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We introduce and study a minimum two-orbital Hubbard model on a triangular lattice, which captures the key
features of both the trilayer ABC-stacked graphene-boron nitride heterostructure and twisted transition metal
dichalcogenides in a broad parameter range. Our model comprises first- and second-nearest neighbor hoppings
with valley-contrasting flux that accounts for trigonal warping in the band structure. For the strong-coupling
regime with one electron per site, we derive a spin-orbital exchange Hamiltonian and find the semiclassical
ground state to be a spin-valley density wave. We show that a relatively small second-neighbor exchange
interaction is sufficient to stabilize the ordered state against quantum fluctuations. Effects of spin- and valley
Zeeman fields as well as thermal fluctuations are also examined.
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I. INTRODUCTION

Moiré materials are layered 2d crystals in which a lattice
mismatch or a rotational misalignment gives rise to a long-
period superlattice structure. These moiré superlattices host
narrow minibands that promise enhanced correlation effects
[1,2]. Recent experiments have discovered correlated insula-
tors, superconductivity, orbital ferromagnetism, and sponta-
neous (quantum) Hall effect in several moiré materials, in-
cluding twisted bilayer graphene [3–9], trilayer ABC-stacked
graphene (TG) on hexagonal boron nitride (h-BN) [10–12],
and twisted transition metal dichalcogenides (TMDs) [13,14].

A paradigmatic approach for studying such correlated
electron phenomena is the Hubbard model. For the afore-
mentioned moiré materials, the effective Hubbard model
comprises both spin and orbital degrees of freedom [15–18]
arising from the K, K ′ valleys of the original Brillouin zone.
Since the separation of K, K ′ valleys is much larger than
the reciprocal vector of the moire superlattice, intervalley
hybridization is weak, thus leading to Hubbard models with
emergent symmetries.

A first concrete example is AB-stacked bilayers of TMDs
which at small twist angle form a triangular superlattice
[19,20]. A recent work [20] has found that the topmost moiré
valence bands of this material can be described by a two-
orbital Hubbard model where each orbital resides in one of the
two layers and electron’s spin is locked to the valley. When
the small layer separation is neglected, intra- and interlayer
Coulomb repulsions are equal, which yields an interaction
with SU(4) symmetry.

A second example is TG/h-BN [21–28]. In this het-
erostructure, a vertical electric field enables a high degree
of band structure tunability and permits the realization of a
two-orbital Hubbard model on a triangular lattice [15,16] with
valley-contrasting flux [22–28]. This flux breaks SU(4) sym-
metry while preserving charge and spin conservation within
each valley.

A last example is twisted bilayer graphene where two
graphene sheets are stacked with a small twist angle.

Theoretical works have constructed manifestly symmetric,
maximally localized Wannier orbitals [18,29,30] and derived
a two-orbital Hubbard model on a honeycomb lattice with ex-
tended interactions [18,29–31]. In both TG/h-BN and twisted
bilayer graphene, the two orbitals in the effective Hubbard
model correspond to Wannier states from the K, K ′ valleys.

In this work, we introduce and study a minimum two-
orbital Hubbard model on a triangular lattice, which cap-
tures key features of both TG/h-BN and twisted TMDs in a
broad parameter range. Our model includes first- and second-
neighbor (NN) hopping as well as on-site interaction U . The
first-NN hopping is complex and has opposite phases for the
two valleys accounting for a valley-contrasting flux, while the
second-NN hopping is real due to crystal symmetry. Focusing
on the large-U limit with one electron per site, we derive a
spin-orbital exchange Hamiltonian HJ with SU(2) × SU(2) ×
U (1) symmetry, associated with spin and charge conservation
within each valley. By solving HJ in the semiclassical limit,
we find a “spin-valley density wave” ground state with four-
sublattice order. We also show by a spin-wave analysis that
a relatively small second-neighbor exchange interaction is
sufficient to stabilize the order against quantum fluctuations
at zero temperature. We show that thermal melting of the
T = 0 ground state restores spin rotation symmetry and may
lead to a valley density wave state at low temperature, which
breaks discrete lattice and time-reversal symmetries. Finally,
we examine the effects of spin- and valley Zeeman fields and
discuss experimental signatures of the predicted density wave
states in TG/h-BN and twisted TMD.

II. MODEL

We begin with a detailed description of our proposed
Hubbard model for TG/hBN and twisted TMDs.

