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Despite the ubiquity of applications of heat transport across nanoscale interfaces, including integrated circuits,
thermoelectrics, and nanotheranostics, an accurate description of phonon transport in these systems remains
elusive. Here we present a theoretical and computational framework to describe phonon transport with position,
momentum, and scattering event resolution. We apply this framework to a single-material nanoparticle for which
this multidimensional resolution offers insight into the physical origin of phonon thermalization and the length-
scale dependent anisotropy of driven phonon distributions. We extend the formalism to handle interfaces and
investigate the specific case of semicoherent materials interfaces by computing the coupling between phonons
and interfacial strain resulting from a periodic array of misfit dislocations. We calculate the thermal interface
conductance within the technologically relevant Si-Ge heterostructures and obtain G = 173.2 MW m−2 K−1, in
good agreement with previous experimental and theoretical work. Finally we comment on future applications
of our framework including coherent and driven phonon effects in nanoscale materials, which are increasingly
accessible via ultrafast, terahertz, and near-field spectroscopies.

DOI: 10.1103/PhysRevB.100.115402

I. INTRODUCTION

Understanding phonon-mediated heat transfer at the
nanoscale is essential to the design and optimization of heat
management for a variety of engineering systems including
thermoelectrics [1], nanoelectronics [2,3], catalytic cells [4],
and nanotheranostics [5]. Advances in ultrafast probes of
coherent dynamics have revealed nonequilibrium regimes of
phonon transport, necessitating a new theoretical framework
describing these effects [6–9].

Despite its success, the phenomenological heat conduction
equation is known to break down at both short lengthscales
and short timescales [10–13] as well as in low-dimensional
materials [14]. In such instances it is necessary to use the
more general phonon Boltzmann transport equation (pBTE)
[15]. This formalism recovers the phenomenological result in
the hydrodynamic limit [16] and provides the most general
description of semiclassical phonon transport by tracking
the evolution of probability distributions in full phase space,
resolving both spatial and momentum degrees of freedom.

Shortly after it was proposed, linearized solutions of the
pBTE enabled predictions of lattice thermal conductivity of
crystalline insulators using the relaxation-time approxima-
tion (RTA) [17], which assumes all perturbations return to
equilibrium with the same timescale [18]. Under the RTA
the collision term in the pBTE is diagonal in both posi-
tion and momentum space, making it possible to solve the
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pBTE with both time and spatial resolution [19,20]. Recent
computational methods have enabled the linearized pBTE to
be solved exactly, beyond the RTA, using materials parame-
ters determined from first principles via variational [21–23],
iterative [24,25], and direct approaches [26–28]. However,
each of these theoretical studies solved the time- and space-
independent form of the pBTE, i.e., at a steady state assuming
a spatially homogeneous structure, reducing the problem di-
mensionality to the three-momentum degrees of freedom.

An accurate picture of heat transport addressing finite-size
effects and transport across interfaces, however, must include
the spatial degrees of freedom of the nanoscale geometry
[29]. This paper aims to fill this void in theoretical transport
methods by incorporating all momentum degrees of freedom
into a spatially resolved pBTE solver, building on our previous
work in excited carrier dynamics [30–32].

The starting point for describing steady-state phonon trans-
port is the time-independent pBTE given by

vq,s · ∇n(q, s, r) = G0(q, s, r) + �q,s[n], (1)

where q and s are the phonon momentum and polarization,
respectively, r is position, n(q, s, r) is the phonon distribution
function, and vq,s is the phonon group velocity. The term on
the left reflects phonon drift with velocity vq,s, while the terms
on the right account for phonon generation [G0(q, s, r)] and
collisions (�q,s[n]).

