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We present a scheme for generating and manipulating three-mode squeezed states with genuine tripartite
entanglement by injecting single-mode squeezed light into an array of coupled optical waveguides. We explore
the possibility to selectively generate single-mode squeezing or multimode squeezing at the output of an elliptical
waveguide array, determined solely by the input light polarization. We study the effect of losses in the waveguide
array and show that quantum correlations and squeezing are preserved for realistic parameters. Our results show
that arrays of optical waveguides are suitable platforms for generating multimode quantum light, which could
lead to novel applications in quantum metrology.
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I. INTRODUCTION

Quantum metrology benefits from quantum resources to
enhance measurement sensitivity beyond what is possible
in classical systems [1]. Squeezed states are a remarkable
example of quantum resources. These are states of light with
reduced uncertainty in one of the quadratures of the electric
field [2]. Their potential applications in the fields of quantum
metrology and quantum information have greatly increased
in recent decades [3–6], making possible the detection of
gravitational waves with enhanced sensitivity [7].

Squeezed states can be generalized to multiple spatial
modes of the electromagnetic field, for which noise reduction
below the standard quantum limit (SQL) occurs for a linear
combinations of the field’s quadratures. Multimode squeezed
states have promising applications in multiparameter quantum
metrology [8–10], multichannel communication, and mul-
tichannel quantum imaging [11–14]. Two-mode squeezed
states were recently implemented surpassing the SQL for
phase measurements [15]. Three-mode squeezed states were
obtained via spontaneous parametric six-wave mixing in an
atomic-cavity system [16]. However, the generation and ma-
nipulation of multimode-squeezed states remains difficult,
partially because it requires highly nonlinear processes. Their
practical use presents challenges that would be easier to
overcome by the manipulation of quantum light with linear
optics.

Periodic optical structures, such as photonic crystals, are
promising platforms to manipulate light [17,18]. At low opti-
cal power, they behave as linear optical systems that allow for
the modification of light propagation. These platforms have
been extensively studied in the context of classical optics,

*Corresponding author: carla.hermann@uchile.cl

but only recently they have enabled the manipulation of
nonclassical light [19–25].

Our research focuses on the theoretical study of squeezed
light propagation, control, and manipulation in evanescently
coupled waveguide arrays with linear response. We seek to
understand how quantum features, such as entanglement and
squeezing, propagate in these structures. In particular, we
study the propagation of quantum light in linear arrays of two
and three waveguides. For the former case, we find a perfect
analogy with the well-studied effect of a beam splitter [26]. In
the case of a three-waveguide array we find that by injecting
three single-mode squeezed states, the field evolves into a
three-mode squeezed state with a rather simple experimental
scheme. We also show that such evolution generates genuine
multipartite entanglement. For specific coupling parameters
of the waveguides it is possible to choose the output light to
be in a multimode or single-mode squeezed state depending
on the input light polarization. We consider the effect of
losses in the photonic array in order to evaluate the feasibility
of the proposed scheme, finding that squeezing and entan-
glement between waveguides are well preserved in typical
experimental configurations. Our results suggest that photonic
waveguide arrays are a reliable platform for creating entan-
glement and three-mode squeezing, with potential scalability
to higher-order multimode quantum states generation. This
offers new strategies to control highly nonlinear states of light
with linear optics, which can potentially impact the scalability
of quantum optics experiment with photonic systems.

The paper is organized as follows. We first study the
scenario of two evanescently coupled waveguides in Sec. II,
and find that in such optical dimer the propagating state
varies from two single-mode squeezed states to a two-mode
squeezed state, known in the literature as two-mode squeezed
Gaussons [26]. We then explore, in Sec. III, the propagation of
quantum light in a linear array of three waveguides, or optical
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FIG. 1. Squeezing distribution on an optical dimer (a) and trimer
(b). Squeezed states defined by their squeezing parameter ξi are
coupled into the waveguide input. As the state propagates, light is
evanescently coupled to neighboring waveguides, as depicted by the
dashed arrows. The field evolution results in a multimode correlated
state.

trimer. Multipartite entanglement generation and propagation
in optical dimers and trimers is studied in Sec. IV. In Sec. V,
we show how light polarization serves to manipulate the order
of multimodality of the output state. Finally, in Sec. VI, we
study the effect of losses in the system and conclude that
quantum features are preserved in a realistic scenario. We
present our conclusions and remarks in Sec. VII.

II. TWO-MODE SQUEEZING IN AN OPTICAL DIMER

The propagation of light in a linear system with two input
and two output ports [see Fig. 1(a)] is described by two modes,
a and b, and an evolution operator U that coherently couples
both modes as

U = exp{γ a†b − γ ∗ab†}, (1)

with γ = θ exp(iδ), where θ and δ are the amplitude and
phase of the complex coupling between modes. An initial
input state |ψ0〉 evolves as it propagates through the system,
leading to the state |ψ〉 = U −1|ψ0〉, using the notation from
Ref. [26] for simplicity, and considering the fact that U −1

differs from U only in the sign of θ .
We study the particular case of an input field with two

single-mode squeezed states

|ψ0〉 = SaSb|0, 0〉, (2)

where the operators Sa and Sb are the single-mode squeezing
operators for modes a and b defined by

S j = exp
{

1
2

(
ξ ∗

j a2
j − ξ j (a

†
j )

2
)}

, (3)

with j = a, b and their respective squeezing parameter ξ j =
r j exp(iμ j ) a general complex number.

Operator U can be inserted and removed to the left of the
vacuum state, meaning that a rotation of the vacuum is again

TABLE I. Conditions to generate two single-mode squeezed
states or a sole two-mode squeezed state.