We will first consider TG/h-BN. In this heterostructure,
both individual components, TG and h-BN, have a 1.5%
mismatch of lattice constants which results in a triangular
moiré superlattice, see Fig. 1(a). For this superlattice, the mi-
croscopic symmetries are time-reversal symmetry, three-fold
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FIG. 1. (a) Schematic plot of the triangular moiré superlattice
formed by TG (black) and h-BN (blue). (b) Triangular lattice with
directed bonds. First-NN hoppings along the bond direction acquire
a valley-contrasting phase, t1e�

i j
α . Second-NN hoppings t2 are real

valued.

rotations C3 around the axis perpendicular to the TG/h-BN
sheets, and mirror reflection symmetry M.

The miniband structure in TG/h-BN arises from the moiré
potential of h-BN acting on low-energy electrons in TG
[21,23,24]. An important experimental parameter for tuning
the bandwidth and topology of the minibands is the exter-
nal electric field [10,11] that provides a potential difference
between the top and bottom graphene sheets. In TG/hBN,
depending on the the sign of the potential difference, the
miniband structure is either in a “Hubbard regime” with zero
Chern number [22–26] or in a “quantum Hall regime” with
finite valley Chern number [12,27,28,32]. In this work, we
focus on the “Hubbard regime” without Chern number.

The Hubbard regime is realized when electrons in TG
are pulled toward h-BN by the external electric field. The
resulting miniband structure can be intuitively understood
from the deep potential limit, where each minimum of the
moiré potential creates a localized Wannier orbital. Since
the potential minima form a triangle lattice, one naturally
expects a triangle-lattice tight-binding model for TG/h-BN, as
demonstrated by previous band structure calculations [27,33].
Since the hopping matrix elements decay rapidly with the
distance, we study a minimum model for TG/h-BN that only
retains the dominant hopping terms. The full Hamiltonian of
our model is H = H0 + HI , where the single-particle Hamil-
tonian H0 is given by

H0 =
∑

α

⎛
⎝t1

∑
〈i, j〉

ei�i j
α c†

iαc jα + t2
∑
〈〈i, j〉〉

c†
iαc jα + . . .

⎞
⎠, (1)

where ciα annihilates an electron at site i in state α = (σ, τ )
with spin σ =↑,↓ and orbital τ = ± associated with the
K, K ′ valleys. t1, t2 are the dominant hopping amplitudes
between first- and second-NN sites. The t1 hoppings are
generally complex and carry phases �

i j
α = −�

ji
α , which are

independent of spin and opposite for the two valleys. Mi-
croscopically, these phases arise from the trigonally warped
Dirac dispersions at the K, K ′ valleys and are allowed by
symmetry. The total flux piercing through each elementary tri-
angle is 3�α ≡ �

i j
α + �

jk
α + �ki

α where �σ,+ = −�σ,− ≡�

and i, j, k are three consecutive triangle sites along the di-
rected first-NN bonds, see Fig. 1(b). In comparison, the t2
hoppings are real valued due to the combination of reflection
x → −x and time-reversal symmetry, which acts within each
valley. In this work, the t2 hopping will play an important role
as shown below.

Second, the dominant term in the projected Coulomb in-
teractions onto the narrow minibands is the on-site density
interaction,

HI = U

2

∑
i

(ni − n0)2, (2)

where ni = ∑
σ,ξ c†

iσξ ciσξ is the total number electrons on
the i site, n0 controls the filling, and U is the interaction
amplitude. In this work, we will focus on the regime where
kinetic exchange due to single-particle hopping dominates
over direct interactions between electrons on different sites.
We remark that previous works have considered alternative
mechanism of SU(4) symmetry breaking due to extended in-
teractions instead of valley-dependent single-particle hopping
[16,26].