We linearize Eq. (1) and find [30,33]

vμ · ∇ψ (μ, r) = G0(μ, r) +
∑
μ′

Aμμ′ψ (μ′, r), (2)
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FIG. 1. Schematic description of the recursive formulation and computational implementation of the pBTE. Phonons are injected at a
constant rate, G0. We capture their drift through the real-space structure by solving Eq. (5a) using the finite element method with linear
elements (Appendix D). The mixing matrix, consisting of three-phonon interactions and isotopic scattering (Appendix B), is then applied to
the unscattered distribution ψ0 according to Eq. (5b), giving the rate at which phonons are generated due to the first scattering event, G1. Green
and yellow dilatational contours sketch the interface model described in Eq. (8).

where μ is a phonon label encapsulating both q and s and

ψμ(r) = n(μ, r) − n̄(μ, r)

n̄(μ, r)[n̄(μ, r) + 1]
(3)

is the normalized deviation from the equilibrium Bose-
Einstein distribution n̄(μ, r). The scattering matrix Aμμ′ spec-
ifies the rate at which phonons scatter from state μ into state
μ′ and is given by the first-order series expansion of �μ[n]
around the equilibrium. For notational convenience we omit
the position dependence of ψμ hereinafter.

The scattering matrix can be split into diagonal terms,
representing decay, and off-diagonal terms, constituting the
mixing matrix (Appendices A and B):

Aμμ′ = τ−1
μ δμμ′ + Mμμ′ . (4a)

Likewise, the phonon distribution ψ may be expanded as

ψ = ψ (0) + ψ (1) + ψ (2) + · · · , (4b)

where ψ (m) collects contributions at mth order in M, encoding
the population of carriers which are connected to the source
G0 by m scattering events. Substitution of Eqs. (4a) and (4b)
into Eq. (2) returns the linearized recurrence relations

(
τ−1
μ + vμ · ∇)

ψ (m)
μ = Gm(μ) (5a)

and

Gm+1(μ) =
∑
μ′

Mμμ′ψ
(m)
μ′ . (5b)

These relations, indexed by scattering event m, illustrate our
method of treating collisions purely in reciprocal space, and
drift purely in real space, thus precluding any quantum effects
in drift. Each iteration in the algorithm represents a physical
scattering event, the significance of which can be traced back
to the thermalization of carriers, illustrated schematically in
Fig. 1.

Temperature gradients inside a material are modeled by a
constant source of phonons, G0. These phonons drift in real
space on a dense finite element mesh, as modeled by the

solution to Eq. (5a), before scattering against the background
phonon distribution. This produces phonons at a different con-
stant rate G1, given by Eq. (5b), which is taken as the injection
rate of phonons that have scattered once. The procedure is
then repeated until the convergence of Eq. (4b), which is aided
by the positive-semidefinite nature of the scattering matrix A
(Appendices A and B).

II. SINGLE MATERIAL VALIDATION

To demonstrate the utility of our spatially resolved for-
malism we apply it to examine phonon transport in a silicon
nanoparticle with a diameter of 200 nm, and a constant
injection of thermal phonons at the origin (Appendix D). The
steady-state distribution converges after only a few scattering
events [Fig. 2(a)]. This is because the nanoscale dimensions
of the nanoparticle favor quasiballistic rather than diffusive
transport [quantified by Fig. 4(a) and further discussed be-
low].

Despite operating in steady state, our framework enables
the examination of individual scattering events, thus offering
microscopic insight into transient processes inaccessible to
the heat conduction equation. We find that the scattering
event resolved distributions qualitatively match the transient
behavior obtained by treating the constant source term as an
initial population instead [Fig. 2(b)]. In some ways scattering
events are a more physical descriptor of thermalization than
time, which is effectively the former convolved with carriers’
mean free paths. This highlights the physical origin of carrier
thermalization as a direct consequence of scattering in the
material, and suggests that our formalism may offer insights
into transient phenomena.

Next, we analyze the accumulated distribution of carriers
reaching the surface as a function of scattering events. In
position space, the distribution of carriers is anisotropic with
“hot” and “cold” regions [Fig. 3(a)]. This is a consequence
of two phenomena. First, due to their quasiballistic behavior
many carriers reach the surface without scattering. Second,
the carriers exhibit anisotropic group velocities [Fig. 3(c)] and
thus preferentially reach the surface at latitudes corresponding
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FIG. 2. Spatially resolved thermal transport in a silicon nanopar-
ticle. (a) Accumulated radial temperature profile at steady state, after
15 scattering events. The diminishing differences in the temperature
profile distribution with increasing scattering events indicate the
rapid convergence. Inset: Solution to Fourier’s equation with similar
boundary conditions. (b) Individual contributions to the temperature
profile at order m. Inset: Transient solution to Fourier’s equation with
similar initial conditions.

to densely sampled directions in the group velocity distribu-
tion [Fig. 3(b)]. Considering phonons in the long-wavelength
limit, this can be traced to the anisotropy of the elastic stiffness
tensor for cubic materials [34]. Subsequent scattering events
work to isotropize the distribution [Fig. 3(a)], as anticipated
from symmetry considerations in cubic materials.

