the work completed since

March 1967.

Since its inception in March 1965, the major motivation for the

work under this contract has come from the demands brought about by

current trends in device and circuit technology. With the advent of

complex integrated circuits, emphasis in logic design has shifted away

from attempting to minimize the number of nonlinear elements, because

their cost is no longer the dominant consideration. Rather, one wants

to minimize the variety of building blocks and their total number, where

now the complexity of the building block (i.e., the number of nonlinear

elements that it contains) is a matter of ever decreasing concern.

Furthermore, one desires to make use of computers in the design process

in order to minimize design tedium and cost, as well as to increase

assurance that the design will operate as desired. Finally, there is a

need for efficient techniques for checking and diagnosing the sealed

boxes which now make up the constituents of a digital system, and there

is every reason to expect that the functional power of the individual

boxes will continue to grow with time.

We find conventional logic design ill equipped to accommodate the

shift of interest. The time is approaching when it will no longer be

satisfactory to specify a design in terms of conventional logic gates,

such as IAiD, and flip-flops. But with what building blocks shall these

be replaced? And what are efficient design techniques for exploiting

the replacements to their fullest? These are among the key issues to

which our work has addressed itself.

-2-

-3-

It is well known that, because they have greater logic power,

threshold elements take building blocks that can, for a given logic

function, significantly reduce the building-block count over what it

would be with conventional gates. In our first report of the same title

(Technical Report No. RADC-TR-66-286), we introduced a novel extension

of the threshold element, the so-called multi-threshold threshold element

(MTE). We showed that a single ATE can realize any single-output switching

functions. Hence it is the most powerful single-output gate possible.

We described how MTE realizations of functions can be specified, how they

can be translated into networks of threshold elements, and finally we

showed some of the many possible electrical circuit forms that one could

use. In our second report of the same title (Technical Report No.

RADC-TR-67-255), we extended our investigation of MTE logic along two

lines. First, we presented a tabular synthesis procedure which, with

little computational complexity, allows one to find a weight-threshold

vector that can realize any function of four or less variables. The

resulting realizations are in general very good, and in many cases they

are optimum. The second extension presented a novel method for MTE

synthesis, well suited to execution by a digital computer. A program

using this method was run on the M.I.T. time-sharing system and its per-

formance was excellent. Furthermore, the concepts involved in this new

method can be applied to other problems of interest, such as single-

threshold synthesis, multiple-output synthesis, and multi-level logic.

In the area of sequential machines, a large part of our effort has

centered on synthesis techniques for realizations in the form of a shift

register. This circuit form is particularly well suited to the new

-4-

technology because the major functional block, i.e., the shift register,

is in fixed form for all possible machines that are shift-register

realizable, and only the length of the register can differ for different

machines. Indeed, shift registers in integrated circuit form are now

commercially available in compact form and at low cost. Furthermore, the

techniques of shift register synthesis are also applicable to the case

where the variety of signals on a lead is greater than two. Thus the

shift-register form offers one approach to exploiting in sequential

machines logic with more than two levels, should such logic become

practicable. Finally, the shift register form permits the inclusion

of error control with only a modest increase in circuitry.

In our first report, we presented a novel algebraic technique for

shift-register synthesis. This technique was extended in our second

report along two directions: synthesis for the case of multiple registers

and synthesis for the case where simple logic can be inserted between the

cells of the shift register. The results of our work are design algorithms

and, as is so often the case with design algorithms, they require some

trial and error. To expedite the design process, we wrote a rather

general computer programming system, also described in our second report.

This system has a very simple problem-oriented command language and has

been used successfully in shift-register design. Our second report also

introduced a new approach to the synthesis of sequential machines in

shift-register form. Here the key concepts were memory span and the

pair graph. What makes the new approach so powerful is its abilit, to

deal with state assignments that permit more than the minimum number of

state variables through the creation of equivalent states by an implicit

mechanism.

-5-

In this report, further extensions of the work in shift-register

synthesis are given in Section II. First, we discuss the realization

of a sequential machine in the form of a feedback shift-register augmented

with a register that stores inputs only. The advantage of this form lies

in the fact that it can realize every machine, whereas without augmenta-

tion the circuit form is not universal. Section II also discusses

techniques for making sequential machines diagnosable, and while these

techniques are applicable to all sequential machines, no matter what the

form, their foundation lies in the concepts which were generated in our

studies of shift-register synthesis. Chapter 3 of Section II discusses

synthesis in the form of a variant of the feedback shift-register, where

information is shifted either right or left. The final chapter in this

section is concerned with decomposition of sequential machines where one

component is an input independent, and hence shift-register realizable,

machine.

Section III of this report deals with fault detection and location

in combinational logic. Here three studies are reported on. The first

is concerned with checking of arbitrary networks consisting of conven-

tional logic (AND, OR, NAND, NOR) and presents new techniques for finding

short tests that determine whether or not the network on hand does in

fact operate as desired, assuming that only a single fault is present.

The second chapter is concerned with checking of threshold elements under

the assumption that arbitrarily many faults can exist. Section III ends

with an approach to finding sets of tests for both diagnosis and checking,

assuming that a fault table is given.

-6-

One way of increasing the logic power of digital building blocks is

to permit each signal lead to carry more than two signal levels. This

leads to multilevel logic. Our first results in this area were given

in RADC-TR-67-255, where we showed several generalizations and extensions

of older concepts and introduced several concepts that are analogous to

conventional majority logic and conventional threshold logic. A small

effort, not reported on, showed that circuit realizations of multilevel

logic are feasible, given that electrical circuit complexity is no longer

of paramount importance. In this report, Section IV gives further theo-

retical results in the area of multilevel logic and discusses in detail

a synthesis technique based on electrically simple circuit blocks.

Several other approaches toward the specification and exploitation

of more powerful logic blocks were also undertaken. In our first techni-

cal report (RADC-TR-66-286) we discussed novel multiple-input, multiple-

output boxes of moderate complexity and showed how they can be used to

realize ensembles of Boolean functions. It is noteworthy that the

synthesis algorithm involves no trial-and-error, that the language used

by the designer is not Boolean, and that the algorithm can handle any

number of Boolean functions not exceeding the number of inputs. In our

next report (RADC-TR-67-255) we discussed synthesis with universal logic

blocks, by which we mean networks that, by means of their external

connections only, can be made to realize any one Boolean function. In

this report, further work with powerful logic blocks is documented.

Section V treats two classes of functions that have simple algebraic

structure. While ad-hoc synthesis techniques are given, we were not able

to penetrate deeply enough to find fully adequate design concepts for the

exploitation of the two classes of functions.

-7-

The final section of this report is concerned with the field of

design automation of digital systems. It contains a new approach to

the efficient assignment of printed circuit boards to system function.

In this report, as in its predecessors, the number of topics

covered is rather large. Consequently, it has not been possible to

provide with each chapter an adequate treatment of the appropriate back-

ground. However, an effort was made throughout to list suitable

references, and it is hoped that these will assist the reader in gaining

access to recent developments in the field.

SECTION II

FEEDBACK SHIFT-REGISTER RELATED TOPICS

This section reports on several studies. Chapter 1 (by R. L.

Martin) deals with the synthesis of sequential machines in the form of

a feedback-shift-register augmented by a shift-register that stores

inputs only. Chapter 2 (by R. L. Martin) deals with techniques for

making sequential machines efficiently diagnosable so that short check-

ing experiments can be found. The new techniques introduced are a

direct product of previous studies in shift-register synthesis. Chapter

3 (also by R. L. Martin) describes a novel approach to the synthesis of

a sequential machine in the form of a register that can shift both right

and left. Finally, Chapter 4 (by A. K. Susskind) shows how the concepts

of shift-register synthesis can be effectively utilized to determine if

a given sequential machine can be decomposed into two submachines, one

of which is input independent.

-8-

CHAPTER 1

SYNTHESIS OF SEQUENTIAL MACHINES IN THE FORM OF A FEEDBACK
SHIFT-REGISTER AUGMENTED BY AN INPUT-DR1VEN SHIFT REGISTER

In Section 3.4 of our previous report (Ref. 1) we introduced the

relationship between finite input memory span and feedback shift-

register (FSR) realizability. In particular, we defined a set of rules

by which a flow table can be "transformed" and showed that a sequential

machine (SM) with no inaccessible states is L-level FSR realizable iff

it has a L-column transformed flow table having finite input-memory

span (Theorem 3.4). Further studies along the lines of finite input

memory span were conducted. A number of important results were obtained,

and these will be contained in a monograph to be published by the M.I.T.

Press. Unfortunately, this work did not lead to fully satisfactory

synthesis techniques. Here we present an extension of this work which

leads to a very appealing and useful method of synthesis.

1.1 THE ASSUMED CIRCUIT FORM

Whereas before we assumed that the SM machine is to be realized by

an FSR with L levels and combinational logic only, we now add a shift

register that stores inputs only. The resultant circuit form is shown

in Fig. 1.1, where the upper row of delays represents the shift-register

that stores inputs and the lower row the FSR. Note that the feedback

logic has as its input at time t primary inputs I(t),I(t-1),...I(t-p),

where p is the length of the shift register. It also has as inputs all

the state variables of the present state stored in the FSR. The logic

shown feeds only the FSR. The SM outputs to the "outside world" are not

-9-

-10-

SHIFT REGISTER

------ · * .-- ---- INPUT I(t)

Ip) I(t-l)

. l , FEEDBACK

LOGIC

FEEDBACK SHIFT REGISTER

Fig. 1.1 Assumed Circuit Form

shown. They are generated by a separate logic block not included in

Fig. 1.1, because we are interested only in realizing the state behavior.

That any SM can be realized in the form of Fig. 1.1 was shown by

Friedman (Ref. 2), who also showed that a two-level (L = 2) FSR is

always sufficient. However, the number of register stages required can

be prohibitively large when L = 2. Here we allow L to be larger than

two and consequently obtain a circuit that is frequently (but not always)

attractive from the economic point of view.

1.2 BACKGROUND

The concept of the "output transformed table" will be useful in

this chapter. From a flow table with outputs assigned to successors

of states, the output transformed table is generated such that if,

under input Is state Si maps to Sj with output Ni, then in the output

transformed table S. maps to Sj under input I ,Ni. For example, the
1 3 1

output transformed table of the flow table of Figure 1.2a is shown in

Figure 1.2b.

From the discussion concerning FSR realizations of SM's in Ref. 1,

it is easily seen that:

Lemma 1.1: A SM can be realized with an input-fed shift register

in parallel with an output-fed shift register iff its output transform

has finite memory span*.

For example, the output transform of Figure 1.2b has length three

memory-span; hence, it can be realized with a three-stage, output-fed,

* We can say "iff" here as the output transformed table must have don't-

cares in it; hence, there is no problem in generating assignments for
the transient states of a flow table.

-12-

0 1 0,0 0,1 1,0 1,1

1 1,0 2,1 1 1 - - 2

2 1 4,1 5,0 2 - 4 5 -

3 1,1 3,0 3 1 3 -

4 35,0 4,1 4 3 - - 4

5 3,1 4,0 5 - 3 4 -

(a) (b)

Figure 1.2 A SM and Its Output Transformed Table

binary FSR in parallel with a three-state, input-fed, binary shift

register.

We shall now determine how to append outputs to a flow table (or

more precisely a state table) so that its output transform has finite

memory span. Our approach to this problem is similar to that of Kohavi

and LaVallee (Ref. 3) in their study of definitely diagnosable SM's.

After outlining their approach, we shall extend it and find an algorithm

which can be used to determine the minimum number of output levels that

one must add to a flow table so that its output transform has finite

memory span; that is, we wish to determine that L such that an L-

valued, but not (L-1)-valued, output can be added to a flow table so

that its output transform has finite memory.

As an aid in explaining this approach, consider the flow table of

Figure 1.3a. Under input restriction alone, Figure 1.3b represents

the mapping properties of all the pairs of states of the SM. (Again,

a graph of this form is called an input pair-graph.)

-13-

0 1

1 1 2

2 3 1

3 5 3

4 2 4

5 1 2

Figure 1.3(a) Example Machine

1

O 0314. 25 2

212 - °15 5

54 1

24 230 -35
O O

Figure 1.3(b) Input Pair-Graph

As Kohavi and LaVallee indicate, the input pair-graph of the output

transform of the SM of Figure 1.3a will have finite memory iff all the

cycles in the graph of Figure 1.3b are eliminated. We shall call the

input pair-graph of the output transform an output pair-graph.

1.3 THE SYNTHESIS TECHNIQUE

A cycle of pairs of states of length r in an output or input pair-

graph will be represented by an r-element vector. The vector (351,23©)

represents the following cycle in Figure 1.3b: 35 mapping to 23 under

input 1, followed by 23 mappihg to 35 under input 0. To make Figure

1.3b cycle free, it is necessary and sufficient to add outputs to the

states so that only those cycles in which a node appears once are

eliminated. This will automatically eliminate those cycles in which

a node appears twice, such as (13 ,230 ,351 ,231).

Ir Ir Ir

In general, any cycle ((SilSjl) 1,(Si2Sj2)
2>.6,(SirSjr) r) can

be broken by adding different outputs to at least one state pair

(Sip,Sjp) under input Ir . For example, the cycle (351,23) can be

eliminated by either adding different outputs to states 2 and 3 under

input O, or different outputs to states 3 and 5 under input 1.

The condition for elimination of a single cycle can be easily

represented by the Boolean OR, i.e., different outputs must be added

to the states SilSjl under input I1, OR ..., OR to the states S. S.
ilil 1'Jtr or

under input Ir . But all cycles must be eliminated for the output pair-
r

graph to have finite memory. This condition can be represented by the

Boolean AND. In other words, if propositions C1,C2,...,C q represent

the various ways in which cycles 1,2,...,q are broken, then the Boolean

product (C1)(C2)...(Cq), multiplied out in sum-of-products form,

represents the various ways in which all cycles can be broken. Let

(ij)k represent the proposition "the outputs of states i and j under

input k are made different". For the graph of Fig. 1.3b we obtain

C1 = (12)l

C2 - (14) 1 + (24)1

c,3 (34)

C4 (13) + (23)1

= (23)o + (5)

P = C1C2C3C4C 5

= (12) [(14)1 + (24)1] (34) [(13)1 + (23)1] [(23) + (35)]

= (12) (34) (i4) (13)1 (23) + (12) (s34) (14) (13) (0) +

(12) (34) (14) (;3)l (23) + (12) (34) (14)1 (23) ()l +

(12)1 (34) (24) (13)1 (23)o + (12)1 (4)1 (;4) (13) (5)1 +

(12)1 (34) (24)1 (23) (23)o + (12)1 (34)1 (24)1 (23)1 (51)l

Hence, either different outputs must be added to 1 and 2 under 1; 3

and 4 under 1; 1 and 4 under 1; 1 and 3 under 1; and 2 and 3 under 0;

or different outputs must be added to 1 and 2 under 1; 3 and 4 under 1;

1 and 4 under 1; 1 and 3 under 1; and 3 and 5 under 1; or ...; different

outputs must be added to 1 and 2 under 1; 3 and 4 under 1; 2 and 4 under

1; 2 and 3 under 1; and 3 and 5 under 1.

Now we shall determine the minimum variety of outputs one must add

so that one of these expressions is satisfied. First, we determine the

minimum variety one must add so that all the links indicated by the

first product are broken. For this it is helpful to construct an

adjacency map in which state i is adjacent to state j in the map for

input k iff the term (ij)k is present in the first product term. Hence

the adjacency map for input 1 of the first term is

1 2

3 4

and for input 0 it is

2 3

Adjacent nodes on a map must have different outputs assigned to

them. Since the variety of outputs determines the number of levels (L)

in the FSR, one wants to determine the minimum variety of outputs

necessary for a given map. As noted by F. C. Hennie, we are faced with

the classical map-coloring problem. Though no graphical solution to

this problem is known, linear programming or trial and error can be

used to find the minimum number of colors (levels) for a particular

map. The above map for input I requires 3 levels, while the map for

input 0 requires two levels. Hence, if the first term is chosen for

breaking all cycles, then we would have to add a three-valued output to

transform the table so that its output transform has finite memory.

However, the maps for (12)1 (34) (14)1 (23)l (23)©, (12) (34)1 (14)1

(23) (35) 1 , (12) (34) (24)1 (13)1 (23)°, and (12) 1 (34)1 (24)1 (13)1

(35)l require only two levels. Hence only a single binary output must

be added to the SM of Figure 1.3a so that its output transform has

finite memory.

Choosing the term (12) 1 (34)1 (14)1 (23)1 (23) , we find the

following adjacency graphs. The outputs assigned as shown in Figure

1.3d break all links in these two graphs; hence, the output transform

of the SM of Figure 1.3d has finite memory regardless of the specifi-

cation of the remaining don't-cares.

1 2 2- 3

I I
4 3

Input 1 Input 0

Figure 1.3(c) The Adjacency Graphs

0 1

1 1/0 2/0

2 /1 1/1

3 5/0 3/1

4 2/0 4/1

5 1/0 2/0

Figure 1.3(d) Example Machine with Outputs Added

The following algorithm is a summary of the preceding procedure

and will result in the minimum variety of outputs which must be added

to a SM so that its output transform has finite memory.

Algorithm 1.1:

1. Form the input pair-graph of the SM. If S. and S. map to Sq
1 J 1

and Sq, respectively, under input q, then SiSj maps to Sqsq

3' 13 1

under input q in the input pair-graph.

2. Find all cycles in the input pair-graph and express the

condition for eliminating the rth cycle as Cr = (SilSl) +
I2 I

(S i2Sj2) + *.. + (Sir ,S) r.

3. Form the Boolean product of all the C. and express the result

in sum-of-products form.

4. For each product term Q in the sum-of-products expansion, form

an adjacency graph for each input used as a superscript in one

of the elements in Q. If (SilSjl)q is present in Q, then in

the q adjacency graph for Q connect Sil to Sjl by a branch.

5. For each set of adjacency maps, by using map-coloring tech-

niques, determine the minimum variety of outputs, M., in order

that outputs can be assigned to the nodes of each map in the

set so that adjacent nodes have different outputs. Let M

-18-

denote the smallest M. over all sets of adjacency maps.

Assign M -valued outputs to the states of the SM so that

adjacent nodes in the set of maps which gave rise to M have

different outputs. Assign an output to a state of the SM

under input q only if it is present in the q adjacency map.

1.4 PEDUCING THE REGISTER LENGTHS

Assigning the M outputs by the preceding graphical method will
m

most likely not specify all of the outputs of the states of the SM.

We shall now consider the problem of specifying the remaining outputs

in order to minimize the length of the memory-span test of the output

transformed table. Towards this end, the output pair-graph will be a

useful device.

In forming the output pair-graph, branches are labeled by input-

output pairs. A pair of states S.S. is connected under input q to its

uccessor pair if Sq S f the outputs of S and S under q are
successor pair S I i I S if the outputs of S. and S. under q are1ij 1 3j 1 3

the same, or one is not specified, or both are not specified. In other

words, edges are not drawn if the specified outputs are different, or

if both states have the same successor.

Following the above rules, we obtain the following output pair-

graph for the SM of Figure 1.3d. The graph verifies that this machine

has finite memory span, since there are no closed cycles.

The problem of specifying the outputs designated by 0 so as to

minimize the memory-span test of the resulting flow table can, of

course, be solved by trying all possible specifications of the don't-

cares. Even though this approach would not be too tedious for this

example, it would be prohibitive for larger tables.

.~ --~·--~--------·-··-- ---------- ·------------------ T h----- I-------

-19-

34 - 25

1,10 /10

0,01 \0,00
12 13 -15

0,00 0,00

·54 >14 1,00 O,00

1,01 1,11

24 -23 - 355
0,01 1,00

Figure 1.5(e) Output Pair-Graph for Fig. 1.5d

We shall now present a heuristic procedure which appears to lead

to "short" realizations. First, obtain a lower bound on the length of

the realization by finding the smallest integer k > logm+Ln, where L

is the level of the added output, m is the number of distinct inputs,

and n is the number of states in the SM. Next, eliminate those complete

chains on the graph which are no longer than k, since regardless of the

specification of the don't-cares, at least one complete chain of length

k or greater will remain. (A complete path is a directed path from a

source node to a sink node.) For the problem at hand, k > log45, so

that at least two register stages are required. Therefore, the chains

(350,15) aind (55 ,25) are eliminated; hence, node 35 is eliminated from

the graph.

Next, consider only paths on the graph for which there are no

don't-cares. In our case, these are (131, 23) and (24 , 14). Now

consider a node, say N., in one of the paths, say P.. Let the length
1

-20-

of the chain from N. to the end of P. be L.. Eliminate, except for P.,
1 1 1 1

all paths from N. to a terminal pair which are no longer than L. without
1 1

destroying paths not involving N.. These paths can be eliminated since

the specified output chain is at least as long as the eliminated chain.

For the graph of Figure 1.3e, we eliminate the links from 13 to 15 under

input 0 and from 25 to 35 under 0.

Taking into account the links previously eliminated, the reduced

graph of Figure 1.3f results.

34 O, 00 25

1,10 0,10

12 0,01 11 1,00 23

O,45 1 4 = 1,11
45 14 - 24

Figure 1.3(f) Reduced Graph

Next, find all state-input combinations for which a don't-care can

be specified so that all remaining links of the state-input combination

are eliminated. For example, specifying an output of 0 for state 5

under input 1 breaks all links from a pair containing 5 to any other

remaining pair under input 1. Thus, under input 1, we let state 5

have an output of 0, and obtain the graph of Figure 1.3g.

All of the previous steps are in no way heuristic and can never

lead to non-minimal solutions. However, at this point we resort to

heuristic techniques: By specifying preferably only one output, attempt

to cut the longest remaining chain in the graph in half. For the graph

of Fig. 1.3g, the longest chain is 241, 14 , 12 , 131, 23. We can cut

-21-

34 00 25

0,10

12,01 3 1,00
- 13 - 23

4°5 O, 1 ,1124

Figure 1.3(g) Graph Reduced Further

it in "half" by specifying the outputs of 1 and 4 under 0, i.e., break

the link from 14 to 12, or by specifying the output of state 1 under 0,

i.e., break the link from 12 to 13. Since we must specify only one

output to break the link from 12 to 13,- we choose to break it and

specify the output for 1 under input 0 as 0. This results in the

graph of Fig. 1.3h.

45 0°00 I2 34 000 25

0,00 0,10

24 1,11 14 23- 1,0 13

Figure 1.3(h) Graph Reduced Further

Finally, for this new graph, repeat the preceding four steps of

eliminating all chains of length greater than k, etc., until all outputs

are specified or until all chains greater than k are removed from the

graph. Accordingly, link (45 , 12) is removed next. Then the output

for state 4 under 0 is specified as 1, and the output of state 5 under

0 is specified as a 0. This results in the graph of Figure 1.3i.

-22-

1,11
24 _ 14

1,00
13 -.. - 23

Figure 1.3i Result of Final Reduction

All outputs have now been specified, and the flow table shown in

Figure 1.4 results.

0 1

1 1/0 2/0

2 3/1 1/1

3 5/0 3/0
4 2/1 4/1

5 1/0 2/0

Figure 1.4 Final Flow Table

The length of the memory-span test for the output transformed table

of Figure 1.5a is two, since the final graph of Figure L.3i has no path

longer than two, and no path longer than two has been eliminated in the

process of finding that transformation. The memory-span test of the

output transformed table is given in Figure 1.5b and the state assignment

thus found is given in Figure 1.5c.

00 01 10 11

1 1 - 2 -

2 3 - 1

3 5 - 3 -

4 - 2 - 4

5 1 - 2 -

Figure 1.5(a)

-23-

00 01 10 11

12345 15 25 23 14

(0,0) 15 - 2 -

(0,1) 2 3 5 3 1

(1,0) 23 5 3 3 1

(1,1) 14 1 2 2 4

(b)

Input Feedback 0 1

00 00 1 1 2

01 00 2 3" 1"

00 10 5 1 2

00 11 3 5 3'

01 10 3' 5' 3t"'

01 11 1' 1"' 2"

10 00 5' 1 2

10 01 3" 5 3'

11 O0 3"' 5' 3"'

11 01 1" 1t"' 2"

10 10 1Il' 1 2

10 11 2' 3 1'

11ii 10 2"t 3"1 1"

11 11 4 2' 4

(c)

Figure 1.5 Analysis of Machine of Figure 1.4

Since, by chance, the added output is input independent, the SM of

Figure 1.3a can be realized with an input-fed, two-delay shift register

in parallel with a two-delay FSR with input-independent feedback logic.

The following algorithm is a summary of the technique for specifying

the don't-care outputs of a flow table so that the output transformed

table has a "short" memory--span.

-24-

Algorithm 1.2:

1. Execute Algorithm 1.1 to determine the minimal level output which

must be added so that the output transform has finite memory.

Choose that set of adJacency maps from among those which corres-

pond to the minimum level realization that specifies the fewest

outputs in the flow table. Form the input-output pair-graph by

connecting node S .S. to its successor node S.S. under input I iff

S.1 S1 and the outputs for S. and S. under I1 are the same, one

is not specified, or both are not specified.

2. Let k be the smallest integer such that k > logm+L (n), where L

is the level of the added output, m is the number of inputs, and

n is the number of states in the SI. Eliminate all complete paths

of length no greater than k. (A complete path is one which starts

at a tip (source) and ends at a terminal (sink) of the graph.)

3. Find all paths having completely specified outputs. If any

node N. in this path has another path P. leading to a terminal
i 1

node of length shorter than the length of the path from N. to

the end of the specified path, eliminate P..

4. If all links of a given state/input combination can be broken

by specifying the output of that state under that input, then

specify it to break these links. Remove all links caused by

specifying the output and return to Step 2. If no output can

be specified according to this rule go to Step 5.

5. Try to cut the longest remaining chain in the graph in "half"

by specifying as few outputs as possible. If there is more

than one chain, then choose that chain which can be cut most

-25-

nearly in half by specifying the fewest outputs. Break those

links caused by specifying the outputs. Go to Step 2 if the

remaining graph still has don't-cares on it.

6. The length of the realization will be the length of the longest

chain in the remaining graph or k, whichever is larger.

1.5 A HEURISTIC TECHNIQUE

As can easily be seen, the techniques of Algorithms 1.1 and 1.2

for finding a realization, though systematic, require a discouraging

amount of work. The first part of the algorithm requires generating

a graph with (n -n)/2 nodes, listing all cycles in this graph, and then

forming the "logical product" of the propositions which when true break

all cycles. Hence, a 10-state SM leads to a 45-node graph. A 45-

node graph can have approximately 7.4 x 154 cycles. Thus, the first

part of the algorithm, though mathematically complete, leaves a bit to

be desired computationally.

To avoid using Algorithm 1.1, we have developed a heuristic tech-

nique which appears to yield "good" solutions for the minimum level

output. In this algorithm it will be convenient to use the term

"output-closed-loop," which is a closed loop in the output pair-graph

with completely specified outputs and at least one pair of identical

outputs.

Algorithm 1.3:

1. Form an input-output pair-graph with all outputs initially

specified as don't-cares. Later, when an output is added, delete

a link which, due to this specification, has different outputs on it.

-26-

2. If each of k' states maps to itself under any particular input,

then at least a k'-valued output is required so that the output

transform has finite memory. Assign different outputs to the

"self-loops" in a column, i.e., to those next-state entries which

equal the row label. If a column does not contain a self-loop,

then assign an output of 0 to state 1 in that column.

3. Specify the output os S. under input Ij, if it can be specified

without increasing the output level, so that all cycles which

contain that state-input pair are eliminated.

4. On the input-output pair-graph, eliminate all nodes not in

cycles, and then find a short cycle. (We refrain from saying

the shortest cycle since this constraint leads to computational

difficulty.) If possible, choose a node which has one output

already specified in that cycle and specify the other output so

that the link is broken; however, do not specify it so that an

output-closed-loop is formed on the resulting graph. If none of

the present levels suffice, either add another level or try

another node. Go to Step 3 and repeat this process until all

loops are broken on the output pair-graph; then use Algorithm 1.2

to specify the other outputs.

This algorithm is also computationally quite complex. However,

we are dealing with a complex problem and unfortunately must expect

this.

As an example of this technique, consider again the SM of Figure

1.3a. First, we note that states 3 and 4 form self-loops, i.e., each

-27-

maps to itself, under input 1 and that state 1 forms a self-loop under

input 0. In Step 2, we assign an output of 0 to 3 and a 1 to 4 under

input 1, and assign an output 0 to state 1 under input 0. Doing this

leads to the output pair-graph of Figure 1.6a, where, in accordance

with step 4, links and nodes not in loops are not drawn. The cycle 12

12 13

100 1,00 1,00

23

14 10,o o,0

1,01 1,01
35

24

Figure 1.6(a) Partial Output Pair-Graph

under input 1 is the shortest cycle of the graph; hence, under input 1,

let 2 map to 1 with an output of 0 and 1 to 2 with an output of 1. The

flow table then becomes that shown in Figure 1.6b and the graph is

0 1

1 10 2,1

2 3 0 1,0

3 5 0 3,0

4 2 0 4,1

5 10 2,0

Figure 1.6(b) Partial Output Specification

simplified to that of Figure 1.6(c). Hence, let 5 map to 2 under input

o,00
23 -- 35

1,00

Figure 1.6(c)

1 with an output of 1. The flow table becomes

0 1

1 1 0 2,1

2 3 0 1,0

3 5 0 3,0
4 2 0 4,1

5 1 0 2,1

Figure 1.6(d)

The don't-cares are now specified according to Algorithm 1.2. Doing

this leads to the flow table of Figure 1.63. The output transform of

this flow table has length-two memory-span.

0 1

1 1 0 2 1

2 3 1 10

3 51 30

4 20 41

5 1 0 2 1

Figure 1.6(e)

Let us consider, as a final example of these techniques, the flow

table of Figure 1.7. Since there are eight self-loops in column 0,

we know that an 8-level output must be added to make this flow table

have a finite-memory output transform. Thus, one level per state is

needed, which corresponds to an arbitrary realization containing three

binary delays. Hence, the best FSR realization this technique finds

is not a FSR realization at all. Our technique does so poorly in this

example because it uses only one of the forms of state splitting:

-29-

0 1

1 1 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 8

Figure 1.7 A SM

splitting during the memory-span test. If one allows state splitting

before the memory-span test, then from Friedman's work we know that

any SM can be realized with two shift-registers, one which stores

inputs, and a binary FSR. But, as mentioned before, these realizations

can be prohibitively long.

CHAPTER 2

FEEDBACK SHIFT-REGISTERS AND THE DIAGNOSIS OF SEQUENTIAL M1ACHINES

After synthesizing a sequential machine (SM), the designer must

determine whether the circuit performs the desired input-output trans-

formation. Furthermore, it is often necessary to check a sequential

circuit periodically for malfunctions. Before the advent of integrated

circuits, this checking, or diagnosing, was frequently facilitated by

attaching probes to the circuit itself or by cutting some of the feed-

back loops in the circuit. However, neither of these techniques can

be easily implemented when the SM is realized with an integrated circuit.

One is thus forced to develop new techniques for diagnosing SM's which

are synthesized with integrated circuits. One fruitful approach has

been to modify the flow table by adding extra inputs (Ref. 4) or out-

puts (Ref. 3) so that the modified flow table is relatively easy to

check. Using the classical switching theory standards of minimizing

the number of components in a circuit, this approach would have

questionable merit. However, as is well known, the classical standards

of synthesis do not apply to integrated circuits.

It seems reasonable that the next logical step to be taken in

flow-table modification theory is to investigate the possible benefits

incurred by state splitting. At first, one might suspect that increas-

ing the number of states in a flow table would naturally lead to

circuits which are harder to diagnose. However, in Section 2.1 we

sha'll show that this need not be the case by proving that feedback-

-30-

-31-

shift-register (FSR) realizations are relatively simple to diagnose if

one modifies the circuit only trivially. Hence, if by splitting states

one can realize the flow table with a FSR, then the circuit will usually

be easier to check.

Our discussions concerning diagnosis of SM's will not be limited

to FSR realizations. After a comment on flow-table modification by the

addition of one input, we shall investigate modifying a flow table by

splitting states and by adding a single binary output so that it has

"good" diagnosing properties.

Although we shall repeat the definition of the basic terms used

concerning SM diagnosis, we shall not, for the sake of brevity, present

a survey of the general theory. Our definitions are taken from Ref. 3,

but our approach will differ from Kohavi and LaVallee's in that we shall

split states as well as add outputs.

An experiment on a SM is the application of an input sequence to

a SM and the recording of the corresponding response at its output

terminals. An experiment which allows one to determine whether or not

a SM is operating correctly is said to be a checking experiment.

Hennie (Ref. 5) has shown that SM's which have distinguishing

sequences have relatively "short" checking experiments. (A distinguish-

ing sequence applied to an SM generates a different output sequence for

each possible starting state of the SM. Hence, if the present state of

the SM is unknown, by applying the distinguishing sequence and observ-

ing the corresponding output sequence, one can determine that state, if

the SM is working properly.) For example, consider the machine of

Figure 2.la. The input sequence 11 is a distinguishing sequence,

0 1

A A/0 B/O

B A/0 C/1

C A/0 C/o

Figure 2.1(a) A SM which Has a Distinguishing Sequence

because, when applied to starting state A, it results in the output

sequence 01; to B, 10; and to C, 00. Unfortunately, not all SM's have

distinguishing sequences. For example, the SM of Figure 2.lb has no

distinguishing sequence.

0 1

A A/0 B/O

B A/o c/o

C A/0 D/O

D A/1 D/O

Figure 2.1(b) A SM which Does Not Have a Distinguishing Sequence

To overcome the problem of long checking sequences for SM's which

do not have distinguishing sequences, Kohavi and LaVallee modify the

flow table by adding additional outputs so that the modified flow

table has distinguishing sequences. Since one could let all the state

variables be additional outputs, this can always be done. In their

paper, Kohavi and LaVallee suggest that SM's for which all sequences of

some length p are distinguishing sequences have "good" checking experi-

ments. Kohavi and LaVallee designate a SM definitely diagnosable if

any sequence of length p is a distinguishing sequence. Furthermore,

they introduce techniques for adding a "small" number of outputs to a

flow table to make it definitely diagnosable.

-33-

2.1 DIAGNOSING FSR REALIZATIONS

If a SM is realized with an L-level, k-delay FSR, then the flow

table corresponding to the realization can be made definitely diagnos-

able by adding a state-determined (input independent), L-valued output.

The technique is simple: In the realization flow table, the output

digit Yk is added to all the entries in the present state row with

assignment YkYk l...Y 1 . This output addition corresponds physically

to making the output of the last delay of the shift register be an

additional output of the SM. (See Figure 2.2.) Since applying any

k-digit input sequence to the SM will cause the assignment of the

starting state to be serially shifted out of the register, the modified

flow table is definitely diagnosable.

As an example of this output addition, consider the SM of Figure

2.lb. It has the FSR realization flow table of Figure 2.3. Only the

0 1

000 A A/O B/O

001 B A1/O C/O

010 A1 A2/o B1/O

Oll C A3/o D/O

100 A2 A/1 B/1

101 B1 A1/1 C/1

110 A A2/l Bl/

111 D A3/1 D/1

Figure 2.3 A Modified SM

added output symbol used for diagnosing is shown and the original

output from the St of Figure 2.1b is omitted. Hence, if the output

sequence Z(t), Z(t+l), Z(t+2) is 0,1,1, we conclude that the SM was in

-4'HH

or-

*rl

L X

2 ,0~~~F
_ X '~~CU

9B

state C at time t. It is interesting to note that using Kohavi and

LaVallee's technique, if states are not split, two binary outputs must

be added to the flow table of Figure 2.lb to make it definitely diagnos-

able.

Kohavi and LaVallee prove, by example, that taking a SM through

all its transitions does not, in general, constitute a checking sequence.

However, in a FSR realization modified as described above, if one

assumes that the malfunction in the shift register part of the reali-

zation corresponds to a constant input to a delay, i.e., connection wires

between adjacent delays opening or shorting, then it is easy to see that

taking the SM through all its transitions - now all the transitions for

all the equivalent states - and then applying any k inputs to check the

final state does constitute a checking sequence. This is the case

since, under these assumptions, we need only check for the following

types of errors: 1. a shorted input to a delay, 2. an opened input

to a delay, 3. malfunctions in the feedback logic. The first two

types of errors will be easily detected as the added output would soon

take on only all O's or all l's. Malfunctions in the feedback logic

will be observed from the added output by taking the SM through all its

transitions and then applying any k inputs. However, if the checking

sequence must check for any possible malfunction of the circuit, then

taking the SM through all its transitions and then applying k inputs

does not constitute a checking sequence. The flow tables and the trial

checking sequence of Figure 2.4 prove this. However, this sequence

would be a checking sequence for the SM of Figure 2.4a under the

previous assumptions.

0 1 0 1

00 1 1/0 2/0 1 1/0 2/0

01 2 4/0 2 3/1 4/0

10 3 1/1 2/1 3 4/1 2/1

11 4 3/1 4/1 4 1/1 3/1

(a) Machine A (b) Machine B

Figure 2.4 Two SM's

Inputs to 0 1 0 1 1 1 0 0 0 0 0
Machines A and B

State of 1 1 2 3 2 4 4 3 1 1 1 1
Machine A

State of 1 1 2 3 2 4 3 4 1 1 1 1
Machine B

Outputs of 0 0 1 0 1 1 1 0 0 0
Machines A and B

In summary, we have shown:

Lemma 2.1: A SM realized with a binary FSR can be made definitely

diagnosable with the addition of at most one binary output to the

realization flow table. This output is taken directly from the output

of the last delay of the shift register and requires no additional logic.

Obviously, Lemma 2.1 can be extended to parallel, multi-level FSR

realizations.

Lemma 2.2: If a SM is realized with j FSR's, then the flow table

corresponding to the FSR circuit can be made definitely diagnosable by

adding at most j, state-dependent outputs to each state.

It is important to note that one makes the flow table corresponding

to the FSR realization definitely diagnosable by the addition of these

outputs. This means that one could make a flow table definitely

-37-

diagnosable by adding the last bit of the FSR state assignment as a new

output, realize the flow table in any arbitrary fashion, but still use

the added output for diagnosing purposes. From previous discussions,

we must expect that the flow table corresponding to the FSR realization

will most likely have many equivalent states. However, as we have seen

from the example of Figures 2.1 and 2.3, expanding the flow table might

reduce the number of additional outputs required to make the SM definite-

ly diagnosable. An interesting example of the potential of this reduc-

tion and the attendant explosion in the number of states is shown in

Figure 2.5. Using Kohavi and LaVallee's technique, we would find

0 1

1 1/0 2/0

2 1/0 3/0

.3 1/0 4/0

n-l 1/0 n/O

n 1/0 n/l

Figure 2.5 Another SM

that log 2n additional binary outputs are required to make this SM

definitely diagnosable. However, since this flow table is binary FSR

realizable with a FSR of length n-l, we find that if one allows state

splitting, only one additional binary output is required. However, the

resulting realization flow table has 2 states.

Using our knowledge concerning the feedback index of SM's, we can

establish an upper bound on the number of outputs one must add to make

and SM definitely diagnosable. From Friedman's work (Ref. 2) we know

that any L-column SM can be realized with an input-fed L-level shift

register in parallel with a binary FSR. Hence, we can generate a FSR

realization flow table for any L-input SM which can be made definitely

diagnosable with the addition of at most one 2L-valued output. Hence,

we have:

Lemma 2.3: If one allows state splitting, any L-input SM can be

made definitely diagnosable with the addition of at most one 2L-valued

output.

As yet, however, no SM has been found which requires the addition

of 2L output values to make it definitely diagnosable.

2.2 FLOW-TABLE MODIFICATION BY COLUMN ADDITION

C. R. Kime (Ref. 4) introduced a second approach to the diagnosing

problem of SM4's. Kime does not attempt to modify a SM so that it is

definitely diagnosable, but only so that it has a distinguishing

sequence. One of his modifications is based on the following.

We shall say that SM column contains SM2 if deleting some of SM1 's1

columns creates SM2 and if SM2 has no equivalent states. Kime showed

that if SM1 column contains SM2 and if no two states in SM2 have the

same successor/output pair under any of its inputs, then both SM2 and

SMY have a distinguishing sequence.

For an example of the use of Kime's Theorem, consider the SM of

Figure 2.6a. Deleting columns 0 and 2 from the SM of Figure 2.6a creates

the SM of Figure 2.6b which is reduced and has a distinguishing sequence

since no two of its states have the same successor/output pair. Note

that even though this single-column SM is not strongly connected, the

-39-

0 1 2

A A/O B/O B/O

B B/O C/1 C/O

C A/O D/1 B/O

D D/1 D/o A/1

Figure 2.6(a) Another SM

1

A B/O

B C/1

C D/1

D D/O

Figure 2.6(b) A SM Column Contained by the SM of Figure 2.6a

original SM is; thus, the distinguishing sequence and the technique

which Hennie introduced for diagnosing strongly connected S t's which

have distinguishing sequences can be used. Using this result, Kime

then suggested appending to any strongly connected SM a single-column,

irreducible SM which has a distinguishing sequence. In adding this

column, Kime assumes that the SM has a complete, k-bit state assignment

and thus has 2k states. The column Kime adds is the shift register,

divide-by-two column. In other words, state Si, with binary assignment

bi, maps to the state with assignment L2iJ (L J signifies integer

part of). The output for state S. is the rightmost digit of its state

assignment (e.g., for the assignment 01, the output would be 1). For

an example of this procedure, consider the SM of Figure 2.7a. The

divide-by-two column is added, resulting in the SM shown in Figure 2.7b.

Kime's divide-by-two simply shifts the state assignment one digit

to the right and introduces a zero as the new leftmost digit. Thus, the

0 1

00 A A/O C/O

01 B A/O D/1

10 C B/1 A/1

11 D B/1 C/O

Figure 2.7(a) A SM

0 i 2

00 A A/0 C/O A/0

01 B A/o D/1 A/1

10 C B/1 A/1 B/O

11 D B/1 C/O B/1

Figure 2.7(b) The SM of Figure 2.7a with a Column Modification

column has a distinguishing sequence of length k that generates an

output sequence which is the state assignment of the initial state.

We suggest here a minor modification of Kime's technique. We

propose adding to the SM a column which is a single cycle of length 2k

with outputs (added) so that any sequence of k inputs of this added

column will generate an output sequence which is the state assignment

of the initial state. Furthermore, since this column is a cycle column,

its operation can be checked by a sequence of 2 +k consecutive inputs

of that column. Kime's divide-by-two column is not as simple to check.

However, the main advantage of our suggestion is that adding it to any

SM makes it strongly connected. Hence, the rather unfortunate constraint

of strong connectedness usually assumed in diagnosing techniques can be

discarded.

We shall now show that there exists a 2k-length cycle column such

that applying k inputs to any state S. of that column will result in an

output sequence which is the state assignment of Si. This follows from

the well established fact that a k-delay, binary FSR can generate a

k k
cycle of length 2 . Hence, the added column is one of the 2 -length,

FSR cycles. The output for the successor of a state in the column is

the bit of its assignment which is shifted out of the register. It

should be noted that if a SM is FSR realizable, these columns can be

added without destroying the FSR realizability of the original SM.

2.3 FLOW-TABLE MODIFICATION BY OUTPUT ADDITION

Kime's technique of adding an input to a SM proves that any SM can

be augmented so that it has a distinguishing sequence with the addition

of at most one line to the SM - an input line. We shall now show that

by splitting states, any SM can be modified so that it has a distinguish-

ing sequence with the addition of at most one binary output line. Even

though we shall use FSR techniques to generate the modified flow table,

it will, in general, not be FSR realizable.

From Lemma 2.1, we know that if a SM is FSR realizable, then the

realization flow table can be made definitely diagnosable by assigning

as a new output digit for each state in the flow table that bit of its

assignment which is shifted out of the register. Recall that even if

the modified flow table were not realized with a FSR, it is still

definitely diagnosable.

For an example of the use of Lemma 2.1, consider the flow table

of Figure 2.8a. This flow table is binary FSR realizable if one splits

states; hence, by splitting states it can be made definitely diagnosable

with the addition of one binary output. The realization flow table with

the added output is shown in Figure 2.8b. Now, consider the flow table

0 1

1 1 2

2 1 3

3 1 3

Figure 2.8(a) Another SM

0 1

00 1 1/0 2/0

10 11 1/1 2/1

01 2 11/o 3/0

11 3 1/1 3/1

Figure 2.8(b) FSR Realization of the SM of Figure 2.8a with Outputs
Added

of Figure 2.9a. Even though this flow table is not binary FSR realizable,

0 1 2

1 1 2 3

2 1 3 3

3 1 3 2

Figure 2.9(a) Another SM

it contains, by deleting column 2, a binary FSR realizable flow table.

Hence, by splitting states and adding the outputs as shown in Figure

2.9b, the flow table of Figure 2.9a can be made to have distinguishing

sequences using inputs 0 and 1.

0 1 2

1 i/o 2/0 3/
1 1/1 2/1 3/

2 11/o 3/0 3/

3 11/1 3/1 2/

Figure 2.9(b) An Output Modified Flow Table

In general, by splitting states and adding a single binary output,

a SM can be modified to have a distinguishing sequence if deleting

some of its columns generates a binary FSR realizable SM. But, from

Haring (Ref. 6) we know that every single-column SM is binary FSR

realizable. Hence, if one deletes all but one column, say column 0,

of a SM, then finds the FSR realization of the resulting single-column

SM, adds the appropriate output to each state, and then appends the old

columns to the single-column FSR realization, the original machine will

have an all-zero distinguishing sequence.

For an example of this technique, consider the flow table of

Figure 2.10a. Even though the flow table of Figure 2.1Oa is not binary

0 1

1 1 5

2 3 1

3 4 3

4 2 7

5 1 2

6 6 2

7 7 6

Figure 2.10(a) Another SM

FSR realizable, the SM formed by deleting column 1 is. Its realization

flow table, with distinguishing outputs added, is shown in Figure 2.10b.

