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ABSTRACT

Cast silver chloride containing alumina or glass spheres, particles or fibers is
used as a model material for metal matrix composites to study thermally
induced plasticity around large inclusions. Matrix dislocations, resulting from
the thermal mismatch between reinforcement and matrix upon quenching of
the composite, are decorated at room temperature in the bulk through
photodissociation of the matrix and observed by optical microscopy. The plastic
zone is found to take the form of (i) a deformed region surrounding the
inclusion and containing a high density of dislocation tangles, (ii) rows of
prismatic, interstitial dislocation loops punched into the matrix and extending
at a large distance from the interface. From the number of loops punched by
spheres and that punched radially by fibers, the highest temperature at which
slip is operative is found to be 400 + 30 K. The residual elastic stress in the
plastic zone around fibers is determined from the radius of curvature of pinned
dislocations, leading to the conclusion that the matrix is strain-hardened. Using
these two results, a simple model is proposed to predict the radius of the plastic
zone around mismatching inclusions embedded in a strain-hardening matrix.
The model matches well the experimental data for spheres, particles and fibers.

Another model predicting the number of loops punched at fiber ends is
developed. The longitudinal stress in the fiber is derived for a plastic and elastic
interface for which the shear-lag theory is used. There is a maximum fiber
length above which the number of punched loops is constant because the
central part of the fiber is strained by elasto-plastic interfacial shear until it
exhibits no mismatch with the matrix. The backstress of the loops on the fiber is
derived and the effect of the fiber stress field on the loop arrangement in the
row is estimated. The length of the row is calculated from the number of loops
and predictions of the above model are found to match satisfactorily the
experimental data, as does another existing model based on a mismatching
ellipsoid. Finaily, the geometry of dislocations punched by a mismatching fiber
is discussed based on microstructural observations for the case where the fiber
axis does not correspond to the glide direction.

Thesis Supervisor: Dr. Andreas Mortensen. '
Title: ALCOA Associate Professor of Metallurgy.
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1. INTRODUCTION

Metal matrix composites (MMCs) are a new class of materials which has been
the focus of considerable scientific and technological activity in the last twenty
years. Recently, reinforced metals have been produced on a large scale, thus
- breaking for the first time the commercial barrier inherent to any new material
which relegated MMCs to applications - such as military and astronautical
hardware - where cost is of secondary importance. One of the most interesting
properties of MMCs is their high stiffness and strength to density ratios at
ax‘nbient and elevated temperature, leading to potefxtial structural applications in
the aerospace and automotive industries. Another promising market is
electronic packaging where MMCs offer a unique combination of low thermal
exp#nsidn and high electrical and thermal conductivity. If MMCs are to be
accepted and used in the engineering community, their processing,
microstructure, properties and performances must be thoroughly understood in
order to derive general constitutive laws describing them. A data base approach
is not sufficient due to the staggering number of parameters which influence
MMCs; elementary mechanisms common to all MMCs must be recognized and.
modelled in order to accurately predict from theoretical principles optimal
microstructures and properties.

MMCs consist of two phases, the reinforcement and the matrix. The
reinforcement is usually a ceramic phase (carbide, nitride, oxide, boride, etc.) or
an element (beryllium, boron, carbon, tungsten, etc.) which exhibits desirable
properties such as strength, stiffness, hardness, density, thermal expansion,
temperature and environmental stability, thermal and electrical conductivity,
superconductivity, etc.. The reinforcement shape can be equiaxed (particles) or

elongated {whiskers, fibers); the latter geometry allows anisotropic properties
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upon orientation of the reinforcement in the composite. The other phase, the
metallic matrix, is used as a binder for the reinforcement and also contributes a
set of desirable properties such as high toughness and ductility, high thermal and
electrical conductivity, good processibility, good high-temperature and
environmental resistance, etc..

One of the unique properties of MMCs compared to polymeric or ceramic
matrix composites is the ability of the matrix to deform plastically by dislocation
nucleation and motion. The ducﬁle behavior of the matrix has far-reaching
consequences for the mechanical and physical properties (and therefore
performance) of MMCs since stresses can be relaxed by plastic flow of the matrix.
Stresses in composites can be induced by an external force or by a change of
temperature if the coefficient of thermal expansion (CTE) of matrix and
reinforcement are different, as is the case in most MMCs of practical interest.
Upon temperature change, the expansion (or shrinkage) of each phase will be
different, leading to a thermal mismatch strain. In composites where both
phases are brittle (such as ceramic matrix composites or certain polymer matrix
composites), these stresses can lead to the failure of one of the phases or the
interface. In the case of MMCs, however, thermal stresses can be relieved by
dislocations nucleation and glide in the matrix. This phenomenon has practical
importance since most MMC systems are fabricated at a high temperature from
which they are cooled. Unlike single-phase metals, the matrix of an annealed
MMC will therefore contain a high density of dislocations. Finally, many MMCs
are candidates for high temperature applications, with or without temperature
cycling, where thermal mismatch can be expected as well. The study of these
thermally induced dislocations is thus of impdrtance since they are an

unavoidable feature of MMCs and since they will influence such important
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properties as the internal stress state, strain-hardening, diffusion, aging, recovery,
recrystallization, etc.

The purpose of this thesis is tc contribute to the basic understanding of the
micromechanics and microstructure of dislocations produced by thermal
mismatch in reinforced metals, using both a theoretical and experimental
approach. The first half of the literature survey is devoted to the subject of
dislocations in MMCs, while the second half reviews relevant data of silver
chloride as a model material to investigate plasticity of metals. Experimental
methods and results are given in the next two chapters. The subsequent chapter
presents theoretical micromechanical considerations which are compared to the
experimental data in the following discussion chapter, which also includes the
interpretation of micrographs showing dislocation microstructures. Finally, the
findings are summarized in the conclusion and suggestions are made for future

work.
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2. LITERA E VEY

This survey is divided in two main areas: metal matrix composites and
unreinforced silver halides. The observation and modelling of dislocations in
MMCs is first addressed. The properties of silver halides are then described,

including observations of plastic and elastic strains.

2.1 Dislocations in metal matrix composites

While a great number of theoretical and experimental papers have been
written on the interaction of submicroscopic inclusions or precipitates and a
metallic matrix upon thermal and mechanical loading, much less is known
about the corresponding interaction between reinforcement and matrix in
MMCs. Some of the reasons why the modelling of precipitation hardening
cannot be directly used for MMCs, are that the size, volume fraction, geometry
and interface of the reinforcement in MMCs are different from those of two-
phase alloys. Some information on dislocations in MMCs has been indirectly
deduced by measurements of mechanical properties affected by the presence of
dislocations, e.g. strain-hardening, Bauschinger effect, etc. This work is not
surveyed here; only previous work on direct observation and modelling of
dislocation mechanisms in particle, fiber or whisker reinforced metals are

described in what follows. o

2.1.1 Observation of dislocations

Hancock and Grosskreutz (1968) found that, in 2024 aluminum reinforced with

stainless steel fibers, the average dislocation density after solution treatment and
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quehching was greater than that in the unreinforced alloy in the same state; they
also reported that the dislocation density was highest close to the fiber. On the
other hand, Hancock (1967) in an earlier study did not report any significant
difference in dislocation densities between reinforced and unreinforced
quenched specimens. Pinnel and Lawley (1970) too reported that, for a 99.99
aluminum-stainless steel composite, the dislocation density and configuration
was independent of the distance from the matrix interface for a given level of
strain and reinforcement. For a given strain (including the as-pressed condition
without any mechanical deformation), they also found that the dislocation
density and configuration was the same with or without fibers; they reported the
same result for the creep behavior of this system (Pinnel and Lawley 1971).
Pattnaik and Lawley (1974) found no difference in the matrix substructure (grain
and subgrain boundaries, dislocations) between the reinforced and the
unreinforced aluminium samples, which had been annealed at 550 °C and 625
°C prior to deformation. In contrast to these findings, Chawla and Metzger (1972,
1977) found by an etch pitting technique in copper reinforced with tungsten wires
an increased dislocation density (which was more pronounced in the vicinity of
the fibers), compared to unreinforced copper. This was confirmed by TEM data
on SiC whisker-2124 aluminum (Harding et al. 1987), showing that the highest
dislocation density was close to the surface of the whisker in both deformed and
undeformed samples, as received or in the T6 condition. Average dislocation
densities were the same for unloaded and impact loaded specimens (5 1013 m-2)
but higher for quasi-statically loaded specimens (3 1014 m-2). Williams and Fine
(1985) studied the dislocation density in SiC whisker-2124 aluminum in the Té
condition using TEM. Prior to deformation, the density was highly non-

uniform, with dislocations piled up along one side of the observed whiskers but
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not the other. The structure became uniform after fatigue. They made the
hypothesis that pile-ups of dislocations promote fatigue crack initiation.

In annealed and slowly cooled 6061 Al reinforced with SiC whisker and SiC
powders respectively, Arsenault and AFisher (1983a, 1983b) observed high
dislocation densities in the range of 1014 to 41014 m-2, more than an order of
magnitude higher than an unreinforced alloy hot-rolled to a strain of 50%.
Dislocations were clustered around the fibers, forming low angle cell boundaries.
Decoration of the dislocations by GP zones was also observed. The precipitates as
well as the increased dislocation density were given as an explanation for the
higher than expected strength of the composites. Vogelsang et al. (1986)
investigated the dislocation dynamics of the same material with thin foils which
were heated during TEM observation. One sample viewed axially showed only
rearrangement of the dislocations in polygonized regions upon heating and no
multiplication upon cooling. When viewed longitudinally, the dislocations
disappeared at high temperatures and reappeared on cooling, more so at the ends
of the whiskers. In another sample, dislocations upon cooling were seen
emanating from the interface and forming tangles in subgrains. The dislocation
density was higher in the composite matrix than in an unreinforced control
sample. Greater densities were observed close to the whiskers, especially at their
ends. Large whiskers were surrounded by larger dislocation densities than small
whiskers.

Arsenault and Shi (1986) investigated Al 6061 reinforced with 20 vol.% platelets
of SiC. They performed in situ TEM observations of thin foils submitted to
thermal cycling. They again observed that dislocations disappeared at high
temperature and were generated at the interface Al/SiC upon cooling. The
density of dislocations observed was, howevef, lower by an order of magnitude

than that in bulk thermally cycled composites (1014 [m-2]), a result the authors

20



attributed to dislocation loss at the TEM surface. The same observation was
made in the study mentioned above (Vogelsang et al. 1986).

Arsenault et al. (1986) investigated the fracture of this material and concluded
that thermally induced dislocations had an influence on the deformation due to
the expansion of the plastic zone upon defcrmation. They measured by TEM
dislocation .densities as a function of distance from the fracture surface in
composites with 5 and 20 vol.% whiskers and particles as well as an unreinforced
control alloy.

Arsenault and Wu (1988) compared SiC/aluminium composites fabricated by
powder metallurgy to the same specimen which had been remelted. They did
not find any significant difference in dislocation density (or strength) before and
after remelting. This might indicate that thermal mismatch dislocations are the
largest population of dislocations initially present in the matrix at room
temperature.

Chin (1987) observed in an as-cast alumina reinforced magnesium specimen
dislocation densities in the order of 1614 [m-2]. Upon heat treatment for 95 h at
450 °C, polygonization of dislocations occured, resulting in dislocation-free
subgrains.

In magnesium AZ91C reinforced with graphite fibers, Rawal et al. (1986) found
high dislocation densities close to the fiber; dislocation networks were also
observed close to the interface. Diffusion-bonded specimens exhibited linear
dislocations which were oriented crystallographically in the matrix while
specimens processed by metal infiltration showed tangles of dislocations, as did
cast specimens with an aluminium matrix. In a later article, Rawal et al. (1987)
found a lower dislocation density in the cast material than in the diffusion-
bonded material. TEM pictures of fatigued 6065 aluminum reinforced with

graphite fibers (Allard et al. 1986) show tangles of dislocations at the fiber-matrix
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interface and in narrow matrix regions between two fibers. The latter observation
was confirmed by Fox and Flowers (1987) on an undeformed Al-Mg specimen
with alumina fibers.

Li et al. (1989) performed a high resolution TEM study on SiC-coated graphite
fiber - aluminum composites and found an extensive dislocation network in the
vicinity of the fiber, i.e,, within 0.1 um of the interface. High resolution images
do not however show any dislocations in the irnmediate vicinity of the interface
(i.e., within 20 nm of the interface) and the authors propose that dislocations in
this region dissociated to widths greater than the extinction distance, as observed
by Liu and Balluffi (1984) at the interface between aluminium and amorphous
alumina.‘ Misfit dislocations with a spacing of about 9 nm were observed using
lattice images at the interface between niobium and alumina (Riihle and Evans
1988).

Liu et al. (1989) observed a larger dislocation density after annealing in the

vicinity of whiskers in a powder metallurgically produced Al/SiC composite.

Quite a large number of TEM investigations has been performed on
directionally solidified eutectic composites. The dislocation structure can be
different from the cases described above, because there is very often a
crystallographic relationship between fiber and matrix, and because fibers can be
faceted. Breinan et al. (1972) studied the creep of Al-AlI3Ni composites.
Dislccation loops and tangles were observed at all stages of deformation. At low
plastic strain, no substructure was visible, whereas in specimens tested to
rupture, a dense dislocation cell structure was observed at the interface. Williams
and Garmong (1975) investigated Ni-W composites and found that the fiber-
matrix interface acted as a source which emitted dislocations into the matrix

upon quenching of the specimen. These dislocations were concentrated around
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the fibers. Also, discontinuities at the interface such as ledges were found to act as
stress concentrators which allowed dislocation multiplication. Contrast
experiments showed that these dislocations were not prismatic. The
interpretation was however complicated by the fact that the dislocations were
absorbed by a precipitates of WNiy in the matrix; precipitation took place more
rapidly in the vicinity of the W fibers, in accord with the observation that
dislocations were more numerous there. In the same system, Garmong and
Williams (1975) observed rows of dislocations emitted on a single slip plane by
the fiber upon quenching and slight straining. When the'specimen was strained
more extensively, dislocation arrays became less planar and formed tangles, due
to a tendency to cross-slip and due to the obstacles formed by the fibers. When
the matrix was aged, shear bands were observed upon monotonic loading. The
fatigued structure is the same as the uniaxially deformed one: diffuse slip in the
as-quenched condition and highly planar slip in the aged condition.

A TEM investigation of a nickel base TaC composite (Walter 1982) showed that
the matrix changed its mode of deformation with increasing fiber density, from
well defined slip bands to a forest of dislocations with patches of higher density.
Also observed were the dislocations formed by the fracture of a fiber; the
dislocations did not follow the direction of the slip bands in the matrix. In a Ni-
TaC composite tested in fatigue (Blank and Stoloff 1987), dislocation tangles were
observed; they were due to bowing out of loops in the matrix which reacted with
each other. An increasing dislocation density with decreasing testing frequency
-was also observed.

A TEM study made on an ordered nickel aluminide matrix reinforced with
molybdenum fibers deformed under creep (Funk and Blank 1988) showed long
straight dislocations parallel to the fibers. Loops around the fibers were thought

to be the product of the recombination of dislocations of opposite sign running
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against the fiber from opposite sides. The regularity of the dislocation network
was disturbed at the ends of broken fibers where the density was higher. In
samples with larger fibers and volume fraction, slip bands confined to only a few
slip planes were observed. Pile-ups of over one hundred parallel dislocations
were observed parallel to a TaC fiber in a cobalt base matnx (Stohr and Khan
1982). It was also shown that thermal cycling of Ni-TaC composites leads to high

dislocation densities close to the fibers.

2.1.2 Modelling of dislocation structure

In the previous section, widely varying dislocation observations were reported:
this is due to the fact that different authors investigated various composite
systems with different thermal and mechanical histories. A small number of
investigators have tried to go beyond and have modelled their observations. A
great deal of work has been done on the modelling of the matrix of MMCs upon
large mechanical deformations, where the effect of large numbers of dislocations
in the matrix is treated globally. Two recent papers (Pedersen 1988, Humphreys
1988) review some of these models. In what follows, only those models dealing
with individual dislocations from an atomistic point of view are reported. No
published information could be found on how dislocations are created at the

interface or how they interact with each other or with the reinforcement.

Walter et al. (1969) studied dislocations at the interface of chromium fibers
grown in situ in a NiAl matrix. They observed square networks, the Burgers
vectors of which they measured and matched to a geometrical model. They
calculated the network strain energy and its contribution to matrix

strengthening. Occasionally, hexagonal networks were also seen.
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Arsenault and Fisher (1983a & b) and Arsenault (1984) proposed that a large
part of the strengthening in particle and whisker reinforced aluminum was due
to the thermally induced dislocations in form of tangles or rearranged in
subgrains. Flom and Arsenault (1985) proposed a model for the extent of the
plastic zone around a fiber on cooling which they compared to observations of
slip lines on a model composite with a SiC fiber of 1 mm diameter. A simple
model of a SiC parallelepiped particle (modelling a particle or a whisker)
punching dislocations on all faces was then proposed and used in many
publications (Arsenault and Shi 1986, Arsenault 1986, Arsenault 1988). Complete
relaxation of the mismatching particle was assumed and the density of
dislocations was calculated after assuming that the loops punched had the same
dimension as the sides of the parallelepiped; however, the crystallographic
nature of slip and the orientation of the particle with the slip directions were not
taken into account. Dislocation densities as a function of volume fraction, size
and morphology were obtained, and the corresponding matrix strengthening was
predicted.

Mori and Taya (1986) and Taya and Mori (1987) presented a model predicting
the punching distance of loops emitted at the end of a short fiber; their model
ignored the discrete nature of the loops and considered instead the extent of the
plastic zone. They equated the change in the work done by the movement of a
prismatic loop with the chaﬁge in total potential energy of the composite due to
thermal mismatch. The punching distance was caiculated as a function of fiber
stiffness, temperature change, frictional stress and fiber aspect ratio. They found
that for certain critical values of these parameters, the punching of loops was
completely suppressed, and they predicted fiber rupture if no other relaxation
process was operative to reduce the internal stress. The model is briefly

summarized in Appendix 5. Using this model, Christman and Suresh (1988)
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calculated that the punching distance due to a regular array of SiC whiskers (13.2
vol%) in an aluminum matrix was sufficient to cover 75% of the matrix. Their
TEM observation of such a system quenched and aged showed a significantly
higher dislocation density, as well as a greater number of helical dislocations in
the composite matrix than in a control alloy. The dislocations were
homogeneously distributed in the matrix with no preference for the interface.
Stanford-Beale and Clyne (1988) proposed models for the relaxation at high
temperatures of mechanical and thermal stresses by diffusive mass transport and
dislocation motion assisted by cross-slip and/or climb. They noted that vacancies
would drift from the ends of the fibers to their mid-point at high temperature.
Kim et al. (1990a & b) investigated by TEM the plastic relaxation of 2024
aluminum reinforced with SiC or TiC particles of different size and volume
fraction which had been annealed at 515 ‘C. They measured the dislocation
density as a function of the distance from the interface and proposed a theoretical
model taking into account the volume fraction. They observed that, with
increasing volume fraction, the dislocation density increased and the
dislocations became more tangled. Reinforcement size and elastic modulus were
also found to affect the dislocation density. A good agreement between theory
and data was reached if it was assumed that the fractional amount of plastic
strain energy stored in form of dislocations was 50%. The authors do not,
however, justify this value, nor note that it is much higher than in macroscopic
metallic samples where the stored energy is on the order of 10% (Bever et al.

1973).

2.2 Selected properties of silver halides
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Much is known about silver halides since they are used industrially as
photosensitive emulsions on photographic film. A wealth of information can be
found in reference béoks (Gmelin Institut 1971 and 1972), photography
monographs (Frieser et al. 1968, Mees and James 1966) or materials science series
(Javornicky 1974, Sprackling 1976). In what follows, only selected properties
which seem pertinent to the subject of this thesis are described; if no specific
reference is made to an author, the information comes from the six books
mentioned above. Throughout this thesis, the term "silver halide" will be used
to describe silver chloride and silver bromide, thus excluding the fluoride and

iodide which are of little experimental value for the simulation of metals.

2.2.1 Physical properties

Some physical properties are listed in Table 3.1 for silver bromide, silver
chloride and, as a point of comparison, aluminum (Boyer and Gall 1985). Both
halides crystallize in the NaCl lattice which can be visualized as two shifted f.c.c.
lattices of cations and anions. The main point defects are Frenkel defects on the
silver sublattice; Schottky defects are present in much smaller concentration. At
room temperature, only the Frenkel defects are mobile. Due to the thermal
formation of vacancies, the coefficient} of thermal expansion at temperatures
close to the melting point increases more than linearly with the temperature.

Silver halides are ionic conductors; at room temperature, the cur;'ent is due to
movement of interstitial silver ions, while the chloride ions are immobile. The
electronic conductivity is smaller than the ionic conductivity by many orders of
magnitude. Silver halides also exhibit photoconductivity: the photoelectrons
have a lifetime of 3 ns. in ultra-pure silver chloride crystals. Oxygen ions in the

lattice increase this life time to 10 us. The photoeffect is strongest in the region of
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strong light absorption, e.g., 365 nm. for silver chloride and 450 nm. for silver
bromide. This peak shifts to shorter waveleﬁgths at lower temperatures.

Silver halides have high refraction indices and are transparent to infrared and
optical light (silver chloride is colorless and silver bromide is yellow), but absorb
strongly in the UV region. When heated, silver chloride becomes slightly yellow
whereas silver bromide turns orange. Copper additions to silver chloride
increase the absorption in the violet and blue region. Silver halides also exhibit
stress birefringence.

Even though there has been a great number of investigations on the subject,
the elementary processes of photodissociation and silver speck formation are not
yet fully understood. According to the Guerney-Mott theory, a photon liberates
an electron from a halide ion. This electron is then captured by a sensitivity
center (silver oxide, sulfide etc.) which becomes negative. It attracts an interstitial
silver cation, which is reduced to silver. This mechanism repeats itself until a
silver aggregate is formed. It is assumed that the mobility of the electron is
significantly smaller than that of the silver ion. The Mitchell theory assumes, on
the other hand, that no sink for electrons is present at the beginning of the
exposure. Groups of three silver atoms are formed and absorb a silver ion, so that
a tetrahedric positive group is formed. It will attract a photoelectron and become
neutral again. The process is repeated until a speck of silver is formed. For a
discussion of these different theories of photographic sensitivity and image

formation, the reader is referred to papers by Mitchell (1957b, 1983, 1987a & b).

Schematically, the photodissociation process for AgCl can be described as
follows:
1. Creation of a photoelectron at the surface upon absorption of a photon and

formation of chlorine:
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I —> 1/2Cl +€ [21]

The chlorine is liberated as a gas molecule and the electron is captured by a
sensitivity center, the identity of which is different depending on the theory, as
described above.

2. Reduction of silver at the sensitivity center:

e +Agt — Ag [22]
The sum of Egs. [2.1] and [2.2] gives:

Ag*Clr —> Ag+1/2C1 [23)

The chlorine is liberated at the surface, while the silver is deposited where the
electron is captured, i.e., at the surface if sinks exist there, in the volume if the
electron diffuses there or is atiracted by a sink. The silver will precipitate
preferentially at structural defects, possibly because the stress field of the
precipitate is minimized there or because electron sinks are attracted by the
defects.

2.2.2 Mechanical properties

Both mono- and polycrystalline silver halide crystals are very ductile and
behave mechanically in most ways as pure metals do. This is to be expected, since
silver halides exhibit mobile dislocations. Many typically metallic phenomena
have been reported for silver halides: strain-hardening, texture, slip bands,
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Luder's bands, necking, ductile fracture, internal friction, slip band extrusion in
fatigue, diffusion controlled creep, recovery and recrystallization. One of the
main differences in the deformation behavior of silver halides is caused by the
ionic nature of the lattice; certain dislocation movements are restricted for
electrical reasons and the dislocation core structure is different. Also, dislocations
can be electrically charged and interact with both anions and cations as well as
their vacancies. But at large, the similarities of mechanical behavior between the
silver halides and pure metals are striking, and this explains why silver halides
have been used for decades as transparent models for metals.

Silver halides deform by pencil glide (as does iron) in the <110> direction.
Many slip planes are operative, the principal ones being {110}, {100} and {111}).
This leads to wavy slip lines at room temperature; at -196 °C, cross-slip is
inhibited and straight glide surfaces are observed in silver chloride. The
deformation behavior of silver chloride is independent of the grain size at room
temperature, but not at -196 °C. A strong increase of tensile strength is observed
after 25% cold working of silver chloride. Table 3.1 lists a few mechanical
properties of the silver halides, which differ from those of aluminum by only a

factor of 2 to 4.
2.3 Observation of dislocations in silver halides

The very first direct observations of dislocations in any material was made by
decoration of subgrain boundaries in silver bromide (Hedges and Mitchell 1953a),
at a time where TEM was not yet a proven analytical technique. TEM is difficult
to perform on silver halides due to decoraposition in the electron beam (Pashley
1950). While used by some investigators (e.g., Skillman and Berry 1964, Hamilton
1967, Brady et al. 1968), it is éhiefly applied to emulsions. X-Ray diffraction has
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also been used to resolve dislocations in silver halides (see for example Lang
1959, Newkirk 1959). TEM and X-Ray methods are not discussed further in this
section, nor is etch pitting, which is another direct method used by many authors
(e.g., Vavra 1969, Sprackling 1964, 1968, 1980). Nuclear magnetic resonance and
conductivity measurements are indirect techniques giving information of
statistical nature. Unlike the four direct methods mentioned above, these
indirect methods do not image dislocations. In this section, decoration and

indirect methods are reviewed.

2.3.1 Decoration and optical microscopy

In a series of papers stretching over a decade, J.W. Mitchell and coworkers
explored the room temperature decoration of dislocations in silver halide. In a
paper dealing essentially with the photographic sensitivity of silver bromide
under different treatment, Hedges and Mitchell (1953a) decorated polyhedral
substructures of dislocations by separation of photolytic silver in annealed
samples. They also observed that the regular polygonized structure was
destroyed upon deformation of the annealed crystals (ibid., 1953b). Clark and
Mitchell (1956) describe the synthesis and treatment of the silver halide from
which thin plates of silver bromide were fabricated, annealed, and exposed to the
light of a mercury lamp. This paper again mostly deals with the problem of
photographic sensitivity, but the experimental procedures described in great
detail were used in all subsequent papers by Mitchell and co-workers in the
investigation of dislocations in silver halides. They are used with some
modifications in this thesis as well.

Mitchell (1957) observed tilt and twist subgrain boundaries as well as fields of

curved dislocations decorated with a load applied. The deformed structure is
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thus "frozen" by the decoration and can be later investigated under the
microscope.

Barber et al. (1957) decorated potassium and sodium chloride at high
temperature with gold and observed individual dislocations on slip planes and
arranged in subgrain boundaries. They also reported the formation of rows of
circular dislocations or helixes emitted from an inclusion. The three-
dimensional structure of these dislocations can be rendered by series of
micrographs focused at different depths in the crystal. Due to the very small
depth of field of high resolution optical microscopy, only a small volume of
material is in focus and "slices" of materials can be photographed.

Jones and Mitchell (1957) showed that there was no absolute correspondence
between etch pits and decorated dislocations. They also observed dislocation
structures in plastically deformed crystals. They also established that decoration
does not alter the dislocation structure.

By annealing at high temperatures and recrystallization of the samples,
Mitchell (1958) showed that it was possible to produce crystals with a very low
density of dislocations. He also observed dislocation loops produced by the
differential contraction of a glass sphere embedded in a matrix of silver chloride,
thus duplicating the same observation made in sodium chloride containing
unspecified inclusions which had punched dislocation loops (Barber ef al. 1957).
The superiority of silver chloride for this application is immediately apparent
since decoration is possible at room temperature.

Jones and Mitchell (1958) observed a whole range of dislocation structures
emitted at the interface of a misfitting glass sphere in silver chloride: prismatic
loops, helical dislocations, figure eights, etc. They describe the mechanisms of
formation at the sphere surface of such dislocations by assuming that the screw

components of a shear loop rotate around the glide cylinder. If the two screw
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ends of the shear loop meet after a turn, they annihilate and form a simple
prismatic loop; if, on the other hand, they turn many times before meeting,
figure-eights and double helixes are formed. The authors also report the effect of
the stress field of other spheres on the loops forming a row. They noted that the
loop diameter is usually slightly smaller than the sphere diameter.

Bartlett and Mitchell (1958) investigated gold-sensitized silver chloride which
they strained, exposed to light and annealed at low temperature: they found that
gold particles decorate dislocations and concluded that prismatic loops are
punched along the twelve <110> directions passing through the center of
misfitting inclusions such as growing precipitates. They note that this
observation may be relevant to precipitation-hardened alloys.

Sensitization by cuprous and cupric chloride was investigated by Parasnis and
Mitchell (1959). They reported that traces of cuprous chloride increase the
photosensitivity of silver chloride while cupric chloride precipitates along
dislocations and other defects upon cooling from the annealing temperature.
They show series of micrographs (the plane of which is normal to a [100] and
[111] direction respectively) feahring rows of dislocations punched from growing
particles of silver along all twelve <110> directions. In a separate paper, Mitchell
(1959) discusses this phenomena in silver and alkali halides which have
different types of defects and thus different mechanisms of relaxation.

In silver chloride doped with cupric chloride and annealed at a temperature
close to the melting point, evidence of dislocation climb was ‘observed by
Parasnis et al. (1963). They report lozenge shaped dislocations
crystallographically oriented so that a configurational electrostatic charge would
be expected. The authors suggest that the charge is neutralized by cupric ions

adsorbed on the dislocation.
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When exposed to light, plastically strained silver bromide crystals sensitized
with silver iodide showed decorated surface terraces and associated dislocation
loops, from which the dislocations glide planes and Burgers vector could be
determined (Bartlett and Mitchell 1960a).

The combination in silver bromide of two dislocations of Burgers vector
1/2<110> to form a single dislocation of vector <110> was also observed by
Bartlett and Mitchell (1960b), in possibly the first paper to experimentally
establish dislocation interactions.

The same authors (ibid. 1961) also report the interaction of dislocations with
different Burgers vector and furnish direct experimental evidence for pencil
glide in silver bromide.

Mitchell (1962) compares different methods of dislocation iraging in a review
article in which he also mentions that the limited decoration depth of silver
halide can be circumvented by dissolution of the decorated layer and subsequent
decoration. -

Finally, Mitchell (1980) summarizes his research in a review article which also
gives an historical perspective to the pioneering work his group performed in

the late fifties, leading to the first proven observation of dislocations.