III. INTERFACE TRANSPORT

The spatial and scattering event resolution of our formal-
ism presents an opportunity to investigate interface transport
outside the Landauer formalism [35]. When heat is conducted
through interfaces the local temperature exhibits a sharp dis-
continuity, giving rise to thermal interface resistance (TIR),
which was first described by Kapitza in 1941 [36] and has
since been studied rigorously for a variety of materials [37].

The earliest models to describe TIR, the acoustic mismatch
model (AMM) [38] and the diffuse mismatch model (DMM)
[39], make use of the Landauer formalism attributing scatter-
ing to a mismatch of vibrational properties across the inter-
face. While the influence of atomic roughness is especially
significant at higher temperatures, both models underestimate

FIG. 3. Anisotropic surface carrier distribution. (a) Accumulated
surface distribution of carriers as a function of scattering events,
highlighting the real-space anisotropy at earlier scattering events.
(b) Angular projection of the surface distribution at the first scattering
event, illustrating accumulation at lines of constant latitude. (c) Di-
rectional dependence of phonon velocity magnitudes in the (100)
plane. The black line highlights the analogy with Young’s modulus,
reproduced from [34].

TIR at moderate cryogenic temperatures and above, attributed
to the omission of inelastic scattering [40,41]. At higher tem-
peratures, anharmonic interactions become important to TIR,
and despite the development of refined models to include full
dispersion relations [40], and address anharmonicity [41], the
corrections come at additional computational costs. Recently,
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an alternative approach using nonequilibrium molecular dy-
namics (NEMD) has been demonstrated, capable of capturing
TIR in the classical limit [42–45].

We propose an alternative formalism in which we specify
an interface Hamiltonian and compute transition probabilities
using Fermi’s “golden rule.” Within our recursive framework,
surface fluxes are expressed as

Sμ = (vμ · â)ψμ, (6)

where â is the surface normal. This can be extended for a
heterostructure between materials i and j as

Si,m+1
μ = T i→ j

μμ′ · S j′,m
μ′ + Ri→ j

μμ′ · Si′,m
μ′ , (7)

and similarly for S j,m+1
μ . Here T i→ j and Ri→ j represent trans-

mission and reflectance matrices, m indexes scattering events,
and the prime superscript specifies only those nodes shared at
the interface [46]. This splits the phonon flux into material i
into a component being backscattered at the interface and a
component being transmitted at the interface from the incom-
ing flux from material j.

Strain mismatch model

We illustrate our approach via a simple example of a
structure-specific interface Hamiltonian, describing semico-
herent interfaces such as a silicon-germanium heterostruc-
ture [47]. Such semicoherent interfaces are characterized by
the spontaneous formation of linear arrays of misfit (edge)
dislocations [47], characterized by a periodic dilatational
strain field along the interface. This external strain couples
to phonons [48], leading to inelastic scattering of the latter at
the interface. We now sketch the derivation of the interface
Hamiltonian. In the presence of a strain field, the potential
energy of a crystal is determined by the total atomic dis-
placement, utotal = uph + ustrain [48]. This can be represented
as a Taylor series around equilibrium in increasing powers
of displacement, with the cubic term giving the lowest-order
anharmonic contribution [33]. Expanding, we obtain four
interaction categories: (1) three-phonon interactions (u3

ph),
(2) two-phonon interactions with strain (ustrainu2

ph), (3) one-
phonon interactions with strain (u2

strainuph), and (4) vacuum
interactions (u3

strain).
The first category captures regular three-phonon interac-

tions, which are found in the bulk independent of strain. The
fourth category leads to a constant shift in energy and so
can be omitted. Single-phonon interactions with strain do not
conserve energy to first order, and can be shown to cancel out
exactly at higher orders [48]. We thus focus on two-phonon
interactions with the strain field, described by the perturbation
Hamiltonian:

H ′ = h̄

4ρ�
c2(μ1, μ2)

2∏
i=1

(
a†

μi
+ aμ−i

)
, (8)

where ρ is the material density, � is the unit-cell volume,
a†(a) are the phonon creation (annihilation) operators, and
c2 is the phonon-strain coupling coefficient (Appendix C).
We thus arrive at a conceptual picture of TIR: a phonon in
state μ in material i interacts with the Fourier component

FIG. 4. Thermal interface conductance. (a) Cumulative distribu-
tion of carrier Knudsen numbers, showing that less than 10% of car-
riers are purely “diffusive.” (b) Steady-state local temperature profile
across a Si-Ge heterostructure using the SMM. Red circles show the
x-projected position of local temperature, with the smooth blue line
showing the x-binned mean local temperature. Inset: Comparison of
the local temperatures at each side of the interface for both DMM
and SMM.

of the interfacial strain, scattering into a phonon in state μ′
in material i or j, transferring the excess momentum to the
strain field [48]. The model, termed the strain mismatch model
(SMM), is shown schematically in Fig. 1. We use expressions
from linear elasticity for the dilatational strain field due to
misfit dislocations (Appendix C) [49].

Table I shows the thermal conductance calculated with our
formalism for both the DMM and SMM approaches, as well
as from other models. We also compare these with inferred
thermal conductances from Si/Ge superlattice experiments
[53]. All calculations are performed on a heterojunction be-
tween 500-nm cubes of Si and Ge at 300 K. Such nanoscale
dimensions favor quasiballistic transport. This is quantified in
Fig. 4(a) by the nondimensional Knudsen number of carriers,
highlighting the nondiffusive character of the system and
explaining the nonlinear temperature profile away from the
interface.

The local temperature discontinuity across the interface
is recovered in position space using both the DMM and
the SMM [Fig. 4(b)]. The computed thermal conductance
using the DMM is in good agreement with the theoreti-
cal value using the Landauer formalism [50], albeit both
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TABLE I. Interface thermal conductance comparison with prior theoretical work and Si/Ge superlattice experiments.

Theoretical work Experimental superlattice period

DMMa DMMb NEMD SMMb 9.0 nm 14.0 nm 15.0 nm 27.5 nm

G(MW m−2 K−1) 417.5 [50] 392.5 315.9 [50] 173.2 711 [51] 414 [51] 276 [52] 159 [52]

aLandauer formalism.
bThis paper.

overestimate compared to NEMD and larger superlattice pe-
riod experiments [52]. Table I and Fig. 4(b) summarize the
additional interface scattering correctly captured by the SMM,
which achieves higher accuracy on larger superlattice period
experiments. This can be attributed to inelastic scattering at
the interface, and is expected to be even more pronounced at
higher temperatures.

IV. SUMMARY

In this paper, we establish a theoretical and computational
framework for semiclassical transport that describes all six
degrees of freedom of the BTE at steady state. We have
applied our recursive formalism to phonon transport, with
ab initio calculated scattering matrices, utilizing the multi-
dimensional resolution to investigate the physical origins of
phonon thermalization and anisotropic phonon distributions.
We have extended the framework to compute phonon surface
fluxes and investigated heat transport across interfaces. Our
perturbative formalism was validated against a semicoherent
interface within a Si-Ge heterostructure—a ubiquitous ma-
terials system in nanoelectronics. The model confirms that
nonintrinsic phonon scattering near the interface plays a dom-
inant role in TIR, and provides a pathway for generalization
to other structure-specific interfaces. Our paper may advance
thermal transport engineering at nanostructured materials
interfaces including those found in thermoelectrics, energy
storage, and nanotheranostic agents. By resolving individual
scattering events, our formalism could also provide insight
into transient behavior of phonons and capture nonequilib-
rium phenomena such as coherent phonon effects in all-
optical characterization of band structures of semiconductor
heterostructures.
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APPENDIX A: RECURSIVE SOLUTION DERIVATION

We derive the recursive solution to a general ballistic
transport problem with linear collision and a source term. This
is governed by the differential equation

∑
j

(
D

Dt

)
i j

φ j = S(0)
i −

∑
j

Ci jφ j, (A1)

where S(0) is the initial source term, C is the collision matrix,
and φ is the vector density of states the evolution of which we
would like to track. The differential operator D/Dt is defined
as (