Appending the original column 1 to the above FSR realization, we find

the SM shown in Figure 2.10c. The sequence 0000 is a distinguishing

sequence for this SM.

-44-

0

0000 1 i/0

o101 2 3/1

loll 3 4/1

ollo 4 2/0

1000 5 l/1

lo010o 6' 6/1

0101 6 6'/o

1001 7' 7/1

oolo 7" 7'/o

0ooo 7 7"/o

Figure 2.19(b) The Binary FSR Realization of Column Zero
of the SM of Figure 2.10a

0 1

1 /o5
2 3/1 1

3 4/1 3
4 2/0 7,7', or 7"

5 1/1 2

6 6'/1 2
6' 6/o 2

7 7'/1 6 or 6'

7' 7"/0 6 or 6'

7" 7/0 6 or 6'

Figure 2.10(c) The SM with Output Added so that It Has the
All-Zero Distinguishing Sequence

Hence, considering all the preceding arguments we have proved the

following theorem.

Theorem 2.1: By splitting states, any SM can be made to have a

distinguishing sequence consisting of a single repeated symbol with

the addition of a single binary output.

It is interesting to note that the increase in the number of delays

necessary to realize the SM modified to have the all-zero distinguishing

sequence is not too great. It can be shown that this increase is no

greater than log2 log2(n)+l, where n is the number of states in the

original SM. Also, a SM can be exhibited which requires the addition

of at least log2 log2 (n)-1 delays if it is modified to have the one-of-

a-kind distinguishing sequence.

2.4 SUMMARY

In this chapter, we have suggested various says to modify a

sequential machine (SM) so that its operation is easy to check. First,

we showed that feedback shift register (FSR) realizations are relatively

easy to diagnose if one makes the bit which is shifted out of the shift

register an additional output of the circuit.

Next, we investigated ways of modifying flow tables so that they

have distinguishing sequences. We first suggested a slight modifica-

tion of Kime's procedure of adding an extra input to the SM. Then, we

sowed that by splitting states and adding a single binary state-

determined output, any SM can be modified to have a distinguishing

sequence consisting of a single repeated symbol. Since one desires to

minimize the number of input and output lines in an integrated circuit,

this result is quite interesting.

Perhaps, however, the most rewarding aspect of this chapter has

been the ease with which "non-FSR" problems were solved by using FSR

techniques.

REFERENCES

1. Susskind, A. K., et. al., "Threshold Elements and the Design of
Sequential Switching Networks," Technical Report No. RADC-TR-67-255,
July 1967, Section 3.4,

2. Friedman, A. D., "Feedback in Synchronous Sequential Switching
Circuits," IEEE Trans. on Electronic Computers, June 1966, Vol.
EC-15, No. 3, pp. 35p4-38..

3. Kohavi, Z. and P. LaVallee, "Design of Diagnosable Sequential
Machines," AFIPS Conference Proceedings, April 1967, Vol. 30,
pp. 713-718.

4. Kime, C. R., A Failure Detection Method of Sequential Circuits,
Department of Electrical Engineering University of Iowa Technical
Report 66-13, January 1966.

5. Hennie, F. C., "Fault Detecting Experiments for Sequential Machines,"
Proceedings of the Fifth Annual Symposium on Switching Theory and
Logical Design, 1964, pp. 95-110.

6. Haring, D. R., Sequential-Circuit Synthesis: State Assignment
Aspects, M.I.T. Press, Cambridge, Mass., 1966.

-46-

CHAPTER 3

BI-DIRECTIONAL FEEDBACK SHIFT-REGISTER
SYNTHE SIS OF SEQUENTIAL MACHINES

In this chapter, we give a new technique for realizing a sequen-

tial machine (SM) in the form of a bi-directional feedback shift

register (BFSR's), under particular constraints to be discussed below.

A BFSR is a serial connection of k unit delays labelled 1 through k

from right to left and interconnected so that at the occurrence of a

left-shift signal the contents of the ith delay is moved into the

(i+l)th delay and at the occurrence of a right-shift signal the con-

tents of the i delay is moved into the (i-l) delay. If a SM is

realized with a BFSR, then the input to the first delay in the case of

left shifting and last delay in the case of right shifting is generated

by combinational logic which has access to the contents of the delays

and the inputs to the SM. We shall insist that the register shift

after each input occurrence. We shall be concerned not only with

binary FSR realizations, but also with r-level realizations in which

the input to the first delay can be any one of r values, represented

as 0, 1, 2, ..., r-l.

Ideally, the techniques for synthesizing SM's with BFSR's should

be general enough to include arbitrary freedom in choosing shift direc-

tion, i.e., as a function of both the state assignment and input, and

should include the possibility of assigning more than one code per

state, i.e., the introduction of equivalent states. Though techniques

-47-

-48-

have been developed which gave insight into the equivalent state prob-

lem associated with the unidirectional FSR synthesis of SM's (Ref. 1),

we have not been able to extend them to apply to BFSR synthesis.

Hence, except for certain proofs concerned with the lack of realiz-

ability of certain SM's with BFSR's, we shall be concerned here only

with BFSR synthesis techniques in which each state is assigned exactly

one code.

Moreover, we shall restrict our attention to synthesis techniques

in which the shift-direction is input determined. For example, under

input 0 the shift direction is always left and under input 1 the shift

direction is always right. We impose this restriction for computational

ease and because the form is relatively simple to realize, since there

need be no feedback logic to determine the shift direction. The case

in which the shift direction is state determined has been previously

investigated by us (see Ref. 2) and will not be repeated here.

First, we will develop an algorithm for the synthesis of

SM's with only two input symbols. Then, without loss of generality, we

can assume that the register shifts left under input 0 and right under

1. We shall designate such a column contingent BFSR realization as

CBFSR. (The case of shifting right, say, under both inputs has also

been previously investigated in Ref. 2 and will not be presented here.)

The SM of Figure 3.1 can be realized in the form considered here and

the resulting state assignment is shown.

-49-

y3y2y1 0 1

000 1 2 5

001 2 3 1

O10 3 6 6

Oll 4 8 6

100 5 1 7

101 6 3 7

110 7 6 8

111 8 7 4

Figure 3.1 An Example of a BFSR Realization

3.1 THE SYNTHESIS ALGORITHM

In summary, our goal is to develop an algorithm with which one

can determine whether a SM is -CBFSR realizable. If the SM is CBFSR

realizable, this algorithm should indicate how to generate the appro-

priate state assignments (SA's). Under the restriction of one assign-

ment per state, one finds that partition theory, developed by Hartmanis

and Stearns (Ref. 3), is very convenient in determining whether a

CBFSR realizable SA exists. A block of partition Pi on the set of the

states of a E4 has in it all those states which are coded the same in

state variable Yi. For example, for the SM of Figure 3.1, P1 =

(1357,2468).

Towards finding the SA, or more appropriately the state variable

partitions, we define the operator e &, where x equals 0 or 1 and x

equals, respectively, 1 or O. The operator J (jO) acts on the parti-

tion to its left by joining each state in a block with its 0l-(10)

successor. (The 01-successor of a state is the state that it maps to

under the input sequence 01. E.g., the 01 successor of state 2 of the

;I of Figure 3.1 is state 6.) All blocks thus formed which have com-

mon members are joined. For example, if P = (12,34,56,78), then PJ1 =

(1256,3478).

The following lemma follows immediately from the definition of

the operator JXC and from the shift constraint of the CBFSR.

Lemma 3.1: If a SM is CBFSR realizable and if R is such that
b oR(10) b R01(10)

R< 7 Pi7 , then RJ(< 7T P. if a / 1 (b f k) or RJ
j=a ja

k-l b
7T P. if b = k (7T P. if a = 1).
j=a J j-2 J

Lemma 3.1 can be used to start to specify the state-assignment

partitions. For example, for the SM of Figure 3.1, we know that the

zero (0) partition (1,2,3,4,5,6,7,8) satisfies the following relation

(o) = 7 Pi
i=l

and hence that

(o)J = (1,26,37,5,4,8)< 77 Pi
i=l

(o)J0 = (1,2,34,56,7,8)< 7 P.
i=2

and by the union of partitions that

(o)JO 1 U (O)J10 =(1,265,347,8)< P2

Another operator useful in FSR synthesis is TX. The operator TX

acts on the partition to its left by replacing each state in each block

by its successor under input x, joining blocks thus formed with common

members, and adding states inaccessible under input x as singletons.

The following lemma follows directly from the definition of the opera-

tor Tx and the shift constraints of a CBFSR realization.
b

Lemma 3.2: If a SM is CBFSR realizable and R < 7 Pj, then
j=a

b+l 1 b-l
RT < T P. and RT < 7 Pj, where b+l is set equal to k if b

j=a+l j=a-l

equals k and a-l is set equal to 1 if a equals 1.

Similarly, the operator T 'x acts on the partition to its right

by replacing each state in each block by all of its predecessors under

input x and joining blocks thus formed with common members. States

which have no successors, i.e., a state which maps to a don't-care

under input x, are added as singletons in PiT x. Lemma 3.3 follows

directly from the definition of the operator T x and the shift con-

straint in a CBFSR realization.
b

Lemma 3.3: If a SM is CBFSR and if R < 7T P., then
j=a

b-l b+l
RTO 7 P. and RT < 7T P, where b+l is set equal to k if b

j=a-1 - j=a+l

equals k and a-l is set equal to one if a equals 1.

Lemmas 3.2 and 3.3 can be used to obtain further information

concerning the state-assignment partitions. For example, for the SM

of Figure 3.1 we previously found that P2 > (1,256,397,8) = R.

Therefore from Lemmas 3.2 and 3.3

1 -o
RT U RT = (5,173,268,4) < P1

RT U T = (2,134,68,7)
RT U RT =(2,134,568,7) < P

~~i~~ Y l l g l D LC~~~~I 11~~~1~1~~·l l l lr~~

-52-

As can easily be seen, the partitions thus found constitute a

four-level CBFSR realization. If a binary realization is desired,

then blocks of partitions must be joined. The only joinings so that

a binary SA is found leads to the one shown in Figure 3.1.

However, in using the operators as shown above, one might lose

some information. To avoid this, we now wish to define the union of

operators which will be done so that P(T' Y U TX) > PT' Y U PTX, where

x and y are 1 or 0. The operator T-Y U Tx acts on the partition to

its left by replacing each block by both of its successors under x and

all of its predecessors under y, joining blocks thus formed with com-

mon members, and adding states which are both inaccessible under x and

have a don't-care successor under y as singletons. From the definition

of the operators it follows that
b

Lemma 4.4: If a SM is CBFSR realizable and R < W P., then
j=a

~0 1 b-l1
R(T' U T)< T P.

j=a-l 3

R(T1T 0)< b+l
R(T' U T) < 7U P.

j=a+l

where b+l is set equal to k if b equals k and a-l is set equal to 1 if

a equals 1.

The operators jxx and TX allow one to obtain information relevant

to the SA partitions. The only question remaining to be answered is

how to use them effectively. Algorithm 3.1 presents an organization

for their use that has proved to be quite efficient in finding the

state-assignment partitions for CBFSR realizable SM's. The strategy of

--~~-1-------~~~- ~ ~ -~~~ ~~~~"'~~1~1~~~-`~~"1~~-~~~~'~ 1^11~~-"~~"" ~ -~c~"~~~~~-c`-~~--`-- ---------

-53-

the algorithm is to first find bounds on the middle SA partition P k

[]1
and then to use this partition to obtain bounds on the remaining

state-assignment partitions. In the algorithm the notation S.j will
1

refer to a partition which is guaranteed to be contained by the parti-

j
tion 7T P

rr=i

Algorithm 3.1:

1. Let K [logjnl, where n is the number of states in the SM and j

is the desired level of realization.

k-l 01 10 -1 0-
2. Formk-l () [J1 U J0] U (0) T U (0) T

k-l k-i+ l [T_ U T- 1] U S k - i + l
3. Starting with S2 , form Sk = ki+l] i+

2' i+l 2. L U jU

[T U T-0] until either i+l = k-i, if k is odd, or until i+2 =
k k k

2k-i if k is even. In the latter case, form S = S2 U S1
k k k

1- 0 ~ 22 2
[T U T]. (If k is odd, then the partition found in Step 3

will be a lower bound on Pk+l; if k is even, then the partition

found will be a lower bound on Pk.)

k+l k 2

4. From S 2 (or S2) find a bound on the rest of the P. by using
k+l k
2 2

the operators (T-1 U T) and (T-0 U T 1). For example,
k+l k+l

2 + j

S2 (T-1 U TO)i =S 2
k+1 k+l
2 2 +2

5. Given S1 = P and = Q, form S1 (T U Tl)k R and

R(T1 U T-O) k- = M. If M = P and R = Q, go to Step 6 and let

-54-

SJ =R(T1 U T-O)k j If not, let = R and S1i R(T1 U TO)kl

and return to the beginning of Step 5.

6. The Si thus found represent bounds on the SA partitions result-

ing from the shifting constraints of the CBFSR form.

k
7. If 7T S. = (0), then a valid state-assignment has been found

i=l
with as many levels as there are blocks in that S. having the

largest number of blocks.

8. If a realization with fewer levels is desired, then attempt to

join blocks of the S. in a manner compatible with TX T'x and Jxx

to form new partitions so that the intersection of the resulting

partitions is zero.

9. If an L-level, but not (L-l)-level, realization can be thus

found and an (L-l)-level realization is desired, then increase k

by one and return to Step 2 and attempt to find a lower level

realization.

Since all of the operators have been previously demonstrated, we

shall not bother to present an example of the use of Algorithm 3.1.

3.2 EQUIVALENT STATES

Until now we have been considering only realizations of SM's

with BFSR's in which each state has exactly one assignment. As was

shown for the unidirectional case (Ref. 1), if one allows more than

one assignment per state, then many more SM's can be realized with

BFSR' s.

-------- ------- ·-·-···-- --- --·-··~---- ·------ ·--------- ~------- ·-- -·----- ------------ ·---- ·---·------ -------- ·-- ·------ ·-·--- ·------r-----·------------------ ---

-55-

Given that one can have arbitrarily many codes per state and has

complete freedom in shift direction, i.e., the shift direction can be

a function of the state assignment and the input, then it is not yet

known if there exists a two-column SM which is not BFSR realizable.

If, however, one restricts the shifting as in the CBFSR case, then the

BFSR is not a universal form for two-column SM's. We shall show this

by proving that the EI of Figure 3.3 is not binary CBFSR realizable

even if one allows arbitrarily many codes per state.

0 1

1 1 2

2 2 3

3 3 1

Figure 3.3

(By the techniques in Ref. 1, it is easy to show that the SM is not

FSR realizable if under both inputs the FSR shifts right.)

The proof will be by contradiction. Let the FSR shift right

under input 1 and left under input 0. Assume that one of the assign-

ments for state 1 is XlX2...X k . By the shift assumption and since

state 1 maps to itself under input 0, it must also have the assignment

x2 x3... xkZ. Since 1 maps to 2 under input 1 and since 1 has assign-

ments XlX2...xk and x2x3...xk, 2 must have assignment x1 x2 ...Xk
. But,

since 2 maps to itself under input 0, it must also have assignment

x2...xk Z. Finally, since 2 maps to 3 under input 1, state 3 must

have assignment Y x2... k. But we assumed that 1 has assignment

xl1 x2...xk and then showed that 2 has assignment x1x2 ... x Therefore

-56-

the assignment Y x2 ...xk for 3 must be either the assignment for 1 or

2. This finishes the proof.

It is interesting to note that if we only consider the CBFSR

case, the above proof holds even if the successors of 3 are not speci-

fied, i.e., the flow table of Figure 3.4 is not CBFSR.

0 1

1 1 2

2 2 3

3 _ -

Figure 3.4

If, however, we want to consider in this proof the unidirectional

case, then both of the successors of 3 must be specified, as the flow

tables of Figure 3.5 are unidirectional FSR realizable (with equivalent

states).

0 1 0 1

1 1 2 1 1 2

2 2 3 2 2 3

3 3 3 3 1 1

Figure 3.5

As a second restricted shift condition, let the shift direction

be state determined such that all copies of a state shift the same

direction. Under this assumption, the flow table of Figure 3.3 is

again not BFSR realizable. Since we. know that the flow table is not

unidirectional FSR realizable, and because states 1, 2, and 3 have

identical mapping properties, the only shift condition we must investi-

gate is that in which states 1 and 2 shift right and state 3 shifts

-57-

left. Again, the proof will be by contradiction. Let one of the

assignments for state 3 be x1 x2... x. Then one of the assignments for

state 1, from the shift assumption, must be x2...xk Z. But 1 maps

right to 1 and 2, and hence these must have assignments Y x2...xk and

Y x2...Xk, one of which must be the assignment for state 3. This

finishes the proof.

REFERENCES

1. Martin, R. L., "Studies in Feedback Shift-Register Synthesis of
Sequential Machines," Report ESL-R-308, Electronic Systems Lab.,
M.I.T., Cambridge, Mass., May 1967.

2. Susskind, A. K., "Threshold Elements and the Design of Sequential
Switching Networks," Technical Report No. RADC-TR-66-286, Section 4.3.

3. Hartmanis, I and R. E. Stearns, "Algebraic Structure Theory of
Sequential Machines," Prentice Hall, Englewood Cliffs, N.J., 1966.

-58_

CHAPTER 4

REALIZATION OF SEQUENTIAL MACHINES IN A
CIRCUIT FORM CONTAINING A CLOCK

A clock is a sequential machine in which the state transitions

are independent of the particular input symbols xl, x2, ..., x . This

definition appears to be meaningful only for the case of single-input

machines, such as a counter. However, in the decomposition of a se-

quential machine M with more than one input symbol it is meaningful to

say that "the machine M contains a clock". By this we mean that the

machine can be realized by at least two submachines: the first sub-

machine, MC, is a clock, i.e., its operation is independent of the

particular input symbol; the second submachine, MB, is dependent on

the state of the clock, the particular input symbol, and its own state.

This leads to the decomposition shown in Figure 4.1.

INPUT
=MB , OUTPUT

=1 + x2 + "' + xm
MR MC

Figure 4.1 Decomposition of Machine M

-59-

-6o-

This chapter describes how the submachine MC, if it exists, can

be found for any machine M without any trial and error whatsoever.

Our motivation for investigating this particular circuit form arises

from the fact that MC is a single-input counter, which is simple to

realize. For example, counters can be realized with feedback shift

registers, or with one threshold element per state variable.

4.1 ,SATE DI)AGRAM OF A CLOCK

Since a clock is a single-input machine, its state diagram must

be a single cycle of one or more states into which lead directed

branches from cycle-free subgraphs (i.e., trees). An example of this

form is given in Figure 4.2(a). By appropriately combining states,

9

Figure 4.2(a) State Diagram Figure 4.2(b) State 10 Absorbed

2X) ~A

6,3 5,10 C 1,2
1,2 5,7,10

B
Figure 4.2(c) States 1,2, and 3 Absorbed Figure 4.2(d) Final Form

the cycle-free subgraphs can be absorbed into the single cycle, as

illustrated in Figures 4.2(b) through (d). In the final form, infor-

mation has been lost. For example, we cannot tell whether state 4

goes to states 1,2,5,7, or 10. Figure 4.2(d) has as its nodes the

three blocks A = {4,9}, B = {1,2,5,7,10}, and C = {3,6,8}. Every state

appears in precisely one block and A maps to B, B to C, and C to A.

Therefore, A, B, and C, and hence Figure 4.2(d), depict a "partition

with the substitution property" (Ref. 1) on the machine of Figure 4 .2(a).

Since the form of Figure 4 .2(a) is general and the absorption

process as illustrated can always be performed, we may conclude that

the state diagram of every clock can be put into the form ef a single

cycle. (If the clock is a direct-sum machine, i.e., has two or more

disconnected subgraphs, then it can be put in the form of one cycle for

each disconnected part. The disjoint cycles can be combined, as will

be shown later.)

Henceforth, it will be useful to think of the state diagram of a

clock in its "absorbed" form, i.e., as a set of disjoint cycles without

trees.

4.2 TEST FOR EXISTENCE OF A CLOCK

Lemma 4.1: (Hartmanis and Stearns) A machine M contains a clock

iff there exists an input-independent partition on the states of M

which has the substitution property, SP.

Proof: If M contains a clock, then that clock can be represented

by a partition with SP, as illustrated previously. But the clock must

be input independent, so that %the partition must be input independent.

Conversely, if there exists an input-independent partition with SP,

then that partition specifies a clock.

We now describe a novel method for efficiently finding the

smallest possible input-independent partition with SP, if such a parti-

tion exists. We seek the smallest possible partition, PC, so that the

partition will have the largest possible number of blocks. This will

hopefully make the task of the other component machine, MB, as simple

as possible, since MB must contain as many states as there are elements

in the largest block of PC'

Partition PC must be input-independent. Therefore, if states x

and y are in the same successor row of M, they must be in the same

block of PC, and so states x and y must have the same assignment in the

clock. Furthermore, if it is also true that states x and z are in the

same successor row of M, then x and z must also have the same assign-

ment in the clock. Consequently, x and y and z are in the same block

of PC' In terms of the notions and definitions of our previous report

(Ref. 2, Section 3.1), this observation leads to the conclusion that

Pc >m*

Applying the operator T repeatedly and recalling that PC has the sub-

stitution property

PcT Pc > m*TC C -

PCT = PC > m *T2

i P T P >mTC C -

PCT = P > mT
C C

-63-

Recall that m*Ti + l > m*Ti (Lemma 3.3 of the reference) and (Lemma 3.4)

that there must exist some q such that either (a) m*Tq = (I), or

(b) m*Tq = m*T -l. In case (a), PC = (I) and the "clock" has a single

state, so that it is useless. In case (b), however, we can let

PC = m*Tql . Then there will be as many states in the clock as there

are blocks in m*Tq' . We have now demonstrated

Lemma 4.2: A given flow table has a nontrivial clock iff

m*Tq = m*Tq - 1 / (I). The longest clock period is found by assigning

to each block of m*T q one state in the clock.

We illustrate our procedure in Figures 4.3 and 4.4.

X1 X2

1 2 3 m* = (234,15)

2 3 4 m*T = (12345) = (I)

3 5 5

4 1 5 Figure 4.3 Flow Table Without Clock

5 3 3

X1 X2

a b e m* = (be, cf, ah, i, d, g) a,d,h

b c f m*T = (cfg, ah, be, i, d)

c h h m*T2 = (adh, be, cfg, i)

d i i m-T3 = (bei, cfg, adh)

e g g m*T = (cfg, adh, bei) = m*T

f a h

g d d

h e e Figure 4.4 Flow Table With Clock of Period 3

i c c

-64-

4.3 AN ASIDE REGARDING FSR SYNTHESIS

If m*Tq = m*Tq , then we know that a clock exists. But then if

we were to use m*T q1 as the basis for assigning state variable Yq+l in

a feedback shift register (FSR) realization (i.e., Pq+l > m*Tq-1), then

we would obtain as the state-assignment partition for the preceding

variable
-1

P P T P
q q+lT = Pq+l

This is true because Pq+lT = Pq+l, so that

-1 -1
P =P T P TT =P
q q+lT q+ = Pq+l

and a useless state assignment will be found because all state-

assignment partitions will be identical. This leads to

Lemma 4.3: If M contains a clock, then there exists no state

assignment in which state variables yi and yj are related by yi(t+l) =

yj(t).

Corollary: If M is FSR realizable, then there must exist a q

such that m*Tq= (I).

4.4 USE OF EQUIVALENT STATES IN DECOMPOSITION

We return to the decomposition of Figure 4.1 and address our-

selves to the following problem: if for a given machine M no clock

can be found using Lemma 4.2, is there a way of introducing equivalent

states so as to obtain the desired form? And if so, what is a simple

procedure for determining equivalent states?

The answer to these questions is simple. Consider a row s in

the flow table that has two or more distinct successors x, ..., y.

-65-

Since s must be enumerated in at least one of the nodes, call it 1, of

the state diagram of the clock, states x, ..., y must be together in

node 2, which is the successor to node 1 in the clock. Similarly, all

the successors of all the states in node i must be in node i+l. If a

clock exists, then there must be some node k (not containing all the

states) which contains states all the successors of which are contained

in node j, j < k. Then node k can be connected to node j and the re-

sulting cycle represents the longest possible clock. Note that as we

traced the successive states that could be reached from state s with

any succession of inputs, nothing needed to be said about states ap-

pearing in the various nodes more than once. In fact, if state p ap-

pears in more than one node in the cycle, one need only differentiate

between the various appearances of p by making these states equivalent

to state p and calling them p, p', p", etc. The resulting clock de-

scribes the transitions of a machine with equivalent states which, when

reduced, yields the original machine. Because the clock obtained has'

the longest possible cycle, only those equivalent states have been ob-

tained which are necessary to achieve our objective.

We illustrate the procedure described above by reconsidering the

machine specified in Figure 4.3, where previously it was found that

without equivalent states no clock existed. Starting with state 1, we

obtain the following succession of mappings:

1 -2,3-'3,4,5- 1,3;5-'2,3,5' (3,4,5)

Now distinguishing between the various appearances of 3 and 5, we end

up with the following clock:

-66-

(3,4,5 52,3",5"

This clock corresponds to the following machine, which can be reduced

to that of Figure 4.3.

x x2X1 X2

1 2 3"

2 3 4

3 5' 5'

3' 5" 5"

3" 5 5

4 1 5'

5 3' 3'

5' 3" 3"

5" 3 3

The above construction leads to the longest possible clock cycle.

If this requires more equivalent states than desired, one can reduce

the cycle length by "folding" the cycle graph, providing its length is

not a prime number. In folding in half, for example, nodes j and k

are merged, as are j+l and k+l, j+2 and k+2, etc. Of course, this is

possible only if the cycle length is divisible by two. Folding into a

third is possible if the length is divisible by three, etc. Since

every integer can be written as a product of primes, it is easy to

determine just how a given cycle can be folded.

We illustrate the reduction in equivalent states by folding for

the machine of Figure 4.5. Starting with state 2, the following suces-

sion of

X1 x2

1 3 3

2 3 4

3 1 1

4 1 5

5 6 3

6 1 2

Figure 4.5 Machine A

state sets is reachable from state 2:

2 34 15 36 12 (34)

Hence the following clock is contained in A:

1 2 3 4

Merging nodes 1 and 3 folds the cycle in half:

Now there is no point in carrying both 3 and 3', or 1 and 1'. So the

following clock is obtained:

-68-

The cycle of length four (two) requires two (one) state variables in

MC and one (two) state variables in MB. The former is probably pref-

erable to the latter, because MC is FSR realizable. (Note that any of

the clocks are not only FSR realizable, but they can have particularly

simple logic if the 1-out-of-N state assignment is used, where N is

the number of nodes in the clock. Then, a rotating (or "end-around")

shift register with N stages suffices, where the register advances

every time any input occurs.)

