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A “self-replicator” is usually understood to be an object of definite form that promotes the conversion of
materials in its environment into a nearly identical copy of itself. The challenge of engineering novel, micro- or
nanoscale self-replicators has attracted keen interest in recent years, both because exponential amplification is
an attractive method for generating high yields of specific products and, also, because self-reproducing entities
have the potential to be optimized or adapted through rounds of iterative selection. Substantial steps forward
have been achieved both in the engineering of particular self-replicating molecules and in the characterization
of the physical basis for possible mechanisms of self-replication. At present, however, there is a need for a
theoretical treatment of what physical conditions are most conducive to the emergence of novel self-replicating
structures from a reservoir of building blocks on a desired time scale. Here we report progress in addressing this
need. By analyzing the kinetics of a toy chemical model, we demonstrate that the emergence of self-replication
can be controlled by coarse, tunable features of the chemical system, such as the fraction of fast reactions
and the width of the rate constant distribution. We also find that the typical mechanism is dominated by the
cooperation of multiple interconnected reaction cycles as opposed to a single isolated cycle. The quantitative
treatment presented here may prove useful for designing novel self-replicating chemical systems.

DOI: 10.1103/PhysRevE.100.022414

I. INTRODUCTION

The emergence of self-replicators from a mixture of com-
ponents is marked by exponential growth of one or more mul-
ticomponent structures. This process is of great practical im-
portance due to the possibility of exponentially rapid synthesis
of target structures and, also, has previously been considered
in models of prebiotic chemistry [1–5]. The mechanisms that
enable self-replication in a soup of metastable bound states
have been investigated intensively in the past decades [6,7]
and continue to inspire new attempts [8–17]. The processes
of self-replication described in these studies, though distinct,
share two mechanistic elements: (a) the existence of at least
one autocatalytic cycle (ACC) and (b) a source of driving that
runs the autocatalytic cycle.

In the usual case [6] an autocatalytic cycle is designed by
experimenters to consume one or more building blocks that
are provided in excess to generate replicas of a template that
is used as a seed. A significant challenge in any such case
lies in devising an appropriate chemical library that limits
parasitic side reactions. Theoretical approaches, meanwhile,
have been most successful in the opposite regime, where
the catalytic network is sufficiently densely connected, and
every molecule available in the reaction pot catalyzes the
production of at least one other molecule [18–20]. In this
case, it is possible to formulate general criteria for the onset
of positive feedback loops in the catalytic reaction network
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that lead to the exponential growth of the molecules in these
loops. Thus, although it is qualitatively understood that ro-
bust self-replication requires sufficient catalytic promiscuity
that somehow avoids excessive side reactions, there is need
for a quantitative treatment of this trade-off in a physical
model that may provide future guidance for the design of
conditions conducive to the spontaneous emergence of self-
replicators from customizable mixtures of nano- or microscale
components [21,22]. Therefore, we sought to investigate a
toy model where all possible stoichiometric combinations of
certain building blocks are considered in the construction of
an effective model of a “chemical” space. Using this model
(Fig. 1 and Appendix A), we lay out general conditions for the
emergence of exponential growth in systems without explicit
catalysis. Interestingly, we find that the typical mechanism
for the emergence of self-replicators occurs via a multicycle
topological element in the reaction and, therefore, violates
previously established quantitative criteria for self-replication
that were developed assuming that self-replication occurs
through isolated autocatalytic cycles [4,5].

II. MODEL

A. Toy chemical system

We undertook to model a large, well-mixed reaction pot
with diverse possible combinations of monomers. We call
these monomers “atoms” here because we eventually plan to
model the dynamics of their bound states using thermody-
namically consistent mass-action kinetics, but it should not
be imagined that we intend exclusively or even principally to
describe real molecular chemistry using the model presented
here. Rather, the essence of the “chemical space” constructed
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FIG. 1. Toy chemical system with two monomer types. (a) The toy chemical system (see Appendix A) consists of two atoms, B and G.
(b) The atoms interact with each other at three interaction energies, εBB, εBG, and εGG (measured in units of kT), to form molecules, which
are represented as a stack of atoms. εXY denotes the interaction energy between an atom of type X and another atom of type Y . Gray arrows
represent interactions between different atoms. All atoms inside a molecule, such as the one shown here, interact with each other. (c) The
current model consists of 14 molecules that contains at most four atoms. (d) The molecules take part in dissociation or bimolecular reactions.
(e) In the mechanistic model (see Appendix A), the rate constants of these reactions are calculated from a transition-state model. Star-shaped
atoms are atoms that are being donated. Circular atoms are other atoms in the molecules.

is that it is a vast space of diverse combinations among
physical interacting components such as polymer-coated col-
loidal particles or DNA origami [Fig. 1(a)].

In our model, two or more atoms interact with each other
to form a bound state, which we call a “molecule.” For
simplicity, we assume that the molecules do not have any
internal structure and all the atoms inside a molecule interact
with all other atoms in that molecule with interaction energy
εBB, εBG, or εGG [Fig. 1(b)]. Since the molecules do not have
any internal structure, their free energies are completely deter-
mined by their composition and the three ε parameters. Also,
we assume that each molecule contains at most μmax atoms
and forbid all other bound states. Except where it is explicitly
mentioned, we set μmax = 4. With these two assumptions it
can be shown that there are 14 distinct molecules in the model
with two types of monomers [Fig. 1(c)].

The molecules take part in reactions that involve one
molecule donating an atom to the surrounding medium or to
another molecule. We call the former a dissociation reaction
and the latter a bimolecular reaction [Fig. 1(d)]. The reac-
tions are activated processes and the rate constant of a given
reaction that takes the reactant state i to product state j is
inversely proportional to the exponential of the barrier height:
ki j ∝ exp(−Bi j ). The activation barriers Bi j are chosen either
randomly or using a model of the transition state. We refer to
the latter as the mechanistic model.

In the mechanistic model, Bi j = F Tr
i j − Fi, where Fi is the

free energy of the reactant state and F Tr
i j is the free energy

of the transition state. Fi is determined from the interaction
energies. To calculate F Tr

i j , we assume that during a reaction,
the donated atom first goes to an excited state, where it
interacts with other atoms in the donor molecule through a
weakly repulsive interaction [Fig. 1(e)] that is proportional to
the ground-state interaction energy. The proportionality factor

c0 = −0.1 is the same for all three interaction energies and is
a parameter of the model. The results described are robust to
variation in c0, as long as εBB,BG,GG < 0 and c0 < 0.