While the Mitchell group was the most active in the area of dislocation
imaging in silver halide, their results were repeated by other investigators.
Kanzaki (1955) published micrographs of coarsely decorated subgrain boundaries.
This author studied the correlation between etch pits and decorated dislocations
in annealed silver chloride (Kanzaki 1956a) and strained specimens (Kanzaki
1956b). The quality of decoration is however much lower than that achieved by
the Mitchell group. Subgrain boundaries and polygonized dislocations were also

decorated in silver chloride by Siiptitz (1959).
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One of the limitations of the technique used by the above investigators is the
limited depth of material which can be decorated (about 30 um). This relatively
shallow depth is not a drawback if the size of the substructure to be investigated
is smaller than this depth - for example if misfitting second phases are smaller
than 10 um. Also, a crystal decorated throughout its volume is much less
transparent and the achievable resolution is reduced due to the large scattering
taking place. If, however, it is desired to decorate at great depth, photoelectrons
produced at the surface can be swept by an electrical field into the volume where
they recombine with silver ions. The electrical field must be pulsed to avoid its
rapid decay, since silver halides are conductive materials. In other words, the
electrical field pulse must be long enough to appreciably move the
photoelectrons but short enough to not influence the ions forming the crystal.
Early investigators using this technique were mainly interested by the electron
dynamics in silver halides. Haynes and Shockley (1951) used a stroboscope
connected to a high voltage generator and measured the Hall and drift mobility
of photoelectrons in silver chloride. Siiptitz (1958) using the same type of
apparatus, measured the drift mobility, lifetime and recombination rate of
photoelectrons in silver chloride crystals of different purities. Hamilton et al.
(1956) carried the same kind of investigations on electrons and holes in
photographic grains which were also studied using TEM. Webb (1955) designed a
air-driven turbine with a spark-gap switch to allow simultaneous illumination
and electric field application on the sample. He dragged electrons in silver

.chloride over distances counted in millimeters. Castle (1957) measured the
dislocation density in the bulk in as-grown crystals as 109 [m2] and observed
dislocation length on the order of 100 um. In a series of papers, Slifkin and
coworkers published excellent micrographs of decorated dislocations in silver

chloride. The use of the pulsed method seems to inhibit completely the "fog" (or
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random precipitation of silver in the volume) visible in all micrographs
published by the Mitchell group. Childs and Slifkin (1960) and Slifkin and Childs
(1961) reported that pulsed decoration followed by aging for several days at room
temperature yields very sharp decoration; in the latter paper, they published
micrographs showing dislocation polygonized in square and hexagonal patterns.
Layer et al. (1962) published a micrograph showing trains of prismatic loops
punched from both tips of an elongated inclusion about 10 pm long, located 300
um below the surface of the specimen of silver chloride. Finally, Childs and
Slifkin (1965) published a series of micrographs of stunning quality in a paper
mostly dealing with the use of silver chloride as a nuclear particle track detector
where they show that the disturbed region produced by energetic particles can be
decorated in silver chloride and yields better results than stacks of photographic
emulsions. Their micrographs include a 200 um long dislocation bowing
between pinning points, dislocation cusps in lightly deformed material,
elongated loops (25 um long and a few microns high), interacting dislocations
with small inclusions showing how the former pass the latter, lozenge-shape
vacancy condensation loops about an inclusion which also punched prismatic
loops, one of which grew considerably. Finally, two micrographs are of particular
importance for this thesis: the first shows a fiber-like inclusion about 30 pm long
which punched two rows of loops at its tips; the longer row is about 100 pm
long, while the shorter one is about 25 um long. The second micrograph shows a
shorter elongated inclusion, the orientation of which does not correspond to a
slip direction. This inclusion punched two trains of prismatic loops at its tips as

well as two pairs of trains on its sides.

2.3.2 Indirect methods



Mechanical deformation was found by many authors te increase the ionic
conductivity of silver halides (Ninomiya and Sonoike 1958, Matejec 1961 and
1962, Matta and Vavrinec 1970). W.G. Johnston (1955) extensively studied this
phenomenon on monocrystalline silver bromide; his findings are summarized
in what follows. The conductivity increased linearly with strain up to
deformations of 6%. The activation energy of this increase was close to that of the
migration of interstitial silver ions. After unloading the sample, the conductivity
recovered according to the same law that Cottrell and Aytekin (1950) used to fit
data for the recovery of the yield stress of zinc. The conductivity also recovered
following Andrade's t! /3 law when a strained specimen was allowed to creep
under load. Finally, the conductivity increase was 40% greater parallel to the slip
plane of single crystals, than perpendicular to it. A frequency dependence of the
conductivity measurement was also observed, consistent with regions of high
conductivity separated by regions of lower conductivity.

All the evidence above suggests that the increase of conductivity was due to
pipe conduction along dislocations. Interstitial silver ions are the most mobile
defects and are expected to move much more quickly by pipe migrations along
dislocation line, than by volume migration in the bulk. If the conductivity is
assumed to be proportional to the number of piled-up dislocation in the crystal,
Mott's model of work hardening predicts the observed linear strain-conductivity
relationship, and the observed time dependence for recovery of conductivity
during transient creep. Polycrystalline samples were also tested and showed the
same qualitative behavior as single crystals. The conductivity was however
systematically shifted to higher values, probably due to a constant contribution

from grain boundary conduction.
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Many researchers have used nuclear magnetic resonance (NMR) to investigate
defects, as well as impurities in silver halides (for ar overview, see Frieser ef al.
1968). But only one investigator (Hohne 1964) extended this method to the study
of dislocations in silver bromide. By locally changing the lattice distance,
dislocations produce a spreading of the main peak during quadrupole resonance.
Hohne showed that this effect could be calibrated to a dislocation density, and he
used this technique to measure the change of dislocation density of a deformed
sample as a function of annealing time, annealing temperature, previous
deformation and impurity content. He successfully fitted his results to known
models of recovery. The weakness inherent to NMR measurements (i.e. single
dislocations cannot be imaged) can be turned into an advantage when high
dislocation densities are involved: dislocation counting from TEM pictures
becomes difficult due to cell formation or unresolved tangles. Methods such as
NMR or conductivity, which both rely on the indirect effect of dislocations on a
physical property, can therefore be used when changes in large dislocation

densities must be measured, e.g., during recovery and creep.

2.4 Observation of stresses in silver halides

Internal stresses in metals are usually investigated by X-Ray methods, which
feature poor spatial resolution and limited penetration. Silver halides are
photoelastic and this property can be used to study stresses in a cubic material
with mechanical properties very similar to metals. The fact that silver halides
deform plastically by dislocation movement makes the stress distribution
observed by birefringence directly comparable to the stresses present in metals;
on the other hand, results on transparent pol)"mers are only relevant for metals

in the elastic region.



To the best of our knowledge, Nye (1948, 1949a&b) first systematically
investigated the plasticity of silver chloride by stress birefringence. He
determined the glide planes and directions of dislocations, and suggested the
pencil glide deformation mode for silver chloride. He studied the effect of grain
boundaries on slip propagation and the types of residual stresses within the
grains. He also investigated the glide bands and the stress state of a deformed
crystal, as well as the sign of dislocations in glide bands. Goodman and
Sutherland (1953) showed that the birefringence of silver chloride was due to
stress and not strain. They also measured the stress-optical coefficient of silver
chloride and found it to be independent from stress well into the plastic region.
Nye et al. (1957) also studied deformation in tension of single crystal bars of
silver chloride and found that the plastic deformation was greatest near the
surface of the specimen. In bending, plastic deformation was found to propagate
longitudinally along the bars. The stress distribution was explained with a
dislocation model. They also found that the ratio of the shear stress needed to
move dislocations to that necessary to generate them was less than 0.6.
Sprackling (1960) found no evidence of inhomogenous deformation upon
reverse bending of silver chloride bars, unlike what happens upon the first
bending; he proposed a simple dislocation model for this result. Kuznetsov
(1956) studied the plastic and elastic stress distribution in notched and smooth
specimens with large grains. Zhitnikov and Stepanov (1958a, b, ¢) measured the
stress distribution in a textured plate of silver chloride, which was subjected to
different stresses, and compared it to calculations. They also used a Babinet
compensator to study the elastic-plastic transition of silver chloride in tension
and bending (Zhitnikov and Stepanov 1958d). Stowell (1962) studied the
structure of kink bands in uniaxial tension, and presented a dislocation model

for their data. Sprackling (1966) studied yield phenomena in silver chloride and
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found that the stress at which birefringent glide bands move is lower than the
macroscopic yield stress by about 25 %. The former stress which they associate to
the dislocation nucleation stress was found to be about 1.5 MPa in tension. Ogin
and Brown (1980) found that the persistent slip bands which formed in cyclically
loaded silver chloride were comparable to those observed in metals; the internal
stresses had principal axes perpendicular and parallel to the plane of the bands.
Dietz (1986), in a study of the engineering use of silver chloride to simulate
metals plasticity, performed test on notched rods, silver chloride screw threads
and cold-formed blanks. He concludes that such silver chloride parts submitted
to the same deformation history as metal parts can bring experimental

information on the plastic regions and the stress state of the metallic part.

2.5 Conclusions of literature survey

Except for early studies, investigators agree on the fact that dislocations are
more numerous in MMCs than in unreinforced metals and that their density is
higher close to the reinforcement, after both thermal and mechanical
deformation. However, the data present in the literature was gathered in
composites of engineering significance, which complicates its interpretation for
several reasons: (i) chemical interaction between the fiber and the matrix
affecting their properties or producing a third phase, (ii) complex matrix
composition derived from conventional alloys, leading to extraneous
phenomena (such as precipitation or phase transformation) influencing and
influenced by dislocations, (iii) coherent and semi-coherent interfaces as well as
grown-in dislocations in the case of, the directionally grown eutectic in-situ
composites. While many investigators have observed dislocations in MMCs as

part of broader investigations, few have focussed on the dislocations
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microstructure and geometry or on elementary mechanisms of plastic
deformation around large inclusions. As a consequence, very few models exist
which can explain and predict the micromechanics of plastic deformation in
MMC, even in the least complicated case of thermal excursion, unlike the

extensive models existing for two-phase alloys.

Silver chloride and bromide deform under extensive dislocation movement
and exhibit macroscopic breaking strains of up to 300% (Stepanov 1934). These
materials have been used for more than half a century as "transparent metals"
and they show dislocation mechanisms in a great number of ways similar to that
in metals. Their excellent transmission in the range of optical wavelengths
allows the observation of the bulk by transmission optical microscopy.
Microstructural defects - particularly dislocations and grain boundaries - can be
decorated at room temperature by photodissociation of the crystal. The
dislocation substructure can therefore be examined along the whole sample to a
depth of about 30 um without further preparation. Ancther useful property of
the silver halides is their stress birefringence, thus allowing the optical
observation of elastic and plastic stresses with the optical microscope. This is a
powerful method when used in conjunction with the observation of plastic
deformation by decoration. Finally, the dislocations in silver halides can be
investigated by other complementary methods such as conductivity
measurements and NMR. The properties listed above as well as their low
.melting point and the good wettability of ceramic fibers make silver bromide and

chloride excellent candidates as a model materials for the matrix of MMCs.
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3. THEORY

In this section, we present micromechanical calculations for the extent of the
plastic zone around mismatching inclusions of different shapes. In the first
paeragraph, we derive simple approximate expressions predicting the size of the
plastic zone in a strain-hardening matrix resulting from a mismatching sphere as
well as an infinite cylinder where only radial mismatch is considered. In the
second paragraph, we extend this model to particles of irregular shape. In the
following paragraph, the problem of a row of prismatic loops is considered, the
solution of which is used in the last paragraph to derive the extent of the plastic

zone due to longitudinal stresses in a fiber.

3.1 Plastic zone size around a sphere and an infinite cylinder

The formation of a plastic zone around an inclusion embedded in metal has
been modelled by various authors using a continuum approach (e.g., Hill 1950,
de Silva and Chadwick 1969, Hoffman 1973, Garmong 1974, Lee et al. 1980,
Earmme et al. 1981, Dutta et al. 1988, Kim et al. 1990 a&b). In what follows, we
propose an alternative method to calculate the size of the plastic zone
surrounding inclusions of simple shape, namely spheres and cylinders
embedded in a monocrystalline, elastically isotropic single-phase matrix. Our
approach uses continuum plasticity as well, but takes into account the infiuence
of dislocation density on flow stress.

Hill (1950) solved the problem of the expansion of a cylindrical or spherical
cavity into an infinite, isotropic, linear elastic, non work-hardening plastic

matrix from zero radius to end radius a. Assuming a Tresca yield criterion in the
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matrix, the radius of the plastic zone c. and c; for a cylinder and sphere of
respective radius ac and as are respectively given as:

2.E 1/2
3 %. ———————— N
Cc ((5 i 4").0’) [3.1.1a]

-( E )"’

3 .( 1 -V)' cy [3.1.1b]

where E is the matrix elastic modulus, v the matrix Poisson: ratio and Oy the
matrix yield tensile stress.

These results can be used to find the plastic zone radius due to the differential
contraction of an infinite matrix around an inclusion. Consider a sphere or an
infinitely long cylinder embedded in an infinite matrix which deforms by slip.
Upon cooling from elevated temperature, the matrix is first able to alleviate
misfit stresses that result from the differential thermal contraction of the
reinforcement by diffusicn or other creep mechanisms. These mechanisms will
operate as long as their rate is on a par with that of cooling. At low temperatures,
creep cannot relieve thermal stresses, which build up and induce plastic
deformation by slip in the matrix that surrounds the inclusion. The transition
from creep to slip is assumed to take place at a single temperature T., above
which all thermal mismatch strains are relieved by diffusion, and below which
dislocations form at the interface and glide within the matrix to relieve thermal
mismatch stresses higher than the yield stress of the matrix. Thus, upon cooling
from a high annealing temperature Ta to 2 lower temperature To, stresses will be
relieved first by diffusion and/or creep at high temperatures until temperature
Tc is reached. At this temperature, the inclusion and the matrix are assumed to
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be stress-free. Upon further cooling to Ty, elastic stresses build up in both phases
until the matrix yield stress is reached and slip begins in the matrix. It is
assumed that the stress for nucleation of dislocations at the interface is at most
equal to the friction stress of the matrix. Given the relatively low yield stress of
silver halides (and most metals) and the high modulus of the inclusions of
interest, the latter is assumed to be perfectly rigid. The total mismatch strain €m

between matrix and inclusion to be relieved by slip is

€m = Aa AT, [3.1.2]
where

AT=Tc-To, [3.1.3]

and Aa is the absolute value of the difference of CTE between matrix and
inclusion. The displacement Ar of the matrix due to the presence of an inclusion

of radius r at its surface is then known, and given as

Ar=Aa-AT-r. [3.14]

By using Eqs [3.1.1], the radius of a fictitious cylindrical cor spherical hole of
radiu- ac and ag, respectively, which would produce in an unreinforced matrix a
displacement Ar at the inclusion surface can be calculated (Fig. 3.1.1). Since the
stress and strain state, as well as strain history of the matrix outside the
inclusion, are identical for these two cases of a thermally mismatching inclusion
and a growing hole, the size of the plastic zone can be found by deriving ac or as,
and using Eqgs. [3.1.1]. The radii ac and ag are most easily derived from

conservation of volume, neglecting the elastic compressive strain within the



inclusion volume in the growing hole configuration. Neglecting higher orders

of Ar, one obtains for the cylinder and the sphere, respectively:
2
1t'ac=2-1t°rc-Ar, [3-1-53]

4 .43 = 4.7.72
3 Tas 4-m-r2-Ar . [3.1.5b]

Inserting Eq. [3.1.5a] and [3.1.5b] into Eq. [3.1.1a] and [3.1.1b] respectively and
taking Eq. [3.1.4] into account, the radius of the plastic zone produced by
differential thermal contraction of the matrix around a cylinder (cc) and a sphere

(c) is respectiveiy given by:

4-Aa-AT-E \'?

Cc=I¢ | ————— [3.1.6a]
(5 - 4v)-oy
Aa-AT-E 1P

Cs=TrIy |—————} . [3.1.6b]
(1-v)-0y

Equations [3.1.6a] and [3.1.6b] predict the extent of the plastic zone in a matrix
showing no strain-hardening. From data presented below and measurements on
pure silver chloride (Stepanow 1934, 1935), however, it is known that this
material exhibits strain-hardening, as most metals do. Use of macroscopic
relations giving flow stress as a function of strain history is inappropriate given
the microscopic dimensions of plastic flow. We assume that the matrix is
monocrystalline, elastically isotropic and single-phased, and make use of the
more "microscopic” relationship between dislocation density p and flow stress of

the matrix Ty given by the classical equation (Taylor 1934)

45



Ty=10+AGbp, [3.1.7]

where 1y is the intrinsic flow stress of the matrix, G its shear modulus, b the
Burgers vector of dislocations in the matrix and the strain-hardening constant A
has a value between 0.3 and 0.6 for metals (Bailey and Hirsch 1960, Keh 1962,
Livingston 1962, Venables 1962, Mader et al. 1963, Hansen 1977) and 0.4 for NaCl
(in der Schmitten and Haasen 1961). We assume for the case of interest here -
namely the formation of a cylindrical or spherical plastic zone of tangled
dislocations surrounding the inclusion - that the impeding effect of one
dislocation upon motion of another can be represented by Eq. [3.1.7]. We make
the added assumptions that flow stress and dislocation density are uniform
within the plastic zone and that the plastic zone size always increases with
increasing AT. To calculate the extent of the plastic zone around inclusions, we

can then use Egs. [3.1.6] derived above with
Gy = 2 ‘ty. [3-1.8]

The dislocation density p is estimated as the total length of punched prismatic
dislocation loops that are needed to relieve the thermal mismatch strains in
simple configurations divided by the plastic zone volume. For the sphere, we
adopt the model described by Hull and Bacon (1984) wherein it is assumed that
loops are punched out along all twelve <110> directions on glide cylinders
intersecting the sphere along circles where the resolved shear stress is maximum
(Fig. 3.1.2); the glide cylinders have then a diameter of V2rs. For the cylinder, it is
assumed that the axis of the cylinder is aligned along one of the <111> directions

and that infinitely long loops are emitted in the six <110> directions. We assume



that, as with the sphere, these loops are emitted where the resolved shear stress
is maximum, resulting in a loop width of V2r (Fig. 3.1.3).»" Deviation of the
particular fiber orientation from <111> will increase the number of loops if no
Burgers vectors perpendicular to the fiber axis is available. For this reason, and
because a series of loops of same width but shorter length might be generated
instead, the present estimate is most likely a lower bound for the actual

dislocation density around a cylindrical inclusion.

The number of dislocation loops in the plastic zone around the cylinder n¢ and
the sphere ng is now obtained by dividing the volume of the material to be
displaced to relieve thermal mismatch by the volume of material removed by

each loop:

_2mrerAa-AT1e _V2'mercAa-AT

YZ1ob b s [3.1.9a)
N = 4'1t°r32°AG'AT°l's _ 8'rs'Aa'AT
. b b ' [3.1.9b]

2

Dividing the total dislocation length by the volume of the plastic zone, the

dislocation densities around a cylinder and a sphere are then respectively:

pe= 2 n, =2- Y2-Aa-AT
© m(c2-®) b (xe-1)

[3.1.10a]

b dmsTs 6 V2-A0-AT
. 2- ﬁ(cg -13) berg- (x5- 1)

[3.1.10b]
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where

Xe 3(%)2 » [3.1.11a]
Xs =($—:)3 y [3.1.11b]

Inserting Egs. [3.1.7], [3.1.8] and [3.1.10] into Eq. [3.1.6] leads to equations for the
radius of the plastic zone in a strain-hardening matrix for the cylinder and the

sphere respectively:

2-Y2-Aa-AT-b  2-Aa-AT-E
Tyo + A-G- \/ - =0 , [3.1.12a]

Te(xe-1) (5-4v)-x.

to + AG: /\/6- 2-Aa-AT'b _Aa-ATE _,

r5(x5-1) 2-(1-v)-x, [3.1.12a]

After some algebraic manipulations, these two equations can be transformed

into cubic equations:
x3 331+ €y +2C;)+ (¢} +2C)- G =0 3.113]

. where for the cylinder x = xc and C; and C; are dimensionless constants given

below:

G

2-y2-Aa-AT-b [A-GV
= , [3.1.14a]

Tc tyo



_Aa-AT-G-(1+v)

C2
tyO'(l'V) ’ l [3.1-14b]
and where, for the sphere, x = x¢, and
C = 6 VZAca-ATb [AGY
1= . Ig tyO ’ [3-1.153]
c, o Aa-ATE
2= [3.1.15b)

2'(1'V)'ty0 ’

For the particular cases explored numerically here (AgCl/A1,03, AgCl/ glass
and Al/SiC), these equations generally yield three roots, two of which are
extraneous. With the strain-hardening constant A equal to zero - corresponding
to a non strain-hardening matrix - the cubic equation yields an extraneous root
x=1 and a double root equal to the value found using Egs. [3.1.6] with oy = 21y
(reference value). With A > 0 (i.e. for a strain-hardening matrix), the smallest
root is still equal to 1 and is discarded since it is non-physical. Of the other two
roots, one is larger than the reference value and hence physically absurd, the
other is smaller than the reference value and therefore retained.

The critical volume fraction v* of inclusions for which plastic zones impinge is

then for the cylindérs and spheres, respectively:

ve =§§ , (3.1.16a]
=l [3.1.16b]
xs ’ ol
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where Pc and Psare the packing ratios for cylinders and spheres respectively.
Since Egs. [3.1.1] were developed for a single inclusion in an infinite matrix, the
volume fractions derived above are larger than the upper limit for the range of
validity of Egs. [3.1.12].

Results from this model for SiC spheres and cylinders of radius 1.5 pm in
a 99.5% pure aluminium matrix for an arbitrary value for AT of 200 K are given
in Fig. 3.1.4, using CTE value for SiC of 3.4 - 10-6 [K-1] and constants given in
Table 3.1. The choice of slightly alloyed aluminium for this example rather than
the pure metal was dictated by the fact that, even for the thermal strain rates
achievable by quenching, very pure aluminium deforms by slip only at
temperatures below 300 K.

The plastic zone radius that results from use of Egs. (3.1.6) with oy =21y
for a non strain-hardening matrix is given in the same figure. The critical
volume fraction and dislocation density are given in Table 3.2 for cylinders and
spheres under the same conditions as above. Also listed in Table 3.2 is the
increase of yield stress in shear due to the dislocations present in the matrix (Eq.
[3.1.7]). Due to strain-hardening, the value of the yield stress in the plastic zone
around cylinders and spheres is respectively over 1.5 and 2 times the intrinsic

flow stress measured by Hansen (1977).

3.2 Plastic zone size around a particle of irregular form

To the best of our knowledge, all models available in the literature (and the
model described above is no exception) use simple, idealized shapes such as
spheres or ellipscids to describe particles in MMC. However, the commercially
available particulate reinforcement used in most MMC usually exhibits irregular

form and sharp angles. To model such a system would necessitate a complex
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statistical treatment as well as a thorough knowledge of the geometrical
parameters best describing the particles. Due to the complexity of such an
approach, investigators have assumed that irregular shapes are adequately
represented by the mathematically tractable simple geometric bodies mentioned
above. In what follows, we make the assumption that a particle of irregular
shape and a sphere with the same volume both generate a plastic zone of same
volume. We thus assume that the average dislocation density around a particle
is equal to that of a sphere of the same volume as the particle. This is reasonable
if the size of the emitted loops is about the same in both cases, since the volume
of matrix to be "displaced” at the interface by dislocation nucleation is dictated by
the total thermal mismatch, which is itself independent of the shape of the
particle.

From the assumption of equality of volumes between bodies of irregular shape
and spheres made above, we now define the equivalent radius of the particle re
as the radius of the sphere having the same volume,

[3.21]

3V, )1/3
Te= ’

4x

and the equivalent radius of the plastic zone around the particle ce as the radius

of the spherical plastic zone around the sphere,

(3 Vvl 322]

where Vp is the particle volume and V; is the plastic zone volume. If the
volume of a particle is known, its equivalent radius can be calculated using Eq.

[3.2.1]. Egq. [3.1.13] then predicts the equivalent radius of the plastic zone from
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which the volume of the plastic zone around the particle can be calculated using
Eq. [3.2.2]). In a system containing a distribution of particles of different shapes,
the only knowledge necessary is therefore the distribution of volumes. A
straightforward method to obtain such information is by direct size
measurement of a statistically large number of particles. For small particles, this
can be done by direct inspection of the projection of the opaque particles on
photomicrographs from the transmission optical microscope.

While the volume of a sphere can be very simply determined from the surface
of its projection, the same is not true for bodies of irregular form. Certain
general topological relationships hold, however, for a system of convex bodies of
single shape and size randomly oriented in space (Underwood 1972). The
volume V of a body is a function of its mean projected area A' and its mean

intercept length L,

V=A'L3 [323]

The mean projected area can be expressed by two other projected values, the

mean intercept length of the projected area L, and the mean projected height of

the body H' (Fig. 3.2.1),

A'=1L'H" [3.2.4]

The mean intercept length L; is a three-dimensional property which cannot be
expressed in term of two-dimensional projected values only. This reflects the
fact that information is lost in the passage from a three-dimensional object to a
two-dimensional projection, unless the shape of the object is known

independently. We define a constant K such that
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Ly=KLy" [32.5]

This shape-dependent constant is calculated in Table 3.3 for different regular
bodies, starting from the values of V, A* and H' given by Underwood (1970). Egs.
[3.2.3] - [3.2.5] can then be combined into an expression for the volume which
contains only prcjected variables:

KA 2
V=—me . [3:2.6]

Since the particles are randomly oriented in the matrix, the area projected in
the image plane of the microscope is taken as the mean projected area and the
mean projected height is approximated as the mean projected height of the
projected area. Both above assumptions are valid if a large enough number of
particles is considered. Since the shape of the particle is not known, the average
of the minimum and maximum values for K given in Table 3.3 is taken
(K=0.69). This approximation induces a relative error of 28% if the true shape of
the particle is that of the bodies in Table 3.3 with the maximum or minimum K
values. The actual error will probably not exceed much this value if the shépe of
the particles is not too drastically different from that of the regular bodies listed
in Table 3.3 Eq. [3.2.6] can thus be used to approximate the volume of the
- particles and their plastic zone needed in Eq. [3.2.1] and [3.2.2].



.3 Micromechani far f punch rismatic ]
.3.1 Row rel nfigurati

Consider a circular prismatic dislocation of diameter d and Burgers' vector b
lying in the plane z=0 with its centre at the origin of a cylindrical coordinate
system 1, ¢ and z. The shear stress %{p.{) induced by this lcop in the infinite,
isotropic crystal is given by Kroupa (1960) and Bullough and Newman (1960) as:

rn(p',c)ﬁtgfﬁ f nRtp)N(t) Pexp(-2tDd,  [33.1]
0
with

4
o' =

Z
4 [332]
d

’

where G is the shear modulus, v the Poisson's ratio and J; the Bessel furnction of
first order. Eq. [3.3.1] can be rewritten as a function of complete elliptical integrals
E and K. The shear stress on the glide cylinder tr,(1/2, {) is then (Kroupa, 1960):

wd3t) = rmit el o] ](;-25;;)5;%[(‘2“’1 |, Ba

This shear stress on the glide cylinder decays rapidly with distance and
increases with decreasing loop diameter. Bullough and Newman (1960) used Egq.
[3.3.1] to determine loop spacings in a row of coaxial, prismatic dislocation loops

of diameter d in the half space z > 0, the first loop being fixed and located at the



origin. They calculated the dimensionless position { for each loop within a row

of ten loops for three different values of the dimensionless parameter v:

2nd (l-v) T,
Y TG [334]
where t¢is the local critical shear stress (or loop friction stress) needed to move
the dislocation constituting the loop against the lattice friction. The equilibrium
configuration of such a row is reached when the shear stress on each and every
loop (except the last punched loop) due to its neighbours is equal to tc.

The choice of the number of neighbours to be considered in the stress
computation can be made arbitrarily, as did Bullough and Newman (1960).
Mathematically, all neighbouring loops should be considered since the elastic
stress field has an infinite reach; this n-body equilibrium problem however leads
to prohibitively long calculation times for a large number of loops in the row.
As a compromise, we consider only neighbours which exert a stress larger than
the critical shear stress on the loop to be equilibrated. We expect this assumption
to be at possible fault only at the ends of the row, where the stress fields of distant
loops do not cancel one another. When this situation occurs at the blocked end
of the row, the relative error is small since nearest neighbour loop spacings are at
their smallest. The stress due to nearest neighbours is therefore very large
compared to tc. At the other "free" end, loop spacings are generally large, so the
stresses due to higher order neighbouring loops is most likely to decay rapidly
below the loop friction stress.

A first-order approximation is to consider only nearest neighbour interactions.
The problem then has a mathematically simple solution, which is most easily

derived by considering a physically equivalent, and conceptually simpler,

55



situation. Imagine a row of n identical solid bodies, aligned on a single axis, and
only able to move along that axis. Each body is connected to its two nearest

neighbours by a non-linear spring (Fig. 3.3.1), which exerts a repulsive force Fs;

Fs(AD =ndb1(1/2, AD) , [33.5]

where 1:2(1/2, AD) is given by Eq. [3.3.3] and A{ is the distance between the body
and its neighbour. Motion of each body is opposed by a constant friction force F.

Fr=ndbt. [3.3.6]
The first body is pushed towards its neighbours until all bodies move at steady
state along the axis. Now, consider the ith body in this row of n bodies, i=1
denoting the body on which the external force is applied. The spring between

body i and its neighbour i+1 - which are separated by a distance A{; - must oppose

a force equal to the friction of the (n-i) bodies that are moving ahead of it

Fg(AL;) = (n-i)FF, [33.7]

or, after introducing Egs. [3.3.5] and [3.3.6] in Eq. [3.3.7]:

trz (1/2,A5;) = (n-i)tc . [3.3.8]

The spacing is then found by inserting Eq. [3.3.3] in Eq. [3.3.8] and solving for
AL;.



Since all governing equations are the same, the configuration of the row of
moving bodies is identical to that of the row of loops under consideration (Fig.
3.3.2). The position of loop i, {i, measured from the blocked loop, is:

i-1

Gi=2 AL [339]
=1

The total train length is {n. It is noted that the position of loop i measured
from the opposite, "free” end of the train, {, - {;, is independent of the total
number of loops n in the train.

The problem is therefore solved by successive solution of equation {3.3.8], the n-

body solution being constructed as a superposition of (n-1) two-tody solutions.