The inverse of folding is required when the machine is a direct-

sum machine. Then we find the clock for each sub-machine separately

and merge these clocks in a single cycle of length equal to the least

common multiple of the individual cycles. We illustrate this briefly

below:

~~~d e~ef cd : bt



-69-

It is natural to inquire if the addition of equivalent states

can make every machine decomposable into the form of Figure 4.1. The

answer is negative, as was pointed out by R. L. Martin who showed

Lemma 4.4: If M is strongly connected and does not contain a

clock, then there is no way of adding equivalent states such that the

enlarged machine contains a clock.

To prove Martin's result, consider the states reached from state

m. If there exists a shortest input sequence of length L such that m

can return to m without having passed all other states, then there must

exist other input sequences also of length L which let m reach the non-

empty state set N. For if N were empty, then m could not reach all the

other states, contrary to the assumption that M is strongly connected.

On the other hand, if m returns to m alone after passing through

every one of the other states, then M contains a clock without equiva-

lent states. For then the states intermediate between m and its re-

appearance can be enumerated only once. If a state i were enumerated

more than once, say in sets j and k, then we would have the following

situation:

-.-.. *-.. @ *..* -.

1 j k 2+l

Here i' can reach m in less steps than are required by i, which con-

tradicts that i and i' are equivalent.

Now return to the case where the first reappearance of m is ac-

companied by the state set N. Then the second reappearance of m could



not be alone, but must be associated with at least N. If it is accom-

panied by precisely N, then a clock exists. If there were some state i

enumerated twice between the two appearances of m, then the following

clock would exist, where only the first node contains m. Because the

machine is strongly connected, both i and i' must have access to m.

But then i' and i have shortest sequences leading to m which are dif-

ferent, and again i and i' cannot be equivalent. Thus every state can

be enumerated only once.

This argument can be continued for the case where mN is followed

by mNO,mNOP,..., where O,P,... are non-empty sets. Again either a

clock exists with a single appearance of each state, or ultimately a

reappearance of m is accompanied by all the other states. In the lat-

ter case, no clock can exist.

Of course, if a strongly-connected machine does have a clock,

then that clock can be trivially extended by splitting each state, as

shown below.

There is no value to this extension, unless it is used in bringing

together disconnected sub-machines.



-71-

4.5 CONCLUSIONS

We have shown how a flow table can be tested for realizability

in the form of Figure 4.1 by simple calculation of m*TJ. For the case

of strongly connected machines, this test quickly specifies the struc-

ture of the longest possible clock contained in the given machine and

no equivalent states can be added to lengthen the clock. For the case

of a machine that is not strongly connected, an equally simple tech-

nique was given for finding equivalent states that will permit decompo-

sition involving a clock, if such a decomposition is possible. It is

not necessary to determine whether or not the machine is strongly con-

nected before applying the second technique. If the machine is strongly

connected, then use of the second technique will also lead to the

longest possible clock.

Finally, we have shown that if a flow table contains a clock,

then that flow table cannot be feedback shift-register realizable.

However, there exist cases where a flow table can be augmented by a

set of equivalent states such that it becomes FSR realizable, and it

can be augmented by some other (distinct) set of equivalent states such

that it contains a clock.



REFERENCES

1. Hartmanis, J. and R. E. Stearns, "Algebraic Structure Theory of
Sequential Machines," Prentice Hall, Englewood Cliffs, N.J., 1966.

2. Susskind, A. K., et. al., "Threshold Elements and the Design of
Sequential Switching Networks," Technical Report No. RADC-TR-67-255.

-72-



SECTION III

FAULT DETECTION AND LOCATION IN COMBINATIONAL LOGIC

This section discusses various methods for finding good, i.e.,

short, tests that detect and/or locate faults in combinational logic.

Chapter 1 (by R. J. Diephuis) treats fault detection in networks of

AND, OR, NOT, and NAND gates. Chapter 2 (by J. M. Mazola and

A. K. Susskind) deals with fault detection in single threshold gates.

Whereas the work in Chapter 1 is restricted to single faults, that in

Chapter 2 can handle arbitrarily many simultaneous faults. Finally,

Chapter 3 (by A. K. Susskind) deals with a technique for finding tests

that are applicable to both fault detection and fault location.

-73-



CHAPTER 1

AN ALGORITHM FOR FINDING APPROXIMATELY MINIMAL
FAULT-DETECTION TEST SETS FOR COMBINATIONAL LOGIC

The algorithm to be described and discussed is based primarily

on the ideas about fault detection by "path sensitizing" suggested

by Armstrong [1], but uses a notation and calculus based on the

"Calculus of D-Cubes" of Roth. [2,3] Parts of the contents of these

two papers will be repeated here to make this report more-or-less

self-contained. The approach here differs from Armstrong's in that

it is not necessary to work with two-level AND-OR equations for a

network (his "enf" and "complement enf"). The "T-cubes" resulting

from the algorithm to be described represent information somewhat

similar to the enf and complement enf, but it is believed that they

contain more information and are more easily and efficiently computer-

implemented than Armstrong's method. The method differs from that in

a recent paper by Roth, et.al. [3] in the way the "D-cubes of sensitized

paths" are used to find all those faults which a test vertex detects.

Roth suggests first finding a test which detects an input fault, then

applying an algorithm which determines what other faults this test

detects - essentially by simulating the behavior of the network with

this input applied for each possible fault. The method to be described

uses D-cubes of other paths which have already been constructed to

answer essentially the same question. Here the use of D-cubes also

provides a means of finding those tests which detect many faults

simultaneously; in Roth's algorithm, the vertices which are tried are

chosen somewhat arbitrarily.

-74-



1.1 ASSUIPTIONS

1. Networks will be restricted to those containing AND, OR, NOT,

NAIMD, and NOR gates. (The method can be modified to accept

any gate which can be specified by a combinational function.

It is felt, however, that the fault assumption on which the

method is based is reasonable--at present--only for the types

of gates listed here.)

2. Only single faults are considered.

3. All faults will be of the type which cause either an input or

an output of a gate to appear to be "stuck at logical one"

(s-a-l) or "stuck at logical zero" (s-a-O). A lead s-a-O or

s-a-l need not cause other leads tied to it to be s-a-O or

s-a-l. In other words, the malfunction may be internal to a

gate, and it need not affect other gates connected to its

inputs; e.g., an open-circuited diode in a diode ASFD gate.

4. Only detectable faults will be considered. A fault is

undetectable if its occurrence does not change the function

realized by the network.

1.2 PATH SENSITIZING

The concept of path sensitizing, as described by Armstrong, will

be discussed first. A portion of a network is shown in Figure l.la.

Suppose it is desired to find a test which detects a s-a-l fault at B,

assuming that the path BCDEJ shown is the only path from B to an

output. Then a test which detects a s-a-l fault at B must be such

that, when the circuit is normal, a 0 appears on B and l's appear on

all remaining inputs to NAND and AND gates in the path, and O's



-76-

appear on all remaining inputs to NOR or OR gates in the path. This

is necessary to insure that when B changes from 0 to 1 upon occurrence

of the fault, the change propagates to output J where it can be

observed as an improper output. The actual changes in values along

the path BCDEJ upon occurrence of a fault at B are indicated in Figure

l.1a. The path BCDEJ is said to be "sensitized" when inputs are

applied to the network which result in the assignments shown in

Figure l.la.

It should be apparent from Figure l.la that a test for a s-a-l

fault on B will also detect a s-a-l fault on J and s-a-O faults on C,

D, or E, since changes due to any of these faults will propagate to J.

It should also be noted that to detect a s-a-O fault on B, a test

would be applied such that a 1 appears on B, while the other inputs

to the gates on the path remain as before. (The path BCDEJ is still

said to be "sensitized" - regardless of the value of lead B.) This

test also detects faults along the path from B to J which are comple-

mentaryr to those detected by the s-a-l test for B. Thus, the two tests

together detect all s-a-O and s-a-l faults along the path BCDEJ.

The conditions stated above for a path to be sensitized may not

hold on gates which are points of reconvergence for two or more fanout

paths from some preceding gate, since two or more inputs to these

gates may change simultaneously when a fault occurs. For example, in

Fig. l.lb, if an input is applied which results in the configuration

shown, a s-a-O fault on B causes changes on paths BGHEF and BCDEF. In

this case, a multiple path is sensitized. Note that this test does

not detect faults on lead C, D, G, or H. We will assume for most of



-77-

mr--

_ I .1 1li 
_0 I t _

r-tI I 

I 1 -XOI I I "a

A m0xI 0 I i I I I I:: I i
a t t

-0 0

I II ed O Cr; I I H

OI H

UII I I I

' Hm I I L m
_ _ _ _ . _ _ ._ _ _ _ _ _ _ _ . _ _t



-78-

this paper that all faults in the network to be analyzed can be

detected without sensitizing multiple paths (see Section 1.7 and

Appendix 1.1).

The above discussions can be made more precise by the following

definitions:

lead (or connection) - A wire connecting the output of one gate

to the input of another; or connecting an input variable to

a gate input.

sensitized lead - The phrase "lead i is sensitized by vertex v"

is defined by the following experiment:

apply vertex v to the network; disconnect lead i from the

gate output or input variable to which it is normally

connected; complement (the Boolean value of) lead i from

what it normally is when v is applied; if one or more of

the network outputs is then different from its normal

value when v is applied, then lead i is sensitized by

vertex v.

Lead i is said to be sensitized for s-a-O (s-a-l) by vertex

v if its normal value when v is applied is 1 (0) (since v

will detect a s-a-O (s-a-l) fault on lead i).

path - An ordered set of leads (21o 2 ... £ ) such that for all

i, 1 < i < n, 2i is a gate input lead to the gate for which

i+l is a gate output lead.

sensitized path - A path leading from lead i to an output of the

network is said to be sensitized by vertex v if, when the

above experiment is performed for lead i, complementing i



-79-

causes the value of all leads on the path to be complemented.

If, for the particular vertex v, there is only one sensitized

path from lead i to some output, we will say that a single

path is sensitized from i to this output. If two or more

paths from lead i to the same output are sensitized by v, we

will say that a multiple path is sensitized by v from i to

this output. The term "sensitized path" from a lead to an

output with no qualifying adjectives will always refer to a

single sensitized path.

The above remark that, in Figure l.la, the test for lead B also

detects other faults on the (single) sensitized path can be stated as:

Theorem 1.1: If lead i is sensitized by vertex v, then all leads

on a single sensitized path from i to an output are also sensitized by

V.

One way to find small test sets is to find tests, each of which

detects many different faults. In light of the above observations,

one expects that "good" tests are those which sensitize long paths,

i.e. paths containing many connections. The longest sensitizible

paths in the network are from the inputs to the outputs; in fact, the

following obvious theorem can be stated:

Theorem 1.2: A set of vertices V detects all single s-a-O and

s-a-l faults in the network if it has the following properties:

a) for all inputs i to the network, there exists v c V such

that v sensitizes input i for s-a-O, and there exists v ' C V

such that v' sensitizes input i for s-a-l.



-80-

b) for all leads Q in the network, there exists v E V such that

lead A is 0 when v is applied and lead £ is on a single path

sensitized by v; and there exists v's V such that lead A is

1 when v' is applied and lead a is on a single path sensi-

tized by v'.

In other words, the set of paths sensitized covers all connections

in the network for both s-a-O and s-a-l faults.

If the network contains no fan-out, then only condition a) is

needed, because in this case there is only one path from each input

to the outputs, and the set of paths sensitized by tests for the net

inputs must cover all connections. Note that the above theorem says

nothing about the existence of a set of tests satisfying a) and b).

This will be discussed further in Section 1.7.

It has been observed, by trying many examples, that tests usually

exist which simultaneously sensitize several single paths through a

network. For example, in Figure 1.2, if inputs can be chosen so that

the configuration shown results, paths BCDEJ and RSTEJ are both

r - -

Input I o
l B

0-1-'0

L _ _ _ _ _ _ _ _ _l

Fig. 1.2 Network With Two Sensitized Single Paths



sensitized, and a single test will detect a single fault in any of

these connections (since both of these paths are single paths).

The method to be described finds tests each of which detect a

single fault on many leads by first finding the conditions necessary

to sensitize each possible single path from an input to an output,

and then combining these conditions into tests which sensitize many

single paths simultaneously. (This procedure must be modified to

include multiple paths for networks that have no test set satisfying

a) and b) above. This will be discussed further in Section 1.7.)

1.3 NOTATION

The notation to be described here is a modification of the

"calculus of D-cubes" of Roth. The notation serves three different

purposes:

a) specifying the structure and behavior of the network;

b) representing sensitized paths;

c) representing a test and the connections which it tests.

1.3.1 Specification of the Network Behavior - The Singular Cover

The network will be specified by its "singular cover", to be

described below. Consider the simple AND circuit shown below:

1

To specify its behavior, we must know for what inputs the output is O,

and for what inputs it is 1. This is done most concisely by specify-

ing "cubes" for which it is 0 or 1, rather than an entire truth table.

The singular cover for the AND block above is shown below:



-82-

1 2 3

1 1 1
0 x 0
x 0 0

The interpretation of this is as follows: output line 3 is 1 only

when inputs lines 1 and 2 are 1; line 3 is O when input 1 is O (re-

gardless of the value of input 2 - the x stands for either 0 or 1) or

when input 2 is 0 (regardless of input 1). Thus

1 2 3

1 1 1

stands for a cube containing the single vertex 111. However,

1 2 3

x 0 O

stands for a cube containing the two vertices 000 and 100.

A cube of a gate's singular cover is said to be "prime" if it is

contained in no other cube of the cover and there is not an "x" on the

output lead (i.e., it corresponds to a prime implicant of the function

or its complement). We will use here only cubes of the singular cover

of a gate that are prime. Hence the singular cover may be defined as

the set of all prime cubes for a gate.

The singular cover of a network is just the set of singular covers

of each of its gates. The network in Figure 1.3 has the singular

cover shown below it.

Note that a "blank" and an x have the same meaning in the above

table. The x's simply emphasize those lines of the gate from which a

particular section of the table is derived. E.g., the cube b can be

written:



-83-

1 2 3 4 5 6 7 8 9 10 11

x 1 x 1 1 x X x x x x

The interpretation of each of these cubes is exactly as for the

one-gate case. E.g., the cubes of lines d, e, and f indicate that to

have a 1 on line 9, there must be l's on lines 3, 4, and 5. For a

zero on line 9, there must be a 0 on either line 3 or lines 14 and 5.

Note that all connections (i.e., a wire between two gates) or leads

are given distinct numbers - this is because we want to allow each

connection to be independently s-a-O or s-a-l. In Figure 1.3, the

singular covers of each gate have been enclosed in dotted lines. The

entries in the table outside these lines are caused by one of two

conditions: (1) two or more connections are the output of the same

gate and. normally must have the same signal, or (2) two or more con-

nections connect to the same input variable or complemented input

variable. In other words, the values shown for these lines are

"forced" by the values in the cube of the singular cover of the gate.

In summary, the algorithm for finding the singular cover of a

network from the singular cover of its gates is as follows:

1. Number all connections. (It is convenient to do this so the

numbers of all input connections to any gate are smaller than

the numbers of any of its output connections.)

2. Enter the singular cover of each gate on separate rows in the

table.

3. For each row, enter the values for any connections which are

"forced" by those already assigned due to connection to a

common input variable or to a common output.



-84-

1.3.2 Representation of a Sensitized Path - D-Cubes

A sensitized path will be represented by its D-cube. The D-cube

specifies both the path which is sensitized and the assignments to

other connections which cause the path to be sensitized. Suppose, for

example, that the path through connections 2-4-9-11 of the network in

Figure 1.3 is to be sensitized. For this to occur, connection 10 must

be O, connection 3 must be 1, and connection 1 must be 0. This is

specified by the D-cube:

1 2 3 4 5 6 7 8 9 10 11

O D 1 D B D O D

The D's indicate the connections in the path which is sensitized, and

the B's indicate connections at the "edges" of the path where changes

occur, but do not necessarily propagate to an output (i.e., for the

above cube, line 5 changes from 0 to 1 if line 4 does, but line 5 is

not on the sensitized path). The D-cube can be interpreted as

follows: If a connection marked with a D is 0 (1), then all connections

on the path from it to the output marked with a D or B are 0 (1). The

reason for having B's in addition to D's is to specify those connec-

tions not on the sensitized path which must change in value when the

values of connections on the path are changed.

This D-cube is a "cube" in the sense 'that it contains certain

vertices of the ll-dimensional space of all binary 11-dimensional

vectors. Note that the vertices included in a D-cube do not actually

form a single cube in n-dimensional space. The D-cube shown above

contains the 2 vertices in the cubes:



AND

1-i I ° i
B 1

OR 5 6 7 8 9 10 11

2 _

D 7 AND

a o o 0 0 o 1

b Ix 1 1 1I x

c L1 x 1 1T o

I .T Fi '
I Ix~ lw I i

e |ix 010 01
f ' 0x ,x I LO
g o I0 1 I

h 1 L 1 0

i O 1 1 1

j x IO x x Ol

k x Ix x 0O

£ 1 LXX_ -0,-x o 1_

m I 0 01

n ,x 1 11

(b)o L x_ _L1J
(b) Its Singular Cover

Fig. 1.3 Running Example



-86-

1 2 3 4 5 6 7 8 9 10 11

0 1 1 1 1 x x x 1 0 1

O 0 1 0 0 x x x 0 0 0

The path specified by the D's in this D-cube is said to be sensitized

because a change from 0 to 1 (1 to O) in a connection marked with a D

causes a 0 to 1 (1 to 0) change on all connections marked with a D on

the path from it to an output.

Note that the above D cube is not "complete" in the sense that the

conditions for the path to be sensitized are not specified in terms of

controllable input variables only. E.g., connection 10 is required to

have a O, but the specifications for leads 6, 7 and 8 for this to occur

is not given. One way to "complete" this D cube is to require the

input on lead 7 to be 0 (note that lead 8 is already specified as 1,

since leads 1 and 8 are connected to the same input variable). This

gives the "complete" D-cube:

1 2 3 4 5 6 7 8 9 10 11

0 D 1 D B x O 1 D D

Thus, assigning input variables A = O, C = 1, D = 0 sensitizes the

path 2-4-9-11. Setting input variable B = 0 gives a test for connec-

tions 2, 4, 9, and 11 s-a-l, while setting B = 1 gives a test for

these connections s-a-O.

Now suppose that the path 1-5-6-10-11 is to be sensitized. It

is easily seen that this is done by the complete D-cube:

1 2 3 4 5 6 7 8 9 10 11

D = D OO B D D 1 1 OD D
a

where a D indicates that a connection so marked is 1 (0) when a

connection before it in the path marked with D is 0 (1). Note that



-87-

the meaning of D and D is only relative to other D's or D's in a D-cube.

E.g., the D-cube

1 2 3 4 5 6 7 8 9 10 11

Db = D 0 0 B D D1 1 0 D D

has exactly the same meaning (and includes the same vertices - in this

case only two) as the D-cube Da. These D-cubes are complements of each

other (?:ritten Da = Db) and are said to be equivalent since they con-

tain the same vertices.

In order to sensitize the path 1-5-6-10-11, we were forced to

assign connection 8 to 1, thus requiring input variable A to be 0.

But setting A = 0 also assigns a 0 to connection 1, which is on the

path to be sensitized. This means that the path 1-5-6-10-11 can only

be sensitized to detect s-a-l faults on connection 1 (since to detect

s-a-O faults on lead 1, lead 1 must be assigned with a 1; but this

causes lead 8 to become 0, and the path is no longer sensitized). The

fact that the path can be sensitized only when D = 0 for lead 1 is

indicated by putting a subscript of O on the D for the lead for which

the restriction occurs, so the D-cube of this path should be:

1 2 3 4 5 6 7 8 9 10 11

D = DO0 0 B D D 1 1 0 D D

This D-cube is interpreted as follows: If lead 1 is 0 (with other

leads assigned constants as specified in the cube), then all leads

with a D or B are 0, and all leads with D or B are 1. If lead 1

could be made 1 without changing the constants on other leads (e.g.,

by a fault), then all leads with a D or B (D or B) would be 1 (0).

The D-cube itself contains only one vertex:



-88-

1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 1 1 1 1 0 1

since this is the only vertex consistent with it and the properly

operating network. Da is formed by complementing all the D's and B's

(but not changing constants or subscripts). We will write Do, but

this should be interpreted as meaning (D)o - i.e., the lead must be

assigned a value of O; the D only specifies how the value of this lead

is related to the value of other leads in the cube. Thus, D is:
a

1 2 3 4 5 6 7 8 9 10 11

D = DO 0 0 B D D 1 1 0 D D

A somewhat different situation occurs when a connection which is

not an input lead marked with a B or D must have a constant value for

a path to be sensitized. Suppose that to sensitize the path 2-4-9-11,

we wished to assign lead 7 and 8 to be 1 (i.e., A = O, D = 1). Then

for lead 10 to be 0, lead 6 must be O, in turn requiring lead 5 to be

1 (because of the inverter). Using the subscripting convention

described above, this gives the D-cube:

1 2 3 4 5 6 7 8 9 10 11

D =0 D 1 D B. O 1 1 D 0 D

This implies that the cuoe is valid only for D = 1. But suppose that

the input assignment specified by Dc is applied to the network (A = 0,

B = 1, C = 1, D = 1). One can see from examining the network that if

lead 2 were to become 0 due to a fault, the output would remain 1.

(This is because the path 5-6-10 is actually also sensitized, and the

inversion in this path causes one of the inputs to the final OR gate

to be 1 regardless of the value of lead 2). Thus, while the above



-89-

D-cube may make sense "abstractly", it is not useful for finding

sensitized paths which detect s-a-O and s-a-1 faults because lead 5

does not remain 1 when a fault on lead 2 occurs. (This is not

completely true, since the input vertex specified by this cube could

still detect s-a-O faults on leads 4, 9, and 11; however, we are only

considering tests which test entire paths from an input to an output.)

For this reason, we will not use cubes which contain subscripted

B's or D's on other than input leads in finding test sets. (This is

not completely justified for networks with reconverging paths with no

inversion in either path. This problem is considered further in

Section 1.7.) In addition, if it is desirable to detect faults due

to an input variable (as opposed to an input lead) s-a-O or s-a-l,

then no cubes with subscripted B's or D's should be used.

1.3.3 Primitive D-Cubes

The algorithm to be described starts with the set of primitive

D-cubes of each logical element, and, from these, builds up D-cubes

of paths through the network. The set of primitive D-cubes of a

logical block is simply those D-cubes specifying all the single

sensitized paths through that element. E.g., the 3-input OR gate

below

2 OR 4
3'

has the following primitive D-cubes:

1 2 3 4

D 0 0 D
0 , D 0 D
0 0 D D



-90-

Similarly, a 3-input AID gate

6 8AND 

has primitive D-cubes

5 6 7 8

D 1 1 D
1 D I D
1 1 D D

(The primitive D-cubes of a logical block can be obtained from its

singular cover using a simple construction described in Roth [2 ].)

The primitive D-cubes of a network is just the set of primitive

D-cubes for each block in the network. A "B" is used rather than a D

for the output leads of each gate which is not a network output. (As

will be seen later, one of these B's is replaced by a D when the lead

becomes part of a path leading toward an output of the network. Those

output leads not on a path remain as B's.) As in the construction of

the singular cover of a network, we also specify values for those

connections whose values are "forced" to be constants by assignments

in a primitive D-cube. A "B" is used when the value of a lead must

be the same as that of a lead to which a "D" is assigned by the

primitive D-cube. The primitive D-cubes of the network in Figure 1.3

are given below:



-91-

1 2 3 4 5 6 7 8 9 10 11

a 0 D BB 1

b D 0O B B

c 1 D B

d D 1 1 B

e B DB

f O D 1 1 B

g 0 1 D 1 B

h B 1 1 D B

i O D D

j D O D

1.3.4 Representation of a Test - T-Cubes

A test for a group of faults in a network will be represented by

a T-cube. The T-cube indicates both the input assignment for the test

and all the single faults that it detects. (Again, this does not in

general mean that the test will detect two or more faults occurring

simultaneously, but rather that an improper output will occur if any

one of the specified faults occurs.) A typical T-cube is:

1 2 3 4 5 6 7 8 9 10

T O 1 T x T T T T T

A "T" indicates that this test will detect a s-a-O fault on this lead

and that the lead is assigned to be 1 for this test. A "T" means that

this test detects s-a-l fault, and the lead must be assigned to be O.

A "O" or "1" means the lead must be assigned to be 0 or 1, but a fault

on this lead will not necessarily be detected. Symbol "x" means that

the lead can be assigned O or 1, but a fault is not necessarily

detected. If the above T-cube is a test for the network

All ·r- ~C~~·ll



-92-

B 10
C 4 NETWORK Output

D

it means that input vertex A - 1, B = O, C = 0 or 1, D 0 O detects s-a-O

faults on leads 1, 8, and 9 and s-a-l faults on leads 4, 6, 7, and 10.

1.3.5 The Operation of Intersection

In the algorithm to be described, it is often necessary to find

the vertices which two D-cubes have in common, i.e., those vertices

which are consistent with the assignments specified by both D-cubes.

If the D-cubes are considered as representing sets of vertices, this is

an intersection operation. As an example, consider the following two

D-cubes

0 1 2 3 4 5 6 7 8 9

D = 0 D 1 D x D 0 x 1 x
a

Db = 0 x 1 D 0 D O D D D

One way to find Daf Db would be to list the vertices contained in each

cube, take the intersection of these sets, and then construct a D-cube

for the resulting set. It is, however, much easier to do the inter-

section component by component. (Each symbol in a D-cube is called a

component.) For example, examining the components for lead 0 tells us

that any vertex in the intersection must have a 0 on lead O. Similarly,

any component which is a constant in both cubes must also be the same

constant in Da n Db. If any components have different constants in

each cube, then Dan Db is empty, denoted by P. Examining those leads

with D's in both cubes (ignore for the moment leads 8 and 9), the D's

in D indicate that if lead 1 is 0 (1), then lead 3 is 0 (1) and lead

5 is 1 (0), and those in Db that if lead 3 is 0 (1) then lead 5 is



-93-

1 (0) and lead 7 is 0 (1). Clearly this implies that in the inter-

section, if lead 1 is 0 (1), then leads 3 and 7 are O (1) and lead 5

is 1 (0). Thus components 0 to 7 of Da Db must be:

0 12 345 67

O D 1 D O D O D

Now consider lead 8. This component of the intersection must be D1,

since D requires this lead to be 1, but if this lead could become 0

without changing other constant assignments, the other D's in Db could

still change (all D's between lead 8 and the output would change). Thus

DanDb is:

O 1 2 3 4 5 6 7 8 9

0 D D 0 D 0 D D1 D

Now suppose the intersection of the following cubes is desired

01 2 3 4 5 6 7 8 9

D = 0 D 1 D x D 0 x 1 xa
Db = 0 x 1 D 0 D 0 D D D

Certainly the intersection is the same as found above, since we have

seen that Db = Db . To use the component-by-component intersection

rules described above, we must first complement Db, and then proceed as

before. In general, in forming the intersection we will always try to

intersect component by component with the cubes given - if a D appears

th
as the i component for one, and a D for the other, then we complement

one of the cubes and try again. If a D and D still appear on a common

component, then the intersection of the cubes is empty.

One final complication occurs when both cubes contain D's or D's,

but there is no component which is D or D in both cubes. E.g.



1 2 34 5

D =0 D x D x
c

D = O x D x D

Following the above ideas gives:

1 2 345

D nD = 0 D D D Dc d

but this does not include all vertices which are in the set D n Dd.

The problem is that the D's from the two cubes are really independent -

e.g., it is consistent with both of the cubes for lead 2 = O, lead

3 = 1, lead 4 = 1, lead 5 = 1. This, however, is not allowed by the

cube for D n Dd obtained as above. This problem can be resolved in

several ways (e.g., using different symbols for the D's of the two

cubes, or by using two D cubes to describe the intersection), but, for

the algorithm to be described, this situation will never occur. Thus,

we will just say that the D-intersection is undefined when the above

situation occurs. This is reflected in rule 3 given below. (Note that

Dinf Dj is undefined iff Di n Dj ~ P and Di n j / .)

The rules for intersection of B's on a common component are the

same as those for D's. The intersection of a D (D) and a B (B) is

defined to be a D (D), since, as will be seen in section 1.4.1, this

situation occurs when a B on one of the output leads of a gate is being

"linked" with a D on an input component of a D-cube of another gate -

thus forming a sensitized path through one more gate in the network.

[It should be noted that the B's are really serving two different, but

related, purposes: (1) They indicate input leads which are connected

to the same input variable as an input lead on the sensitized path.



-95-

Thus assigning the D's (D) in such a D-cube to be 0 or 1 (1 or O) also

requires the input leads marked with B (B) to be assigned O or 1 (1 or

0). (2) They, in a similar manner, indicate those outputs of a gate

on a sensitized path which are not part of the sensitized path, but

which clearly must change when the leads on the sensitized path change.]

In order to formally define D-intersection, we will change slightly

our way of writing D-cubes. Each component of a D cube will have the

following form:

(E)k

where E = D, D, B, B, or x

k = 0, 1, or x

The relation between this notation and our previous notation should oe

obvious. E.g., the D-cube

1 2 345 6 7

O D 1 B0 D1 B x

would be written in the new notation as:

1 2 3 4 5 6 7

(x)0 (D)x (x)l (B)0 (D)l (B)x (X)x

The subscripts specify all constant leads, while the term inside ( )

specifies the sensitized path.

Also, we need to define

(D) if E = D (D)

E' D(D) if E = B (B)

x if E = x

and



-96-

D (D) if E = D (D)

E ;- B (B) if E = B (B

x if E = x

With these definitions, D-intersection can be formally defined as

follows:

Let ala2...a n where a = (Ei)
12.. n 1 i k.

B blb2 ... a where bi = (Fi)

Then AnB is found as follows:

1. Let c = (Ei*Fi ) k.1 1 E ik..
1 1

d (E *F )
1 i 1 l

where iEi if Fi=x
11 L

F. if E. = x
E *F 1 1

Ei if E. = F.

E! if E! = F ; E, F.
1 1 1

' otherwiseE' if E Xi = F' ; E i F

kJ.= f2. ifk i ri

L otherwise

c. k iif E.*F. =x, or k. =.

1 3.1 1 1'

d. = if E *F. = or k.Q. =
1 1 1 11

2. If there exist i and j such that

c. = d. = 0, then An B = O1 j

3. If there exists no i such that

c. = * or d.i = , then A ( B is undefined.
1 1



-97-

4. If neither 2 or 3 are satisfied, then

A n B = c...c if there exists no i such that c. = 0
n 1

A B = dl...d if there exists no i such that di = 0

It should be noted that the operation of D-intersection is both

commutative and associative when it is defined, assuming that complement

D-cubes are considered to be equal.

1.4 CONSTRUCTION OF D-CUBES FOR SENSITIZED PATHS OF A NETWORK

The construction of D cubes for sensitized paths of a network

starting with the primitive D-cubes and singular cover of the network

is done in two steps:

1. Formation of an incomplete D-cube for the path from the

primitive D-cubes.

2. Completing the D-cube using the singular covers of the network

(called the "consistency operation" in Roth).

These steps will be described in detail below, using the network of

Figure 1.3 as an example.

1.4.1 Formation of Incomplete D-cubes

The formation of an incomplete D-cube of a path consists simply of

"linking together" the primitive D-cubes of each logical block along

the path. This is best explained by again considering the network of

Figure 1.3. Again, we will consider the paths 2-4-9-11 and 1-5-6-10-11.

Path 2-4-9-11 passes through gates a, c, and e; so we must consider the

primitive D-cubes of these blocks. Examining the primitive D cubes for

the network (see Section 1.3.3), we see that to sensitize the path 2-4

we must use primitive D-cube a of gate a; to sensitize the path 4-9, we

must use D-cube c of gate c; and to sensitize path 9-11, use D-cube j



-98-

of gate e. Because the D-cube of the entire path must contain only

those vertices which are consistent with the appropriate primitive D-

cubes of all gates on the path, these three cubes are "linked" together

by simply combining them into one D-cube using the intersection operation

defined above. (The intersection will always be defined, since we

always choose D-cubes which have a D and a B on the same lead.) Apply-

ing the above to first form Da D then D Do n D j , we get the
incomplete D-cube:

1 2 3 4 5 6 7 8 9 10 11

D =0 D 1 D B 1 D O D
acj

(The subscripts indicate the cubes which were intersected to form Dacj.)

Using the same ideas for path 2-5-6-10-11, we choose D-cubes b, e,

f, and i of gates a, b, d and e and intersect them to form:

1 2 3 4 5 6 7 8 9 10 11

befi = DO 0 B D D 1 B0 D Dbefi 0 1

In summary, to form the D-cube of a path:

1. For each logic block along the path, choose the primitive D-cube

which has a D for the input which is part of the path.

2. Link all of these D-cubes together using the operation of inter-

section.

1.4.2 Completing the D-Cubes

The D-cubes found by the above method are not complete in the

sense that the conditions for the path to be sensitized are not specified

in terms of input variables. In order to specify these conditions in

terms of, input variables, the incomplete D-cube must be intersected

with the singular covers of the gates not on the sensitized paths.



-99-

(Again, we want to find those vertices which are consistent with both

the incomplete D-cube and one of the prime cubes of each gate not on

the path.) This will be illustrated with the example of the previous

section.

Consider the incomplete D-cube:

1 2 5 4 5 6 7 8 9 10 11

D .= O D D 1DB x x 1 D D
acj

It is usually convenient to work from right to left in the D-cube,

determining what conditions are necessary on other leads to produce the

conditions necessary on leads already specified. Thus, we start with

lead 10, which must have value 0 for the path to be sensitized. Since

this is the output of gate d, the conditions under which this lead is 0

are specified by the singular cover of gate d. From the singular cover

given in Figure 1.3, we see that any of the following cubes result in

a 0 on lead 10:

1 2 3 4 5 6 7 8 9 10 11

Ox x 0

k x 0 x 0

a ' x x xO 0

Thus, one of these three cubes must be intersected with the incomplete

D-cube. Intersecting Dacj with cubes j and k gives two new D-cubes:

1 2 3 4 5 6 7 8 9 10 11

D = D 1 D B 0 x 1 D 0 D
acj

D = 0 D 1 D B x O 1 D 0 D
acj

(Superscripts indicate the singular covers used in forming a D-cube.)

D . cannot be combined with DL since the components representing lead
acj

8 give 1 a = ( .



-100-

Consider now Dj . The 0 on lead 10 has now been specified in
acj

terms of the input to the gate previous to it, but the components to

the left of 10 must still be checked. Lead 8 is an input lead, so the

1 on it is specified in terms of inputs. However, lead 6 is not an

input lead; it is the output of gate b. Thus the singular cover of

gate b must be inspected to find the conditions on its input for lead

b to be O. Only cube h in the singular cover gives a zero on lead 6,

so it must be combined with Daj ; giving:
acj;

1 2 3 4 5 6 7 8 9 10 11

DIh. = O D 1 D B 0 x 1 D O D
acj 1

Continuing as above, we see that leads 3 and 1 are input leads, there-

jh
fore D j is a complete D-cube. However, as was seen in Section 1.3.2,acj

because this cube has a component which is B1 and is not an input lead,

it is not a cube for the entire sensitized path 2-4-9-11, i.e., the

output does not change if lead 2 changes from 1 to O.

Similarly, Dkj can be seen to be complete. This can be seen to

be the only complete D-cube corresponding to the sensitized path

2-4-9-11:

1 2 35 4 5 6 7 8 9 10 11

D = 0 D 1 D B x 0 1 D 0 D
acj

In the same way, the D-cube for path 2-5-6-10-11 can be completed

by combining it with cube f of the singular cover, giving:

1 2 3 4 5 6 7 8 9 10 11

f =DoO 0 
befi Do O B D D 1 B O D D

(Using cube e gives a D-cube with a non-input component that is B O.)

The algorithm for completing a D-cube D is thus:



-101-

1. Find the right-most component for which a constant value is

specified - say this is component k and has value A (= 0 or 1).

2. If this is not an input lead, choose a cube from the singular

cover of the gate whose output is lead k and which has a value

A for lead k. Combine this with D using the operation of

intersection to form a new D-cube D'. Try a different cube

from the singular cover for this gate if any components which

are not input leads are subscripted B's or D's or if the

intersection is empty.

3. Find the next constant lead to the left of k in D', say this

is k'. Set k = k', D = D', and repeat step 2. If all con-

stants have been processed, the resulting D-cube D' is complete.

The entire set of completed D-cubes for the network of Figure 1.3 is:

1 2 3 4 5 6 7 8 9 10 v

O D 1 D B x 0 1 D 0 D

0 D 0 B D D 1 0 D D

D1 O 1 D B x x B0 D O D

D 0 1 D B x 0 x D 0 D

Do O O B D D 1 B1 O D D

x D 1 llOxO O x D D

x L D 1 0 x x D 0 D

0 0 x 0 0 1 D 1 0 D D

B0 O x O O 1 1 1 O D D

1.5 FORMATION OF TESTS FROM COMPLETED D-CUBES

The final step in finding possible test vertices for a network is

to form T-cubes of tests from the completed D-cubes of its sensitized

paths. This is done in two steps. First, "primitive T-cubes" are



-102-

formed directly from the D-cubes of the sensitized paths. Then

primitive T-cubes are combined to form "composite T-cubes" of tests

which sensitize several paths simultaneously. These steps are described

below.

1.5.1 Formation of Primitive T-Cubes from Completed D-Cubes

From each completed D-cube of a sensitized path (/ 0) either one

or two possible tests (depending on whether it contains Do, D1, etc.)

can be formed since, when a path is sensitized, a change in the value

of a lead on that path will cause a corresponding change in the output.

The T-cubes formed from these D-cubes are called primitive T-cubes

since the tests they represent may sensitize paths in the network other

than that of the D-cube it was derived from, and therefore may actually

test more leads than are indicated in the primitive T-cube. (E.g.,

note that if lead 6 is 1, T-cube Tb shown below corresponds to an

input vertex which also tests leads 7 and 10 for s-a-l, i.e., it may

also sensitize the path 7-10-11.) Using the T-cube notation for tests

presented earlier, it can be seen that from the D-cube

1 2 3 4 5 6 7 8 9 10 11

0 D 1 D B x 0 1 D 0 B

two primitive T-cubes can be formed:

1 2 3 4 5 6 7 8 9 10 11

T = 0 T 1 T 1 x 0 1 T 0 T
a

Tb = 0 T 1 T 0 x 0 1 T 0 T

since setting input lead 2 to 1 allows any s-a-0 fault along the path

to be detected, and setting input lead 2 to 0 allows any s-a-l fault

along the path to be detected.



-103-

On the other hand, from the D-cube

1 2 3 4 5 6 7 8 9 10 11

Do O 0 B D D 1 B1 0 D D

only one primitive T-cube can be formed:

1 2 3 4 5 6 7 8 9 10 11

T OOO T T 1 1 0 T T

since the appearance of DO indicates that the path can be sensitized only

when input lead 1 is 0. (Note that B's are changed to O's or l's since

they are not part of the sensitized path.)

Thus, to form primitive T-cubes from a D-cube one must:

1. If the D-cube has no components which are Do , Bo , Dl, or B1;

form a T-cube by modifying the non-conLstant components of the

D-cube as follows:

D T B 1

D1 _T B1
Di T B 1
Do T Bo 0

(Here we are setting D = 1; so that leads on the path marked with D (D)

will detect s-a-O (s-a-l) faults. Thus D (D) is replaced with T (T).

B (B)'s are changed to 1 (O)'s since thf-y are not part of the sensitized

path. Assigning D = 1 is consistent with the cube since it contains no

Do' Bo' Dl, or B1 components.)

2. If the D-cube has no components which are D1, B1, Do , or BO;

form a T-cube by modifying the non-constant components of the

D-cube as follows:



-104-

D T B O

D - T B* 1
D T BO 0

D1 T B1 1

(Here we are setting D = 0, so that leads marked with D (D) detect

s-a-l (s-a-0) faults.)

The primitive T-cubes for the network of Fig. 1.3 are:

1 2 3 4 5 6 7 8 9 10 11

a 0 T 1 T 1 x 0 1 T 0 T

b 0 T T O x 0 1 T 0T

c 0 T 0 T T 1 1 0 TT

d O T 0 O T T 1 1 0 T T

e T 0 1 T x x 0 T 0 T

f T 0 1 T 1 x 0 0 T 0 T

g T 0 T 0O x O i T O T

h T 0 0 0 T T 0 T T

i x T 1 1 0O x 0 T 0 T

j 1 x T 1 1 x 0 0 T

k x 1 T 1 1 0 x x T 0 T

x i T i i O x x T 0 T

m 0 0 x 0 0 1 T 1 0 T T

n 0 0 x 0 0 1T1 T T

o 0 0 x 0 0 1 1 T 0 T T

1.5.2 Formation of Composite T-Cubes from Primitive T-Cubes

In order to find tests which sensitize many paths simultaneously,

primitive T-cubes must be merged into composite T-cubes. Only

compatible T-cubes may be merged. T-cubes are compatible if the lead

assignments they imply do not conflict. In merging two T-cubes, we

again want to find those vertices which are consistent with both cubes.

Thus, it is also an intersection operation, and, as before, can be



-105-

performed component by component. If the cubes to be merged are

compatible, then the input assignment implied by the new cube detects

all faults which either of the given cubes detect. Thus, the following

table specifies the rules-for component-by-component merging:

x O TT

O 0 0 4 T

1 1 1 i T

T T T T T

If any O's result when merging is attempted, then the T-cubes are

incompatible.

(It should be noted that only the input variable assignments need

be considered in order to determine if two T-cubes formed from complete

D-cubes are compatible. This is because complete D-cubes have all

necessary assignments specified in terms of input leads. This Iact

simplifies finding the sets of primitive T-cubes which can be merged.

Of course, once the T-cubes are known to be compatible, the component

by component merging must be performed to determine the faults it

detects.)

Merging of primitive T-cubes will be illustrated on the primitive

T-cubes derived from the network of Figure 1.3 shown in the previous

section. It can easily be seen that the following groups are compat-

ible: ak, bgn, dhmo, c2, ei, j. Merging these into composite T-cubes

gives:



1 2 3 4 5 6 7 8 9 10 11 T-Cubes Merged

1 0 T T T 1 0 0 1 T O T ak

2 T T i T O x T L T T T bgn

3 o T. 0 o T T T T O T T dhmo

4 O TT 1TT T c T

5 T O T T 1 x x O T O T ei

6 1 x T 1 1 O x O T O T j

(Cube f is a subcube of cube e.)

The table resulting from forming all maximal composite tests for

a network can be treated as a fault table, and the minimum test set can

be found from it using well-known methods for solving covering problems.

For the example above, the minimum test set consists of T-cubes 2, 3,

4, and 5. (Note that none of the tests test line 8 for s-a-l. This

is because this fault is not detectable since the A input to the AND

gate is redundant.)

1.6 ALGORITE4 FOR FINDING AN APPROXMIATELY MINDIAL TEST SET FOR A GIVEN
NET WORK

1. Form the singular cover and primitive D-cubes of the network.

2. Form all possible complete D-cubes (containing no subscripted

B's as non-input components) of all paths from an input to an

output in the network. (A fairly simple recursive algorithm

based on the singular cover and primitive D-cube tables shown

earlier can be used to do this.) Delete any cubes which are

contained in other cubes.

3. Form all possible primitive T-cubes from these D-cubes.

4. Form all possible maximal composite T-cubes from these primitive

T-cubes. This can be done by examining only the input assignments



-107-

of the primitive T-cubes to find those which are compatible,

then merging these.

5. The resulting table can then be treated as a "fault table",

and from it one can find the minimum set of tests which cover

all faults, using well-known methods of solving covering

problems.

1.7 FAULTS WHICH CANNOT BE DETECTED BY SENSITIZING SINGLE PATHS FROM
AN INPUT TO AN OUTPUT

So far, we have considered finding test sets only for faults which

can be detected by sensitizing single paths from inputs to outputs.

Unfortunately, it is not true that all faults can be detected in this

manner. Several networks have been found which have faults that cannot

be detected by tests of the type derived above. (See Appendix 1.1.)

These networks fall into two classes:

1. A fault (not on an input lead) which can only be detected by

sensitizing a single path from it to the output. (No sensitiz-

able path from an input to an output passes through it.)

2. A fault which can only be detected by sensitizing a multiple

path - this occurs when networks contain reconverging fanout

and some fault before the fanout can only be detected by the

changes that it causes on two or more reconverging paths.

The algorithm can be modified to find tests for faults of these types

(and tests for all detectable faults can be found using the modified

algorithm [2]). The modifications necessary for each case are dis-

cussed below.



1.7.1 Class 1

Tests for faults in this category can be round simply by using the

algorithm described earlier to find a sensitized single path from the

lead to be tested to an output. One must also use the singular cover

to find an input assignment which makes the lead to be tested 0 or 1,

depending on whether a s-a-l or s-a-O fault is to be detected. A T-

cube can be formed from the resulting D-cube as before, since the test

will also detect faults along the sensitized path.

1.7.2 Class 2; Sensitizing Multiple Paths

Finding tests for faults which can be detected only by multiple

sensitized paths is more difficult, and it requires several modifi-

cations to the method described above. With these modifications, the

algorithm becomes essentially the same as that described by Roth [2,3].

The primary differences between the algorithm previously described

and that which must be used when multiple paths are to be sensitized

are that:

1. When fanout occurs, one must attempt to make the D's propagate

along 2 or more of the resulting paths, and

2. When paths reconverge, a primitive D cube for a gate must be

formed which has D's on several input leads.

The first of these creates no problems--when the path is known, one

simply chooses a primitive D-cube for each gate on the path which

causes the D to propagate from the input lead on the path to the output.

For example, consider the network shown in Appendix 1.1.2. Intersecting

the following primitive D-cubes



-109-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B D O B B 1

1 D B

D 1 B

gives the D-cube

D =B 1 D O D D 1 B B
a

Note that leads 13 and 14 now have B's; i.e., if lead 4 is 0 (1), then

leads 13 and 14 are both O (1). The primitive D-cube of the final OR

gate which is needed to complete the path to the output is one which

specifies that if leads 13 and 14 are both 0 (1), then lead 16 will be

0 (1). Clearly, this is the D-cube:

13 14 15 16

Db = D D 0 D

Note that this D-cube does not mean that if lead 13 is 0 (1), then leads