III. VARIATIONAL STUDY

We now proceed to study our two-orbital Hubbard model
in the strong-coupling limit, U 	 t1, t2. Such an approach
complements studies in the weak-coupling regime [31,34–41]
and is a reasonable way toward understanding the real system
that may eventually be in an intermediate-coupling regime.
Specifically, we focus on the filling of one electron per site
and, as shown in Appendix A, perform a perturbative expan-
sion to second order in t1, t2 leading to a spin-orbital exchange
interaction,

HJ =
∑
α,β

⎛
⎝J1

∑
〈i, j〉

ei(�i j
β −�

i j
α )T α

β,iT
β
α, j + J2

∑
〈〈i, j〉〉

T α
β,iT

β
α, j

⎞
⎠. (3)

Here J1 = 2t2
1 /U, J2 = 2t2

2 /U are antiferromagnetic ex-
change couplings and T α

β = |β〉〈α| are SU(4) generators that
act on the spin-orbital basis states |+,↑〉, |+,↓〉, |−,↑〉, and
|−,↓〉. The SU(4) generators satisfy

∑
α T α

α = 1, (T α
β )† =

T β
α , [T α

β , T β ′
α′ ] = δαα′T β ′

β − δββ ′T α
α′ . Despite being written in

terms of SU(4) generators, HJ is not SU(4) symmetric when
�

i j
α 
= 0, as the exchange of electrons in different orbitals

picks up a orbital-dependent phase factor. This phase factor
shows up in the first term ∝ J1 and leads to a breaking of
SU(4) down to SU(2)×SU(2) × U(1) with generators �σ ⊕
I, I ⊕ �σ , and I ⊕ (−I ), where σ ’s are 2 × 2 Pauli matrices
associated with spin and ⊕ denotes direct sum of the two
valleys.

Next, we will determine the ground states of HJ in the
semiclassical approximation. For this purpose, we consider
the following product state:

|	〉 =
∏

i

(∑
α

vα,i|α〉i

)
, (4)
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FIG. 2. Spin-valley density wave with a four-sublattice order
which is a variational ground state for all values of valley-contrasting
flux �α . The spin ↑, ↓ states are shown in red and the orbital ± states
are shown in blue.

where we have defined complex and normalized vectors vi =
(v1,i, v2,i, v3,i, v4,i )T for each site. To find the variational
ground states based on this ansatz, we note that the two terms
in the effective Hamiltonian permute the states on first-NN
and second-NN sites, T α

β,iT
β
α, j = |βi, α j〉〈αi, β j |. Hence, as

shown in Appendix B, the variational ground states need to
minimize,

〈	|HJ |	〉 = J1

∑
〈i, j〉

∣∣∣∣∣
∑

α

ei�i j
α v∗

α,ivα, j

∣∣∣∣∣
2

+ J2

∑
〈〈i, j〉〉

|v∗
i · v j |2.

(5)

Since J1, J2 > 0, the energy of each second-NN bond is
minimized when vi, v j are orthogonal and it is minimized for

each first-NN bond when |∑α ei�i j
α v∗

α,ivα, j | = 0. Notably, we
find that for all the first- and second-NN bonds and all values
of valley-contrasting flux the conditions are satisfied by the
spin-valley density wave ground state shown in Fig. 2. Three
remarks are in order:

(1) The ground state for our two-orbital model exhibits
four-sublattice spin-valley density wave order, a triplet-Q state
with the commensurate wave vector 
M. The situation is thus
markedly different from the SU(2) Heisenberg model on the
triangular lattice [42–44] for which the ground state for small
J2/J1 is the 120◦ state with three-sublattice order at the wave
vector 
K .

(2) The presence of the valley-contrasting flux affects
the ground-state manifold: If �

i j
α = 0, then all semiclassical

ground states have mutually orthogonal states on first-NN and
second-NN bonds and can be generated from the configura-
tion in Fig. 2 by a global SU(4) rotation [45]. If �

i j
α 
= 0, then

only a subset of these states, generated from the configuration
in Fig. 2 by SU(2)×SU(2) rotations, are semiclassical ground
states. For example, vi = (1, 0, 1, 0)T and v j = (1, 0,−1, 0)T

do not minimize the semiclassical energy of a first-NN bond
if �

i j
α 
= 0 despite being mutually orthogonal. The manifold

of ground states we found for �
i j
α 
= 0 is parameterized by

two independent unit vectors denoting the spin axis associated
with each valley.

(3) In addition to breaking the spin rotation symmetry
from SU(2)×SU(2) to U (1) × U (1), the spin-valley density
wave state breaks lattice translation symmetry. However, it
preserves the U (1) valley number symmetry and, in particular,
is valley unpolarized. Our ground state has a finite energy gap
to all excitations with an unbalanced occupation of the two
valleys.