A computer program listed and explained in Appendix 2 was written to find
the equilibrium configuration of a row of loops, using Eq. [3.3.3] and a numerical
solution for elliptical integrals given by Abramovitz and Stegun (1972). Eq. [3.3.8]
was used to generate the initiai loop positions. The computational algorithm
was designed to seek equilibrium positions of each Ioop in a row, starting with
the last "free” one, by changing loop position until the stress to which it is
subjected falls in the range ¢ + 0.005-%c. This iterative procedure was stopped
when the equilibrium condition was satisfied for all loops in the row (except the
first one), and no loop in the row was moved in the last iteration by both more
than 0.5% of the distance to the origin, and more than an absolute value of AL =

103,

Different initial conditions were also tried to check for chaotic behaviour.

Results were identical provided that the shear stress on each loop in the initial

configuration was larger than the critical shear stress, i.e., provided that each
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loop was initially submitted to a stress pushing it in the positive direction of the
z-axis away from the blocked loop. It was also found that the computation time
was significantly decreased by using an initial condition based on results from
previous computations for n' < n for the first n' loops, and Eq.[3.3.8] for the

remaining loops. This initial condition was used in most of this work.

While considering all relevant neighbours makes the calculation significantly
more lengthy than using the second-nearest neighbour assumption made by
Bullough and Newman (1960), results differ significantly at small loop spacings.
An example for a row of 100 loops is given in Fig. 3.3.3 with the parameter v
equal to 0.1 and 1, and compared with those of the rearest neighbour solution
(Eq. [3.3.8]). It is found that Eq. [3.3.8] constitutes an excellent approximation for
values of v smaller than C.1.

The minimum distance between two loops in a row A{j is found to decrease
exponentially with the total number of loops n in the row (Fig. 3.3.4). This
minimum distance is of interest since it defines the maximum number of loops
for which the present calculation is meaningful: since Eqgs. [3.3.1] and [3.3.3] are
based on continuum mechanics, they are only valid for loop spacings much
larger than a Burgers vector, i.e. when Al; is much larger than b/d.

Fig. 3.3.5 displays the length of the row, i.e., the position of the last loop {n. It is
found that, for the values of v and n explored, the length of a row is closely

approximated by a power-law function of the total number of loops:

{a=A" nC [33.10]



where A" and C are functions of v. It is also found that, for 0.05 < v < 5, the
exponent C is roughly constant (Fig. 3.3.5) and A" is a power-law function of v
(Fig. 3.3.6).

A two-parameter best-fit relationship for both parameters n and v, valid for
0.05 < v <5 and values of n plotted in Fig. 3.3.3 was then calculated using the

computer program listed in Appendix 3:

n=174v 0647034 [38.3.11]

The relative error when using this expi'ession is on average 14%, the maximal
deviation found being 25%. Thus, if the length and number of loops of a row are
known experimentally, the parameter v and therefore the loop friction stress can
be found. In practice however, it can be difficult to determine the exact number
of loops in a row either because of lack of resolution (as in X-ray topography and
decoration techniques) or because the field of view is smaller than the row
length (as in transmission electron microscopy). An equally suitable and more
convenient parameter to determine v is then the spacing Alj.1 between the last
and the penultimate loops of a row. This spacing is virtually independent of the
total number of loops in the row n, but is sensitive to v (Fig. 3.3.7). Curve-fitting

yields:
log v = 0.866 - 1.08Aln.1 + 0.102-Aln1> . 133.12]

The average dislocation density p in the volume defined by the glide cylinder

and the first and last loop is then
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P=4dL, , [33.13]
or, introducing Eq. [3.3.1] into Eq, [3.3.13]:
2,30 y064,066
p= d2 i [3.3.14]

Due to the unequal spacing of the loops, this density is not constant in the glide
cylinder, being higher than average close to the fiber and lower at the other end
of the row.

We now turn to the problem of two rows of prismatic loops, respectively of
interstitial atoms and vacancies, placed symmetrically on each side of the plane
z=0 and prevented from annihilating by locking of the leading loop of each row,
held a reduced distance A{, apart (Fig. 3.3.8). This problem has been treated by
Head (1959) for straight dislocations of infinite length. The solution to this
problem is the same as that of a row perpendicular to a free surface with the first
loop held at a distance AZo*/2 from the surface (Hirth and Lothe, 1982).
Alternatively, the double train can arise when, upon shearing of a two-phase
material, an inclusion produces two rows of geometrically necessary loops of
opposite Burgers' vector on each of its sides (Hirsch, 1957).

The relative difference in loop spacings 8; in the undisturbed row A{;and the

corresponding spacing in the double row Al;":

AL

’ [3.3.15]



is shown in Fig. 3.3.9 for two values of v and A{,". The program used is listed
in Appendix 4. The disturbance decays more rapidly for the larger value of v,
since the overall distance from the origin of each loop is larger and thus the
attraction of the opposite train is smaller. As expected, the smaller value of A{,
leads to a larger disturbance for the first loops of the train and a larger number of
loops which are significantly disturbed. The absolute value of the departure is,
however, small for all loops, even for the small values of A{,. The attractive
effect might hardly be noticeable experimentally, except for the very first closely
spaced loops of the row. This implies, for example, that the loop friction stress
can be measured with adequate precision using Eq. 3.3.12, which was derived for

a single row of loops in an otherwise stress-free crystal.

3.3.2 Row backstress on an inclusion

To calculate the backstress on a cylindrical inclusion by a row of n loops in a
crystal with friction stress t;, we consider a hypothetical crystal with zero friction
stress. Assume that this crystal contains the same inclusion which has punched
the same row of n coaxial, circular, prismatic loops of length 1 and Burgers vector
b. If the loop were free to move, they would repel each other and glide an
infinite distance away from the inclusion, since there would be no friction stress
to stop them. Imagine now that the hypothetical crystal is subjected to an
external shear stress t which prevents the loops from escaping to iﬁfinity. If the
loops are assimilated to straight edge dislocations of the same length, the force F

on the inclusion by the pile-up is (Eshelby 1957):

F=ntbl. [3.3.16)
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If the value of this external shear stress is chosen as that of the friction stress of
the real lattice t¢, the spacing of the loops and therefore the backforce Fp on the

inclusion is the same in both cases:
Fe=ntbl . [3.3.17]

The real crystal with a friction stress 7¢ has thus been replaced by an
hypothetical crystal with zero friction stress but an external shear stress t¢. Since
the spacings of the loop is the only parameter determining the magnitude of the
backforce, it is identical in both situations. Assuming that the loops of length nd
exert a force Fg=0pnd2/4 at the end of the fiber of same diameter, the backstress
oB is calculated from Eq. [3.3.17] as

4ntb
op == [33.18]

The same result can be reached using a virtual work argument, described below
for the more general case where the shape of the source of the row is not
assumed to be cylindrical. Consider an equilibrated row of n dislocation loops,
emanating from an inclusion of second phase material, the surface of which is
"greased" so that it can move freely through the crystal while atoms in the
vicinity of the interface relocate reversibly by diffusion to allow motion of the
inclusion at no energy cost. Suppose now that the inclusion is slowly pushed by
a force Fg toward the equilibrated row of loops, by a distance dx larger than
several interatomic spacings (Fig. 3.3.10). Since they are at equilibrium, the loops
move with the particle, the end-result being a translation by a distance dx of the
entire system particle/row of loops.

The work dWy, spent in the operation
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dWp, = Fg dx (3.3.19]

is equal to the energy dWjs dissipated by the n loops moving against the friction

force Fg:
dW¢=n Fsdx, {3.3.20]

since the particle is assumed to move reversibly.

Assuming that the force on the inclusion induces an average stress op:
op=Fp/A , [3.3.21]

where A is the cross-sectional area of the inclusion, the average backstress is
found by introducing Egs. [3.3.6] and [3.3.21] into Eqs. [3.3.20] and [3.3.19]
respectively which are then equated:

bnrd
op="2EE [3322]

Introducing into Eq. [3.3.22] the value A=nd2/4 for the cylinder yields Eq.
[3.3.18]. It is noted that, while the form and range of the stress field will
determine the spacing of the equilibrated row, it has no influence on the
"backstress on the inclusion. The above derivation is only valid in an infinite
crystal with a single inclusion and row of loops. For closely spaced inclusions
with interacting rows of loops, Ashby's derivation (1966, 1970) of the average
backstress should be used.



We also note that a similar derivation can be used to ascertain that the force
exerted by a pile-up of n dislocations of length L on an cbstacle in an applied
shear stress field © much higher than the loop friction stress, is nt b L . Repeating
the thoughi experiment described above in the non-zero stress field, the work

dW done against the stress field is:

dW=ntbLdx. [3.3.23]

The force exerted by the dislocations on the inclusion is therefore n © b L (Hirth
and Lothe 1982), and the backstress on the particle is found by replacing ¢ in Eq.
[3322] byt

These simple derivations are approximate because changes in the stress state of
the inclusion induced by "greasing" the interface (which relaxes interfacial
stresses) are neglected. Also, the results say nothing about the local stress

distribution inside the inclusion.

3.4 Longitudinal emission of loops at fiber end

In this section, we present a theoretical model describing the emission of
prismatic loops at fiber ends due to the longitudinal thermal mismatch of a
cylindrical fiber in a matrix deforming by slip. We use both continuum
mechanics and the dislocation equilibrium results derived in the previous
paragraph to derive the number of loops punched by the fiber when the interface
is elasto-plastic. We also give expressions for the fiber longitudinal stress and the
interface shear stress after punching. We finally perform a parametric study on
the system Al/Al>O3 to illustrate the model and compare it to another by Taya
and Mori (1987).



Consider a perfectly elastic fiber in a matrix capable of plastic deformation by
dislocation movement. Upon cooling frdm an elevated temperature, thermal
stresses will develop due to the CTE mismatch between the fiber and the matrix.
We neglect the radial stresses, which are small compared to the axial stresses for
a slender body, and we assume an elastic, perfectly plastic matrix showing no
strain-hardening. At high temperature, the fiber is embedded in the matrix and
both phases are initially stress-free. Upon cooling, the matrix shrinks more than
the fiber if we assume that the matrix CTE is larger than that of the fiber (as is the
case in most MMC systems). This results in a stressed interface with the fiber in
compression and the matrix in tension. At first, the interface is stressed
elastically by shear along the whole length of the fiber. As the temperature
decreases, the total mismatch strain between fiber and matrix increases and the
interfacial shear stress stress increases proportionally. At some temperaturs, for
certain fiber lengths, the interfacial shear stress may equal the matrix plastic flow
stress, at which point dislocation motion is induced in the matrix. This changes
the nature of the stress distribution along the fiber, just as it does in a short fiber
composite in tension (Kelly and Macmillan, 1986a). Whatever the nature of the
stress at the interface, so long as there is no debonding (a situation which we
exclude here), stress builds up in the fiber as the result of load transfer from the
matrix. The resulting fiber strain reduces the local mismatch between fiber and
matrix.

In summary, three different local situations are possible at the fiber/matrix
interface, which may occur along the same fiber:

- unstrained interface: the fiber is stressed elastically to a strain equal to the CTE

mismatch strain.



- elastic interface: both fiber and matrix are stressed elastically; the interfacial
shear stress is everywhere lower than the critical shear stress at which slip is
initiated.

- plastic interface: the critical shear stress is reached, thus inducing slip at the

interface.
3.4.1 Elastic interface

Consider a cylindrical fiber of length L, diameter d, parallel to the x-axis and
centered at the origin. We use the shear lag model developed by Cox (1952) for a
single fiber embedded in a matrix submitted to an uniaxial strain e at infinity
applied along the same direction as the main axis of the fiber. In this model, it is

assumed that

gl).s " M-
ax H" (u-w) , [3.4.1)

where p is the load on the fiber, H" is a constant, u is the longitudinal
displacement in the fiber and w is the hypothetical displacement at the same
point in the absence of the fiber. The axial stress ir the fiber 6(x) can then be

expressed as

—Epo|1._oHBx) |
o(x) re[ o h(B-L ; 2) [3.4.2)

while the interfacial shear stress 1y is



Egd-e-B

Ux) =
* 4-cosh([S-L/2)

sinh(ﬁ-x) , . [3.43]

where

=4 /._Sm
B=3 Af Efi(vf) , [3.44]

and Eg is the fiber elastic modulus, x the distance from the origin, G the matrix

shear modulus and v¢ the fiber volume fraction. Egs. [3.4.2] and [3.4.3] are related
by

dg(:) =- ﬁ- x) . [3.4.5]

This analysis, which was later refined by Dow (1963), was found to be
experimentally correct by Tyson and Davies (1965) for a 4 mm diameter cylinder
embedded in a photoelastic polymer, except close to the ends of the fibers (about
two diameters from the extremity), where the measured shear stress was higher
than predicted by Eq. [3.4.3] due to stress concentration at the end faces
discontinuity. Schuster and Scala (1964) embedded a sapphire whisker in a
polymeric birefringent matrix and also found a good correlation with the model
above. Fig. 3.4.1a shows schematically the interfacial displacement and the
interfacial shear stress which are zero at the fiber center and maximum at its
ends. Since the fiber longitudinal stress is built up from the shear stress transfer
from the matrix, it is zero at fiber ends (assuming no load transfer from the end

faces) and maximum at the fiber center.
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We assume that Eq. [3.4.1] is valid for the case where the matrix shrinks (or
expands) around a fiber, neglecting the radial strains. The same equations used
for the shear-lag model (Egs. [3.4.2] - [3.4.4]) can then be used if the external strain

e is assimilated to the thermal mismatch strain:

e =Aa-AT , [3.4.6]
with
Ao =0t - 0 [34.7]

where am and af are respectively the matrix and fiber coefficient of thermal
expansion and AT is the temperature difference between the higher temperature
(stress-free state) and the lower temperature (stressed state). The axial fiber stress
and the interfacial shear stress are found by inserting Eq. [3.4.6] into Egs. [3.4.2]
and [3.4.3].

As can be seen from Eq. [3.4.2], the fiber longitudinal stress increases as x
decreases and is maximum at the fiber center. Simple inspection of Eq. [3.4.2],
however, shows that the maximum fiber stress (at x=0) will never reach the
value Efe for a fiber of finite length L. Thus, in the purely elastic case, an
unstrained interface cannot occur under the present assumptions, except of
course at the exact center of the fiber.

The interfacial shear stress is maximum at the fiber end (x=L) and increases as L
increases. At some critical fiber length Ly, the critical shear stress < is reached at
the end of the fiber where plastic flow and dislocation emission begin.

Introducing Eq. [3.4.6] as well as the values

=1 , [3.4.8a]
X= LP/ 2, [3.4.8b]



L=L,, [3.48]

in Eq. [3.4.3] gives an equation for Lp;

L 2 . 4-T
==arctg
P B B-E(d-Ax-AT | - [3.4.9]

If the fiber is longer than Ly, the interface at the ends of the fiber is plastic. We

now consider the case when this happens.
3.4.2 Plastic-elastic interface

In the unstrained state at a higher temperature, the fiber of length L, can be
thought of as occupying a hole of same length in the matrix (Fig. 3.4.2a). Upon
cooling by a temperature interval of AT, the fiber length - if it were outside the
matrix - would become L¢while the hole in the matrix in absence of the fiber
would have a length Ly, Fitting the fiber in the hole will force both the fiber and

the hole to adopt a length L, which is intermediate between L¢ and Ly, (Fig.
342b).

It is assumed that slip is the only relaxation mechanism in the temperature
interval AT, and that the fiber axis is oriented along a slip direction. Plasticity
originates from the fiber end because the shear stress is maximum there and
.because the fiber end corner acts as a stress concentrator. The end of the fiber
then acts like a punch and creates a pair of prismatic dislocation loops with
opposite Burgers vector parallel to the fiber axis. One of these is a prismatic
interstitial loop which glides away from the fiber end into the matrix, repelled by
the local stress field of the fiber and that of subsequently formed interstitial loops.
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The vacancy loop can be thought as gliding in the other direction along the
interface away from the fiber end and relaxing the stressed interface. The glide
length defines the plastic zone. In reality, it is more probable that the vacancy
loops are delocalized along the whole length of the plastic zone, i.e., the atomic
planes shift slightly due to the addition of an additional plane at the interface,
leading to a reduction of the elastic stress at the fiber end. The plastic zone can be
thought of as the interfacial length where this shift is appreciable. The fiber thus
relaxes its interface and emits in the matrix along the x-axis a row of coaxial,
circular, interstitial, prismatic dislocation loops of diameter d. Since each loop
carries away a disk of matrix material of thickness equal to its Burgers vector b,
the number of loops n punched at each end is, by conservation of volume:

L-Ly
Y [3.4.10]

Now, Hooke's law applied to the elastic fiber gives

L-L_35
=5 [3.411]

where the average stress in the fiber is

L2
aL)= f— j G(x) dx, [3.4.12)
0
while the CTE equations yield
Lo-L
" =a,AT, [3.413]
m
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- Lf
L, - %AT, [3.414]

assuming the CTE's are isotropic and temperature independent. Combining Egs.
[3.4.7], [3.4.10], [3.4.11], [3.4.13] and [3.4.14] then gives

_ L . - T al‘)
" T20(1 + amAT) [A“ aT- {1+ araT) Ef] 3415

Thus, one only needs to evaluate the average stress ;(L) defined in Eq. [3.4.12]
to find through Eq. [3.4.15] the number of loops punched at the end of the fiber.
This necessitates a knowledge of the function 6(x) or equivalently of t(x) (Eq.
[34.5)).

The fiber longitudinal stress is shown schematically in Fig. 3.4.3. The integral
of this stress function can be decomposed in four parts (right hand side of Eq.
[3.4.16]) labelled 1 to 4 in Fig. 3.4.3:

— r’n (o* - o) {c*-op)
<:(L)=13:~'jr Ge(x) dx +—2T‘-’--(L-L,) + 22811, + op,[3416]
A )

where ¢ is the fiber longitudinal stress at the point where the interfacial shear
stress reaches the critical shear stress, op is the backstress on the end face of the
fiber by the punched loops and og(x) is the contribution by the elastic interface to
the fiber longitudinal stress. In what follows, we calculate these three variables.
We first evaluate the integral of ce(x). The elastic stress profile oe(x) is
independent of the fiber total length in the elastic/plastic regime. In other
words, the stress diagrams of fibers of different lengths in that regime will match
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when superimposed. Fig. 3.4.4a shows the superimposed diagrams of the
interfacial shear stress for three fibers of length Lp, L and Ly such that LpsSLsL,,
the length Ly corresponding to the boundary between the elastic-plastic and the
elastic-plastic-unstrained regimes. It follows from Eq. [3.4.5] that the fiber
longitudinal stress diagrams can also be superimposed, with a shift of the
coordinate system due to the integration variable. This is shown schematically
in Fig. 3.4.4b for the same three fiber lengths as in Fig. 3.4.4a (the backstress 6
“increases with the length of the fiber and is derived in section 3.3.2). The first
term of the right hand side of Eq. [3.4.16] is thus independent of the fiber length
and can be calculated by integrating Eq. [3.4.2] with L=Lp. This yields after
introduction of Egs. {3.4.6] and [3.4.9]

L2
%] Ce(x)dx = Ef-Aa-AT-If-E- - 28 %
0 B.d-L

(3.4.17]

We now determine ¢”, the stress induced in the fiber by the plastic interfacial
region. Considering the fiber of length L>Lp, the interfacial shear stress and fiber
stress gradient in the plastic interface region, i.e., for values of x between Lp/2

and L/2 are respectively (Fig. 3.4.4b):

Ux)="1 , [3.4.18]

d o*-C
2.2 - [3.4.19]

Inserting Eqs. [3.4.18] and [3.4.19] into Eq. [3.4.5] then gives an expression for 6*:



2:T
="'Ti—c'(""l‘”+°3' [3.4.20]

Inserting Egs. [3.4.17] and [3.4.20] into [3.4.16] finally yields

oL)= Ef'Aa'AT'I;IE-+ﬁ-(L2-I%- 882 +op, [3421]

where op is given by Eq. [3.3.18). It appears from inspection that, even for large
values of r, the terms containing op are small compared to the other terms in
these equaiions. The backstress of the loops on the fiber has thus a minor effect
on the stress state of the fiber and the interface.

Inserting Eqs. [3.4.21] and [3.3.18] into Eq. [3.4.15] gives an equation for n as a
function of geometrical and thermomechanical parameters, all assumed to be

isotropic and temperature independent:

1+o0AT}2:L -t ,
e,

(1 + 0mAT}d-E;

where

o = L { T {1 + oAT) {Lp + .8_ LZ) + Ac-AT-[L- Ly (1+ arAT)]} [34.23]

2-b- (1 + mAT)

is the solution of Eq. [3.4.21] for og=0. For most systems of interest, o is very

small and thus n and n' are almost equal (Eq. [3.4.21]).
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.4.3 Plastic-elastic-unstrained inter

In the elastic/plastic regime, the maximum fiber stress in the central fiber
region increases with increasing fiber length since the length of the plastic region
increases too, loading the fiber linearly from the fiber ends (Egs. [3.4.5] and
[3.4.18])). Above a certain critical length Ly, the fiber will be strained by the matrix
to such a degree that a region in the middle of fiber forms which exhibits no
strain mismatch with the matrix. The interfacial displacement and shear stress
are zero in that region, and the fiber strain has a value of AaAT.

Ly, is thus the critical length of the fiber between the two regimes plastic/elastic
and plastic/elastic/unstrained, corresponding to the fiber length where the
maximum strain AaAT is reached at the center of the fiber. The interfacial shear
stress and fiber stress are shown in Fig. 3.4.4b (lower fiber stress diagram). The

fiber stress at the origin is maximum and has the value

o{0) = ErAa-AT [3.4.24]
From Fig. 3.4.4a
{0) = Ce.max + Omax |, (3.4.25)
where Ge,max and 6'max are the stress contributions from the elastic and plastic

interface regions respectively. Inserting Eq. [3.4.2] (with x=0 and L=Lp), Eq. [3.4.20]
(with L=L,, and 6p=0Bmax) and Eq. [3.4.24] into Eq. [3.4.25] yields
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. Erd-Ac-AT 3. Bmax
F Z-tc-cosh(B-Lp/z) 2.1, * [3.4.26]

L,=L

where OBmax is the backstress on the fiber of length Ly,.

Inserting L=Ly as given by Eq. [3.4.26] into Eqs.[3.4.23] or [3.4.22] gives the
maximum number of punched loops. Any fiber of length larger than L, will
punch this maximum number of loops regardless of its length, since the

unstrained length in its center part does not contribute to the strain mismatch.

In summary, depending upon the length of the fiber and the values of the
thermomechanical properties of the fiber and the matrix, three main global
regimes can be distinguished for a fiber:

a. elastic interface: the whole interface is elastic; the interfacial shear stress is
everywhere below the critical shear stress and no dislocation loops are created.

b. plastic/elastic interface: both ends of the fiber have a plastic interface while
the interface in the central region is elastic. The plastic interface forms when the
fiber tip creates pairs of prismatic loops of vacancy and interstitial character
respectively. The interstitial loop is punched from the fiber end into the matrix
and glides away from the fiber. It leaves behind a vacancy loops which glides in
the opposite direction along the fiber interface to relieve the interfacial
mismatch.

c. plastic/elastic/unstrained interface: the interface at both ends of the fiber is
.stressed plastically and then elastically; the load transfer is such that the central
part of the fiber is elastically strained to the point that there is no local mismatch
with the matrix, leading to an unstrained interface.

Figs. 3.4.1a-c schematically show the interface displacement, interfacial shear

stress and fiber axial stress for the three cases cited above; only half of the fiber is

75



represented since these functions are symmetric with respect to the origin. We
note that an elastic zone always exists because the interfacial displacement and

thus the shear stress are zero at the fiber center.

3.4.4 Effect of fiber residual stresses on punching distance

In what follows, we estimate the shear stress in the vicinity of a fiber with
residual stresses and its effect on the punching distance. Even after punching,
the fiber and the interface are stressed elastically as shown in the previous
paragraphs, thus inducing a shear stress on the glide cylinder which can alter the
equilibrium position of the row of loops and therefore the row length. As
illustrated in Fig. 3.3.9, large perturbations in the stress state at the row end
closest to the blocked loop do not significantly change the row length. On the
other hand, perturbations at the “free" end of the row have much larger effects
on the local loop spacings and thus the row length.

We do not seek to evaluate the stress close to the sharp corner formed by the
end of the cylinder. It is likely to be high in the immediate vicinity of the
singularity and to decay rapidly away from it. For instance, Schneider and
Conway (1969) found that, at a distance of 0.14 diameter from the end of a flat-
end rectangular fiber, the shear stress was only a third of the uniform tensile
stress applied at infinity. Similarly, Atkinson et al. (1982) found that the shear
stress decays very rapidly in the matrix close to the end of a partially embedded
fiber subjected to a pull-out test. Except in the small region close to the stress
singularity, the matrix stress is dominated by the contribution of the residual
fiber stress; this matrix shear stress is calculated in what follows on the glide

cylinder where the loops are located.
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Let us represent the fiber by a semi-infinite cylinder of diameter d, the end of
which is at the origin of a cylindrical coordinate system z, r, 8. It is assumed that
the interfacial shear stress along the fiber is constant and equal to its maximal
value 1, corresponding to a fully plastic interface. These two assumptions, of
semi-infinite fiber and fully plastic interface, will yield an upper bound for the
matrix shear stress since actual fibers are finite in length and since the interfacial
shear strength can only be constant up to the middle of the fiber where its sign is
reversed. Following Phan-Thien (1979), the fiber is considered as a slender body
which can be approximated by a suitable distribution of "Kelvinlets" or point

forces. For the conditions stated above, the relevant Kelvinlets are:

dF; = -n-d-t-dz | [3.4.27]
dF; =0, [3.4.28]
dFg=0, [3.4.29]

Landau and Lifshitz (1959) give the displacement field u at a point x due to a

force F applied at the origin of a cartesian coordinate system x3, x2, x3 as:

x --x .
du;i(x) = 1 34y ___§,+ 10 __|dF,
T 16mG (1) (x3+x3+x3)1 2 (xdexdendPi2] 7 [3.4.30)

where Jjjis the Kronecker symbol, G the matrix shear modulus and v its
Poisson's ratio. Introducing Egs. [3.4.27]-[3.4.29] into Eq. [3.4.30] and using °

cylindrical coordinates yields:

d-t. rz
. dz
16-G-(1-v) (r2+22p2

du, =- [3.4.31]



d«z . . 2 .I
du, =- c . 3-4vy + T dz
16-G- (1-v) [(rz +22)2 (24 zz)SIZJ [3.4.32)
The shear strain is given by
ada.
e = 1 (0000 + 00 [34.33]

The overall shear strain due to the distribution of Kelvinlets is then
€z = ] der |, [3.4.34]
0

or, introducing Egs. [3.4.31] - [3.4.33] into Eq. [3.4.34] and rearranging:

d-tc
Fe s 32-G-(1-v) [r2 + (z s)z]Sl2 [4\*(2 Fo¥e o3 1'2] w- DA

Solving Eq. [3.4.35] and introducing the result into

Tz = 2:G-gy; , [3.4.36]
yields the final result
=. _3-4y d
"IV “Vze2 - [34.37]
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Eq. [3.4.37] is the exact solution for the problem stated above, thus giving an
upper bound for the shear stress induced by a fiber with residual stresses after
dislocation punching, at a distance far enough from the end of the fiber for the
corner singularity to be neglected and for the fiber to be satisfactorily
approximated by a line of point forces. For a typical value of v = 0.3, the shear
stress on the glide cylinder r = d/2 at a distance of one diameter away from the
fiber end (z = d) is equal to 0.072 1, i.e., an order of magnitude less than the
minimum stress necessary to move a dislocation in the lattice, if it is assumed
that 1 is about equal to T4, the lattice friction stress. This leads to the conclusion
that, apart form the stress induced by the singularity at the end of the fiber, the
shear stress on the glide cylinder is negligible. Even if it is fully loaded through
the interface, the fiber will have very little effect upon the dislocations away
from its immediate vicinity. The first loop will therefore be very close to the end
of the fiber and we conclude that the length of the loops row as given by Eq.

[3.3.11] is an adequate measure of the punching distance.

It is of interest to compare the above result to the similar situation of the
backstress due to a sphere of radius rs located at the origin of a cartesian
coordinate system. The matrix shear stress on the glide cylinder (x=rs/2) due to a
sphere subjected to an elastic, hydrostatic strain € is given by Johnson and Lee

(1983) as

\ 3
ﬁ§)=96- V2.G-B" 8(2.52 . 1)5/2 ) [3.4.38]

where § = z/rs and P’ is a constant containing the matrix Poisson's ratio as well as

the matrix and inclusion bulk moduli.
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It is apparent that, as expected, the shear stress decays more rapidly than in the
case of the cylinder. To allow a further quantitative comparison, we calculate the
stress on the glide cylinder when the residual stress in the sphere is such that the
critical shear stress is reached at the intersection of the glide cylinder and the
sphere. If the backstress due to the other loops is neglected, this is the maximal
residual stress possible in the sphere since any higher stress would nucleate a
loop at the interface. Introducing t=1 and § = V3/2 into Eq. [3.4.38] gives a value
for the maximum strain which, after introduction into Eq. [3.4.38] yields an

equation for the shear stress on the glide cylinder:

&

t(E) =81 (———2'52 ze (3.4.39]

Choosing again a value of v equal to 0.3 and a distance of two radii away from
the interface (€ = 3) yields a value for t" equal to 0.013 1.

It can therefore be concluded that, in the case of the sphere as in the case of the
cylinder, the backstress of the inclusion with a residual strain present after
emission of loops is negligible at short distances away from the interface. This
conclusion is supported by experimental observations of spherical and cylindrical
inclusions reported in what follows with the last punched loop located very close

to the interface.

3.4.5 Parametric study and discussion of model

A parametric study was performed to investigate the influence of different

variables on the number of punched loops n and the two critical length Ly and



Lp. The system aluminium/alumina was chosen as an example, the properties
of which are given in Table 3.4.

Each of the parameters in Table 3.4 was varied while keeping all the other
constant. It was found that only AaAT, L, d, T, Ef had a significant influence on
n, Ly or Lp. The length Ly as calculated from Eq. [3.4.9] was always small. In
particular, the volume fraction of fibers had a very small effect on these
parameters. It must be however kept in mind, since this model was developed
for a single fiber, it is only valid for small volume fractions.

Figs. 3.4.5a-e show the effect of these parameters on the number of punched
loops, using Eq. [3.4.23] (full curves). Also shown in the same figures is the value
predicted by Taya and Mori (1987) (Egs. [1] and [2], App. 5), whose model is briefly
summarized in Appendix 5.