Two single-mode squeezing

Phases 2δ + μa − μb = 2nπ

Squeezing strengths ra = rb

θ

Sole two-mode squeezing

Phases 2δ + μa − μb = (2n + 1)π
Squeezing strengths ra = rb

θ θ = (2m + 1)π/4

the vacuum, thus

|ψ〉 = U −1SaSbU |0, 0〉. (4)

As a result, we obtain a general squeezed state |ψ〉 for two
modes

|ψ〉 = exp
{

1
2 (Z∗

a a2 + Z∗
b b2 + Zabb†a† − H.c.)

}|0, 0〉, (5)

where Za and Zb are the coefficients of single-mode squeezing,
and Zab corresponds to the coefficient for two-mode squeez-
ing. Depending on the value of these coefficients the state can
vary from two single-mode squeezed states (Za ∨ Zb �= 0 and
Zab = 0) to a sole two-mode squeezed state (Za = Zb = 0 and
Zab �= 0). The term sole two-mode squeezing describes the
situation where the noise of linear combination of the modes
quadratures is below the vacuum noise and all single-mode
quadratures noise is equal or higher than vacuum noise. For
our particular case of |ψ0〉, and using the unitary transforma-
tions

U −1aU = a cos θ + exp (iδ)b sin θ, (6a)

U −1bU = b cos θ − exp (−iδ)a sin θ, (6b)

the squeezing coefficients are

Za = ξa cos2(θ ) + ξb exp(2iδ) sin2(θ ), (7a)

Zb = ξa exp(−2iδ) sin2(θ ) + ξb cos2(θ ), (7b)

Zab = −2 cos(θ ) sin(θ )[ξa exp(−iδ) − ξ exp(iδ)]. (7c)

From these equations we can identify two extreme cases.
When Zab = 0 and Za ∧ Zb �= 0 we get two single-mode
squeezed states. On the other hand, when Za = Zb = 0 and
Zab �= 0 we get a sole two-mode squeezed state. The con-
ditions for realizing both extreme states are summarized in
Table I.

The unitary transformations (6a) and (6b) show that a
quantum beam splitter is a particular case of the operator U
acting on two modes [26].

We are interested in a system of two evanescently coupled
optical waveguides, i.e., an optical dimer [see Fig. 1(a)]. The
interaction between waveguides in this system is described by
the Hamiltonian

H = −h̄κ (a†b + ab†), (8)

where κ is the coupling constant between the waveguides
[23,27–29]. We notice that the evolution operator of such a
Hamiltonian corresponds to the operator U in the particular
case of δ = π/2,

U = exp{iθ (a†b + ab†)}, (9)

023841-2



MANIPULATION OF MULTIMODE SQUEEZING IN A … PHYSICAL REVIEW A 100, 023841 (2019)

with θ = κz, where z is the propagation distance. The light
state evolves along the direction of propagation z, hence, κz
is the dimensionless parameter controlling the evolution of
the state. The squeezing coefficients of the field propagating
through the optical dimer are a particular case of Eqs. (7a)–
(7c), now in terms of κz:

Za(κz) = ξa cos2(κz) − ξb sin2(κz), (10a)

Zb(κz) = −ξa sin2(κz) + ξb cos2(κz), (10b)

Zab(κz) = 2i(ξa + ξb) cos(κz) sin(κz). (10c)

Notice that for particular propagation distances we can obtain
either two single-mode squeezed states (κz = nπ/2), or a sole
two-mode squeezed state [κz = (2n + 1)π/4 and ξa = ξb].

To study the squeezing evolution in an optical dimer we
define the single-mode quadratures for mode a as

X a
1 = 1

2
(e−iφ0 a + eiφ0 a†), (11a)

X a
2 = 1

2i
(e−iφ0 a − eiφ0 a†) (11b)

and likewise for mode b, where φ0 is the angle that defines
the measured quadratures (typically the squeezed and anti-
squeezed ones).

Two-mode squeezed states exhibit squeezing in a super-
position of quadratures from both modes. The generalized
two-mode quadratures are [30]

X 2M
1 = 1

23/2
[e−iφ (a + b) + eiφ (a† + b†)], (12a)

X 2M
2 = 1

23/2i
[e−iφ (a + b) − eiφ (a† + b†)], (12b)

where φ corresponds to the angle where we expect to observe
squeezing, in analogy to the single-mode case.

The degree of squeezing is obtained from the variance of
the quadratures as

S(dB) = 10 log10

[ 〈
(
X )2

sq

〉
〈
(
X )2

ch

〉
]
, (13)

where 〈(
X )2
sq〉 is the variance of the field in the

(anti)squeezed quadrature and 〈(
X )2
ch〉 = 1/4 is the variance

of a coherent state. The variance of different quadratures can
be easily calculated and they are given in Appendix A.

Figure 2 shows the evolution of the input field propagating
through an optical dimer. We assume a particular input state
|ψ0〉, where the squeezing parameters ξa = ξb are real. In this
case, the coefficient Zab(κz) from Eq. (7c) is always imagi-
nary, meaning that a proper quadrature to measure two-mode
squeezing would be φ = (2n + 1)π/4. In Fig. 2(a) we plot
the evolution of the single-mode squeezing coefficients Za =
Zb as well as the two-mode squeezing coefficient Zab. For
κz = 0, the input state has the same single-mode squeezing
in both waveguides and Zab = 0. For κz = (2n + 1)π/4, we
get Za = Zb = 0 and Zab is maximum, meaning a sole two-
mode squeezed state. Figure 2(b) shows the evolution of the
single-mode and generalized two-mode quadrature variances.
We notice that for the single-mode quadrature variances the
squeezing is lost before Za = Zb = 0 because Zab �= 0 (see
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FIG. 2. Evolution of the field along the optical dimer when two
single-mode squeezed states with ξa = ξb = 0.5 are injected sepa-
rately into the waveguides. (a) Za = Zb coefficients (thin cyan curve)
and |Zab| (thick orange curve) as a function of κz. The vertical gray
lines show the points where the all the single-mode coefficients (Z)
vanish. (b) Variances of the quadratures as a function of κz for both
single-mode quadrature variances 〈(
X (a,b)