The resulting toy “chemistry” generates a full system of
rate equations with mass-action kinetics governing the con-
centrations of different allowed molecules. There is no explicit
catalysis or autocatalysis in this system at the level of a
single reaction, but catalytic and autocatalytic cycles appear
naturally in the reaction network (defined in the next section)
due to coupling between different reactions. In what follows,
we explicitly solve this set of equations in two instances of
the model with one and two types of atoms. We investigate
the resultant transient kinetics of the molecular concentration
to identify the conditions necessary for the persistence of one
or more autocatalytic cycles that drive the exponential growth
of a subset of the molecules.

B. Reaction network

1. Coupled-reaction graph

In our model, the products of various reactions act as
reactants to other reactions. For example, in the following two
reactions one of the products of r1, B, is used as a reactant
in r2:

r1 : BG + B2 → B + B2G, (1)

r2 : B + B2 → B3. (2)

Hence, r1 is coupled to r2. We graphically represent this
relationship by constructing a directed graph whose nodes are
reactions r1 and r2 and which has a directed edge from r1 to
r2 [Fig. 2(a)]. A graphical representation of all 180 reactions
in our model is shown in Fig. 2(b). Three reaction motifs
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FIG. 2. Reaction network. (a) Definition of the reaction network:
The reactions are the nodes of this network and a directed edge from
node ri to node rj exists if any of the products of reaction i are used
as the reactant in reaction j. For example, in the example considered
here, r1 produces B and B2G, which are used as reactants in r2 and
r3, respectively. Hence, as shown, in the reaction network there are
directed edges from r1 to r2 and r3. Similarly, BG is a product of r3,
which is used as a reactant in r1. Hence, there is a directed edge from
r3 to r1. (b) Generic structure of the reaction network of our model.

are usually found in the reaction network: catalytic cycles,
autocatalytic cycles, and lossy side reactions.

2. Network motifs

a. Catalytic cycles (CCs). Consider reactions r1 and r3 in
Fig. 2(a). Both of them have a directed edge from one to the
other. Hence, if by some process r1 and r3 run in sequence for
some time, then the net output will be the production of B and
B2G2 from B2 and BG2, catalyzed by BG and B2G. It is easy
to show that other cycles, such as r1 → r2 → r4 → r1 and
r2 → r4 → r2, are also catalytic cycles. In fact, any cycle in
the reaction graph defined here is a catalytic cycle.

b. Autocatalytic cycles (ACCs). A subset of the catalytic
cycles has the special property that at least one of the catalyst
molecules is produced in excess. That is, the catalyst molecule
catalyzes its own production. We refer to such cycles as
autocatalytic cycles. For example, it is easy to see that r2 →
r4 → r2 is an autocatalytic cycle, because B2 catalyzes its
own production.

c. Lossy side reactions. In a complex reaction network,
such as ours, it is likely that reactions are coupled to more
than one reaction. Therefore, quite often, the function of an
autocatalytic cycle is hindered by the presence of parasitic
side reactions that couple to one of the reactions in the
autocatalytic cycle and usurp the resources required to drive
the cycle. For example, r1 is a lossy side reaction for the
autocatalytic cycle r2 → r4 → r2. As shown in Fig. 2(a),
lossy reactions need not be an isolated reaction. Often, they
are part of another catalytic or autocatalytic cycle. When it is
part of another autocatalytic cycle, the parasitism is equivalent
to competition between two autocatalytic cycles.

III. CONDITIONS FOR SELF-REPLICATION

The physicochemical conditions required for self-
replication are very different in an interacting chemical
system, such as ours, than in isolated autocatalytic cycles,
which have been studied theoretically and experimentally

Scheme 2

Scheme 1

Reaction internal to cycle
Reaction external
to cycle

A + B ↔ 2C 

A + B ↔ C + D 

Scheme 3

Scheme 5Scheme 4

 is coupled to 

FIG. 3. Modes of self-replication. Open circles represent re-
actions of type A + B ↔ C + D; dark circles, reactions of type
A + B ↔ 2C. To remain consistent with the definition of coupled
reactions, we consider that the reverse reaction of a reaction is
not coupled to the reaction. Scheme 1: Isolated autocatalytic cycles
(ACCs). On the left is a two-step ACC and on the right is a three-step
ACC. A two-step ACC can be constructed from the following two
reactions. Open circle, BG + B2 → B3 + G; dark circle, B3 + B →
2B2. Scheme 2: A catalytic cycle (CC) is coupled to an ACC through
the waste product of the former (red arrow). Scheme 3: An ACC is
coupled to another ACC through the waste of the former. Scheme
4: A CC is coupled to an ACC through a catalyst, which is also
a catalyst for the ACC. Scheme 5: A CC is coupled to another
CC by the sharing of a catalyst molecule between them. In all of
these schemes the light-gray reactions are reactions that couple to
the reactions in a motif but are not part of it.

over the last few decades. Prior work has indicated that the
kinetic dominance of reactions can be quantified through
a measure called specificity. It has been shown that for
any cycle, the product of the specificity, which we call cycle
specificity for the sake of brevity, has to be greater than 0.5 for
a reaction cycle to run. However, this result is incomplete. As
we show here, even for an isolated autocatalytic cycle, other
conditions have to be met for self-replication to take place.
Furthermore, self-replication in an interacting system can
happen even when the cycle specificity of all the autocatalytic
cycles is orders of magnitude less than 0.5, requiring a fresh
search for the conditions required for self-replication.

To establish these conditions, we study the kinetics of
simple network motifs that are outlined in Fig. 3. This is
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TABLE I. Conditions for self-replication for schemes 4 and 5.
Values tabulated are the numerically obtained minimum specificity
required for the concentration to grow exponentially. The minimum
value numerically investigated is 0.0001. Therefore, it is possible that
for entries with a tabulated value of 0.0001, the minimum specificity
required may be less than 0.0001. One should note that the estab-
lished criteria [4,5] would predict that self-replication is not possible
when specificities are this low. This table clearly demonstrates the
limitation of the previous criteria. σ1 is the specificity of the reaction
that is shared by both cycles. σ2,3 are the other reactions in the
scheme. Particularly for scheme 4, σ3 denotes the specificity of the
doubling reaction (dark circle in Fig. 3).