Egs. [3.4.9] and [3.4.26] giving the two critical lengths Lp and L, (with o = 0, see

section 3.4.2) can be rewritten in dimensionless form:

L
P—Z—L=arctgh(ff , [3.4.40]

B.;.u gmgh(zef) A /(.A_e'.f_)’ 1 [34.41)

where the intrinsic temperature 0 is given by

e___f_‘_tg_=3_ -Ln.(_v!)_

“Ecpdda 2V G E - 34421

Fig. 3.4.6 shows a dimensionless plot of the critical lengths Lpand L, as a

function of the temperature interval AT, for all other parameters being constant
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(Egs. [3.4.40] and [3.4.41]). The two curves delimit the three regions described
above, i.e., elastic, elastic/plastic and elastic/plastic/unstrained interfaces.
Similar projections can be done for the other variables defining Lpand Ly,
introducing the appropriate intrinsic variables corresponding to 6.

It is apparent from Fig. 3.4.6 that, for AT > 0, a short fiber interface is completely
elastic, a longer fiber interface is elastic/plastic while an even longer fiber
interface is elastic/plastic/unstrained. For AT < @ however, all fibers will have
an entirely elastic interface. With the parameters chosen for the parametric
study (Table 3.4), 6 is equal to 7.8 K. It is also clear from Fig. 3.4.6 that there is a
critical fiber length L* (corresponding to the minimum of the Ly-AT curve and
found by derivation of Eq.[3.4.41]), below which no temperature interval,

however large, will produce an unstrained interfacial region:

B’;' - mgr{(ﬁf_l.)’”z] + (f%l)‘” = 1.847 . [3.4.43]

For the parameters in Table 3.4, L* is equal to 19 um.

The results above also show that the critical length Lpis small: for the
parameters of Table 3.4, it is equal to 0.4 pum. In typical fiber reinforced metals
subjected to large temperature variations, the prevailing regimes will thus be
elastic/plastic or elastic/plastic/unstrained, i.e., relaxation by slip along part of
the fiber will be observed. It follows that the first term in Eq. [3.4.26] can be
neglected and since the third term is negligible (because op is typically smaller

than 1), Eq. [3.4.26] reduces to

Efd-Aa-AT

L
' 2.7,

[3.4.44]
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The boundary between the elastic/plastic regime and the elastic/plastic/
unstrained regime is marked by an arrow in Figs. 3.4.5a-e. For small values of L,
Tc and AT, and large values of E¢ and d, the value of n calculated from Eq. [3.4.23]
tends toward that predicted by Eq. [2] of Appendix 5 which represents an upper
bound value; as must be the case, this value is never exceeded.

An important qualitative and quantitative discrepancy is observed between our
model and that of Taya and Mori (1987), since Eq. [3.4.23] does not predict a set of
critical parameters for which punching is suppressed (except when the interface
is completely elastic for L<Lp, at which point punching has not yet been
activated). The punching suppression in Taya and Mori's model (1987) is due to
the implicit assumption that the loops are punched all at once rather than one
after the other. As the number of loops to be simultaneously punched increases,
so does the total energy needed for punching, until it exceeds the energy released
during the relaxation of the ellipsoid, thus suppressing all punching. If loops are
punched sequentially rather than simultaneously, such a situation does not
occur, as predicted by our model where the fiber is at no time too long to punch
loops. Rather, long fibers reach a critical length Ly, above which subsequent
punching is inhibited (Fig. 3.4.5b). From a physical point of view, it seems that
coaxial loops of same diameter should be nucleated and punched cne after the
other when the nucleation stress is reached at the end of the cylindrical fiber.
This is because the location where nucleation takes place is limited to a single
circle corresponding to the edge of the fiber ends. In Taya and Mori's model, on
the other hand, each loops is nucleated at a different place along the surface of
the ellipsoid and has therefore a different diameter. The assumption of
simultaneous punching is therefore geometrically possible for an ellipsoid and

might happen physically for inclusions of that shape when the cooling rate is

83



much higher than the rate of loop nucleation. The root of the discrepancy
between the two models thus seems to lie in the different assumptions made
concerning the nature of the dislocation punching process (simultaneous
punching in Taya and Mori's model (1987), sequential punchirg in ours) as well
as the geometry of the fiber (prolate spheroid in Taya and Mori's model (1987),

cylinder in ours).




Parameter Unrit AgBr AgCl Al
crystal type - BiNall BINaCl  Alfcc
density [kg/dm3} 6.47 5.56 27
melting point K1 705 728 933
boiling point K 2033 1373 2500
heat conductivity (W/mK} 1 | 1.1 238
CTE [105 K] 3% 30 23
refractive index -l 2.25 2.07 -
elastic modulus [GPaj 32 26 62
shear modulus [GPa} 7.2 6.9 23
Poisson's ratio [ 0.37 0.343 0.33
UTS [MPa] 245 17 55
y0 [MPa] 0.5 8.8
A H , 0.625
rupture strain (%] >38 >50 >55
Burgers vector [nm] 0.407 0.384 0.286

Table 3.1: Physical and mechanical parameters of matrix materials (high purity
silver bromide and chloride and 99.5 % aluminium) from Sprackling (1965),
Gmelins (1971, 1972), Hansen (1977) and Boyer et al. (1985). tyo: intrinsic shear

flow stress; A: strain-hardening constant.



array P v* (%] p [m2] AGbVp [MPa)
sphere foc V2r/6 6.1 5.9-1012 10

bac 3x/8 56 5.9 -1012 10

cubic =/6 43 5.9-1012 10
cylinder | hex. V3r/6 5.1 1.7-1012 5.4

square n/4 44 1.7-1012 5.4

Table 3.2: packing ratio, critical volume ratio (Egs. [3.1.16]), dislocation density

(Egs. [3.1.10]) and increase of yield stress in shear (Eq. [3.1.7]) for different arrays of

silicon carbide spheres and cylinders of radius 1.5 pm in a strain-hardening 99.5

% aluminium matrix submitted to a change of temperature AT = 200K.



body K

rhombic dodecahedron 0.88
sphere 0.85
truncated octahedron 0.76
octahedron 0.74
pentagonal dodecahedron 0.72
cube 0.67
cylinder 0.64
tetrahedron 0.57
square rod 0.50

Table 3.3: Exact values of constant K for regular bodies.
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Parameter Al Al203
E [GPa] 72.5 300°
G [GPa] 30.1 -
v [ 0.362 0.21
1 *u [MPa] 5 -
a [106/K] 23.5 9°
b [nm] 0.286 -
L [um] - 200
d [um] - 3°
ve [ — 0.1
o [MPa] 0

AT [K] 200

Table 3.4: Thermal, mechanical and geometric parameters of the matrix and

fibers used in the parametric study (*: Saffimax™ values).



Figure 3.1.1 Fictitious hole expanded from zero radius to radius a producing a
plastic zone of radius ¢ and a matrix displacement of Ar at the surface of the

inclusion of radius r. Cylindrical or spherical case.
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Figure 3.1.2  Schematic of prismatic dislocation loops punched in the <110>
directions of a f.c.c. lattice from a cylinder. The shaded volumes represent the

intersection of adjacent glide systems.
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Figure 3.13  Schematic of prismatic dislocation loops punched in the <110>

directions of a f.c.c. lattice from a sphere. The shaded volumes represent the

intersection of adjacent glide systems.
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plastic zone radius [jm)

o 1 2 3 4 5
inclusion radius fuml

Figure 3.14 Plastic zone radius around a SiC cylinder (c) and sphere (s)ina
99.5 % aluminium matrix after a temperature change of 200 K. Full curves:

strain-hardening matrix (Egs. [3.1.12]). Dotted curves: non strain-hardening

matrix (Egs. [3.1.6]).
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Figure 3.2.1 Schematic drawing of a particle and its projection with relevant
variables.
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Figure 3.3.1 Steady-state configuration of a moving row of n bodies, each
submitted to a friction force.

Figure 3.3.2 Equivalent cbnfiguration of a row of n circular, prismatic loops
repelling each other in a lattice with a non-zero friction stress. The first loop is
blocked.
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Figure 3.3.3 Dimensionless distance from the origin for a row of 100 loops for
two values of v, as calculated from Eq. [3.3.9] and as computed.
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Figure 3.3.4 Dimensionless minimum spacing between two loops (first two

loops) as a function of the number of loops in the row for different values of v.
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Figure 3.3.5 Dimensionless length of a row as a function of the number of

loops for different values of v.
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Figure 3.3.6 Plot of parameters A" and v, Eq. [3.3.11].
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Figure 3.3.7 Dimensionless maximum spacing between two loops (two last

loops) as a function of v.
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Figure 33.8 Configuration of two rows of prismatic loops of opposite Burgers'

vector, located symmetrically on each side of the origin. The first loop of each

rows is blocked.
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Figure 3.3.9 Relative difference in loop spacings between the undisturbed row

(Fig. 3.3.2) and the corresponding disturbed row (Fig. 3.3.8, { > 0) for two values of
v and A{,.
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Figure 3.3.10 Particle with "greased" interface pushing a row of loops against

the loop friction stress.
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Figs. 3.4.1a-c Schematic diagrams for the interface displacement u, the
interfacial shear stress t and the fiber longitudinal stress as a function of the
distance x from the center of the fiber. (a) purely elastic interface, (b) plastic-elastic

interface, (c) plastic-elastic-unstrained interface
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high temperature,
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low temperature
thermal mismatch

Schematic diagram of matrix with hole, fiber and matrix with

Figs. 3.4.2 a&b
fiber before (a) and after (b) the temperature change AT.
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Figure 3.4.3  Diagram for the interfacial shear stress for a fiber of length L in

the plastic-elastic regime.
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Figure 3.4.5a Number of loops punched as a function of the fiber diameter d,
all other parameters in Table 3.4 being constant. Full curve : this model (Eq.

[3.4.23]). Dotted curve : Taya and Mori's model (Egs. [1] and [2] App.' 5).

107



2500 -

A
1
]
!
]
2000 ~ 4 ]
’
Vd !
P4 s '
/ !
’,
15004 ’, I
V4 1
7/
n », ]
/’ 1
s 1
4
1000 - 7z |
|
]
\ i
]
!
[
|
|
0 v T v T v 1§ RN v Il
) 100 200 300 400 500
L [um]

Figure 3.4.5b Number of loops punched as a function of the fiber length L, all
other parameters in Table 3.4 being constant. Full curve : this model (Eq. [3.4.23]).
Dotted curve : Taya and Mori's model (Egs. [1] and [2] App. 5).
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Figure 3.4.5c Number of loops punched as a function of the fiber elastic
modulus Ejg, all other parameters in Table 3.4 being constant. Full curve : this

model (Eq. [3.4.23]). Dotted curve : Taya and Mori's model (Egs. [1] and [2] App. 5).
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Figure 3.4.5d Number of loops punched as a function of the matrix critical
interfacial stress T, all other parameters in Table 3.4 being constant. Full curve :

this model (Eq. [3.4.23]). Dotted curve : Taya and Mori's model (Egs. [1] and [2]
App. 5).
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Figure 3.4.5e  Number of loops punched as a function of the temperature
excursion AT, all other parameters in Table 3.4 being constant. Full curve : this

model (Eq. [3.4.23]). Dotted curve : Taya and Mori's model (Egs. [1] and [2] App. 5).
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Figure 3.4.6 Dimensionless pldt of the two critical lengths Lp and L, as a

function of the temperature excursion AT.
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4. EXPERIMENTAL PR D

The method of choice to investigate dislocations in metals is transmission
electron microscopy (TEM) since it allows a very high resolution; it has been
used extensively in metals containing submicroscopic éecond phases. In most
MMCs however, the typical size of the reinforcement and its associated plastic
zone is much larger than the thin area, both in terms of thickness and of width
of the electron-transparent region. This hinders the investigation of some typical
dislocation structure found in MMCs, such as long dislocations along the sides of
fibers, or entire rows of punched dislocations e)itending far from the
reinforcement. Also, dislocations can be added during sample preparation which
make use of mechanical ablation; ion-milling also often induces thermal
excursion of the sample by beam heating or excessive cooling when a cold stage is
used, leading to extraneous thermal mismatch dislocations. Finally, dislocations
can be lost and their siructure disturbed by the free surfaces of the electron-thin
area, as observed by Vogelsang et al. (1985) and Arsenault and Shi (1986). The
perturbation of the elastic stresses and the dislocations by a free-surface is also of
concern for such techniques as etch pits or slip line observation which are also
unable to observe the bulk.

To circumvent these iimitations, we use silver chloridé as a transparent model
matrix for MMCs. As described in the literature survey, this transparent salt has
been used by many investigators to simulate metal plasticity since it exhibits
dislocation mechanisms which are in most cases similar to those found in
metals, leading to typically metallic properties such as strain-hardening, high
ductility or recovery. Upon exposure to actinic light at room temperature,
dislocations can be decorated within bulk silver chloride by photodissociation

and preferential precipitation of metallic silver on dislocation lines. These can
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then be imaged by high resolution transmission optical microscopy, provided the
dislocation density is sufficiently low. In practice, silver halides must be
chemically sensitized, in order to reach the maximum decoration depth of about
30 um. This allows the observation of decorated dislocations associated with
reinforcements of large dimension typically found in MMCs.

Interest in this technique for imaging dislocations quickly waned after its
development by Mitchell and coworkers thirty years ago with the development
of the transmission electron microscope, which allows direct observation of
dislocations in metals at high resolution. While decoration techniques for
examination in the optical microscope do not allow imaging of individual
dislocations when their density is high, we believe that they present distinct
advantages over alternative techniques mentioned above for the study of the
plastic zone around supramicroscopic reinforcements typically used in MMCs,
because the whole plastic zone can be examined. Furthermore, the equilibrium
configuration of low density dislocation structures which extend far from the
reinforcement, such as prismatic loop rows, can be examined in their entirety.

The main disadvantage of decoration of silver halides is its low resolution.
The average width of the decorated dislocations must be on the order of 0.4 pm
for detection in the optical microscopy. Areas of high densities of dislocations
(on the order of the inverse of the square of the decoration width, 6 1012 [m-2])
will therefore appear as black regions where dislocations cannot be resolved.
Decoration also pins dislocations down, therefore making impossible the
observation of their movement or even of two of their successive positions.
Finally, the decoration depth is limited to about 30 um; this depth can be
increased by the application of a pulsed electrical field as described in the
Literature Survey. While, in part due to these shortcomings, decoration of silver

halides has fallen out of fashion for the investigation of dislocation phenomena
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in favor of TEM, we think these materials constitute a splendid tool for
experimental investigation of matrix behavior in MMCs when dislocation
densities in the matrix are low. Elementary dislocation phenomena can be
viewed in three dimensions along entire fibers and with no interference from
sample free surfaces - unlike what has been achieved so far with TEM or etch
pitting - in a material that has been extensively proven to accurately replicate

such phenomena as they occur in metals.

In what follows, we first describe the experimental procedures which lead to an
optimal decorated microstructure in silver chloride containing a second phase.
In the next paragraph, we mention other less successful trials, in the hope that, if
these experiments are repeated or extended, some of the problems encountered
during this research can be avoided. We finally describe the sample preparation
procedures explored for the fabrication of thick reinforced samples suitable for

photoelastic experiments.

4.1 Sample preparation for decoration experiments

We mostly follow the experimental methods developed by Mitchell and co-
workers summarized in the literature review, with some meodifications dictated
by experience. Great care must be exercised in each of the steps to obtain good
microstructures, since a single non-optimal step will generally completely ruin

the sample.

Blocks of silver chloride of 99.999% purity were purchased from Engelhard
(Ohio) and stored in a dessicator in their original wrapping of polyethylene

covered by dark paper. Some of the as-received material was sent for chemical
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analysis to Luvak Inc. (Massachusetts) to check the potentially harmful elements
copper, iron, cobalt and nickel, all of which were found to be below the
sensitivity limit of 3 ppm. The analysis from the manufacturer takes however
into account neither the possible decomposition of the chloride into silver nor
oxygen contamination, both of which are visible by a slight gray or violet
coloration of the otherwise transparent crystal. Decomposition can be
minimized by shielding the samples from visible and ultraviolet light. If the

crystals are very pure however, photodecomposition is very slow (Mitchell 1988).

When needed, silver chloride was manipulate'd using polymeric or glass
instruments due to the reactivity of the chloride with metallic materials. If the
blocks were too thick to be cut by hand (using gloves), they were cut into suitable
pieces with a clean razor blade on a Teflon™ substrate. This was the only time
that the chloride was in contact with metal, and it was cleaned immediately
afterwards since it reacts quickly with most metals, forming the metal chloride
and silver, both of which are detrimental for the sensitization of the chloride.
Blades were used only once since a thick layer of corrosion product forms on
their surface after the contact with chloride. The chloride was manipulated with
clean polyethylene gloves to avoid any contamination with finger grease.
Powdered rubber gloves were avoided since the talcum can contaminate the
sample. When not manipulated, the chloride was stored in a glass beaker
covered with a glass funnel to avoid contamination with air-born dusts. All
operations described below involving the reactive molten silver chloride were
performed in Pyrex or quartz glassware, previously aged in boiling nitric acid for
15 minutes, thoroughly rinsed in distilled water and dried with nitrogen prior to

each experiment in order to avoid contamination by leached metallic ions.
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The chloride was cleaned for about 10 minutes in a 10% HCl aqueous solution,
rinsed in distilled water and dried in an air oven at about 400 K in a covered glass
beaker. Another drying technique was to blow the water with a stream of
nitrogen from a compressed tank. The cleaned cuttings were charged in a Pyrex
crucible and melted under dry nitrogen by heating the glass apparatus shown in
Fig. 4.1.1a with an oxygen-gas flame, making sure that the heat was applied
evenly. High purity dry nitrogen from Airco was used, containing 0.5 ppm
oxygen, 2 ppm water, 2 ppm hydrogen, 0.5 ppm carbon mono- and dioxide, 0.5
ppm hydrocarbons. The melt was purified by slowly bubbling 99.9% pure
chlorine (lecture bottle purchased from Mattewson) for about 15 minutes, to
transform silver oxide or metallic silver into chloride. This operation was
stopped when no oxide layer was visible at the top of the melt. The chlorine was
flown through monel, Teflon™ and glass tubes and was thus never in contact
with materials with which it could react and thus contaminate the melt. After
bubbling through the melt, the chlorine was bubbled through three washing
bottles containing sodium hydroxide or sodium thiosulfate aqueous solutions in
order to minimize the emission of chlorine in the hood. The melt was then
degassed for about 15 minutes by bubbling dry nitrogen, solidified and cooled to
room temperature under the same atmosphere in the crucible which was tipped
to avoid solidification of the melt around the capillary. The ingot was
transferred to a capillary filter (Fig. 4.1.1b), heated in dry nitrogen until a drop of
liquid ran down the capillary and sealed it by solidifying at its tip, and was then
completely melted. The melt was then run through the capillary into a cold
crucible by melting the small drop of chloride blocking the capillary tip. Any
solid particles, silver oxide or colloidal silver present in the melt were deposited
on the walls of the filter. This filtering operation was repeated until no residues

were left on the walls of the filter.
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The silver chloride was then doped with 0.1% cuprous chloride (99.999% purity
powder purchased from Strem Chemicals, Massachusetts), by melting both
compounds in a crucible under dry nitrogen, and thoroughly mixing them in the
liquid state by shaking the apparatus. The previous degassing operation is crucial
for the success of this last step since any free chlorine will transform the cuprous
chloride into cupric chloride, with a subsequent loss of sensitization (Mitchell
1988). The resulting master "alloy” had a distinct yellow color and was quite
brittle, since grains would fragment when the sample wrapped in Teflon™ was
hit with a hammer. It was stored in the dark in a plastic box prior to the
fabrication of a plate, at which point a fragment of about 200 to 300 mg was rinsed
in distilled water, dried, and put in a capillary together with a piece of rinsed and
dried non-doped chloride of the same mass. The chloride pieces were then
melted under flowing dry nitrogen, the melt shaken and solidified 3 to 5 times to
thoroughly mix the cuprous chloride which was then present in silver chloride

in a concentration of 500 ppm.

The reinforcements used were glass microspheres (borosilicate Corning glass
7070) with a diameter range of 1-5 pm, glass particles (borosilicate glass BK10) in
the same dimension range, glass continuous fibers (strontium oxide glass) with a
diameter range from 0.8 to 2 pm, all purchased from MoSci Corp. (Rolla,
Missouri). Chopped Safimax™ alumina fibers 3 um in diameter were also used
(Imperial Chemical Industries, Runcorn, UK). A slurry of the reinforcement in
.pure acetone was spread on two quartz plates which were then laid on top of
each other so that the reinforcement would be on the inside surfaces. Quartz
capillary tubes of 170 pm diameter were used as spacers. Great care was exerted to
avoid dust contamination. The quartz plate were heated in the plate oven

shown in Fig. 4.1.2 to about 823 K. The doped silver chloride prepared in the
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capillary was remelted under flowing dry nitrogen and poured onto one of the
bottom quartz plates while the other was held with steel tweezers. The melt was
then immediately topped by the top quartz plate which was slowly moved in a
circular motion to induce a turbulent flow and engulf the reinforcement on the
plates. The sandwich was then pushed at a speed of about 10 um/s onto a water-
cooled chill, thus directionally sclidifying the composite silver halide plate. In
another configuration used for certain samples, the bottom quartz plate was
directly attached to a water-cooled arm itself connected to the motor which
pulled the sample out of the hot zone. The solidification front was visible since
the molten chloride is red while the solid chloride at the melting point has an
orange color. The front was found to be perpendicular to the growing direction.
After the whole sample was solidified, it was immersed while hot in distilled
water. This usually helped remove at least one of the plates and expose the
sample which was dried under a flow of nitrogen and immediately checked
under the microscope. The other élate could be removed after further
immersion in water for about 10 min. If it was still attached to the plate, the pH
of the water was reduced to 6 using HCl and the sample kept for some more
time. Stubborn adhesion was usually a sign of the presence of silver oxide at the
sample surface, which destroyed the sensitivity of the sample. Silver oxide was
formed after the transfer of the melt on the quartz plate if it was not promptly
covered with the hot top plate, but was also found in unproperly prepared feed

material.

The large as-cast plates were then cut into smaller samples with a clean razor
blade. The contamination at the edges was minimal due to the small thickness
of the sample and since the sample was not remelted. Cleaning in HCl was

avoided since it lead to a reduced sensitivity of the sample, probably by diffusion
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of chlorine ions having reacted with the cuprous chloride. The cut samples were
laid on a quartz plate and annealed to remove the dislocations introduced by the
differential contraction of the quartz plates and the specimen. The annealing
was done in a tube furnace under flowing dry nitrogen for two hours at 673 K,
and the samples were then gas quenched to room temperature at a rate of about 1
K/s. The quartz plate was carefully removed from the oven and the undisturbed
samples immediately exposed to the unfiltered light of a stroboscope (model
510AL, Electronic Brazing Company) with the following characteristics: Xe tube,
60 flashes/second, integrated illuminance per flash: 35 lux/s. Immediately
thereafter, the samples were mounted on a microscope slide using Permount
mounting medium (Fisher Sci.) and a thin cover plate; the decorated
substructure was observed without delay in transmitted light using a Zeiss
inverted microscope Z/M 35 with a 100x oil immersion lens of numerical
aperture 1.25 or an Olympus metallurgical microscope AH2 with a 100 x dry lens
of numerical aperture 0.95. Photomicrographs were taken using a 35 mm
camera fitted to the microscope and the films used were Ilford PanF (50 ASA)
and Ilford FP4 (125 ASA) under white or green light. The negatives were
developed and printed by an outside photographic shop. All pictures in this

thesis were printed at MIT using high contrast glossy paper.

4.2 Other experiments pertaining to silver chloride decoration

Many experiments were performed using silver chloride powder as starting
material (Cerac AgCl 99.999). Even though the chemical purity of the powder
was high, the chlorination and filtering operations could never eliminate the
coloration of the resulting ingot; this was probably due to the the large amount of

metallic silver and silver oxide present on the surface of the fine powders.
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Vacuum melting was attempted without significant improvement of the crystal
quality. A white deposit was always observed in the cooler part of the oven and
could have been condensed chloride, since AgCl in powder form is white. When
chemical contamination was present, colored deposits were found on the cool
part of the vacuum oven.

In order to try to degas the melt, purified and filtered chloride was melted
under nitrogen after which a vacuum was pulled on the melt. As expected, large
bubbles formed and raised to the surface of the melt which was subsequently
solidified under vacuum. When remelted, more bubbles would slowly form,
possibly due to a reaction with the glassware. Even when many cycles of
degasing and solidification in vacuum were performed, the plates made from
this material did not show significantly less bubbles.

The developer described by Hedges and Mitchell (1953) was used to try to
predict the quality of treated silver chloride. Pure reagents were mixed in
distilled water (the reagent described as metol in the above paper is 4-methyl-
amino-phenol-sulfate) and pieces of chloride at different stages of chlorination,
filtration and sensitization dipped for 1 to 2 seconds. The surface of the specimen
became completely black when the chloride was oversensitized by oxygen; but
even after a treatment which produced decorated specimens, the developer
induced some black spots visible under the microscope on the sample surface.
The developer was thus a good indicator of the effectiveness of chlorination (a
well purified sample showed only a few spots after developing) but did not
reliably predict the decorability of the specimens.

A series of experiments were performed on silver bromide rather than chloride
since decoration is easier to achieve in that salt (Mitchell 1988). Nitrogen was

bubbled through liquid bromine at ambient temperature prior to the bubbling in
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the AgBr meli, but otherwise the experiments were performec in the same way
as described for AgCl.

Many experiments were performed to try to sensitize the samples with oxygen
rather than with copper. Filtered silver bromide was melted and brominated;
low purity nitrogen containing oxygen as a natural impurity (or in certain cases
air rather than nitrogen) was then bubbled through the melt. Its contact angle
would then change from non-wetting to wetting as more oxygen dissolved. It
was never possible to find an optimum in decorability even by monitoring the
wetting angle: either the sample were undersensitized and did not show any
decoration upon exposure to actinic light, or the .samples were oversensitized
and the surface became black when exposed. Annealing of oversensitized
samples in bromine atmosphere was tried but did not yield any good results.
Similarly, dissolution of the tbp surface with a 0.1 N KCN aqueous solution was
tried without improvement of the decorability. Good decoration was only
achieved by addition of cuprous bromide in a similar manner to the
experimental procedures described above for silver chloride doped with cuprous
chloride. To reduce the number of variables, silver bromide was not used in this
study; it is however a satisfactory alternative to silver chloride.

Following the description of Mitchell and coworkers, the light of a 250 W high
pressure mercury vapor lamp (with or without outer glass envelope) was used to
decorate samples for a duration of 1 to 10 seconds, depending on the sensitivity
of the specimens. It was difficult to avoid overexposure of the top surface which
would then hide the decorated bulk. Much better results were obtained with the
stroboscope described in the previous paragraph. An attempt was also made to
use a pulsed system where light from the stroboscope and an electrical field
across the sample were applied simultaneously. An electronic pulse generator

was custom-made a. MIT to trigger the stroboscope described in the previous

122



paragraph as well as a DC 200 V power supply. The sample was placed between a
copper electrode and a glass plate on which a thin layer of gold had been
evaporated, forming a transparent electrode through which the light of the
stroboscope could illuminate the sample. However, experiments on sensitized
samples produced very little decoration. It seems that the glass electrode
decreased the .intensity of light reaching the sample since samples exposed
between the electrodes but without the pulsed field exhibited very little
decoration. This line of research was not pursued since good decoration could be

achieved with the stroboscope alone.

4.3 Sample preparation for photoelastic experiments

Some experiments were performed to investigate the photoelasticity of
composite silver halide. The samples produced had however many bubbies that
disturbed the stress field produced by the reinforcement. Some samples were
prepared using the same procedures described above. About ten glass fibers 80
pum in diameter were arranged parallel to each other and separated by spacers
from each quartz plate. The sandwich was heated in the furnace described above
and a large drop of molten chloride was deposited on the bottom plate as well as
the offset top plate. Due to capillarity forces the chloride was drawn between the
two plates, engulfing the fibers. Directional solidification was performed as
described above, resulting in a sample containing bubbles. The same experiment
was performed vertically in a muffle furnace under nitrogen and showed fewer
bubbles. Another sample was prepared horizontally as above, except that the
fibers were inserted between two rolled pieces of silver chloride and the
sandwich thus formed melted. The resulting sample exhibited a large number of

bubbles, probably from entrapped air.
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In an attempt to eliminate the bubbles, some of the samples described above
were not separated from the quartz plate but slowly passed vertically through a
zone melter (Fig. 4.1.3), starting with the bottom part of the sample. Some of the
bubbles could thus be eliminated but new ones formed at the sample surface.

Very large grains were observed in the remelted zone.

The samples were observed in transmission at low magnification with cross-
polarized nichols with the metallurgical microscope Olympus in section 4.1.
Some of the samples were strained because they were still adhering to one of the
quartz plate which had shrunk less than the sampie upon cooling from
fabrication temperature. Another technique used was to glue aluminum tabs
with cyanoacrylate glue (Davcon) directly to the silver chloride. The tensile
specimens were mounted on a tensile rig designed to allow observation in
transmission and the rig mounted in the microscope. The specimen was

strained by slowly turning a screw displacing one of the heads in the rig.
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4.4 Figures
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"Figure 4.1.1a Apparatus used to purify the AgCl melt.
Figure 4.1.1b Apparatus used to filter the AgCl melt.
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5. RESULTS

Density differences between the melt and the reinforcement did not
induce any separation of the two phases in the time needed for solidification.
Even with the smallest glass spheres, no particle pushing by the solidification
front was observed.

A recurrent imperfection found in the as-cast sample was the presence of
bubbles which could be due to (i) shrinkage upon solidification, (ii) dissolved gas
rejected by the melt, (iii) air entrapped during the squeezing of the melt between
the quartz plates and/or (iv) evolution of chlorine due to decomposition of the
chlcride. Shrinkage porosities - usually 20 to 200 um long - were recognizable by
their elongated pear or tear shape and their orientation paraliel to the growth
direction. They could be minimized by a slow growth rate and a steep
temperature gradient but would nevertheless be present in most samples in a
plane halfway between the two surfaces, probably formed by the junction of solid
silver chloride growing from the top and bottom quartz plates. This morphology
indicated that the solidification front was microscopically not plane, even
though visual inspection showed a straight solid-liquid interface. The shrinkage
pores were too deep to interfere with the decorated region. It is interesting to
note that they could not be eliminated even when the samples were solidified
vertically and/or submitted to vibrations. Millimeter-sized round bubbles were
always found in some number and could sometimes be seen in the melt after the
top plate was in place; these were probably formed by mechanism (iif). Since
their volume fraction was small, they did not disturb the observation of the
microstructure. Smaller bubbles were often found in the middle plane as well
and could have formed by the mechanisms (ii) and (iv). Improperly cleaned or

scratched quartz plates would also create surface pores with irregular, angular
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shapes of different dimensions. Other defects which were sometimes observed
in the bulk were black small precipitates of various shapes, including 1 to 5 pm
long rods oriented along crystallographic directions, wavy lines 1 to 3 um in
diameter seemingly showing the outline of dendrites and root- or spider-like
tangles. They almost always occurred in non-sensitive samples and might have
formed from the reaction with some contaminant. Round, black precipitates on
the surface were typical of overheated samples. Etch pits were sometimes found
in sample kept in water for more than about an hour. Wavy slip lines at the
surface indicated that the sample had been deformed upon removal from the
plates. All reinforcements used were found to be wetted by the melt and the

interface of the as-cast specimen was free of any visible defect.