1 )2〉 and 〈(
X (a,b)
2 )2〉 (thin

solid and dashed cyan curves), as well as both two-mode quadrature
variances 〈(
X 2M

1 )2〉 and 〈(
X 2M
2 )2〉 (thick solid and dashed orange

curves). (c) Squeezing degree as a function of κz for the same
quadratures as in (b). Squeezing is observed when the curves in
(b) and (c) are within the orange region. The vertical gray bands
in (b) and (c) show the regions where sole two-mode squeezing is
observed.

Appendix A for the analytic expressions). This feature is
represented by the gray bands in Fig. 2.

The degrees of squeezing of each single-mode squeezed
input state are transferred to a sole two-mode squeezed state,
and vice versa, as Fig. 2(c) shows. Notice that we can analo-
gously inject a two-mode squeezed state into the optical dimer
and get two independent single-mode squeezed states at the
output, as shown in detail in Appendix B.

If we inject a single-mode squeezed state only into waveg-
uide mode a, leaving b in the vacuum state, then after a
propagation distance of κz = (2n + 1)π/2 all the squeezing is
transferred from mode a to b [19]. However, when squeezing
is just injected in one of the waveguides, it is impossible to
generate a sole two-mode squeezed state.

The transfer of squeezing between modes can be visualized
using the Wigner function [31,32], a quasiprobability distribu-
tion of the fields in the quadrature space. The Wigner function
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FIG. 3. Evolution of the Wigner function of the reduced single-mode and two-mode states along an optical dimer. (a) Wigner function
of the reduced single-mode states on waveguides a and b. (b) and (c) are the marginal distributions |ψ (X a

1 , X b
1 )|2 and |ψ (X a

2 , X b
2 )|2 of the

two-mode Wigner function. The initial state and the color code are the same as Fig. 2.

of a vacuum state gives a symmetric Gaussian distribution,
while a squeezed state shows a narrowing of the distribution
along a given direction. We compute the Wigner functions
for the reduced state of each waveguide, as well as for the
two-mode (bipartite) state. The Wigner function of two-mode
states W 2M is defined by four variables, namely, a pair of
quadratures on each mode. In order to make its visualization
possible, we compute the marginal distributions of the com-
plete Wigner function, which reflects the correlations of fields
propagating through optical array. This gives a quasiprobabil-
ity distribution as a function of a subset of two out of four
modes. We consider the marginal distributions for two pairs
of cross-correlated quadratures

∣∣ψ(
X a

1 , X b
1

)∣∣2 =
∫

dX a
2 dX b

2 W 2M
(
X a

1 , X a
2 , X b

1 , X b
2

)
, (14)

∣∣ψ(
X a

2 , X b
2

)∣∣2 =
∫

dX a
1 dX b

1 W 2M
(
X a

1 , X a
2 , X b

1 , X b
2

)
. (15)

Figure 3 shows the Wigner functions of the single- and
the two-mode states, considering the same parameters as in
Fig. 2. At the input (κz = 0) the single-mode states of each
waveguide exhibit a Wigner function squeezed on the X1

quadratures (ξa = ξb). As the state propagates (κz = π/4),
the single-mode squeezing is lost. In contrast, the Wigner
function for the two-mode state is symmetric at the input
and, as the state propagates, |ψ (X a

1 , X b
1 )|2 and |ψ (X a

2 , X b
2 )|2

become squeezed, exhibiting correlation and anticorrelation
between the cross-correlated quadratures.

III. THREE-MODE SQUEEZING IN AN OPTICAL TRIMER

A linear optical system with three input and three output
ports, as Fig. 1(b) shows, is described by three modes a, b,
and c, and the evolution operator

UT = exp{(α∗ab† − αba† + β∗bc† − βcb†)}, (16)

that coherently couples all three modes. α = θαeiδα and β =
θβeiδβ are complex numbers that characterize the coupling
strength between neighboring waveguides.

We study the particular case of injecting a single-mode
squeezed states into each input port, |φ0〉T = SaSbSc|0, 0, 0〉,
with the single-mode squeezing operator defined in Eq. (3), in
analogy with Sec. II. Light propagates through the waveguide
array evolving into the state

|〉T = U −1
T SaSbScUT|0, 0, 0〉. (17)

After propagation, we obtain a general state with mixed
characteristics of single-mode, two-mode, and three-mode
squeezing, namely [33],

|〉T = exp
{

1
2 (T ∗

a a2 + T ∗
b b2 + T ∗

c c2 + Taba†b†

+ Taca†c† + Tbcb†c† − H.c.)
}|0, 0, 0〉. (18)

The squeezing parameters Ti and Ti j (with i, j = a, b, c) have
an analogous interpretation as the squeezing Z coefficient in
the optical dimer. In the case of Ta ∨ Tb ∨ Tc �= 0 and Tab =
Tbc = Tac = 0 we have sole single-mode squeezing. If Ta =
Tb = Tc = 0 and only one Ti j �= 0 with the other pairwise
coefficients equal to zero, we have sole two-mode squeezing.
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Finally, if Ta = Tb = Tc = 0 and Tab ∧ Tbc ∧ Tac �= 0, we have
sole three-mode squeezing. This comes from the definition of
multimode squeezing, where the uncertainty of the pairwise
sum of quadratures is reduced for all the pairs of modes [33].
As in Sec. II, the term sole three-mode squeezing describes a
field where all single-mode quadrature noise is equal or higher
than vacuum noise.