IV. QUANTUM FLUCTUATIONS

To understand the stability for the spin-valley den-
sity wave ground state of Fig. 2, we now proceed by
studying the effects of quantum fluctuations with a gen-
eralized Holstein-Primakoff (HP) transformation [46–48].
We, therefore, assign the α-spin-orbital basis state to
each site of the �α sublattice. Based on this choice,
the generalized HP transformation for a site i ∈ �α is
given by T α

α,i = M − ∑
β 
=α bα†

β,ib
α
β,i, T α

β,i = bα†
β,i(M − ∑

β 
=α

bα†
β,ib

α
β,i )

1/2, T β
α,i = (M − ∑

β 
=α bα†
β,ib

α
β,i )

1/2bα
β,i, and T β ′

β,i =
bα†

β,ib
α
β ′,i, where bα

β,i denote bosonic operators with β 
= α and
M is a positive integer. Next, we insert the HP transformation
in the effective Hamiltonian of Eq. (3), perform a 1/M expan-
sion, and only retain terms that are quadratic in the bosonic
operators. The exchange interaction then takes on the form
HJ ≈ M

∑
α 
=β Hαβ where

Hαβ = J1

∑
〈i, j〉

i∈�α, j∈�β

A†
i jAi j + J2

∑
〈〈i, j〉〉

i∈�α, j∈�β

B†
i jBi j, (6)

and we have introduced the bond operators A†
i j = ei�i j

β bβ†
α, j +

ei�i j
α bα

β,i and B†
i j = bβ†

α, j + bα
β,i. In this representation of the ef-

fective Hamiltonian, bβ
α only pairs with bα

β , which implies that
that individual Hαβ terms decouple and can, thus, be studied
independently of each other. For deriving the aforementioned
stability phase diagram, we proceed in two steps:

First, as shown in Appendix C, we Fourier transform the
Hamiltonian of Eq. (6) to momentum space and diagonalize
it by means of a Bogoliubov transformation. This gives the
dispersions

ω
αβ

k = 2(J1 + J2)
√

1 − ∣∣γ αβ

k

∣∣2
, (7)

where k is a momentum in the reduced Brillouin zone (RBZ)
of the four-sublattice ordered spin-valley density wave state.
Moreover, we defined the factor γ

αβ

k = [J1 cos(k · R(1)
αβ +

�α − �β ) + J2 cos(k · R(2)
αβ )]/(J1 + J2). Here R(1)

αβ is a vector
that connects the first-NN sites of the �α and �β sublattices
and points along the bond direction. Similarly, R(2)

αβ is a
vector which connects the second-NN sites of the �α and �β

sublattices. At this point, two comments are in order:
(1) If J2 = 0, then the dispersions vanish along the line

k · R(1)
αβ + �α − �β = 0 and we anticipate that the resulting

low-energy quantum fluctuations destroy the spin-valley den-
sity wave order. This means that the spin-valley density wave
order for TG/h-BN is not possible in previous models with
t2 = 0 [22–25].
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(2) If J2 
= 0, then the dispersion vanishes at discrete points
in the RBZ. We expect that this behavior will reduce low-
energy quantum fluctuations and will be crucial for stabilizing
the spin-valley density wave order.

To confirm these arguments, we compute the reduction
of the α-ordered moment due to the quantum fluctuations,
〈T α

α,i〉 = M − 〈∑β 
=α bα†
β,ib

α
β,i〉, where the i site is on the �α

sublattice. We find that in momentum space,

〈T α
α,i〉 = M − 1

2

∑
β 
=α

〈
1√

1 − |γ αβ

kτ
|2

− 1

〉
RBZ

. (8)

Here 〈...〉RBZ denotes the average over the RBZ. By numer-
ically evaluating Eq. (8) and setting M = 1, we find that
〈T α

α,i〉 > 0 for J2/J1 � 0.12, see Appendix C. This threshold
does not depend on the orbital-contrasting flux as the latter
only provides a constant momentum-space displacement in
the dispersion of Eq. (7) and thereby does not change the
RBZ average. Accordingly, our prediction is that the system
transitions from a disordered phase for J2/J1 � 0.12 to a
phase with a stable spin-valley density wave order for J2/J1 �
0.12. The nature of the disordered phase is an interesting
question we leave to a separate study.