5.1 Dislocation microstructure and micromechanics

After annealing and quenching, all the sensitized samples showed small
black surface precipitates which must have been due to the copper present in the
samples, since non-sensitized control samples did not exhibit such a behavior.
These precipitates only occured at the surface and did not seem to interfere at all
with the microstructure in the bulk. Pulsed light of high intensity from the
stroboscope was found to yield better decoration of the samples than continuous
exposure to the light of a mercury vapor lamp used by some previous
investigators. In all samples, random precipitation of silver took place within
the silver chloride upon exposure to actinic light, resulting in the "fog" visible in
all figures. Grain boundaries and subgrain boundaries were always decorated
first; when the samples were properly decorated and only slightly deformed,
individual dislocations within the subgrains could be resolved. In most samples,

decoration was found to fade in a matter of hours or days, or even more quickly
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when the samples were exposed to the intense light of the microscope.
Subsequent exposure to the stroboscopic light did not restore the decoration but

rather increased the background fog.

S5.1.1 Spherical inclusions

High dislocation densities were observed in the vicinity of the glass
spheres. The configuration of the resulting plastic zone surrounding the spheres
fell in two main categories. In the first, the dislocations were clearly resolved as
trains of prismatic loops emanating from the spheres along crystallographic
directions. Unresolved tangles were almost always visible, but only along the
sides where no loops were punched (Fig. 5.1.1). In the other category, the plastic
zone was composed of unresolved dislocation tangles surrounding the inclusion
as a continuous shell of variable regularity (Fig. 5.1.2), on occasions coexisting
with one or two trains of emitted loops (Fig. 5.1.3). In some cases of
intermediate character between these two types (Fig. 5.1.4), an irregular plastic
zone was observed featuring lobes that extended along the glide directions (these
directions were determined by observing loop rows punched by other spheres

within the same subgrain).

Measurements were alsc performed directly on the micrographs. Fig. 5.1.5
shows the total number of punched prismatic loops as a function of the sphere
"diameter, for rows of loops wkich were not separated from the sphere by any
tangled dislocations.

- The sphere radius and that of its unresolved plastic zone (Fig. 5.1.2) are plotted
against each other in Fig. 5.1.6. Only cases where the spheres were isolated from

neighbours and where the plastic zone was spherical were considered.
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5.1.2 Particulate inclusions

The matrix around the irregularly shaped particles exhibited much higher
densities of decorated dislocations than the bulk of the matrix. In rare cases, the
only dislocations visible were in form of rows of prismatic loops punched along
crystallographic directions (Fig. 5.1.7), a configuration found around
microspheres as well (see previous paragraph). The linear structure in Fig. 5.1.7
is a subgrain boundary consisting of dislocations perpendicular to the image
plane. They can be resolved as points at the lower right corner of the micrograph
and, by changing the focus of the microscope, can be followed in the crystal. Also
visible in the same figure is a small particle surrounded by a dark decorated zone
consisting of tangled dislocations. Another example of this plastic zone
geometry is shown in Fig. 5.1.8, where the dislocations in the tangles are partially
resolved. This plastic zone morphology was by far the most common in the
sample investigated and its shape in most cases did not resemble the shape of the
corresponding particle. Schematic examples of particles and their associated
plastic zones as seen in the transmission optical microscope given in Fig. 5.1.9
illustrate this point. Fig. 5.1.10 is an example of a mixed plastic zone
morphology: the particle is surrounded by a decorated plastic zone of unresolved
dislocation tangles and has also emitted a row of loops which extends at a large
distance beyond the interface.

Fig. 5.1.11 is a plot of the frequency of the punching angle ¢ measured on
micrographs. The angle was measured between the axis of the punched row of
loops and the largest dimension of elongated glass particles.

The projected areas of the particles and their associated plastic zones ‘were cut

and weighed from enlarged micrographs; the mean projected length was
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measured directly on the enlargements. The relative error for each of these
Mmeasurements is estimated at 5% for the smallest particles, less for the larger
ones. Taking into account the maximum error in the constant K estimated
above as 28 %, the maximum relative error on the calculation of the volume
using Eq. [3.2.6] due to measurements and the averaged value of K is therefore
about 43% for the small particles, less for the large ones. The maximum error on
the equivalent sphere radii in Fig. 5.1.12 is thus on the order of 15%. The
equivalent radii of the particles and their Plastic zones are plotted against each
other in Fig. 5.1.12. The only particles considered were thoses which had clearly
defined plastic zones and which were far enough from neighbouring particles so

that their plastic zones were not in contact.

9.1.3 Fibrous inclusions

Observations were made on samples with alumina as well as glass fibers. In all
cases, the dislocation density was found to be significantly higher close to the
fibers than elsewhere in the matrix. The microstructure around the alumina
fibers (Fig.5.1.13-15) was usually more complicated and less illustrative in terms
of elementary dislocation mechanisms. This is probably because the diameter of
the alumina fibers was larger and thus both the number and length of
ciislocations were larger, leading to more frequent entanglement.

We first describe the dislocation structure around alumina fibers. Fig. 5.1.13
shows dislocation tangles along the sides of a long fiber. Some of the dislocations
have been pinned and are bowed due to the local stress field. In most cases,
however, single dislocations could not be resolved within the plastic zone
surrounding the fibers. The plastic zone could be seen as a dark cylindrical

region of precipitated silver around the fiber. This region usually ended abruptly
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and was very often separated from the undeformed matrix by decorated subgrain
boundaries.

In numerous cases, rows of prismatic loops were seen emanating from the ends
of the fibers. In Fig. 5.1.14, a train of loops is shown which bursts through a
subgrain boundary and continues in the next subgrain with a slightly different
orientation, reflecting the change in crystallographic orientation between the two
subgrains. Partially resolved tangles are also visible along the sides of the same
fiber. Fig. 5.1.15 shows a fiter surrounded by a dark plastic zone of unresolved
dislocations. The plastic zone is larger at the ends of a fiber than at its middle, a
morphology frequently observed around other fibers. Due to the directional
solidification of the samples, very large grains on the order of a square
centimeters were formed. Within these grains, subgrain boundaries - visible as
dark continuous lines in Figs 5.1.1,2, 14 and 15 - were always associated with
regions of the sample containing reinforcement.

In what follows, we briefly describe the micrographs with glass fibers. Fig. 5.1.16
and 17 are example of fibers punching rows of loops at their tip. Fig. 5.1.18 is an
illustration of the more frequent situation in which the axes of the fiber and of
the row of loops form an angle. Fig. 5.1.19 presents a fiber which punched
elongated loops at each of its tips; the loops are clearly emanating from the sides
of the fiber. Tangles of unresolved dislocations form a sheath around the fiber; a
subgrain boundary is also visible on either side of the fiber. Fig. 5.1.20, for which
the plane of focus is just below the 1 pm diameter fiber, shows a fiber which
punched two rows of loops at its tip, both in such a direction as to relax the
longitudinal fiber stress. Fig. 5.1.21 shows the tip of a fiber which has emitted
what seems to be parallel non-coaxial elongated dislocations which rotate and
merge into a subgrain boundary. Fig. 5.1.22 presents a peculiar dislocation

structure encountered in many instances: the tip of both fibers in this
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micrograph have punched a pair of coaxial rows on either side of the fiber. The
outward row is clearly detached from the fiber and similar to those presented
earlier while the inward row is always attached to the fiber. In Fig. 5.1.23, three
fibers can be seen with their associated dislocation structures: fiber A has
punched rows of loops at both of its tips, fiber B emitted four rows at 90°, two of
which are blocked by fiber A and C. Fiber C is surrounded by tangles in which
some bowed dislocations can be distinguished. Fig. 5.1.24 similarly shows a thin
fiber which has emitted elongated dislocations, some of which are still attached
to the fiber. A similar situation is found in Fig. 5.1.25, where all the dislocations
are pinned and bowed due to the stress of the fiber.A Finally, in Fig. 5.1.26, tangles
around a thin glass fiber are visible, with some of the dislocat’ons in the plastic
zone discernible. This configuration is similar to that observed for the larger

diameter alumina fibers (Fig 5.1.13).

Measurements were performed on the micrographs. Fig. 5.1.27 and 28 report
the frequency of the angle between the fiber axis (alumina and glass respectively)
and that of the row of loops. Fig. 5.1.29 is a plot of the stress to which pinned
dislocations are subjected, as a function of the radial distance from the fiber; the
radius of curvature was calculated assuming that the pinned dislocations formed
a segment of a circle. By measuring on enlarged micrographs the distance
between the anchor points Lp as well as the maximum deflection h from the line
running through the two anchor points, the radius of curvature R can be

calculated from (Beyer 1979)

2
R=.£‘;.+
8.

(VY=g

’ [5.1.1]

=
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from whict it is possible to derive the local stress op (Hirth and Lothe, 1982),

assumed constant along the dislocation line:

“4nR-(1 v)‘l 1+[1-;—(3-4cos2|3")].1,.(%” © [512]

where G is the matrix shear modulus, v its Poissons ratio, Rg the core distance of
the dislocation and B" the angle between the dislocation line and the Burgers
vector. The angle B" being unknown, the square of its cosine is taken as 0.5 (the
average of cos2x). The core distance is taken as 33% the value of the Burgers
vector, as determined by Puls and So (1980) for sodium chloride. These two
parameters have little influence on the numerical result. The Burgers vector
was assumed to be along {110}, the main slip direction in silver chloride
(Sprackling 1976). The Poisson's ratio was taken as 0.343, the average of the
values of elastic constants determined by three investigators (Stepanov and
Eidus 1955, Vallin 1967, Hidshaw et al. 1967); other materials data are listed in
Table 3.1.

The length of the row of loops normalized to its diameter as a function of the
aspect ratio of the corresponding punching glass fiber is plotted in Fig. 5.1.30 for
fibers with a row of loops at each of their tips and in Fig. 5.1.31 for those with a
row at only one end. The former case was observed much iess frequently than
the latter. Only rows for which no visible obstacles (such as subgrain boundaries
or other fibers) had interacted with the punched loops were considered. Nearly
all alumina fibers exhibited rows which were blocked by subgrain boundaries
(Fig. 5.1.14 is an example of such a case) and therefore no data is presented for

these fibers.
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In Fig. 5.1.32, the maximum number of radially punched, elongated loops (such
as those in Fig. 5.1.25) is plotted as a function of the glass fiber diameter. The
average number was usually 25 to 50% smaller. The only fibers considered had
no tangled plastic zones and showed dislocations far away from the tip to
minimize the effect of longitudinal stresses. The dislocation lines were counted
radially on both sides of the fiber; usually, one side had punched significantly

more dislocations than the other.

5.2 Photoelasticity

As-cast samples still adhering to one or both of the quartz plates used during
fabrication were observed in the optical microscope in transmission between
crossed nichols, with or without a compensating A/4 plate introduced in the
optical train. All samples exhibited strong birefringence due to the stresses from
the differential contraction between the sample and the quartz or pyrex plate(s).
Grains were visible as areas of different contrast. Inside some of the grains, slip
bands were visible as systems of parallel bands 10 to 50 um thick with alternating
contrast. In certain cases, two slip band systems were found superimposed; slip
bands in different grains had different orientations. Sometimes. as in Fig. 5.2.1,
only one of two adjacent grains exhibits slip bands. Figs. 5.2.2 and 3 show the
photoelastic contrast observed at the end of alumina fibers 3 pm and 20 pm in
diameter respectively, while Figs. 5.2.4 and 5 illustrate large glass fibers 80 um in

-diameter.
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5.3 Figures

Figure 5.1.1 Decorated prismatic loops in AgCl punched by a glass sphere.
Unresolved tangles are visible in the directions where no loops were emitted.
Figure 5.1.2 Unresolved dislocations forming a spherical plastic zone around

glass spheres embedded in AgCl.

Figure 5.1.3 Glass sphere in AgCl matrix surrounded by an irregular zone of
unresolved, decorated dislocations and having emitted prismatic loops.

Figure 5.1.4 Glass spheres in AgCl matrix surrounded by tangled, decorated
dislocations in a plastic zone forming lobes.
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Figure 5.1.5 Total number of prismatic dislocations loops punched by glass
spheres in AgCl as a function of the sphere diameter. Open squares : single row

of loops. Filled square : double rows of loops. Lines : calculations from Eq. [5.2.3]

for different values of AT.
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Figure 5.1.6 Radius of plastic zone surrounding a sphere in an AgCl matrix as
a function of the radius of the corresponding sphere. Squares : experimental
data. Full curve : strain-hardening matrix with A=0.6 (Eq. [3.1.12b]); dotted curves
: non strain-hardening matrix (Eq. [3.1.6b]).
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Figure 5.1.7 Decorated prismatic loops in AgCl punched by two glass particles
(1). A wall of dislocations perpendicular to the image plane form a subgrain
boundary (2). Unresolved tangles are visible around another particle (3).

Figure 5.1.8 Partially resolved, decorated dislocations in AgCl forming a
plastic zone around a glass particle located at the intersection of three grain- or

subgrain boundaries.

Figure 5.1.9 See next page

Figure 5.1.10 Glass particle in AgCl matrix surrounded by an irregular zone of
unresolved, decorated dislocations and having emitted prismatic loops, some of
which form an helix. The row of dislocations is blocked at a subgrain boundary.
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Figure 51.9 Schematics of particles and their associated plastic zone traced by
hand from enlarged micrographs. |
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Figure 5.1.12 Equivalent radius of the plastic zone surrounding glass particles
in AgCl as a function of the equivalent radius of the corresponding particle. Full
squares : plastic zones formed of tangled dislocations and row of loops (Fig.5.1.
10); empty squares : plastic zone formed by tangled dislocations only (Fig. 5.1.8).

Full curve : strain-hardening matrix with A=0.6 (Eq. [3.1.12b]); dotted curves : non

strain-hardening matrix (Eq. [3.1.6b)).
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Figure 5.1.13 Decorated, pinned dislocations in the plastic zone surrounding
an alumina fiber in an AgCl matrix. Due to the stress from the fiber, some
dislocations are bowed. The fiber is out of focus, being a few microns off the

image plane.

Figure 5.1.14 Decorated rows of prismatic loops punched from a short alumina
fiber in an AgCl matrix. After bursting through a subgrain boundary (dark
continuous line), the loops change orientation in the second subgrain. Partially

resolved dislocation tangles are also decorated around the fiber.
Figure 5.1.15 Peanut-shaped plastic zone around an alumina fiber embedded

n /\gCl.
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Figure 5.1.16 Row of decorated, prismatic loops emitted by a glass fiber in AgCL
A dark zone formed of unresolved dislocation tangles surrounds the fiber.

Figure 5.1.17 Row of decorated prismatic loops punched from the end of a
glass fiber in AgCl. The fiber and part of the row are out of focus. The row bursts
through a subgrain boundary and continue in another subgrain. Elongated
dislocations are visible along the sides of the fiber.

Figure 5.1.18 Glass fiber with emitted row of prismatic loops punched at an
angle in AgCl. The fiber is also surrounded by a plastic zone formed of
unresolved dislocations.
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Figure 5.1.19 Glass fiber in AgCl with decorated dislocation structure
consisting of two rows of elongated loops emitted sideways at the fiber ends and
a plastic zone surrounding the fiber (dislocations are not resolved). The linear
feature is a subgrain boundary.

Figure 5.1.20 Two rows of decorated loops punched by the tip of a glass fiber in
AgCl. Loops are on non-adjacent glide systems.

Figure 5.1.21 Rows of elongated, decorated dislocations emanating from the tip
of a glass fiber (B) in AgCl. Dislocations rotate away from the fiber and form a
wall or subgrain boundary. An out-of-focus inclusion (A) emitted prismatic,

decorated loops, two of which are visible (arrow).
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Figure 5.1.22 Two glass fibers in AgCl showing the same dislocation structure:
a double row of decorated elongated loops emitted by the tip of the fiber. The
outward row is similar in nature to those in Fig. 5.1.18; the inward row is
attached to the fiber.
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Figure 5.1.23 Three glass fiber having emitted decorated dislocations in AgCl.
Fiber A punched a row of loops at each of its end. Fiber B punched four rows, two
of which are blocked by fiber A and C. Fiber C is surrounded by a plastic zone in
which some dislocations can be resolved.
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Figure 5.1.24 Glass fiber in AgCl with elongated, decorated loops emitted by its
sides. Some of the dislocations are still attached and bowed due to the residual

fiber stress.
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Figure 5.1.25 Long, decorated loops emitted by the sides of a long glass fiber in

AgCl. Some loops are still attached to the fiber and all are bowed by its residual
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jgure 5.1.26 Decorated dislocations forming the plastic zone surrounding a

long glass fiber in AgCl. Some of the dislocations can be resolved.
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Figure 5.1.27 Plot of the frequency of the angle between the axis of the

fmnched row of loops and that of the emitting alumina fiber.
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Figure 5.1.29  Stress of pinned dislocations as calculated from Egq. [5.1.2] in the
plastic zone surrounding alumina fibers in an AgCl matrix (see Fig. 5.1.13) as a
function of radial disiance from the interface. The various symbols represent
different fibers. The lower horizontal line is the value of the microyield stress in

shear as measured by Sprackling (1966) and Haasen and Skrotski (1981).
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Figure 5.1.30 Plot of the row length (divided by its diameter) versus the fiber
aspect ratio. Squares represent experimental data for glass fibers of diameter
between 0.5 pm and 4 um which punched rows at both their ends; the longer and
shorter rows for a given fiber are represented by connected filled and empty
symbols respectively. The full lines are calculated from Egs. [3.4.23] and [3.3.11]
and dotted full lines are calculated from Egs. [1] and [2], App. 5 (Taya and Mori,
1987) for values of the friction stress of 0.25 MPa (upper diagram) and 0.5 MPa
(lower diagram) and the above range of diameters.
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Figure 5.1.31a Plot of the row length (divided by its diameter) versus the fiber
aspect ratio. Squares represent experimental data for glass fibers with a diameter

bety(reen 0.6 pm and 2.1 pm which had punched a row at only one of their tips.
The lines are calculated from Egs. [3.4.23] and [3.3.11] for the two above diameters

and a friction stress of 0.25 MFa and 0.5 MPa.
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Figure 5.1.31b Plot of the row length (divided by its diameter) versus the fiber

-aspect ratio. Squares represent experimental data for glass fibers with a diameter
between 2.2 um and 3.7 pm which had punched a row at only one of their tips.
The lines are calculated from Egs. [3.4.23] and [3.3.11] for the two above diameters
and a friction stress of 0.25 MPa and 0.5 MPa.
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"Figure 51.32  Plot of the maximum number of loops emitted by the sides of

glass fibers as a function of the fiber diameter.
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Figure 52.1 Large glass fibers in AgCl matrix. One grain shows slip bands
visible as parallel region of alternating contrast while the other grain does not

show any slip. (cross-polarized filters used).
Figure 5.2.2  Stress concentration at the tip of alumina fibers 3 pm in diameter
embedded in AgCl (cross-polarized filters used).
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Figure 52.3 Stress concentration at the tip of alumina fibers 20 um in
diameter embedded in AgCl (cross-polarized filters used).

SO um
—
Figure 52.4 Stress concentration at the tip of a glass fiber 80 um in diameter

embedded in AgCl (cross-polarized filters used).
Figure 5.2.5  Stress concentration at the tip of a glass fiber 80 um in diameter

embedded in AgCl (cross-polarized filters used).
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. DI ION

6.1 Dislocation microstructure

A large body of literature exists on dislocation nucleation and geometry around
submicroscopic particles in deformed metals, e.g., Hirsch and Humphreys (1970),
Humphreys and Hirsch (1970), Brown and Stobbs (1971), Gould et al. (1974),
Humphreys and Hirsch (1976). While very detailed TEM observations and
mechanical test results have shed considerable light on the dislocation
mechanisms operative in such systems, these results are not directly applicable to
the present problem because the volume of the second phase in the present study
is typically more than three orders of magnitude larger. The completion in an
unimpeded manner of such processes as double cross-slip (Hirsch and
Humphreys 1970) are much less probable with large inclusions because the
length of the involved dislocations is much largex;. The probability of interaction
before completion of the process is therefore much higher and the activation
energy is increased by an order of magnitude. Another important difference is
that most of the earlier studies investigated particles submitted to shear whereas
in the present study the strains are purely dilatational. Finally, the interface in
the present case is incoherent, while many earlier investigators studied systems
with coherent interfaces; this has a large effect on the energy considerations
involved in such processes as prismatic punching (Brown and Woolhouse,
1970).

While not directly transposable to the problem treated in this study for the
reasons mentioned above, these previous investigations indicate however that
the total dislocation density we assumed to be generated at the reinforcement is

most likely a rough approximation. This relative crudeness is justified by the
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absence of detailed information on the specifics of dislocation emission in the
tangled regions by large incoherent particles and the simplicity of the resulting
expressions (Egs. [3.1.12] and [3.3.11]) for the plastic zone radius and the number
of punched loops.

6.1.1 Spherical inclusions

Plastic zones of irregular size, an example of which is given in Fig. 5.14,
present a mode of strain relief intermediate between prismatic loop trains
punched along crystallographic directions and aﬁ isotropic spherical shell of
plastically deformed matrix. It seems that prismatic loops were punched out
along crystallographic directions but became entangled soon thereafter. TEM
investigations to date have generated similar observations on particles over an
order of magnitude smaller (Ashby et al. 1969, Lewis and Martin 1963). This
finding suggests that the spherical plastic shells observed around the majority of
the embedded particles (Fig. 5.1.2) - similar to spherical zones of tangled
dislocations around submicroscopic particles reported by Kinsman et al. (1975) -
resulted from punched loops which were entangled early in the punching
process. This lends credence to our estimation of the final dislocation density in
the regular spherical plastic zones modelled above.

When more than one row of loops emanating from the same particle was
found, these were very often at opposite sides of the spheres. No glass sphere
was found to have punched loops on two adjacent glide cylinders without the
presence of a zone of tangled dislocations between the punched loops and the
particle. One of the rows was almost invariably much shorter than the other.
This could be due to interactions between loops in the intersection of the glide

cylinders close to the sphere (shaded area in Fig. 3.1.2). As pointed out by
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Johnson and Lee (1983), it is energetically possible for two loops on adjacent
cylinders in an f.c.c. crystal to interact and form a sessile product dislocation.
This is likelier to happen the larger the particle, since the intersection volume
between glide cylinders increases in size. Thus, for the large spheres investigated
here, we expect plastic zones of tangled dislocations to form whenever two
adjacent glide cylinders are active. We therefore expect the ratio of the number
of inclusions with tangled zones to that with rows of punched loops to be higher
for MMCs than for dispersion hardened metals because inclusion dimensions
are much larger in MMCs.

The intermediate case illustrated in Fig. 5.1.3 could be due to a first stage of
relaxation where the active glide cylinders were not adjacent, followed by the
activation of additional glide cylinders leading to tangles. Similar TEM
micrographs on submicroscopic particles have been published by Makenas and
Birnbaum (1980).

Fig. 5.1.5, showing the total number of punched prismatic loops as a function of
the sphere diameter, illustrates the fact that there is no systematic difference in
the total number of loops emitted by spheres with one or two rows of loops, i.e.,
the number of loops in single rows is on the average twice that for double rows
for a given sphere diameter. This finding suggests that one row of loops can relax
the sphere as efficiently as two on each side, which in turn implies that short
range diffusion or glide occurs in the vicinity of the interface. The observation
that a row of loops is emitted only along one direction for certain spheres is an
indication that nucleation of loops in other directions is perturbed by emission of
the first row of dislocations. However, with precipitates of silver in the matrix
much smaller than the glass spheres, we observed dislocation punched along
most or all crystallographic directions, similar to what has been reported by

various investigators in silver chloride (Parasnis and Mitchell 1959, Mitchell
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1958) and metals (Lawley and Gaigher 1963, Eikum and Thomas 1964, Bertocci et
al. 1969, Shin:otcmai and Hasiguti 1979). This indicates that the mechanisms for
relief of thermal mismatch depend on inclusion size. Extrapolation to MMCs of
data gathered with dispersion hardened metals will therefore not always be

valid.

6.1.2 Particulate inclusions

Fig. 5.1.7 and 10 illustrate that prismatic loop punching is a mode of stress relief
operational not only for spheres but also for particles of irregular shape.

The lack of correlation between the shape of the particle and that of its plastic
zone (Fig. 5.1.9) might occur because relaxation starts earlier at some places than
at others, or because entanglement does not occur at the same distance from the
interface. It can be concluded from this observation that large errors will be
introduced if TEM measurements (such as dislocation density or plastic zone
extent) are made only at one limited region of the interface and are extrapolated
to the whole plastic zone. While decoration does not allow the determination of
high dislocation densities as TEM does, it gives a full view of the size and shape
of an undisturbed plastic zone around the second phase. The two methods
therefore complement each other.

Spheres exhibited such regions of high dislocation densities as well, visible
either as a regular spherical shell or as a zone of irregular form (see previous
_paragraph). In several cases, both features described above (loop row and tangled
dislocation zone) were observed simultaneously around the same particle or
sphere, as in Fig. 5.1.10: the row of loops emitted by the particle is blocked by a
subgrain boundary and the loops closest to the particle form an helix. Such a

configuration can arise when a straight dislocation combines with a row of loops,
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or it could have been formed initially at the interface. Another interesting
feature seen in Fig. 5.1.10, and observed in many other instances, is that the row
of loops seems to have emanated from the sharp corner of the particle. This
observation is consistent with observations with fibers (see next paragraph), the
ends of which had punched rows of prismatic loops. It can be explained by the
stress concentration effect of cuspidal points which must help nucleation of the

loops.

Prismatic punching has been reported by many investigators (e.g., Honeycombe
1984, Lawley and Gaigher 1963) in metals containing submicroscopic particles as
well as in silver halide containing microspheres (e.g., Mitchell 1958) and fibers
(é.g., Childs and Slifkin 1965). We observed this mechanism to be operative for
particles with volumes from about one cubic micron to many hundreds of cubic
microns. The scarcity of particles which exhibited trains of loops as their only
plastic zone suggests that such prismatic loops are essily entangled after their
emission, thus forming the plastic zone of high dislocation density found
around particles (Fig. 5.1.8) as well as microspheres (see above paragraph). TEM
investigations on submicroscopic particles in metals (e.g., Lewis and Martin 1963,
Ashby et al. 1969) have shown that such entanglement is common around
smaller particles. Similar observations reported in this thesis have been made
around spheres and fibers in silver chloride. The hypothesis that the tangled
dislocations in the plastic zone were originally prismatic loops is confirmed by
the frequent observation of particles and microspheres showing one or more
rows of loops in addition to a shell of dense dislocations (Fig. 5.1.7 & 10). Such a
corfiguration will form if relaxation begins with nucleation and emission of
prismatic loops on non-adjacent glide cylinders, followed by the activation of

additional glide cylinders overlapping with the original ones and subsequent
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entanglement. In the spherical case, adjacent glide cylinders overlap, if Hull and
Bacon's (1984) geometrical model of maximum shear stress is adopted (Fig. 3.1.2).
As shiown by Johnson and Lee (1983), it is energetically favorable for two loops on
overlapping glide cylinders to combine into a sessile configuration; such locks
could induce additional entanglements by subsequent loops and finally lead to
the shells of high dislocation density found around particles and spheres. While
the positions of the glide cylinders around a particle of irregular shape will vary
depending on the exact geometry and orientation of the particle, there is no
reason that the cylinders should not overlap, even if they are significantly
smaller than the particle mean radius. An additional observation supporting the
above hypothesis is that no particle was found with adjacent rows of loops (i.e.
with rows forming an angle of 60°). Quite often, two rows were visible outside
the shell of tangled dislocations, almost invariably at opposite sides of the
particle. These observations thus support the choice of loops geometry made in

section 3.1 for the calculation of dislocation density and plastic zone volume.

Due to the relatively small aspect ratio, punching along different directions will
happen almost simultaneously in the cooling process, thus leading to rapid
entanglement and the absence of long rows of loops. We indeed only rarely
observed long rows emanating from such non-equiaxed particles, even for those
of large dimension which should punch a large number of loops from volume
conservation considerations. The short rows observed are thus formed of loops
which nucleated before any other glide direction was activated, at which point
entanglement took place. As mentioned earlier, large glass spheres exhibit the

same phenomenon, probably for the same reason.
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Fig. 5.1.11, which presents for elongated glass particles the frequency of the
angle of punching ¢ formed between the axis of the row of loop and the particle
main dimension. Small punching angles are observed more often than large
ones, an observation made for fibers as well, probably for the same reason: when
¢ is small, the loops formed are small since their size is at most that of the
projection of the particle on the plane perpendicular to glide (for a sphere, that
projection is a circle, see Fig. 3.1.2); they thus have a smaller probability of
interaction with loops on adjacent glide cylinders. This argument is developed

in more detail in section 6.1.3.1b.

6.1.3 Fibrous inclusions

Childs and Slifkin (1965) published a micrograph of a 200 pm long
dislocation in silver chloride pinned at many places and bowed due to an
external stress. Our observations of pinned, bowed dislocations close to fibers are
similar (Fig. 5.1.13). The same authors have also published two micrographs of
punched trains of dislocation loops at elongated inclusions in silver chloride. In
both their and our work, trains of prismatic dislocation loops were found to
emanate from the fiber ends. One of their micrographs features loops of
dislocations punched along the inclusion length as well, which we only observed
in very few instances for alumina fibers, more often for the thinner glass fibers.
Relaxation of radial mismatch strains was found in the majority of the fibers to
result in the formation of a cylindrical plastic zone containing tangled
dislocations. This observation is to be expected in view of the fact that unless the
fiber axis is perfectly perpendicular to the glide directions of emitted prismatic
loops, significant interference will result l;»etween emitted dislocations of

differing Burgers vector. Even when the fiber is optimally oriented (as in Fig.
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3.1.3), loops on overlapping glide directions will be able to form sessile products
as in the case of spherical inclusions. '

With short fibers, the peanut-shaped plastic zones we observed (Fig. 5.1.15) are
similar to those predicted by Dutta et al. (1988) using finite element analysis for
an elastic, perfectly plastic matrix. These confirm that the dark unresolved
regions found surrounding the glass spheres and the alumina fibers are indeed

zones of plastically deformed matrix.