The squeezing T coefficients are directly calculated using
the rotations

U −1aU = cos2

(
θ√
2

)
a + eiδ

√
2

sin (
√

2θ )b

+ e2iδ sin2

(
θ√
2

)
c, (19a)

U −1bU = − 1√
2

e−iδ sin (
√

2θ )a + cos (
√

2θ )b

+ 1√
2

eiδ sin (
√

2θ )c, (19b)

U −1cU = e−2iδ sin2

(
θ√
2

)
a − 1√

2
e−iδ sin (

√
2θ )b

+ cos2

(
θ√
2

)
c, (19c)

where we assume equal coupling among waveguides, i.e.,
α = β, for simplicity. The most general rotations are detailed
in Appendix C.

We study an optical trimer consisting of a linear array of
three identical coupled waveguides, as Fig. 1(b) shows. The
interaction Hamiltonian of the system is [19,23,27–29]

H = −h̄κ (a†b + ab† + b†c + c†b). (20)

The evolution of the light propagating through the waveguides
along the z direction is governed by the coupling constant κ .
An optical trimer is a particular case of UT on Eq. (16) for
δ = π/2. Then, the squeezing T coefficients are

Ta = ξa cos4

(
κz√

2

)
− ξb

1

2
sin2 (

√
2κz) + ξc sin4

(
κz√

2

)
,

Tb = −ξa
1

2
sin2 (

√
2κz) + ξb cos2 (

√
2κz)

− ξc
1

2
sin2 (

√
2κz),

Tc = ξa sin4

(
κz√

2

)
− ξb

1

2
sin2 (

√
2κz) + ξc cos4

(
κz√

2

)
,

Tab = iξa

√
2 sin (

√
2κz) cos2

(
κz√

2

)
+ iξb

1√
2

sin (2
√

2κz)

− iξc

√
2 sin (

√
2κz) sin2

(
κz√

2

)
,

Tac = ξa
1

2
sin2 (

√
2κz) + ξb sin2 (

√
2κz) + ξc

1

2
sin2 (

√
2κz),

Tbc = −iξa

√
2 sin (

√
2κz) sin2

(
κz√

2

)
+ iξb

1√
2

sin (2
√

2κz)

+ iξc

√
2 sin (

√
2κz) cos2

(
κz√

2

)
. (21)
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FIG. 4. Evolution of the field along the optical trimer when three
single-mode squeezed states, with ξa = ξc = 0.25 and ξb = 0.5, are
injected into the waveguides. (a) Amplitude of the Tab = Tbc coeffi-
cients (thick orange curve) and the Tac coefficient (thin brown curve)
as a function of the normalized propagation distance κz. The vertical
gray lines show the points where the all the single-mode coefficients
(Tj) vanish. (b) Variances of the quadratures as a function of κz for
the two-mode quadrature variances X ab

1 = X bc
1 and X ab

2 = X bc
2 (thick

solid and dashed orange curves), as well as X ac
1 and X ac

2 (thin solid
and dashed brown curves). (c) Squeezing degree as a function of κz
for the same quadratures than in (b). Squeezing is observed when
the curves in (b) and (c) are within the orange region. The vertical
gray bands in (b) and (c) show the regions where sole three-mode
squeezing is observed.

These equations describe a general solution for the propa-
gation of squeezed light through an optical trimer with equal
coupling coefficients. Three-mode squeezed states are gener-
ated for an input state |φ0〉T with real squeezing parameters
ξa = ξc = ξb/2. Figure 4 shows the evolution of the input
field propagating through an optical trimer. Figure 4(a) shows
Tab = Tbc and Tac as a function of the propagation parameter
κz. From Eq. (21) we can easily verify that for κz = nπ/

√
2,

Tab = Tac = Tbc = 0, as Fig. 4(a) shows, while Ta, Tb, and Tc

are different from zero [not shown in Fig. 4(a)]. For κz =
(2n + 1)π/2

√
2, the coefficients Tab and Tbc vanish, while Tac

does not. However, this is not a sole two-mode squeezed state
since Ta, Tb, and Tc are also different from zero. In order to get
a sole three-mode squeezed state we need Ta = Tb = Tc = 0.
This happens for angles κz1 = [nπ + arctan(

√
2)]/

√
2 and

κz2 = [nπ − arctan(
√

2)]/
√

2, for the particular case of input
states with ξa = ξc = ξb/2 [vertical blue lines in Fig. 4(a)].
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FIG. 5. Evolution of the marginal distributions from the
Wigner function of different pairs of modes. (a) Marginal
distribution |ψ (X a

1 , X b
1 )|2 = |ψ (X b

1 , X c
1 )|2. (b) Marginal distri-

bution |ψ (X a
2 , X b

2 )|2 = |ψ (X b
2 , X c

2 )|2. (c) Marginal distribution
|ψ (X a

1 , X c
1 )|2. (d) Marginal distribution |ψ (X a

2 , X c
2 )|2. The initial

state and the color code are the same as in Fig. 4.

Figures 4(b) and 4(c) show the evolution of the variances
of the generalized two-mode quadratures and the degree of
squeezing for each possible pair of modes ab, bc, and ac.
Both the variances and the squeezing degree for the combined
modes ab and bc are always equal. Sole three-mode squeezing
is observed within the gray bands, where single-mode squeez-
ing is absent from all the waveguides, in analogy to Fig. 2 in
Sec. II. We notice that a reduction or amplification of noise
(relative to vacuum noise) can appear for a particular sum of
quadratures when considering two modes with single-mode
squeezing [see the brown curves in Figs. 2(b) and 2(c) at
κz = 0]. This is the result of adding two fields with reduced or
increased uncorrelated noise and does not signify a correlation
between them. However, when the single-mode squeezing
is zero in all modes (Ta = Tb = Tc = 0) we can guarantee
multimode squeezing with genuine quantum correlation.