σ1 σ2 σ3

Scheme 4 Scheme 5 Scheme 4 Scheme 5

0.1 0.8418 0.9180 0.8154 0.9180
0.2 0.7356 0.8542 0.6142 0.8294
0.3 0.6573 0.7780 0.4422 0.7443
0.4 0.5693 0.7356 0.2130 0.6487
0.5 0.5232 0.6817 0.0318 0.5509
0.6 0.4768 0.6573 0.0001 0.4409
0.7 0.4307 0.6142 0.0001 0.3427
0.8 0.4007 0.5693 0.0001 0.2413
0.9 0.3858 0.5693 0.0001 0.1241
1.0 0.3427 0.5232 0.0001 0.0002

by no means an exhaustive list of network motifs that lead
to self-replication, but these are the simplest ones to study.
We summarize the necessary conditions for self-replication
for these motifs below. The derivation of these conditions is
described in Appendix B. The sufficient condition for self-
replication is the union of all the necessary conditions.

a. Scheme 1: Isolated ACCs. For isolated ACCs, the cycle
specificity has to be greater than 0.5, in agreement with
previous results. However, additionally, the chemical current
(see Appendix A for the definition) for all the reactions has to
be greater than 0 and an increasing function of time.

b. Schemes 2 and 3: For scheme 2, no exponential growth
occurs unless the specificity of the ACC is greater than 0.5.
For scheme 3, it is possible to observe exponential growth as
long as one of the ACCs has a specificity greater than 0.5.

c. Schemes 4 and 5: It is difficult to write a simple closed
expression for the condition required for exponential growth.
However, under these two schemes, it is possible to observe
exponential growth even when both cycles have a specificity
less than 0.5. The specificity distribution required for these
two schemes is listed in Table I.

IV. COARSE CONTROL OF EXPONENTIAL GROWTH

The fundamental goal of this paper is to clarify how these
reaction motifs come to dominate the kinetics and give rise to
different types of concentration growth. For example, if the
kinetics is dominated by autocatalytic cycles, we expect to
observe exponential growth, whereas if the kinetics is dom-
inated by uncoupled reactions, then we expect linear growth.
It is to be noted that growth is a strictly transient behavior
of the underlying rate equations, which is governed by the
topology of the coupled-reaction graph and the instantaneous

rates of the reactions. Therefore, through a suitable choice
of the reaction library, which determines the topology, and
rate constants, which determine the instantaneous rates, it is
possible to manipulate the influence of various motifs on the
reaction kinetics.

These facts are well known and have been used quali-
tatively to design small chemical systems that permit near-
exponential growth of molecular concentrations [6]. However,
such qualitative knowledge is of little use when large chemical
systems with hundreds, if not thousands, of reactions need to
be designed for self-replication. To design a chemical network
of such complexity, a quantitative relationship between the
rate constants and the transient behavior of the reaction net-
work needs to be established. Unfortunately, it is impractical
to explore the parameter space of the rate constants to estab-
lish such a relationship due to the cost involved in exploring
the parameter space, which may be thousand-dimensional. We
therefore need to establish the required quantitative behavior
using coarse (macroscopic or hydrodynamic) features of the
rate constants, for example, in increasing order of coarseness:
(a) protocol PF, the fraction of fast reactions; (b) protocol CD,
the width of the rate constant distribution; and (c) protocol
IE, the interaction energies between the atoms. Due to our
interest in self-replication, we focus only on the emergence
of exponential growth and establish quantitative criteria using
these parameters.

A. PF: Fraction of fast reactions

The most theoretically accessible case arises when all the
interaction energies are 0 and the rate constants are chosen
in such a way that a controllable fraction, pfast, of the reac-
tions may occur, and the rest are effectively forbidden. To
implement this system, we identified the set of all reactions
permitted by stoichiometry and drew the random barriers for
the reactions from the binary set {0,∞}, corresponding to rate
constants of 1 or 0. The fast reactions, with rate constants
1, were assigned a probability pfast. To ensure detailed bal-
ance conditions, the barriers for the forward and the reverse
reactions were set to be equal. As we discuss later in this
section, pfast can be mapped to the dispersion of the rate
constant distribution, with pfast ≈ 1 corresponding to narrow
and pfast ≈ 0 to broad distributions.

Under these assumptions, the probability of self-
replication, psr, can be estimated (Appendix C) as a function
of pfast. Self-replication occurs if and only if at least one
autocatalytic cycle in the reaction network has direct and
exclusive access to its fuel [Fig. 4(a)]. Hence, psr can be
calculated from (a) the probability of finding at least one
autocatalytic cycle with direct access to its fuel, pacc (pfast ),
and (b) the probability that all autocatalytic cycles have side
reactions, ploss (pfast ). Hence, for pfast = x,

psr (x) = pacc(x) × (1 − ploss(x)). (3)

As Figs. 4(a) and 4(b) show, self-replication generally sets in
spontaneously when a reaction network has a specific level
of complexity dictated by the trade-off of the two compet-
ing percolation transitions, pacc and ploss—the first of which
determines whether there are enough fast reactions to ensure
the existence of at least one driven autocatalytic cycle and the
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(a) (b)

(c) (d)

FIG. 4. Coarse control of exponential growth. (a) Protocol PF:
Numerical solution of the rate equations shows that the probability
of self-replication, psr , is maximum for an intermediate value of the
fraction of fast reactions, pfast . Results are shown for μmax = 4 (blue
circles) and μmax = 5 (orange squares), where μmax is the maximum
allowed size of the molecules. Inset: Analytical prediction of psr

(shown in B) normalized by its maximum value vs pfast (orange
curve) matches well with numerical data. (b) Probability of finding
a fueled autocatalytic cycle, pacc (gray squares), and probability of
loss of fuel due to side reaction, ploss (blue circles), as a function
of the probability of fast reactions, pfast . The probability of self-
replication, psr = pacc × (1 − ploss ), is plotted by the orange line. (c)
Protocol CD: psr vs the coefficient of dispersion (variance/mean)
of the distribution of activation barriers, Bi j , for μmax = 4, tobs =
∞ (blue circles) and μmax = 5, tobs = ∞ (orange squares). For a
narrow distribution (<10 kT), no exponential growth is observed
and only power-law growth is observed. For a broader distribution
(>10 kT), psr increases and eventually saturates with the dispersion
of the activation barriers. (d) Protocol IE: As the magnitude of
the interaction energy increases, the concentration tends to grow
exponentially. For example, for εBB,BG,GG = −1, parabolic growth is
observed. However, for εBB, BG, GG = −6, exponential growth is
observed.

second of which determines whether reactions are so promis-
cuously coupled that every cycle is drained by numerous
side reactions. Due to this trade-off, an optimal pfast exists
at which psr is maximized. Simply stated, this result implies
that emergent self-replication occurs at a high probability
when there are enough autocatalytic cycles and no parasitic
reactions: a result that is qualitatively well known [6] and
perhaps unsurprising. More surprisingly, however, our quanti-
tative treatment shows that this optimality depends only on the
reaction network topology (through pfast and the randomized
graph connectivity) and should be relatively insensitive to the
specific rate constant distribution. Therefore, as long as pfast

can be tuned to its optimal value, exponential growth will
emerge in a large network with certainty. What remains now is

(a)

(b) (c)

FIG. 5. Protocol IE. (a) Growth exponent γ for different combi-
nations of interaction energies. Red areas correspond to γ = 1 (ex-
ponential growth) and blue areas correspond to γ = 0.5 (parabolic
growth). (b) γ as a function of an estimate of the fraction of the fast
reaction (see Appendix A), pfast . The probability of self-replication
psr is defined as the probability of finding γ > 0.99 and it is non-
monotonic with respect to pfast . (c) psr as a function of the coefficient
of dispersion, cd . The similarity of the results for protocol IE to those
for protocols PF and CD indicates equivalence between these three
protocols.

to determine whether a quasirandomly connected network is a
suitable approximation to a real chemical network and, if so,
how we may then tune the effective value of pfast to its optimal
value.