V. ZEEMAN FIELD EFFECTS

We will now study the effects of spin/orbital-Zeeman
fields in our spin-orbital model,

H = HJ − hσ

∑
i

σ z
i − hτ

∑
i

τ z
i , (9)

where σ and τ are 2 × 2 Pauli matrices acting in spin and
orbital subspace, respectively. In TG/h-BN, the spin-Zeeman
field can be realized by an in-plane magnetic field and the
valley Zeeman field by an out-of-plane magnetic field.

First, we set the orbital-Zeeman field to zero, hτ = 0, and
consider the case of a spin-Zeeman field hσ . A large hσ freezes
the spin degrees of freedom and we can recast HJ into a form
that includes only the remaining orbital degrees of freedoms.
Neglecting the small J2 term, we find that

H ≈ J1

∑
〈i, j〉

[1 + τ i · �z(2�i j ) · τ j]/2. (10)

Here �z(θ ) is a rotation matrix about the z axis by a θ

angle. Equation (10) can also be written as an anisotropic
exchange interaction with a Dzyaloshinskii-Moriya term,
∼J1[1 + τ z

i τ
z
j + cos(2�i j )(τ x

i τ x
j + τ

y
i τ

y
j ) + sin(2�i j )(τ x

i τ
y
j −

τ
y
i τ x

j )]/2 with �i j = −� ji = �.
To find the semiclassical ground state of Eq. (10), we

minimize the expectation value of H with respect to the
orientation of orbital pseudospin �τ at every site. Here we
will focus on a particular case when the lower energy bound
Ei j � J1(1 − S2)/2 is saturated for all bonds. Such a situation
is achieved for � = π/6 and, in this case, we find that the
unique ground state is the 120◦ planar spin state, where spins
lie on the xy plane. Since the 120◦ state has three-sublattice
order distinct from the four-sublattice order of the spin-valley
density wave state at zero Zeeman field, we predict that

by increasing the spin-Zeeman field in TG/h-BN a phase
transition between insulating states with different spin-valley
density wave orders can be achieved.

Next, we set the spin-Zeeman field to zero, hσ = 0, and
consider a finite valley Zeeman field hτ . Since our ground state
preserves the valley U (1) symmetry and has a gap to valley
excitations, we expect that the ground state is unchanged by
a small valley Zeeman field. However, for a strong valley
Zeeman field, the system can lower its energy by aligning
orbital pseudospins in the same direction, thus, effectively
freezing the orbital degrees of freedom. We are then left
with a J1 − J2 Heisenberg model of spins on a triangular
lattice for which the three-sublattice ordered 120◦ state is the
semiclassical ground state when J2/J1 � 1.

For both spin- and valley Zeeman fields, the spin-valley
density wave state at zero/small field and the polarized state
at high-field have distinct symmetries and hence must be
separated by phase transitions.

VI. THERMAL MELTING

Finally, we discuss the effect of thermal fluctuations. Since
the spin-valley density wave ground state breaks spin rotation
symmetry, at finite temperature long-range order is destroyed
by thermal fluctuations associated with Goldstone modes.
However, a partially ordered state with composite order pa-
rameters that only break discrete symmetries may exist at low
temperature. One such state is a unidirectional valley density
wave (or valley stripe) at wave vector 
M, in which spin order
is restored but lattice translation symmetry is broken.

VII. CONCLUSION

We have introduced and studied a two-valley Hubbard
model on a triangular lattice for describing the correlated insu-
lator phases of TG/h-BN and twisted TMDs. Specifically, in
the strong-coupling limit, we have identified a four-sublattice
ordered spin-valley density wave state as an ordered ground
state that appears at moderate values of beyond-NN hoppings.
Moreover, we have demonstrated that this spin-valley density
wave state undergoes a phase transition to a 120◦ state in
either spin or orbital space on increasing the magnitude of an
external spin or valley Zeeman field.
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FIG. 3. (a) Plot of the dispersions relations of Eq. (C8) along the high-symmetry lines of the Brillouin zone for � = 0 and J2/J1 = 0.2.
Inset: Brillouin zone of the triangular lattice (white) and structural Brillouin of the four-sublattice spin-valley density wave state (gray).
(b) Same as (a) but for � = π/2.

APPENDIX A: EXCHANGE INTERACTION

In this Appendix, we will derive the effective exchange
interaction between the first- and second-nearest sites as given
in Eq. (3) of the main text. As a starting point, we note that
to second order in t1, t2, the general form of the effective
Hamiltonian is given by

HJ = −PH0(1 − P)H0P

HI − E0
. (A1)

Here we have introduced the operator P that projects on the
ground states at energy E0 with all sites singly occupied.