We can visualize the evolution of the three-mode squeezed
state using the Wigner function following the analysis in
Sec. II. Figure 5 shows the marginal distributions of the
Wigner function for different combinations of two-mode
states. In particular, it shows the Wigner function at the
propagation distances κz where squeezing is observed in all
the combinations of two modes but not in each individual
mode, meaning a sole three-mode squeezed state.

If squeezing is injected only into waveguide a we obtain
complete transfer of squeezing from waveguide a to c for
kz = π/

√
(2) [19]. When squeezing is injected just in the

middle waveguide, squeezing is transferred to waveguide a
and waveguide c, for kz = √

(2)π/4. This is a general two-
mode squeezed state with Ta = Tc = −ξb/2 and Tac = −ξb,
such as the state in Eq. (5), while all the other T coefficients
vanish.

IV. ENTANGLEMENT GENERATION AND PROPAGATION

Multimode squeezed states show evident cross correlations
between quadratures of different modes. However, we cannot
assume that these correlations are quantum in nature, i.e.,
entanglement. Even though squeezing and entanglement are
closely related, to the point that two-mode squeezed states can
be a physical realization of the ideal two-particle Einstein-
Podolsky-Rosen (EPR) state [32], they do not have a direct
correspondence. The defining property of an entangled state
is its nonseparability, meaning its density matrix cannot be
represented as the external product of two density matrices.
A particular test for nonseparability, known as the Peres-
Horodecki criterion [34,35], tells that a state is nonseparable
if the partial transpose of its density matrix has negative
eigenvalues.

The Peres-Horodecki criterion can be extended to mul-
tipartite continuous-variable states as follows [32,36]. The
Wigner function for Gaussian states of N modes is charac-
terized by a correlation matrix V (N ), a 2N × 2N matrix with
elements defined by

V (N )
i j = tr{ρ (
ζi
ζ j + 
ζ j
ζi )/2}, (22)

where ζ = (X a
1 X a

2 X b
1 X b

2 . . . X N
1 X N

2 ) is a 2N-dimensional
vector operator that contains all the quadrature operators. In
the particular case of zero mean value of the quadratures
(such as vacuum state) V (N )

i j = 〈(ζ̂iζ̂ j + ζ̂ j ζ̂i )/2〉 . Under this
approach the partial transposition of a continuous-variable
state is simply a sign change of the momentum quadrature
(X2) of a subsystem. The partial transpose operation acts
on the correlation matrix as V̄ (N )

j = � jV (N )� j , where � j are
the transposition operator performing the sign change of
the X2 variable in subsystem j. The negative partial transpose
criterion for continuous variables says that a separable state
satisfies the N-mode uncertainty relation even after partial
transposition in site j, i.e.,

V̄ (N )
j � i

4
�, (23)

with � the 2N × 2N block matrix containing the values of
commutators between all the possible pairs of quadratures
from every subsystem ( i

2�i j = [ζi, ζ j]). For example, in a
bipartite system,

� =
(

J 0
0 J

)
, J =

(
0 1

−1 0

)
.

The negative partial transpose criterion for continuous
variables is summarized from Eq. (23) as follows: an N-modes
state is entangled if (V̄ (N )

j − i
4 �) has a negative eigenvalue.

Figure 6 shows the minimum of the eigenvalues of the op-
erators (V̄ (N )

j − i
4 �) for the optical dimer (a) and trimer (b),

as a function of the propagation distance κz. The input states
(κz = 0) have a minimum eigenvalue of zero since our initial
condition is a product of uncoupled squeezed states. As light
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FIG. 6. Entanglement properties of the light propagating through
the waveguide arrays (κz). Negative eigenvalues correspond to en-
tangled states. (a) Minimum eigenvalue of the matrix V̄ (2)

j − i
4 �, for

both j = a, b. (c) Minimum eigenvalue of matrices V̄ (3)
j − i

4 � for
j = a and j = c (orange thick curve), and j = b (brown thin dashed
curve). The vertical gray lines show the angles where sole two-mode
(a) and three-mode (b) squeezing is observed.

propagates through the waveguide array, the minimum eigen-
values become negative, evidencing multimode entanglement,
in agreement with the behavior of the squeezing parameters
and the Wigner functions (see Figs. 2–5).

We are particularly interested in the case of an optical
trimer, where quantum correlations between three-mode con-
tinuous variables can be observed. The study of tripartite
entanglement for arbitrary dimensions is still a subject of
research [37], due to the difficulties to determine how the en-
tanglement is distributed among the parties. To determine the
presence of genuine tripartite entanglement, we show the full
inseparability of the state. In general, these two concepts are
not equivalent; however, for pure states, like the ones studied
here, full inseparability implies genuine tripartite entangle-
ment (see Ref. [38] and Supplemental Material in Ref. [39]).
In order to verify full inseparability, it is necessary to rule out
all the possible partially separable forms, corresponding to all
the combinations of bipartite subsystems. From the negative
partial transpose criterion for continuous variables we can
distinguish the following four scenarios [40]:

I. V̄ (3)
a �

i

4
�, V̄ (3)

b �
i

4
�, V̄ (3)

c �
i

4
�,

II. V̄ (3)
k � i

4
�, V̄ (3)

m �
i

4
�, V̄ (3)

n �
i

4
�,

III. V̄ (3)
k � i

4
�, V̄ (3)

m � i

4
�, V̄ (3)

n �
i

4
�,

IV. V̄ (3)
a � i

4
�, V̄ (3)

b � i

4
�, V̄ (3)

c � i

4
�,

where only case I represents full inseparability. Figure 6(b)
shows the minimum eigenvalue of V̄ (3)

j − i
4 � for j = a, b, c.
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FIG. 7. Za = Zb (solid red curve) and Zab (dashed black curve)
as a function of the input light polarization angle in an optical dimer
with elliptical waveguides. The shaded region and the right vertical
axis show the range of achievable coupling constants as a function of
the polarization angle [42].