B. CD: Width of the rate constant distribution

The first and simplest hypothesis is that the pfast can be
tuned to optimality by the dispersion of the rate constants. To
demonstrate this, we chose the activation barriers from expo-
nential distributions with varying values of the coefficient of
dispersion (variance/mean), cd , while keeping the interaction
energy 0. In the first set of studies, we numerically solved the
equations until the concentrations reached steady state (tobs =
∞). From the obtained time series of molecular concentra-
tions, we found their growth exponent γ (Appendix A). If
γ = 1, the corresponding concentration grows exponentially.
If γ < 1, the concentration grows subexponentially. The prob-
ability of exponential growth, psr, was determined by finding
Prob(γ > 0.99). Under this protocol, when the distribution
was too narrow [cd < 10 kT in Fig. 4(c)], the molecules
never grew exponentially. However, when the distribution was
broader, the probability of exponential growth, psr, increased
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FIG. 6. Pie chart showing modes of self-replication in three protocols: (a) PF, (b) CD, and (c) IE. Isolated ACCs (schemes 1–3) are absent
in all three protocols, and surprisingly, the dominant mode of self-replication is scheme 5, which contains no isolated ACC. Where no modes
of self-replication are registered, it is likely that self-replication occurs through other motifs that we have not considered here.

with cd , eventually saturating at a value that is dependent on
the underlying reaction network [Fig. 4(c)].

C. IE: Interaction energy

In most experiments, it is easier to control the interaction
energies of the building blocks (atoms) than the rate constant
distribution of the generated reaction network. Therefore, our
theoretical results will be useful if and only if it can be
established that the simplifying assumption of quasirandom
chemical network connectivity is effectively valid for more
realistic models in which reaction rate kinetics are determined
by underlying physical quantities such as interaction energies
between components. We therefore sought next to analyze a
“mechanistic model” in which the activation barriers of the
reactions are obtained by assuming a transition-state model of
the reaction kinetics [Fig. 1(e)]. The energies of the ground
and the transition states are determined by the interaction
energies of the atoms, which are allowed to form clusters
of up to four members. Therefore, the dispersion of the
rate constants can be controlled by changing the interaction
energies. Typically, stronger interaction energies correspond
to broader distributions of rate constants. Hence, as per our
results from protocol CD, we expect to observe exponential
growth when the atoms interact strongly with each other. As
Fig. 4(d) shows, this is indeed the case. Detailed exploration
of the interaction energy space shows that this analogy is
rigorous (Fig. 5) and these three protocols are potentially
equivalent to each other.

V. EQUIVALENCE OF CONTROL PROTOCOLS

The three protocols described here impose macroscopic
control on the reaction kinetics through the rate constants.
Although motivated by related physical intuitions, these en-
sembles of reaction graphs do differ in their microscopic

statistics, and it is important to ask whether they ultimately
succeed in generating self-replicators for the same underlying
topological reasons. Therefore, we sought to understand the
modes of self-replication that each of these protocols employs.
As Fig. 6 shows, the dominant modes of self-replication are,
perhaps surprisingly, schemes 4 and 5, and schemes 1–3
are absent from all three protocols. Although surprising, this
result is similar to those of previous experiments [10], where
isolated ACCs were superseded by cooperative CCs as the
main mode of self-replication. Furthermore, the equivalence
between the three protocols indicates that the topology of
the coupled-reaction network plays a more important role in
determining the transient behavior than the rate constants.

To understand how the choice of the coupled-reaction
graph may influence the transient growth behavior, we in-
vestigate the outcomes of protocol PF under various choices
of the underlying coupled-reaction network. The analysis is
described in detail in Appendixes C and D. Here, we describe
the setup of the problem. Let us consider a reaction network
with N reactions that are coupled with each other with prob-
ability p. Furthermore, let us assume that a fraction fd of
the N reactions is doubling reactions (reactions of the type
A + B → 2C). Then the number of two-step isolated ACCs
(scheme 1) scales as

n1 ∼ (N − N fd )N fd p2. (4)

Similarly,

n4 ∼ 1
2 (N − N fd )2N fd p4, (5)

n5 ∼ 1
6 (N − N fd )3 p4. (6)

It is easy to show from Eqs. (4)–(6) that n1 is larger than n4 if
p <

√
2(1+ fd )

N , and n1 is larger than n5 if p <
√

6 fd (1+2 fd )
N . Both

of these probabilities are incidentally lower than the average
p for our system, which is roughly 2√

N
. Therefore, purely
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FIG. 7. PDF of specificity, σ , for three different protocols and
a theoretical estimate assuming that the propensities are distributed
as ρp(x) ∼ xν exp(−λx). The plot corresponds to ν = −0.9 and λ =
0.01. Despite the dissimilarity of the choice of rate constants, the
specificity distribution is statistically identical in the three protocols.

by numbers, schemes 4 and 5 are more likely than schemes
1–3. However, as stated earlier, self-replication occurs only
when the specificities of the reactions in a given motif satisfy
the required conditions. For schemes 1–3, the specificity of
the cycle has to be greater than 0.5 or, on average, the
specificities of the reactions comprising the ACCs has to be
greater than 1√

2
≈ 0.71. On the other hand, the conditions for

schemes 4 and 5 are much more lenient, as verified by Ta-
ble I. To estimate the likelihood of meeting these conditions,
we estimate the probability distribution of the specificities
(Appendix E). Under the assumption that the propensities for
various reactions are distributed as ρp(x) ∼ xν exp(−λx), the
PDF of the specificity σ follows the distribution described in
Fig. 7. It is evident from the PDF that one is hardly likely to
find reactions with specificities higher than 0.71. On the other
hand, one is quite likely to find reactions with specificities
less than 0.5, which can satisfy the conditions required for
schemes 4 and 5. Furthermore, despite the differences in
the choice of rate constants the specificity distributions for
the three protocols are statistically identical to the theoret-
ical approximation. Therefore, the structural identity of the
coupled-reaction graph as well as the statistical similarity
of the specificity distribution is the origin of microscopic
equivalence between the three protocols.