14 and/or 16 are 0 (1). Thus, D-cubes with two or more D's on input

leads to the same gate have a slightly different interpretation than

those used previously. Other D-cubes of this type for the same gate

are:

13 14 15 16

D D D D D

O D D D D

D 0 D D

Intersecting Da and Db shown above to complete the multiple path

to the output gives:

1 2 3 4 5 6 7 8 9 lo 11 12 13 14 15 16

D n Db = B 1 D 0 Df D 1 1 D D O D

Completing this cube as before gives the complete cube:



-110-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D = B 1 1 D O D D 1 x 1 1 0 D D 0 D

Again, it should be emphasized that this cube does not mean that if,

for example, lead 6 changes from 0 to 1 (1 to 0), then the output

would change from 0 to 1 (1 to 0). Thus, this cube does not necessarily

specify tests which will detect s-a-O or s-a-1 faults on lead 6 (or 7,

13, or 14). It only specifies a test for leads 4 and 16 (or, in

general, all leads on the path before the fanout and after the recon-

vergence of the multiple path).

The above extensions to find the conditions necessary to sensitize

a known multiple path seem quite simple. The difficult problem is

determining which multiple path must be sensitized in order to detect

a given fault. In general, all possible multiple paths must be tried

(including those which contain more than 2 paths sensitized simultane-

ously). This is quite simple in the example above, since the path used

is the only possible one. In complicated networks, however, there may

be many possibilities, all of which must be tried. Roth [2,3] describes

an organized approach to the problem of trying all of these possible

paths, and determining as quickly as possible when a path is not

sensitizable.

An interesting problem which arises concerning multiple sensitized

paths is determining the faults that the test actually detects. As

was mentioned earlier, any such test detects single s-a-l or s-a-O

faults on those leads before the fanout occurs and after the recon-

vergence. Consider, however, D-cube D above. The test resulting when

all D's in the cube are 0 can easily be seen to detect s-a-l faults on



all leads which have a D in the D-cube. (All of the inputs to the OR

are 0, so each of the paths is actually sensitized separately). On

the other hand, when all D's are 1, the test does not detect s-a-O

faults on leads 6, 7, 13, or 14. For simple cases such as this, it is

easy to see when a test with reconverging paths detects faults on all

leads in the paths (if the point of reconvergence is an AND or NAND

gate, all inputs must be 1; if it is OR or NOR, all inputs must be 0).

The situation is slightly more complicated when several diverging and

reconverging paths are simultaneously sensitized, but the same type of

reasoning can be used to determine what leads are tested.

Tests which sensitize multiple reconverging paths and detect all

faults on the paths may be desirable ones to include in a test set.

Unfortunately, trying all multiple paths, in addition to all single

paths, does not seem practical at present. Work is presently being

done on determining which multiple reconverging paths detect many

faults (e.g., if the difference between the number of inversions on

two branches of a reconverging path is odd, it can easily be seen that

sensitizing this multiple path will never detect all faults on the

path).

1.7.3 The Modified Algorithm

The following steps thus must be added to the algorithm of

Section 1.6 for the case when the table resulting from step 3 does not

include primitive T-cubes containing tests for all faults:

4. Attempt to form a single sensitized path from each fault not

detected to an output. If a complete D-cube can be found,

form the appropriate primitive T-cubes and add them to the

list of T-cubes.



-112-

5. Form all possible maximal composite T-cubes from these

primitive T-cubes.

6. If there are still faults which are not detected by some

test in this table, find a multiple path which can be

sensitized from each of these to an output (using the

algorithm described in Roth). If no multiple sensitizable

path can be found, the fault is not detectable. For each

fault detected in this manner, add a T-cube with a T or T

only on the lead corresponding to the fault.

7. The resulting table can be treated as a fault table and can

be solved using standard covering techniques.

1.8 CONCLUSIONS AND DISCUSSION

The method described above for finding approximately minimal test

sets for single s-a-O and s-a-l faults in arbitrary combinational

networks appears to give "good" test sets for the examples tried.

Whether or not these test sets are always minimum is not known as yet

for networks with fan-out. (As was seen earlier, for networks with no

fanout, one need only worry about testing each input, since all other

faults are detected by a set of tests which detects all input faults.

The algorithm above can be seen to find minimum test sets in this case.)

No real attempt has been made to find counterexamples because of the

difficulty of determining what the minimum test set actually is.

The method is well suited for computer implementation, since it

was developed with computer implementation in mind. Its effectiveness

cannot really be judged until it has been programmed and compared with

other known methods, both in respect to efficiency and size of test



-113-

sets resulting. It is important to note that none of the tables grow

exponentially with the number of input variables, gates in network,

etc. However, networks with much fanout and therefore many paths from

inputs to outputs may require large tables of D-cubes of sensitizable

paths, and the resulting fault table may still be large. The method

as described gives minimal test sets (if the fault table is solved

exactly) within the restriction on the type of tests it finds (because

the table of composite T-cubes contains all tests which sensitize

single paths from inputs to outputs and which are not "covered" by

some other test).

To be practical for large networks, the method should be modified

to use some heuristics for finding "good" paths and "good" combinations

of primitive T-cubes, and also approximate methods could be used to

solve the resulting fault table. Some progress has already DeenL made

in this direction, but further development is required.

As was seen in Section 1.7, considerably more computation may be

required when tests for some faults cannot be found by sensitizing a

single path from the fault to an output. Test sets for nearly all

networks which have been tried to date by hand can be found without

using the methods of Section 1.7. Whether it is actually true that

test sets for "most" networks can be found by considering only single

paths should be investigated further only after a programmed version

of the algorithm is available.

It should also be pointed out that, although the method can be

used to find test sets for networks with undetectable faults (the test

set will, of course, detect only the detectable faults), the single-



-114-

fault assumption makes these test sets of questionable value. This is

because two or more faults must occur before some malfunction can be

detected, and the test sets found with a single fault assumption will

not necessarily detect this malfunction. In other words, the single-

fault assumption is likely to be valid only when all single faults can

be detected, and the network is tested often enough so that the prob-

ability of multiple faults is small..



REFERENCE S

1. Armstrong, D. B., "On Finding a Nearly Minimal Set of Fault

Detection Tests for Combinational Logic Sets". IEEE Transactions

on Elect. Comp., Vol. EC-15, No. 1, Feb. 1966, p. 66.

2. Roth. J. P., "Diagnosis of Automata Failures, A Calculus and a

Method", IBM Journal, July 1966, p. 278.

3. Roth, Bouricius, and Schneider, "Programmed Algorithms to Compute
Tests to Detect and Distinguish Between Failures in Logic Circuits".

IEEE Transactions on Elect. Comp., Vol. EC-16, No. 5, Oct. 1967,
p. 67.



APPENDIX 1.1

NETWORKS WITH FAULTS FOR WHICH TESTS CANNOT
BE FOUND BY THE METHOD DESCRIBED

Case 1: A fault, not on an input lead, that can only be detected

by sensitizing a path from it to the output (no sensitizable path from

an input to an output passes through it).

A 3

A 2 AND

-116- F 22
AND 19 AM9 

B 17

E 

Analyzing this network using the ideas of sensitized paths shows

that lead 16 can be tested for s-a-l only by applying an input vertex

with A = O and B = O. (Since lead 10 must be 1 for the path from lead

16 to the output to be sensitized.) But in this case, there is no

path sensitized through the AND gate of which 16 is the output. One

can verify that it is impossible to complete the D-cubes corresponding

-116-



-117-

to either of the paths 14-16-19-21-23-24 or 15-16-19-21-23-24 (the

only paths passing through lead 16) so that lead 16 can be tested for

s-a-l. However, the following D-cube does contain a test for lead 16

s-a-i, but would not be found by testing only paths from inputs to

outputs:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O O O 1 1 1 1 1 1 1 x 0 O O 0 DO O x D O D 1 D D

Case 2: A fault which can only be detected by sensitizing a

multiple path.

C

A 2 OR

B

AD 14 Ouutput

D / 15

E

For this network, it can be verified that there is no complete

D-cube of a sensitized path which contains a test for lead 4 s-a-0.

Note that setting A = 1, B = 0 makes leads 3, 6, 7 and 10 have value

1; thus both leads 13 and 14 have value 1, and, according to our

previous observations, the path is not sensitized through the final OR



-118-

gate. However, if E = 0, and lead 4 becomes 0 due to a fault, both

leads 6 and 7 must become 0, and the output does in fact change from

1 to O. Thus, the input vertex A = 1, B = 1, C = O or 1, D = O or 1,

E = 0 is a test for lead 4 s-a-O, but a multiple path is sensitized

in the sense that a change on lead 4 causes changes in both the paths

4-6-13-16 and 4-7-14-16; and both of the changes are necessary to

cause the output to change when the fault occurs. (Note that this

vertex does not detect faults on leads 6, 7, 13, or 14.)

Note: It can be verified that there are no redundant leads in

either of the above networks; i.e., all leads in both networks can be

tested for s-a-O and s-a-l.



CHAPTER 2

CHECKING OF SINGLE THRESHOLD ELEMENTS

This chapter is concerned with a method for finding a short

test to verify, by means of output observations only, that a given

threshold gate does in fact realize a specified single-threshold

function. It turns out the method is independent of the weights

and threshold that were actually used in designing the gate, and it

is applicable no matter how many of the weights and/or the threshold

are faulty. Furthermore, tight bounds are given on the length of a

checking test for all single-threshold functions.

2.1 THE FAILURE MODEL

A failure is present in a logic element if and only if G, the

function realized by the element and F, the nominal function, differ

for at least one input combination. Clearly the potential presence

of any arbitrary type of failure implies that all input combinations

must be tested, because any one alone may result in an incorrect

output. Therefore, it is assumed here that a failed threshold

element (TE) realizes a function G which is STE (single threshold

element) realizable. In other words, even a failed element is as-

sumed to be describable by some weight-threshold vector, although

incorrect. This assumption is very reasonable from the practical

point of view.

-119-



-120-

Also, we shall assume that the contribution to the weighted

sum (WS) of a variable xk when xk = 1 is constant and independent of

the other input values.

Without loss of generality, we shall assume that operation is

always according to the "perfect zero" model. This model assumes

that when a logical 0 is applied, the actual contribution of that

input to the WS is O. To see that this assumption is indeed not

restrictive, suppose that due to noise the contribution to the WS

when xk = 0 is wkO ~ 0 and when xk = 1 the contribution is wkl.

Also assume that the threshold is T. We can then write the WS for

any vertex v as

(wko + (wkl - WkO) vi)
V

where v. = 1(0) if x. =1(0) in the vertex v. Now let wkl - wkO=

wk. Then the WS becomes

n

E wkO + Ikvk
k=1

so that

n
F =1 iff Z wk + Z wkvk > T

1

n

F = O iff E Wko + Zwkvk <T

But this is equivalent to

F = 1 iff wkvk > T'

F = 0 iff wkvk < T'

T~-- - - - - - - - - - -------- ...... .....- -- ·-------- ·-~----- ·-------- ~ ·-------



-121-

n
where T' = T - E Wko is the effective threshold when there is ex-

citation due to a logical O. Hence by using T' we are free to

assume the perfect zero model without loss of generality.

2.2 UNATENESS AND POSITIVE WEIGHTS

As is well known, the MSP (minimum sum of products) expression

for an STE realizable function is unique and unate, which means that

the MSP expression contains each variable either in complemented

(for negative unateness) or in uncomplemented form (for positive

unateness), but not in both. For the sake of simplicity and without

loss of generality, we shall assume that the MSP form is written in

those variables which lead to positive weights, i.e., in those vari-

ables that lead to positive unateness. As is also well known, every

STE realizable function can be constructed with positive weights

only. (If the MSP expression contains the variable X in the form X,

then F can be realized with w > 0 if the variable X is connected to

the gate.) If it happens that the function F on hand is realized

with negative weights, then the algorithm in Section 2.6 can be

used to quickly find the set of tests for F, given the test which

checks the related function H when all weights are positive.

Later on, we shall have need to use the MSP expression of the

complement of the function. Since we shall always write functions

in terms of the variable forms that lead to positive unateness and

therefore positive weights, it follows that the variables in the

MSP expression of the complement of the function will have all vari-

ables in complemented form.



-122-

2.3 PRELIMINARIES

We start with two important definitions. Let P be a prime

implicant of F (written in positively unate form). Then to P there

corresponds a PI vertex of F, vt, specified as follows: put a 1 in

place of those variables that appear in P, and in the remaining

variable positions a 0. Let Q be a prime implicant of F (written

in negatively unate form). Then to Q there corresponds a PI vertex

of F, vf, specified as follows: put a 0 in place of those variables

that appear in Q, and in the remaining variable positions a 1.

Example: For F = A + BC, the PI vertices of F are v (A,B,C) =
t

100 and vt(A,B,C) = 011; and since F = AB + AC, the PI vertices of F

are vf(A,B,C) = 001 and vf(A,B,C) = 010.

Lemma 2.1: If any constant in a PI vertex of F (F) is changed

from 1 (0) to 0 (1), the resulting vertex is in the false (true)

body of F.

Proof: Let F be a function of xl, x2, ..., xn and let

vt = 111...100...0, corresponding to prime implicant P = xlx2...xj.

Consider v = 011...100...0 which differs from vt in only the first

position. If v is in the true body, then it must be covered by a

prime implicant of F. But the only prime implicant in unbarred

variables x1 through xn which can cover v consists of a subset of

the variables x2 through xJ. But then P cannot be a prime implicant.

Therefore v must be in the false body of F. The dual statement is

similarly proved.



Lemma 2.2: If the PI vertices of F and F are applied to

threshold element E, then the proper response of E at all of these

vertices assures that all the weights in E are positive.

Proof: (By induction) First, consider the smallest weight,

w 1. There exists a PI vertex of F, vt = 1S, where S is some string

of l's and O's in positions 2 through n. (If no such vt existed, F

would be independent of xl.) By Lemma 2.1, the vertex v = OS must

be in the false body. Furthermore, v is a PI vertex of F, for the

following reason. If v were not a PI vertex of F, then there must

be a PI, call it Q, other than that formed by the product of xl and

the variables corresponding to those positions in S where there are

zeroes. Say S has 0 in positions i, j, ..., k, X. Then Q is a

product of xl, xi, xj, ..., Xk, x2 from which one or more literals,

say xj through Xk, have been deleted. Then the PI vertex of Q, call

it v' has a 1 in positions j through k. But then, because no weight

is smaller than wl, v' is in the true body, and hence Q cannot be a

PI of F. Therefore, OS must be a PI vertex of F. Proper response to

1S and OS then assures that wl is positive in E. The same argument

holds for every weight that can be set equal to w1.

Assume that for all w. < w. the test has revealed that w. > 0.
1 j 1

Consider a PI vertex of F which has 1 in position j. (Such a vertex

must exist, for otherwise F is independent of xj.) Say vt - tlS,

where S is a string of ones and zeroes in variables with weights no

less than wj, and t is a string of ones and zeroes in positions with

weights less than w.. Vertex v = tOS must be in the false body of F



-124-

(again by Lemma 2.1). Now v must be covered by a PI of F, which

has the PI vertex vf = uOS, where u has l's wherever t has l's, but

u may also have ones where t has zeroes. String S in vf is identi-

cal to that in vt, for otherwise vf would be in the true body because

each weight to the right of position j is no less than w.. Now

applying vt and vf and getting the proper response shows that

w. + w. + 
xi.l in t x.l in S i - E

and

i + w. + W . < E
x.=I in t x.=l in u x.=l in S

11 1

but not in t

Together, these two show that

w.> w.
x.=l in u

but not in t

By inductive hypothesis, each of the w. in the summation is greater

than zero. Hence w. > 0, as was to be shown.

Theorem 2.1: A sufficient test to assure that element E

realizes F consists of applying to E all the PI vertices of F and

all the PI vertices of F.

Proof: If the response of E is correct at all of the PI ver-

tices, then not only does this check the operation of E at these

vertices but, by Lemma 2.2, it also shows that all the weights are

positive. This assures that operation is also correct at all the

vertices covered by all the prime implicants (of both F and F),



-125-

since a PI vertex of F gives the lowest excitation due to all the

true vertices covered by that PI, and a PI vertex of F gives the

highest excitation due to all the false vertices covered by that PI.

But all the true (false) vertices of F are covered by the set of all

prime implicants of F (F). Hence the test prescribed in the theorem

assures correct operation at all vertices.

Having found the sufficient test set, we will now derive the

specification of the test set which is necessary. First, we intro-

duce the two terms MTV and MFV. Given a weight-threshold vector

w,T that realizes F. An MTV (MFV) of that realization is a true

(false) vertex of F at which the excitation is no higher (lower)

than at any other true (false) vertex. In other words, an MTV is a

minimum true vertex and an MFV is a maximum false vertex.

Theorem 2.2: A checking sequence for an element that sup-

posedly realizes F must contain all the MTV's and all the MFV's of

every weight-threshold vector that realizes F.

Proof: As observed in the proof of Theorem 2.1, a PI vertex

of F (F) has excitation lower (higher) than that of any other true

(false) vertex covered by that PI. Therefore, an MTV (MFV) is always

a PI vertex of F (F). Now we shall show that given that all but one

MTV or MFV of F and F have been checked, one can still have incorrect

operation at the omitted vertex. The proof will be constructive.

Let w,T denote a weight-threshold vector that realizes F and w',T'

a second weight-threshold vector related to w,T in the following man-

ner. Let v be an TTV of w,T with 1 in positions 1 through m and O



-126-

elsewhere. Then let wi = w. for i not in the interval 1 through m,

and w! = w. - u for i in the interval 1 through m. Now let T' = T + d.

In the above, u and d are positive constants, so that surely the

function realized by w',T' will be O wherever F = 0. It is possible

to select u and d such that w',T' realizes a function that is false

at v yet true at every other PI vertex of F. This can be seen as

follows. Since v is a PI vertex, the ones in positions 1 through m

of v cannot all be ones of some other PI vertex of F, so that every

other PI vertex has at most m-l ones in positions 1 through m. With

w' related to w as specified, it follows that at v the WS due to w'

differs from that due to w by mu, i.e., WS'(v) = WS(v) - mu, whereas

at any other PI vertex V of F, WS'(V) > WS(V) - (m-l) u. Consequently,

the construction has resulted in an excitation at v which is strictly

less than that at any other PI vertex of F, because v is an MTV of F.

Now d can be so chosen that T' lies between WS'(v) and the smallest

value of WS'(V). Then testing operation at all the PI vertices of F

except v will reveal operation according to F, and yet operation at

v is not according to F. Therefore, v must be in the test sequence,

since the particular element on hand may be that described by w',T'.

A similar argument can be made about the MFV's by letting u and

d be negative.

Theorem 2.3: The smallest set of checking tests consists of PI

vertices only.

Proof: (By contradiction) Suppose there exists a smallest set

of checking tests, a, in which at least one true vertex V is not a



-127-

PI vertex of F. Let V be the PI vertex of a PI that covers V. Then

if the excitation due to V is denoted by WS(V ) = , then WS(V)

sa + sb where sb is the sum of those weights that contribute to

WS(V) and not to WS(Vp). If V is applied, then it verifies that

s + sb > T. If this inequality could be used to verify that opera-

tion at V is correct, then in a there would have to exist a subset
P

P which jointly specifies that sb < O. But since the function is

positively unate, no such set P can exist. Therefore, correct opera-

tion at V must be established by some set y of tests, and this set
P

cannot contain V. Since y verifies operation at V., the only infor-

mation that applying V could contribute is that sb > 0. But then

there would have to exist a subset 8 of the tests which shows that

s < T. Set 5 cannot exist, since in fact s > T. Consequently,
a a

vertex V contributes no information, and therefore it cannot be in

the smallest test set.

The proof for false vertices that are not PI vertices of F is

similar.

2.4 ALGORITHM FOR FINDING SHORT TEST SETS

Having established in Theorem 2.1 that a sufficient test con-

sists of the set P of all the PI vertices, in Theorem 2.2 that the

necessary test set is a subset of P, and in Theorem 2.3 that the

shortest test consists only of elements in P, we are now faced with

the task of pruning from P those elements that are not necessary, so

that an efficient test will result.



-128-

In fact, in most functions not all of the PI vertices need be

applied. For example, consider the function

F = DE + BE + ACD + ...

F = DE +

In a gate allegedly realizing F, proper response to vertex 10110

(the PI vertex of ACD) shows that

WA + WC + WD > T

and proper response to vertex 11100 (the PI vertex of DE) shows that

WA + wB + WC < T.

Together these two relations imply that

WD > WB

Consequently, if the gate also responds correctly to vertex 01001

(i.e., if wB + wE > T), then one can also be sure that the gate will

respond properly to vertex 00011, which is the PI vertex of DE.

Therefore, this vertex can be eliminated from the test set.

In general, a vertex v can be eliminated and will be called

redundant whenever correct operation at v can be deduced from correct

operation at some of the vertices actually tested.

Note that if a true (false) vertex v is redundant, then it can

never be an MTV (MFV) in any realization. In other words, a neces-

sary condition for redundancy of a true (false) vertex v is that in

every realization there exists a true (false) vertex v' such that

WS(v) > WS(v') (WS(v) < WS(v')). Conversely, if this inequality has

been verified by some test not involving v, then v need not be



-129-

included in the test, if the test also shows that the response to v'

is true (false).

Henceforth, let v and v' be true vertices. If WS(v) > WS(v')

in every realization, then this ordering must be specified by the

function. Now the function specifies excitations as sums of weights

greater or equal (smaller) than the threshold for true (false) ver-

tices. A true vertex vt together with a false vertex vf specifies

that the sum of the weights contributing to WS(vt) is greater than

the sum of the weights contributing to WS(vf). Similarly, pairs of

vertices, where in each pair one vertex is true and the other vertex

is false, show that a sum of weights is greater than some other sum

of weights. If WS(v) > WS(v') in every realization, then this

ordering must be revealed by some pairs of vertices vtj, vfj. These

ideas are illustrated in the previously given example, where

vt = 10110, vf = 11100, v' = 01001, and v = 00011. Here a single

pair (vt and vf) is sufficient to show that in all realizations

WS(v) > WS(v'). In general, however, it is not true that a single

pair vt, vf is sufficient to show that WS(v) > WS(v').

This discussion should explain why our strategy for finding

redundant PI vertices will be as follows. We compare the excitation

at each PI vertex of F in P, call it v, with that at every other PI

vertex of F, call it v'. If there exist a vt and a vf in P which

show that WS(v) > WS(v'), then we eliminate v from the test set.

Similarly, we compare the excitation at each PI vertex of F in P,

call it v, with that at every other PI vertex of F, call it v'. If



-130-

there exist vt and vf in P which show that WS(v) < WS(v'), then we

eliminate v from the test set.

The procedure is given more precisely in the algorithm below,

where we refer to four sets of PI vertices: T, T', C, C'. Set T (C)

consists of all the PI vertices of F (F); its elements are denoted by

t. (c.). Set T' (C') is a subset of T (C).
1 l

ALGORITHM

1. List all the t. and all the c..

2. Set T' = T and C' = C.

3. Pick an ordered pair ti;tj and compute the difference vector,

dij, as follows. Vector dij has as its components all those

variables in uncomplemented form which appear in t. and not in

t.. Also, d.. has as its components in complemented form
3 la

those variables which appear in t. and not in t.. All those
3 .

variables which appear in both ti and tj do not appear in dij.

4. Find (through exhaustion) a third term ck in C such that

(a) the complemented variables appearing in d.. do not appear

in ck and (b) the uncomplemented variables in dij do appear

in ck.

5. Find (through exhaustion) a fourth term th in T which does not

contain (a) all variables which appear in d.. complemented;
1j

and (b) all variables which appear in ck and do not appear in

dij uncomplemented.

------- ------------------------ --------2.3-----



-131-

6. If ck and th exist, eliminate ti from T'. If not, search for

another ck until either a Ck, th pair is found or all the pos-

sibilities for ck have been exhausted.

7. Return to Step 3 and consider another pair tm, t until all

ordered pairs have been tried.

8. Replace c for t, C for T, C' for T' and vice-versa and repeat

Steps 3 through 7.

The execution of the algorithm is illustrated in Figure 2.1.

Let us examine the steps in the algorithm to understand what

they actually do. Step 3) selects an ordered pair of vertices (or

terms) and computes the difference vector. The difference vector is

shorthand not only for the way vertices v. and v. differ, but for the
1 3

ordering of the sums of weights which would indeed order vertices v.

and v.. For example, suppose d.. = abcdef. Then this is a shorthand

for wa + b + w > wd + we + wf and if this inequality can be shown

to hold, then WS(vi) > WS(vj), and v. need not be tested. The pur-

pose of ck and th is to verify this inequality.

We will refer to the sum wa + wb + w as the "left sum" and

the sum wd + we + wf as the "right sum". Since all weights are posi-

tive, if the sum of the weights forming the left sum can be shown to

be greater than a sum containing at least all of the weights making

up the right sum, the ordering required by the difference vector will

be established and WS(vi) will be strictly greater WS(vj). Vertex vi

can then be eliminated from the test set. In other words, for

w +w + > w d + we + wfa Wb c d e f



-132-

A

B D 000 001 01l 010 110 111 101 100

I4j.00 0 0 0 0 0 0 0

C-01F 0 t0 0 0 1 1 1 0

2 11 0 0 1 0 1 1 1 0

10 0 0 1 0 1 1 0

F = ABC + AB D + AB E + A CD + A C E + BCD

11100 11010 11001 10110 10101 01110. True MSP Vertices

-AB + A a + A D + BC + CDE + B DBE

00111 01011 01101 10011 11000 10100 False MSP Vertices

ti tj dij ck inoth th Comment

ABC ABD CD AC A,D

BC B,D ACE Eliminate ABC Note that since

ABD ABE DE AD A,E BCD Eliminate ABD ABC > ABD > ABE,

ABE ACD BCDE ABE need only be
j ACE BC B AC compared to three t
ACE BC AB A,C a

BDE C,D,E

BCD ACDE 11001 in test set

ACD ABE BCDE

ACE DE AD A,E BCD Eliminate ACD

ACE ABC B E B,C,D Figure 2.1

ABD BCDE Illustration of

ABE BC AC A,B Checking Set

CDE B,D.,E Reduction Algorithm

BCD ABDR 10101 in test set

BCD ABC AD CDE A,C,E

BDE A,BE

A.,ABD AC BC A,B

CDE A,D,E

ABE ACD]E

ACD AB BDE A,C

BC A,C

ACD ABDE 01110 in test set



.-133-

Ci Cj di tk inot ch Comment
1 1dij in ch h

AB AC BC ABD A,D,C

ABE A,E,C

AD BD ABC A,C,D

ABE A,D BC Eliminate AB

AC AD CD ABC A,B,D

ACE A,D,E BC Eliminate AC

AD BC ABCD

CDE ACE ABD B,C,D,E

BDE ABE ACD B,C,D,E 01101 in test set

BC AC AB BCD A,B,D

AD ABCD

CDE BDE ABC A,C,D,E

BDE CDE ABC A,B,CD 10011 in test set

CDE AC ADE

AD ACE ACE A,C,D

BDM BC ACD A,B,D

ACE A,C,D 11000 in test set

BDE AC ABCDE

AD ABE BCD A,C,D

BC CDE ABD A,B,C

ABE A,C,D

CDE BC ABD A,C,D

ABE A,C,E 10100 in test set

Illustration of Checking Set Reduction Algorithm

Figure 2.1 (Continued)



it is sufficient to show that

aw Wb + W >w + w +w + wa b c d e f g

Step 4) searches for a term, Ck, in the set of PI's of F in

which those variables which are barred in d do not appear. This

simply assures that all the members of the right sum do contribute

to WS(ck). The second requirement specified in Step 4) is not nec-

essary, but improves the efficiency of the algorithm. If any of the

left-sum weights came into play at Ck, then there would exist no th

which could establish, together with Ck, that the hypothesized

ordering of the sums holds.

Step 5) of the algorithm looks for a fourth term th in the set

of PI's of F for which those variables which appear in d barred do

not appear. This is equivalent to saying that all the weights of the

right sum must not come into play at the vertex associated with th.

Also, th must not contain any variables which do appear in ck and do

not appear in d unbarred. If th meets this condition, then the only

weights which come into play at vh and not at vk are those that form

the left sum.

Every time a term ti (or vertex vi) is eliminated from the

test set, we see that there are three remaining vertices vj, vh, and

vk. Vertices vh and vk establish an ordering which, together with

the fact that all the weights are positive, requires that WS(vi) be
_ _

strictly greater than WS(vj). If the vertices vj, vh, and vk are

tested and give the proper output, we can be positive that vi will

produce the correct output. Therefore v. may be eliminated.
1



-135-

There are several refinements which can be made to improve the

efficiency of the algorithm. First of all, it is clear that, if it has

been found that WS(v1) > WS(v2) and also that WS(v2 ) > WS(v3), it cannot

be true that WS(v) > WS(vl) and therefore there is no point in testing

this hypothesis. This is illustrated in the example of Fig. 2.1 where

V1 = 11100, v2 = 11010, v3 = 11001, and the unnecessary steps are noted

in the margin.

Second, if one is given the nominal realization of the function, he

can compute the MTV's and MFV's of that realization and, because of

Theorem 2.2, one knows that these PI vertices cannot be eliminated. For

the realization given in Fig. 2.1, vertices 01110, 11001, and 10101 are

MTV's; vertices 01101 and 10011 are MFV's. Note, however, that the test

set also includes vertices 11000 and 10100, which are not MFV's in this

realization.

Finally, one can use the weight orderings which are determined from

the MSP expression of the function to eliminate vertices. We recall the

following well-known theorem.

Theorem 2.4: The MSP expression of an STE realizable function F

prescribes the following ordering on the set of weights that realize F:

1. All weights for variables that appear in PI's of length L are

greater than the weights for variables that appear only in PI's

of length greater than L.

2. If two variables x. and x. appear an equal number of times in
1 a

all the PI's of length L, for every L, then w. and w. can be
made equal.

made equal.



-136-

3. If two variables xi and x. appear an equal number of times in

all the PI's of length L or less, but x. appears more often than
1

x. in PI's of length L+l, then w. > w..
j 1 j

To illustrate the use of this theorem, consider the example of

Fig. 2.1, where F = ABC + ABD + ABE + ACD + ACE + BCD. Here all the

PI's are of equal length. We have

Variable Occurrences

A 5

B 4

C 4

D 3

E 2

Hence wA > wB = C > wD > wE (It happens that here the number of

occurrences can be used as a weight assignment, but this is not in

general true.) Consequently, we know that it must be true that

WS(ll100) > WS(llO10) > WS(llOO1) and WS(10110) > WS(10101). It so

happens that in this example the weight ordering specified by Theorem

2.4 leads to the elimination of all the ti that can be eliminated, but

in general this is not true.

With the refinements discussed above, the testing algorithm can be

executed rapidly. But we were not able to prove that the tests remaining

in T' and C' are the minimum test sets. In all examples tried, this was

found to be so, and it seems reasonable to conjecture that the algorithm

does in fact find the smallest test set.



-137-

2.5 BOUNDS ON THE LENGTH OF THE CHECKING SET

It turns out that one can find precise bounds on the length of the

checking set for any threshold function. To derive these bounds, we

need some preliminary considerations and also the results of Appendix A

to this chapter.

Lemma 2.2: The MSP expression of a unate function of n variables

and the MSP expression of the complement of that function together have

at least n+l prime implicants.

Proof: For n = 2, there are two possible unate functions and these

have the MSP expressions F1 = A+B (F1 AB) and F2 = AB (F2 = A+B)

In either case, there is a total of three prime implicants and so the

lemma holds for n = 2. Suppose the lemma holds for n-l variables but not

for n variables. Then there exists a function G of n variables with a

total of n or less prime implicants. Since G is unate, it can be written

in the form G = g+Xh, where g is the sum of all those prime implicants

that do not contain one of the n variables X and Xh is the factored sum

of the remaining prime implicants of G. Since G = gX + gh, the first

term on the right is the factored sum of the prime implicants of G that

contain X and the second term is the sum of the remaining prime implicants.

Now suppose h ~ 1,0. Then GIX=1 = g+h and Gjxl = gh. Now GiX=1 can

have no more prime implicants than G, and G X=l has at least one less

prime implicant than G. Functions G1X=l and GIX=1 are functions of n-l

variables. Hence if G and G together had n or less prime implicants,

then t!ere would exist a function of n-l variables, namely G IX= 1 which

has a total of no more than n-l prime implicants contradicting the

hypothesis. To complete the proof, h = 1, so that G' = g + X and



-138-

G'JX O = g, having one less prime implicant than G', while G'?XIO = .,

having the same number of prime implicants as G'. Function G'X=0

involves n-l variables and in this case also if G' and G' together had

n or less prime implicants, then there would exist a function of n-l

variables with a total of n-l or less prime implicants. But h # 1,0

and h = 1 exhaust all the possibilities, since h = 0 would imply that G

is not a function of n variables. Hence the lemma must be true.

Lemma 2.3: There exists a symmetric unate function F of n variables

with a total of n+l prime implicants in the MSP expressions of F and F.

Proof: The AND and OR functions satisfy the lemma.

Lemma 2.4: No threshold function F has less than n+l prime impli-

cants in the MSP expressions of F and F.

Proof: Direct consequence of Lemmas 2.2 and 2.3.

As is well-known, the AND and OR functions can be realized by a TE

with all weights set equal. Therefore, all the PI vertices of these

functions can be made MTV's and MFV's so that they must all be tested

(see Theorem 2.2). Consequently, these functions require precisely n+l

tests for checking correct operation.

Lemma 2.5: There exists no threshold function that requires fewer

than n+l tests.

Proof: Each vertex in a test verifies that one inequality of the

form £ w.-T > 0 or £ w.-T < 0 is correct. Clearly enough tests must be
1 - 1

executed so that each wi comes into play at least once, and no two tests

can involve the same algebraic sum E w. - T. But the smallest number of

distinct sums of n+l items (the n weights and the threshold) where each

item appears at least once is n+l. Therefore, there must be at least

n+l tests. as claimed.



-139-

By a somewhat involved argument given in Appendix A of this

chapter, we show that the symmetric function which is true whenever

[l21] or more out of n variables are true has the largest possible number

of PI's. Furthermore, since the function is symmetric, it can be realized

by setting all weights equal, so that all the PI vertices can be made

MTV's and MFV's, and hence they must all be tested.

We are now in a position to state the bounds on the checking-set

cardinality in the following theorem.

Theorem 2.5: The number of tests, T(n). required to verify that a

threshold gate operates as desired is given by

n n 2n+3/2 n+ 1/2

n+l < T(n) (n ) + n e(n+l)(n-l)n

Proof: The lower bound follows from Lemma 2.'.. and the discussion

preceding it. The upper limit follows from Theorem A.1 and the dis-

cussion preceding Theorem 2.5. The approximation is based on Stirling's

fk ' -k
formula, k.' = kk -ke 27k. and is valid for n odd.



-140-

2.6 FINDING TEST SEQUENCES FOR RELATED FUNCTIONS

In this section, we wish to show that given an optimum test

sequence for an STE realizable function F, we can derive from it an

optimum test sequence for all those functions H that are related to

F by the characteristic vector. Specifically, the relationship be-

tween H and F must be such that the characteristic vector of H, de-

noted by bH (also called the Chow parameters or first n+l Rademacher

Walsh coefficients), can be derived from the characteristic vector of

F, bF , by permutation and/or multiplication by -1 of the elements of

bF.

The usual method of description of a single threshold element

is to specify its weight vector, w, and threshold T. The function

F'(v) is specified by

F'(v) = 1 iff v'w > T

F'(v) = 0 iff v-w < T

Following Dertouzosl , we transform F and v from 0,1 notation to

+1,-1 notation by the following transformations:

yi = 2v. - 1 and F(v) = 2F'(v') - 1
1

so that

Yi+l
v. =

a 2

and

Wv. £YiWi
i 2 +



-141-

Consequently, we can write

F = +1 iff X Yiwi > 2T - Z w.
i i

F = -1 iff Yiwi < 2T - w.
i i

Now define the modified weight-threshold (MWT) vector

a = al, ..., an; a as follows:

a. = Wi for i > 0 and ao = -(2T - ~ wi )

In terms of the MWT vector and the augmented vector

Y =Y1 Y2, '... Yn; 1 we have

F = +1 iff y-a > 0

F = -1 otherwise

Each of the 2n vertices of the n-variable function F(y) maps

onto a point on the excitation line, y-a. For example, let

a = 2,1,1,;1. Then the vertices of F(y) can be mapped as follows:

F= -1 F = 1

-5 -3 -1 0 1 3 5
" " ' -' -- t t " i n a, y

- I I . I t ay

(-2+1-1+1) (-2+1+1+1) (+2-1+1+1)
(-2-1-1+1) (-2-1+1+1) (+2-1-1+1) (+2+1-1+1) (+11)

Now let ac = 2,1,1,;-1, realizing Fc(Y). Then we get the plot

F = -1 - F = 1 =
c c

-5 -1 0 +1 +3 +5

-I ay

(-2+1-1-1) (-2+1+1-1) (+2-1+1-1) (2+1+1-1)
(-2-l-l-l) (-2-1+1-1) (+2-1-1-1) (+2+1-1-1)



-142-

Define Z = zl, z2, ... , Zn; Z0 where each zi, including zo,can

take on both the value +1 and the value -1. Also define the function

G as follows:

, -

1 iff Z*a > 0

G(Z) = 

-1 otherwise

The plot of the vertices of G(Z) for the previous example is

__- G = -1 - G =1 -

-5 -3 -1 0 +1 +3 +5

I ... I t l I Z.a

(-2-1-1-1) (-2-1+1-1) (-2-1+1+1) (+2+1-1-1) (+2+1-1+1) (+2+1+1+1)
(-2-1-1+1) (-2+1-1+1) (+2-1+1-1) (+2+1+1-1)
(-2+1-1-1) (-2+1+1-1) (+2-1-1+1) (+2-1+1+1)

(+2-1-1-1) (-2+1+1+1)

Note that the function G is antisymmetric about 0, i.e., G(-Z) = -G(Z),

and the vertices of G(Z) include all the vertices of F and F c

It is easy to see that for any MWT vector it will be true that

G(Z) is antisymmetric and that if at vertex Z = Zl, z2, .., z0 the
"~ -_

excitation, i.e., Z-ahas value E, then at vertex Z= -Zl, -z2, ...,-z0

the excitation has value -E.

Consider a function H with characteristic vector bH that differs

from the characteristic vector b of function F only in permutation

of the elements and/or multiplication of elements by -1. As Dertouzos

has shown, if F can be realized by a , then H can be realized by a H

where a H differs from aH in exactly the same permutations and/or

multiplications by which b H differs from b F. For example, let

F = ABC + ABD + ABE + ACD + ACE + BCD, which has



-143-

bF = 16, 12, 12, 8, 4; -8 and is realizable by aF 5, 4, 4, 3, 2; -3.

The function H = ad + ae + bc + bde + cd has bH = 16, 8, 12, 8, 4; 12.

Therefore aH = 5, 3, 4, 3, 2; 4 is a realization of H.

Note for future reference that functions F and H, related as

specified above, lead to the same plot of G(Z) when realized by the

related MWT vectors.

A checking sequence for F verifies that the actual weight-

threshold vector, w;T realizes F, and hence it verifies that the ac-

tual aF realizes F. But if a realizes F, then it must also realize

G(Z). This is so for the following reasons. The plot of G(Z) on the

excitation line contains all the excitation values of F, and in addi-

tion those where y0 = -1 (see the previous example). Consider a vertex

Z= Z1 z2, ... , Zn; +1. The test verifies that Z1 is correctly

located on the plot, i.e., that G(Z1) plots in the correct half plane.

Z z ;- 1
Therefore, it verifies that Z = -Z1, -z Z2 , -Zn; -1 will

plot in the opposite half plane. But since the test is complete, it

verifies correct operation at all Z1 (i.e., all possible combinations

of the z1 through zn), and therefore at all Z 1. Hence the test veri-

fies correct operation of G(Z).

Furthermore, it follows that if the test sequence for F consists

of vertices Z1, Z2, ... , Zn, then an equally good test sequence is

-Z1, -Z2, . -Zn. Of course, the latter cannot be actually applied,

since z0 is fixed (at +1) in any test.

To test the function H, related to F as prescribed above, we

wish to verify the same G(Z). However, the test cannot contain



-144-

certain values of Z, namely those for which the i-th element in

.F Fa , ai, corresponds to the modified threshold of H, aH. Here the

test must make z. = +1. But if some vertex Z in the test set of F
1 P

has z. = -1, it can be replaced by vertex Z = -Z without loss of
1i~~ ~~~ ~~p P

information, and then Z1 will indeed have z. = +1. It follows that
p 1

given a test sequence for F, one can find the test sequence for H by

making the appropriate choice between Z and -Z . This is the result
P P

we were seeking. The procedure for finding the test sequence for H

given that for F is stated more precisely in the following algorithm,

which is illustrated below.

ATGORITHM

=F F F F FLet the characteristic vector of F be b = bl, b2 bn; bo

and that for H be b = bH, b2 ..., b where b +H H F

1. List all the test vertices of F in +1, -1 notation, placing

each entry under a column headed by the corresponding compo-

nent of b

2. Under the component associated with the modified threshold

place a +1 to augment each vertex. Add a column describing

the output at each vertex.

3. Augment the list by adding to it each vertex and output mul-

tiplied by -1.

4. Locate bF such that IbFI Ib H{I. If bF = bH, pick those
~~i = boi 0

vertices which are +1 in that column; otherwise pick those

which are -1.



5. Match the remaining bH and b., multiplying columns by -1 if
1

H F
b. = -b..
1 j

6. The vertices selected in step 4 and modified in step 5 are

the test vertices of H.

Example: F = ABC + ABD + ABE + ACD + ACE + BCD, which has the

characteristic vector b = 16, 12, 12, 8, 4; -8. The minimal check-

ing sequence for F is: 11001, 10101, 01110, 01101, 11000, 10011,

and 10100. We wish to find the minimal test sequence for function

H = ab + ac + ad + ae + bc + bde + cd, for which b = 16, 8, 12, 8, 4; 2.

b 16 12 12 8 4 -8 Step 5 Output Test Vertex

bF of H
F A B C D E b0

H H
H a c b 0 b e -bd d

0 d

1 1 -i -1 1 1 -1 1

1 -1 1 -1 1 1 -1 1

-1 1 1 1 -1 1 -1 1

-L 1 1 -1 1 1 -1 -1

1 -1 - 1 1 1 -1 -1

1 1 -1 -1 -1 1 -1 -1

1 -1 1 -1 -1 1 -1 -1

-1 -1 1 1 -1 -1 1 -1

- 1 - 1 -1 - 1 -1

1 -1 - - 1 -1 1 -1

1 -1 -1 1 -1 -1 1 1



The true test vertices of H are 10001, 01100, 00110, and 01011. The

false test vertices are 00101, 10000, and 01010. Function F has 3

true and 4 false test vertices, while H has 4 true and 3 false ones.

To recapitulate, we have shown how the test sequence for H can

be found from that for F by means of a very simple procedure. Con-

sequently, to compile ,he optimum test sequence for all functions

that are single-threshold-element realizable, one need find only one

test for each essentially different characteristic vector. This is

not very tedious for a reasonably small number of variables, since

the number of essentially different characteristic vectors is not

very large. (For six or less variables, Dertouzos has shown that

there are 135 different characteristic vectors.)



REFERENCE

1. Dertouzos, M. L., "Threshold Logic: A Synthesis Approach",
Cambridge, Mass.: MIT Press, 1965.



APPENDIX A

UPPER BOUND ON THE NUMBER OF
PRIME IMPLICANTS OF UNATE FUNCTIONS

We wish to display all possible products of n variables in a

matrix having the following form:

1. Each entry is distinct from every other entry and consists of

a single product.

2. All products of length 2 are placed in row 2.

3. If in a column there is a product of length 2 and there is one

or more products of length greater than 2, then there must be

a product of length X+1 which differs from the product of

length 2 in precisely one variable.

4. All R entries in each row are placed in columns 1 through R.

We shall say that the matrix is "left-adjusted".

Matrices of the above form will be designated by M(n). An example of

a M(3) matrix is given below:

A B C

AB BC AC

ABC

A matrix M(n) can be constructed from a matrix M(n-l) by the

following procedure:

1. In M(n-l) create row n.

2. In each column CJ of M(n-l), append in row i+l product nP,

where n is the n-th variable and P. is the longest product

-148-

---e , r e . ... .. __,,__. ..--- -----.-



(located in row i) in Cj. Call this modified matrix YM(n-l).

3. Append to the right of Ml(n-l) a copy of M(n-l) with the fol-

lowing changes:

(a) In each column delete P., defined above.

(b) Multiply each of the other entries by n.

(c) Place the modified entries in row R of M(n-l) into row

R+1 of the new matrix.

(d) In column 1 and row 1, place the product consisting of

the single variable n. Call the appended matrix 2(n-l).

4I. Intersperse the columns of M2 (n-1) with those of Ml(n-l) such

that to the right of a column there are no columns with a

larger number of entries. At the end of this step M(n) is

completed.

Example: We construct M(4) on the basis of M(3) given in the

previous example
1 2 3

Steps 1 and 2 A B C

AB BC AC

ABC i = M1(3)

B nP2 3



-150-

1 2 3 1' 2' 3'

Step 3 A B C ] D

AB BC AC I AD BD CD

ABC BCD ACD ABD

ABCD

M·(5) 2 (3)

M(4)

Step 4. Not necessary, so that above matrix is M(4). Note

that M(4) is left-adjusted.

We must now prove that the procedure results in a matrix which

has all four of the properties previously listed. That the construc-

tion results in all 2n-1 products possible (the product of zero

length is not displayed) is clear from the construction, for Ml(n-l)

contains all the possible products not containing n and M2 (n-l) to-

gether with the added entries nPi in Ml(n-1) lists all the possible

products containing n. Similarly, it is easy to see that Steps 1

through 3 assure that properties 1 through 3 are preserved in M(n),

given that they exist in M(n-l). What is not easy to see is that

property 4 (left-adjustedness) is preserved by virtue of Step 4.

To prove this, assume that M(n-l) is left adjusted. We now show

that M(n) must also be left-adjusted. First note that because M(n-l)

is left-adjusted, a column of M(n-l) with E entries will have the

n-E
first (shortest) entry (of a continuous string) in row --. This is

true for all columns but the first, because if there are E entries,



-151-

then there are n-E products missing, one of which is of length zero

and has no row in M(n-l). Also, from the symmetry of the binomial

coefficients and the left-adjustedness of M(n-l), it follows that

half of the missing entries are above the first existing entry and

the other half are below the last entry. Now consider a column C

with F entries in M2 (n-l). With the exception of the first column,

which in Step 3(d) has the product n added in row 1, column C arises