D

Dt

)
=

(
∂

∂t
+

∑
k

vik∇k

)
δi j, (A2)

where v is the ballistic velocity operator and ∇ is the nabla
operator. In steady state, ∂/∂t → 0, and Eq. (A1) reduces to∑

k

vik∇kφi = S(0)
i −

∑
j

Ci jφ j . (A3)

This can be rewritten in the form

∑
j

(
δi j

∑
k

vik∇k + Ci j

)
φ j = S(0)

i , (A4)

which highlights that, for a given discretization of space, the
solution φ may be obtained via a matrix inversion. The matrix
to be inverted, however, exists over the joint space of spatial
and state dimensions, so instead we proceed iteratively. We
first split C into diagonal and off-diagonal terms:

Ci j = τ−1
i δi j + Mi j, (A5)

where τi is the lifetime of the carrier in state i. We may thereby
express Eq. (A4) as

∑
j

(
δi j

∑
k

vik∇k + δi jτ
−1
i

)
φ j = S(0)

i +
∑

j

Mi jφ j, (A6)

where the operator which acts on φ on the left-hand side is
diagonal in state space, and the operator which acts on it on
the right-hand side is diagonal in position space.

Let Gi be the Green’s function which inverts this operator.
Our iteration scheme then amounts to the following:

φ
(n)
i = Gi

(
S(n)

i

)
, (A7a)

S(n+1)
i = −

∑
j

Mi jφ
(n)
j , (A7b)
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where φ
(n)
i depends on the nth power of G, defined via

φi =
∞∑

n=0

φ
(n)
i . (A8)

Equations (A7a) and (A7b) may be written in a form similar
to the Jacobi iterative method:

φ(n) = −GMφ(n−1), (A9)

where all summation indices have been dropped for clarity.
The iterative scheme converges if and only if the spectral
radius of GM is less than unity. This is not guaranteed a
priori, so the scheme could fail. To remedy this, we switch
to a weighted Jacobi scheme:

φ(n) = −ωGMφ(n−1) + (1 − ω)φ(n−1), (A10a)

φ(0) = ωGS(0), (A10b)

where ω ∈ (0, 1) is the weight parameter, chosen so that the
spectral radius of ωGM is less than unity. This converges as
long as the matrix (G−1 − M ) is diagonally dominant.

Because the joint position-state space over which GM is
defined is extremely large we cannot explicitly construct this
operator and hence cannot directly use its spectral radius to
motivate a choice of ω. However, the Green’s function acting
on a spatially homogeneous system reduces to τiδi j , so we
may use the operator τM to estimate the spectral radius of
GM. We show below that the collision matrix C is strictly
diagonally dominant, motivating this scheme at least in the
spatially homogeneous case.

A number of our observations rely on the exact scattering
history, which is only strictly equal to φ(n) for a choice of
ω = 1. To address this, we reconstruct the scattering history
a posteriori. Let the iteration matrix Q = −GM and note that
Eq. (A10a) can be written as

φ(n) =
n∑

j=0

(ωQ) j (1 − ω)n− j

(
n

j

)
φ(0). (A11)

Since Q is the operator which scatters and propagates
carriers, we can define the population of carriers following
k scattering events, ψk , as those that arrive via k applications
of Q:

ψk =
∞∑

n=k

ωk (1 − ω)n−k

(
n

k

)
Qkφ(0). (A12)

In order to calculate ψk , we need access to Qkφ(0). This can
be accomplished by separating Eq. (A11),

φ(n) =
∑

j

Zn jQ
jφ(0), (A13a)

to a purely combinatorial component,

Zn j = ω j (1 − ω)n− j

(
n

j

)
, (A13b)

to finally obtain

Qkφ(0) =
∑

l

Z−1
jl φ(n). (A14)

With Eq. (A14) it is possible to compute ψk and thus recon-
struct the full scattering history as a postprocessing step. This
is guaranteed to be possible, since Z is nonsingular.