VI. DISCUSSION

In this paper, we have developed and investigated a model
chemical system where the constituent chemicals interact with
each other through stoichiometric reactions. We have solved
this model under three protocols that impart different levels
of macroscopic control over the rate constant distribution of
the reactions. We have determined that despite the macro-
scopic differences, the microscopic kinetics responsible for
self-replication is the same for all three protocols. In all three

(a)

(c)

(d)

(b)

FIG. 8. Comparison of metabolic and toy chemical networks. A
reactant network can be constructed by adding an undirected edge
between two molecules if they react together in a reaction. In the
network theory literature, this network has traditionally been referred
to as the reaction graph. (a) Reactant graph of the toy chemical
network considered here and (b) reactant graph of a metabolic
network [23]. (c) The degree distribution of the reactant networks
shows that the metabolic network is scale-free (red circles), whereas
the toy chemical network has nearly the same degree for all the
nodes (blue squares). In contrast, the coupled-reaction network is
constructed by adding a directed edge between two reactions if
the product of the first reaction is a reactant for the other. The
coupled-reaction networks for the metabolic and the toy reaction
networks are nearly identical and they look like the coupled-reaction
graph shown in Fig. 2(b). (d) This observation is reflected in their
in-degree distribution as well (the out-degree is similar). Although
the PDFs are different for smaller in-degrees, they both have a peak
at high in-degree values (solid lines with symbols). When translated
to probabilities (dashed lines), both networks are dominated by nodes
with high in-degrees, implying their potential functional similarities.
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protocols, self-replication occurs due to the proliferation of
coupled catalytic cycles and not due to isolated autocatalytic
cycles, a result similar in spirit to that of an earlier experiment
[10]. Furthermore, we have also shown that the criteria for
self-replication from the proliferation of an isolated auto-
catalytic cycle are very different from the criteria for the
self-replication of coupled catalytic cycles. In fact, the cycle
specificity, a well-known metric, can be much less than 0.5
and the molecules involved can still grow exponentially, in
complete violation of the criteria established previously [4,5].
Although our criteria were developed in the context of a
simple toy chemical system, the complexity of our model is
comparable to that of metabolic networks. As shown in Fig. 8,
although the reactant networks (see the figure for definition)
are vastly different, the coupled-reaction networks are quite
similar. Therefore, we argue that the criteria established here
are applicable to real chemical networks as well.

In the light of the results described here, the future de-
sign of self-replicating systems should focus on developing
a chemical environment conducive for the proliferation of
coupled catalytic cycles as opposed to isolated autocatalytic
cycles, since the former can survive even when the reactions
are not very specific. Creating such an environment through
microscopic tuning of the rate constants is, by no means, easy.
However, as we have shown here, it is possible to control
coarse features of the chemical network, such as the width
of the rate constant distribution and the interaction energies
between the building blocks, to achieve the same goal easily.

Many factors may affect the viability of these design
conditions. First, in this paper, we have chosen to report the
behavior of the model in a regime in which the supply of
resources is not a limiting factor. In simulations with limited
resources, however, exponential growth can be hindered if
the system reaches chemical equilibrium before the onset of
exponential growth, consistent with previous studies [4,24].
Second, we have focused implicitly on the regime of a large
and dilute reaction pot where mass-action kinetics applies. Of
course, in any real reactor, the finite total number of particles
would lead to small-number noisiness in the early emergence
and growth of self-replicators that come about from bound
states that are initially at a low concentration or totally ab-
sent. This means that our results are most likely to apply in
settings where the components feeding autocatalytic cycles
are not themselves difficult to form rapidly from promiscuous
reactions among components present in the initial condition.
Finally, it is certain that topological quantities other than pfast

also can play an important role in determining the likelihood
of self-replication. For example, the edge degree distribution
of the coupled-reaction graph, which is nearly uniform here,
is an important determinant of the reaction kinetics. However,
for the purpose of clarity and brevity, we postpone this discus-
sion for the future.
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APPENDIX A: MATERIALS AND METHODS

1. Numerical solution of differential equations

We solved the systems of reactions assuming mass action
kinetics. The concentrations of B and G were kept constant
at 1, whereas the other molecules were initialized with con-
centration 0. We solved the resultant systems of differential
equations with ODE23tb, a stiff solver in MATLAB. The
simulations were run until the system reached chemical equi-
librium. Due to the stiffness of the differential equations,
the solution sometimes failed to reach chemical equilibrium
during the run time of the code, but it did not affect the growth
regime. Hence, all the results reported here are unaffected by
this limitation of the numerical algorithm.

2. Useful thermodynamic quantities

a. Propensity or rate: This is the product of the
rate constant of a reaction and the concentration of
the reactants raised to the appropriate power. For ex-
ample, for the reaction A + B− > C + D with rate con-
stant k+, and obeying mass action kinetics, the propensity
is k+[A][B], where [X ] denotes the concentration of the
reactant X .

b. Chemical current: Denoted J , this is the difference be-
tween the propensities of the forward and reverse reactions of
a reversible reaction. For example, for the reaction described
earlier, J = k+[A][B] − k−[C][D].

3. Specificity

Denoted σ here, the specificity is the ratio of the propensity
of a given reaction to the sum of the propensities of all
reactions that consume the resources required for the given
reaction, including itself [4,5]. Mathematically, if πi is the
propensity of reaction i, then

σ = πi

πi + ∑
j∈C π j

, (A1)

where C is the set of all parasitic reactions that consume the
resources required for reaction i. C = |C | is the number of
such parasitic reactions. The cycle specificity is the product of
the specificities of the reactions in the cycle.

In previous work [4,5], specificity was defined strictly
for completely irreversible reactions. Therefore, its definition
has to be modified for our system, where the reactions are
reversible. We have found out that if the chemical current for
a reaction is negative, it does not contribute to the calculation
of the specificity. Therefore, to measure specificity, we have
only used reactions whose chemical current is positive. Fur-
thermore, often the concentrations of molecules span several
orders of magnitude. Some of them may closely approach
their equilibrium concentration long before other molecules.
Under this condition, the concentrations of these molecules
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are unaffected by the consumption of various reactions. As a
result, we have ignored any parasitic reactions that consume
these molecules from our calculation of specificity.