6.1.3.1 Punching by fiber ends

. Fiber axi rallel to punching direction

In numerous instances, fibers were found to have punched a row of loops in
the longitudinal directions in a plane parailel to the sample surface (Fig. 5.1.14 &
16); the row was thus in focus over its whole length. We believe that the fibers
which did not exhibit any decorated loops or plastic zone at their tips probably
emitted a row of loops at an angle with respect to the sample surface. If the loops
were emitted toward the surface, they were attracted by it and annihilated; if they
were emitted toward a deeper region of the sample, the limited decoration depth
attainable with silver chloride (30 pym maximum) prevented them from being
decorated and thus observed in the optical microscope. In rare cases, such as Fig.
5.1.17, the angle between the row of loops and the surface is small enough that
part of the train is in focus for a given objective distance. However, we observed
a relatively large number of fibers which exhibited a row of loops at their tip.
This might be due to two factors: (i) the fibers were laid on a quartz plate prior to
being engulfed by the molten halide and mostly conserved their orientation

parallel to the surface and (ii) as reported by Mitchell (1957, 1959), silver chloride
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grown directionally between two quartz plates tends to Nucleate grains whose
{100} planes (and occasionally {111} planes) are within a smalj angle of the plate
surfaces. Since both these planes are glide planes which contain the glide
direction <110>, the rows of loops tend to be parallel to the sample surface and in
focus over long distances.

In most cases, loops could not be counted close to the fiber tip, either because
they could not be resolved or because the decoration was fainter there than at
some distance from the fiber, possibly because of a depletion of the interstitial

silver ions responsible for the decoration due to the high density of dislocations

nucleate more loops on the other side of the boundary. Another interesting
feature was that a minority of the fibers exhibited a row of loops at both of their
ends; when it was the case, they generally were of different length. This suggests

that the fibers with a single row of loops were either relaxed only on the half

of which atomic planes (or delocalized vacancy loops) can glide without
encountering any obstacle. In Practice, the surface of fibers is not perfect and such
loops - if they exist in a localized manner - would need to move by a
combination of climb and glide to travel along the interface. A similar situation

is found for misfitting glass spheres of diameter 1-3 Hm in silver chloride
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(section 6.1.1) which were often observed to punch loops along a single direction,
rather than the 12 necessary for complete relaxation (micrographs published by
Mitchell (1958) and Jones and Mitchell (1958) show the same phenomenon). In
that case too, relaxation can be achieved by motion of the interfacial vacancy
loops left at the interface. It is noteworthy that submicroscopic misfitting particles
were observed to punch in all crystallographic directions. It must also be noted
that while the total number of loops necessary to relax the fiber in Fig. 6.1.1 is the
same, the length of a row of 2n loops will be less than the sum of the length of

the two rows containirg n loops (Eq. 3.3.11).

b. Fiber axis not parallel to punching direction

Fig. 5.1.18 shows an example of a fiber which punched a row of loops at an
angle to its axis. Since prismatic loops can only glide along <110> directions, any
fiber with an axis making an angle 6 with that direction will only be capable of
relaxation by prismatic punching at this angle. The fiber displacement in the
longitudinal directicn for each loop of Burgers vector b punched at an angle 0 is
equal to the projection of the Burgers vector on the direction of the fiber axis, i.e.,
b.cosB. The total number of loops to be punched for a given relaxation is thus
increased by a factor 1/cos@. Since two adjacent glide directions make an angle of
60°, the maximum punching angle is 30°. Punching at an angle can thus
increase the number of loops for a given relaxation by a factor 2/V3 (i.e. 15%) at
.most. For a large number of loops, such a difference will not significantly alter
the punching distance since it is only a weak function if the total number of
loops (Eq. 3.3.11). We counted the frequency of the punching angle € and found
only a few occurences of punching angles larger than 30°. These can be

explained by the early blocking of punching along the direction with the smaller
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angle and the subsequent activation of the less optimal punching direction when
the stress becomes large. The higher proportion of fibers with small 8 (Figs. 5.1.27
and 29) is surprising at first, since the fibers are oriented randomly in a plane
paralle! to the sample surface and the <110> directions are random as well in that
plane (but not in space, since the growth of certain crystallographic planes is
favored as mentioned above). From a purely geometric stand-point, the largest
prismatic loop which can be generated by longitudinal strain mismatch is given
by the projection of the fiber half-length on the plane perpendicular to the glide
direction; the other half-length can contribute to a loop on the other side of the
fiber (Fig. 6.1.2). If the fiber axis and the glide direction are aligned, this
projection is a circular loop of same radius as the fiber. If the angle 8 is non-zero,
the whole fiber half-length can potentially punch elongated loops. The Burgers
vector by of such a loop has a component in both longitudinal and radial
directions of the fiber and thus relaxes mismatch in both directions. However,
there are always two possible glide directions where loops satisfy this condition:
the direction closest to the fiber axis and the adjacent one with Burgers vector bz
(Fig. 6.1.2). While the adjacent one can only contribute little to the longitudinal
relaxation, it can also be activated due to the radial mismatch stresses. If this
happens, entanglement between loops on both glide system is likely to occur in

the intersection volume V (cross-hatched in Fig. 6.1.2) equal to

v=13_r_[_l_- tg(n/6 - 6) [6.1.1]

472 1g(0)

where L and r are the fiber length and radius and the angle 6 is the angle between
the fiber axis and the closest glide direction. For the possible values of 8 from 0

to 1/6, the intersection volume given by Eq. [6.1.1] varies almost linearly between
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0 and L2r/4V6 with 8. Assuming that the interaction probability between two
loops on adjacent glide directions is proportional to the interaction volume,
entanglement will be more likely at high values of 8 and thus rows will be less
likely observed. We believe that this is the reason why rows punched at a large
angle are less numerous, rather than because nucleation is inhibited at higher
angles. Observation of elongated loops such as that visible in Fig. 5.1.19 support
this hypothesis as does the frequent occurrence of a dark zone of unresolved
dislocations along the sides of the fibers. The length of such elongated
dislocations was however observed to be most of the time less than that of the
projection of the fiber half-length. It thus seems that a compromise is reached
where punching occurs along some, but not all, the available length of the fiber.
Figs. 5.1.27 and 28 are to be compared to Fig. 5.1.11 featuring the frequency of
the punching angle for elongated particles. The same general dependence is

found, probably for the same reason as described above.

In most cases, one punching direction is more favorable than others to relax
longitudinal stresses, because it makes the smallest angle with the fiber axis
(direction 1 in Fig. 6.1.2). However, on occasions, fibers have such orientations
with respect to the glide direction that two adjacent glide directions form the
same angle with the fiber axis and both can be activated simultaneously as in Fig.
5.1.20. The axis of the left row of elongated loops is parallel to the image plane
while that ;)f the right row forms an angle: the farthest loop from the tip is
deepest. Since they are not seen edge-on as the loops in the left row, their whole
length can be seen. The projected angle between the two rows is about 757 the
actual angle in space is thus most probably 90° and the two rows are punched
along non-adjacent <110> glide diréctidiis. It is nevertheless a rare occurrence

since in most such cases the loops of each row interact and become entangled.
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Fig. 5.1.21 shows the tip of a fiber which has emitted what seems to be parallel
non-coaxial elongated dislocations. These could be prismatic loops since the
direction perpendicular to their line forms an angle close to 30° with the axis of
the glide cylinder of the particle in the center of the picture (arrow) where two
loops are in focus. The parallel elongated dislocations emanating from the fiber
form a subgrain boundary; close to the fiber, the dislocation lines form an angle
with the image plane and are thus visible as a line in the volume defined by the
depth of field; farther away, the dislocations rotate and take a position
perpendicular to the image plane and are thus visible as points. Whether the
rest of the subgrain boundary is formed by dislocations coming from the same
fiber or the other one in the same picture (out of focus due to its greater depth) is
unclear. Fig. 5.1.21 clearly demonstrates, however, that dislocations generated by
fibers can rearrange themselves to form subgrain boundaries; such boundaries
have been observed in many other instances at the outside of the dark decorated

plastic zone surrounding fibers.

¢. Punching of pairs of rows

In numerous cases, we observed a pair of coaxial rows located on either side of
a fiber as illustrated by Fig. 5.1.22. Such pairs of rows were only found at tiie ends
of fibers and the far side of the elongated dislocations were always emanating
from the fiber tip. The outward row was completely separated from the fiber and
longer than the inward row, the dislocations of which were always connected to
the fiber. The inward row is clearly different from the plastic zone of tangled
dislocations usually found along the sides of fibers, visible at some distance of
the tip of the large fiber in Fig. 5.i.22. While.;it' is quite safe to assume that the

outward row is not different from the ones described in the previous section, the
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nature of the inward row is less clear. Assuming that they are prismatic, these
dislocations are unlikely to be interstitial since their number is too high to be
generated by radial misfit (see Eq. [6.2.9]) and since the orientation of their
Burgers vector is less favorable than other glide directions with a Burgers vector
closer to the radial direction. Also, if that row was produced by radial misfit, it
would occur at other places along the fiber also, rather than exclusively at its tip.
We propose the hypothesis, explained in more detail in what follows, that the
inward row is constituted of vacancy loops formed at the same time as the
interstitial loops of the outward row.

Every time a prismatic interstitial loop is created at the interface of a misfitting
particle, a vacancy loop of same size is formed by ccnservation of matter. In
most cases, this vacancy loop is not further considered because it is absorbed at
the interface, i.e. the volume of the vacancy loop is replaced by the same volume
of the expanding inclusion. Fig. 6.1.1 is a schematic example of such a process:
the vacancy loop lines are shown at the interface but their volume has been
taken by the expansion of the relaxing fiber. These loops actually lose their
identity and the half planes marking their location are not different from the
other half planes ending at the interface. If, however, the prismatic interstitial
loop formed is larger than the volume taken by the misfitting inclusion, a-
vacancy loop can be formed from the difference of the volume of the interstitial
loop and that of the expansion of the inclusion. This basically amounts to the
creation of a pair of vacancy and interstitial loops in a strained lattice, where part
of the vacancy loop has been absorbed by the expanding inclusion. Unless the
loops are not free to glide, such a pair is unstable and will annihilate. If, on the
other hand, the loops are created on either side of an obstacle, such as an
inclusion, which blocks their motion, it .will" ‘prevent their recombination.

When further pairs are formed on each side of the inclusion, loops in the
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respective rows will repel each other while loops from different rows will attract
each other. Due to the rapid decay of the elastic fields of prismatic loops, the
attractive effect is in most cases small compared to the repulsion between loops
of same Burgers vector as calculated in the case of circular loops (see section 3.3
and Fig. 3.3.9). It is thus not possible in the case of interest to differentiate
experimentally (by measuring the row length) between the lengths of two
interstitial rows and that of a pair of interstitial and vacancy.

While the limited resolution available in silver chloride allows to draw few
conclusions concerning the nucleation of such interstitial and vacancy loops, it is
noteworthy that the configuration proposed above would indeed relax the
longitudinal - and to some extend the radial - mismatch between the fiber and
the matrix. The two-dimensional Fig. 6.1.3 illustrates that point, showing the
atomic planes before and after the creation of the pair of loops. While the atomic
spacing is widely exaggerated for clarity, it is clear that the vacancy loop induces
some relaxation at the tip of the fiber, as does the presence of the interstitial loop
on the other side of the tip. It is also apparent by observing shear strains in Fig.
6.1.3 that the vacancy loops will tend to stay at the point of maximum atomic

plane disregistry, i.e. close to the fiber tip, as observed experimentally.

6.1.3.2 Punching by fiber sides

Fig. 5.1.23 shows a fiber A which punched loops at both its tips at a low angle.
The shorter fiber B also punched loops at its tips, as well as longer dislocations
along its sides, thus lending credence to the hypothesis that these are elongated
prismatic loops punched according to the simple model shown in Fig. 6.1.2. One
woil_ld therefore expect that the total emitted dislocation length in the plastic

zone surrounding the fibers is estimated with reasonable accuracy as that
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resulting from elongated punched prismatic loops (Eq. [3.1.9a]). The sides of fiber
A are surrounded by a dark plastic zone formed of dislocations which probably
became entangled before they could glide away from the interface, as was the case
with fiber B. Fiber C also has elongated dislocations on its sides (some of which
can be resolved) forming a dense plastic zone. It can be deduced from the angle
of 90° between the glide directions in this particular subgrain that the image
plane is parallel to a {100} plane. Fig. 5.1.24 shows a similar situation in which
elongated loops seem to have emanated from the tip of the fiber. This is to be
expected due to the stress concentration at the sharp corner of the chopped fibers.

Based on these observations, a hypothesis can be advanced for the formation of
elongated loops along the sides of fibers. We propose to extend to a cylindrical
inclusion the model presented by Ashby and Johnson (1969) whereby a shear
loop nucleates at the surface of a sphere and produces a prismatic loop by cross-
slip of its screw component. Fig. 6.1.4 shows such a shear loop nucleated at a
region of stress concentration such as the fiber tip or surface roughness. The fiber
axis is assumed to be parallel to a <111> direction. While the edge component of
the shear loop glides radially away from the fiber due to the stress field, the screw
components of the loop cross slip along the sides of the fiber, "unzipping"” in the
process a long prismatic loop. The movement stops when the end of the fiber is
reached or when the screw components are blocked by obstacles. Another
possibility is represented in Fig. 6.1.5 where a long shear loop is nucleated so that
its edge portion is parallel to the fiber axis. The screw components glide and
.annihilate to form a prismatic loop. Both Fig. 5.1.24 and 25 (as well as many
others not included in this thesis) show dislocation structures which can be
explained by these simple models. In these figﬁres, dislocations are visible with
one end still attached to the fiber whxle -the'- other has glided away from it.

Elongated dislocations were however only observed along fibers with the
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smallest diameter; for fiber diameters larger than about 2 um, the dislocations
were without exception entangled and formed a dense plastic zone such as that
visible in Fig. 5.1.26. This is presumably the case because more dislocations are
necessary to relax the radial stresses and the glide system intersection volumes
are greater, both leading to entanglement. Both above models are very
simplified since they do not consider such situations as surface roughness,
interaction with other dislocations on adjacent glide cylinders and obstacles in
the matrix, etc.. Energy calculations such as that performed by Ashby and
Johnson (1969) predicting the range of misfit and radii for which spheres
nucleate prismatic dislocations, are more difficult to perform in the case of the
misfitting cylinder since a complete solution of the elastic stress field taking into
account the effect of the fiber tip and the stress concentration at the edge is
exceedingly complex. Also, the problem is complicated by the effect of the
orientation relationship between the fiber and the slip directions. In the extreme
case of an infinite cylinder with no longitudinal stresses, the model presented
above is not possible since the shear stresses Tzx and tzy (according to the
coordinate system of Figs. 6.1.4 and 5) are zero and therefore the shear loop
cannot grow in the plane perpendicular to the z-direction. If however the fiber
axis is not perpendicular to the dislocation Burgers vector, these shear stresses
are non-zero and, depending on their magnitude, might be sufficient to nucleate
a shear loop which transforms into a prismatic loop according to the simple
geometric model of Figs. 6.1.4 and 5. This is true as well for a fiber of finite
length with longitudinal stresses.

Another interesting feature visible in Figs. 5.1.25 and 26 and observed in many
cases is that the dislocations are pinned and bowed away from the fiber, probably
because of residual elastic stresses near the fiber. The radius of curvature of the

dislocations, which is inversely proportional to the stress on the dislocation (Eq.

175



[5.1.2]), increases with increasing distance from the fiber, in accord vrith the above

interpretation.

6.2 Dislocation micromechanics

This section is devoted to the comparison and discussion of the data and the
theoretical models developed in chapter 3. As in the previous section, we

consider in turn microspheres, irregular particles and fibers.

6.2.1 Spherical inclusions
6.2.1.1 Determination of AT

Each punched-out prismatic loop of Burgers vector b emitted by a sphere
of diameter ds relaxes the thermal mismatch in the direction of emission of the

loops by a strain g) approximated by:

b
e1=a; J [6.2.1]

assuming that the emitted loop has the same diameter as the sphere (as observed
experimentally) and neglecting strains in the direction where no loops are
emitted. The total mismatch strain €y between sphere and matrix is given by Eq.
3.1.2. Assuming that this mismatch is completely relaxed along one direction by
punching of coaxial prismatic loops, the total number of loops ns is equal to

ng = %:l : [622]
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Inserting Egs. [3.1.2] and [6.2.1] into [6.2.2] yieids

n;b

AT = .
dy, A [623]

The right hand side of Eq. [6.2.3] would be divided by a factor 2 if it were
assumed that loops can be punched out along all twelve {110} directions as
described by Hull and Bacon (1984). Fig. 5.1.5 shows the measured number of
loops ngas a function of sphere diameter. The only spheres considered were
those that did not exhibit any tangled dislocations between the row of loops and
the sphere/matrix interface in the glide cylinder direction, i.e. for cases where
relaxation took place solely by prismatic loop punching. The best fit line passing
through the origin gives a value of 100 K for AT using Eq. [6.2.3]; lines
corresponding to AT values of 70 K and 130 K are also shcwn on the same figure.
While there is considerable scatter in the data, it can be safely assumed that the
value of AT is 100 = 30 K. This translates into an absolute temperature for the
onset of slip T of 400 + 30 K or an homologuous temperature T¢/Tm of 0.55
0.04, a result in good agreement with the value of 0.50 for sodium chloride given
by Frost and Ashby (1982) for the transition from power law-creep to plasticity at
the strain rate corresponding to the rate of mismatch due to the experimental
cooling rate of 1 K/s . Since sodium chloride and silver chloride are in the same
isomechanical group, the homologuous temperature of transition from one
deformation mechanism to another is expected to be the same. A calculation
based on atomic diffusion from the inclusion to the surface (Appendix 6)
supports this conclusion. The scatter in Fig. 5.1.5 might be due to loops which
disappeared due to combination with point defects produced during quenching,
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unresolved loops not counted, superimposed macroscopic stresses, incompletely
relieved stresses by the sphere, varying loop diameter, etc.. Most of these factors

indicate that AT is probably somewhat above 100 K.

6.2.1.2 Plastic zone size

For the case of spherical plastic zones around particles, the plastic zone radius cs
is plotted in Fig. 5.1.6 as a function of sphere radius rs. As predicted by Eq. [3.1.6b],
there is a linear relationship between the radius of the sphere and the radius of
the plastic zone. Using values for silver chloride listed in Table 3.1 and a value
of 3 106 [K-1] for the CTE of glass, Eq. [3.1.6b] yields an unreasonably low value of
18 K for AT compared to the previously determined value of 100 K.
Alternatively, for AT=100 K, Eq. [3.1.6b] yields a value of 5.7 MPa for oy which
corresponds to the stress value measured in simple tension on silver chloride by
Carnahan et al. (1961) at a strain of 2.1 - 10-4, which is equivalent to ey with
AT=100 K (Eq. [3.1.2]). Their measurements were made on annealed samples
which all showed significant work hardening (ultimate tensile strength more
than ten times higher than the microyield stress of 1 MPa measured by
Sprackling (1966)), independently of the grain size. Eq. [3.1.12b], on the other
hand, gives very good agreement with the data points for values of AT=100 K
and A =0.6. Eq. [3.1.12b] is plotted in Fig. 5.1.6 for these values as well as for
values of A equal to 0.3 and 0.9. For comparison, Eq. [3.1.6b] is also 'plotted in the
same figure with AT=100 K and oy =2 tyo = 1 MPa.

-6.2.2 Particulate Inclusions
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Fig. 5.1.12 displays the experimental measurements as well as the solution of
Eq. [3.1.12b] , using the physical properties of silver chloride listed in Table 3.1, a
value of 5.8:10-6 [K-1] for the CTE of the glass (American Ceramic Society 1988)
and values of AT=100 K and A=0.6, as determined for spheres (see section 6.2.1.1).
The small temperature interval of 100 K allows to ignore the temperature
dependence of the mechanical and physical properties used in the calculation.
Observation and theory match very well over the whole range of radii,
corresponding to a volume range spanning more than two orders of magnitude.
This confirms the validity of the simple geometrical model considering strain
hardening developed above. Also plotted in the same figure is the result of Eq.
[3.1.6b] which assumes a non strain-hardening matrix. As for spheres, this model
clearly does not match the data, even taking into account the experimental error
estimated above. The data also prove the assumption - made implicitly by many
investigators - that irregularly shaped particles, as they occur in most MMCs, can
be treated as equivalent spherical particles of same volume. While the shape of
the plastic zone is irregular and cannot be predicted (see Fig. 5.1.9), its volume is
very well described by the volume of a spherical plastic zone resulting around a

sphere of identical volume in a work-hardening matrix.

6.2.3 Fibrous Inclusions

6.2.3.1 Flow stress of the dislocations

Mitchell (1958) decorated dislocations in silver chloride under load which were
formed by an indenter and also observed bowed dislocations pinned at their
ends, as did Childs and Slifkin (1965). Careful examination of long dislocations

in the plastic zone surrounding fibers in this investigation reveals that, in
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several areas, the dislocations were similarly pinned and bowed due to the local
stress field (Fig. 5.1.13). Since they were in the vast majority of cases found to be
bowed away from the fiber on both of its sides, the stress to- which they were
subjected can be assumed to emanate from the fiber, rather than from some
unknown extraneous source. This local elastic stress is unable to move these
particular dislocations any further and is therefore lower than the local yield
stress in shear of the matrix. Brown and Stobbs (1971) also observed around
submicroscopic silica particles in deformed copper that the dislocations in the
plastic zone had high curvature compatible with an increased local flow stress.
The stresses for pinned bowed dislocations such as the ones visible in Fig. 5.1.13
are calculated using Egs. [5.1.1] and [5.1.2] and plotted in Fig. 5.1.29. It is found
that the local stress within the plastic region is independent of the distance from
the fiber and varies between 0.6 MPa and 1.45 MPa. The lower bound is in good
agreement with a value of 0.5 MPa for the microyield shear stress of pure silver
chloride measured at room temperature by other investigators (Sprackling 1966,
Haasen and Skrotsky 1981). Haasen and Skrotsky (1981) also found that the
presence of 300 and 500 ppm of calcium chloride in the matrix hardly changed
the value of the critical resolved shear stress. This indicates that the 500 ppm of
cuprous chloride present in the sample used in this investigation should have
very little effect on the yield stress of silver chloride, especially since the
monovalent cuprous ions are expected to interfere less with dislocations than
the divalent calcium ions investigated by Haasen and Skrotsky (1981). In a
matrix showing no strain-hardening, one would expect the stress in the plastic
zone to be constant and equal to the microyield stress, i.e. around 0.5 MPa. The
data shown in Fig. 5.1.29 thus indicate that the matrix is strain hardened, as
found by many authors with silver chloride in tension (Stepanow 1934 & 1935,

Axilrod and Lamb 1948, Haasen and Skrotski 1981). The choice of a model taking
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into account the strain-hardening of the matrix (Eq. [3.1.12]) is thus further
justified.

.2 Plasti ne si

The radius of the plastic zone around fibers was measured for 45 alumina fibers
of aspect ratio larger than 20, in cases where the plastic zone was a cylinder with a
constant radius. For the fibers used in this investigation, which have a radius of
1.5 um, the mean radius of the plastic zone was measured as 10.2 pm, with a
standard deviation of 2.7 um. Using Eq. [3.1.12a] with the previously determined.
values of AT=100 K and A=0.6, we calculate a plastic zone radius c¢ equal to 6.2
um . Egs. [3.1.7] and [3.1.10a] predict a value of 2 MPa for the value of the yield
stress in shear within the plastic zone. As expected, ail measured stress values
are below this value (Fig. 5.1.29). Changing the parameters AT and A by a factor
30% (i.e. 130 K and 0.42 respectively), yields a value of 7.6 um for c¢, within the
interval of confidence of measured values. The yield stress in shear of the strain
hardened matrix becomes 1.4 MPa, equal to the maximum value measured
experimentally (Fig.5.1.29), as should be the case. The discrepancy of 30% with
the values determined for the spheres can be explained by the fact that Eq.
[3.1.12a] does not take into account the contribution of the axial mismatch to the
radial plastic zone, since the model was developed for an infinitely long fiber.
An alternate explanation can be found in the observation that subgrain
boundaries were generally found to exist at the interface separating the plastic
zone from the unstrained matrix around fibers. A smaller plastic zone size
should result due to the locally enhanced dislocation density at these subgrain
boundaries within the plastic zone. Eq. [3.1.651 yields a value of 17.4 um for ¢,

far in excess of the range of measured values.
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From the above results, it appears that Egs. [3.1.12] which take into account
strain-hardening of the matrix fit well the experimental data for spherical,
irregularly shaped and cylindrical inclusions, while Egs. [3.1.6] which assume a
perfectly plastic matrix fail to do so. We conclude that strain-hardening must be
taken into account in modelling matrix plastic deformation around
reinforcements in MMCs, and that with reinforcement volume fractions below
the values given by Egs. [3.1.16], Egs. [3.1.12] should yield un adequate estimation
of plastic zone size in a coarse-grained, single-phase matrix. As shown in Fig.
3.1.4, dislocations punched by the reinforcing phase should have a significant
effect on the size of the plastic zone in pure aluminium. It must however be
kept in mind that this effect will become less pronounced with larger values of
Tyo typical of alloys. Furthermore, the simple calculation presented above loses
its validity when other obstacles (grain and subgrain boundaries, second phases
and other reinforcements) also impede dislocation motion in the vicinity of the

reinforcement.

6.2.3.3 Punching distance

The length of the rows of loops and that of the glass fiber from which they were
punched were measured on micrographs and plotted against each other in Figs.
5.1.30 and 5.1.31. As calculated in section 5.1.3, the maximum deviation for fibers
punching at an angle in the number of loops n is about 15%, which translates in
a smaller deviation in the length of the row L;, since Lyis a weak function of n
(Eq. [3.3.11]). All data points, independent of the punching angle, were thus
included in Figs. 5.1.30 and 5.1.31. The predictions of Taya and Mori's model
(Egs. [1] and [2], App. 5) are plotted in Figs. 5.1.30 only, since their model is only
applicable to fibers punching loops at both their tips. Predictions of the model
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presented in the theoretical section (Eqs. [3.4.23] and [3.3.11]) are also plotted in
Figs. 5.1.30 and 5.1.31. The fiber elastic modulus for glass was taken as 85 GPa
(manufacturers informatior), its Poisson's ratio as 0.22 (Kelly and Macmillan,
1986b) and its CTE as 6.5 10-6 K1 (manufacturers information). For the matrix,
the Poisscn’s ratio and Burgers vector listed in Table 3.1 were used, as well as a
value of 5.5 GPa for the shear modulus calcuiated from elastic constants for the
[110] direction. A range cf fiber diameter values corresponding to that of the
glass iibers used in this study are used to generate the curves in Figs. 5.1.30 and
5.1.31, as weil as values of the friction stress of 0.5 MPa and 0.25 MPa. The higher
value corresponds to the microyield stress i shear of silver chloride as
measured by Sprackling (1966) as well as Hazsen and Skrotsky (1981), and is
thererefore likely to represent an upper bound for the actual value of the lattice
friction stress. The lower value of 0.25 MPa is thus chosen to illustrate the effect
of a smaliler friction stress on the shape and location of the theoretically derived
curves.

Eq. [3.4.23] was derived for fibers which had punched a row of loops at both
their ends (Fig. 6.1.1b). For fibers punching at only one end, we assumed that the
whole interface became relaxed as in Fig. 6.1.1c. The number of loops can then be
calculated from Eq. [3.4.23], using a corrected fiber length equal to twice the actual
fiber length. We thus assume that the number of loops produced by a fiber of
length L, with only one punching end, is the same as that produced by an
equivalent fiber of length 2L punching at both its ends, since in both cases the
fiber length being relaxed by a row is the same. This assumption is not entirely
correct since, as shown schematically ir Fig. 6.1.1c, a stress is exerted by the matrix
on the fiber end having not punched, in order to equilibrate the net force

produced by the assymeti'ical distribution of interfacial shear stress. For the
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curves shown in Figs. 5.1.31, we assumed that this effect was small and we
inserted twice the measured fiber length in Eq. [3.4.23].

The quantitative correlation between our model and the data shown in Figs.
5.1.30 and 31 is satisfactory, with data points both above and below the
theoretically predicted range. As mentioned above, the lower data points can be
explained by the blocking of rows of loops by obstacles not visible in the
microscope such as undecorated dislocations or submicroscopic inclusions. This
effect should become stronger the longer the row, because of the higher
probability of encountering an obstacle. Extraneous long-range stresses might
also induce scatter in the data points, both elongating and shortening the
measured row length. Finally, an effect which might systematically increase the
row length is the electrostatic repulsion between charged loops. As discussed in
greater details in the next paragraph, this is not expected to induce forces larger
than the elastic repulsion on which Eq. 3.3.11 is based and thus can probably be
negiected. If however the first few loops of the train are charged to the
maximum possible extent, this effect might produce an increase of row length by
typically 1 to 10 um. Given the experimental errors in the measurements cited
above as well as the uncertainties connected with some of the physical constants
used in the model (the lattice friction stress, the critical interfacial shear stress
assumed to be equal to the lattice friction stress, and the temperature excursion of
100 K which has an experimental error of typically 30 K) and the simplifying
assumptions made in the model presented in section 3.4 (perfect dislocation
-nucleation, cylindrica! inclusion with smooth surface, etc.), we feel that the
agreement between the data and our model is satisfactory. For a value of the
friction stress of 0.5 MPa, Taya and Mori's model fits the higher range of
experimental data, while our model fits best the lower range. For a value of the

friction stress of 0.25 MPa, Taya and Mori's model predictions tend to be too high,
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but our model is still within the range of the data. Both models are quite
sensitive to the value of the friction stress for which a factor 2 in uncertainty can
be reasonably assumed. The small aspect ratios of the fibers investigated does not
allow observation of fibers larger than the critical aspect ratio at which Taya and
Mori's model predicts suppression of punching and thus quantitatively and
qualitatively disagrees with the predictions of our model. While our model
predicts a maximum value of the punching distance for fibers of infinite aspect
ratios, Taya and Mori's curves in Figs. 5.1.30 reach a maximum and drop to zero
for a critical aspect ratio which has a value of 265 for Fig. 5.1.30a and 550 for Fig.
5.1.30b. It would be very difficult to generate experimental data in silver chloride
for such high fiber aspect ratio. While this critical aspect ratio is large for silver
chloride, it must be noted that it is significantly smaller for matrix materials with
higher elastic modulus and friction stress, e.g., about 28 for the system
aluminum/silicon carbide submitted to a temperature excursion of 200 K.