from a column K of F+l entries in M(n-l) by virtue of Step 3(a).

The first entry in column K occurs in row (2 )and, in accordance

with Step 3(c), after multiplication by n, it will'be placed in row

n-(F+l) +1 2 of M2(n-l). But that is precisely the row of

M(n-l) in which columns with F-1 entries start. Because of Step 2,

this is also the starting row for entries of length F in Ml(n-l).

Consequently, in both M2 (n-l) and Ml(n-l) columns with F entries

start in the same row. Therefore, Step 4 will assure that M(n) is

left adjusted, and so property 4 is assured by the construction.

Lemma A.l: Matrix M(n) has ([n+]) = N(n) columns.

Proof: Since N(n) is the largest number of products of fixed

length that can be formed from n variables and M(n) is left adjusted,

it follows that M(n) has N(n) columns.

Lemma A.2: No unate function of n variables can have more

than N(n) prime implicants.

Proof: Since M(n) has property 3, each product in a column

with more than one entry is either contained in or contains each of



-152-

the other products. Consequently, a unate function of n variables

can have at most one prime implicant from each column, of which

there are N(n).

Lemma A.3: The symmetric function S of n variables which is

true whenever [2-] or more out of n variables are true has the

largest number of prime implicants.

Proof: By its definition, S has N(n) prime implicants. By

Lemma 2, no unate function can have more than N(n) prime implicants.

Theorem A.l: The function S of Lemma A.3 and its complement,

S, together have the largest possible number of prime implicants.

Proof: Function S is true whenever n - M + 1 or more of

the n variables are false. (Note that the MSP expression for S is

unate in the complemented variables. For example, for a three vari-

able function S = AB + AC + BC, and S = B + Ad + BU.)

n+l n+l
(a) n odd. Here n - + 1 = n - 2 +1 - 2'

Then S and S have the same number of prime implicants, i.e., N(n),

which by Lemma A.2 cannot be exceeded by any other function. Hence

the theorem holds.

(b) n even. Here n - I-] + 1 = n - + 1 = 1.

Now S has still the largest possible number of prime implicants,

but has N'(n)) (n n = ) prime implicants, and N,(n) < N(n). Note

that in M(n), written in complemented variables only, the N'(n)

prime implicants of S are precisely all the entries in row 2 + 1 of

the matrix, which is the second longest row. Hence a function F



-153-

with more prime implicants than S would have to have products in

n n
row 2' which are products of length 2. For each product P in row

n that F may have, the product formed by the remaining uncomplemented
2

n variables not used in P cannot be a prime implicant of F. (For

example, let n = 4. Then if AB is a prime implicant of F, then CD

cannot be a prime implicant of F.) It follows that by whatever

number the prime implicants of F exceed those of S, the number of

prime implicants of S exceed those of F. Hence the total number of

prime implicants cannot exceed N(n) + N'(n), and the theorem holds.



CHAPTER 3

AN ALTERNATIVE APPROACH TO CHECKING BASED ON A RESPONSE-TABLE

We consider the following two problems: A box is intended to

mechanize a specified combinational function G, but if any malfunctions

occur, the box will mechanize one of the specified combinational functions

H, or I,..., or W. By means of applying a set of input combinations,

called a test, and making observations at the output terminals only,

we wish to determine either

(a) that the box is working correctly, i.e., that it mechanizes G,

or

(b) which one of the functions G,H,I,...,W it mechanizes.

If the intent is to answer (a), we say that the box is to be checked;

here we expect a yes-no answer. If the intent is to answer (b), we say

that the box is to be diagnosed; here we not only learn whether or not

the box functions correctly, but also which malfunction class is present

if the response is not according to G. (We assume that each malfunction

class gives rise to one of the functions H,I,...,W.)

Clearly, diagnosis includes checking, and consequently a checking

test need never be longer than a diagnosing test.

We shall assume that specifications G,H,I,...,W are such that no

two are alike, i.e., for every pair of functions there exists at least

one input combination to which they respond differently. Consequently,

one can always perform diagnosis (and hence checking) by applying every

possible input combination. However, it is desirable to make the set

of inputs to be applied as small as possible. In the remainder of this

-154-



-155-

chapter we will develop techniques for finding "short" tests. Some of

these will lead to the shortest possible test; others will not. Our

results are very much like those given by W. H. Kautz (IEEE Trans. on

Computers, EC-17, 4, April 1968, 352-366), but the point of view used is

different.

3.1 ILLUSTRATIONS OF APPROACH

For each input combination, i, we define a partition Pi on the set

of possible functions G,H,...,W according to the output. Two functions

I and J are in the same block iff their response to i is identical.

Formally stated, for checking we wish to find a set S of input
c

combinations such that the intersection of the associated partitions has

circuit G in a block by itself and the remainder of the partition is

arbitrary, i.e.,

7T P. = (G, arbitrary)
jesc

For diagnosing, we wish to find a set Sd of vertices such that

wr P. = (0)
jesd

where (0) denotes the partition with a single element in each block.

Of course, the smallest checking (diagnosing) test is that for which

the cardinality of Sc (Sd) is smallest.

Consider the input-output behavior described in Figure 3.1, where

the row labels are the decimal equivalents of the input combinations

(vertices), column G lists the response of the fault-free (good) circuit,

and columns H through Q the response of each of the circuit variants

which could arise due to a malfunction.* Note that the circuit has two

* Finding the functions H through W is not, in general, a short task,
although it can always be done, if all malfunctions being considered
result in combinational circuits.



binary outputs, so that the possible outputs range from 0 (00) to 3 (11).

The figure also lists the partitions PO through P7, where blocks are

marked off by commas rather than the conventional overscore.

G H I J K L M N O P Q

0 3 3 3 2 2 2 3 3 3 3 3

1 2 2 0 1 1 2 3 3 2 2 1

2 0 0 O O0 0 0 0 0 0 0 

3 2 1 1 2 2 1 2 2 2 0 0

4 0 O 0 0 1 1 1 0 0 0 0

5 0 0 0 1 1 1 0 0 0 0 1

6 1 1 2 3 3 3 2 1 0 1 1

7 2 2 0 1 1 2 3 3 2 2 1

x P0 = (GHIMNOPQ,JKL)

P1 = (GHLOP,I,JKQ,MN)

x P2 = (GHIJKLMNOPQ)

P3 = (GJKMNO,HIL,PQ)

P; = (GHIJNOmP,KLM)

p5 = (GHIMNOP,JKLQ)

P 6 = (GHNPQ,m ,JKL,O)

x P7 = (GHLOP,I,JKQ,MN)

Fig. 3.1 Example 1

In scanning these partitions, we observe that P2 places all the

states in one block. Hence applying vertex 2 gives no information as

to which of the circuits G through Q is actually at hand. Consequently,

no test need include vertex 2, and we eliminate P2 from further con-

sideration.

-C~ --- I-`-~~`~` ~. ~~"""~`` .-~~11-~1-~_1_. .~11i___~-~i~i~1----



-157-

We also observe that P1 and P7 are identical, and consequently no

test set need contain both vertex 1 and vertex 7. We therefore

eliminate P7 from further consideration.

Next, we observe that by combining the first, second, and fourth

block of P6, we obtain PO. This means that whatever information is

obtained from applying vertex 0 is surely obtained from applying vertex

6. We say that vertex 6 "covers" vertex 0, and eliminate PO from

further consideration.

The partitions eliminated so far have been marked by X in Figure 3.1.

We now observe that P3 is the only partition which can differentiate

between G and H. Hence any test must contain vertex 3, since both a

checking test and a diagnosing test must be able to resolve between

circuits G and H, because G is the only circuit which functions

correctly. We say that P3 is "essential," because any test set must

contain vertex 3.

Next, we observe that P1 is also essential, because it is the only

remaining partition which differentiates between G and N. (Recall that

P7 has been eliminated from consideration.) Also, P6 is the only parti-

tion that can differentiate between G and 0, and is therefore essential.

Since any test must include vertices 1, 3, and 6, it is useful to

form the intersection

P P3 P6= (G,H,I,JK,L,M,N,O,P,Q)

=P

If our objective is to check only, then, because P6 is of the form

(G, arbitrary), the shortest test is Sc = {1,3,6}; on the other hand, for

diagnosing we obtain as the shortest test Sd = {1,3,4,6}, because



P4 ' P6 = (0). While every diagnosing test is a checking test, it is

not true that the shortest checking test is contained in the shortest

diagnosing test, as a counterexample given in Section 33 will show.

As a second example, consider a three-input, single-output circuit

which has the partitions given in list LO of Figure 3.2. (This example

p P2
Lo LO L 2

PO = (GIL,HJKMN) P = P P2 = (GI,L,KM,HJN)

P = (GHM,IJKLM) P' = P'PO (G,IL,HM,JKN) P P 2 (M,KH,J)

2 1~P2 2 = Pi' P2 (G0
P2 = (GIKM,HJTJN) Pj = P2'Po = (GI,KM,IL,HJN)

(GHIK MN) P = P Po = (GI,HK,L,JMN) P = GK M N)
P3 = (3 3 K,J0N) 3 = P3'P2= (G= ,H,M,~)
p4 = (GIJKLMN,H)

P = (GHK,IJLMN) P P =(GHKIL ) P." = p P = (GK,IM,H,JLN)

p6 (GHIJ ,KLMN) P = PP o = (GI,HJ,L,KMN) P = P 2 (GI,HJ,KM,LN)

P7 = (GHIMN,JKL) P = Po = (GIKLH = = (GIM,K,HN,JKL,)N) P
7 0 7 7P2

Figure 3.2 Example 2

We can make the following observations:

(1) No vertex places all circuits in one block.

(2) No pair of partitions is identical.

(3) No partition is covered by any other partition.

(4) There are no essential partitions.

It turns out, however, that P4 can be eliminated on the basis of

the following argument. Partition P4 distinguishes only between circuit

H and any one of the others (Q,I,J,...,N), but is not essential.

Consequently, if vertex 4 were used in a test, then it could be replaced

by some other single vertex without lengthening the sequence.

__________________-- --------- ~-.·---·-- ~----� - --- ~~~~-~~^~--'*"---------~v----- -



-159-

At this point, we have no further steps for eliminating partitions

and are now faced with a classical covering problem: we must find that

subset of partitions which is smallest and can simultaneously differen-

tiate between all possible circuit label pairs (for the case of diagnosis),

or between all possible pairs in which G is one of the elements (for the

case of checking).

To ease the task on hand, we observe that only to differentiate

between labels G and H. we must apply either vertex 0 or 2. The parti-

tions resulting from either choice are also shown in Figure 3.2 with
P P2

list L1 indicating the result of choosing PO and L1 the result of

choosing P2. In neither list is there an identical partition pair, nor

is there a partition covered by another partition, since all have the

P0same number of blocks. From L1 we observe that there are two checking

tests of length two: vertices 0 and 1 form one checking test, and

vertices 0 and 5 a second.

Continuing with Example 2, we now find a diagnosing test. Scanning

P0 P2
lists L and L2 , we observe that in all partitions except P" there is

a block with three elements. But PO through P7 are all two-block

partitions. Consequently, if there exists a diagnosing test of length

three, then that test must contain vertices 6 and 2. But then there

must exist a single partition which can simultaneously differentiate

between pairs GI, HJ, KM, and LN. Now only P1 and P5 can differentiate

between G and I. We form

P6P1 = (G,H,I,J,KLN,M)= P"t

P"P5 = (G,H,I,J,K,LN,M) = P1

~ - -~----~- -- --- ----^-6 6-



-160-

Hence, a minimum diagnosing test is specified by P"' together with any

vertex that can distinguish between L and N, viz., 0 or 7. Consequently,

the following are some of the minimum-length diagnosing tests:

(a) 6,2,1,0

(b) 6,2,1,7

(c) ,2,5,0

(a) 6,2,5,7

This example is quite typical. For circuits that are not very

complex, i.e., have a moderate number of inputs and not very many

variants due to malfunctions, a short, or even shortest, checking test

can be found quite readily. Short diagnosing tests, on the other hand,

are more difficult to find, particularly if minimum test length is

desired. In fact, for the case of checking tests we can simplify the

procedure followed in the previous example, as described in the next

section.

3.2 FINDING SHORTEST CHECKING TESTS

For the purpose of finding a checking test, we can define a broader

notion of coverage, called C-coverage: a partition P. C-covers another

partition Pj if the block of Pi containing G is contained in a block of

P..

Returning to the example of Figure 3.2 we observe that PO C-covers

P4' P1 C-covers P7', and P5 C-covers P3'. This leaves for consideration

the five partitions listed below

P0 = (GIL,HJKMN)

P1 = (GHM,IJKLN)

P2 = (GIKM,HJLN)

-- I------------~-· ---------- ·------------- ·--··-----2-



P5 (GHK,IJLMN)

P6
= (GHIJ,KLMN)

Observe again that only PO and P2 can differentiate between G and H.

Because in both Po and P2 states J and N are in the same block with

state H, it follows that any checking sequence that differentiates

between G and H also differentiates between G and J, and between G and N.

To simplify our future work, we can therefore omit J and N in all

partitions and obtain

PO = (GIL,HKM)

P1 = (GHM,IKL)

P- = (GIKM,HL)

P' = (GHK,ILM)

PI = (GHI,KLI)

Now to differentiate between G and I, either P1 or PI must be used. In

either case, G will also be differentiated from L, and so we omit L from

further consideration and obtain

PO = (GI,HKM)

P1 = (GHM,IK)

P' = (GIKM,H)

P' = (GHK,IM)

= (GHI,KM)

Now PO C-covers P2 and P6. Eliminating the latter two partitions makes

P" C-essential. We therefore form

"' 1 =P"P = (G,I,HM,K)
P1 = = (GI,
p"' ="P" = (G,IHKM)
3 -5-0'



-162-

Hence there exist at least two minimum-length checking tests: {O,1} and

{o0,}. This result was found before, but with less pain in the second

development.

We summarize our approach to the determination of minimum-length

checking tests in the following algorithm, where n denotes the number

of binary inputs, and m the number of binary outputs. The execution of

the algorithm is stopped when a partition of the form (G, arbitrary) is

obtained.

1. For the correctly functioning circuit G and each of its variants

H,I,...,Z due to a malfunction, record in a column the response due to

each possible input combination (input vertex) j, 0 < j < 2n-1. The

result is called a response table, an example of which was given in

Fig. 3.1.

2. From the response table, form the set of all partitions P..

Two circuits labelled Q and R are placed in the same block of Pj iff

their response to input vertex j is identical. Partition P. will have

at most 2m blocks.

3. Eliminate all partitions which have a single block, i.e., all

Pj = (I).

4. If P = Pj = .. = Pq, eliminate all but one of these, say Pi.

5. Eliminate the C-covered partitions. (A partition P. is C-

covered by another partition Pj if the elements in the block of Pj

containing G are a subset of the elements in the block of P. containing G.)

6. Find the C-essential partitions. (A partition is C-essential

if it is the only one which ha's circuits G and X, any other circuit, not

in the same block.)



7. Eliminate all two-block partitions that are not essential and

have a singleton K, K / G, as one block.

8. Intersect each of the surviving partitions with the intersection

of all essential partitions. Call all the resulting partitions the cur-

rent list of partitions.

9. Repeat Steps 4-8 on the current list of partitions in any order

and as frequently as possible until they can no longer be applied.

10. Find a small subset of partitions Pa,Pb,...,Pc which are the

only ones that distinguish between circuit G and some one other circuit,

X. Determine all those circuit labels X,Y,...,Z which in all of these

partitions are not in the block containing label G. Eliminate labels Y

through Z in all partitions.

11. Repeat Steps 3 through 10 as often as possible.

12. Arbitrarily select one partition Ps for inclusion in the test.

Intersect all remaining partitions with Ps

15. Repeat Steps 3 through 11.

14. Repeat Steps 12 and 13 until a checking test is found and

the number of partitions used is a minimum.

The major computational labor arises from Steps 12 through 14, for

here we go through a classical decision tree and our objective is to find

that set of branches which leads to a minimum solution. Since this type

of computation is well known, we need not dwell on it.

3.3 FINDING DIAGNOSING TESTS

To find a minimum-length diagnosing test, the procedure is similar

to that given above for finding minimum checking tests. The differences

are these:



(a) In Step 5, replace C-covered by D-covered. A partition Pi is

D-covered by another partition P. if P. is an enlargement of P..

(b) In Step 6, replace C-essential by D-essential. A partition

is D-essential if it is the only one which differentiates between

circuits X and Y, for any X and any Y.

(c) In Step 7, K is not restricted in any way.

(d) Step 10 and therefore Step 11 are not applicable.

We illustrate the process of finding an optimum diagnosing test

starting with Step 2.

2. PO = (GHIKLMNOPQ, J)

P, = (GIJMNPI,HL,KO)

P2 = (GIJLNOQ,HM,KP)

P3 = (GIJLMOP,IHN,KQ)

P4 = (GHKNQ,,IOP,JLM)

P5 = (GHYn4P,IOQ,JLN)

P6 = (GHJKLP,IPQ,MN)

P7 = (GHIJLMN,KOPQ)

3. None

4. None

5. None

6. None

7- Eliminate PO

8. None

9. Returning to Step 6, we find that P1 is now D-essential, because

only P1 differentiates between J and L.1



lo. P2 = P2 ' P1
= (GIJNQ,M,P,H,L,KO)

P = P3 * P1 = (GIJNP,N,QH,L,K,O)

P4 = P4 P 1
= (GNQ,IP,JM,H,L,K,O)

P = P 1 = (GMP, IQ, JN, H,L,K,O)

P6 = P P1 = (GJ,IPQ,MN,HL,KO)

= P7 ' P1 = (GIJMN,PQ,HL,KO)

11. None

12. We observe that only P4 and P5 can differentiate between G and

J. Suppose P4 is selected for inclusion in the test.

P - P · P' = (GNQ, I,J,M,P,H,LK,O)

P3 = P P = (G,IP,JM,N,Q,H,L,K,O)

P= pi = (G,M,PI,Q,J,N,H,L,K,O) = (O)

P6 = P ·* Pt = (G,J,IP,Q,M,N,H,L,K,O)

PI = P7 * = (GN,Q,I,P,JMH,L,K,o)

Thus a minimum-length diagnosing test is 1,4,5

If we had selected P' for inclusion in the text, there would result

P't = P2 * p = (G,M,P,IQ, JN,H,L,K,O)

P3 = P * Pt = (GMP,I,Q,J,N,H,L,K,O)

pt= p . p = (O)

P= P' P P= (G,J,IQ,P,M,N,H,L,K,O)

Prs7 = P = (GM,P,I,Q, JN,H,L,K,O)

Since Pt = (0), we again find the same minimum-length diagnosing test,

which happens to be unique in this example.

This example also illustrates that a minimum-length checking test

is not necessarily contained in any minimum-length diagnosing test.

It is readily verified that there are only two checking tests of length



-166-

two for this example: 3,4 and 2,5 . Obviously, neither is contained

in the unique minimum-length diagnosing test.

Yet if we form

p =P 1 P3 * P4 = (G,N,Q,IP,JM,H,L,K,O)

we observe that PiP2 is a diagnosing test (of length 4). Experience

with a limited number of examples indicates that to avoid the consider-

able labor involved in finding optimum diagnosing sequences, it may well

be good strategy to start with a minimum-length checking test (which is

not so hard to find) and then to enter the algorithm for finding

diagnosing tests with the partitions involved in the checking sequence

as essential. This approach seems sensible for actual applications, for

one will often conduct a test without knowing whether or not the circuit

is faulty, and one can expect that the circuit is more likely to be

fault-free than not. In the majority of cases then, the initial checking

test need not be followed by the additional inputs that complete the

diagnosing test, and therefore the non-minimum length is not so crucial.

A major contribution to the increase in computational complexity

for a diagnosing test comes about from the fact that in Step 6, the

number of pairs of circuits that must be considered is large: for a

total of z circuits, there are z(z-l)/2 pairs to be investigated.

3. 4 CONCLUSIONS

We have given techniques for finding checking and diagnosing tests

and found the methods for determining optimum checking tests more

conveniently executable than those for determining optimum diagnosing

tests. The difference comes about primarily because (a) in Step '6

checking involves consideration of only z-1 circuit pairs (versus



-167-

z(z-l)/2 for diagnosing) and (b) Step 10 simplifies the procedure for

the case of checking.

Furthermore, the compilation of the response table (see Step 1)

is, for a reasonably complex circuit, a time-consuming process.

Two alternatives appear to be open for easing the computational

task:

1. Approximate methods for finding checking sequences, such as

given in Chapter 1.

2. Designing circuits for ease of checking and diagnosability.

The latter appears to be practicable at this time, due to the

advent of LSI, and will form the subject of a future investigation.



SECTION IV

MULTI-VALUED LOGIC

C. Ying and A. K. Susskind

This section is concerned with logic in which a physical signal

lead can carry more than two signal levels. A technique is described

for the synthesis of efficient combinational networks which is appli-

cable no matter what the number of signal levels is, based on building

blocks that can be readily realized. Finally, the theory of symmetric

functions is extended to the case of multi-valued signals.

-168-



CHAPTER 1

INTRODUCTION

The topic of multivalued logic has been studied, as one might

suspect, by both logicians and engineers. The logicians are mainly

concerned with the formulation of calculi analogous to the conventional

(binary) propositional and predicate calculi. Post1 generalized binary

operations to m-valued ones and showed functional completeness - the
n

ability of the set to realize any of the mm functions of n variables.

Rosser and Turquette2 concerned themselves with definition of truth and

falsity in m-valued logics, preservation of modus ponens, and problems

of consistency and completeness (in the Godel completeness sense) of

their logics. More recently, diForino3 approached m-valued logic from

the point of view of algebraic logic.

To the logic designer interested in m-valued switching, most of

these investigations are rather impertinent. The first thorough in-

depth discussion of m-valued switching was presented by Lowenschuss in

1958. From the logicians he borrowed the concept of functional complete-

ness and recommended Slupecki's theorem5 as an easy test for completeness

of a set of proposed operators.

Slupecki's theorem, being so extremely powerful, will be restated

here without proof:

Theorem 1.1: A set of m-valued operators S is functionally complete

iff

1) S can realize all mm functions of one variable

2) S can realize one two-variable function f(x,y) such that:

-169-



-170-

a) the range of f is the whole alphabet A = {0,1,...,m-l}

b) there exist a,b,c,d in A, such that

i) f(a,b) f f(a,c)

ii) f(a,b) # f(a,d)

iii) f(a,c) f f(a,d)

For logical designers, however, a far more constructive proof of

the completeness of a set of m-valued operators is simply an algorithm

which describes an effective way to generate realizations for any of
n

the m functions in m-valued switching. Such an algorithm is usually

expressed in the form of an expansion theorem:

f(x! '.,x n ) = F[xl,f(c,X2 ,. ,x n )]

where c is any truth value, and F some functional. For example, the

well-known expansion theorem for the and-or-not set is

f(x ,...,xn ) = xlf(l,x2,...n ) + x1 f(O'x2, xn)

which leads to the canonic sum-of-products form and immediate realization

2 n
for any of the 2 functions.

Recently, there has been an increase in interest among logic

designers in multi-valued switching. However, by far the majority

limited themselves to ternary switching. We are not aware of any

systematic approach to the entire problem of multivalued switching -

both the theories and their implementations. The study by Yoeli and

Rosenfeld6 limited itself to the ternary case and considered only one

particular system of logic. Lee and Chen7, Berlin , and Gazale9 con-

sidered algebraic aspects only, without any concern as to circuit

realization. Lowenschuss and Muhldorf1 0 both gave excellent discussions



-171-

of the problem, showing their awareness of and interest in the appli-

cations of m-valued logics.

In our study of multivalued switching systems, we have found that

there are essentially two approaches to the problem of finding m-valued

switching systems. First is the algebraic approach, exemplified by the

systems due to Post, Rosser and Turquette, and Muhldorf. The second

approach to multivalued switching is from a device point of view.

Wigington's parametric oscillatorll system represents such an approach.

The problem with the device approach is obvious - it almost always leads

to ad hoc synthesis procedures, if at all. That is to say, procedures

for which minimality, uniqueness, and convergence are not guaranteed.

The complexity of such a system is often the only property that is

guaranteed. In our previous report, we indicated how threshold logic

can be extended to the m-valued case and indicated an effective synthesis

procedure leading to a simple two-level form of realization. Further

work along these lines is reported in Ref. 18.

Any logic designer knows the desirability of algebraic structure

in a logic system. The Boolean nature of and-or-not makes the system

easy to manipulate. The algebraic approach to multivalued switching,

then, is to construct systems with such desirable algebraic structure.

The Muhldorf system discussed in Chapter 2 is an excellent illustration

of the advantages of such an approach for the multilevel case. Of all

the systems investigated, the one based on Muhldorf's work is easiest

to handle and while procedures leading to optimum circuit forms were

not found, nevertheless the algorithm given in Chapter 2 leads to "good"

realizations.



-172-

In Chapter 3, we extend the theory of symmetric functions to the

m-valued case and give an effective procedure for detecting symmetry.

It is noteworthy that as the number of levels increases to five or

more, one must differentiate between two types of symmetry, only one

of which has the desired property of leading to circuit realizations

that are independent of the lead assignment.



CHAPTER 2

THE MUHLDORF SYSTEM OF MULTI-LEVEL SWITCHING

Muhldorf proposed a system of m-level switching which is a

generalization of the Boolean operators in two-valued logic. Muhldorf1 3

himself applied his system to ternary switching. The following is a

concise development of his system for m-level switching and an effective

procedure for using it in synthesis.

We shall find it convenient to call the set of constants O,l,...,m-l

the set A. By An will be meant the nth Cartesian product of A.

Muhldorf defined the following 2m allowable operations:

(1) The maximum operator (+)

x + y = max (x,y)

(2) The minimum operator (.)

x * y = min (x,y)

Although the operators defined are binary, the associativity of the

operations allows us to write unambiguously:

n A

Z Xi X1 + x2 + ... +xn = max (xl,...,xn)
i=l 1

n A

Xi x1 · x2 · n .· xn = min (xl,... ,xn )i=l

Note that the operators -, + induce a distributive lattice structure on

A. Distributivity follows from the properties of the max- and min-

operators:

x + yz = (x + y) (x + z)

(x + y) z = xz + yz

-173-



-174-

(3) The best way to describe the remaining 2m-2 operators, which are

unary, is by displaying their truth-tables:

0 01 O... i Ol...m-2
x x x x x

0 m-1 m-1 m-1 m-1

1 0 m-1 m-l m-1

· . 0 · ·

* * 0 0 *

i 0 O m-1 m-1

* * · 0 *

m-2 0 0 0 m-1

m-1 0 0 0 0

m-l "step-down" functions

m-l x(m-2)(m-1) xi(i+l)... (m-l) x12... (m-1)
X X

0 0 0 0 0

1 0 0 0 m-1

* *·0 *· 

i 0 O m-1 m-1

* * 0 0 0

m-2 0 m-1 m-1 m-1

m-l m-1 m-1 m-1 m-1

m-1 "step-up" functions

Our interest in the Muhlaorf system arises from the case with which

the 2m operations can be implemented with semiconductor devices. The



-175-

max and min functions can be realized by the diode networks shown in

Figs. 2.1 a and b, respectively. Levels V+ and V signify constant

signals higher than V and lower than V , respectively. Note that
m-l o

for binary signals, these networks correspond to Boolean OR and AND

gates, when positive logic is assumed. The unary operators are thres-

hold detectors and can be realized in the form of Fig. 2.2. The signal

at A corresponds to one of the step-down operators and that at B to one

of the step-up operators. Resistors R1 and R2 and source V determine

the level of the threshold, i.e., the lowest potential at X which

causes the left transistor to conduct. When the left transistor conducts

(is cut off) the right transistor is cut off (conducts). Furthermore,

when a transistor conducts, we assume that its collector potential is

essentially Vo , whereas if it is cut off, the collector potential is

01... i
essentially Vm. If values are so chosen that point A realizes x

because the left transistor is cut off for all input potentials V. or

less, then point B will realize x(i+l)(i+2).. (m-l) .

Certain unary functions play an important role in the demonstration

of the functional completeness of the set of 2m operations defined above.

We shall single them out as follows:

i A < m-l if x = i
x = t O if x i i= Ol...m-

We can realize each xi as follows:

i 01...i i(i+)..m-1X =X X

Reference to the truth tables will show the validity of the equation.

Now we are ready to prove the following

Theorem 2.1: The 2m operations defined above, together with the

constants A, can generate any m-valued function of n-variables.



-176-

X , X

x2

Xn X n

(a) (b)

Fig. 2.1 Networks for Max and Min Gates

V+ P~r-I V-I +

2Z

V VO VO

Fig. 2.2 Muhldorf Unary Gates

IV*' ~- --- I



-177-

Proof: It suffices to show that for any m-valued function

f(xl,...,xn) the following claim is valid.

A n
Claim: f(xl,, ,xn) = a f(a,, a2 an

(al,.. .,an) E An
n

Proof of Claim: As the inputs xl,...,xn take on any of the m

possible sets of values in A , say (xl,x2*...,xn) = (a!,a2 ,...,an), only

one term in the above "sum" will be non-zero, namely the term

a1 a2 an
f(al,...,an) x1 x2 ...xn

which at xi = al,...,xn = an is just f(al,...,an), as claimed.

The resemblance of the above to the two-valued, standard sum-of-

products form explains the choice of notation for the max- and min-

operators.

In fact, if one defines

iA 0O if x=i
x lm-l if x / i

with the realization

x 01... (i-l) (i+l)... (m-l)
x = X +x

then a standard product-of-sums form can also be found for any m-valued

function f of n variables.

a1,..., + x + x 2 n)
f(x 1"".,x n -r (f(a 1'..an) I x2 + n

(al',...,an)E An

In this case, at each vertex in An only one of the "sums" in the "product"

can have value less than m-l. Hence the whole expression takes on that

value, which is exactly the value taken by f at that vertex.



-178-

Example:

y 0 1 2

0 2 2 0

1 0 0 1

2 O 1 O

Table for f

For the truth table shown, the standard sum-of-products realization

would be:

0 0 1 O 2 1 1 2
f(x,yj (2 x * y 0) + (2 x y) + (1 . x2 y 1 )+(l x 

In the standard product-of-sums form,

f(x,y) = (2 + x + y) (2 + xl + ) (1 + x2 + yl) (1 + x + )

Getting back to the sum-of-products form, because of distributivity,

we can represent any function of n m-valued variables in the form

f(X) = Sml(X) + (m-2) · Sm_2(X) + ... + 1 ·sl(X)

where each function si has value m-l for all those input combinations

where f has value i and si has value 0 otherwise. Hence the previous

example can be expressed in the above form as

0 0 1 0 2 1 1 2
f(xy) =x y + x * y + l(x y + x y)

We now observe that in the above representation it is not necessary

to restrict the si as severely as was stated. For if si equals some

arbitrary value for some input combination C for which sj = m-l with

j > i, then j s. will contribute an output of j, whereas i s. contrib-

utes an output of i or less. Since j > i, f(C) = j no matter what s.

is. This leads to the following form for any function:



-179-

f(X) = gm_(X) + (m-2) gm_2(X) + ... + 1 gl(X)

where

0 if f(X) < i
gi(X) m-l if f(X) = i

0 if f(X) > i

and 0 stands for "don't-care", i.e., may be arbitrarily specified. The

judicious use of the 0 values forms the central part of the synthesis

procedure that follows.

Yoeli and Rosenfeld6 studied the minimization problem for the case

m=3 and showed that the minimization procedure of Scheinman (Ref. 15)

is applicable. Here, we point out that the procedure is also applicable

to the case of arbitrary m and will summarize it below. The underlying

reason for the applicability of the Scheinman method is that we can

make the g-functions bivalued: either m-l or 0. Because of the

existence of the don't-care conditions, however, much choice is left

and we will suggest one approach that appears to handle the don't-care

conditions effectively, although not optimally.

It will be our objective to recast each of the gi in the form of

a sum of products with each sum having a small (but not necessarily

minimum) number oi Literals. But whereas in the two-level form of

bivalued functions one can have only three kinds of literals (xi, xi,

or no appearance of xi), in the m-valued case there are m(m+l)kinds of

literals:



o 1 m-1
i., x,. .,x .................. m ways

01 12 23 (m-2)(m-1)x. , xi , x i ,..., x. ... m-r ways
1 1 1 1

012 123 x(m-5)(m-l)(rm-l)x i , Xi ,...x i .. m-2 ways

012... (m-2) 123...(m-l)2 waysx ....... 2 ways
1 ' 1

012...(m-1)X . ) independent of x,.. 1 way
1 1

The Scheinman procedure may be recast as follows:

1. Form a list L0 of the vertices given. Put a check next to the

don't-care entries.

2. IForm m(m+l) 0 1 12... (m-i)C. (m-l)2. Form 2 empty lists with the labels x 1,x,... ,x1

3. Enter a (n-l)-tuple a2 ...a into the list with heading x1 iff

i a2 ...an is a vertex in LO If i a2...an is a don't-care vertex

in L0 (i.e., it is checked) also check the new entry in list x1.

0 rm-
4. From the m lists x1,...,X1 formed in Step 3 enter an entry

2a3 ...a in list x(i+l) iff that entry is found in lists xl and

i+l ix1 and place a check mark next to entry a 2a...a in lists x and

i+l
x

Make entry a2 as..a in list xi(i+l) ' (jl- )(j ) iff that entry is

both in lists xi(i+l)' '(j l) and list x(i+l) ' .(j- 1) j Again

check entries copied into successor lists. Repeat until no further

copying can be done.

6. Remove all empty lists and lists with all entries marked with a

check. For each of the remaining lists of (n-lY-tuples reiterate

0 1 O1...(m-l)steps 2, 3, 4, and 5, using as column headings x2,x2,... ,x2



-181-

7. Next, process all surviving lists according to step 6, first with

X3 headings, then with x4 headings, and finally with xn-l headings.

8. Finally, at the (n-l)th iteration we are dealing with 1-tuple lists,

which we can immediately write down as a term involving xn. To

these terms are "multiplied" all the list headings that they derived

from. The sum of all these products yields the desired expression.

Example: We illustrate the above algorithm by the following simple

example for m=4 .

x l x2 x 1 4

Lo list: 00 1 2 11 22
0 0 1 3 / 1 3 1 1
0022 1 3 1 2 V
002 35

0122
0123
1012
1013
1022
10 1 2 2
1101
1102
111111 0 2 3 

1212
1301
1302

The next steo is to obtain the , 10 lists as follows:
The next step is to obtain the 4-5 = 10 lists as follows:



-182-

0 1 01
xI list is x1 list is 1 list is

012 ¢ 012 / 012
013¢ 013 v 013
022 022 022
023/ 023/ 023
112 101 112
113 V 102 113
122/ 111 122
123¢ 112 ¢ 123

113 /

122 /
123 V
201
202
211
212
301
302
311
312

Notice that the x0 list, being all checked, is erased.

We now reiterate the expansion step on the list x1 obtaining the

following lists:

0 1 2 5x2 liX list list 2 list

12" 0 Ol Ol / Ol 
13 / 02, 02 ¢ 02 J
22 11 / 11 u/ 11 /
23¢ 12 v 12/ 12 V

13V
22 /
23 ¢ /

which lead to the following

123 list 0123 list

01 12
02 1 -

11 x3

0 1 X---0 -2

3 X3 X03 x4v12
x 3 21 1 12
21/ 2' 2 2¢ 21./ 2



-183-

Similar expansions on the variable x2,x3 of the xll list lead to:

0 1 01
x2 list X2 list x2

12 v/ 12 / 12
13V' 13/ 13
22 V/ 22 / 22
23V 23/5 23

I ~I I
1 2 12

x) X3 x 3

2¢ 21 22 V 2 2 
3K 3¢ 3

2 5 23
X4 V x4 X4

Tracing back we obtain the final form

23 12 01 01 12 01 123 1
X4 x3 x2 x 4 x3 5 xi

2 1 0123 1
+ x 4 X3 x2 x 1

01 01 12 23 1 123 01 12 1 1 2
X1 X2 x3 X4 + x1 x2 x3 X4 + x1 x3 x4

An effective way of handling the multiplicity of functions gm-1

through gl simultaneously is based on a modification of Polansky's'tag"

method (Ref. 14). Here we preface each vertex (called kernel by

Polansky) by a tag formed as follows: a tag has m-l positions, labelled

1 through m-l from right to left. A 0(1) is placed in position j if

the tagged vertex must (must not) be in function gj, If a 0 is placed

in position j, then in positions 1 through j-l a 0 is placed. All the

true vertices of all gi are placed on one list L0 together with their

tags. The list is processed in the manner of the previously given

algorithm, except that tags are processed according to the following



rule: when terms derived from vertices are copied into a successor

list, the new tag is formed digit-by-digit according to the following

commutative rule:

ti

t 0 1 0

1 i1 1

0 1 X

An item is checked iff the new tag equals the old tag.

To illustrate the procedure and illuminate some closing remarks,

consider the following example:

0 1 2 3
Lo0 1 1 x x

TAG VERTJEX 4 100 1 V 1 0000 3 100 0 / 2 00 2

XlX2 9 110 2 5 100 1 V 8 110 1 7 10 3
6 lo6 2 10 110 2

1 00 10 11 110 3 

2 0 3201 12 23
3 10o 20 xo x x2
4 lo 01 
5 10 11 4,5 100 1 3 100 0 10 110 2 
6 10 12 9 110 2 8 110 1 V 11 110 3
7 o10 33 10 110 2 /
8 liO 21
9 110 02 x 1 x1

11 110 23 8 110 1 10 110 2 6
9,10 110 2 ¢

0123
X1

9,10 110 2



-185-

1 x3

0 1 2 2 3
X2 X2 X22 X2 X

000 5 100o/ 6 o100 2 o000 7 100

01 12
x2 x2 3 23

5 100V/ 5,6 o1 7 1
52

x0 12 2 xx 2X2 12

1 0
x1 x1 x2

1 012
5,6 x1 x 2

01 12
X1 x1

1 2 0 I 2
X2 X2 x2 x2 x2

4:,5 100 9 110 3 100 8 100 lo 110

01 12 12 0
9 X2 3 x 1 x2

4 5 8,10 xl X2

23 012
1 X1

10,11 x23 23 8,9,10 x x212

x0123
xx1

0123 2 2
9,10 x1 · x 2 x2



The products obtained and the vertices which they cover can now

be entered in a table, analogous to the conventional table of coverage

of prime implicants. This is done below.

1 2 3 4 5 6 7 8 9 10 11

i10
E xlx 2 ¢

o xx .

E x3 x(2)3

21 
E x3 x B XX2

01 (1)2

1 x2

x(1)2 012 
1 2

E 2 X23 23

012 P 12

X2 x 

Next we can start to process the table in the conventional manner.

First, we single out those vertices which are covered by only one

product and mark the corresponding products with E (essential) to show

that a cover must contain that product (or one derived from it). In

our example, we find that all vertices except 5, 8, 9, and 10 lead to



-187-

essential products. If our criterion of goodness is to minimize the

total number of products, then vertices 5 and 10 are covered by 6 or 4

and 11, respectively, so that we can omit 5 and 10 from further con-

sideration. Finally, the covers of 8 and 9 are obtained from the single

012 12
product x 1 x2 . This then completes the selection of a minimum set

of products.

However, it is not at all certain that the criterion of minimizing

the total number of products is the most reasonable one to use. Recall

i... j 01.. ...j i... jj+ l' ' ' m -1

that the term x i requires two gates: x and x
P P P

Each of these gates requires a transistor circuit, and one may wish to

minimize the total number of these gates. The minimization based on

this criterion is a very difficult one and we have no good procedure for

achieving it. For cases where the number of independent variables is

small, good heuristics are not difficult to formulate. For the general

case, however, the problem is very hard as might be expected from the

realization that the problem is analogous to the minimum-inverter

problem in two-valued logic. Of course, we realize that the term

xi(i+)...j is always more expensive than the term x 01 * i...j, and
p P

that xi (i+ l)' ' 'j is more expensive than xi(i+ l) '. j( j+ l) ...m -1 But
P P

other than that, we have had no important basic insights.

Finally, we want to point out that the modified Scheinman procedure

does not give all the shortest products. In our example, the product

xl is not obtained, although it covers vertices 8, 10, and 11. If one

wanted to obtain it, he would have to expand around x2 first and then

around x1. In general, if all shortest products are to be obtained, all

possible sequences of decomposition would have to be executed.



CHAPTER 3

SYMMETRY IN M-VALUED FUNCTIONS

Frequently in logical design the function to be synthesized is in

some sense independent of the ordering of the inputs. For instance,

the output of a summer depends on the values taken on by the inputs,

but not on how these values are distributed among the inputs. This

notion leads to the well-known definition of symmetric functions in

bivalued switching.

Definition 3.1: A function f of n variables xl,. ,xn is symmetric

in x*,x*,*..,x* (variable x* being either x. or x. ) iff f(x*,...,x*) =
1. 2 n i 1 n

f(X*p (1 ),.*,x*() for all n! permutations of the variables, p.

It is readily seen that this amounts to saying that any inter-

change of variables, say x.* with x*, will leave the function invariant.
1 j'

It can also be shown that in the bivalued case an equivalent

definition is

Definition 3.2: A function f of n variables xl,...,xn is symmetric
n

in x*,x2,...,x* iff f depends only on the real sum Z x* of the trans-
i=l1

formed inputs.

It is this fact that enables one to express a symmetric function

f as

f(xl,,xn) SA(X=*...'n)

with A being the set of values taken on by the sum .ix* for which f is 1.

In this chapter, we generalize this notion to multilevel switching

theory.

-188-



-189-

3.1 DEFINITIONS OF SYMMETRY IN M-LEVEL FUNCTIONS

Henceforth, unless otherwise stated, we shall always let m denote

the number of truth values in the logic. By S. will be meant the

complete group of permutation of i objects (i.e., the symmetric group

of degree i and order i!). Elements of Sn will be denoted P,pl,P2,...

etc. sk will denote the kth Cartesian product of S. If x. is an
i 1

m-valued variable, we shall denote a permutation, say p, of its m truth

values by the transformed variable xP. When x. takes on truth value k,
1 1

x. will take on value p(k). We shall always denote the variables of a

given function by x l,**OXn) and use yl,.. y, or ' to denote

"transforms" of the x.'s, i.e., yi or z. is a particular xP..

Corresponding to Definition 3.1, we have the following

Definition 353: A function f of n variables Xl,...,xn is 1-

symmetric in Yl,...,yn iff for all p in Sn f(Yl,',Yn) =

f(Yp(1) ' 'Yp(n))'

Definition 3.4: A function f(xl,...,xn) is 1-symmetric iff

(3P1l,...pn E S ) [f is 1-symmetric in xl1''..'Xnn].

Pi Pn
It is readily shown that f is 1-symmetric in x1 ,...,x n iff

Pi P.
interchanging any two transformed variables, say xi and x., leaves

1 J

the function invariant.

Corresponding to definition 3.2, we have a second definition of

symmetry in m-level switching:

Definition 3.5: A function f of n variables Xl,...,xn is 2-

symmetric in Yl,'1',Yn with the pi's, as before, being the transforma-
n

tions of the inputs, iff f depends only on the real sum C yi of the
i=l

transformed variables.



-190-

Definition 3.6: A function f(xl,...,xn) is 2-symmetric iff

(plp n e S ) [f is 2-symmetric in xl ,...,x n ].

P.
Since the sum i.xi. can take on any value from 0 to n(m-l), corres-

ponding to each of the m (m l)+l partitionings of O,l,...,n(m-l) into

m blocks A0,...,Al, we can write a function f which is 2-symmetric in

Yl'' ''Yn as

f(xl,. .,xnn ) =SA... A (y s'y)
'1 Im-l

with each A. containing the value of EiYi for which f takes on the value

i. The omission of A0 is made arbitrarily. If the sum of the transform-

ed inputs is not found in any of the m-l sets A1,...,A 1, f is assumed

to take on the value 0.

From a synthesis viewpoint, 2-symmetric functions lead directly to

threshold logic realizations. (In fact it is well known in binary

switching that most arithmetic units, which turn out to be symmetric

functions, are easiest to implement by threshold devices.)

The transformed inputs are connected to a common linear summer with

the set of weights (1,1,...,1). In particular, the value function (see

Ref. 16) of a 2-symmetric function

f(Y) = SALA2, ,Am (yl' ' n)

is simply a string of n(m-l)+l specified digits originating at the

origin (*). The value of the ith digit is j if i is in A. and is 0 if

i is not in A1,...A m-l

Intuitively one thinks of a function f as 1-symmetric in x,...,xn

if the variables are indistinguishable. In fact, if one has a black box

with n input terminals that realizes f, he can connect Xl,...,xn to the

n input terminals in any way he likes without affecting the output.



-191-

From intuition, one would expect that such a function can be realized

by a threshold-element (TE) network with all input weights equal.

However, this turns out to be false, as we shall see.

In the next section, we shall discuss some of the properties of

1- and 2- symmetry. We will develop detection algorithms and prove that

2-symmetry implies 1-symmetry, but not vice-versa.

3.2 PROPERTIES OF SYMMETRIC FUNCTIONS

We shall establish certain properties of 1- and 2-symmetric

functions so that effective algorithms can be derived to detect such

functional behavior. Henceforth, an unqualified "symmetric" will mean

both "l-symmetric" and "2-symmetric".

For a given function f(xl,...,xn), we can group the mn vertices into

m groups (or truth sets) corresponding to the value of f. Conversely,

any m groups of truth-sets uniquely defines a function f. If we

arrange the vectors of the truth sets for f = 0,1,2,..., m-l in a

column (in that order), we obtain an m x n matrix. The top block of

n-tuples, corresponding to the f = 0 vertices, can be discarded as being

redundant. The remaining matrix, which uniquely specifies the function

f, is called a principle matrix for f. Each of the m-l blocks (some

of which may be empty) of vertices corresponding to f = 1,2,...,m-1

will be referred to as the submatrices of the principal matrix.

The common form of a principal matrix is

f=l V

f=nm-l V
m-1



-192-

Later it will be necessary to discuss the number of O's, l's, and

so on in a column of a truth-table matrix or submatrix. These numbers

will be referred to as the matrix or submatrix 0,1,...,m-1 counts.

Two columns of a submatrix are said to have equivalent column

counts iff the 0,l,...,m-1 counts for one column can be made equal to

the corresponding counts for the other column by a permutation p e S

of the m counts. Two columns of a principal matrix are said to have

compatible column counts iff in the (m-l) submatrices the column counts

of the two columns are all equivalent via the same permutation p. Hence,

if the column counts for the i and j columns are compatible via the

permutation p, we can make the column counts in these columns identical

in each submatrix by transforming the appropriate variable by p.

Generalizing, if all n columns of a principal matrix have compatible

column counts*, it is possible to transform variables x2 ,...,xn by the

appropriate P2, .. ,Pn e S so that the resulting principal matrix, called

a standard matrix has in each of its (m-l) submatrices identical column

counts for each column. For example, the function f specified by the

principal matrix in Table 3.1(a) has equivalent column counts in both

submatrices. Furthermore, the counts for the two columns are compatible

via p = (021). Hence f has a standard submatrix in xlXP as shown in

Table 3.1(b).

Clearly if f has a standard matrix in terms of the variables

Yl' ... ' n f must also have standard matrices in terms of ~P,'... yp I

* Since the relationship of being compatible is transitive, it makes
sense to speak of more than two columns being compatible.



-193-

X1 X2 1 

o o 0 2

0 2 0 1

f = 1 1 1 1 0

1 2 1 1

2 1 2 0

O count 2 1 0 count 2 2

1 count 2 2 1 count 2 2

2 count 1 2 2 count 1 1

f=2 2 0 2I

Oicount 1 1 0 count 1 1

1 count 0 1 1 count 0 0

2 count 1 0 2 count 1 1

(a) p = (021)

(b)

Table 3.1 (a) Principal Matrix for f

(b) Standard Matrix of f in Terms of Xl, 2

where p is any one permutation of S . Of course, some of these standard

matrices may well be the same.

Another convenient parameter for a principal matrix is the sum of

the truth values in each row. This sum for the matrix row corresponding

to vertex V i = (Xlix2i,...,Xni) is

n

r . xji

j=l

is called the row weight for V.. The row weight and column counts are

the basic parameters used to determine whether the function is symmetric.

Given the principal matrix of a function, quite obviously it would

be possible to determine if the function is symmetric by examining all



-194-

(m.)n possible transforms x1 ,...,x n of x1,...,x . We shall see that

a much simpler approach exists for detecting symmetry.

Lemma 3.1: SA...A ... Y =
AAA'.l ***'y*'***''*'*** ... ,yn)

A1**, Am ye lYi )

Proof: The truth value of a 2-symmetric function depends on the

real sum of the inputs. The lemma is a consequence of the commutativity

of summation.

Pi Pn
Hence, we have shown that f is 2-symmetric in x1 ,...,xn only if

Pi Pn
f is 1-symmetric in x1 ,...,xn. The converse, however, is not true.

The function shown in Table 3.2 is clearly 1-symmetric in xl,x2. How-

ever, it is not 2-symmetric in xl,x2 since when xl+x2 = 2, f is not

defined uniquely. Note, however, that f is 2-symmetric in xPl,xP with p

being the transformation (01)(2).

1 xp xP

1 2 12 2 1 )

r =2 ( J 2 [1 21 3

(a) p = (01) (2)

(b)

Table 3.2 (a) f ib 1-Symmetric But Not 2-Symmetric in xlx 2

(b) f is 1-Symmetric and 2-Symmetric in xPX2P

Theorem 3.1: A function f is 1-symmetric only if it has a standard