4. Growth exponent

At any given instant, t , the instantaneous growth rate of the
concentration, dc(t )/dt , is a simple algebraic function of the
concentration, c(t ). Formally,

dc

dt
= rcγ , (A2)

where γ is the growth exponent and r is a proportional-
ity constant. For exponential growth γ = 1, for power-law
(subexponential) growth 0 < γ < 1, and for linear growth
γ = 0. When the concentration grows exponentially (γ = 1),
r is equal to the exponential growth rate constant.

In a typical time series, γ varies with time. Therefore,
to assess the occurrence of exponential growth, in this pa-
per, we measure and report only the maximum value of γ

over a time series, also referred to as γ . It is possible that
the concentration of a molecule grows exponentially for a
very short time, but in this paper we do not consider this
self-replication. Because self-replication is characterized by
persistent exponential growth, we call concentration growth
exponential if and only if the concentration increases by a
factor of 10 through exponential growth. Stated differently,
if and only if γ = 1 over at least a decade of concentrations,
then we call this growth exponential growth.

5. Estimate of pfast

To estimate pfast , we find the fraction of reactions whose
propensities are within 10% of the propensities of the reaction
with the fastest propensity. This is a heuristic definition and
we have determined that the result does not change as long
as it varies between 1% and 20%. For smaller values, the
quantitative result changes, but the qualitative result remains
the same.

6. Random sampling

We sampled 100 different configurations for each random
activation barrier ensemble. To estimate psr in Fig, 5, we
binned the scatterplot into different parameter values (cd or
pfast). Any bins with fewer than five data points were ignored.

APPENDIX B: MODES OF SELF-REPLICATION

In this Appendix, we establish the criteria for self-
replication for the schemes described in Fig. 3.

1. Scheme 1

We consider only the two-step cycle, as it is easier to solve
analytically. Numerical investigation shows (not shown here)
that the result follows for three-step and higher cycles as well.

Let us consider the following two reactions:

X → Y, (B1)

Y → 2X. (B2)

For simplicity we assume that these reactions are completely
irreversible and have rate constants 1. We model the effect of
parasitic side reactions by the annihilation reactions:

X → φ, rate constant r = kx; (B3)

Y → φ, rate constant r = ky. (B4)

The Jacobian of these chemical systems is

J1 =
[−(1 + kx ) 2

1 −(1 + ky)

]
. (B5)

One of the eigenvalues of this Jacobian has a positive real part
if and only if

kx + ky + kxky � 1. (B6)

The specificities of the reactions are σ1 = 1/(1 + kx ) and
σ2 = 1/(1 + ky). Therefore, the cycle specificity is

σ = σ1 × σ2 (B7)

= 1

1 + kx + ky + kxky
. (B8)

Therefore, for a positive eigenvalue, using kx + ky + kxky � 1,
we find that σ � 0.5, in agreement with previous results [4,5].

2. Schemes 2 and 3

The reactions are as follows:

X → Y + W, r = 1; (B9)

Y → αX, r = 1; (B10)

W → V, r = 1; (B11)

V → 2W, r = 1; (B12)

X → φ, r = kx; (B13)

Y → φ, r = ky; (B14)

W → φ, r = kw; (B15)

V → φ, r = kv. (B16)

α = 1 for scheme 2 and α = 2 for scheme 3.
The corresponding Jacobian is

J2 =

⎡
⎢⎣

−(1 + kx ) α 0 0
1 −(1 + ky) 0 0
1 0 −(1 + kw ) 2
0 0 1 −(1 + kv )

⎤
⎥⎦.

(B17)

J2 can be solved similarly to J1 and the criteria for positive
eigenvalues are

kw + kv + kwkv � 1 for schemes 2 and 3, and (B18)

kx + ky + kxky � 1 only for scheme 3. (B19)
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FIG. 9. Scheme 4. (Left) Scatterplot of kx,y,w values for which the real part of at least one eigenvalue is positive. (Center) Scatterplot of
σ1,2,3 for which the same condition is true. (Right) Scatterplot of cycle specificities of the two coupled cycles for the same condition. A positive
eigenvalue is observed even when the cycle specificity is much below 0.5.

Therefore, the criterion for self-replication is the same as for
scheme 1: the ACC specificity has to be greater than 0.5.

3. Schemes 4 and 5

The reactions are as follows:

X → Y + W, r = 1; (B20)

Y → X, r = 1; (B21)

W → αX, r = 1; (B22)

X → φ, r = kx; (B23)

Y → φ, r = ky; (B24)

W → φ, r = kw. (B25)

α = 2 for scheme 4 and α = 1 for scheme 5.

The corresponding Jacobian is

J3 =
⎡
⎣−(1 + kx ) 1 α

1 −(1 + ky) 0
1 0 −(1 + kw )

⎤
⎦. (B26)

The eigenvalues of this Jacobian are complicated and find-
ing criteria akin to those for schemes 1–3 is tiresome and im-
practical. However, the eigenvalues can be found numerically
and as a function of kx,y,w. In Fig. 9 and Fig. 10, we list the
values of kx,y,w and the corresponding σ1,2,3 for which the real
part of at least one of the eigenvalues is positive. A positive
eigenvalue, hence exponential growth, is observed even when
the cycle specificity is less than 0.5.

APPENDIX C: PROBABILITY OF SELF-REPLICATION

For successful self-replication, there must be a region in
the parameter space where driven autocatalytic cycles can
proliferate without any interference from parasitic side re-
actions. Hence, it is helpful to understand the percolation

FIG. 10. Scheme 5. (Left) Scatterplot of kx,y,w values for which the real part of at least one eigenvalue is positive. (Center) Scatterplot of
σ1,2,3 values for which the same condition is true. (Right) Scatterplot of cycle specificities of the two coupled cycles for the same condition. A
positive eigenvalue is observed even when the cycle specificity is much less than 0.5.
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of autocatalytic cycles and the side reactions in our reaction
network.

1. Percolation of autocatalytic cycles with access to food

The percolation of autocatalytic cycles with access to food
depends on two factors:

(i) the availability of at least one autocatalytic cycle and
(ii) the availability of high-free-energy molecules to drive

an autocatalytic cycle.
The probability of meeting both of these conditions is

dependent on the underlying reaction network. However, a
few qualitative features apply to any reaction network in
general, which we outline here.