Next, we evaluate the effective Hamiltonian in Eq. (A1) by
computing all possible sequences of intermediate states, see
Fig. 3. More specifically, for a fixed 〈i, j〉 bond, an electron
can hop from the j site to the i site and back,∑

α,β

P
(
e−i�i j

α c†
jαciα

)(
ei�i j

β c†
iβc jβ

)
P

=
∑
α,β

[
1 − ei(�i j

β −�
i j
α )P

(
c†

iβciαc†
jαc jβ

)
P
]

=
∑
α,β

[
1 − P

(
ei(�i j

β −�
i j
α )T α

β,iT
β
α, j

)
P
]
. (A2)

Alternatively, the electron can also hop from the i site to the j
site and back,∑

α,β

P
(
ei�i j

β c†
iβc jβ

)(
e−i�i j

α c†
jαciα

)
P

=
∑
α,β

[
1 − ei(�i j

β −�
i j
α )P

(
c†

iβciαc†
jαc jβ

)
P
]

=
∑
α,β

[
1 − P

(
ei(�i j

β −�
i j
α )T α

β,iT
β
α, j

)
P
]
. (A3)

If we combine the two types of sequences, multiply by the
appropriate energy denominator, and repeat these same steps

for the 〈〈i, j〉〉 bonds, then we arrive at the effective exchange
interaction,

HJ = J1

∑
〈i, j〉

∑
α,β

ei(�i j
β −�

i j
α )T α

β,iT
β
α, j + J2

∑
〈〈i, j〉〉

∑
α,β

T α
β,iT

β
α, j .

(A4)

Because of the α, β summation, we note that this expression
for HJ is invariant under a swapping the 〈i, j〉-bond indices or,
equivalently, reversing the 〈i, j〉-bond direction. In particular,
this means that the 〈i, j〉 summation in HJ does not require us
to consider directed bonds as in the case of H0.

APPENDIX B: MINIMIZATION CONDITION

In this Appendix, we provide more details on the derivation
of the minimization condition given in Eq. (5) of the main
text. More specifically, we will focus on deriving the first term
∝ J1.

As a first step, we consider a fixed 〈i, j〉 bond and notice
that the action of HJ on this bond is given by

Hi j ≡
∑
α,β

ei(�i j
β −�

i j
α )T α

β,iT
β
α, j =

∑
α,β

ei(�i j
β −�

i j
α )|βi, α j〉〈αi, β j |.

(B1)
As a second step, we consider a state of the 〈i, j〉 bond we will
assume to be product state in bond space,

vi j =
(∑

α

vα,i|α〉i

)⎛
⎝∑

β

vβ, j |β〉 j

⎞
⎠ =

∑
α,β

vα,i vβ, j |αi, β j〉.

(B2)
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As a final step, we evaluate the expression

v†
i j · Hi j · vi j =

∑
α,β

∑
α′,β ′

∑
α′′,β ′′

ei(�i j
β′′ −�

i j
α′′ )

v∗
α′,i v

∗
β ′, jvα,i vβ, j

〈
α′

i, β
′
j

∣∣β ′′
i , α′′

j 〉〈α′′
i , β ′′

j

∣∣αi, β j
〉

=
∑
α,β

∑
α′,β ′

∑
α′′,β ′′

ei(�i j
β′′ −�

i j
α′′ )

v∗
α′,i v

∗
β ′, jvα,i vβ, j δα′β ′′δβ ′α′′δα′′,αδβ ′′,β

=
∑
α,β

ei(�i j
β −�

i j
α ) v∗

β,i v
∗
α, jvα,i vβ, j

=
(∑

α

e−i�i j
α vα,iv

∗
α, j

)⎛
⎝∑

β

ei�i j
β v∗

β,ivβ, j

⎞
⎠

=
∣∣∣∣∣
∑

α

ei�i j
α v∗

α,ivα, j

∣∣∣∣∣
2

.

(B3)

This result corresponds to the first term ∝ J1 in Eq. (5) of the main text.

APPENDIX C: DISPERSION RELATIONS

In this Appendix, we consider in more detail the derivation of the dispersion relations given by Eq. (7) in the main text. For
clarity, we will initially set J2 = 0 in our derivation.