As the state propagates through the waveguide array, all the
permuted correlation matrix violate the three-mode uncer-
tainty relation and the test matrices have a negative eigen-
value. This means that we observe full inseparability through
most of the propagation (case I). At normalized distances
κz = (2n + 1)π/2

√
2 (where coefficients Tab and Tbc are

exactly zero) we have scenario II, meaning that waveguide
b is separable from the bipartite entangled reduced state of
waveguides a and c. At points κz = nπ/

√
2 (where Tab =

Tbc = Tac = 0) we recover the separable state of the input,
corresponding to the case IV.

V. SELECTING SQUEEZING MULTIMODALITY
BY LIGHT POLARIZATION

Elliptical waveguides allow to tune the coupling constant
κ by varying the input light polarization. These are made by
a fs-laser-writing fabrication procedure, where the shape of
the writing beam and the writing speed are adjusted to create
waveguides with an elliptical cross section [41]. Highly ellip-
tical waveguides [42], whose cross sections are 4 × 12 μm2

and separated by 23 μm, can have a ratio between coupling
constants for H- and V -polarized light close to 2. The consid-
erable difference between coupling constants suggests that the
evolution of a state can be radically different depending upon
its polarization.

We compute the evolution of the field through an opti-
cal dimer with elliptical waveguides, with tunable coupling
constants as a function of the input light polarization angle.
Following the mathematical treatment in Sec. II, we assume
two single-mode squeezed states of equal squeezing param-
eter ξ at the input. Figure 7 shows realistic values for the
coupling constant as a function of the polarization angle. We
compute the Z coefficients for single-mode and two-mode
squeezing at the output of the waveguides for a propagation
distance κH zout = π/2. Notice how the multimodality of the
squeezing varies drastically with the polarization angle. When
light is horizontally polarized (0◦) the output corresponds to
only a single-mode squeezing. At 90◦, |Za| = |Zb| = 0 and
|Zab| reaches its maximum value. Hence, it is possible to
modify the output state from single-mode squeezing to sole
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two-mode squeezing, just by tuning the polarization angle of
the input linear. This suggests that a dimer built with elliptical
waveguides can be used as a powerful tool for controlling and
selecting the multimodality of the squeezed light field.

Squeezing tunability as a function of the light polariza-
tion may also offer the possibility of creating entanglement
between the output light polarization and the order of the
multimode squeezing. In this way, the order of the multimode
squeezing can be chosen at the output by post-selecting in
polarization. The calculation of this effect needs a more
complicated mathematical description that will be evaluated
in a separate work.

VI. SQUEEZING DEGRADATION IN A LOSSY
WAVEGUIDE ARRAY

Optical losses in dielectric media are unavoidable, re-
ducing the degree of squeezing of the propagating light. In
general, any type of losses can be modeled with an effective
beam splitter, where a fraction of the field is lost at one of the
output ports. In such model the transmitted field is scaled by
a factor η. The reduction in the squeezing as a function of the
losses is given by [30,43]

Sout = − 1
2 ln{η(z)e−2Sin + [1 − η(z)]}, (24)

where Sin (out) is the degree of squeezing at the input (output)
and η(z) is the loss after propagating a distance z. The variable
η can represent any type of losses in the system, such as losses
by coupling the light into the waveguide or losses during
propagation.

Light squeezing, as well as its intensity, is attenuated
exponentially as a function of propagation distance, follow-
ing Beer-Lambert-Bouguer law. Assuming that losses affect
equally all waveguides, the evolution of the state remains
unchanged except for an overall reduction of the correlations
as light attenuates. Figure 8 shows the degradation of the
degree of squeezing as a function of the propagation distance
for an optical dimer and trimer. In both cases, squeezing is
preserved despite of degradation. For realistic parameters it
is possible to observe several oscillations of the degree of
squeezing before it is completely attenuated.

The degradation of squeezing can also be calculated by
solving the master equation including losses, where photon
absorption is described as an amplitude damping channel
[27,44]. With this approach we find results equivalent to
Fig. 8. However, Eq. (24) also allows for easily including
the effect of injection losses when coupling free-space prop-
agation light into the waveguide. Injection losses are not
considered in Fig. 8, but they will contribute to an overall
reduction of the degree of squeezing. Nonetheless, we empha-
size that multimode squeezing in a coupled waveguide array
is preserved under common mechanism of losses.

VII. CONCLUSIONS AND PERSPECTIVES

We propose a method for the generation and manipulation
of two- and three-mode squeezed states via the injection
of single-mode squeezed light in a linear array of two and
three evanescently coupled waveguides. We observe that the
squeezing evolves as it propagates through the waveguides

−5.00

−2.50

0.00

2.50

5.00

0.00 0.79 1.57 2.36 3.14

0
π
2 π

3π
2 2π

(a)

Sq
ue

ez
in

g
de

gr
ee

[d
B

]

κz

z [cm]

−5.00

−2.50

0.00

2.50

5.00

0.00 0.79 1.57 2.36 3.14

0
π
2 π

3π
2 2π

(b)ab,bc ac

κz

z [cm]

FIG. 8. Degree of squeezing versus propagation distance. (a) Op-
tical dimer for an input of two single-mode squeezed states with
squeezing parameter ξa = ξb = 0.5. The degree of squeezing is
shown for the two-mode quadratures 〈(
X 2M