Let us assume that there are N total reversible reactions,
half of which we designateforward reactions and the other half
reverse. In a pruned reaction network, we sample reactions
from the forward set with probability past and include the cor-
responding reverse reaction as well. Therefore, there are, on
average, n f = pfastN reactions in the pruned reaction network.
Let food, F , be the molecules that are provided in abundance
to fuel the chemical reactions. For example, in our model B
and G are the fuel or food molecules and they can be used
to produce other molecules required for various autocatalytic
cycles.

a. Availability of food

Since we select the reactions randomly from the complete
set of reactions, we are likely to encounter a situation where
there are no mechanisms to utilize F in the pruned reaction
network. Hence, we compute the probability of finding a
mechanism to generate food from the fuel molecule in the
pruned network. To do so, we note that there are two principal
mechanisms for this conversion: (a) direct reactions, where
two fuel molecules react to form a food molecule; and (b) cat-
alytic cycles, where two or more fuel molecules are converted
to food molecules via two or more coupled reactions. Let pd

be the probability of sampling a direct reaction and pc be the
probability of sampling a catalytic cycle. pd can be easily
approximated from the information about the reactions: if
there are nd direct reactions, then the probability of sampling
one of them is pd = 2nd/N . The factor of 2 appears because
either (a) we can choose all of the direct reactions to be
forward reactions, in which case we sample nd reactions
from N/2 reactions, or (b) we pick their reverse reactions,
automatically including them in the reaction network, hence
we sample 2nd reactions from N reactions. Calculating pc is
tougher.

The number of catalytic cycles increases with the number
of constituent reactions m for m 
 N . However, a functional
catalytic cycle requires a steady flow of flux through its
constituent reactions to be effective. As pointed out in sev-
eral studies [4,5], the likelihood of obtaining such functional
cycles decreases exponentially in m for generic reaction net-
works. Hence, pc can be well approximated by calculating
the likelihood, pcF , of finding a two-step catalytic cycle
that converts the fuels into food for the autocatalytic cycles.
Generically, the reactions look like

F1 + C1 → C2 + R1, (C1)

F2 + C2 → C1 + R2. (C2)

Here, F1,2 are the fuel molecules and they can be identi-
cal; C1,2 are intermediate molecules that effectively act like
catalysts; and R1,2 are the food molecules produced. The
number of all two-step cycles, NC2, can be calculated from
the adjacency matrix of the reaction network. This number
gives the probability of finding a catalytic cycle when two
reactions that are not each other’s reverse reaction are chosen
randomly:

pcyc = 2NC2

N (N − 2)
. (C3)

With the additional information about the reactions that uti-
lize F , the number of such conversion cycles, ncF , can be
computed, whence

pcF = ncF/NC2. (C4)

With these two probabilities, pd and pcF , available, we
compute the probability of finding at least one mechanism
that converts fuel into food. To do so, we first compute the
probability of finding at least one direct mechanism:

pd�1 = 1 − Prob(no direct mechanism)

= 1 − (1 − pd )n f . (C5)

Similarly, the probability of finding at least one conversion
cycle is

pcF�1 = 1 − 〈(1 − pcF )nC2〉 � 1 − (1 − pcF )〈nC2〉 (C6)

Here 〈nC2〉 = pcyc × n f (n f − 2)/2 is the expected number of
cycles in the pruned network. Therefore, the probability of
finding at least one mechanism of food production is

pfood = 1 − (1 − pd�1)(1 − pc�1). (C7)

b. Availability of autocatalytic cycles

Autocatalytic cycles are subsets of catalytic cycles. Hence,
finding an autocatalytic cycle is harder than finding a catalytic
cycle. Let us assume that there are nac2 two-step autocatalytic
cycles. Therefore, the probability that a randomly chosen
catalytic cycle is an autocatalytic cycle is

pac2 = nac2/NC2. (C8)

Therefore, the probability of finding at least one autocatalytic
cycle is

pac�1 � 1 − (1 − pac2)〈nC2〉. (C9)

Since this inequality provides an upper bound for pac�1,
for simplicity of calculation we assume that pac�1 = 1 − (1 −
pac2)〈nC2〉. In the same spirit, we assume that pcF�1 = 1 −
(1 − pcF )〈nC2〉.

c. Probability of autocatalytic cycles with access to food

Combining the results from the previous two sections, we
find the probability of finding at least one autocatalytic cycle
with access to food:

pacc = pac�1 × pfood. (C10)
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FIG. 11. Percolation of various structures in the reaction network
used vs the probability of fast reactions. Mechanisms that convert
fuel into food, pfood (solid blue line); autocatalytic cycles, pac�1 (solid
red line); autocatalytic cycles with access to food, pacc (dashed black
line); and side reactions, ploss (solid gray-blue line).

2. Probability of side reactions

Let nR be the average number of reactions that a particular
molecule reacts in and pR = nR/N be the average probability
that a particular molecule is the reactant in a randomly chosen
reaction. Hence, if n f reactions are chosen randomly, then the
probability that a molecule reacts in more than one reaction is

pr>1 = 1 − (1 − pr )n f − n f pr (1 − pr )n f −1. (C11)

Statistically, as long as there is at least one molecule
that reacts in at most one reaction, there will be at least
one autocatalytic cycle without any side reactions, which
will permit exponential growth. Hence, side reactions start
to interfere only when all the molecules take part in more
than one reaction. The emergence of lossy side reactions
also depends on whether or not dimerization reactions, such
as B + G → BG and others, are forbidden. If one or more
of them are forbidden, then the percolation of lossy side
reactions becomes more difficult than when all of them are
allowed. Therefore, the probability of finding all autocatalytic
cycles with side reactions is

ploss = Prob(all molecules except fuels

× react in more than one reaction)

= pNM−NF
r>1 × (1 − (1 − pd )n f ). (C12)

Here pd is the probability of a dimerization reaction, which is
also the probability of direct access to the food. NM is the total
number of molecules in the reaction network and NF is the
number of fuel molecules.
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FIG. 12. Probability of self-replication vs probability of fast
reactions. Probabilities of autocatalytic cycles with access to food,
pacc (dashed black line); side reactions, ploss (solid gray-blue line);
and self-replication, psr (solid red line).

3. Probability of self-replication

An autocatalytic cycle runs efficiently if it has direct access
to available food and there are no lossy side reactions. Hence,
the probability of observing self-replication is

psr = pacc × (1 − ploss ). (C13)

4. Percolation probabilities and conditions for self-replication

As shown in Fig. 11, in the reaction network used in our
model, the percolation of autocatalytic cycles with access to
food occurs at a lower value of pfast than the percolation
of lossy side reactions. Hence, for some intermediate values
of pfast , we obtain a reaction network that is composed pre-
dominantly of interacting autocatalytic cycles with no side
reactions. In this intermediate region, self-replication occurs
optimally (Fig. 12). It is easy to imagine a reaction network
where the opposite happens: ploss percolates before pacc. In the
intermediate region the network is more treelike and in such
a network self-replication is unlikely to happen. Therefore, in
general, if a cycle is the predominant structural motif in a
reaction network, then it is conducive for self-replication.