matrix in some set of transformed variables.

Proof: By definition 3.-, f is 1-symmetric in Yl,'-',Yn only if

interchanging any columns in the principal matrix in terms of Yl'''''Yn



-195-

leaves the functional description invariant. For the functional

description to be invariant, the most that can happen to the matrix is

a reordering of the rows in each submatrix. Since the latter leaves the

column counts in each column undisturbed, whereas interchanging columns

interchanges the column counts of the two columns, it follows that the

column counts for the n columns must be identical in each submatrix,

i.e., that the principal matrix is a standard matrix.

By Lemma 3.1, which implies that f is 2-symmetry only if it is

1-symmetric, we have the trivial

Corollary: A function f is 2-symmetric only if it has a standard

matrix in terms of some set of transformed variables.

We have shown a necessary condition for 2-symmetry. The next

theorem will supply a necessary and sufficient condition for 1-symmetry.

Theorem 3.2: A function f with a principal matrix in terms of

Y · , .. Yn is 1-symmetric in Y1 '* 'Yn iff in each submatrix of the

standard matrix every row vector is accompanied by all the other vectors

which differs from it only in the ordering of the row elements.
Pi P

Proof: If f is 1-symmetric in xl ,...,xn and yet in one submatrix

the row vector (XliX 2i,'..,xni) appears unaccompanied by (x2i,xli,... , 

and xli ~ x2i, then f(Y1,Y2,...,yn), will not be the same function as

f(Y2',Yl...,yn), contrary to the assumption that f is 1-symmetric in the

transformed variables.

On the other hand, if in the principal matrix every submatrix has

each of its vectors accompanied by all of its permuted relatives, then

any permutation of the columns will leave the vectors of each submatrix

invariant. Hence the function remains the same, i.e., is 1-symmetric



-196-

in the transformed variables. Note that we have shown that the principal

matrix must also be a standard matrix.

Suppose the principal matrix of a function f satisfies the require-

ments of Theorem 3.2. There is still no assurance at this point that f

is 2-symmetric. For 2-symrmetry, the basic question that arises is this:

in each submatrix, if a vector (row) has a row weight r, then is each

vector in A n with row weight r also in the submatrix? That is, do each

of the standard submatrices have a proper row-weight distribution?

Clearly, f is 2-symmetric in the transformed variables only if

each of the standard submatrices has a proper row weight distribution.

For otherwise, there will be two vertices (al,...,an) and(bl,...,bn)

with E Pi(ai) = E Pi(bi) and yet f(al,...,an) ~ f(bl,...bn). Hence, f

Pi
will not depend only on the real sum E.x. of the transformed variables

I 1

and will not be 2-symmetric. On the other hand, if each standard sub-

matrix does have a proper row-weight distribution, f is indeed 2-

Pi P
symmetric in the variables x1 ,...,xnn of that particular standard

matrix. In fact, if for i = 1,2,...,m-1, Ai is the set of distinct

values taken on by the row-weights in the i submatrix, proper row-

weight distribution in each submatrix guarantees the sets A. to be

mutually exclusive. Furthermore, f is readily seen to be the 2-symmetric

P l Pn
function S,...,Am (x 1 ,...,xn). This can be stated in the following

Theorem 3.3: A function f(x) is 2-symmetric iff there is a trans-

formation of the variables in terms of which f has a standard matrix

with a proper row-weight distribution.

In bivalued logic with truth values 0,1, the number occurrences

of combinations of n variables having a linear sum r is given by the



-197-

coefficient of the term x in the expansion of (l+x)n . This is the

well-known binomial coefficient C(n,r). In m-valued logic, each

variable may take on the value O,l,...,m-l - leading to the generating

function (l+x+x+...+xm-l)n. Hence, we have the following

Lemma 3.2: The number of vectors in An with a row weight r is

given by the coefficient of the term xr in the expansion of

(l+x+x2+...+xm-l)n

There are two ways to express this coefficient, which we denote by

Nn(r). The customary form for N (r) is obtained by a simple application
m m

of the Multinomial Theorem which yields

Nn(r) = n'

m (i) i0o il "' im-l

where the sum is over all m-tuples of non-negative integers satisfying

m-l

i) Ik = n
k=O

m-l

ii) ZI kik = r
k=O

Instead of searching for all the partitions (i), one may alter-

natively calculate the coefficient of xr by observing that

(l+x+x2+...+x -l)n = (-x m)n (1.x)-n

Hence,

Nmn(r ) = i (-1)i n(n+r-mi-1)'
i=n

This form for Nr(r) often leads to more straight-forward calcula-

tions.

Briefly then, it is known from Theorem 3.1 that a function f is

2-symmetric only if it has a standard matrix. By Theorem 3.3, f is



-198-

2-symmetric on the variables of the standard matrix only if the standard

submatrices have the proper row-weight distributions. Lemma 3.2 pro-

vides an analytical means of determining whether a proper row-weight

distribution exists.

We come then to the question of whether a standard matrix for f(x)

is a proper standard matrix, that is, a matrix with submatrices having

proper row-weight distributions. Consider first the case where f(x)

has a standard matrix in terms of yl,"* ,Yn and every pair of column

counts are distinct in at least one submatrix. Such a function cannot

Pi Pnhave a standard matrix in terms of Yl1 '**'Yn with some Pi f pj as is

easily shown. Therefore, f can have at most mi distinct standard

matrices corresponding to the m: permutations of S .

By Theorem 3.3 it is sufficient to test all these for proper row-

weight distribution and if at least one standard matrix is proper, as

is the case shown in Table 3.3, f is 2-symmetric. If none of them is

found to be proper, as in the case of the example shown in Table 3.4,

then f is not 2-symmetric. Note, incidentally, that f is also not

1-symmetric - a necessary condition for 2-symmetry. (Later, an example

will be given of a function f with standard matrices and f will be shown

to be l-symmetric but not 2-symmetric.)

One property of S will enable us to decrease the number of standard

matrices that need be examined from m' to m!/2. Consider the element p

of S that reverses the ordering in A, i.e., xP = m-l-x. We shall denote

xp byx.

Lemma 3.3: If f is 2-syrmetric in the transformed variables

Yl'' ',yn', then f is also 2-symmetric in the variablex Yl,''*,Yn'



-199-

Pl Pl P2 P2
X1 X2 X1 X2 x1 x2

0 0 0 1 1 2 0 0 °

1 2 3 0 2 2 2 1 3

2 1 3 2 0 2 1 2 3

i l 2 0 0 0 2 2 4

0 count 1 1 2 2 1 1

i count 2 2 1 1 1 1

2 count 1 1 1 1 2 2

2 0 22 i 3 K 0 f = 2 0 2 2 1 2 3 0 1 1

2 2 4 2 2J 4 1 1 2

0 count l 1 0 0 1 1

1 count 0 0 1 1 2 2

2 count 2 2 2 2 0 0

(a) p1 = (01)(2) P2 = (0)(12)

(b) (c)

Table 3.3 (a) Standard Matrix of f with Improper Row Weight Distribution
(b) Standard Matrix of f with Proper Row Weight Distribution
(c) Standard Matrix of f with Improper Row Weight Distribution

Proof: If f is 2-symmetric in Yl,''',Yn' it can be written as

SA1 ... A (Yl.' yn ),' i.e., f has a proper standard matrix in terms

of Yl'...'yn' Consider the principal matrix of f in terms of l, '... n'

As noted before, this matrix must also be a standard matrix. By Theorem

3.3, it is sufficient to show that this standard matrix is also proper.

First observe that any row in the standard matrix in terms of

Y1,''''Y, that sums to p will in the new matrix sum to n(m-l)-p. Since

the original matrix is proper, all that we have to show is that Nn(p) =

N n(n(m-l)-p). Using the notions of generating functions, we see that

another way of obtaining Nn(n(m-l)-p) is by finding the coefficient of

the term P in the function obtained by replacing each xi bt m-l-ithe term yp in the function obtained by replacing each x bt y for



-200-

Pl Pl P2 P2

x 2 x1 x2 xl x2

0 count 1 1 1 2 1

2count 2 2 3 0 2 2 1 0 .1f = 2 0 2 2 1 3 2 2 22 2 4 2 2 4 0 5 [0 count 1 1 1 1 2 2

1 count 1 1 1 1 1 1

2 count 2 2 2 2 1 1

1 0 1 0 1 1 1 2 3

0 0 0 1 1 2 2 2 4

0 2 2 1 2 3 2 0 2

2 1 3 2 0 2 0 1 1

0 count 2 2 1 1 1 1

i count 1 1 2 2 1 1

2 count 1 1 1 1 2 2

PO = (0)(1)(2) P1 (01)(2) P2 = (02)(1)

(a) (b) (c)

13 P3 P4 P4

1 X2 x1 x2 x1 x2

0 2 2 1 2 3 2 0 2

2 1 3 2 0 2 0 1 1

I 0 1 0 1 1 1 2 3

1 1 2 0 0 0 1 1 2

0 count 1 1 2 2 1 1

1 count 2 2 1 1 2 2

2 count 1 1 1 1 1 1

2 0 2 2 1 3 0 2 2

0 0 0 1 1 2 2 2 4

0 1 1 1 0 1 2 1 3

1 2 3 0 2 2 1 0 1

0 count 2 2 1 1 1 1

1 count 1 1 2 2 1 1

2 count 1 1 1 1 2 2

3 = (12)(o) P 4 (012) 5 = (021)
(d) (e) (f)

Table 3.4 A Function with Standard Matricies which Is Neither 2-Symmetric
Nor 1-Symmetric



-201-

i = 0,l,...,m-1 in the generating function of Lemma 3.2. But the new

function is (m- + m-2 + Y + y+l)n and is the same function as

before. This shows that the new standard matrix is indeed proper and

concludes the proof.

Note that since x = x, the converse of the lemma is also true.

Hence whenever one standard matrix of f in terms of Yl,..*'Yn is proven

not to be proper, we need not examine the matrix in terms of Y1l, ,Yn'

We now treat the case where exactly q(q > 2) column counts are

non-distinct in every standard submatrix. In this case we can have as

many as (m.)(q.)n different standard matrices for f, as is readily

verified. Rather than examining these exhaustively, it is often simpler

to decompose the function about one of its transformed variables, say

Y1l obtaining the m functions of n-l variables f(,Y2,...yn),...

.,f(i ,Y2"'* An) f(m-ly 2... ,yn). The conditions that these

functions must satisfy to imply f to be 2-symmetric will be supplied

by the following

Theorem 3.4: A 2-symmetric function SA1... ,A (Y) can be expanded

about any variable, say yl, to obtain the following m residues:

S0 A 0 (Y2'...,yn) if y1
= 0

Al'...' m-1

m1' °1' -lm-l

m I ' ify m-
S m-l Amt-(Y2 ... ,yn ) if Y1 = m-1
A1 '.'' m-1l

where each new set A i is formed from Aj by subtracting i from every

member, excluding all those results that are less than 0.



-202-

Proof: If = i,O < i < m-l, then by the definition of the Aj 's ,
1 1

n n

whenever Z yk is in Ai, 0 < p < m-l, 7 yk will be in A.. This is
k=l k=--2

all that the theorem claims. Furthermore, if a number less than i is
n

in any A , then for Yl = i it is impossible for Z- yk to equal that
k=l

number. This justifies our restriction.

The following algorithm, based on Theorem 3.4, can be employed

whenever a standard matrix of f in terms of Yl'..',Yn has degenerate

column counts. We shall denote f(i,y2 ,...,Yn) as gi9 for i = O,1,...,m-1.

Step 1: Form a principal matrix for go = f(O,Y2'*''.Yn)' By

methods discussed earlier, obtain a proper standard matrix for go0 If

this cannot be done, go is not 2-symmetric and so, by Theorem 3.4,

neither is f. If a degenerate and non-proper standard matrix is

obtained, then this algorithm has to be applied to go (note the re-

cursion). Otherwise, go = S 0 B ( 2 "'...'Zn).

Bl''''' m-1

Step 2: For i = l,...,m-l, obtain each gi as

S i (z2 , ...,n). If this is not possible, then f is not 2-

symmetric in the transformed variables y lZ 2,...,z for any p. Go back

to Step 1 and see if another set of transforms Z of Y can be obtained

such that g.i = S i i (z2vvzn) for i = O,1,...,m-1. The sets
Bm,..,M 1

Bj obtained will be different from the previous sets Bj. (Since most
i 1

functions would only be 2-symmetric in a very small number of sets of

transformed variables, we can be sure that this repetition is of no

major importance.) If no transformed variables z can be found, then,

by Theorem 3.4, f cannot be 2-symmetric.



-203-

Step 3: At this point, we have a set of variables (z2, .. z ) =

P2 Pn
(Y2 '.'Yn,) such that

** gi = S i (z 0,1,...,m-

B ,..., m1' ' m-l

Form an m x (m-l) array as follows:

A(O) B ... AP(O) BO ... (O) =BO
1 1 k k rn-1 rn-i

i op(q) q o
AP(q) - Bq ... Ak ( = Bq -

1 q k m-1 m-l

Ap(m) B .. Ap(m-1) m- AP(ml) Bm -
1 B 1 kAm-1 m-1

The procedure described below will be repeated for all p in S such

that the principal matrix of f in terms of Yl, Z2 ,..,z is a standard

matrix.

Column k of the array is said to be consistent iff for each j,

0 < j < m-1 the following is true: For all q, 0 < q < m-l, any element

b of B3 is matched by an element b. = b + p(q) - p(j) of B3 -unless
q k j q

b. is less than 0 or greater than (n-l)(m-l).

A permutation p leading to an array in which all (m-l) columns are

consistent is said to be an acceptable permutation.

From the construction, it is readily shown that if there is an

acceptable permutation, p, f will be 2-symmetric in YP,z2,...,n. In
q=m-l 1

fact, if Ak = (bq+q), for k =,...,m-
b EBk

q=O

f(x...,x) lypz ' ... ' )''

On the other hand, if no acceptable permutation p is found, we

return to Step 1 and repeat until we exhaust all possible (z2,...ezn)'s

m U- 1I I~~~~~~~~~~~~~~ · II~~~~2 



-204-

satisfying **. If still no acceptable permutation p can be "ound, we

know, by Theoretn 3.4, that f is not 2-symmetric.

To illustrate the above procedure, consider the degenerate, non-

proper standard matrix shown in Table 3.5(a). f is seen to have

m'(q:) n l = 6 * 22 = 24 standard functions. Table 3.5(b) shows the

standard matrix for go obtained directly from (a). (b) is also a

degenerate, non-proper, standard matrix. However, instead of decompos-

ing about Y2 as the procedure suggests, we observe here that transform-

ing Y2 by P2
= (02)(1) and y3 by p3 = (012) leads to the proper standard

(y P3)
matrix shown in Table 3.5(c). Here (z2,z 3) = (Y2 Y33) and g

S(1 ,4 )(0)(z 2,z3). From (a), we obtain immediately gl = S(0,3)(4)(z2'z3)

and g2 = S(2 )(0, 1)(z2'z3)' Hence (z2,z3) satisfies the equation **.

To check for acceptable permutations for yl, we note from the column

counts of Table 3.5(a) that there are only two candidates: Either

P3 = (012) or Pi = (02)(1). Let us try the second choice for the moment.

Step 3 tells us to decide acceptability of Pi by considering consistencies

of the columns of the following array:

A (,4) A2 = (0)

A1 (0,3) A (4)
A2

A0 =(2) A2 = (01)

A quick calculation shows that although the first column is con-

sistent, the second one is not, since 0 in A2 implies that a 1 be in

1 0
A and a 2 in A0

2 2 

Turning now to the other alternative p5 = (012), we form the array:



-205-

Y1 Y2 Y3 Y2 Y3
1 0 0 1 0 1 1
0 0 1 1 2 0 2
1 1 1 3 1 2 3
2 1 0 3 0 count 1 1
0 2 0 2 1 count 1 1

0 1 2 3 2 count 1 1

2 2 1 5 2 2 4
2 0 2 4 0 count 0 0

1 2 2 5 1 count 0 0
0 count 3 3 3 2 count 1 1
1 count 3 3 3 (b) Matrix for go
2 count 3 3 3

2 2 2 6

2 2 0 4 z

2 1 2 5 2 2 4
0 2 2 4 0 1
1 0 1 2 1 1

0 count 1 1 1

1 count 1 1 1 0 0) 0

2 count 3 3 3 (c) Proper Standard
(a) Standard Matrix for f Matrix for go

Z2 Z3 z2 z3

C2 2) 4 0 0 0I 3 
I 

Table 2.5 Degenerate Column Counts in Standard Matrix for fTable 3.5 Degenerate Column Counts in Standard Matrix for f



-206-

A =(1,4) A = (0)

2 2
A (O ,3) A (4)1 2

0 0A = (2) A = (01)

Both columns are consistent and hence p3 is acceptable. Furthermore,

A1 = (2,5) (2,5) (2) = (2,5), A2 = (1) (6) (0,1) = (0,1,6) and

we conclude:

~f = ~(P 5 P2 P3
f = S(2,5)(0,1,6) (Yl 'Y2 'Y3

We now have all the tools we need to generate a straight-forward

procedure for the detection of 1- and 2-symmetry. Before we give the

algorithm, the assertion made earlier after Lemma 3.1 will be proven

in the following

Theorem 3.5: There exist 1-symmetric functions that are not 2-

symmetric in any of its (m:)n sets of transformed variables, for m > 5.

We shall prove this theorem by explicitly showing one such function.

Before we proceed, however, recall that the example of Table 3.2 is a

function which is 1-symmetric in more sets of transformed variables than

it is 2-symmetric. Such a function is by definition both 1-symmetric

and 2-symmetric. The example in Table 3.4, on the other hand, is a

function which is neither 1-symmetric nor 2-symmetric. What we want

here is a function which, in terms of some transform of its variables,

is invariant under any reordering of its inputs. On the other hand,

we wish to show that such a function cannot be realized by a common-

weight feed-forward network of threshold elements with n equal weights

assigned to the transformed variables. For in such a network, the only



-207-

way the inputs can vary the output is by the value of their sum. We do

so as follows:

Proof of Theorem 3.5: Consider the 5-valued function shown in

Table 3.7. By Theorem 3.2, f is 1-symmetric in x1x2, hence is 1-symmet-

ric. However, consider what is necessary for f to be 2-symmetric. The

x1 x2X1 X2

0 4 4f =1 4 0 4

1 1

0 0

0 0

1 1

1 3 4

f 2 3 1 4

0 0

1 1

0 0

1 1

O 0

0 0

0 0

0 01 10 00 0

0 0

O O

O O

O O

O O

Table 3.7



-208-

function has two truth sets with two vertices in each and one truth set

with only one vertex. Clearly, in order for such a function to have a

proper row weight distribution in each submatrix, the row sums can only

be 0, 1, 7, or -8 For only

N" (O) N2(8) = 1
5 5

and (1)=) = = 2

All other 1l p < 7 have N5(p) > 2. Hence if f is 2-symmetric at all,

in the variables in which it is 2-symmetric, f must choose five out of

the following six combinations:

YlY2 -

1) 00 0

2) 44 8

3) 01 1

4) o10 1

5) 34 7

6) 43 7

In fact, choices 3), 4), 5), and 6) must be used for the two submatrices

with two entries, and one of the remaining two has to be the entry in

the f = 3 submatrix. However, in the original x1 column of Table 3.7,

truth values 0,1,2,3,4 occur exactly once each. Hence in any transfor-

mation of xl, they must also appear exactly once. Since both choices

we are allowed to use to fill in the f = 3 submatrix will result in the

transformed xl column having either two O's or two 4's, we arrive at a

contradiction. Hence f is not 2-symmetric.

Note that the same type of construction can be used for m > 5.

However, it fails for m < 4. In fact, it is strongly suspected that

the two classes of symmetric functions are the same for m < 4.



-209-

3.3 ALGORITHM TO DETECT SYMMETRIC FUNCTIONS

Using the properties established in Section 3.2, we shall describe

an algorithm which, given any principal matrix of an m-valued function

f, will determine if f is 1-symmetric of 2-symmetric.

Step 1: Form column counts for each submatrix of the principal

matrix. If the condition of Theorem 3.1 is satisfied and f has a

standard matrix in terms of some transform of its variables, then form

the standard matrix and proceed to Step 2; otherwise, by Theorem 3.1,

f is not symmetric.

Step 2: (If one is not concerned with 1-symmetry and is only

interested in 2-symmetry, Step 2 can be skipped.) If the standard

matrix satisfies the condition of Theorem 3.2, then f is 1-symmetric.

If not, other standard matrices of f will have to be checked. If none

of them is found to satisfy the condition of Theorem 3.2, f is not

1-symmetric, hence cannot be 2-symmetric.

Step 3: Next, the row weights are formed and checked for proper

distribution. Tf they are found to be proper, by Theorem 3.3, f is

2-symmetric, and hence, by Lemma 3.1, 1-symmetric also. If the standard

matrix does not have a proper row-weight distribution, and every pair

of column counts is distinct in at least one submatrix, then go to

Step 4. Otherwise, go to Step 5.

Step 4: By Theorem 3.3 and Lemma 3.3, it suffices in this case

to check for proper-row weight distribution in the m:/2 non-equivalent

(in the sense of Lemma 3-3) standard matrices of f. If all tests fail,

then f is not 2-symmetric by Theorem 3.3.



-210-

Step 5: We have here a non-proper standard matrix with degenerate

column counts. The algorithm described in the previous section follow-

ing Theorem 3.4 can be applied to this matrix. Alternatively, if

(m:)(q. )n-1 is not too large, one may prefer to check all possible

standard matrices instead.

3.4 SYNTHESIS OF SYMMETRIC FUNCTIONS

As mentioned earlier, 2-symmetric functions have a "natural"

common-weight TE network realization. An m-valued full adder is a

good example.

For two-valued switching, threshold elements are conveniently used

for performing a digit-by-digit serial full add as shown in Figure 3.1.

Here we develop a threshold network to realize a digit-by-digit full

adder for m-valued signals. The algorithm presented in 3.3 will be

used to obtain a realization.

First we note that for two-input adders the carry signal will never

exceed 1. Hence the highest excitation achieved by the two inputs and

the carry is 2m-1. Clearly,

i mm+l,...,2m-1 ,9,,..,(i'BiCi-l)

and the value function of Ci with all weights equal to one is simply

000.0 11. .--... ---

m-l m

The STE realization of C. in Figure 3.2 is obvious, where the first

threshold is placed at m and all others at arbitrary values higher

than 2m-1.

Similarly, the value function of the it h sum Si is easily seen to

be



-211.-

A -

Ci-i , IB 1

Fig. 3.1 Binary Full Adder

B

Fig. 3.2 m-Level STE Realization of C.

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-212-

012...m-1 012...m-1

The Sheng plot (Ref. 17) in Figure 3.3(a) indicates that a single

"correction threshold" will be necessary and sufficient, i.e., for

E > m-l, all thresholds should be increased by m. The realization of

S. is shown in Figure 3.3(b), where the upper element generates the

correction threshold. One observes, however, that the upper element

realizes exactly the bivalued carry function, C.. Hence the circuit in

Figure 3.4 is a digit-by-digit serial full adder for two m-ary numbers

A and B.

If, instead of two, several m-ary numbers are to be summer (serially)

simultaneously, the ith carry will be able to take on more than one

value. A little thought will show that the two threshold-element net-

work of Figure 3.5 can sum up to m m-ary numbers simultaneously.



-213-

E+Y *W'

m-I 3
Tm-l= m-2 /

/ 1 m

O i m-l /m

Figo 3.3 (a) Sheng Plot for S;

A.

Bi 

Cici-

Bi '---ISi

Fig. 303 (b) Two Level Radiation of S.



-214-

A.

Fig. 3.4 Serial Adder for two m-ary Numbers

m or A;-i C;
less / C

Ci-'

Fig° 3.5 Serial Adder for m or less m-ary Numbers'~~--~~~~-' ~ '; `~~ -~-"----------- ·- ·-- ---- · ----- ---------T---



REFERENCES

1. Post, E. L, "Introduction to a General Theory of Elementary
Propositions," Am. J. Math, Vol. 43, 1921.

2. Rosser, J. B. and Turquette, A. R., "Many-Valued Logics," Noth
Holland, 1952.

3. di Forino, A. C., "m-valued Logics and m-ary Selection Functi:ons,"
in "Automata Theory,"' Ed: Caianiello, E. R., Acad. Press, 1966.

4. Lowenschuss, O., "Non-Binary Switching Theory," IRE Nat. Conv. Rec.,
pt. 4, 1958.

5. Slupecki, J., "A Criterion of Fullness of Many-Valued Systems of
Propositional Logics," Comt. rend. Soc. Lettres Varsovie, III, 32,
1939-

6. Yoeli, M. and Rosenfeld, G., "Logical Design of Ternary Switching
Circuits," IEEE Trans. on Elec. Comp., Feb. 1965.

7. Lee, C. Y. and Chen, W. H., "Several Value Combinational Switching
Circuits," Trans. AIEE, Vol. 75, pt. 1, 1956.

8. Berlin, R. D., "Synthesis of n-valued Switching Circuits," IRE
Trans. on Elec. Comp., Vol. EC-7, 1958.

9. Gazale, M. J., "Les Structures de Commutation a m-valeur et les
Calculatories Numeriques," Paris, France: Cauthier-Villars, 1959.

10. Muhldorf, E., "Multi-Valued Switching Algebras and Their Application
to Digital Systems," Proc. Nat. Elect. Conf., Vol. XV, Oct. 1959.

11. Wigington, "A New Concept in Computing," Proc. IRE, Vol. 47, 1959.

12. Menger, K. S., Jr., "Algebraic Synthesis of Modular Logic Net-
works," Ph.D. Thesis, Applied Math., Harvard University, June, 1966.

13. Muhldorfq E., "Ternary Switching Algebra," Archiv. der Elect.
Uebertragung, Vol. 12, 1958.

14. Polansky, R. B., "Minimization of Multiple Output Switching
Circuits," Comm. and Elect., AIEE, March, 1961.

15. Scheinman, A. H., "A Method for Simplifying Boolean Functions,"
Bell Sys. Tech. J., Vol. 41, July, 1962.

16. Diephuis, R. J., "Computer Aided Design of Threshold Element
Networks," S.M. Thesis. E.E., M.I.T., Sept. 1966.

-215-



-216-

17. Sheng, C. L., "A Graphical Interpretation of Realizing Symmetric
Boolean Functions with Threshold Logic Elements," Vol. EC-14,

Feb. 1965.

18. Ying, C., "Studies in Multilevel Switching," S.M. Thesis, E.E.,
M.I.T., June 1967.



SECTION V

MODULE SYNTHESIS OF SWITCHING FUNCTIONS

S. K. Gupta and A. K. Susskind

Logic gates like AND, OR, NAND, NOR are commonly used for the

synthesis of combinational networks. It is found that when these blocks

are to be physically implemented as integrated chips, the size of the

chip is determined by the number of pins, and so is the cost, while the

circuitry is too simple to use the volume of the chip efficiently. In

this section two classes of functions are analyzed for use as building

blocks for combinational networks. The logical circuitry to realize

both classes (modules) increases very rapidly with the number of pins.

Because of the totally asymmetric nature of these modules and the

complexity of the logic, these blocks are found to be difficult to use

optimally, but the realizations of switching functions obtained by using

these blocks require fewer blocks than when conventional gates are used.

An algorithm is developed to minimize the number of pins for functions

realizable by single modules. Also a non-optimum two-level synthesis

procedure is introduced and a cascade of two blocks is studied for

economical synthesis of four-variable functions.

-217-



CHAPTER 1

INTRODUCTION

This work is a continuation of that by Patt (Ref. 1) in which he

introduced the "WOS module", which will be denoted by M1 . He also

discussed desirable properties which any module function must have

(total asymmetry and logical completeness) and developed tests to check

if a given function or class has these properties. Finally, he gave a

procedure for using only M1 modules in the realization of arbitrary

combinational functions. Here we introduce a modified module, denoted

by M2, and attempt to use it efficiently in the realization of arbitrary

combinational functions. In the following section module M1 is intro-

duced and certain important results stated which are proved in Ref. 1.

Finally, a brief outline of the remaining chapters is presented.

1.1 THE M1 MODULE

Recall that every switching function can be described by a modulo-2

sum-of-products expression which is unique when the variables are used

in a specified polarity (true or complemented). Such an expression is

also called the irredundant ring sum expression (IRSE) and familiarity

with it will be assumed. (Refs. 3, 5 and 7 may be useful in this

connection.)

Definition 1.1: A well-ordered sequence (w.o.s.) is defined to

be an IRSE with specified polarity of variables which has the following

property. If Pi denotes a product with i variables, then all Pi

contain all pj for all j such that 2 < j < i, where containing is

defined as follows: Pa contains Pb if and only if all the variables in

Pb are also in Pa.
-218-



-219-

As an immediate consequence of this definition, it can be observed

that a w.o.s cannot have more than one product of a particular length

except for singletons. Examples of a w.o.s. are xl + x3 + x1x2 +

2X 3 and XlX2X3, but x + Xl + X2 3X4 and X3X2 + XlX3 are

not well-ordered sequences.

Definition 1.2: The WOS (M1) module (Ref. 1, page 52) of k

variables, k > 2 is a k input, one output device which realizes the

following logical expression:

fk = + + 1 + x3 + x4 + .. + k + 12 + x1x2x3 + 12 + x 5x2x3"'xk-l

It is proved in Ref. 1 that this module is totally asymmetric and

logically complete. The following two lemmas are also proved in Ref. 1.

Lemma 1.1: Any function realized by a single M1 module is a w.o.s.

Lemma 1.2: Every w.o.s. can be realized by a single M1 module.

A procedure is developed in Ref. 1 for realizing an arbitrary

n-variable function in two-level form using M1 modules, where the

second-level connective is EX-OR and the number of M1 modules is mini-

mized. The procedure simply involves splitting the IRSE of the object

function into a minimum number of well-ordered sequences which when

EX-ORed yield the object function.

1.2 OUTLINE OF THIS REPORT

After introducing the M2 module in the second chapter, M1 and M

are analyzed for complexity of logic. A survey of all three-variable

functions is then conducted for module functions.

In the third chapter a procedure to realize all single-element

realizable functions is developed which minimizes the number of pins.



-220-

In the fourth chapter all the three variable functions are shown

to be realizable by a single M2 module.

In the fifth chapter two-level and tree synthesis approaches for

arbitrary n-variable functions are presented which are not optimum.

Finally, the cascade of two modules is analyzed in the sixth

chapter, primarily for four-variable functions.



CHAPTER 2

THE M2 MODULE

In this chapter a new module, denoted by 2 2, is introduced.

This module is also complete and totally asymmetric. Like M1, module

M2 is also not defined for two variables or less, but the latter is

more useful than the former, as will be shown later. The logic

complexity of M2 and M1 as a function of the number of input pins is

given in this chapter. Also, the result of an exhaustive search

through all the three variable functions to find functions which could

be utilized as modules is given, and their possible usefulness is

briefly discussed.

2.1 INTRODUCTION TO THE M2 MODULE

The MR module for n variables (denoted by kM) is an n-input, one-

output device defined as follows, where + denotes EXCLUSIVE-OR:

+ x2 | 1 x 3 + xl1 x4 + xlx5 + . +x x (2.1)

(all the products of length two except xlx2)

+I lX3X4 + XlX3X5 + XlX3X6 + ... + 1n-2 n-l xn

(all the products of length three except xlx2x3)

+ XlX3X4 . ..xn + x l2X4 *..xn + ... 2x3x4 ... n

(all the products of length (n-l) except xlx2x3...xn1)

The above is the unique irredundant modulo-2 sum-of-products expression,

th
where x. denotes the variable connected to the i pin of the module.

-221-



-222-

For later convenience, we rewrite (2.1) as follows. Let An denote

the n-variable Boolean product Xl..xn. Then An can be written

in ring-sum rootm as

An = 1 + x + x2 + 3 + ...

+ xlx2 + xlx3 + ...

+ xlx2 x3 + XlX2X 4 +

+ X1 x2 X3 ...Xn

d. n + An'= x1 + x3 + x4 + *+ + xn 1 2 1 25 

+X 1X2 X ... Xn- 1 + XX2X3 .. X

Now by definition of ME (see Chapter 1) we have

+ A = 1 + M + xxx x x ... x

or M2 1 12 n 1= 2 + + n (2.2)

This form is very handy and will be used frequently.

2.2 COMPLETENESS AND ASYMMETRY OF M

Theorem 2.1: M is a logically complete function without biasing.

To prove this theorem recall the three necessary and sufficient

conditions for completeness without biasing (Ref. 1):

i) The vertex 1xx2x3...n (decimal code 0) must be true.

ii) The vertex xlx2 x3...x n (decimal code 2 -1) must be false.

iii) At least two complementary vertices in the truth table of the

function must have identical outputs.

Proof:

i) The presence of 1 in the definition of 6M (2.1) makes the

vertex x 2X3...'X n true, since all product terms are 0 when the

-- -1 --- -- ~-· -~-~- - 1 2 3- --- n---- ·· ·- -;·- .~,.--;-,~, ·~·.;-~. --.



-223-

substitution x. = 0 (i = 1 to n) is made.

ii) To prove that the vertex xlx2x3...x n is always false, we

proceed as follow's.

= 1 + 1 + X lX2 X 'x + XlX2X x
= b~ 12-3 3"' n

Hence Mn (2 n-1) =1 + Mn (2n-1) + 1 + O.

As M1 is logically complete, Mn1(2n-1) = 0. Therefore, 1M(2n-1) = 0.

iii) Because Mn is logically complete, there exist two comple-

mentary vertices P and Q such that MI(P) = 1 i(Q). Also P 3 Xl 2X3...xn,

because M1(0) M M1(2 -1). Therefore, in P, for some xi and xj,

Xi = 1 and x. = 0 such that in Q, x. = 1 and xi = O. Then

n(P) = 1 + Mn(P) + O + O = 1 + Mn(P), and similarly (Q) 1 + M(Q).

But because M (P) = M_(Q), M2(P) = M2(Q), so that we can conclude that

_n is complete without biasing.

Theorem 2.2: D is a totally aslymmetric function for all values

of n.

Proof: This proof is based on a result obtained by Patt (Ref. 1).

We proceed with the construction of the P vectors defined as follows:

Pij (the j h element in the i h -vector) is defined to be the number

of terms of length j which contain the variable xi in the irredundant

ring sum expression (IRSE) of the function.

Now from the definition (2.1) of M we have



-224-

= (n) 1, (n1) _ 1, ... ... ( - , ... ( ) - 1, 0

=0,) 1 (n-l e ( 1) 2* (n(n1 , (l ,

'1 2 j-1, (n-2l)
= °' (f1) '(21) (n-1) - 1 ... (n 2) - 1, 02 1 2)j-1 n-2

*n-1 n- 1
), ()-. .'.. ... (jn_ ) _ 1 , (n)- 1, 0

P 0, 2... .. j 1n-2

o, (hi) n-l n-' ' n-1

Patt, is sufficient to prove that M is totally asynmmetric.

2.3 LOGIC COMPLEXITY OF n AND Mn

By logic complexity of a module we mean the quantity of circuitry

required to realize that module physically. A rough measure of this

is the number of AND and OR gates in a 2-level minimum realization.

To study this, we build up a recursive construction of these modules.

Recursive Construction of Mn

Here and henceforth, we use + to denote EXCLUSIVE-OR and U to

denote INCLUSIVE-OR.



-225-

Mn 1 +xl +X + x+ ... + x+ x x +2 xx + l .. + xxx .. Xn 11 1 2 3 n 1 2 1x253 1 25 n-i

- n-iM + X1X2 X Xn-l Xn= (Mn- + x1 X 2 x3...Xn1 ) + X , (1 + xn 1 x2 x 5 ..X,-n 1l )

= n(MIl + XlX2X3*'xn-l) U Xn(l + l + + lX2X3... n-1)

Let n n-12 n-i
Let Pn = MM1 + l 2X3 . ..Xn_ 1 so that function n is just -i 1

with its value at vertex x l2x3...Xn_1 complemented, i.e., made true.

Then

n - n pn
M = x n U x P (2.3)
1 n n

Let T(G) represent the set of true vertices of function G and F(G)

represent the set of false vertices of function G. The elements of

these sets will be designated by the usual decimal notation, i.e.,

the additive weight of variable x. is 2 , 1 < i < n. Also, let

W[T(G)] represent the set of true vertices of function G incremented

by decimal weight W. Using U to denote set union, it follows from

(2.5) that

T(Mn)= T(Mn-i) U22 n-1_ U 2n-l[F(dfl j] -2 n-1} (2.4)

Relation (2.4) scates that the true body of l consists of (a) the

true body of i-1 (b) the vertex 2 1-l, and (c) the entire false

body of n'1, relabelled by the additive constant 2n- except for

vertex 2 -1. For example, for module M 3, T(M3) = - 0,2,3,5} and

F(M) =t1,4,6,7i. Hence

T(M1) = {0,2,3,5 U 7 U 8 [ 1,4,6,7 ] - {15}

= (o2,3,s,7,9,12,l4j

Since Ml has four true (and four false) vertices, it is clear from this



-226-

observation that

Lemma 2.1: The true body of Mn consists of 2 1 vertices, for

all n.

In other words, Mn is a "50-50" function.

In terms of Karnaugh maps, we can interpret (2.4) as follows.

Function E can be represented by two maps: (1) The maps of the

true bo1y of -1 2n-l
true body of Mnl with vertex 2 -l made true. (This corresponds

to the first two terms on the right and gives the true body of Mn

with xn = 0.) And (2) the map of the false body of Mn-1 with vertex

n-i n-1
2 -1 omitted (made false) and all vertex labels incremented by 2

(This corresponds to the last two terms on the right and gives the

true body of M 1 with x = 1.)
n

Lemma 2.2: Complementing the vertex x x 2X ...x in Mn and in
-12 35 n 1

(1 + Mn + Xl2X3...x ) does not give rise to any prime implicants

covering more than two vertices.

Proof: (By induction) Basis: The lemma is true for n=5 (see

Fig. 2.1). Assume that the lemma is true for n-l.

a) Complementing vertex 2 -1 in M1 gives n1 + XlX2X3...X n

n n

(Mn "2x3x.)I 1= Ml+M y +xxx..x +xxx.x .
1 2 3 n 1 1 + n-l xx2x3 n-l

n

By induction assumption, in Mnl1 + XlX2x...Xn_1 no implicant of more

than two vertices is generated by the addition of x l2x3...xn_1 to

Mn- . Similarly, no implicant of more than two vertices is generated
1

in (Ml + X1X2X3 Xn)l · Now in the map of M + XlX2X3'-xn the
verte..nx = n

vertex x1x2x3...xn can generate an implicant of more than two ones if

1 2 5 n~~"I~~"""~"~""~~'"1~"""'~'T`~"""'"" ~ ~ ~ '~-~~~'~-~'"~~~-~~- ~ I~-"; ~ ~ 1~'-~- 11~~ 1~`-1~- ~~'~ `~'~~~-~~~~~--~' ~'--~~'~^"~~ "-*-;--~~~ 1- -- -------- --- -_ ..... .. 



-227-

x35 C2 \ x 2

IC 00 01 11 10 X1 \ 00 01 11 10

o0 2. 1 1 11 1

1 X 1 1 1 1 1 1

Fig. 2.1a Fig. 2.l b + XlX2 X

x3 2 X3Xa
1 00 01 11 10 1 00 01 11 10

i I1 1 0 1 1

Figo 201c 1 +M + xl2 Fig. .2.d 1 + Ml

Fig. 2.i Maps of M and Related Functions



and only if some true vertex adjacent to xlx2 x3...xn 1 in

(IM + XlX2X3' Xn) has its image true in (M1 + xx 2x...x)
x =1 x =0
n n

But since the two maps are mutual complements except at xlx2x3...xnl1

this is not possible and therefore complementing XX 2X3...X in M

cannot generate an implicant of more than two ones.

b) Complementing the vertex xlx2x ...x in 1 + M + X2...x

gives 1 + M1 and

(1 + Mn) = ( + M 1- Xxl 1 + +M - + 1xpx3 Xn
0 1 12) n =0 12 n-

n n

1(1 x =1 + XlX2X3'5Xn-1
x =l
n

By induction assumption, vertex Xl 2x3...xn_1 when complemented in

Mn-1 does not give rise to an implicant of more than two ones in

(1 + M )I . The vertex x x2x ...x in (1 + Mn)l is false.
1 x-l 1 )n-l M1 x =0

Therefore in the whole map of (1 + M1) complementing vertex 2 n-1 does

not give rise to an implicant of more than two ones.

Lemma 2.3: M and (1 + + x x x ...x n) have no prime implicant

covering more than two vertices.

Proof: (By induction) Basis: For M both parts are true (Fig.

2.1a and 2.1c). Assume that the lemma is true for M1-1.

As in the proof of Lemma 2.2, M1 = M 1 + xlx2...xn_1 and,
x =0 1 1 n
n

by the assumption and Lemma 2.2, it does not have any prime implicant

that covers more than two vertices. Also M = 1 + Mnl 1 +
x =1
n

x1 x2 ... x 1n- By assumption, this does not have any prime implicant

that covers more than two vertices. But Ml1 and Mnl are
X =0 x =1
n n



-229-

mutually complementary, and hence cannot jointly generate larger prime

implicants. This proves the first part of the lemma.

Similarly, (1 + M + XlX2 -xI = 1 + - lX2 ...Xn
~1 n ~x =0n-l

n
which by induction assumption has no prime implicants covering more

than two vertices. Also (1 + M + x x ...xn)l = M1 , which is
12 nx =l 

n
also assumed not to have any prime implicants covering more than two

vertices. Now M1 and 1+ + xlx2...x are mutually comple-

mentary except at vertex Xlx2...xnl' where both are false. Hence

1 + Ml + x x 2**.x has no prime implicants covering more than two1 12 n

vertices.

Let N(F) denote the number of AND gates required to realize

function F in two-level form.

Lemma 2.4: N(ME + x x2x xn) = N(Mr) for odd n.

Proof: By definition,

= 1 + + x + x+ + x. + x xn x + xx + l n-l

The vertex xlx2 x3x4 ... n is one of the vertices which is adjacent

to the vertex X2 x ... x , and the former is a true vertex in M, for

odd n since all products vanish and the number of singletons is even.

Any vertex adjacent to xlx2x3x4...xn other than x1 2X3...x can be

written in general as lx2x3...xi ...x and by direct substitution is

seen to be false for all values of i. Thus the vertex xlX2X3...xn is

an isolated true vertex adjacent to x l2X3...x , and when the vertex

xl2X3 3...x is complemented to make it true, it merges with xlx2x3...x

without costing any extra gate, in fact saving a pin.



-230-

Lemma 2.5: N(M + XlX2X3...xn) = N(M) + 1 for even n.

Proof:

Mn=l= + x + x +... + X +X_ + + + + 

XlX2X35** . n- 1

Any vertex with a single variable complemented is a vertex adjacent

to xlx2 x3...x . Out of all these vertices the following are true:

xlX2X3 ·. xn

x2x3x4 ... xn

XlX2 X3X4XSX 6 **- xn

xlX2X3 .. xn

It is easy to check by direct substitution that all other vertices

unit-distant from x X2...x n are false. For each of the above true

vertices xlx2x. . .xi*...Xn, consider the vertex xlx2x3 ...x ...x. This

vertex is also true, since n is even and there is an even number of

singletons left when this vertex is evaluated. This vertex for every

even i is such that any other vertex adjacent to it is false, since

by substituting x x 2X3x...jX....x another singleton is made zero,
1x2 3* j", 1 n

changing the value of the function. Therefore all these vertices are

such that they have only one vertex adjacent to them true. That

vertex is one from the list of true vertices adjacent to x lx2x3...xn

This implies that no matter which of these vertices is chosen to merge

with lX2X3 ...xn, it will cost an extra gate.

Lemma 2.6: N(l + Mn + x 2 ...xn) = N(nl) - 1 for n odd.

and N(1 + M + xl2 ... x.N(M) for n even.



-231-

Proof: (By induction) Basis: The lemma is true for n = 3 and

n = 4, as can be seen from Figs. 2.2. Assume the lemma is true for

some even n and corresponding n-l.

The function +l can be decomposed into two parts as follows:

nlI = Mn + XlX2X3...X

Xn+1=0

and la' x
1 = 1 + 1 + XlX2X3...xn

Xn+1= 

Since these two parts are mutually complementary,

rN(le+l) = N(Mnl1+ ) + N(MPlI )

Xn+l= 0 Xn+l=l

(Here and elsewhere the + sign is also used. to denote the ordinary

addition of numbers.)

By Lemma 2.5

N(Mn + x x x ...xn) = N(~M) + 1 (for even n)1 12 3 'n 1

and by induction assumption

N(1 + M + X2 X .X n ) = N(M1)

Therefore N(14n+ 1) = 2 N(M1) + 1 (2.5)

Now let

F = 1 + + xlx2 X.. x

lXn+1=0 1 2 3 n

F1 1 123Flxn+1=l1

These two parts of F are mutually complementary except at the vertex

xtx2x3...xn, where both are false. Therefore, the following is still

true



xaxM2 ax~x
32

1\z 00 01 11 100 01 11 10

0 0 i''

1 O 1 _

Fig. 2.2a N(1M) = 3 and N(l + + xlx2x3) = 2

x4x3 \ X4X3

00 01 11 10 2 3 00 01 11 10

00 J Ol 00 O

01o 1 01 I I I

10 _ 10 __

Fig. 2.2b N(M) = 5 and N( 1 + 1 Lx2x3 x 4 )= 5

Fig. 2.2 Maps of M, M:, and Related Function



-233..

N(F) N(Fj _=0) N(+ Fx =1)
n+l n+l

= N( + 1f + Xlx2X3 .. Xx ) + N(Mi1)

So by induction assumption

N(F) = 2N(PM) (2.6)

and by (2.5) and (2.6)

N(l+ n+ + 2x3.x +l) = N(M+l) _ 1

This proves the first claim.

Now (n+2) is even and M+ 2 can be divided into two parts as

follows.

1 +1 + x1x2x2 2' n+l
Xn+2 =0

n+2 1 = 1 + Mfl + xlx2x3.' Xn+
n+2=

Since the two are mutual complements

N(MI+2) = N(Mn+2 1 ) + N(1 2 )
Xn+2 0 Xn+2=1

= ~ x. N(1 + x'n+ + 92x + Mn+l + xX ...x )
- (M~1 .X1 2 X..X + N( +M1 + XlX2X3..xn+l)

By Lemma 2.4 (n+l being odd) and the first part of the proof

N(Mn+2) = N(n+l) + N(M 1+ l ) - 1

= 2N (•+l) _ 1 (2.7)

Also 1++ I + x 22 2 X3'x...n+2 can be divided into two parts.

Let F= 1 + Mn+2 + X2X3Xn

Fll = 1 + 1 + XlX2X3 n+l
Xn+2 =0

FlX = Mn+l
xn+2 -



-234-

By reasoning similar to that of before

N(F1) = N(F1 l ) + N(F1 l )
Xn+2=0 Xn+2= 1

N(Mn+l) + N(1 + Mn+l + xlx2 x3 x +l)

= 2N(Ml+l) - 1 (2.8)

And from(2.7) and (2.8), for even (n+2),

N(1 + M+ 2 + Xlx2" n+2) = N(In+2)

This proves the second claim. The following theorem then follows:

Theorem 2.3: The number of 'AND' gates required in 2-level

minimal 'AND-OR' synthesis of M1, N(Mn), is

n-2 n-4 1
1. n odd, N(M) 2n- 2+ n -4 ... + 1

2. neven, N(vl) 2n -2 + 2n-4 + + 22 + 1

Proof: (By induction) Basis: From Fig. 2.2, for n = 3 and 4,

N(M) 3 = 21 + 1

N(M4) 5 = 22 + 1

Assume the theorem is true for some n.

Since M1+l = 1 + Mn+ll

Xn+1 =0 Xn+l l

N(ME+1) = N(M" 1 I ) + N(M l )

Xn+l=0 Xn+l = l

= N(M1 + xx2x3.Xn ) + N(l + M + XX2X3...Xn)

For n even, by Lemmas 2.5 and 2.6

N(<+1) = N(Mn) +1+ n)

= 2N(M1 ) + 1

2(2n -2 + 2n- 4 + ... + 22 + 1) + 1

2 (n+l)-2 + 2(n+l)-
4 + .. + 21 + 1



-235-

and for n odd, by Lemmas 2.4 and 2.6,

(M 1f+1) =IN(IP) + N(Mn) -1

2(2n-2 n-4 21+1) 1
=2(2 +2 ... 2+l-l

2(n+l)-2 + 2 (n+l)-4 + ... 22+1

The following two conclusions can be reached on the basis of

Theorem 2.3 and Lemma 2.3.

1. In a two level 'AID-OR' minimal realization the AND gates

have at least (n-l) pins.

2. The number of AND gates is almost doubled with the addition

of a single input pin.

Similar results can be obtained about N.

Recursive Construction of t

From (2.2), = 1 I+ + X+ X2X-...X + x'X x1 1 2 n 12 35 n

+= 1 Ml- + n XlX23.* n-l 1 l2X3- n

+ x x x3...x 

+x2+ X71 X-2 X1 ... n-1 + XlX 2X3 xn-1l

= .. nl + xlx2x3..xn-l + X 2x3... -

MfI 1 + + Xnl X ... x + x..x +
2 x (l + xlx2x3+M2 nl +x x2 3 1 nnl

-n-1 n-lx 3 . -n (1 M + Xl... X2X3...Xn 1 + XlX2X3..n-l
n-1 + xn( X 2 l 2 'Xn-1+ 12' n-l)

"n tS- U x (l + + XlX2 ..X,- + XlX2...Xn l

Using the vertex notation introduced before

()= T(M-1 ) U 2n-1 [F(M:-1)] -{2n-lj U{2n l



-236-

For example,

M3 = 1 + X2 + x2x3

With the weight assignment w. = 21
1

T(M?) = {0,1,4,61 and F() - f235,7J

T(M) = f{,1,4,6} U (10,11,1,15J - l1 U 18

= o{0,1,4,6,8,10o,11,13

As for Ml, the following lemmas are easy to prove:

Lemma 2.7: The true body of MA consists of 2 n- vertices, for

all n.

Lemma 2.8: There is no prime implicant with more than two ones

in m2.

Also, the number of gates required to physically realize M,. grows

as it does in Ml: it almost doubles with every input pin added.

Looking at how the complexity of logic grows with the number of

pins, one doubts that the number of pins would be the limiting criterion

if the circuit is realized as an integrated chip, as it usually is.

Because every added pin dictates that the logic in the circuit be

increased by a large amount, the logic density may be the determining

factor.

2.4 SEARCH OF ALL THREE-VARIABLE FUNCTIONS FOR MODULE 1FUNCTIONS

As mentioned in Chapter 1, Patt (Ref. 1) has pointed out that

total asymmetry and completeness are very desirable properties in a

class of functions to be used as modules. What follows is a list of

all equivalence classes of three-variable functions and the result of

--1-- - - -·~- - -··- ------ - --------- · ----- ·--- ·------------ ·- · ------



-237-

an exhaustive examination for functions having these two properties.

Functions of two variables and less are omitted.

Io. Representative Function Totally Asymmetric? Complete?

1. 1 + xx 2x 3 No (123)

2. x 1 + xl x2x3 NO (23)

3. 1 + xl + x2 1+ xlx2x3 No (12)

4. 1+ x I + x 2 + x 3 + Xlx2 3 NO (123)

5. + x1 + x2 + x3 NO (123)

6. 1 + XlX2 + Xlx2X3 No (23

7. 1 + xlX2 + X2X3 + xlX2X3 NO (123)

8. 1+ xlx2 + x2x 3 + x3xl + XlX2X3 NO (123)

9. 1 + xl 2 + x2x 3 + XlX3 NO (123)

10. 1 + x12 + 1X3 NO (23)

11. 1 + xl + x2 x3 NO (23)

12. 1+ x + xl + x2x3 YES YES Mx

13. 1+ x + x + x2 + X3 NO (23)

14. 1+x 1 + x + 2 + X3X2 + X1X3 NO (23)

15. 1+ x x2 x2x 3 YES YES M1

16. 1+x + xI + x2 + X X2 3 YES No

17. 1+ x + x + x2 + lx 3 + x2x 3 NO (12)

18. + x1 + X2 + xlx2 + X2X 3 + X1X 3 NO (12)

19. 1 + X1 + X2 + X3 + XlX2 NO (12)

20. 1+ xl + x 2 + x 3 + x l x 2 + Xlx 3 No (23)

21. 1+x 1 +x 2 +x3 + x x 2 + X3 + x 2 x 3 N (123)

22. 1+x + x2 + x1X2X3 NO (23)

23. 1+ xI XlX2+ X2x YES YES



-238-

No. Representative Function Totally Asymmetric? Complete?

24. 1 + xI + xlx2 + xlx3 + xlx2x 3 NO (23)

25. 1 + x +3 + XlX2X 3 YES NO

26. + x x + +x2x 3 x2x 1 XlX2X3 NO (23)

27. + x 1 + x 2 + X12X3 X1 253 YES NO

28. 1+ + xl + x2 + XX 2 + x23 NO (12)

1 12X2 + Xl3 X2X3 + XlX2X3 NO (12)

3129. 1+ x + x 1x2 + x2 + X2X3 + YES3 NO (12)

32. 1 + xl + x2 + X3 + x2x3 + xlX2X3 NO (23)

33. 1 + x1 + x2 + X3 + XlX2 + X2X3 5+ xx2x3 NO (13)

34. i + x + x2 + X3 + X2 + X2X3 + x2x3 + xl x 3 NO (123)

Numbers 15 and 12 are just Ml and M2, respectively. Numbers 23

and 29 represent the only other two classes which meet the require-

ments of completeness and total asymmetry. But these are only three-

variable functions, and it is difficult to suggest how these would lead

to a recursive definition for all n. One possible recursion on each

of these classes is as follows.

Let Fn represent the class obtained from No. 23 and F2 represent1 2 p

the class obtained from No. 29.

Fn=Mn+X +xxx...n1 1 n 1 2X5 n

F2 = + + 1 + XX 2 X3...X n

It is easy to see that these recursions preserve the properties

of completeness and total asymmetry, but are trivially close to M1 and

I-T----- ~ "'~" ~~`~~`"~I~`~"~~~'"~`^~"~"~~"~~~`""~ "~~~""""~" ~~="~ ~~"~~ I1



M2, which means that prospective usefulness of F1 is almost the same

as that of M1, and so is that of F2 when compared with 12.

While we have given some consideration to functions of four

variables, the profusion of candidates has prevented us from achieving

meaningful results.



CHAPTER 3

OPERATIONS ON M1 AND Mn

By biasing module input pins to Boolean constants and by

connecting a variable to more than one pin, a module can realize

several classes of functions. Here we will analyze the effects of

these operations. Also, an algorithm for synthesizing single-

element realizable functions by n is presented which minimizes the

number of input pins. Several functions like 'AND', 'OR', and 'Ex-OR'

are then realized by a single module. Finally, it is shown how

modules with (n+l) pins could be realized using modules with n pins

or less.

3.1 BIASING AND DUPLICATING OPERATIONS

The effects of biasing and duplicating pins on MI are not

explicitly discussed in Ref. 1, but their extensive use makes these

effects easily understandable. We shall discuss the effect of these

2operations on M , and the corresponding effects on M1 follow from

these.

Biasing the ith Pin of 1 to O

Recall that

Mn =l+M+xlx2xx.. x +X1X2 3...x n

= 1 + 3 + x4 + ... + Xn + xIx2 + x x2x3 + xlx2x3x4 .

1 Fo 1n-1 23 Mn 1 2 n

For i=l, I xX + 1 x + .X xn + x 23... n
_ =0.n n

For i = , M1 = x1 + x3 + x4 + x.. x + x1 x Xn

x2=O

-240-



-241-

For i > 2, Mi =xl + x + X + ... + ++ X + ... + X +
_i=°3 5 4 i-x i+l n

+ X X2 + XlX2X3 + ... + XlX2X3+...Xi 1 +

+ XlX2X3- Xi-l Xii+l. ·· x n

Thus biasing a pin to zero "stops" the well-ordered sequence, the

length of the longest product being i-l. The singleton xi, of course,

n-i n-i
does not appear any more, but the product A (A = x2 ...xi -xi

.. xn) of the remaining variables appears in the expression.

Biasing the it h Pin of h to 1

For i = = i x +X + Xn + X2 + X + x2X +4 +

+ X2X3X4n2Xn

i = 2, 1 3 + x 4 + +.. + x + xLx3 + xlx3X4 + .. +
x2=l

+ XlX3X4 ...Xn

i> 2, -=l X1 + +X +...+X + l+x + + x... + x +
x.-x

1X2 + 5XlX2 x + X LX2X 3 ... Xi +

+ XlX2X3 .. Xi-2xi-lXi+l + .** + XlX2X3.- Xi-lXi+l... xn

For the two cases when i = 1 or 2, this results in a well ordered

sequence which does not have a term missing. Also, all singletons

are present when i = 1, but when i = 2, singleton xl is absent. For

i > 2, the well ordered sequence obtained has a term of length (i-l)

absent, and of course the singleton xi disappears without affecting

any other singleton.

Duplicatin i th 0th > 
Duplicating i and j Pins of ~ (j > i)