First, we perform a generalized Holstein-Primakoff transformation as described in the main text. If we only retain terms that
are quadratic in the bosonic operators, then we find that HJ ≈ M

∑
α 
=β Hαβ with

Hαβ = J1

∑
〈i, j〉

i∈�α, j∈�β

bα†
β,ib

α
β,i + bβ†

α, jb
β
α, j + ei(�i j

β −�
i j
α )bα†

β,ib
β†
α, j + e−i(�i j

β −�
i j
α )bα

β,ib
β
α, j .

(C1)

In the following considerations, we define δ j ( j = 1, . . . , 3) to be lattice basis vectors pointing along the directed bonds of the

triangular lattice and, as a result of rotational symmetry, we have ei�
r,r+δ j
α = ei�α .

Second, we consider sites r ∈ �α with nearest neighbors r ± δ ∈ �β . Then we can rewrite Hαβ as

Hαβ = J1

∑
r

[
2bα†

β,rbα
β,r + bβ†

α,r−δ
bβ

α,r−δ
+ bβ†

α,r+δ
bβ

α,r+δ

] + J1

∑
r

[
ei(�r,r−δ

β −�r,r−δ
α )bα†

β,rbβ†
α,r−δ

+ ei(�r,r+δ
β −�r,r+δ

α )bα†
β,rbβ†

α,r+δ
+ H.c.

]
.

(C2)

By lattice translation symmetry, we have ei�r,r+δ
α = ei�r−δ,r

α = e−i�r,r−δ
α . This implies

Hαβ = J1

∑
r

[
2bα†

β,rbα
β,r + bβ†

α,r−δ
bβ

α,r−δ
+ bβ†

α,r+δ
bβ

α,r+δ

] + J1

∑
r

[
e−i(�r,r+δ

β −�r,r+δ
α )bα†

β,rbβ†
α,r−δ

+ ei(�r,r+δ
β −�r,r+δ

α )bα†
β,rbβ†

α,r+δ
+ H.c.

]
.

(C3)
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Spin-valley
density wave

J2/J1

Tα
α,i

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4 Disordered phase

FIG. 4. Plot of the ordered moment as a function of J2/J1. We find that 〈T α
α,i〉 > 0 for J2/J1 � 0.12, which implies that the spin-valley

density wave order is stabilized in this regime (shown in green). If J2/J1 � 0.12, then the spin-valley density wave ordered is destroyed by
low-energy quantum fluctuations and the system is in a disordered phase. These results are independent of the value of valley contrasting flux.

Third, we define the Fourier transforms, bα
β,r = (N/4)−1/2 ∑

k∈RBZ bα
β,keik·r where the site r is on the �α sublattice. Moreover,

N is the number of lattice unit cells and k is a momentum in the reduced Brillouin zone of the four-sublattice ordered spin-valley
density wave state. We now rewrite the Hamiltonian as

Hαβ = 2J1

∑
k∈RBZ

[
bβ†

α,kbβ

α,k + bα†
β,−kbα

β,−k + γ
αβ

k bα†
β,−kbβ†

α,k + (γ αβ

k )∗bα
β,−kbβ

α,k

]
, (C4)

where we have introduced the factor,

γ
αβ

k = cos(k · δ + �α − �β ). (C5)

Fourth, we allow for J2 
= 0, which amounts to replacements,

Hαβ → 2(J1 + J2)
∑

k∈RBZ

[
bβ†

α,kbβ

α,k + bα†
β,−kbα

β,−k + γ
αβ

k bα†
β,−kbβ†

α,k + (γ αβ

k )∗bα
β,−kbβ

α,k

]
, (C6)

γ
αβ

k → [
J1 cos

(
k · R(1)

αβ + �α − �β

) + J2 cos
(
k · R(2)

αβ

)]
/(J1 + J2). (C7)

Here we have also replaced δ → r(1)
αβ and r(2)

αβ is a vector that connects the second nearest-neighbor sites of the �α and �β

sublattices.
Finally, by performing a Bogoliubov transformation, we arrive at the dispersions

ω
αβ

k = 2(J1 + J2)
√

1 − ∣∣γ αβ

k

∣∣2
. (C8)

A plot of the corresponding ordered moment as a function of J2/J1 is shown in Fig. 4. This concludes the derivation.
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