1 )2〉 and 〈(
X 2M
2 )2〉

(solid and dashed orange curves). (b) Optical trimer for an input
state of three vacuum-squeezed states with squeezing parameter ξa =
ξc = 0.25 and ξb = 0.5. The degree of squeezing is shown for the
two-mode quadratures X ab

1 = X bc
1 and X ab

2 = X bc
2 (solid and dashed

orange curves), as well as X ac
1 and X ac

2 (solid and dashed brown
curves). For both figures the losses are 0.3 dB/cm [45] and the
evanescent coupling coefficient is κ = 2 cm−1 [41], which can be
understood as an evolution of κz from 0 to 2π . Squeezing is observed
when the curves are within the orange region.

exchanging the roles of single-mode and multimode squeez-
ing. During light propagation, the waveguide array generates
genuine multipartite entanglement. This offers a way to con-
trol the quantum nonlinear property of multimode squeezing
only using a linear optics element. We show that the order
of multimode squeezing at the output of the system can be
selected by choosing the polarization angle of the input light,
offering a novel tuning knob for controlling squeezing. The
parameters’ tunability in an array of waveguides with linear
response facilitates the engineering of quantum states of light.
A review of realistic parameters for optical losses in a system
of coupled waveguides shows that a significant degree of
squeezing is preserved during propagation.

Waveguide arrays are a suitable platform to manipulate
quantum light properties, such as squeezing and entangle-
ment. They open new possibilities to generate and control
multimode squeezing, with the potential to generate N-mode
squeezed states with N coupled waveguides. Multiple modes
can be used as multiple probes that measure different local
conditions, presenting a problem of multivariables estima-
tion. It is known that quantum correlations can improve the
sensitivity of such scenario, making multimode squeezing a
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potential resource to improve multiple-variable measure-
ments. By combining quantum light with photonic crystals,
our results bring different insights and tools in the fields of
quantum information and precision measurement.
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APPENDIX A: VARIANCE OF THE FIELD IN
AN OPTICAL DIMER

We notice in Fig. 2(b) that for the single-mode quadrature
variances, the squeezing is lost before Za = Zb = 0 because
Zab �= 0. We can evaluate this using the following transforma-
tions (ξi = ri exp iμi):

S−1
a S−1

b UaU −1SbSa

= [a cosh(ra) − a†eiμa sinh(ra)] cos(κz)

−i[b cosh(rb) − b†eiμb sinh(rb)] sin(κz), (A1a)

S−1
a S−1

b UbU −1SbSa

= i[a†eiμa sinh(ra) − a cosh(ra)] sin(κz)

− [b cosh(rb) − b†eiμb sinh(rb)] cos(κz). (A1b)

With this, the single-mode quadrature variances 〈(
Xj )2〉
can be written as〈(


X a
1

)2〉 = 1
4 [− cos2(κz) sinh(2ra) cos(μa)

+ sin2(κz) sinh(2rb) cos(μb)

+ cos2(κz) cosh(2ra) + sin2(κz) cosh2(2rb)],

(A2a)〈(

X a

2

)2〉 = 1
4 [cos2(κz) sinh(2ra) cos(μa)

− sin2(κz) sinh(2rb) cos(μb)

+ cos2(κz) cosh(2ra) + sin2(κz) cosh2(2rb)].

(A2b)

These variances are the same for the second waveg-
uide (mode b). For the particular case of ξa = ξb real
(μa = μb = 0), Eqs. (A2) reduce to (1/4)[cosh2(2ra) −
sinh(2ra) cos(2κz)], plotted in the cyan curves in Fig. 2(b).

APPENDIX B: INJECTION OF A TWO-MODE SQUEEZED
STATE TO THE OPTICAL DIMER

In the case of injecting a sole two-mode squeezed state
to the system with two input and two output ports, the
input state can be written as |ψ ′

0〉 = Sab|0, 0〉, with Sab =
exp {(χa†b† − χ∗ab)} and χ = rab exp iμab. Then, the evolu-

tion of the state |ψ〉 = U −1SabU |0, 0〉 has the form

|ψ〉 = exp{φ∗
a a + φ∗

b b + φaba†b† − H.c.}|0, 0〉 (B1)

with

φa = χeiδ cos(θ ) sin(θ ), (B2a)

φb = −χe−iδ cos(θ ) sin(θ ), (B2b)

φab = χ [cos2(θ ) − sin2(θ )]. (B2c)

It is clear from the above expressions that in order to gen-
erate single-mode squeezed states φab = 0, which implies that
θ = π/4. Then, φa = χ exp iδ/2 and φb = −χ exp −iδ/2. A
sole two-mode squeezed state will be recovered for θ = (2n +
1)π/2 or θ = nπ . This general result is valid for the optical
dimer with δ = π/2 and θ = κz.

APPENDIX C: THREE-MODE SQUEEZING IN AN
OPTICAL TRIMER: GENERAL CASE

As we see in Sec. III, an optical system with three input and
three output ports can generate a state with mixed characteris-
tics between three uncoupled single-mode squeezed states and
a sole three-mode squeezed state

|〉T = exp
{

1
2 (T ∗

a a2 + T ∗
b b2 + T ∗

c c2 + Taba†b†

+ Taca†c† + Tbcb†c† − H.c.)
}|0, 0, 0〉. (C1)

This state can be generated by

|〉T = U −1
T SaSbScUT |0, 0, 0〉, (C2)

where Sj are single-mode squeezing operators for j different
modes while U represents a unitary rotation operator that
coherently mixes the three modes a, b, and c,

UT = exp{(α∗ab† − αba† + β∗bc† − βcb†)}, (C3)

with α = θαeiδα and β = θβeiδβ complex numbers. This is
the most general expression for such a rotation. In order to
obtain an analytical expression of (C1), we need to calculate
U −1