i=l and j=2, l + + ... + x + x + x1 +...+
x3 +x 4 n 13 + xx3x4 + +

+ XlX3X4 ..-Xn X X .3X4**Xn

.~~~~~~~~B~~~~~~~a~~~~~~ ~ :%--- it



i=l and j > 2, =x + ·..= + +x +... 3 4 -x + x4 j + ... + x +
x .x

x1 X2 + xx 2x3 + .. + X 1X 2 X...Xj 2 +

x2x3--...xj lx+lxlx2. .x..xj-lXj+l x . +x

+ xlx2X3''' xj-lXj+ n

i=2 and j > 2, j xl + x + x + 4 + x + l ... X +
- x 1 + x 2 + x3 + x4 . j_1 j+1 n
x2=x j

X1x2 + xlx2x3 + lX2X3 ... j-2 +

XlX2X3.--Xj lXj+l + .. + XlX2X3..-xjlajlc.. n

i > 2, j > 2; M 1I x1 +X 2 + 2 + x3 + i+l + .. +
X -=X.

+ x.j 1 + Xj+l + ... + X + xl2X3 +

+ . + XX 2 X3 .. xj + X1x x3+... xj-i.j+l +

+ .. + XX 2 X3 X...-lXj+l*.Xn +

+ xlx2x35 .xj-1lj+l "Xn

This operation is similar to the operation of biasing a pin to

1, except for the product A attached to the resulting function.

3.2 SINGLE-ELEMENT-REALIZABLE FUNCTIONS

Definition: A switching function which can be realized by using

only one M2 module with a finite number of input pins and without

using complemented inputs is defined to be a single-element realizable

(SER) function of type II.

A single-element realizable function of type I is a well-ordered

sequence (w.o.s.), defined in Chapter 1.

Theorem 3.1: All SER type I functions are SER type II.

·--- ~----------·--------------- ···-- ----------- ·· ··---··-- -------------- ·--~--- · ---~---·-------- ~·---- ----- -- ·-- ···---- ---···-· ·;··------------------~--------. 
.



Proof: From before,

= + M+ 23 n + XlX23.. n

=l ill+x +xxx. +xx..x +xx. .. x
1+ IC + Xn 1 + XlX2X3...x + XlX2X3...n n

Now biasing the n pin to 1 we have

x =1
n

This showrs that a 2 module of n pins with its nth pin connected

to the constant 1 is the same as an M1 module of (n-l) input pins.

Therefore, any SER type I function which needs m pins on M1 can be

realized by an M2 module with at most m+l input pins.

It is easy to see that there are SER type II functions which are

not SER type I, since 4 itself is not a w.o.s. and therefore is not

a SER type I function.

Theorem 3.2: A SER type II function F is either SER taype I, or

F + AP is SER type I. (The product AP contains at least all the

variables appearing in the rest of the function in complemented form.)

Proof: In Section 3.1, the three possible operations are shown

to result in classes of functions which are either SER type I, or they

result in functions that differ lrom a SER type I by the addition of

AP.

In Ref. 1 it is shown that repeated execution of the three

operations on a MN module results only in SER type I functions.

Furthermore, SER type I functions when subjected to these operations

result only in functions of the same kind.

SER type II functions differ from type I only in the "addition"

of a term Ap. When the three operations are applied to type II



functions, either the term AP vanishes and a type I function

remains, or the length of the product A is reduced. Consequently,

repeated application of the operations either results in another type

II function, or a type I function.

3.3 STANDAR DIZATION OF A WELL-ORDERED SEQUENCE

Let W denote a well-ordered sequence.

What follows is the description of a procedure to relabel the

variables in a well-ordered sequence (w.o.s.) such that all the

functions equivalent under permutation look alike. This will be

called the standard form of a w.o.s. As a matter of notation, let

subscripted x's denote the variables in this standard form of a well-

ordered sequence.

A variable should be renamed xi if it is the only variable that

appears in a product of length i, Pi, and does not appear in Pi-l'

i > 2. In case a set K of more than one variables appears in Pi and

not in Pi,_l partition K into two subsets, K1 and K2, having the

number of elements kl and k2, respectively, such that k = kl + k2 and

K1 contains variables that appear as singletons in W and K2 contains

those which do not appear as singletons in W. Now the variables in

K2 should be labeled from xi to x.i (in any order) and variables2i.
in K1 labeled from xik2 to Xi-(k-l). (Again the order is not

important.) The function in the renamed variables gives a standard

form for the well-ordered sequence. Now we defined a representation

vector RV with 2n elements as follows:

---r ---- --- -·-- ----~-----··---··-··-- ··· ·- --;--·-·-------------·- --·-----··- ··· ---- ·-;-~~--------------- --·----- ····-- -- ----·---- ---- ---------- --------------- ·-·-·-- --- -------------



-245-

RV = (vOvl v2=..,v nu2,u3,...,un)

vO = 1 if the constant 1 is present in W

= 0 if the constant 1 is not present in W

v. = 1 if x. is present as a singleton in W
J J

v. = 0 if x. is not present as a singleton in W
J a

uj = 1 if pj is present in W

= 0 if pj is not present in W

Lemma 3.1: Two well-ordered sequences W1 and W2 have the same

representation vector (RV) iff they are equivalent under permutation.

The proof of the lemma follows directly from the construction

procedure.

3.4 REALIZATION PROCEDURE

A procedure to realize a given single-element-realizable function

of type II by using one module (M ) with unrestricted pin count will

now be given, where it is assumed that all input variables are avail-

able only in true form, while the output is available in both true

and complemented forms.

All the SER type II functions can be written in one of the

following two forms:

IIa, a "well-ordered sequence", in which case it is a type I

function

IIb, "An + well-ordered sequence"

We first describe the procedure when the function is of type IIa.

We start with the RV of the function and obtain the realization in

standard form, from which it is a matter of simple relabeling to get

the desired realization.



-246-

Let V represent the RV for the function.

V = (Vo,Vl,V2,... ,Vn, 2,u,... ,un)

In case V terminates with a string of O's and the corresponding v's

are l's, a vector V1, corresponding to V is formed by dropping the

terminal u's and the corresponding v's. The omitted v's are taken

care of at the end of the algorithm.

Let y's represent the ordered pin variables. Then an input

vector Y = Y1,Y2 ,y3,...,y , where p represents the number of pins,

will describe the required realization if the y's are replaced by the

variables and constants connected to the corresponding pins.

Start with the ordered three-tuple (v1,v2 ,u2) and make connections

on y1,y2 ,y3 as follows.

1 v2 u2 Y1 Y2 Y3 Singleton to be EX-ORed at the end

0 0 0 x1 x2 x1 none

0 0 1 x1 X2 - X1

0 1 0 x1 X2 X2 x1

0 1 1 x1 1 x2 none

1 0 0 X1 X2 X1 X1

1 0 1 x1 x2 - none

1 1 0 x1 x2 x2 none

1 1 1 1 x1 x2 none

Entries marked '-' indicate that the corresponding pin is not used.

Now in general for an ordered pair (vi,ui), after taking care of

(vi 1 ,ui 1 ) with j-l pins, make the following connections:



-247-

viui . Yi+l Singleton to be EX-ORed at end

01 X. - x.
1i1

10 Xi. 1
1

1 1x -

Continue the above substitution until all the products are taken

care of. Denote by m the number of pins used.

To take care of the singletons x. which either were eliminated

initially or were required to be "added" (EX-ORed) in accordance with

the above tables, proceed as follows. Make a list of those xi which

have to be added. Unless the special case discussed below holds,

apply the constant 0 to pin m+l and the xi on the list to pins

m+2,m+3,..., untill all members of the list have been connected. In

the special case where the number of singletons in the list is even

and the longest product contains all these singletons, pins m+l is not

biased to 0 and the x. on the list are connected to pir m+l,m+2,...

Finally, a check is made to see if among the pin variables there

is at least one biased to 1. (This is required to get the form of

type IIa.) If not and there is a pin connected to O, another pin

must be added and biased to 1. If no pin is connected to 1 and no

pin is connected to 0, two pins must be added. The first of these is

biased to 0 and the second to 1.

For the case of type IIb functions, the term An, i.e., xlx2x3 ...xn

must be maintained in the final output. Therefore no pin can be

biased to 1. Now only two operations can be used, i.e., biasing to

0 and duplicating. As biasing to 0 truncates the string of products,



it is useful only for ending this string before taking care of

singletons. With only duplication permissible, the algorithm reduces

to the following. Starting with the 3-tuple (vl,v2 ,u2) connect as

follows:

v V2 u2 Y1 y2 y2 Singleton to be EX-ORed. at the end

O O 0 x1 x2 x1 none

0 0 1 1 X2 -X 1

0 1 0 x1 x2 x2 X1

O 1 1 X1x 1 x2 none

1 0 0 X1 X2 x1 X1

1 0 1 1 x2 - none

1 1 0 x 1x2 x2 none

i 1 .1 x X1 X2 X1

Fo- the recursive step,

Vi Ui yi yj+ Singleton to be EX-ORed at the end

O0 x. X. none

0 1 x. - x.
1 1

1 0 x.x.

1 1 x. - none

For each variable appearing only in A and nowhere else, two

consecutive pins carrying the same variable should appear at the end.

As it is assumed. that the output is available in both true and comple-

mented form, v0 is ignored.

To take care of the singletons, xi, which either were eliminated

initially or were required to be 'added' (EX-ORed) in accordance with

the above tables, proceed as follows. Let m denote the number of pins

----·------------------- ~ ·····-· · --··---·-··-·--------------·--·-----·-~------·--·-··-·------------· --·-- · ··----·------·-----·-·-------- ---·-·---------·-- -·---------- ---·----- --------- ------ ------------ 



-249-

already used. Make a list of those xi which have to be added.

Connect the constant O to pin (m+l) and the x. on the list to pins
1

m+2,m+3,..., until all the xi have been taken care of, except when

the number of singletons in the list is even and all appear in the

longest product. In that special case, the x. on the list are con-

nected to pins m+l,m+2,...

To verify that this algorithm does give the object function, one

only needs to check the tables given in the procedure, which are

obtained from the operations in Section 3.1. In each case the best

alternative is chosen to take care of the singletons.

Theorem 3.3: The above procedure yields the minimum number of

pins.

Proof: Reviewing the procedure, it is observed that the first

appearance of a variable x. in a product term is represented by a u.

and a corresponding singleton by v. To obtain the function, it is

necessary to match both of these elements. Looking at the ordered

pair simultaneously, as is done in the procedure, assures that, if

possible, both vi and u. are simultaneously satisfied without addi-
1 1

tional pin cost, and only if necessary is an additional pin used at

the end to take care of the required vi. Also, at any step in the

procedure if all the remaining u. are 0, the most economical connection

to realize it is used by connecting a single pin to 0. Therefore, the

procedure is minimal.

Example: Realize the following SER function by M 2:

F = 1 + x + x4 + x5 + xlx2 + X1X2X3X4 + x12x354X5

Solution: This function is of SER type IIb and is in standard fcrm.



-250-

V = (1; 1,0,0,1,1; 1,0,1,0)

V= (1; 1,0,0,1; 1,0,1)

(Vl,V2 ,U 2 ) = (1,0,1) Y1 -

Y2 = X2

(v3,u3) = (0,0) (singleton o.k.) y3 = X3

Y4 = x.

(v4,u4) = (1,1) (singleton o.k.) Y5 = x4

for rebuilding V from V1 Y6 = 0

Y7 = X5

3-5 REALIZATION OF EX-OR, AND, and OR FUNCTIONS

Note that because it is assumed that the module output is avail-

able in both phases, it does not make any difference whether the

function or its complement is realized.

Realization of EX-OR of m Variables

Using +l and biasing the second pin to 0, the object function

is realized and this obviously is minimum, as at least one pin would

be needed to get any function other than the module.

Using ,2' m+2 pins are needed when complemented inputs are not

allowed. Pin Y2 is connected to 0 and Ym+2 to 1. This solution is

obtained by the algorithm and is minimum.

When complemented inputs are available, there also exists a

solution that needs m+l pins. Here xl is connected to pin two.

Realization of 'AND' of m Variables

When complemented inputs are not available, a solution can be

obtained by the algorithm ot the previous section. This solution

needs 2m pins and is



-251-

Yl = y3 = xl

Y4 = 3T5 x3

Y2m-2 = 2m-1 =Xm

Y2m 1

As the algorithm results in a solution with minimum pins, this is

a minimum when complemented inputs are not available. In case comple-

mented inputs are allowed, the last two substitut.ions can be replaced

by 2m-2 = and Y2m = m, so that pin 2mn is not needed.

Using M1 modules, one needs (2m-1) pins, as is shown by Patt.

Realization of OR of m Variables

OR or NOR cannot be realized by a single M1 module, because it

is a SER type IIb function. By the algorithm of the previous section,

the solution for a M, module can be obtained in the following manner.

F = 1 + xlx2x31 .x n

RV = (1,0,0,0,...0; 0,0,...0)

No singleton is desired in the function. In accordance with the

previous procedure, as a first step the three tuple (0,0,0) must be

considered and then the rest of the variables appearing only in A n.

The following solution is obtained in this manner.



-252-

Y1 = Y3 = X1

Y2 = X2

Y4 = Y5 = X3

Y2m-2 = Y2m-1 = Xm

It is not difficult to see that the solution results in the

minimum number of pins required to realize an 'OR', even when

complemented inputs are allowed.

3.6 REALIZATION OF M2n1 AID M1 FROM M: AND 

To obtain Mn- from M:

= 1 + M + XlX2X ... Xn + XX 2...X n

1 + M1 + x + Xn + x2 ... n- + X X x... xn + XX ... n

By biasing the n pin to zero

i = 1 + +2..Xn + xl-2x5...Xn-
x =O M n- 2x3 .

n =n-l

Thus biasing the nth pin of M2 to zero results in M-1.

To obtain M- from fr :

By biasing the n pin to 1

ii = 1 + Mn-l + 1 + x l2X3...xn + xX ... X 1 + 0
x =1n-1

n Mn- l

th n n-i
Thus biasing the n pin of Mf[ to 1 gives Ml. EM can also be

obtained from Mn by biasing the nth pin to zero - but in order to

--. -- -~--~-cI"~ "-~"~r~~~''~r`~~~~-,~---·----------·--------1--



-253-

synthesize M2 from M1 one has to go through the synthesis procedure

described by Patt, which will need a large number of modules.

3.7 REALIZATION OF Mnl AND Mn1+l FROM M1 AND M2 MODULES WITH AT MOST
n PINS

Recall that

~N+2 _ 1 + Mnl~ l + xlx2x3...Xn+l+ Xl12 3 n+l

+ M +X1 +xxx...x + Xxx..x + Xl X X X'
1 n+l 1 253 n 1 253. .n+l 1+2x35 n+l

Since

Mn = 1 + M 1 P ' Xr2x3 15...nn + 2 n

M n -l- -n-
M1= 1 xn +2 15 n 2x..5 +n

Substituting this for M we have

ln+l + -+ -

M+ x n+l+X lxX..X3 +n Xn+l + xlx2x 3 n (1 n+l

M n+1 (l + X1x 2x3...x + XlX2 x3...X)

Using three modules, M 1 can be synthesized from two n-pin modules

and one three-pin module as shown in Fig. 3.1.

Now for Mnl 1+ we know

Mn+l Mn+ + xx2x3... x

= 1 + Mn + xxx3 +...x + xxx ...xn Xn+l 1+ xx2 3.xn

= 1 n M + 'Xn+l + X2 ' x nn

Since~M2 = 1+ Mn + 12x3x...Xn + X1 2x3-'x~~~~~~~sn t h e o u ls a b yteszdfomtonpi oue



-254-

M Y2 2Y

n+l 3

Fig. 3.1 Synthesis of M1+ l

2

Xn+l Y3 f

Fig. 3.2 Synthesis of ~+



-255-

1,,~ x x x ... x' 1 (xlx2x3' Xn XlX2X3...' 

and Mn+l = I+ M 2Xn · Mnand Mnl =1 + M + x + Mn

Using three modules, one of which has three pins and the others n

pins, M nl can be synthesi.ed as shown in Fig. 3.2.
1



CHAPTER 4

SYNTHESIS BY K2

In this chapter two synthesis approaches are discussed which are

simple from the conceptual point of view, but not at all optimal. A

two-level synthesis approach using EX-OR as the second (output) level

connective is discussed which is a modification of the approach

suggested by Patt. While Patt's procedure is optimal for M 1, this

modified approach is not optimum for ~M, although the number of M2

modules used in this approach is always less than or equal to that

in Patt's realization. Also, a more or less trivial tree synthesis

approach is suggested which makes use of modules with a smaller number

of inputs. While in the two-level approach no bound is placed on the

number of input pins, in the tree approach the number of pins can be

kept as small as three, while the number of levels of logic will depend

on the particular function on hand. Throughout, only uncomplemented

input variables are used.

4.1 A TWO-LEVEL SYNTHESIS APPROACH

The procedure which follows is a modification of Patt's method.

The details of his method are omitted, while the modification is

discussed in full.

Step-by-Step Procedure

Step 1. Obtain the unique irredundant ring sum expression (IRSE)

of the object function (say F).

Step 2. Define the function F* = F + XX 2 Xl3... Xn Also obtain

the IRSE of F*.

-256-

- V - _ _ _ _ _ _ _ _ _ _ _ _ ~-as 



-257-

Step 2. Prepare minimal M tables for F and F*. The M table, as

described by Patt, lists the well-ordered sequences of a function in

such a manner that this can finally be modified and minimized to

have a minimum number of well-ordered sequences, which when summed

mod 2 give the object function. Patt has described an elaborate

procedure to obtain and minimize this M table and the minimum is, in

general, not unique.

Step 3. Out of the two tables obtained, select the one with the

smaller number of well-ordered sequences. This number gives the number

of M2 modules required in the first level of the realization.

Step 4. If the table chosen is that of F and not F*, the pro-

cedure reduces to using each M2 module as an M1 module and realizing

the function as Patt would. But if the table chosen is that of F*

with well-ordered sequences wl,w2,...,wr, then use one first-level

module to realize An + w. for any i, while the rest of the modules

can be used to reali e the remaining well ordered sequences which are

then summed at the second level. The following example illustrates

why this method is far from optimum.

Example: F = xlx2x3 + x2x3 x + X X x +x4 X2

Singletons are ignored, since they can all be taken care of at

the second level. It is trivial to see that F has four well-ordered

sequences. On the other hand,

F* = x x 2x3x4 + x 2x3x4 + xlx3x4 + x1x2X4 + + x3x4

which has three well-ordered sequences, and therefore by using the

above procedure one has to use three modules in the first level,

while Patt would use four.

--- ~ ~ ~~~~~~ - - -~~~~~~~-~~~~- ---- -- ---___- - -·-



-258-

We now give a form for F such that it needs only two first-level

modules:

F = (X1 X 2X + x2x3) + (-1x2x4 + x1 + x2 + x)

Each of the two functions in parentheses is M2 realizable, and thus F

needs only two first-level modules in the realization. This example

suggests that An alone is inadequate for a good realization. But we

were unable to find a systematic way of choosing proper AP's for

optimum realization.

4.2 TREE SYNTHESIS APPROACH

According to Shannon's expansion, ainy function F of n variables

can be expanded about any variable x. as follows:

iFoO iF 1

where Fo = FI
x. =0

and F = F1

1I.=l

Since x = 1 + x, one can write

F F0 + Xi(F1 + FO)

= F x + xiF 

This form is 3 realizable with the output complemented and the

following input connections

Y1 = F

Y2 = FO

Y3 = Xi

Now a trivial approach would be to use this decomposition in an

arbitrary order until the corresponding input functions are reduced



to SER functions. In the following procedure an attempt is made to

choose the sequence of variables for decomposition in a reasonable

order, but the procedure is not sufficiently complex to yield very

good results in all cases.

Let at any node in a decomposition tree the choice be between

decomposing about x. or about x.. Then x. should be used before xi
1 3 3

if one or more of the following conditions are satisfied:

x.x. Xx. x.x. x. x.

Condition 1 F = F or F F
00 10 01 11

x.x. . x.x X.. X.x.

Condition 2 F -= F' 3 and F _ = Flll
00 01 10 11

x.x. x.x.
Condition 3 F 3j = F1 j = constant or a single variable

00 10

x.x. x.x.

or Fo1 = F 1 = constant or a single variable
01 11

x. x.

Condition 1 implies that either F0 or F1 is independent of the

variable xi. If xj is used before x., one of the function F or
x.

F1J will not require the variable x., thus resulting in a saving of

one module.
x. x.

Condition 2 implies that F00 = F 1 and since module outputs are

assumed to be available in both the true and complemented forms,

expanding the function about x.j before xi will yield a tree with a

smaller number of modules.
X. X.

Condition 3 implies that either F or F is a constant or a
0 1

single variable, so that if F is expanded about x. before xi one

branch will terminate sooner than it would if x. were to be used

before x..
3



-260-

Obviously, at any level in the tree two branches should be tied

together if they have the identical function or if they are mutually

complementary.

At each node, the node function is realized from two sub-functions

and one input variable, which are combined in a single M module,

because the function F = G + x.H + x.G is realizable by a single three-
1 1

pin M4 module.

It is shown in the next chapter that any three-variable function

can be realized using a single 12~ module. Thus the decomposition

level need not be reduced below 3-variable functions, provided one is

allowed to use 6-pin modules. With these relaxed constraints, an

upper bound on the number of modules in the tree is given in the

following theorem.

Theorem 4.1: Any n-variable switching function can be realized

by using at most 2 -1 modules.

Proof: (By induction) Basis: It is shown in Chapter 5 that

any three-variable function can be obtained by a single M2 module.

Induction: A function of (n+l) variables can be realized by Shannon's

expansion, with a single M module and two networks each realizing an

n-variable function. If the theorem is true for n, then the number

of modules for a (n+l) variable function is 2 (2 -1) + 1 = 2(+1)-2-1.

Note that the modules in the first level realize 3-variable

functions and need not have more than six pins, as is shown in the

next chapter.



-261-

An Example to Illustrate the Tree Approach

Object function F = 1+ x + x3 + x + x 3 + X3xl + x2 3 3 4 x4

+ XlX3X4X5 + xlX2X3X4X5

x1
F0 = 1 + x + x2xx + 4 + xx3x4

x

F1 = x2 + x 3 + x2x3 + Xsx4 + x3x4X5 + X2X3X4 + X2X3X4X5

Now F 0 = 1 x +3 + x3x4

Fol = 1
01

x1X 2
and F10 = x3 + + x 3x4 x5

x1 X 2
F1 = 1

By Condition 3 of the rules, x2 should precede xl
"2

F0 = x + x + x 3+ x3x4 + xlX314X5

x2
F 1=l

X1X

F0 1 x3 + X3=4 + X3X4X5

x2x1
F0 0 = l x +3 + 3x4

x2x1 x2 x1
Realizing F0 1 and F0 0 with one module each, the complete

realization needs a total of four modules, as shown in Fig. 4.1.

However, this is not an optimal solution. The same function can

be written as

F = 1 + x3 x2x3 + x34 + x2x3x4
+ xl (1 + x2 + x3x4 5 + x2x3x4x5)

Let g = 1 + x3 + x2x 3 + X3X4 + x2x3x 4

h = + x2 + x3x4x5 + x2x3x4x5



x2x 1

X3 Ff ,
X2X 1 3

F 0 _ 

M 2 D1

x O

3M X3 2

ftm

X4 ----- f

Fig. 4.1 Tree Realization of F = 1 + xl + x3 + Xx2 + x2x 3 + x4

+ X 2X3 4 + x1 Xxf 5 + Xlx2X3X45



Then g and h are both single-element realizable, since g is a three-

variable function and h is SER type I. Then,

F = g + xlh

which can also be implemented by one module. This yields a three-

module solution, as shown in Fig. 4.2.

While the two methods presented in this chapter for the synthesis

of an arbitrary n-variable switching function are very simple to

execute, they are clearly not optimum. In the two-level synthesis the

number of M2 modules used was shown to be less than or equal to the

number of M1 modules used in Patt's optimum synthesis. The upper

bound obtained on the number of modules allowing a 6 pin module at

the first (input) level is considerably less than the bound obtained

by Patt allowing only three-pin modules in a tree-circuit form.



x 4

X3

X2 2 x1 F00

X3 4X _-

Fig. 4.2 Another Realization of F 1 + xl + X3 + x1x2 + x2x, + xx4

+ X2X3X 4 + X1X3 X4x5 + X1X2 X3-4X5-~~~~~~-'-`~l""n~" --r r· r.· --.1·-l----n^,,p·I--~---. ~ -~1~.._~~~~..~._.~._. ~ _~ ~~~~ __~_~~_ ~ ___ _~~



CHAPTER 5

SYNTHESIS OF ALL THREE-VARIABLE SWITCHING FUNCTIONS

In this chapter it is shown that all the switching functions of

three variables can be realized by using a single 6-pin KM, module,

even when complemented inputs are not available. It is also proved

that a M1 module with unrestricted pin count cannot realize all the

functions of three variables, even when all the inputs and the output

are available both in true and complemented forms. This shows that M2

is superior to M1, particularly when a small number of variables is

involved.

Theorem 5.1: All the three-variable functions are SER-type II

functions.

Proof: All the three-variable function F(A,B,C) are SER type II

if they can be written as a well-ordered sequence or the ring sum of

ABC and a well-ordered sequence. It is known from Chapter 3 that

singletons (product terms of length 1) in the IRSE !o not make any

difference in single-element realizability, and also that the absence

or presence of product ABC in the IRSE does not change the type of

function. Therefore, it is useful to classify all the functions of

three variables according to the number of doubletons (products of

length 2) in the IBSE. Each class will now be discussed individually.

a) None or one doubleton. The function is clearly SER type IIa.

b) Two doubletons. As there are only three doubletons possible

with three variables, there will exist only one doubleton in F + An

Therefore F is SER type IIb.

-265-



-266-

c) Three doubletons: Three doubletons in F implies no doubleton

in (F + An). Therefore F is SER type II.

Hence in all four cases the function is SER type II, which implies

that it must be realizable by a single M2 module, if the output is

available in both complemented and uncomplemented form.

Theorem 5.2: The maximum number of pins needed for an n-variable

SER function is 3n-2, given that complemented inputs are not available,

and n is even.

Proof: Since the function is SER, it can be written in the

standard form and a representation vector (Chapter 3) can be obtained.

Let this vector be called V. To get a worst-case function, the last

few elements of this vector should not be zero, for otherwise one can,

as suggested in the procedure, modify the vector and take care of the

singletons at the cost of one pin each, whereas it is known that to

obtain a zero in the u's of V (the right half of V) costs two pins no

matter what the corresponding v is (Section 3.2). Therefore, a worst-

case function should have all u's but the last one zero. Now if the

function is SER type I, two pins are sufficient to realize u=O and

simultaneously v=O or 1. Therefore, the function should be of SER

type IIb and all the v's should be such that they have to be taken

care of at the end, so that for each variable one needs a pin for

singletons. Furthermore, for each of the (n-l) products all but the

last one costs two pins. Of course, the first three pins are needed

to take care of the first two variables.



-267-

Consequently, the following are the pin requirements: 3 for u2;

2(n-3) for u- through u 1 for u ; 1 for "stopping" the sequence;
n-1 n

and n-l for the singletons (v1 and v2 together require only one pin).

Note that since n is even, (n-l) is odd and a pin is needed for

stopping the sequence. Hence the total pin count is 3n-2, as claimed.

Corollary 5.1: The maximum number of pins needed for an n

variable SER function is 3n-3, given that complemented inputs are not

available and n is odd.

Proof: The worst case function is still the same as in Theorem

5.2 but since (n-l) is now even, the pin to stop the sequence is not

necessary and the total pin count becomes 3n-3, as claimed. If only

(n-2) out of these (n-l) singletons are to be EX-ORed, the pin to stop

the sequence is needed but the case is not worse than the one with n-l

singletons.

Theorem 5.2 and the corollary give in fact the least upper bound,

because the following class of functions needs that many pins

F = x1 + x4 + "X + X2X ... X + XXX2XX ... Xn

Corollary 5.2: The maximum number of pins required to realize

any three-variable function by M,2 is six when inputs are not available

in complementedform and the output is.

For reference purposes, Table 5.1 lists the pin connections which

realize each equivalence class of all the functions of three variables

with one M2 module.

I~~BB~-·---------~2



-268-

Pin Connections

o. Representative IRSE 1 2 3 4 5 6
Function

1 a U b U c 1 + ABC A B A C C, 1

2 a U bc 1 + AB + AC + ABC B C A C - -

3 S0 ( ,bc) 1 + AB + BC + CA A B B C - -

14 abc U abc 1 + A + B + C + AB + BC+CA A B A C 0 C

5 ab U bc U bc 1 + A + AB + BC -+ CA + ABC B 0 C A A -

6 ac U ab U abc 1 + A + BC B C 0 A B 1

7 a U bc U bc 1 + A + AB + AC B C A C A -

8 S 1S (1 ,b,c) 1 + AB + BC + CA + ABC A 0 B C - -

9 ab U ac 1 + C + AB - AC B C A - - -

10 S 0 2 (,b,c) 1 + A + B + C A 0 B C 1

Table 5.1 Realization of All Three-Variable Functions

Note that equivalence classes 1, 4 and 6 are the only ones requiring

six pins.

Theorem 5.4: All the functions of three variables cannot be

realized by a single M1 module with any number of pins even allowing

input variables both in true and complemented forms as well as output

in both forms.

Proof: (By counterexample.) The following three-variable

function F cannot be realized by a M1 module with unrestricted number

of pins:

F = XlX2 + xlx3 + x'2x 3

By definition, F is not a well-ordered sequence because it has

three doubletons. Therefore F cannot be realized by Mn with,

__1________________~___~_~_-------·------ -.--_ --------------- `------`~~~ ~~ _--- _1_1~--111



-269-

uncomplemented inputs. The complemented inputs can be used in one or

both of the following two ways:

a) Variable xi is connected to one pin and x.i is connected to

another. The effect of this is similar to biasing a pin to zero,

because all the products where both xi and x. appear vanish, as though
1

one of them were zero. But biasing a pin to zero in a M1 module

always results in a w.o.s. and thus can be of no help in realizing the

function on hand.

b) Variable xi appears either in uncomplemented or in complemented

form. This means that the function realized can be written as a well-

ordered sequence in x*, where xi is either x. or x.. Now F =
1 I 1 1

xlX2 + x2x3 + xlx3 cannot be put into the form of a well-ordered

sequence because complementing a variable throughout the expression

cannot change the number of doubletons in the new expression.

Since neither way of using complemented variables can realize

three doubletons, it follows that F cannot be realized by a single M

module.

It happens that for the case of n=2, the bound given in Theorem

5.2 can be improved by the use of complemented variables.

Definition: A module is called globally universal for j variables,

denoted G.ULJ, if and only if all the functions of j variables can be

realized from this module assuming that complemented inputs and outputs

are available.

Theorem 5.3: Module ~ is G.U. 2.

Proof: To prove that a module is G.U.j, it must be shown that at

least one function from each equivalence class of j variables can be



-270-

obtained from the module. There are two equivalence classes of two-

variable functions. These are listed below with all their members.

(1) ab; ab; ab; ab; a U b; a U b; a U b; a U b

(2) ab U ab; ab U ab

We will show how one function from each of these classes can be

obtained from M2 .

(1) M 2 = 1 + Y2 + YY3 + 2Y3

M3 1 + ab = ab= -a U b

y1=a

y2 =y3=b

This function belongs to Class 1.

(2) Substituting yl = = = a and y3 = b

3I _ = 1 + a+ ab + ab

Y1Y2 =a
=l+a+b

Y3=b

= a + b = ab U ab

This function belongs to Class 2.



CHAPTER 6

SYNTHESIS OF FOUR-VARIABLE FUNCTIONS

Here algorithms for the synthesis of four-variable functions by

means of two modules are developed. The key notion is that the full

logic power of each module is exploited. As one expects, the pro-

cedures that result are not simple, even for four variables. But they

are suitable for prcgramming, in which case it is feasible to extend

them to a larger number of variables. It is shown that there exist

functions of four variables that are not two-module realizable when

only uncomplemented variables are available.

Lemma 6.1: All the four-variable functions cannot be realized by

a single K2 module, even when complemented inputs and outputs are

available and the number of input pins is unrestricted.

Proof: (By counterexample) The following four-variable function

F cannot be realized by a single M2 module:

F = XxX2 + X 3x x2x4 + x2X 3 + x2x4 + x3x4

As pointed out before, with the operations on hand (biasing a pin

to a constant and duplication) one can only get functions of SER type

II. The function F is clearly not SER type II. This leaves only

complemented inputs at our disposal. Again, two possibilities are

open:

a) Connecting a variable xi on the pth pin and xi on the qth pin.

Without lack of generality, let q > p. In this case product

An will be eliminated and the effect is the same as if these

connections were made on Ml, which can only give a well-ordered

sequence.

-271-



-272-

b) Connecting only one polarity of each variable, either x. or

x i. If in this case the function were realizable by a M2

module, then it must be expressible as a SER type II function

in some polarity of variables. But it is easy to see that no

matter what set of variables is complemented, there remain six

doubletons, and no tripletons can be created. So the expres-

sion obtained by any set of complementations is not a w.o.s.

because of the six doubletons. If the expression were type

IIb, then it would have to have three or four tripletons. But

it has none. Thus F cannot be put in SER type II form no

matter what the polarity of the variables.

Because any function of four variables can be decomposed as

F = G + x.H, where G and H are three-variable functions, and because

every three-variable function is M2 realizable, it follows that every

four-variable function is three-module realizable. In light of this,

it is reasonable to explore what can be done by two modules. In the

following section an algorithm is developed to effectively use the

cascade of two M1 modules, given uncomplemented variables only. Later

this algorithm is extended to the case of two M modules in cascade.

6.1 CASCADE OF TWO M1 MODULES

Before starting on the algorithm, several lemmas are given.

Definition: The functions which can be realized by the cascade

of two M1 modules with uncomplemented inputs are called M1M1 realizable

(M1M1R).

Lemma 6.2: If F is M1M1R, so is F + x. for all x .

1--------- ~ -- - ·--~ ··-----~- ---·· ·------------- · l ~ x~..~- .-~-~. ~.,^~~~~,,~___ __ . 1_ ~ ~ ~ . ~ ~ _ _~



-273-

Proof: Let F be realized by two modules of which the second

(output) module has p pins. By connecting the (p+l)th pin of this

module to the constant 0 and the (p+2)th pin to xi, the output will

be F+xi, since the w.o.s. realized by the second module is terminated

by the constant 0 and xi then appears only as a singleton.

In other words, this lemma states that one can synthesize an

object function by first specifying a network that realizes the desired

p-tuples and then taking care of the singletons in the output module.

Lemma 6.3: If F is M1 MR, then so is F + x X2X3...x , where the
-L -L * ~ xx123 n

n-tuple contains all the input variables.

Proof: Let the first module realize a functi.on f and the second

module realize a function 0 which, when appropriate substitutions are

made, yields F.

Suppose the IRSE for a has the term t = xlx2 x3...x nf. If f has

an odd number of terms, then t = lx2X 3...xn Then eliminating t,

which can always be done, will result in the function F + x X2X3...xn·

In case 0 does not have the term t and t is not identically equal

to zero (i.e., the number of terms in f is odd), adding this product

would achieve the objective.

Now consider the case where t=O because there is an even number

of terms in the IRSE of f. Then the IRSE of 0 will not have term t.

To realize F + XlX2X3 ..Xn, first change f to f' = f + x X2X3...Xn, so

that f' has an odd number of terms. After f is changed to f', the

function obtained either remains F or it becomes F + xlx2x3...xn, as

desired. If the function remains F, adding the term t' = xlx2...Xnf'

will give F + XlX2X3...xn. Thus in all cases F + xlX2...xn can be

realized by the MLM1 cascade, if F can be.

~-·--------------- -·11



Lemma 6.3: In the IRSE of a M1M1 realizable function F there can

be at most n doubletons, and all but one doubleton must have a common

variable.

Proof: Again let f represent the IRSE of the first nodule and 0

that of the second module, expressed in terms of f. Since 0 has to be

a well-ordered sequence, doubletons in F can be obtained by one or more

of the following ways:

a) f appears as a singleton in 0, contributing at most one

doubleton, since f is also a w.o.s.

b) f appears in the doubleton of 0, like x.f. Because f can have

at most n singletons, term xif can contribute at most n-l

doubletons, since all the singletons except x. in f can give

rise to a doubleton in this manner.

c) f appears in the tripleton xixjf and f has the constant 1.

This gives rise to the doubleton x.xj.

d) The doubleton ixjx in 0.

Cases b and d cannot apply simultaneously. If case b holds and

it contributes n-l doubletons, case c cannot contribute an additional

term. Cases a and b only remain and these can contribute at most n

doubletons, of which all but one have a common variable. Furthermore,

it is obvious that the doubletons arising from cases c and d have a

common variable and so the lemma is proved.

Lemma 6.4: In the IRSE of a M M1 realizable function F there can

be at most n tripletons. Ofthese all but two have two variables, xi

and xj, in common. The two remaining tripletons are of the form xIvw

(vw is a doubleton from f) and uvw (tripleton from f).



-275-

Proof: The tripletons in the output function can come about in

one of the following ways:

a) When f, the output of the first module, appears as a singleton

in 0, it can contribute its tripleton uvw to F.

b) When f appears in the doubleton of 0, like xif, the doubleton

in f, when multiplied by xi, yields a tripleton.

c) When f appears in the tripleton in 0, like xixjf, the single-

tons in f can give up to n-2 tripletons.

d) When f appears in 0 as xixjxkf and f contains the constant 1,

the tripleton xixjxk results, which is one of the possible

n-2 in case c.

e) A tripleton in 0 not involving f.

If case e holds, only one other tripleton (from case a) can be

obtained. The maximum number of tripletons from cases a through d is

n, since the one tripleton from case d is also one of those from case

c. The tripletons from cases c through e have two variables in common

and one of these variables also appears in the tripleton from case b.

Lemma 6.3: The realization of a M1M1 R function is not necessarily

unique.

Proof: (By counterexample) Either f = xl + xlx 3 + xlx3x4 or

f = i + x1 X3 + xl~X 4 together with p = xlf + xlx2f + xlx2x4f give

the same function F = x xl + XlX + XlX2 +

We are now ready to give a step-by-step procedure to obtain a

M1M1 cascade realization of a four-variable function, if it exists.

Complemented inputs are assumed not available.



-276-

Step 1: Obtain the IRSE of the function and obtain from this a

modified function F by dropping all singletons and the fourtuple.
m

From Lemmas 6.1 and 6.2 it is clear that if a realization of F ism

found, then a realization of F can be obtained.

Step 2: Check if the doubletons and tripletons satisfy the

conditions of Lemmas 6.3 and 6.41-, respectively. If not, the function

is not MIM1 realizable.

Step 3: List all variables x c which are common to all but at most

one of the doubletons, and all those pairs of variables xi, xj which

are common to all but at most two tripletons.

Step 4: Construct a set P of ordered pairs whose first element

is one of the pairs xi, xj obtained in Step 3 and whose second element

is one of the two elements in this pair (either xi or x;) vhich is also

one of the xc variables obtained in Step 3. This set P may be empty,

indicating that the function cannot be realized as a M M1 cascade.

Step 5: Pick an ordered pair fromP (x x ,x ) and rewrite the

IRSE of Fm as follows. In the expression for Fm, collect all those

terms which contain the second element in the pair, xp, and not both

x and x . Write these terms in row 2 with x factored out, i.e., in

the form Xp(t1 + t2 + ... ). We call x the row factor of row 2, RF2,

and tl + t2 + ... is called row 2. Collect all those terms which

contain the first element in the ordered pair. Write these terms in

row 3 with x x factored out, i.e., in the form x x (ti + t + ...).
p q pqi 1 j

We call x xq the row factor of row 3, RF3, and ti + t.j + ... is called

row 3-



-277-

If there exists a doubleton or a tripleton which does not have xp

then these terms are placed in row 1. The elements in row 1 must come

from f, the output of the first module.

Step 6: Two rows are said to be compatible if they are identical

or one is empty. Make the rows compatible according to the following

rules:

1. Any singleton or the constant 1 can be added to row 1.

2. The constant 1 can be added to row 2.

3. Any ring sum of products S can be added to row i if (RFi)S is

0 or the n-tuple x l x2x 3...x .

4. If row j has xj+l as a singleton and xjl also appears as a

variable in row factor RF(j+l), then xj+l can be dropped from

row j if the constant 1 is added to row j+l.

Only if the application of the above four rules makes all three

rows compatible can the function be M1M1 R. Call G the sum of all the

rows when multiplied by the row factors. (a) If G equals Fm or a

function differing from Fm by only singletons or the product

x X2X3...Xn, thrn the expression in a non-zero row specifies the

function f. If f is a w.o.s. and the row factors are a w.o.s., then

Fm is E MR. (b) If G also differs from F by a tripleton x x x and

a product of x x x and a non-zero row equals x x x plus possibly the

four-tuple xlx2x3x4, then row 4 with RF4 = xpx x and the non-zero row

is added. Again the non-zero row specifies the function f and the

condition on M1 M realizability is the same as in case (a).

Step (: Return to Step 5 until a realization is obtained or all

pairs in P are exhausted.



-278-

Example 6.1:

Step 1: F 2 = x2x3 + x3X4 + xlx2x3 + xlx2x 4 + X1X3X4

Step 2: Doubletons and tripletons satisfy the conditions of

Lemmas 6.3 and 6.4.

Steps 3 and 4: Set P contains all the possible pairs.

P = {(x(x2 ,xl),(Lx2 ,x2), .. ... }

Step 5: Making a first arbitrary choice, (xlX2,X2)

( X3X4 + X1X34)

x 2 (x 3 + .. )

XlX2 (X3+X4 + ' )

To make the rows compatible in accordance with Step 6, doubleton

x3x4, when added to second row, generates tripleton x2xrx4 which cannot

be taken care of with RF3 = xl x2. Therefore, the rows cannot be made

compatible.

By taking as second choice (xlx3,x3), Fm can be rewritten as

follows.

( + X1X2 X4)

X3(x2 + X4 +

x3xl(x2 + x4 + 

In Step 6 we obtain
(x2 + X4 + XlX2X4)

x3(x 2 + x4 + XlX2X 4 )

x3 1(x2 + X4 + X1 2X4)

Making f = x2 + x4 + x1 x2x 4 and ~ = f + x3f + x3xlf a function G



-279-

differing from Fm only in singletons is obtained, which can be modified

to obtain the object function.

Example 6.2: F = x x2 + x x 3 + xx 4+ xx2x3 + x xx 4m 1 2 1 3 1215 24

From steps 2, 3 and 4, P = ( 1X 2 ,X1 ), (xl,Xl),,l (xlx4 ,xl)}

Step 5: Selecting the pair (xlx2,xl), Fm can be rewritten as

follows.

X1( + x 3 + x4 )

x1x2l(1l + + x4 )

Step 6:

xl(l + x3 + x4)

x1x2 (1 + x3 + x4 )

So f = 1 + x3 + x4 and 0 = xlf + lx 2f gives a function differing from

Fm only in the singleton xl.
'm

Theorem 6.1: All the functions of four variables cannot be

realized by an M M1 cascade even when complemented inputs are available.

Proof: (By counterexample) By Lemma 6.3, the following function

F cannot be realized by a M M 1 cascade without complemented variables:

F = y1y2 + Y1Y3 + Y1Y4 + YZY3 + Y2Y4 + Y3Y4

Observe that no matter how independent variables are complemented,

there remain six doubletons in the expression for F and there will be

no tripleton. In the M M1 cascade form assumed, the independent

variables connected to the output module can be chosen from yi or Yi

arbitrarily, but as was observed before, a variable will never appear

both as yi and Yi. For any choice between yi and yi, we can rewrite F

in terms of these choices, and still be left with a function which has



-280-

precisely six doubletons and possibly some singletons. Since we know

that singletons do not affect realizability, the problem on hand is to

realize the related function

F = x 2 +xlx 3 + xX + x2x 3 + X2X4 + x x 4m 14

where xi = i or Yi', as chosen for the output module. Now 0 can take

any one of the following forms, where c. = 1 or 0:

a. c + c x +Cx +c3 +cc CcX1 2x3 + fC8cx2xx 4 + 

+ c 9X1 x2 x 3 4 f

b. ---- singletons----C6 X 2 + C7XlX2X3 + C8XX2X3f + CgXlX2X3fX4

c. l, C6X 1X 2 + lx2 + cx 3 + cgxlx2fxx 4

d. , C6Xlf + 7XlfX 2+ C8Xlf x + CxlfX2x3x4

In each of the first three forms of 0 above, the product terms

generate at most one doubleton. So five or more doubletons must be

obtained from f, and C5 must be made 1. The only way one can obtain

five or more doubletons from a w.o.s. is by complementing all the

variables in the four-tuple xlx2x x 4 . But then three tripletons are

also generated and these cannot be cancelled. Therefore, none of the

three forms can be used.

Now in form d there is the possibility of obtaining three double-

tons from xlf. The remaining three should be obtained from c5 f. But

no matter how this is done, these doubletons will each generate a

tripleton in xlf which cannot be cancelled.

Thus all four forms cannot realize Fr, and therefore F is not

MM11R even with complemented inputs.

11 ----- --- ~------------ --------··-----·-~-·-·;--·--·- ··---- ·-- ··------ --···-·.-.·-~~?-p~n-.- Tp;·~;~ *~~--~-.-~~-- ~ ~ ~ ~ ~ II-~~~,, ~~~~~~._;_, _------- ---



-281-

6.2 CASCADE OF TWO M2 MODULES

The algorithm in the previous section can be extended to handle 12

modules in a two-module cascade. As before, we let f denote the function

realized by the first module and 0 the function realized by the second

module expressed in terms of f. A function realized by a M2 _ cascade

belongs to one of the following four classes:

a) f is of SER type IIa and 0 is of SER type IIa

b) f is of SER type IIb and P is of SER type IIa

c) f is of SER type IIa and 0 is of SER type IIb

d) f is of SER type IIb and 0 is of SER type IIb

Each of these classes will be individually discussed. Before

developing the algorithm, the following lenma will be helpful.

Lemma 6.6: If F is M1 M1 R, then F + xlx2 x n 2M R.

Proof: Let F be realized by an M1M1 cascade. Then f + xlx2x3...x n

can be realized by an M2M2 cascade as follows:

If f appears as a singleton in 0, modify f to f = f + xlx2xx3..xn

and the same 0 will realize F + xlX2x3...xn . But if f does not appear

as a singleton in 0, add a term t = xlx2x3...xnf in 0. Term t can either

be zero or x 2x 3...xn. In the latter case, 0 will realize F + xl2...xn

with the original f and we are done. In case t is zero, use f as out-

put from the first module so that t becomes xlx2x3...xnfm* Since

x1x2x3.*.f is zero, the modified t has to be equal to xlx2X3...xn and

the function F + x x2x3...x will be realized.
1-2 3 n

Now each one of the four cases listed above will be discussed.

Case a. Same as the M1M cascade.

Case b. In general, 0 has to be in one of the following forms:



-282-

b- ao + a a2 a a4x4 + af + a6xx 2 + a7 +

+ a8xlX 2X3x4 + a9 x1 l 2 x 3 4 f

b-2 ----singletons---- af + a6xlx2 + a7Xl2X3 + a8xlx2x3f +

+ a9xlX2 X3 fX 4

b-3 ---- singletons---- a5f + a x f+ 8xlxfx +

+ a9xlx2 fx 4

b-4 ---- singletons---- axf + a 7xlf f x + a xlf22x 3 +

+ agxlfx2x x4

Since f is SER type IIb, it has to be a function of at least three

variables, because alltwo-variable functions can be classified as SER IIa.

If f is a function of four variables, A in f will be XlX2x34, and

because of Lemma 6.6, F + xlx2x3x4 is then MLM realizable. We will

henceforth ignore xlx2xYx4 because as a first step in the procedure

functions F and F + X2 4 will be checked for MiM realizability. Now

if f is a three-variable function, say f(xl,x2,x3), f + xlx2 x3 is SER

type IIa. In cases b-l, b-2, b-3, if a5 = 0, the term A = xlx2x3 makes

no contribution and the function must belong to Case a. But if a5 = 1,

then A 3 will be contributed, since the remaining products with A3 will

vanish. In b-4 if a5 = 0, the only contribution which A3 could make is

xlY x 4, while if a = 1 the contribution has to be either Xlx2x 3 or

x1 x2 x3 + xlX2x3x4, which is x1x2x 3x4. Thus, to take care of these cases,

F + A3 for all possible A3's should be tested for MiM1 realizability and

if F + A3 is M M1R, F may be 2MiR. Function f in the M M1 cascade for

F + A3 must have the same three variables as A3 and f must also appear

--Th-----------------~-- ------- ;·--· -~·--- ·------------ ~-·



-283-

as a singleton in 0. Furthermore, related functions of the form

F + xixjx kxm should be tested for M M1 realizability. If a related

function of this form is MM1 iR, a5 = O, and xixjxk are the variables

of f, then F is M2M1R.

Case c: Here there will exist terms like x.x f or xxxf in $,

but the term x1x2x x4 f need not be considered, as it will be taken dare

of in the beginning.

Observe that in this case all the singletons cannot be taken care

of except those appearing as independent variables in 0. Since 0 is SER

type IIb, it has to have at least two independent variables and f as its

arguments, so that only three cases can arise:

c-l 0 is a three-argument function

c-2 0 is a four-argument function

c-3 0 is a five-argument function

For c-l, the decomposition technique given at the end of Appendix

A can be used.

For c-3, as already discussed, F + xlx2x3x4 only need be tested for

M M1 realizability.

For c-2, one term in 0 is xixjxkx. Since f is SER type IIa, the

result of this product can be xixjxk or xixjXkXm or xixjxkxm . The prob-

lem reduces to trying F + x.x.xk and F + x.x.x.xm for MLM realizability

such that 0 uses the variables xi, xj, and x .