APPENDIX B: ANHARMONIC SCATTERING

We consider two types of anharmonic scattering processes
inside bulk materials, namely, three-phonon scattering and
phonon-isotope scattering. The intrinsic three-phonon scatter-
ing can be further separated into “coalescence processes” (+)
and “decay processes” (−) the rates of which are given by
[21,54]

P±
qs,q′s′,q′′s′′ =2π n̄qs

(
n̄q′s′ + 1

2
∓ 1

2

)
(n̄q′′s′′ + 1)

× |V3(−qs,∓q′s′, q′′s′′)|2δ(ωqs ± ωq′s′ − ωq′′s′′ ).

(B1)

V3(qs, q′s′, q′′s′′) is the anharmonic coupling given by

V3
(
qs, q′s′, q′′s′′) =

(
h̄

8Nωqsωq′s′ωq′′s′′

)1/2 ∑
bb′b′′

∑
αβγ

�̃αβγ

× (
qb, q′b′, q′′b′′)(mbmb′mb′′ )−1/2

× eα (b|qs)eβ (b′|q′s′)eγ (b′′|q′′s′′). (B2)

e(b|qs) is the eigenvector of the bth atom in mode qs, m
are atomic masses, N is the number of q points, and greek
letters denote Cartesian directions. �̃(qb, q′b′, q′′b′′) is the
Fourier-transformed third-order interatomic force constants
tensor given by

�̃(qb, q′b′, q′′b′′) =
∑
l ′l ′′

�(0b, l ′b′, l ′′b′′)eiq′l ′eiq′′l ′′ , (B3)

where l is a supercell index, and all other symbols are as
previously defined.

Similarly, the rate for a phonon-isotope event is [21]

Pisot
qs,q′s′ = π

2N

(
n̄qsn̄q′s′ + n̄qs + n̄q′s′

2

)
ωqsωq′s′

×
∑

b

gb

∣∣∣∣∣
∑

α

eα (b|qs)∗ · eα (b|q′s′)

∣∣∣∣∣
2

δ(ωqs − ωq′s′ ),

(B4)

where

gb = (mb − 〈mb〉)2

〈mb〉2
(B5)

is the mass average of atom b.
Combining Eqs. (B3) and (B4), the total anharmonic scat-

tering matrix inside bulk materials is given by [21,33]

Aμ,μ′ =
⎡
⎣ ∑

μ′′,μ′′′

(
P+

μ,μ′′′,μ′′ + P+
μ′′,μ′′′,μ

2

)
+

∑
μ′′

Pisot
μ,μ′′

⎤
⎦δμ,μ′

−
∑
μ′′

(P−
μ,μ′′,μ′ − P−

μ,μ′,μ′′ + P−
μ′,μ′′,μ) + Pisot

μ,μ′ ,

(B6)
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where we used the compact mode index μ, as before.
It can be shown that the scattering matrix is positive

semidefinite [21], a stricter condition than our required di-
agonally dominant condition. The iterative scheme is thus
guaranteed to converge for appropriate choices of weight ω

as long as the spatial degrees of freedom do not amplify
the spectral radius of the system. This is unlikely to emerge,
as spatially varying systems lose carriers more readily than
infinite homogeneous ones, though the possibility remains
that our scheme could become ill conditioned.

APPENDIX C: INTERFACIAL STRAIN COUPLING

We start with Eq. (8), i.e., the perturbation Hamiltonian
describing phonon-strain coupling, and derive the scattering
rates following Carruthers [48,55]:

H ′ = h̄

4ρ�
c2(μ1, μ2)

2∏
i=1

(
a†

μi
+ aμ−i

)
. (C1)

The process involves two phonons (as evidenced by the prod-
uct of two pairs of creation/annihilation operators), coupling
to the external strain field via

c2(qs, q′s′) =
∑
bb′b′′

∑
αβγ

�̃αβγ (qb, q′b′, (q′ − q)b′′)

× eα (b|qs)√
ωqsmb

eβ (b′|q′s′)√
ωq′s′mb′

vγ (q′ − q), (C2)

where the excess momentum is evaluated at the Fourier-
transformed external strain field v(q′ − q).