T aUT , U −1
T bUT , and U −1

T cUT . We use the recursive nota-
tion [A, B]n = [A, [A, B]n−1], where for n = 1, and we define
[A, B]1 = [A, B], to write the Baker-Campbell-Hausdorff for-
mula as

eABe−A = B +
∞∑

n=1

[A, B]n

n!
. (C4)

Given Eqs. (C2) and (C3), the operator A is

A = α∗ab† − αa†b + β∗bc† − βb†c, (C5)

and the commutative relations that we need to calculate are

[A, a] = αb, (C6)

[A, b] = βc − α∗a, (C7)

[A, c] = −β∗b. (C8)
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Defining λ2 = |α|2 + |β|2 we get for α �= β

U −1
T aUT =

[
1 − 2

θ2
α

λ2
sin2

(
λ

2

)]
a + θα

λ
eiδα sin (λ)b + 2

θαθβ

λ2
ei(δα+δβ ) sin2

(
λ

2

)
c,

U −1
T bUT = −θα

λ
e−iδα sin (λ)a + cos (λ)b + θβ

λ
eiδβ sin (λ)c,

U −1
T cUT = 2

θαθβ

λ2
e−i(δα+δβ ) sin2

(
λ

2

)
a − θβ

λ
e−iδβ sin (λ)b +

[
1 − 2

θ2
β

λ2
sin2

(
λ

2

)]
c.

In the particular case of |α| = |β| = θ , and δα = δβ = δ, i.e., the same coupling between waveguides a and b and b and c, we
can reduce the above expressions to

U −1
T aUT = cos2

(
θ√
2

)
a + eiδ

√
2

sin (
√

2θ )b + e2iδ sin2

(
θ√
2

)
c,

U −1
T bUT = − 1√

2
e−iδ sin (

√
2θ )a + cos (

√
2θ )b + 1√

2
eiδ sin (

√
2θ )c,

U −1
T cUT = e−2iδ sin2

(
θ√
2

)
a − 1√

2
e−iδ sin (

√
2θ )b + cos2

(
θ√
2

)
c.

Using these results and calculating U †
T u2UT and U †

T u†2UT , with u = a, b, c, we find the following Ti and Ti j coefficients for
α �= β:

Ta = ξa

[
1 − 2

θ2
α

λ2
sin2

(
λ

2

)]2

+ ξb
θ2
α

λ2
e2iδα sin2 (λ) + ξc4

θ2
αθ2

β

λ4
e2i(δα+δβ ) sin4

(
λ

2

)
,

Tb = ξa
θ2
α

λ2
e−2iδα sin2 (λ) + ξb cos2 (λ) + ξc

θ2
β

λ2
e2iδβ sin2 (λ),

Tc = ξa4
θ2
αθ2

β

λ4
e−2i(δα+δβ ) sin4

(
λ

2

)
+ ξb

θ2
β

λ2
e−2iδβ sin2 (λ) + ξc

[
1 − 2

θ2
β

λ2
sin2

(
λ

2

)]2

,

Tab = −
{

ξa2
θα

λ
e−iδα

[
1 − 2

θ2
α

λ2
sin2

(
λ

2

)]
sin (λ) − ξb

θα

λ
eiδα sin (2λ) − ξc4

θαθ2
β

λ3
ei(δα+2δβ ) sin (λ) sin2

(
λ

2

)}
,

Tac = −
{
ξa4

θαθβ

λ2
e−i(δα+δβ )

[
1 − 2

θ2
α

λ2
sin2

(
λ

2

)]
sin2

(
λ

2

)
− ξb2

θαθβ

λ2
ei(δα−δβ ) sin2 (λ)

+ ξc4
θαθβ

λ2
ei(δα+δβ )

[
1 − 2

θ2
β

λ2
sin2

(
λ

2

)]
sin2

(
λ

2

)}
,

Tbc = −
{

ξa4
θ2
αθβ

λ3
e−i(2δα+δβ ) sin (λ) sin2

(
λ

2

)
+ ξb

θβ

λ
e−iδβ sin (2λ) − ξc2

θβ

λ
eiδβ

[
1 − 2

θ2
β

λ2
sin2

(
λ

2

)]
sin (λ)

}
.

(C9)

For equal coupling (α = β), we obtain the following simplified expressions:

Ta = ξa cos4

(
θ√
2

)
+ ξb

1

2
e2iδ sin2 (

√
2θ ) + ξce4iδ sin4

(
θ√
2

)
,

Tb = ξa
1

2
e−2iδ sin2 (

√
2θ ) + ξb cos2 (

√
2θ ) + ξc

1

2
e2iδ sin2 (

√
2θ ),

Tc = ξce−4iδ sin4

(
θ√
2

)
+ ξb

1

2
e−2iδ sin2 (

√
2θ ) + ξc cos4

(
θ√
2

)
,

Tab = −
{
ξa

√
2e−iδ sin (

√
2θ ) cos2

(
θ√
2

)
− ξb

1√
2

eiδ sin (2
√

2θ ) − ξc

√
2e3iδ sin (

√
2θ ) sin2

(
θ√
2

)}
,

Tac = −
{
ξa

1

2
e−2iδ sin2 (

√
2θ ) − ξb sin2 (

√
2θ ) + ξc

1

2
e2iδ sin2 (

√
2θ )

}
,

Tbc = −
{
ξa

√
2e−i3δ sin (

√
2θ ) sin2

(
θ√
2

)
+ ξb

1√
2

e−iδ sin (2
√

2θ ) − ξc

√
2eiδ sin (

√
2θ ) cos2

(
θ√
2

)}
.

(C10)

These are the coefficients that lead to Eq. (21) in the main text when making δ = π/2.
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