Case d: Here f must be a function of at least three variables and

0 has to have at least two independent variables along with f. In case

0 has only two independent variables, the decomposition procedure of

Appendix A is applicable. When 0 has four independent variables, then



-284-

F + xx2x3x4 is MM1 realizable and therefore need not be considered.

Similarly, we need not consider the cases where f is a function of four

variables. This leaves only the case where 0 and f both are functions

of three independent variables, so that A~ = xixj xk. The following are

the general forms for 0.

d-1 a0 + alx i + a2xj + a3xk + -af + axxixj + a6xlxjxk + a7xixjxkf +

+ xixjxkf

d-2 ----singletons---- alf + a 5xixj + a6 xixjf + a7xixjf\k +

+ xixjxkf

d-3 ---- singletons---- a4f + a5xif + a6xifxj + a7xifzjxk +

+ XIxixkf

In case d-3, F + xixjxk will be decomposable as an AND of two three-

variable functions when the singletons are ignored. This decomposition

can be obtained as in Appendix A.

For cases d-l and d-2 when a4 = 0 the same functions as in case c

need be tried for M1M1 realizability, and checked to see if the appro-

priate A's can be added later to obtain the object function by a M2M

cascade. In the two cases where a4 = 1, the tripleton Af in f is also

contributed to F, and the result of the term t = xixjxkf can either be

ixjxkx m or xi j x m or xxx.x· When t = xixkxm the combined effect

of Af and t is a product like xixj kxm and is one of the functions

considered in case c. When t = x ixjxk or xijxkxmx, functions of the

form F + xx.x + x.xm and F + xxx + x mustbetriedfor

M1M realizability and then checked to see if appropriate A's can be

added to obtain the object function.

~11 ------ `---1-----~- ·-- · -···---·----- -____; ··-- ·-- · ···----- ·------------



-285-

In light of the above discussion of all the possible circuit

forms, the following algorithm is valid for M 2M synthesis. The

procedure is stopped at the end of any step where success is met;

otherwise the next step is taken.

Step 1: Try F for M M1 realizability.

Step 2: Try Fm = F + xl2xjx 4 for MM1 realizability. If it

can be done, obtain the corresponding M2M2 realization by the steps in

the proof of Lemma 6.6.

Step 3:

a) Obtain a M1M1 realization of F + xiXjXk in which either f or

0 have xi, Xj, and xk as their arguments.

b) If xi, xj, xk are the arguments of f (0), make f (0) a SER

type IIb funCtion and check if f + xixjxk substituted in 0

(0 ' ixjxk) gives F.

c) If xi, xj, xk are the arguments of both f and 0, make both f

and 0 SER type IIb and check if F results.

d) Repeat b and c for a different i M1 realization of F + xixjxk

until all realizations are exnausted.

e) Repeat a through d for all possible xi, xj, Xk.

Step 4: Try F + xixj xm for a MM1 realization and see if it can

be mofidied to a IM2 realization of F in a manner similar to that of

Step 3. Do this for all xixjxkXm.

Step 5: Decompose, as in Appendix A, the function F such that

F = 0(xi,xj,f) and f is SER. F can then be realized, since 0 is a

function of three variables.



-286-

Step 6: Decompose F + xixjx k in the form of an AND of two three-

variable functions as shown in Appendix A. If this decomposition

exists and one of the subfunctions has xi, xj, and xk as its arguments,

obtain the M2M2 realization as follows.

Let F + xixjxk g(xixj,xk)) h(xixk,xm )

Then F = g · h + xixjxk

= g * h + xixjXkh + XijXkh

= (g + xixjxk) h + Xixjxk

For F to be realizable by a M2M2 cascade, the expression

(g + xixjxk)h has to be a w.o.s. in the arguments xi, xj, Xk, and h.

If this is true, f can be set equal to h and 0 is now SER type IM.

Therefore F can be realized in the above form.

Step 7: Now functions of the form F + xixjxk + xiixjx and

and F + xixjxk + xixjxmxk should be tried for M1M1 realizability and

checked to see if appropriate A's can be added to obtain the object

function.

Example 6.3:

F = xx 4 + 3 x2x 4 +x + xlx2x3 + x2x x4

Step 1: Since there is no variable common to three of the four

doubletons, F is not M M1R.

Step 2: F + x1 X2X3x4 = x x2 + xx4 + x1 xX 4 + xxx2x4 + x 1 x2 x3x4

This function is M1 MR:

f = x lx 2 + XlX 2 X4

= f + x3x4 + xlx3X4 + xlx 2xSx4



-287-

To obtain F, we modify f to

f = lx2 + x x2X4 + xlx2.x34

which is SER type IIb. Thus F is MlMR.

Theorem 6.2: All the four-variable functions are not M2M2R when

complemented inputs are not allowed.

Proof: (By counterexample) The following function is not 2M 2 R

F = x +x2 + xlx3 + xix4 + x2x3 + x2x 4 + x4

Steps 1 and 2: F and F + xlx 2x 3x4 are not MM1 1 realizable.

Step 3: Since F is symmetric in all four variables, only one of

the functions F + xixjxk need be tried.

F + 2 x3 = X1X4 + x2X4 + X3X4 + x1 x2x3 + x + x2 + x

which has the MiM realization

(x 1 + x2 + x3 + Xl X2 X3)

x4(x I + 2+ x + x2 + x3 + XlX2 X3 )

But to realize F, the 4-tuple X1 X2 X3x4 must be taken care of without

making the row or the row factors a function of four variables. But

this cannot be done. Hence step 3 fails.

Step 4: Again, because of symmetry, trying F + x1x2x3x4 is enough.

F + x2x3x4 = x x2x4 + xX3x4 + X2X14 + X4 + X2x4 + xx2 + 13 +

x2x3

It turns out that this expression is not M M1R.

Step 5: F = x? 4 + Xl(X3 + x4 ) + x2(x 3 + x4 ) + x1x2 (1)

p - x3x4

q =X 3 + x4

r = x3 + x4

s=l



-288-

For a decomposition such that F = A(xl,x2 ,h(xl,x3,x4)), the first

condition in Appendix A is p = r, which is not satisfied.

Now we try the decomposition F = 0(xl,x2,f). Here f can be a

function of four variables. The condition for a non-trivial decomposi-

tion is q U r U s ~ 1. which is also not satisfied.

Step 6: F + x 2x3 = xx4 + X2X4 + x3x4 + xX2X3 + x + X2 + X3

=x 2 + x3 + xl (l+ x2 x3 ) + x4(x2 + x3 ) +

+ XlX4 (1)

P1 -x 2 + X3

q1 + x2X3

rl X2 + X3

S =1

The condition for the decomposition into an AND of two functions is

ps = qr, which obviously is satisfied. If F = g(xl,x2,x3) ·

h(x2 ,x3,x4), the equations to be solved are.

gl . h1 = x2 + x3

·* hl = 1 + x2 x3

q1 - h2 = x2 + X3

g2 . h2 = 1

The unique solution is g2 = h2 = 1, h1 = 1 + x2x3, and gl = x2 + x3.

Then

g = gl + Xlg2
=x2 + X3 + x1'

g + 2l23 = 1 + +xl2 + x3x3 + x2x 3 + xlx2x3

and (g + XlX2 3)h is obviously not a w.o.s. so that this step also does

not give a solution.



-289-

Step 7: F + x lX2X3 + xlX2X4

X1 X2 + xx4 + x1 x2x 3 + xlx2x 4

which has a MiM realization as follows.

(1 + x + x3 + x4 3x4 )

x1 X2 (1 + x3 + x4 + x3x4)

Again to take care of xlx 2x3X4, it is necessary to make f or 0 a

4-variable function, which results in a situation making it impossible

to obtain xl2 and l2X4

Next we try F +x + xx3 + XX24x3

1 X4 + 2x4 + 
+x3 + x2x + x 1 xxx4 x2x3x4 + X1X2XX4 + x3

There is no variable which is common to three out of the four

doubletons. Thus this function is not M MiR. This exhausts all steps

in the algorithm.



CHAPTER 7

CONCLUSIONS

As a result of modern technology in integrated circuits, it is

well known that a large amount of logic circuitry can be implemented

on a small chip and the cost of a chip does not depend significantly

on the number of junctions to be deposited. The module functions M2

and M1 are such that they need a large number of transistors and are

therefore economical only in integrated circuit form.

It was shown in Ref. 1 that efficient use of M1 modules results

in substantially more economical realizations of combinational circuits.

Here it was shown that M2 is a better class of module functions and

normally results in realizations more economical than those using M1.

It was also shown that for any three-variable switching function one 2

module is sufficient, and three are sufficient for an arbitrary four-

variable function. We did not find a way to use the M2 module in an

optimum manner for orbitrary switching functions.

The properties of total asymmetry and completeness, which are

obviously useful for module functions, are responsible for the diffi-

culties in finding good ways to use the modules in the second level.

Simple functions like 'OR', 'AND' and 'EX-OR' are symmetric and easily

used in the second level. Asymmetric functions, however, do not lend

themselves to simple algebraic representations and lead to complicated

functional decompositions.

Suggested Areas of Further Research

The following are some of the issues which are yet to be explored:

-290-



-291-

a) The use of more than one module kind simultaneously in an

efficient manner.

b) The development of mathematical tools to express a switching

function using a totally asymmetric second-level connective.

c) Efficient use of complemented inputs, or better choice between

the two forms of input if only one can be used.

d) Determination of better module functions.

e) Module functions which are not defined for three variables, but

are only defined for four variables or more.

Out of these and others, the first one seems to be the most

important. Since a variety of logic tasks is required in a digital

system, the same module function may not be good for all of them. For

example, if one has to realize a simple AND, the M2 module is one of

the worst to use. Thus a set of several distinct module functions

should offer considerable economy, but the methods for choosing the

functions in the set and efficiently using them are not known and are

expected to be hard to find.



REFERENCES

1. Patt, Yale N., Minimal Module Synthesis of Switching Functions,
Ph.D. Thesis, Stanford University, Dept. of Elect. Eng., 1966.

2. Haring, Donald R., "Multi-Threshold Building Blocks," IEEE Trans.
on Electronic Computers, Vol. EC-15, No. 4, Aug. 1966, pp. 662-
663

3. Prather, Ronald E., Introduction to Switching Theory (A Mathemati-
cal Approach), Allyn and Bacon, Inc., Boston, 1967.

4. Even, S., I. Kohavi, and A. Paz, "On Minimal Modulo-2 Sum of
Products for Switching Functions," IEEE Conference Record of 1966
Seventh Annual Symposium on Switching and Automata Theory, Oct.
1966.

5. Even, Shimon and Albert R. Meyer, "Sequential Boolean Equations,"
Technical Report RADC-TR-67-629.

6. Cohn, M., Switching Function Canonical Forms Over Integer Fields,
Ph.D. Thesis, Harvard University, Dec. 1960. (Theory of Switching
Report No. BL-27.)

7. Harrison, Michael A., Introduction to Switching and Automata Theory,
McGraw Hill Company, 19Q5.

-292-



APPENDIX A

SOME DECOMPOSITIONS OF SWITCHING FUNCTIONS

R. E. Prather (Ref. 3) has described some decompositions on

switching functions which are due to Ashenhurst. All these decomposi-

tions are called disjunctive, meaning that in the decomposition of f

into functions 0i

f(Xln x 2 X53.*.xn) = F(01'02' 20P)

01,02 through p are switching functions of p disjoint subsets of the

set of variables such that the subsets form a partition over this set.

Disjoint decompositions put a severe restriction on the functions which

can be decomposed. What follows is an approach to obtain some non-

disjoint decompositions. Also, the method suggested by Ashenhurst

involves the use of partition charts and tables, while what follows is

somewhat easier to handle.

Notation: Let f(X) denote a function on the set of variables X.

Theorem A.l1: A switching function f(X) of n variables can be

decomposed as an AND of two functions of (n-l) variables each, i.e.,

f(X) = g(X - xj) . h(X - xi)

if and only if in the expansion over the two variables xi and x. not

common to g and h

f(X) = p + xiq + xjr + x.x.s

it is true that p.s = q.r.

Proof: Let f be expanded about xi and x..

f = p X iq + x r + xjx.s

where xi (xj) is the variable which is an argument of g (h) but not of

h (g). Then expanding g about x.

-293-



-294-

g = gl + Xig2

and expanding h about xj

h = h i + xjh2

and f = goh

= (gl + Xig2) ' (hl + xh 2) A.2

= gl ' h1 + gl + glh2 + xig2hl + xixg 2h2

Since the g's and h's are functions of precisely the same variables as

p, q, r, and s, there must be the following one-tot-one correspondence

between A.1 and A.2, if both must hold for all values of x. and xj:

P= gl hl 1 A.3a

q = g2 ' hl A.3b

r = gl ' h2 4.3c

s = g2 ' h2 A.3d

Now the problem of finding the required decomposition reduces to

solving equations A.3 for the g's and h's, and the necessary and

sufficient conditions for the decomposition to exist are the same as

the necessary and sufficient conditions for equations A.3 to have a

solution.

Necessity: From equations A.3,

p. s=q r

and it is therefore a necessary condition.

Sufficiency: To show that this condition is also sufficient for

the equations to have a solution, we show that the following is a

solution and exists when the above condition is satisfied:



-295-

gl = p U r

g2 q U s

hl =p U q

h2 =r Us

A.3a glhl = p U qr

But since qr = ps,

glhl = p

A.3b g2hl = q U ps

But since ps = qr

g2hl = q

A.3c glh2 = r Ups = r

A.3d g2h2 = s U qr = s

This proves sufficiency of the condition.

The above theorem also suggests a solution for a decomposition

which in general is not unique.

Theorem A.2: A switching function f(X) of n variables can be

decomposed as the EX-OR of two functions of (n-l) variables each, i.e.,

f(X) = g(X - xj) + h(X - xi)

if and only if s = 0, where s is the coefficient of x.x. in the IRSE of

f(X).

Proof: Let f be expanded about xi and x. such that

f = p + xiq + xjr + xixj s

Again g and h when expanded about xi and x;, respectively, can be

written as

g = gl + Xig2

h = h1 + xjh



-296-

and since f = g + h, we have

p + qx + rxj + sx.x. gl + g2 x. + hi + h2xj

Hence

P = gl + h1 A.4a

q = g2 A.4b

r = h2 A.4c

and s = 0 A.4d

Again, the desired decomposition exists if there exists a solution

of equations A.4. Equation A.4d demands s = 0, and clearly A.4a through

A.4c always have solutions, with much choice left in selecting gl and

hl, so that the solution is not unique.

We now consider the decomposition of a n-variable switching

function f in the form

f(X) = $(xi,xj,g(X - xj))

The IRSE of 0 is

(xi,xjg(X - xj)) = a0 + alxi + a2 xj + + a3xixj + a4g + axig + axjg +

a 7xixjg

Let g be expanded about xi such that

g = gl + Xig2

Then

0 = a ax + a axxj + algxi + a 4 xj g2 + axigl + axx.g 2 +

a6xjgl + a6xixjg 2 + a 7xixjg 1 + a7Xi-j92

= a O + a4g1 + (a1 + a4g2 + a 5 g1 + a5g2 ) Xi + (a2 + a6g1) Xj +

(a3 + a6 g2 + a7g1 + a7g2) Xixj

Also f can be expanded about xi,xj
1 -j



-297-

f = p + qsi + rxj + sx.ix

so that

P = a0 + a4gl A.5a

q al + agl + ( %+ )g 2 A.5b

r = a2 + a6g1 A.5c

s = a3 + (a6 + a7) g2 a7 1 A.5d

Equations A.5a and A.5c demand that either

p = r A.6a

or p = r A.6b

or p = constant A.6c

or r = constant A.6d

Let us define a relation '=' such that p=r if and only if at least one

of the conditions A.6 is satisfied.

Also p + q = a + a + (a4 + a) (g1+ g2)

r + s = a2 + a 3+ (a6 + a7) (gl + g2)

These equations also imply a condition

p + q r+s A.7

Therefore A.6 and A.7 are two necessary conditions for the solution,

and hence a decomposition, to exist.

To show that these conditions are also sufficient, it should be

observed that once these conditions are satisfied, the decomposition

can be obtained by solving the equations, though not uniquely. A.5a

or A.5c solve directly for gl, and A.5b or A.§d can be solved next for

g2'

Now we consider the special case of four-variable functions. Let it

be desired to decompose F as follows:



-298-

F(XlX 22X,x34) = O(xlx2,g(XlX 2X X3,X4 ) )

There always exists a trivial decomposition in this form when g = F,

but what we are looking for are all the non-trivial decompositions in

this form. The function g can be written as

g = g0 + glx3 + g2x4 + g3X3x4

where go,g1,g 2,g3 are functions of the two variables xl and x2 . Then

can be written as

0 a + 1 + 2x2 + a3xxx2 + 2 aa 4 (g + gx3 + g2 x4
+ g3xx4 ) +

+ a5x (g0 + g1x3 + g2x4 + g3x3x4 ) + a6x.(go + g1x3 + g2X4 + g3x x4)

+ a7Xlx2(go glx3 + g2x4 + g3xx 4)

=a0 a0 x + a2x 2 + a3lx2 + xa4go 3(a4g + x3(a4 6g1 x2 +

+ a7gx1 +X2 ) + x4(a4g2 + asg2x1 + a6g2x2 + a7g2x1x2) + xx 4(a4g 3 +

+ a 5 g3xl + a6g3x 2 ' a7 g3x l x2 )

Since the IRSE of F is unique, there exists a one-to-one correspondence

between the above terms and those of F when written as

F = p + qx3 + rx4 + sxY4

Hence

p = a0 + alxl + a2x2 + ax 1 x2 + a 4g0 A.7a

q = gl(a4 + a5x1 + a6X2 + a7xlx2) A.7b

r = g2(a4 + a5xI + a6x2 + a7xlx2 ) A.7c

s = g3(a4 + a5x1 + a6X2 + a7Xl 2) A.7d

The problem of obtaining the decomposition is that of solving these

equations for go, gl, g2 ' ana g3'



-299-

Obviously there exists a gO for every choice of aO,al,a2,a3 which

satisfies A.7a. These cases are not of interest and are not considered

as different decompositions.

Equations A.7b, A.7c, A.7d demand that

q U r U s = (gl U g2 U g3) (a4 + a5xl + a6x 2 + a7xlx2)

Hence a4, a5, a6, and a7 must be so assigned that the set of true

vertices of a 5 + ax 1 + a 6x2 + a7 x1 x2 contains the set of true vertices

of q U r U s. All such choices for the constants result in solutions

of these equations, which then give the desired decomposition. In

order that there may exist a non-trivial decomposition, the function

a4 + 1 + a6 x2 + a7xlx2 should not be made identically equal to 1,

which implies that q U r U s / 1 is the necessary and sufficient

condition for a non-trivial decomposition of the desired form to exist.

This approach can in principle be extended to functions of more than

four variables. The choice of constants offers a multiplicity of

solutions which increases with number of variables and exhaustion may

get out of hand.



SECTION VI

DESIGN AUTOMATION
FOR DIGITAL SYSTEMS

William M. Inglis

Design automation is so new and complex a field that it is still

more an art than a science. The best techniques are known only in a

few cases. In most instances, techniques are used which "seem" good

or appropriate. We attempt here to summarize what has been done in the

subfield of digital system design automation and to indicate a few tech-

niques for improving the handling of the one part of this subfield

which appears to have the weakest existing solutions.

-300-



CHAPTER 1

OVERVIEW

A few years ago it became apparent that digital-systems design

engineers in industry were spending substantial time doing work

which did not call for any special engineering talent, such as the

preparation of running lists which specify sets of printed-circuit-

board pins which are to be connected by wires. This and other tasks

can be defined by reasonably simple algorithms, and therefore can be

programmed and executed by a digital computer with only moderate

effort. Such programs are referred to in the literature as design

automation programs. They accomplish a tedious job more cheaply than

when done by hand and free engineers to perform more creative, thought-

demanding worK.

The purpose of this chapter is to present a brief survey of

existing digital-system-design automation programs, point out their

strong and weak points, and describe a set of algorithms which could

greatly improve the results in one case.

For ease of presentation, we will define seven tasks which com-

prise most of the jobs done by design automation programs. Methods of

performing each task will then be discussed. The seven tasks are:

1. Set up a data structure which specifies the desired digital

circuitry and its interconnections. This specification may be:

a. directly copied from input cards; or

-301-



-302-

b. derived by the computer from more simply specified

requirements on the desired circuitry.

2. Set up a data structure to describe the available printed

circuit boards.

3. Assign the designed circuitry to the available printed cir-

cuit boards.

4. Place the printed circuit boards on a backplane so as to

satisfy some goodness criterion, such as

a. shortest total wire length

b. shortest maximum wire length.

5. For each signal set (set of electrically common, but as yet

unconnected points on the backplane), find the best order

in which to connect the members and produce a tape to con-

trol an automatic wiring machine.

6. Simulate the operation of the system being designed so that

most procedural, logical and component-tolerance errors may

be detected before a prototype is ever constructed.

7. Prepare adequate quality logic diagrams as documentation for

the system being designed.

1.1 THE DATA STRUCTURE DESCRIBING THE DESIGNED SYSTEM

The first job of the design automation program is to build up

in the machine memory a description of the digital system being de-

signed. At one extreme, the actual circuitry of the system may be

specified completely by design engineers and fed into the computer

via cards or tape. At the other extreme, a complex register transfer



-303-

language may be used in which the design engineer specifies only the

tasks to be done by the system and time and money restrictions on

the operation of the system. In this case, the design automation

program must derive the precise circuitry to be used from the infor-

mation supplied.

The first of these cases puts too much of the burden on the

engineer (as we wish to automate the design process), while the sec-

ond may be very costly both to develop and to operate and may strain

the computer storage capacities, unless limited in its generality.

The best alternative is probably in the middle: the engineer

should always be allowed to specify circuitry precisely, and yet if

the design is not critical, the computer should do some of the work

for him. An example is provided by the Digital Design Automation

Program. Here, all combinatorial logic is implemented with NAND

gates, whereas engineers think best in terms of AND-OR logic. The

engineer is given the option of specifying the precise NAND network

he wishes, or of writing an equivalent AND-OR equation which the

computer will convert to NAND. In the latter case, the engineer

loses control over the exact network configuration, but gains from

the relative ease of specifying the operation to be performed.

So far we have considered how the man-computer team arrives at

a completely specified network configuration. Because there are as

many data-structure setups to store this information as there are

design automation programs, we will limit ourselves to a discussion

of the basic features that this data structure should possess in



- 304-

order to be used efficiently. First we notice that three (at least)

of the design automation tasks must refer to the data structure:

assignment of circuitry to printed-circuit (PC) boards, simulation of

system operation, and preparation of logic diagrams. The chosen data

structure should be adequate for use by all three of the corresponding

design automation programs. We will now investigate the demands on

the data structure made by these three programs.

In order to assign the circuitry described by the data struc-

ture to PC boards (which are described by a similar data structure),

it must be possible to compare a circuit in the designed system data

structure with a circuit in a PC board data structure in order to

determine if that particular portion of the designed system can be

assigned to the particular PC board. The author does not know of an

existing program which accomplishes this in a non-trivial manner and

a novel means for achieving this comparison ability is discussed in

Chapter 2 of this section. Most existing systems sidestep this issue

by requiring the engineer to make manual assignments in many cases.

Those assignments which are done automatically do not meet any partic-

ular criterion of goodness.

System simulation capability requires that circuit inputs be

traceable from circuit outputs in the data structure and that the

location of a circuit element in the data structure be easily found

when the output name or designator of the circuit element is known.

These properties are clearly seen to be necessary if it is to be pos-

sible to evaluate the outputs of a circuit when the inputs are known.



-305-

Automatic logic diagram preparation can be done in a variety

of ways, each placing different requirements on the data structure.

Discussion of these requirements will be deferred until the section

on automated logic diagram preparation.

1.2 THE DATA STRUCTURE DESCRIBING AVAILABLE PRINTED CIRCUIT BOARDS

The PC board data structure is identical in basic form to the

designed system data structure. In the former case, however, circuit

inputs and outputs are represented by board pin numbers, while in the

latter case signal names are used.

Normally, a library of standard PC board data structures is

maintained on tape. Design engineers then have the option at run

time of declaring any standard board to be unavailable for a partic-

ular job and of inputting the descriptions of special boards which

may be needed but are not presently on the tape.

Depending on the sophistication of the programs, PC board

descriptions may contain such information as the locations of test

points, the presence or absence of pull-up resistors on gates, cost

factors to be used in determining when to use the PC board, etc.

1.3 ASSIGNMENT OF DESIGNED CIRCUITRY TO AVAILABLE CIRCUIT BOARDS

A wide variety of algorithms can be used to perform the assign-

ment function. In the very simplest program, the engineer is re-

quired to associate every element in his designed system with an

element on a printed circuit board. In that case, the only design

automation achieved is automatic linking of PC board leads with ele-

ment leads of the designed system.



-306-

From here, the first step upwards in complexity is achieved by

considering the modularity of PC board subnetworks. That is, each

PC board can be thought of as containing n independent digital cir-

cuits, each of which may be used independently of the others.

We may ease the job of the engineer by requiring him to assign

only one pin of each PC board subnetwork to a node of the designed

system. For example, in assigning the PC board subnetwork of

Figure 1.1A to the designed system of Figure l.lB, the engineer

merely specifies the correspondence: A -1, i.e., pin 1 is assigned

to node A of the system. The design automation program then examines

the data structures describing the PC board and the system, and de-

duces from the correspondence A *-I1 that the following correspon-

dences must also exist = F +-'6, G '-7, H +-*8, I 9, J +-T10,

K '- 11, E * 12. The engineer is thus saved the tedium of writing

down most board-pin to system-node correspondences. The design auto-

mation program can determine the remaining correspondences with

reasonable efficiency by an exhaustive trial and error method as long

as the PC board subnetworks are small.

More sophisticated methods are difficult to devise when arbi-

trary feedback and fanout of signals are allowed and when there are

elements (such as flip-flops) with distinguishable input or output

lines.

To move one step higher in complexity, we now require no manual

inputs from the design engineer at all. In performing the assignment

task, there are two levels of strategy. At the outer level there



-5307-

61 18 91 1 io

3 4

PC Board 1 Subnetwork

Figure 1.1A

L| M N P Q R S T

F H
I J K

B C

Figure 1.1B



-308-

must be rules to determine in what order we will attempt to assign PC

boards to the system. As an example, consider the following strategy

devised to implement the designed system as cheaply as possible.

First we divide the cost of each circuit board by the number of ele-

ments on the board to obtain the cost per element, ce, of the board.

We then determine the fraction f. of elements of type i in the de-

signed system. Let n. be the number of elements of type i on the

board. Let the quantity ce/Z fini with the sum over all i be a mea-

sure of cost for each circuit board. (Note that if fi is zero for

all nonzero n,, the cost factor of the board will be infinite; that

is, the board will never be used.) We arrange the boards in ascend-

ing order according to this cost measure and use an assignment algo-

rithm to assign the first board on the list to the designed system as

many times as possible. When it is no longer possible to assign the

first board, move on to the second one, etc., until all elements are

assigned. If any elements are left over, the process can be repeated,

this time without demanding that all the subnetworks on a board be

used. This process should give a nearly optimal assignment.

The inner level strategy is the strategy used to assign a par-

ticular PC board subnetwork to the system. (The outer level strategy

determines which particular PC board subnetwork will be assigned at

any time.) The inner level strategy is required to decide whether or

not a subnetwork will be assigned to the system once it has been

determined that it can be assigned.



-309-

For example, a NAND gate with ten inputs could be assigned to

a two input NAND function in the system but it would most likely be

too uneconomical to do so. The inner level strategy must be able to

handle all such decisions.

In Chapter 2 a different approach to the assignment problem is

taken, which avoids the need for strategies, by considering all pos-

sible assignments and selecting the best.

1.4 PTACEMENT OF PC BOARDS ON A BACKPLANE

At this point one might raise the objection that if optimality

is to be achieved in the performance of the assignment and placement

tasks, they must be considered together and not dealt with indepen-

dently. This is a valid but unrealistic objection. The number of

ways of placing 100 PC boards in 100 slots is 100.. If we multiply

this number by the number of ways of assigning the designed system to

available PC boards, the number of combinations becomes unmanageable.

No algorithm has yet been devised to handle a significant fraction of

this number of combinations in such a manner that optimality is ap-

proached in a reasonably short time. Completely acceptable assignment-

placement combinations are obtained by dividing the problem into parts.

Although absolute optimality will not in general be obtained, it is

possible to come close enough so that expenditure of additional funds

to improve the solution would not ordinarily be warranted.

The goal of the placement program is to assign the PC boards

which implement the designed system to a set of card slots which lie

in an x-y plane, each slot having coordinates specified by the design



-310-

engineer. The criterion of goodness is usually taken to be the total

length of wire necessary to interconnect the PC cards.

There are many algorithms available for obtaining nearly mini-

mum wire length. An example follows. First the engineer is permitted

to pre-place as many boards as he wishes. He may, for instance, wish

to guarantee that two boards which could cause crosstalk problems are

not placed near each other. If no cards are pre-placed, the algorithm

selects the two cards having the largest number of electrically common

pins and places them at the center of the plane. After these cards

are placed (or if there are already qome pre-placed cards), the algo-

rithm selects the unplaced board which has the most points in common

with the set of placed boards and places it so as to minimize the total

length of wire needed to connect it to the previously placed boards.

This procedure then continues until all boards have been assigned--

The above algorithm can be improved by adding tie-breaking pro-

cedures. Whenever two or more cards each have maximum connectivity

with the placed cards, the algorithm assumes that each one in turn is

placed and investigates the next step. The best next step then deter-

mines what will be done at the present step. If there are ties for the

best next step, the tie-breaking procedure can be used again, etc.,

and for as many levels as computer time allows.

1.5 DETERMINATION OF OPTIMUM WIRE ROUTING

Ideally, whatever algorithm is used to accomplish this task

should also be used in the previous task whenever it is necessary to

calculate wire lengths. For systems of substantial size, however,



-311-

this would require much more computer time than the improved results

would justify. Results which are nearly as good can be obtained by

performing the placement task first and then the wire routing.

The following is a simple wire routing algorithm. The two

points closest to each other are chosen for the first wire. The

succeeding wires are then placed between a new point and either end

of the existing chain such that the new wire is as short as possible.

This method may be improved by adding a look-ahead feature. For ex-

ample, two wires could be placed at a time, selected such that the

sum of their lengths is a minimum. If all sets of common points con-

tain a small number of members, an exhaustive or near-exhaustive

technique could be employed.

The above algorithm assumes that at most two wires can be at-

tached at any point on the backplane. If this is not in fact a

restriction in a particular case, other algorithms can be used and

improved solutions obtained.

1.6 SIMULATION OF THE DESIGNED SYSTEM

A digital system simulator will accept input waveforms and

initial system conditions and calculate and print out the corres-

ponding output waveforms. Accuracy of the system design can then be

checked without having to breadboard the system.

To use such a system simulator, an engineer will specify:

a. The portion or portions of the designed system he wishes

to simulate.

b. The number of time units to be simulated.



-312-

c. Bivalued waveforms representing the inputs to the system.

d. Element parameters (e.g., input-output delay of gates,

pulse time of one-shots, etc.)

e. A list of the elements whose outputs are desired.

The simulator will use the designed system data structure to

update the output of each element at each time unit.

If the initial output of each element is specified, there will

be no problem in finding the proper order in which to update element

outputs, for any order will do. The output of each element at time

n is then a function of the inputs at time n-l.

The more sophisticated simulators have standard error flags to

call the attention of the engineer to possible design errors of a

procedural nature; for example, trying to exceed the duty cycle of

a one-shot, supplying too short a triggering pulse to a one-shot or

flip-flop, or triggering both inputs of an R-S flip-flop at the same

time.

Design errors of a logical nature are detected by comparing the

desired output waveforms to those actually calculated by the simulator.

Discrepancies may reveal missing or incorrectly placed elements.

It is also possible to use a simulator to test a designed system

for errors due to component tolerances. For this, it is necessary to

use parametric flip-flop, gate, and one-shot models. That is, the

engineer must be able to change the characteristics of an element at

least slightly by specifying parameters for the element. To test for

component tolerance errors, the engineer specifies a minimum and a



-313-

maximum value for each element parameter. For each element in the

designed system, the simulator then chooses the minimum or maximum

value of each parameter at random, the simulation is carried out, and

the response is retained. Then parameters are again chosen at random

for each element and the system simulated again. Discrepancies in

the two sets of responses are noted because they could possibly be

due to poor design. The more times this procedure is repeated, the

better. The number of iterations, of course, depends on the amount

of computer time available.

There are two extreme philosophies involved in computer simula-

tion of digital systems. The first maintains that speed of simulation

is of utmost importance. Simulators written with this in mind have

very simple, approximate element models and all is sacrificed for

speed. The second philosophy maintains that accuracy of simulation

is essential. Simulators written on this basis have very complicated

element models which very nearly approach the actual circuits. The

time required to simulate a system is, however, much greater with this

second approach.

The Digital Design Automation System employs two simulators, one

of each type. The fast simulator is used for very, very large systems

which could not be simulated at all with a slower system. The accu-

rate simulator is used for small systems, for critical portions of

larger systems, and for more accurate simulation of those portions of

very, very large systems which the fast simulator indicates are faulty.



-314-

1.7 AUTOMATIC PREPARATION OF LOGIC DIAGRAMS

Many schemes have been employed in this area, most of them dif-

fering in what they accept as inputs. One program requires the engi-

neer to locate elements on a standard grid. It then uses the data

structure to determine how to draw in the connecting lines, employing

one of the existing maze-tracing algorithms. Logic diagrams drawn by

such programs appear rather unnatural and artificial due to the random

paths followed by the lines connecting elements.

A higher degree of automation is attained when the program as-

sumes the burden of arranging the digital element symbols on the page

as well as drawing in the connecting lines. It is usually necessary

for the engineer to provide a list of elements all of which are to be

placed on a given page. Otherwise a logic page may contain an incon-

venient variety of logic units together, such as a few memory circuits,

the thirteenth adder bit, and the control logic for the divide instruc-

tion. The author has devised a rather complicated algorithm to obtain

a reasonable arrangement of specified logic elements on a page, but

the algorithm results in a rather low density of elements per unit

area on the page as compared to the efforts of draftsmen.

As an example we will now describe an algorithm which will draw

simple gating networks in such a manner that no connecting line crosses

any other connecting line. A simple gating network is defined to be a

network of gates without feedback or fanout. A gate is defined to be

at level n+l if its output takes n gate delays to propagate to the

final output of the network. The first gate drawn is placed at the



-313-

lower right hand corner of the page. All gates are drawn with inputs

entering and outputs leaving vertically downward. A variable called

LEFT (in units of the width of a gate symbol) is maintained and indi-

cates the horizontal distance from the right edge of the page at which

a gate is to be drawn. Similarly, a variable VERT is maintained indi-

cating the distance from the bottom of the page (in units of the height

of a gate symbol) at which a gate is to be drawn.

The algorithm is given in the flowchart of Figure 1.2. An ex-

ample of a gating network drawn with this algorithm is shown in

Figure 1.3. The numbers in the figure indicate the order in which gate

symbols and connecting lines are drawn.

Similar but more complicated algorithms handle diagrams involving

fanout and feedback as well as other element types such as delay lines,

one-shots and flip-flops.



-316-

N=l
LEFT=l
VERT=1

3 Gate at
level N (with output 

A be ~~feeding most recently drawn gate Draw Gate at
at level N-1 for N>l)? (LEFT,=VERT)l

LEFT=LEFT+I

NO

N=N-1

: I NO
Connect

' NO YES output
||VERT =VERT-l 9 |Y=O DOto most

recently
drawn
gate
at level

Draw all independent input lines N-1
(lines not coming from the out-
puts of other gates) to the most
recently drawn gate at the right- -
most input positions and extend
them directly to the top of the
page

N=N+l YES at leve N+1
VERT=VERT+1 feeding this

gate?

NO

Figure 1.2 Flowchart for Gate Network Algorithm

-1--*---~------------~------·- ·----- -· -·--- -- ·-- --·- ·------ ·-· ·~-- -----------



-317-

27 26 987
22 17

¥D 21218·l1 12 11 11

224 10

4Figure 1.3 An Algorithmically Drawn Bimple Gating Network

Figure 1.3 An Algorithmically Drawn Simple Gating Network



CHAPTER 2

AN ASSIGNMENT ALGORITHM BASED ON LINEAR PROGRAMMING

In this part of the paper we will point out specific techniques

by which a design automation program can be greatly improved. The

assignment problem (of the designed system to the available circuit

boards) was chosen for inclusion here because the author knows of no

existing implementation which assigns in an optimal or near optimal

manner and does all assignments automatically.

The discussion will consist of three basic parts:

1. The description of a data structure well suited for comparing

designed system networks to printed circuit board networks.

2. Methods of carrying out the comparison above.

3. A description of the assignment algorithm and how it achieves

an optimal assignment.

2.1 A COMPARISON-ORIENTED DATA STRUCTURE

Suppose that two AND-OR expressions are given and it is desired

to determine if both expressions describe the same gating network.

For example (a+b)(c+d+e) and (f+g+h)(j+k) are clearly equivalent ex-

pressions. But the issue is confused by the fact that the AND opera-

tion is commutative, so that the order of the terms is immaterial.

This prevents a straight character-by-character comparison of the two

expressions. The two AND terms in one of the expressions would have

to be interchanged if such a comparison were to work. What we need

is a canonical form: a set of rules for writing logic equations which

-318-



-319-

guarantee that terms separated by commutative operators will always

appear in the same order no matter who writes the expression.

To obtain the canonical form, we first give rules for writing

logical equations in a modified reverse Polish notation:

1. Write the number of inputs to the output element of the gating

network followed by a letter indicating the logical operation

performed by the output element. This is the operator for the

Polish form. The number part of the operator tells how many

operands follow.

2. The operands are simply a list of what the inputs to the gate

are. If an input is just a simple variable, the name of the

variable is written. If an input is the output of a gating

network, we write it down using rule 1 recursively.

As an example, the expression (b+c)(d+e)+f would become

20-2A-20-b-c-20-d-e-f

where 0 indicates OR and A indicates AND. This expression is more

understandable if parentheses and commas are used:

20[2A{20(b,c),20(d,e )},f]

The arguments of each operator are the expressions within the follow-

ing brackets separated by commas. Notice that ordering ambiguity is

still present. The expression

20-f-2A-20-d-e-20-b-c

is also a valid expression for the given equation.

The expression can be easily converted to a canonic form, how-

ever. First we define the list of operands following an operator to



be the field of that operator. To put an AND-OR expression in canoni-

cal form:

1. Convert the expression to modified reverse Polish form.

2. For each operator in the resulting expression, order the ele-

ments in its field according to the following rules:

a. all independent variable names come first (are leftmost).

b. all A operators lie to the left of all 0 operators.

c. If P is an operator (A or 0) and k < m are integers, then

kP goes to the left of mP.

These rules leave ambiguous the ordering of identical operators

appearing in the field of a given operator. Ambiguity is removed be-

ginning at the deepest reduction level and working outward. If in

any set of ambiguous operators there are one or more operators with

ambiguities in their fields, that set of ambiguous operators cannot

be resolved. Since all expressions of interest are finite, however,

we can proceed in such a manner that all ambiguity can be removed;

namely, beginning at the deepest reduction level and working outward.

Assume now we have two identical operators in the field of some

other operator and no ambiguity in the field of either.

We then have two expressions of the form:

a. kP-El-E2-E3-E4-E5-E6-...-En

b. kP-F-F2-F3-F4-F5-F6-...-Fn

where the E's are variable names or operators and El-...En represents

the canonical ordering for the field of kP. If Ei happens to be an

- -- -~~~~~~~~- - -- --~~~~~~~~~,,~~~~~,,,.,~~~~~~~~~,,.~~~~~~,,,_~~~~~~~,,,,~~~~~~~,~~~~,~~~, ~ ~ ~ ~ ~ ___~~~~~~_~~~~~~ ________~~~~~~~~~~~~__ _~~~~~~~~~~_~~~~ ~~~_~~~~_~~~~~~~~_~~~~~~~- -----



-321-

operator in the above expression then Ei+l is in the field of Ei; we

are including all those elements even indirectly in the field of kP.

To decide if a) goes to the left of b) or vice versa we compare

El1 and Fl; if one of these goes to the left of the other by rules

2a, 2b, or 2c above, then the expression in which it appears goes to

the left of the other. If E1l and Fl are identical, we compare E2 and

F2, etc. If all elements Ei and Fi are identical, then a) and

b) represent identical subnetworks and their order is thus immaterial.

Example: 
1.) 5A-A-B-C-20-C-D-20-E-F

2.) 5A-G-H-J-20-K-L-T-M-N-P

t

Here, expression 1 goes to the left since 20 goes to the left of 30.

Two such expressions can, of course, be of different length.

If order has not been resolved by the time we reach the end of the

shorter expression, then the shorter one goes to the left.

Note that the foregoing can be easily generalized to cases in

which more than two types of gates are used.

2.2 COMPARISON OF CANONICAL GATING EXPRESSIONS

We now have a way of writing combinatorial expressions so that

a simple character-by-character comparison will decide whether or not

any two expressions represent the same gating network. This does not

entirely solve the comparison problem. In practical situations things

are much more complicated.

1. There are elements with distinguishable inputs.



-322-

2. The logic contains feedback and fanout which has not been

considered here.

3. We may wish to compare a PC board subnetwork expression con-

taining, say, two gates and another containing three gates to

a designed system expression containing five gates.

Solutions to the above complications exist but they are messy

and theoretically uninteresting, so they will not be discussed further

here. We will now move on to a discussion of the optimizing assign-

ment algorithm assuming complete comparison capabilities.

2.3 THE OPTIMIZING ASSIGNMENT ALGORITHM

The basic approach taken here will be to set up a linear program

with the expression to be minimized representing the cost of the de-

signed system and the constraint equations representing all possible

assignments of the designed system to the available circuit boards.

We first define the variable xijk to be 1 if the jth subnetwork

on circuit board k is assigned to node i of the system being designed

and 0 if not. By assigning a subnetwork to a node of the system we

mean that:

1. The subnetwork has a uniquely defined output pin.

2. The subnetwork can be assigned to the designed system in such

a manner that the output pin corresponds to the node in question.

Furthermore xijk exists as a variable of the linear program if and only

if the above assignment is possible.

It is then clear that for each node of the designed system we

must have



£ x. =1
j k xijkj k

The summation is over those j and k for which xijk exists.

Assigning the jth subnetwork on board k to node i in general

implies that some other system nodes will be covered (i.e., will have

some circuitry assigned to them indirectly). For instance, in

Figure 2.1, if subnetwork Nl of board 1 is assigned to node A of the

system, node B will be covered.

Clearly a node can have nothing assigned to it if it is covered

and vice versa. Thus the constraint equations are modified from the

above:
X I Xijk + ( Xk) = 1
j k p j k pk

The second summation is over those nodes p for which subnetwork j of

board k will cover node i when assigned to node p.

To set up the constraint equations for the linear program, we

use the comparison algorithm to attempt to assign every subnetwork on

every circuit board to every system node thus determining which of the

x.. exist.
ijk

The cost expression to be minimized is complicated by the fact

that whenever a subnetwork j from board k is used, an entire copy of

board k is effectively used regardless of whether its other subnetworks

are physically attached to the system.

Let us then define

xk =max E xijk
j i

/ _ ·-- P--II-.I···--·~--_ · II. ---



subnetwcrk N1 subnetwork N2 subnetwork N3 subnetwork N4

pin 5
Board 1

node B

The system

node A

Figure 2.1 An example of a "covered" node.



-325-

In other words the number of type k circuit boards used, Xk, is equal

to the maximum required number of any one of its subnetworks. For

instance, if board 1 has subnetworks A, B, and C and we have assigned

three copies of A, three copies of B, and four copies of C, we need

four boards of type 1.

Since we are setting up a linear program, we must specify xk in

a slightly different (linear) manner. Namely, we add the following

constraint equations:

XkŽ £ Xilk

xk Ci2k

Xk> i Xk1

.x..

i Jmax

There is one such set of expressions for each k, that is, for each

type of circuit board.

In minimizing the cost function, the linear programming mechanism

will automatically select the only consistent value for Xk, namely

max xijk.
j i

The cost function may now be easily written as:

F = i ckxk
k

where ck is the cost of a single copy of circuit board k.

If all the comparisons are done exactly and all the xijk's

determined correctly, the Simplex method will give the cheapest



-326-

assignment. It is highly likely, however, that any practical problem

of this nature would be so complex as to require an inordinate amount

of computer time to solve exactly. It is possible to obtain an accept-

able solution and begin converging towards the best solution by carry-

ing out only a portion of the Simplex iterations in much less time,

however. It is probable that the improvements from iteration to itera-

tion will become smaller and smaller. A cutoff point can then be de-

fined based on the percentage improvement obtained from the last n

iterations, and a near-optimal assignment obtained in a reasonable

amount of time.