It was shown in section 3.4.4 that the fiber residual stress is unlikely to induce
major perturbations in the loop row length. We now turn our attention to the
electrostatic charging of dislocations in AgCl as another possible cause for the
perturbation of loop elastic equilibrium. In what follows, we make a rough
approximation of the repulsive electrostatic force between punched prismatic
loops. This force must be added to the elastic repulsive force existing between the
loops (Eq. [3.3.3]).

Edge dislocations in ionics carry a net charge due to an excess of charged jogs of
one sign formed by the absorption by the dislocation line of point defects
(Sprackling 1976). At equilibrium, the electroneutrality is preserved because a
sheath of point defacts of the other sign surrounds the dislocation (Pratt 1958). A
fast moving dislocation may however display a net long range charge if it breaks

away from the cloud of compensating point defects (Brown 1961). The line
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charge density of edge dislocation in NaCl has been measured by many
investigators as 1012 to 4 10-11 C/m (Sprackling, 1976). No such information is
available for AgCl; a rough estimation of the line charge can be made by
assuming that it is proportional to the cubic root of the equilibrium defect
concentration. The ratio of the defect concentration at 300 K in AgCl to that in
NaCl is 4250 (Kittel, 1983), the cubic root of which is 16, leading to a dislocation
line density for AgCl in the range of 2 10-11 to 8 1010 C/m. Another significant
difference between NaCl and AgCl is the nature of the predominant point
defects: Schottky-type for NaCl and Frenkel-type for AgCl. Defect mobility is also
much higher in AgCl at a given temperature.

Assume that the charges on a loop are spread equally aleng its circumference.
This is an acceptable assumption since the typical distance between two loops is
significantly larger than the distance A between two jogs of charge e/2 on a loop,

given by
A=e/2pq, 6.24]

where pq is the line charge density. This yields a value for A in the range of 0.1 to
4 nm. The lower value, corresponding to a line density of 8 10-10 C/m, is clearly
unreasonable since it is less than the interatomic distance in AgCl. We will thus
assume an upper value of 10-10 C/m for the line density.

The force Fg between the two charged loops separated by a distance x is found by
Coulomb's law:

Fq=kq?/x2, [625]

where k=9 109 Nm2/C2 and q is the total charge carried by one loop or radius r:
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q=2Rrpq- [6:2.6]
The force Fq exerts a shear stress 1q on a loop
tq=Fq/b21r. [6.2.7]

inserting Egs. [6.2.5] and [6.2.6] into [6.2.7] and solving for x yields
x=p 2nrk
q'\/ br, [6.2.8]

Inserting tq = Ty yields the critical distance xc above which the electrostatic

repulsive force does not induce glide between two isolated loops, if their elastic
interaction is neglected. Taking a value of Ty = 0.5 MPa, r = 1.5 um, Eq. [6.2.8]
yields a value for xc equal to 2 um for the upper bound value of 10-10 C/m
estimated above. This is to be compared to the critical equilibrium distance of 1-2
um between two uncharged loops. It thus seems that electrostatic interactions
might have a measurable effect on the equilibrium position of closely spaced
loops, if their line density is at equilibrium with the defect population in the
crystal.

The above estimation is clearly an upper bound value since it was assumed
that each loop carries an equilibrium charge. In our experiments however, the
loops are punched and glide rapidly to their equilibrium position, typically in the
100 seconds necessary to cool the samples. It is therefore possible that the first
few punched loops sweep out the defects as they move on their glide cylinder,
resulting in a charging. Since all the loops. of the train glide on the same

cylinder, they encounter fewer and fewer defects as the number of their
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predecessors increases. In the time considered, the typical diffusion distance as
estimated by (Dt)1/2 is in the order of 30 nm. The total number of defects on a
glide cyluder of length 20 pm, radius 1 pm and "wall thickness" 60 nm at 300 X
is thus about 1000. If all these defects are swept by the first loop gliding on the
cylinder, they induce a line charge on the order of 10-11 C/m, depleting
completely the diffusion volume and thus preventing the charging of the
subsequent loops. If the defects are equally incorporated by the 100 loops of a
train of that length, the line charge is 100 times less and has a negligible effect on
the equilibrium spacing of the loops (Eq. [6.2.8]).

It can be concluded from the semi-quantitative afgument presented above that
a row of loops which is at thermal equilibrium with the lattice before it glides
might be influenced by electrostatic forces if the loops break away from their
atmosphere of defects of opposite sign. On the other hand, if the loops move
immediately after they have been nucleated as it is the case in our experiments,
the diffusion kinetics are not rapid enough to charge them significantly, and the
electrostatic forces will be insignificant compared to the elastic repulsion between
the loops. At the most, the first few loops of the train might become charged and

their spacing might be larger than that predicted by elastic interactions only.

6.2.3.4 Number of side-punched dislocations

Considering only radial stresses, the number of elongated prismatic
dislocations punched by the sides of the fiber can be predicted using the simple
geometric model of Fig. 6.1.2. The prismatic dislocations are assumed to nucleate
on the fiber surface where the resolved shear stress is maximal, resulting in a
dislocation height of d/V2, where d is the fiber diameter. The thickness of the

region of fiber that the dislocation relaxes thus varies between d/V2 at the

188



nucleation point and d at the fiber diameter. Assuming that the mismatch strain
AaAT is totally relaxed by the emission of n loops of Burgers vector b forming an

angle 6 with the fiber radial direction yields

ngAaATdh'f
b cosO

[629]

The maximum number of loops nmax is reached for the maximum angle 6 =
30" (as discussed above) and by replacing the factor V2 by 1 in Eq. [6.2.9], i.e.,
considering the maximum mismatch of the fiber at its largest dimension. Using
the materials values listed in Table 3.1 for the fiber and the matrix as well as the
value of AT = 100 K determined for spherical inclusions in section 6.2.1.1, we find
a value of 7.1 for the ratio ng,ax/d. The resulting line is plotted in Fig. 5.1.32,
together with those corresponding to AT=130 K and AT=70K, the upper and
lower bond determined in section 6.2.1.1 and Fig. 5.1.5. The experimental values
of the maximum number of side dislocations are plotted in the same figure. The
average number was usually smaller by 25% to 50%. The experimental points fall
on or below the upper bound calculated above, as expected if the simple
geometric model presented above (Fig. 6.1.2) is correct. In most cases,
dislocations were tangled in a plastic zone around the fiber (Fig. 5.1.26) and could
only be partially resolved; they were thus not used as data. Fig. 5.1.25 shows an
example where the side dislocations can be resolved and counted because they
glided a considerable distance from the fiber. A small dark zone is still visible

around the fiber and might be due to dislocations emitted along other directions.

" 6.3 Photoelasticity
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Fig. 5.2.1 shows two grains in which long glass fibers are embedded. One of the
grains deformed plastically and exhibits slip glide bands. The angle of 45°
between the slip bands and the fibers indicates that a slip system was close to the
plane of maximal resolved shear stress. The other grain does not show any glide
band, probably because its crystallographic orientation is such that the critical
resolved shear stress is not exceeded. The coexistence of slipped and unslipped
grains is typical of a sample only slightly deformed; when samples were
deformed extensively under the microscope, slip bands were seen travelling
through the whole sample, changing orientation from grain to grain. Such
widespread movement is only observable when the glide plane is close to
parallel to the sample surface: otherwise glide packets hit quickly the surface and
form a step there, visible as a wavy slip line.

Fig. 5.2.2 to 5 show stress concentration at the end of fibers. While the samples
were not decorated and dislocations were thus not cbservable, it can be
reasonably expected that the fibers of small diameters were relaxed through
emission of punched loops as reported in the previous sections. The
photoelastic contrast visible in these figures thus suggests that some residual
stresses are present even after relaxation of the matrix by slip, as described in
more detail in section 3.4.4. Fig. 5.2.3 is particularly illustrative of the advantage
of using silver chloride rather than polymers to simulate the stress state at the tip |
of mismatching fibers in metals. First, slip most probably occured, thus
duplicating the situation found in MMCs; since polymers do not deform
-plastically by slip, stress information collected on fiber reinforced polymers is
only applicable to metals in the purely elastic state which is, as calculations above
have shown, only found with very short fibers. Second, the two fibers of Fig.
5.2.3 induced a different stress concentration in the matrix: the matrix at the tip

of the short fiber exhibits a symmetric state field with lobes typical of stress
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concentrations cue to a discontinuity. The long fiber in the same figure, on the
other hand, induced a non-symmetric stress field in the matrix. We believe that
this difference is due to the different orientation of the two fibers with respect to
the crystallographic orientation of the matrix: the short fiber is probably aligned
with a main crystallographic direction and thus induces a symmetric stress
pattern similar to these observed in armorphous polymers. The long fiber on the
other hand is not well aligned and thus has a more complicated and diffuse
stress field. The orientation dependence of the elastic moduli typical of
crystalline materials cannot be duplicated in an amorphous polymer.

Fig. 5.2.4 is another good example of the stress concentration at the end of
fibers. Of particular interest in this micrograph is the offset between the axis of
the fiber and that of the stress concentration region. We believe that it is an
expression of the same phenomena described above, i.e., the misalignment
between the crystallographic direction and the fiber axis. The same is true for the
punching of loops as described in section 6.1.3.1. Fig. 5.2.5 shows the stress
concentration at the corners of the fibers; while purely qualitative in nature, this
result illustrates the fact that significant disturbances in the stress field are
introduced close to the fiber tip, but not far away from it, as calculations above
show. It can be argued that since such stress concentrations are only limited to
the immediate vicinity of the fiber, they have only a limited effect on the overall
elastic stress field of the composite and that fibers can thus be treated as a good
approximation as an ellipsoid as in the model of Taya and Mori (1987). We feel
however that the effect of corners and cuspidal points on plasticity will be much
more important since such stress concentrators can very easily nucleate
dislocations as shown in previous paragraphs. The ellipsoid approximation will
most likely yield a poor approximation of the fiber from the point of view of

plasticity, as it does for dislocation emission by long fibers.
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Figure 6.1.1 Schematics of a mismatching fiber in a crystalline matrix
deforming by slip. (a) fiber under compression and deformed atomic plane in
tension before slip (exaggerated deflections for illustrative purpose). (b) emission
of two rows of interstitial loops at both fiber ends and relaxation of the interface.
Two atomic planes have been added at each ends of the fiber; they can be
considered as delocalized vacancy loops at the interface. (c) emission of a single
row of interstitial loops at one end of the fiber and relaxation of the whole
interface. The fiber is translated since atomic planes were added cnly at one end.
Force equilibrium dictates that the matrix push against the fiber end which did
not punch loops.
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-Figure 6.1.2 Schematic of fiber punching elongated dislocation loops along the
six directions <110>. Cross-hatched volume correspond to interaction vclume

between two adjacent glide systems.
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Figure 6.1.3 Schematic drawing proposed as an explanation for the structure
of Fig. 5.1.22. Dotted lines : atomic plane stressed by a mismatching fiber before
relaxation. Full lines : atomic planes after creation of a pair of prismatic
interstitial and vacancy loops on either side of tiie fiber. The interstitial loop
glides away from the fiber while the vacancy loop stays attached to the fiber for
maximum relaxation of the interface. Atomic plane deflections are exaggerated
for clarity. '
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Figure 6.14 Proposed mechanism of nucleation of prismatic loops to explain
structure in Fig. 5.1.24 and 25. Three stages are shown : (a) formation of a shear
loop at fiber end of irregularity, (b) cross-slip of screw segment and (c) fully

formed prismatic loop.
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“Figure 6.1.5  Variation of Fig. 6.1.4, with formation of the shear loop on

another glide plane.
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Z. CONCLUSIONS

1. Plasticity is induced by thermal mismatch between a matrix of silver chloride
and inclusions of different shapes, simulating metal matrix composites: glass
microspheres 1 to 5 um in diameter, glass particles in the same dimension range
and glass or alumina fibers 1 to 3 pm in diameter. The resuliing dislocations are
decorated by photodissociation of the matrix and observed by transmission
optical microscopy. This experimental technique has a lower resolution than
electron microscopy but presents great advantages for the observation of
dislocations around large inclusions, since the whole matrix can be observed.

2. Two main plastic zone morphologies are observed: tangled dislocations
forming a sheath around the inclusion and rows of punched prismatic
dislocations emanating from the inclusion. Similar observations around
equiaxed particles more than three orders of magnitude smaller in volume have
been made by TEM. However, the very large volume of the plastic zone around
the supramicroscopic inclusions investigated in this thesis leads to more
frequent entanglement of punched dislocations. Also, the shape of the plastic
zone does not usually follow that of the inclusion. Thus, the wealth of
knowledge on submicroscopic particles in metals cannot be systematically
applied to metal matrix composites.

3. From the number of prismatic loops punched by microspheres, the highest
temperature at which slip is operative is found to be 400 + 30 K. The maximum
number of elongated loops punched radially by fibers is found to match this
result as well.

4. Measurements of the radius of curvature of pinned dislocations in the

tangled plastic zone show that the matrix is locally strain-hardened. A simple
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model to predict the size of this plastic zone around spherical and cylindrical
inclusions in a strain-hardening matrix is developed and found to match well
the experimental data around microspheres, fibers and particles of irregular
shapes.

5. A model predicting the number of loops punched longitudinally by a fiber is
presented. Adapting the shear lag model to the case of a partially plastic
interface, the model predicts that there is a critical fiber length above which a
region in the middle of the fiber is strained to the point that it does not show any
mismatch with the matrix anymore and thus does not contribute to punching of
loops at fiber ends. The length of the loop row is then calculated using a
numerical solution after estimating the effect of the residual elastic field from
the fiber on the row length. The predicted row length as a function of the fiber
length matches the data satisfactorily, as does another model proposed by Taya
and Mori (1987). The model presented above predicts, however, that very long
fibers will punch loops, in disagreement with the model of Taya and Mori (1987).

6. Observations are reported for the case where the glide direction of punched
loops and the fiber axis do not coincide. In certain cases, two rows of loops are
punched by the fiber tip in opposite directions. This structure is interpreted in

terms of loops of opposite Burgers vectors.

198



8. SUGGESTIONS FOR FUTURE WORK

8.1 Decoration experiments

1. Larger decoration depth could be reached by using a pulsed electric field
synchronized with actinic light flashes as described in section 4.2. This would
open the possibility for the use of larger diameter fibers in the range above 10 um
in diameter and above.

2. The interaction between dislocations emanating from different inclusions
could be systematically studied in order to gain a better understanding of the
situation at high volume fraction. This could be done with one type of
reinforcement or two different types such as fibers and particles, representative of
hybrid composites.

3. The influence of the friction stress and yield stress on the extent of the plastic
zone and the rows of loops could be investigated by alloying the matrix with
other salts such as silver bromide or sodium chloride.

4. The influence of thermal cycling on the size of the plastic zone could be
investigated. Questions such as whether the thermally induced dislocations can
reversibly disappear upon heating or whether they are irreversibly blocked due
to entanglement could be addressed.

5. The influence of grain boundaries on the plastic zone could be examined:
most of the work reported in this thesis was done on samples with large grains
and dislocation interactions with grain boundaries were absent.

6. This thesis as well as the above suggestions pertain to thermal stresses; all
the questions addressed for that particular type of deformation could be asked
anew in the case of small mechanical deformations, either unique or repeated.

New parameters, such as Poissons ratio difference and generalized matrix slip,
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would certainly play an important role. Dislocations could be studied both under

stress and in their relaxed configuration.

8.2 Photoelastic experiments

The few photoelastic experiments reported in this thesis were qualitative and
exploratory in nature. We believe that a very rich field of research lies
unexplored and the following suggestions are only examples of the many
possible questions which can be addressed with this technique.

7. Quantitative measurements of the stress field .around fibers could be easily
made with standard photoelastic compensating methods, either manually or
automatically. This would open the possibility for comparison with models of
the stress state around inclusions in a matrix deforming by slip, a task exclusively
done theoretically by analytical or numerical methods, to the best of our
knowledge.

8. Thermal and mechanical deformation, either unique or repeated could be
investigated. The stress fields could be analyzed both during the deformation
and after it, when the material has relaxed. Time dependent deformation could
also be studied in situ.

9. The global matrix stress state as well as local stress profile around inclusions
could be investigated. The effect of interacting stress fields of neighbouring
inclusions could be studied. It would be interesting to vary the composite
properties such as the matrix yield stress, the fiber moduli or the deformation
regime of the fiber (using Plastically deformable tungsten fibers, for instance).
-10. The geometry and dynamics of slip bands nucleation and propagation could

be of great interest. The temperature, strain rate, reinforcement geometry and

200



volume fraction as well as the mechanical properties of the matrix are some of
the possible parameters which could be varied.

11. Nucleation and growth of cracks in the presence of fibers or particles in a
matrix deforming by slip is a whole field open to investigation which could bring
new experimental evidence and understanding in the fracture mechanics of
MMCs.

12. Recrystallization of two-phase materials could be observed in situ with a
heated sample slightly strained to bring photoelastic contrast to the grains. This
could clarify the role of supramicroscopic inclusions in the nucleation and
growth of grains, a subject well understood for multiphase materials with

submicroscopic inclusions, but less explored for MMCs.
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APPENDIX 1: List of symbols

equivalent hole radius

strain-hardening constant

projected area

constant defined in Eq. {3.3.10]

Burgers’ vector

plastic zone radius

sum of punching distance and fiber half length
constant defined in Eq. [3.3.10]

C1, C2 constants defined in Egs. [3.1.14]

d
D, Do

H

fiber or inclusion diameter
diffusion coefficient
uniaxial strain

elementary charge force
elastic modulus

complete elliptical integral
force

backforce

friction force

electric force

repulsive force

shear modulus

maximum deflection of a bowed dislocation from the line running

between its anchor points

function
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Hll

Jo. n
Ji(x)

KX)

projected height
constant used in Eq. (1)
loop number
flux 7
Bessel function of first order
constant in Eq. [6.2.5]
constant defined in Eq. [3.2.5]
complete elliptical integral
dislocation length
fiber length at low temperature inside the matrix
distance between the anchor points of a bowed dislocation
fiber length at low temperature outside the matrix
matrix hole length at low temperature without fiber
fiber length at high temperature
fiber critical length (elastic/plastic interface)
loop row length '
fiber critical length (elastic/plastic/unstrained interface)
intercept length of the projected area
intercept length
dislocation loop number
fiber load
packing ratio
electrical charge
inclusion radius
radius of curvature of bowed dislocations
dislocation core distance

embedding depth
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Ta  annealing temperature
Te  transition temperature from creep to glide
Tm  melting temperature
To observation temperature
u displacement
v parameter defined in Eq. [3.3.4]
volume
v*  critical volume fraction of inclusions
w displacement
X coordinate, distance
Xj dimensionless plastic zone parameter; i=c : cylinder, i=s : sphere
x*  equilibrium distance between two charged loops

4 coordinate

o coefficient of thermal expansion

B parameter defined in Eq. [3.4.4]

B parameter used in Eq. [3.4.38]

B"  angle between dislocation line and its Burgers vector
r constant defined in App. 6

3 spacing difference

8jj  Kronecker symbol

A distance between two charged jogs

Aa  difference in CTE between matrix and fiber

Ar  matrix displacement at the interface of a mismatching inclusion
AT  temperature difference

A{  dimensionless loop spacing

> shear strain
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strain relieved by one prismatic loop

matrix strain due to inclusion
Poisson’s ratio

Lame’s constant

atomic volume

dislocation density

dimensionless coordinate

- dislocation line charge density

fiber longitudinal stress

average stress

bowing stress

backstress

elastic contribution to fiber stress
tensile yield stress

fiber stress at Lp

interfacial shear stress

critical shear stress

lattice friction stress

shear stress due to electrical interactions

shear stress on a loop

matrix shear flow stress

matrix intrinsic shear flow stress
shear stress on glide cylinder
dimensionless coordinate
constant defined in App. 6

dimensionless coordinate
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cylinder
equivalent
fiber
number
matrix
maximal
particle

sphere

1, 2, 0 coordinate

z

plastic zone

subscripts
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APPENDIX 2 : Program to calculate the equilibrium of a row of loops

The FORTRAN program listed below was used on MIT's ATHENA system. It
seeks the equilibrium configuration of a row of large number of loops using the
elastic solution given by Bullough and Newman (1960). The output is the
dimensionless position and stress of the loops as defined by these authors. It is
shorter to calculate the equilibrium configurations of intermediate trains with
increasingly larger number of loops rather than calculating directly the position
of the train with the maximum number of loops, because intermediate
equilibrium positions can be used as part of the initial position of the train with a
larger number of loops. The program thus first calculates the "primordial”
initial position for the maximum number of loops nmax; the loop spacings are
independent of nmax since only next neighbours interactions are considered. The
first n1 loops of this primordial train are used as initial conditions for the first
train which is then equilibrated. The initial conditions of the second train with
n2 loops is constructed by taking the primordial initial conditions for loops

between nj and ny and the final conditions for the loops between nj and a,
shifted from the origin to accommodate the n2-n1 loops which have just been
added. The second train is then equilibrated and used as part of the initial
condition for the next one, and so on until the final train with nmax loops is
equilibrated. This recurrent method not only yields information on all the
intermediate trains, it also takes less time than the calculation of the single train
with nmax starting form its initial position. Indeed the choice of initial positions
as close as possible to (but not exceeding) the final positions is crucial since the
calculation time increases rapidly with the number of loops in the train. The
primordial and subsequent initial positions are written in a file while the final

configurations are stored in another file.
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Starting with the last loop, each position is changed until the loop stress is
equal to the lattice friction stress. By changing the position of a given loop, its
neighbours which were at equilibrium are not any more. This will be corrected
the next time these loops are considered. The equilibrium of the first row is
reached when the equilibrium position is reached simultaneously for all loops
except the first one which is blocked. Each loop is considered having fixed
neighbours and its position is changed in the interval formed by its two nearest
neighbours until its stress is within 0.5% of the critical shear stress. Practically,
though, the stress position function is so extremely steep that this criterion
cannot be used anymore for small loop spacings since a minor displacement
makes the stress change from a very large positive to a very large negative value.
Since one is interested only by the position of the loops, there is no need to
change the position by an infinitesimal fraction to fulfil the stress criterion.
Rather, the process is stopped when the equilibrium position is within {=5 10-5
of the actual loop position: the program considers this loop equilibrated even
though the stress criterion is not fulfilled. The error in position is however at
most {=5 105 for each loop. To "mark" these loops, their stress in the output is
set at exactly the friction stress, a telltale value when the output is considered.
Some times, the iteration is unsuccessful and increasingly smaller steps converge
to values farther from the equilibrium position than the preset value of {=5 10-5.
In this case, the program repositions the loop at equal distances between its
neighbours and start again the procedure of equilibriation. When this situation
-happens more than thrice in a row for a given loop, the program moves on to
the next loop giving a screen output "exit", loop number, position and stress.
These small errors are of not great importance if they do not happen too often.
At the next pass, the freak loop will be equilibrated and the errors are repaired

rather than accumulating in an uncontrollable fashion. Finally, it can happen,
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due to the lack of precision of numerical variables that a loop is placed at the
same position as one of its neighbours; the program then assigns an arbitrary
large value to the stress rather than collapsing due to division by zero. Also,
from time to time, a loop ends up with a negative value. The program puts this
wandering loop back between its two neighbours, provided they both have
positive positions. Otherwise, the program exits completely.

After each row iteration, the position of each loop in the newly equilibrated
train is compared to its position in the previously calculate row. If this difference
in position for every loop in the train is more than 0.5% of the distance from the
origin as well as larger than an absolute value of {=5 10-3, the row is considered
not yet at equilibrium and the procedure is repeated. Also, the program stops
when the spacing between loops is smaller than a value which can be preset at

the beginning of the run.
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* this prog. calculates the equilibrium of a train of loops according to the
* method of Bullough & Newman. Translated from BASIC prog TrainS (March 3, 1990)
* the output are the x and y axis of their paper.
CHARACTER F1*20, F2*20, cd*l
INTEGER deltan, BOMB
DIMENSION x(500), £(500),x01d(500)
DOUBLE PRECISION x,k,Kint,Eint
*xkkxk* get parameters
1 PRINT *, ‘input FILENAME for equilibrium data’
READ *, F1
OPEN (UNIT=1, FILE=F1, STATUS='NEW’, IOSTAT=BOMB)
IF (BOMB.NE.O) THEN
PRINT *, ’'TRY ANOTHER NAME’
GO TO 1
END IF
2 PRINT *, ’inpute FILENAME for initial data’
READ *, F2
OPEN (UNIT=2, FILE=F2, STATUS='NEW’, IOSTAT=BOMB)
IF (BOMB.NE.O) THEN
PRINT *, ’‘try another name...’
GO TO 2
END IF
PRINT *, ‘Do you want to set the parameters? (y/n) '
read *, cd
IF (cd.EQ.'n’) THEN

GO TO 5
END IF
PRINT *, 'reduced Peierls stress '
READ *, fp
PRINT *, ’initial number of loops ? (<500) : '

READ *, nstart
PRINT *, ’ Loop number increment’
READ *, deltan
PRINT *, ‘maximal number of loops (<500)’
REAC *, nmax
PRINT *, ’lowest distance between 2 loops before program exits’
READ *, lowx
PRINT *, ’set initial distances? (in ascending orderx) (y/n)’
READ *, cd
GO TO 9

5 fp=2.5
nstart=5
deltan=5
nmax=10
lowx=.0001
cd = "n"

9 x (nmax) =0
ntot = nstart
buf=£fp

*calculate initial position of 2 loops with a friction stress egqual to
*the number of loops times the real friction stress

PRINT *,’n position friction stress’
IF (cd.EQ.’n’) THEN
buf=£fp

DO 17, m=nmax-1,1,-1
fphigh=1.005*m*buf
fplow=,995*m*buf
d=50
xx=50

13 d=d/2
IF (d.LT.0.00001) THEN
h GO TO 15
END IF
k=1/SQORT {1+xx**2)
CALL ellint (k,Kint,Eint)
£f=k* (((1-k*k)*Kint)+ (Eint* ((2*k*k)-1))) /xx
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IF (£f£.LT.fplow) THEN
xx=xx-d
GO TO 13
END IF
IF (f£.GT.fphigh) THEN
xx=xx+d
GO TO 13
END IF
15 x (m) =xx+x (m+1)
£f(m)=£f
WRITE (2,33) m,x(m),£f(m)
17 CONTINUE
fp=buf
*set initial position of first batch of loops
PRINT *,’initial position of first train’
WRITE (1,55) ’total loop #, # increment, friction stress’
WRITE (1,33) nmax, deltan, fp
WRITE (2,55) ’‘initial position of first train’
DO 20’ jj ’ntot,l,-l
WRITE (2,33) jj, x(3jj)-x(ntot), £{(jj)
PRINT *,jj,x(3jj)-x(ntot),£(3J)
20 CONTINUE ]
PRINT *,’calculate equilibrium of first train’
WRITE (1,55) ’equilibrium position of first train’

ELSE
DO 23, jj = ntot-1l, 1, -1
PRINT*, 3jj
READ *, x(3j3)
23 CONTINUE
END IF
*kkkkxrkpogition first loop
25 x0ld(l) = x(1)
i=1

CALL move (f,x,i,fp,ntot)
********posztxon other loops
27 DO 30, i = 2, ntot-1
xold (i) = x(i)
CALL move(f,x,i, fp,ntot)
*error correction...just in case...
IF (x(i) .LT.0) THEN
IF (x(i+l).GE.0.AND.x(i-1).GE.0) THEN
x(i)=(x(i+l)+x(i-1))/2
PRINT *, ’position error corrected (high level)’,i
ELSE
PRINT *,’STOP, loops have neg. positions’,i-1,i,i+l
GO TO 50
END IF
END IF
30 CONTINUE
i=ntot
CALL force(f,x,ntot,i,£fp)
*wxwrx***compares the changes in position
DO 31, ii = ntot-1,1,~1
IF ((xold(ii).LT.(0.995*x(ii)).OR.x0ld(ii).GT.(1.005*x(ii)))
$ .AND. (ABS (x0ld (ii)~x(ii)) .GT.0.001)) THEN
PRINT *, ntot, ii
GO TO 25
END IF
31 CONTINUE
*.kkkitiatore data
DO 34’Jj = ntot,l,'l
WRITE (1,33) jj, x(33j) -x (ntot), f(jj)
33 : FORMAT (1X,I3,’\t’,E12.4,’\t’,E12.4)
PRINT *, jj,x(3j)-x(ntot),£(j3])
34 CONTINUE
werrnttayit if minimum spacing is reached
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IF (x(ntot-1)-x(ntot) .LT.lowx) THEN
PRINT *,’minimum spacing of loop ’,ntot,’ is smaller than ’,lowx
GO TO 50
END IF
***¥kx*pogition next batch
ntot = ntot + deltan
IF (ntot.GT.nmax.OR.x(ntot-deltan).LT.lowx) THEN
GO TO 50
END IF
PRINT *, ’initial position of new train’
WRITE (2,55) ’initial position of new train’
DO 40, ii=ntot,1,-1
PRINT *, ii, x(ii)-x(ntot),f(ii)
WRITE (2,33) ii, x(ii)=-x(ntot),£f(ii)
40 CONTINUE
PRINT *,’calculate equilibrium of new train’
WRITE (1,55) ’equilibrium position of new train’
GO TO 25
*xkxkxx*and of program
50 PRINT *, ’'the equilibrium data is in file’, F1
PRINT *, ’'the initial data is in filef, F2
55 FORMAT (1X,A50) .
CLOSE (1)
CLOSE (2)
END
*
*kxkkxk*move loops
SUBROUTINE move (f,x,i, fp,ntot)
DIMENSION £ (500),x(509)
DOUBLE PRECISION d,x
ntab=0
71 ntab=ntab+.
fphigh=1.005*fp
fplow=.995*fp
ncount=0
72 IF (i.EQ.1l) then
d=50
x(i)=x(1)+50
CALL force(f,x,ntot,i, fp)
GO TO 75
END IF
CALL force(f,x,ntot,i, fp)
IF (£(i).GE.fphigh) THEN
d = ABS(x(i-1)-x(i))
GO TO 75
END IF
IF (£(i).LE.fplow) THEN
d = ABS(x(i)=-x(i+l))
ELSE
RETURN
END IF
75 d=d/2 .
**kkk*¥*exit procedures
IF (d.LE.0.0002) THEN
x(i)=x(i)+d
call force(f,x,ntot,i, fp)
fbuf=f (i)
x(i)=x(i)=-2*d
call force(f,x,ntot,i, fp)
‘% axits if the error in distance is less than .0002, sets f(i)=fp
.IF ((fp-£(i))*(fp-fbuf) .LE.0) THEN
£(i)=£fp
RETURN
ELSE
ncount=ncount+1
IF (ncount.lLE.2) THEN
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GO TC 72
ELSE
* exits if cannot find equilibrium after 3 trials
PRINT *,’exit’,i,x(i),£(1)
RETURN
END IF
END IF
END IF
*xk***control that loop stays betwenn its 2 neigbours
IF (i.NE.1.AND.i.NE.ntot.AND. ((x(i).LE.x(i+1)).OR.
$ (x(i).GE.x(i=1)))) THEN
x(i)=(.6*x(i+1))+(.4*x(i-1))
PRINT *,’error in position fixed (low level)’,i,x(i)
IF (ntab.LE.3) THEN
GO TO 71
ELSE
RETURN
END IF
END IF
**k***aquilibrium procedure
IF (£(i) .GT.fphigh) THEN
x(i)=x(i)+d
CALL force(f,x,ntot,i, fp)
GO TO 75
END IF
IF (£(i).LT.fplow) THEN
x(i)=x(i)=-d
CALL force(f,x,ntot, i, fp)
GO TO 75
ELSE
RETURN
END IF
END
*
**xx*rkkcalculate total force on a loop (using the formula by Kroupa 1962) from a:
*xxxx*x Joops which exert a force at least equal to fp; the output is x(i):distas
*xkkwkxdjameter & f£(i):reduced stress as given by Bullough & Newman
SUBROUTINE force (f,x,ntot,i, fp)
INTEGER s
DIMENSION £(500), x(500)
DOUBLE PRECISION k, Kint, Eint,x
f(i)=0
s=0
****error check
IF (i.NE.1.AND.x (i) .EQ.x¥(i-1)) THEN
£(i)=-314159265
RETURN
END IF
IF (i.NE.ntot.AND.x(i).EQ.x(i+l)) THEN
£(i)=314159265
RETURN
END IF
****calculation
100 s=s+1
IF (i+s.GT.ntot) THEN

bull = 0
GO TO 110
END IF

k = 1/SQRT(1+ABS(x(i)-x(i+s))**2)