5. Asymptotic bound on the probability of self-replication

When Nm → ∞ and pr → 0 (N → ∞), ploss is a step
function and provides a strong upper bound for pfast values
that allow self-replication. This upper bound can be calculated
by finding the pfast value for which the derivative of ploss with
respect to pfast is maximum. Upon calculation, we find that for
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FIG. 13. Position of the maximum, pmax
fast , vs complexity of the

reaction network, N/Nm. Irrespective of the value of Nm, pmax
fast remains

unchanged when the complexity N/Nm is large enough (�10) as
shown in the numerically calculated curves (solid lines). In the
large-complexity limit, when Nm is large, pmax

fast is well approximated
by the theoretical bound (dashed lines) in Eq. (C14).

self-replication to occur,

pmax
fast � log Nm

Nm
. (C14)

Variation of pmax
fast for some values of Nm is shown in Fig. 13.

6. Factors affecting the probability of self-replication

It is unlikely that pfast , which controls the mean number
of nodes in the reaction network, is the only factor that
determines the probability of self-replication. In any network,
the most important network elements are the number of
nodes, number of edges, and number of cycles, which we
measure, respectively, by the number of fast reactions n f ,
mean degree of the nodes in the reaction network ne, and
number of two cycles in the reaction network nac2. In any
graph these three quantities are linearly dependent on each
other. Therefore, we have chosen to report the dependence of
exponential growth on pfast and ne. We find that an optimal
pfast is preferred for exponential growth, but there is no such
preference for subexponential growth (Fig. 14). In contrast, ne

has a different variance but the same mean for exponential and
subexponential growth, implying that ne is not a determinant
of exponential growth.

APPENDIX D: CONTROL OF psr THROUGH
DIMERIZATION REACTIONS

The relation psr = pacc × ploss is purely topological, in the
sense that both pacc and ploss depend only on the reaction
network properties. Therefore, by controlling these proper-
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FIG. 14. Scatterplot of the mean degree per node, ne/nf , and
pfast . Red points correspond to exponential growth and orange points
correspond to subexponential growth. The histogram on the y axis
shows that the emergence of exponential growth does not have a
strong dependence on the mean degree distribution.

ties, such as the density of autocatalytic cycles, the degree
distribution, and the number of reactions, it is possible to
control the range of pfast over which psr remains reasonably
high. The density of the autocatalytic cycles is difficult to
control independently since in a strongly interacting network,
such as ours, they are too numerous and interdependent, which
renders the control of pacc nearly impossible. On the other
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FIG. 15. Probability of self-replication vs probability of fast
reactions with different numbers of forbidden dimerization reactions.
Increasing the number of forbidden dimerization reactions increases
the stability of the food molecules B and G, and the probability of
self-replication increases.
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hand, there is a simple way to control ploss. The lossy side
reactions overwhelm the autocatalytic cycle if the reaction
network is sufficiently “well connected,” i.e., if it is pos-
sible to generate all the molecules by seeding the reaction
network with the atoms (B and G) only. Therefore, dimer-
ization reactions—reactions that convert the atoms to their
dimers—are necessary to construct a well-connected reaction
network and, hence, the percolation of lossy side reactions.
Consequently, by manipulating the rate of the dimerization
reactions, the percolation of ploss can be manipulated. As we
show in Fig. 15, rendering one or more dimerization reactions
always forbidden improves the probability of self-replication.
In fact, when all three of them are always forbidden, for large
pfast, self-replication occurs with unit probability. The propen-
sity of the dimerization reactions determines the stability of
the food molecules, B and G. Therefore, in general, this result
implies that the more stable the food molecule, the more likely
it is to attain exponential growth.

APPENDIX E: PROBABILITY DISTRIBUTION
FOR SPECIFICITY

Let us assume that the propensities (rates), x, are dis-
tributed according to the probability distribution function
ρp(x). Let us further assume that every reaction competes,
on average, with C other reactions. In reality, each reaction
competes with a varying number of reactions, but for this
example, we ignore that complication. Furthermore, let us

assume that these reactions, on average, have propensity μ,
which is the mean propensity. Therefore, on average, a reac-
tion with propensity x will have specificity

σ = x

x + Cμ
. (E1)

The probability distribution for σ is then obtained by a
change of variables:

ρs(σ )dσ = ρp(x)dx, (E2)

∴ ρs(σ ) = ρp

(
Cμσ

1 − σ

)
× (1 − σ )2

Cμ
. (E3)

For exponentially distributed propensities, ρp(x) = λ exp
(−λx), where μ = 1/λ:

ρsσ = λ2

C
(1 − σ )2 exp

(
− Cσ

1 − σ

)
. (E4)

For power-law-distributed propensities with exponential
cutoff ρp(x) ∼ xν exp(−λx), where μ = ν+1

λ
,

ρs(σ ) ∼
(

�(ν + 1)

λν+1

)ν+1( Cσ

1 − σ

)ν

× exp

(
−�(ν + 1)

λν+1

Cλσ

1 − σ

)
. (E5)

[1] A. Butlerow, C.R. Acad. Sci. 53, 145 (1861).
[2] R. Breslow, Tetrahedron Lett. 1, 22 (1959).
[3] F. J. Dyson, J. Mol. Evol. 18, 344 (1982).
[4] E. Szathmáry, Philos. Trans. R. Soc. London B 361, 1761

(2006).
[5] G. King, Biosystems 15, 89 (1982).
[6] A. J. Bissette and S. P. Fletcher, Angewandte Chem. Int. Ed. 52,

12800 (2013).
[7] N. Paul and G. F. Joyce, Curr. Opin. Chem. Biol. 8, 634 (2004).
[8] J. M. Carnall, C. A. Waudby, A. M. Belenguer, M. C. Stuart,

J. J.-P. Peyralans, and S. Otto, Science 327, 1502 (2010).
[9] T. Wang, R. Sha, R. Dreyfus, M. E. Leunissen, C. Maass, D. J.

Pine, P. M. Chaikin, and N. C. Seeman, Nature 478, 225 (2011).
[10] N. Vaidya, M. L. Manapat, I. A. Chen, R. Xulvi-Brunet, E. J.

Hayden, and N. Lehman, Nature 491, 72 (2012).
[11] Z. Zeravcic and M. P. Brenner, Proc. Natl. Acad. Sci. USA 111,

1748 (2014).
[12] J. W. Sadownik, E. Mattia, P. Nowak, and S. Otto, Nat. Chem.

8, 264 (2016).
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