CALL ellint(k, Kint, Eint)

bull=k* (((1-k**2) *Kint)+ (Eint* ((2*k*k) 1) )) /ABS (x (i) -x(i+s))
110 IF (i-s.LT.l1l) THEN

bul2 =0
GO TO 115
END IF

k=1/SQRT (1+ABS (x (i) ~x (i-8) ) **2)
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CALL ellint (k, Kint, Eint)
bul2=k* (((1-k**2) *Kint) + (Eint* ((2*k*k)-1))) /ABS (x (i) -x(i-s))
115 £(i)=£(i)-bul2+bull
IF (bull.GT.£fp.OR.bul2.GT.fp) THEN
GO TO 100
END IF
RETURN
END
*%xxkkkx*calculate elliptical integral (Abramovitz numerical method)
SUBROUTINE ellint (k, Kint, Eint)
DOUBLE PRECISION k, ml, Kint, Eint
ml=1-k
IF (k.GE.1.0R.k.LT.0) THEN
IF (k.GE.l1.) THEN
PRINT *, 'outside limits ell. integral >1’
Eint=1
Kint=11.386294
RETURN
END IF
IF (k.LT.0) THEN
PRINT *, ’‘outside limits ell. integral <0’
Eint=1.570796
Kint=1.570796
RETURN
END IF
END IF
Eint=(1+.4630151*ml+.1077812*ml**2)
Eint=Eint~((.2452727*ml1+.0412496*ml1**2) *LOG (ml) )
Kint=(1.386294+.1119723*m1+.0725296*m1**2)
Kint=Kint-((.5+.1213478*m1+.0288729*m1**2) *LOG (m1))
RETURN
END
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APPENDIX 3

BASIC program used to determine Eq. [3.3.11], Fig. 3.3.3.
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REM calculates the # of loops emitted by a fiber according to theory and
REM simple upper limit nmax=LAaAT/b
REM alfam, alfaf : CTE of matrix and fiber L : length, r : radiusdT : AT
REM Gm : matrix shear mod., Em : fiber Young mod., Y : matrix yield strength, Sb : backst
ress
REM b : Burger's vector, v : assumed volume fraction for calculation of beta
OPEN "clip:" FOR OUTPUT AS #1
10 PRINT "  variable n n max Le2[um]
Letfum]”

low=.000001
high=.0005
stepp=.000005

FOR i = low TO high STEP stepp
alfam = .0000235 : alfaf = .000009 : Gm = 3E+10 : Ef = 3E+11: Y = 1E+07

b = 2.86E-10 : v=.01 : L=.0002 : r=.0000015 : dT=200 : Sb=0

La=i

dalfa = alfam - alfaf
REM shear lag model beta coef.

beta = SQR (2*°Gm/(Ef'r'r'LOG(1/SQR(v))))
buf = Y/(Ef*r*dalfa*dT*beta)

Lc2 = LOG((1+buf)/(1-buf))/beta
sto-2‘Ef'r'dalfa'dT/(Y'(EXP(beta'Lc2/2)+EXP(-beta'Lc2/2))/2)
Lci=Lc2-(4*r* Sb/Y)+sto

nmax = dalfa*dT*L/(2*b)

IF L <= Lc2 THEN b$ = "purely elastic® : GOTO 20

IF Lc1 < Lc2 THEN b$ = "ic1 < Ic2" : GOTO 20

IF LsLc1 THEN
L=Lc1 : b$ = "elastoplastic-unstrained"

ELSE

b$ = "elastoplastic”

END IF
integ-(Y/(4'Ef'r))'((L‘L)-(Lc2'Lc2)-(8/(beta"2)))+(dalfa'dT'L02)+(Sb'L/Ef)
n=(((dalfa*dT*L)/(1+(alfam*dT))) - (integ"(1+alfaf'dT)/(1+alfam'dT)))/(2'b)

20 PRINT i, n, nmax, Lc2*1000000!, Lc1*1000000!

WRITE #1, n, nmax, Lc1*1000000!, Lc2*1000000!, i

NEXT i

INPUT "again ? (y/n) *, a$
IF a$ = "y" GOTO 10
CLOSE #1

END
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APPENDIX 4

FORTRAN Program used to determine Eq. [3.3.13], Fig. 3.3.7. This program is a
modification of that listed in Appendix 1.
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* this prog. calculates the equilibrium of two trains of loops according to the
* method of Bullough & Newman. the trains are placed symmetrically on each side
* of the origine and attract each other (one is interstitial, the other vacancy
* modified from new.f. Lines with ** are deleted statements from new.f (March 22,
**drop F2

CHARACTER F1*20, cd*l

INTEGER deltan, BOMB

DIMENSION x(500), £(500),x01d(500)

DOUBLE PRECISION x,k,Kint,Eint
*xkkkx* get parameters
1 PRINT *, ’input FILENAME for equilibrium data’

READ *, F1

OPEN (UNIT=1, FILE=Fl, STATUS='NEW’, IOSTAT=BOMB)

IF (BOMB.NE.O) THEN

PRINT *, /TRY ANOTHER NAME’

GO TO 1

END IF
*x 2 PRINT *, ’inpute FILENAME for initial data’
*r READ *, F2
* %k OPEN (UNIT=2, FILE=F2, STATUS='NEW’, IOSTAT=BOMB)
** IF (BOMB.NE.O) THEN
*x PRINT *, ’'try another name...’
*x GO TO 2
*k END IF :
* % PRINT *, 'Do you want to set the parameters? (y/n) '/
* % read *, cd
*x IF (cd.EQ.’n’) THEN
* % GO TO 5
**x END IF

PRINT *, ’reduced Peierls stress ’

READ *, fp

PRINT *, ’‘total number of loops ? (<500) : /
READ *, nstart

*x PRINT *, ’ Loop number increment’
* % READ *, deltan
*x deltan=1
*k PRINT *, ‘maximal number of loops (<500)’
** READ *, nmax
nmax=ntot
PRINT *, ’set initial distance in ascending orxder)’
*x READ *, cd
GO TO 9
5 fp=2.9
nstart=25
deltan=25
nmax=150
9 cd = "y"

x (nmax) =0

ntot = nstart

buf=fp
*calculate initial position of 2 loops with a friction stress equal to
*the number of loops times the: real friction stress .

bl PRINT *,’ positions of 2 loops under different friction stress’
*x PRINT *,’n position friction stress’
IF (cd.EQ.’n’) THEN
buf=£fp

DO 17, m=nmax-1l,1,-1
fphigh=1.005*m*buf
fplow=.995*m*buf
d=50
xx=50

13 d=d/2
IF (d.LT.0.00001) THEN
GO TO 15
END IF
k=1/SQRT (1+xx**2)
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CALL ellint (k,Kint,Eint)
£f=k* (((1=-k*k) *Kint)+ (Eint* ((2*k*k)=1))) /xx
IF (ff.LT.fplow) THEN
xx=xx-d
GO TO 13
END IF
IF (ff.GT.fphigh) THEN
xx=xx+d
GO TO 13
END IF
15 x (m) =xx+x (m+1)
£f(m)=££f
*k WRITE (2,33) m,x(m),£f (m)
17 CONTINUE
fp=buf
*get initial position of first batch of loops
PRINT *,’initial position of first train’
WRITE (1,55) ’total loop #, # increment, friction stress’
WRITE (1,33) nmax, deltan, fp

*x WRITE (2,55) ’‘initial position of first train’
DO 20, jj =ntot,l,-1
* WRITE (2,33) 3j3j, x{(3jj)-x(ntot), £(jJ)
PRINT *,33j,x(jj)=-x(ntot),£(3])
20 CONTINUE

PRINT *,’calculate equilibrium of first train’
WRITE (1,55) ’‘equilibrium position of first train’
ELSE
**CHANGE
. DO 23, jj = ntot, 1, =1
PRINT*, 3j3j
READ *, x(3j3)

* *NEW
x((2*ntot) =3jj+1)=-x(J3)
23 CONTINUE
END IF
**kxx*xk*pogition first loop
25 xold(1l) = x(1)
i=1
CALL move (f,x,i,fp,ntot)
* *NEW

x (2*ntot) ==x (1)
**kkx*k**position other loops
27 po 30, i = 2, ntot-1
xold (i) = x(i)
CALL move(f,x,i, fp,ntot)
**NEW
x((2*ntot) =i+l)==-x (1)
30 CONTINUE
i=ntot
CALL force(f,x,ntot,i, £fp)
*kkwx**k*compares the changes in position
DO 31, ii = ntot-1,1,-1
IF ((xold(ii).LT.(0.995*x(ii)).OR.x0ld(ii).GT.(1.005*x(ii)))
$ .AND. (ABS (xold (ii)-x(ii)) .GT.0.001)) THEN
PRINT *, ntot, ii
GO TO 25
END IF
31 CONTINUE
*xxxx*tgtore data
WRITE (1,33) ntot, fp
DO 34,3j = ntot,1,-1
WRITE (1,33) jj, x(3jj)=-x(ntot), £(3J)
33 - FORMAT (1X,I3,’\t’,E12.4,’\t’,E12.4)
PRINT *, 3j3j,x(jj)-x(ntot),£(3])
34 CONTINUE
***xx*tposition next batch of loops
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ntot = ntot + deltan
IF (ntot.GT.nmax) THEN

GO TO 50
END IF
PRINT *, 'initial position of new train’
* K WRITE (2,55) ’initial position of new train’

DO 40, ii.ntot' 1'-1
PRINT *, ii, x(ii)-x(ntot),f(ii)
*x WRITE (2,33) ii, x(ii)-x(ntot),£f(ii)
117} CONTINUE
PRINT *,’calculate e2quilibrium of new train’
WRITE (1,55) ‘equilibrium position of new train’

GO TO 25
*
50 PRINT *, ‘the equilibrium data is in file’, F1
*k PRINT *, ’‘the initial data is in file’, F2
55 FORMAT (1X,AS50)
CLOSE (1)
END

*

********move loops
SUBROUTINE move (f,x,i,fp,ntot)
DIMENSION £ (500),x(500)
DOUBLE PRECISION d,x
fphigh=1.005*fp
fplow=.995*fp
ncount=0
72 IF (i.EQ.1l) then
d=50
x(i)=x(i)+50
CALL force(f,x,ntot,i, £fp)
GO TO 75 .
END IF
CALL force(f,x,ntot,i, fp)
IF (£(i).GE.fphigh) THEN
d = ABS(x(i-1)-x(i))
GO TO 75
END IF
IF (£(i).LE.fplow) THEN
d = ABS(x(i)-x(i+l))
ELSE
RETURN
END IF
75 d=d/2
*xxkk**exjit procedures
IF (d.LE.0.0002) THEN
x(i)=x(i)+d
call force(f,x,ntot,i, £fp)
fbuf=£ (i)
x(i)=x(i)-2*d
call force(f,x,ntot,i, fp)
*xkkk*k exits if the error in distance is less than .0002, sets £(i)=fp
IF ((fp-£f(i))* (fp-fbuf) .LE.QO) THEN
£ (i)=£fp
RETURN
ELSE
ncount=ncount+1l
IF (ncount.LE.Z2) THEN
GO TO 72 -
ELSE
.**k*%x*x @xits if cannot find equilibrium after 3 trials
PRINT *,’exit’,i,x(i),£(i)
RETURN
END IF
END IF
END IF
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IF (£(i).GT.fphigh) THEN
x(i)=x(i)+d
CALL force(f,x,ntot,i, fp)
GO TO 75
END IF
IF (£(i) .LT.fplow) THEN
x(i)=x(i)~-d
CALL force(f,x,ntot,i, fp)
GO TO 75
ELSE
RETURN
END IF
END
*
**x*xxk**calculate total force on a loop (Kroupa 1962) from all other loops which
**xkk***k exert a force at least equal to fp
SUBROUTINE force (£, x,ntot,i, fp)
INTEGER s
REAL bull, bul2
DIMENSION £(500), x(500)
DOUBLE PRECISION k, Kint, Eint,x

£(i)=0
s=0
100 s=gs+1
*x IF (i+s.GT.ntot) THEN
> bull = 0
*k GO TO 110
* % END IF

k = 1/SQORT(1+ABS(x(i)-x(i+s))**2)
CALL ellint (k, Kint, Eint)
bull=k* (( (1-k**2) *Kint) + (Eint* ((2*k**2)~1))) /ABS (x (i) -x (i+s))
**NEW 3 LINES
IF ((i+s) .GT.ntot) THEN
bull=-bull
END IF
110 IF (i-s.LT.1l) THEN
bul2 =0
GO TO 115
END IF
k=1/SQRT (1+ABS (x (i) -x(i-8)) **2)
CALL ellint (k, Kint, Eint)
bul2=k* ( ( (1-k**2) *Kint) + (Eint* ((2*k**2)-1))) /ABS (x (i) -x (i-3))
115 £(i)=£(i) -bul2+bull
*CHANGE
IF (ABS(bull) .GT.fp.OR.bul2.GT.£fp) THEN
GO TO 100
END IF
RETURN
END
*kkx¥***calculate elliptical integral (Abramovitz numerical method)
SUBROUTINE ellint (k, Kint, Eint)
DOUBLE PRECISION k, ml, Kint, Eint
IF (k.GE.1.0R.k.LT.0) THEN
PRINT *, ’outside limits elliptical integral’
RETURN )
END IF
125 ml=l-k
Eint=(1+.4630151*m1+.1077812*ml**2)
. Eint=Eint+ ((.2452727*ml+.0412496*m1**2) *LOG(1/m1))
Kint=(1.386294+.1119723*m1+.0725296*m1**2)
Kint=Kint+ ((.5+.1213478*m1+.0288729*m1**2) *LOG{(1/ml))
RETURN
END
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APPENDIX 5 : Model by Taya and Mori (1987)

This model predicts the number of loops and the punching distance for a
misfitting ellipsoid. The fiber is assimilated to a prolate spheroid with major axis
L/2 and minor axis d/2. The fiber punches loops, thus forming a plastic zone
modelied as another prolate spheroid of same minor axis as the fiber and major
axis ¢’ equal to the sum of the fiber half length and the punching distance. The
punching distance is determined by equating the total work (estimated using
Tanaka and Mori’s model (1972)) done by the loops against the lattice friction
stress t¢ with the elastic energy released during relaxation of the fiber, calculated

using Eshelby’s equivalent inclusion method. The result is of the form

H{c'/d, L/d, G, Gg, A, A, Vi) = — L [
d Aa AT Gm ’ !

where Aa. is the CTE difference between fiber and matrix, AT is the temperature
excursion, Gm and v, are the matrix shear modulus and Poisson’s ratio, Gg is the
fiber shear modulus and An and A¢ are the matrix and fiber Lamé’s constants. H
is a complicated function of the punching distance ¢’ and other variables,
containing Eshelby's tensors.

A noteworthy feature of this model is that each parameter in Eq. [1] has a
critical value for which the punching distance becomes zero, separating z regime
of positive and regative punching distances. Taya and Mori (1987) predict that
punching is suppressed in the latter regime and explain this result by showing

that the energy needed to move the dislocations against the lattice friction stress
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is larger than the elastic energy of relaxation. This leads to the unexpected result
that the punching length decreases and finally becomes zero as the fiber length
(and thus the mismatch) increases. In the regime where loops are emitted, they
assume complete longitudinal relaxation of the fiber, which yields by
conservation of volume for the total number of loops emitted nmay :

Mgy = AGLTL 2

Figs. 3.4.5a-e show this value as dotted lines which drop to zero at a critical
value corresponding to the onset of negative punching distance regime predicted
by Eq. [1]. The basic program listed below calculates the values c¢'/c and c/a

according to Eqs. [1] and [2].

The following is a list of the BASIC program used to determine Eq. [1].



REM this program calculates the the extend of the plastic zone c'/c (called
REM x is this program) as a function of the fiber aspect ratio ¢/a (called b1)
REM according to theory developed in Taya and Mori, Acta Met. 1987.

REM K = matrix shear modulus*ACTE*AT/friction stress

REM all other variable defined in program

OPEN “clip:" FOR OUTPUT AS #1
5 INPUT "new material constants ? (y\n) ",a$
IF a$ = "n" THEN nu=.343 : nuf=.21 : E=14.7 : Ef=85 : K=23.5 : GOTO 10
INPUT "Poisson ratio of matrix",nu
INPUT "Poisson ratio of fiber",nuf
INPUT "Young's Modulus of matrix",E
INPUT "Young's Modulus of fiber" Ef
INPUT "Beta coefficient",K
10 INPUT "new bounds for c'/c (Now : from1 to 9 step 0.25)? (y/n)", a$
IF a$ = "n" THEN lowbond=1 : highbond = 9 : stepbond = .25 : GOTO 15
INPUT "lower bond ", lowbond "
INPUT ‘“higher bond ", highbond
INPUT “"step ",stepbond

15 L=E*nu/((1+nu)*(1-2°nu)): Li=Ef*nuf/((1+nuf)*(1-2*nuf)) : mu=E/(2*(1+nu)) :

f/(2*(1+nuf))
a=1:c=10 : oldb = -99.99.-
bi#=c/a : Lbar = Lf - L : mubar = muf - muy

FOR x# = lowbcnd TO highbond STEP stepbond
bi# = 10000# : b# =x#'b1#
20 oldb = bi1#
GOSUB compute
bi#=K*h : b#=b1#*'x# : c=b1#*a
PRINT x#,bt#
IF b1# < .999%0ldb OR b1# > 1.001*oldb GOTO 20
WRITE #1 x#bi1#
NEXT x#
INPUT "Again ? (y/n)",q$
IF q$ = "y GOTO 5
CLOSE #1
END
40 PRINT ERL
INPUT qqq

compute:

REM formulas in Appendix of Taya and Mori (1987)

Gi=bi#*((b1#*(b1#'b1#-1)2.5)-LOG(b1#+(b1#°b1#-1)2.5))/(b1#°b1#-1)A1.5
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G=b#*((0#" (b#'b#-1)1.5)-LOG (b#+(b#°b#-1)A.5))/(b#°b#-1)A1.5
Gdot=(c/(a* (b#°b#-1)*1.5))" (1-3°b#*b#/(b#*b#-1))* (b#* (b#°b#-1)A.5-LOG (b#+ (b#
*b#-1)A.5)) + 2°c’b#/(a*(b#°b#-1))

S111=(3'b1#°01#)/(8°(1-nu)*(b1#°b1#-1)) + G1°(1-2°nu-(2.25/(b1#*b1#-1)))/(4
*(1-nu))
$122=5111
S211=(3°b#°b#)/(8°(1-nu)* (b#*b#-1)) + G*(1-2°nu-(2.25/(b¥°b#-1)))/(4*(1-nu))
S222-5211
Sd11=(c/a)*((.75"b#/((1-nu)" (b#°b#-1)))*(1-b#"b#/(b#*b#-1)) + (.25/(1-nu))*(Gdo
t*(1-(2°nu)-2.25/(b#°b#-1)) + 4.5°G*b#/((b#*b#-1)"2)))
Sd22-Sd11

S133=(.5/(1-nu))*(1-2°nu+(3*b1#°b1#-1)/(D1#°b1#-1)-G1*(1-2°nu+3*b1 #*b1#/(
b1#°b1#-1)))

$233=(.5/(1-nu))*(1-2°nu+(3*b#"b#-1)/(b#°b#-1)-G*(1-2°nu+3°b#°b#/(b#*b#-1)
))

Sd33=(c/(2°a*(1-nu)))* (2°b#*(3-(3°b#*b#-1)/(D# b#-1))/(b#*b#-1) - Gdot*(1-(2
*Nu)+3°b#°b#/(D#°b#-1)) - 6°G  *b#*(1-b#*b#/(b#*b#-1))/(b#*b#-1))

S$112=(.25/(1-nu))*((.5'b1#*b1#/(b1#°b1#-1))-G1 *(1-(2°nu)+.75/(b1#°b1#-1)))
S$121=8112 :
S212=(.25/(1-nu))*((.5*b#*b#/(b#*b#-1))-G*(1 -(2°nu)+.75/(b#*b#-1)))
S221=8212 ‘ :
Sd12=(.25%c/(a*(1-nu)))*(b#*(1-b#*b#/(b#*b#-1 ))/(b#*b#-1) - Gdot*(1-(2*°nu)+.7
5/(b#'b#-1)) + 1.5°G*b#/(b#*'b#-1)42)
Sd21=Sd12

S113= (-.5/(1-nu))'(b1#'b1#/(b’i#'b1#-1)-.S‘G‘l'(3'b1#'b1#/(b1#'b1#-1)-1+(2'
nu)))
S123=S113
S$213= (-.5/(1-nu))'(b#'b#/(b#'b#-1)-.5'G'(3'b#'b#/(b#'b#-1)-1+(2'nu)))
S223aS213
Sd13-(.5'c/(a'(1-nu)))'(-2'b#‘(1-b#'b#/(b#'b#-1))/(b#'b#-1) + .5"Gdot*(3°b#*
b#/(b#°b#-1)-1+(2°nu)) + 3°G*b#*(1-b#'b#/(b#°b#-1))/(b# b#-1))
Sd23=Sd13

S131=(-.5/(1-nu))*(1-(2*nu)+1/(b1#*b1#-1)) + (.5*G1/(1-nu))*(1-(2*nu)+1.5/(b1#*
bi1#-1))
S132=S131
S231=(-.5/(1-nu))*(1-(2*nu)+1/(b#*b#-1)) + (.5*G/(1-nu))*(1-(2*nu)+1.5/(b# b#-1
) |
$232=S231
Sd31=(.5c/(a*(1-nu)))*( 2*b#/((b#°b#-1)22) + Gdot*(1-(2*°nu)+1.5/(b#'b#-1)) - G*
3°b#/((b#*b#-1)r2))

225



.Sd32=Sd31

-Q1=(2°nu/(1-2°nu))*(S111+S112+S131-1) + S111 + S112 - 1
Q2=S113/(1-2°nu) + nu*(S133-1)/(1-2°nu)

D1=-(1/x#)*((Lbar+mubar)*S213/mu + .5°Lbar*(S233-1)/mu) + (Lf+muf)/mu

D2=-(1/x#)*(.5*Lbar*(2*S213+S233)/mu + mubar*S233/mu - .5°(Lbar+2*mubar)/m
u) + L¥/mu

D1idot= (1/x#2)*((Lbar+mubar)*S213/mu + .5°Lbar*(S233-1)/mu)- (1/x#)* ((Lbar+m
ubar)*Sd13/mu + .5%Lbar*Sd33/mu)

D2dot=(-D2+(Lt/mu))/x# - (1/x#)*(.5*Lbar*(2*Sd13+Sd33)/mu + mubar*Sd33/mu)

B11=((Lbar+mubar)/mu)*(S111+S112) + Lbar*S131/mu + 1/(1-2°nu)
B12=((Lbar+mubar)/mu)*S113 + .5'Lbar*'S133/mu + nu/(1-2°nu)
B21=(Lbar/mu)*(S111+S112+S131) + 2'S231*mubar/mu + 2°nu/(1-2*nu)

B22=(.5°Lbar/mu)*(2°S113+S133) + mubar*S133/mu + (1-nu)/(1-2'nu)
B0=B11°'B22-B12*B21

P2
A1=2"nu*(S211+S212+S231-1)/(1-2°nu) + 2*S231
A2=2*nu*S213/(1-2°nu) + (1-nu)*(S233-1)/(1-2*nu)
A3=S213/(1-2°nu) + nu*(S233-1)/(1-2°nu)

A1dot=2'nu*(Sd11+Sd12+Sd31)/(1-2°nu) + 2*Sd31
A2dot=2°nu*Sd13/(1-2°nu) + (1-nu)*Sd33/(1-2*nu)
A3dot=Sd13/(1-2°nu) + nu*Sd33/(1-2°nu)

hi = -(A1*(D1*B22-D2°'B12)+A2*(D2*B11-D1*B21))/(B0O*x#*x#)
h2=h1+((A1dot*(D1°B22-D2'B12)) + (A1*(B22°*D1dot-B12*D2dot)))/(BO*x#)
h3=h2+((A2dot*(D2°'B11-D1°B21i)) + (A2*(B11*D2dot-B21*D1dot)))/(BO*x#)
h4=h3+((2/B0)*(Q1*(B22*D1dot-B12*D2dot) + Q2°(B11*D2dot-B21*D1dot)))
h=h4-((A2+2*A3)/(x#*x#))+((A2dot+2*A3dot)/x#)

RETURN
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A ndix 6 : Determination of the maxim m hich mism

relaxation by slip is operative

Imagine a mismatching sphere of radius r embedded in silver chloride at a
depth t below the surface. The temperature T¢ at which diffusion is less efficient
than slip to evacuate the extraneous matrix material due to the mismatching

sphere is calculated in what follows in two different manners.

We first solve the problem by considering creep. We calculate the temperature

Tc at which the Nabarro-Herring creep rate & given by

: 14
&:J—Qg’ 1
KT ]

is equal to the rate of thermal mismatch &, :

where k is Boltzman's constant, T the temperature, Q the atomic volume, D the
diffusion coefficient, Ao the CTE mismatch, AT the cooling rate and ¢ is the stress
at the interface at which a loop is nucleated. The diffusion distance t is taken as
the distance between the inclusion and the surface.

Charge neutrality dictates that both anions and cations diffuse at the same rate.
The rate of removal of matter by diffusion is thus given by the slowest diffusing
ion in AgCl (chlorine), for which the diffusion coefficient can be written as

~

. D=Dgexp(-I'/T) , 31

227



where Dp and I' are constants with values of 13300 [m2/s] and 18600 [K]
respectively (Compton and Maurer 1956).

To calculate the dislocation nucleation stress, we use a model by Brown and
Woolhouse (1970) which gives a lower bound for the mismatch strain 8'{1
necessary to nucleate a prismatic loop at the surface of a mismatching sphere.
For a sphere radius of 1.2 um, e'{l = 5.6-10-4. This strain corresponds to a
displacement at the surface of the sphere of 3.4 Burgers vectors; the number of
loops counted in section 6.2.1.1 and used in Eq. [6.2.3] might therefore be
underestimated by 2 to 4 dislocations, depending on the radius of the sphere.
This error is within the scatter of the data presented in Fig. 5.1.5.

The maximum shear stress at the surface of the sphere can then be calculated
from (Asby et al. 1969)

"'¥= ]+M T
Tmax Gl-ve“, 4]

where G and v are the matrix shear modulus and Poisson's ratio respectively.
Introducing Eqs. [3] and [4] and 6 = 2tmax into Eq. [1] and equating with Eq. [2]

yields an equation for T:

expl-T/T) __ (1-v) k PAa AT
Te 28 (1+v) G €], QDy , 5]

Introducing the values of e'fl,Do and T given above, as well as Q = 1.78-10-29
[m3] (Kittel, 1983) and t = 10 um yields a value for T¢ of 432 K, in good agreement

with the range of values determined experimentally in section 6.2.1.1.
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We now solve the same problem using diffusion equations. Fick's first law for

the flux of atoms Jg gives
Jo=-D grad(c) , (6]

where D is the diffusion coefficient and c is the local concertration in the
gradient between the source (mismatching sphere) and the sink (specimen
surface).

We assume that the atoms which must be evacuated from the interface are
placed in the matrix as interstitials. A disk of such interstitials would form a
prismatic loop. At high temperatures, diffusion is so rapid that the equilibrium
concentration of the interstitials is much lower than that necessary to form a full
disk of atoms. At lower temperatures, diffusion is slow and interstitials
accumulate until their number is large enough to create a loop which can theﬁ
glide away from the stressed inclusion. While nucleation of loops at
mismatching inclusions does not actually occur according to this scenario
(condensation of interstitials), it allows to ascribe a concentration c; of

interstitials at which slip ocurs, i.e., one interstitial per atomic site:

7

where Q is the atomic volume of the chlorine ion. The concentration of
interstitial atoms at the sink c¢g is assumed to be zero.

Eq. [6] yields after insertion of Egs. [3] and [7]:

JO=M _ 8]
Qt
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The flux J; of atoms produced at the source is

J, =-1_4AY
1502 Q ' )]
where AV is the rate of volume mismatch:
AV=Z4nr2AaATr, [10]

where Aa is the CTE mismatch, AT the cooling rate, taken respectively as 2.1 10-5
[K-1] and 1 [K/s] and E is the ratio of atomic volume of chlorine to that of the
AgCl molecule (E = 0.75).

Inserting Eq. [10] into Eq. [9], equating to Eq. [8] and solving yields:

Te = -
imm) ’ [11]
Do

which gives a value of T = 426 K for r't = 15 um?2 and T, = 405 K for rt = 1.5 pm?2,
corresponding to the experimental range of values for r (0.5 to 1.5 um) and t (3 to
10 um). These temperatures are in good agreement with the value calculated
above and the range of T¢ = 400 + 30 K determined independently in section
6.2.1.1.
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