Using Eqs. (C1) and (C2), the scattering rate is therefore
given by

Pstrain
qs,q′s′ = π

8ρ2�2

(
n̄qsn̄q′s′ + n̄qs + n̄q′s′

2

)

× |c2(qs, q′s′)|2δ(ωqs − ωq′s′ ). (C3)

We note that h̄s cancel out, making the result classical.
We now turn to deriving the external strain for the specific

case of a semicoherent interface. In particular, we look at
the dilatation caused by misfit dislocations. The displacement
fields for a single edge dislocation are readily provided by
linear elasticity as [49]

ux = b

2π

[
θ + sin(2θ )

4(1 − ν)

]
,

uy = − b

2π

[
(1 − 2ν)

2(1 − ν)
log

( r0

r

)
+ cos(2θ )

4(1 − ν)

]
,

uz = 0, (C4)

where b is the magnitude of the dislocation Burger vector, ν is
the material’s Poisson ratio, r0 is the dislocation core radius,
and r and θ are polar coordinates. The dilatation of Eq. (C4)
for the usual approximation of r0 ≈ b is

�(r) = ∇ · {ux, uy, uz
} = − b

2π

[
1 − 2ν

2(1 − ν)

sin θ

r

]
,

�(x, y) = − b

2π

[
1 − 2ν

2(1 − ν)

y

x2 + y2

]
. (C5)

Working under the assumption of linear elasticity, we can
express the additive dilatation of an infinite array of edge
dislocations with a period d as

�∞(x, y) = − b

2π

[
1 − 2ν

2(1 − ν)

] ∞∑
n=−∞

y

(x − nd )2 + y2

= − b

2π

[
1 − 2ν

2(1 − ν)

]
sinh(2πy/d )

cosh(2πy/d ) − cos(2πx/d )
,

(C6)

where we note that the result is (naturally) periodic along the
interface. The dilatational field is plotted in Fig. 1. We can take
the Fourier transform of Eq. (C6) by the change of variables
α = 2πx/d , β = 2πy/d , kx = qxd/2π , and ky = qyd/2π to
give

�∞(q) = − b

�2/3

[
1 − 2ν

(1 − ν)

]
iqy(

q2
x + q2

y

) , (C7)

where the �2/3 factor was accumulated as a consequence of
integrating along the interface. We can supplement Eq. (C7)
with an additional factor of �(qz ) resulting from integrating
out of plane, to obtain [55]

v(q) = b

�2/3

[
1 − 2ν

(1 − ν)

]
qy(

q4
x + 2q2

x q2
y + q4

y

)�(qz )q. (C8)

We note the natural result that v(q) is parallel to q since the
field’s rotation, R = ∇ × {ux, uy, uz}, is zero.

Substituting Eqs. (C8) and (C2) into Eq. (C3), we can ob-
tain the scattering rate for a given phonon in state μ to couple
with the static strain field and scatter into a phonon in state μ′.
Finally, we make the assumption that interatomic force con-
stants are evaluated on the material the incoming phonon state
μ is coming from. We compute the reflection/transmission
tensors by normalizing these rates to the sum of all final states
(energy conservation), by noting that if phonon states μ and
μ′ are taken from the same material we are calculating a
reflection probability, whereas if the initial and final states are
taken from different materials we are calculating a transmis-
sion probability.

APPENDIX D: COMPUTATIONAL DETAILS

The recursive solution to the pBTE developed herein re-
quires both material properties and real structure inputs, as
well as the constant injection profile, G0. We compute mate-
rial properties, namely, the phonon group velocities and the
third-order truncated scattering matrix, using first-principles
calculations. The real-space structure is discretized on a finite
element mesh with linear elements.

All first-principles calculations were performed using
QUANTUM ESPRESSO [56,57], based on density functional
perturbation theory. In particular, third-order interatomic
force constants and anharmonic scattering rates were com-
puted using the D3Q and THERMAL2 suite of codes [21,58–
62]. For diamond (germanium) calculations we used a
6 × 6 × 6 k-point electronic Monkhorst-Pack mesh, with a
norm-conserving pseudopotential with cutoff radius of 2.4
(2.6) a.u. The exchange-correlation functional used was
under the local-density approximation, with a plane-wave
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kinetic-energy cutoff of 34 (80) Ry and a charge density
cutoff of 136 (320) Ry. Anharmonic forces were computed
on a 6 × 6 × 6 q-point phonon grid. This was subsequently
Fourier interpolated to a finer 10 × 10 × 10 q-point phonon
mesh on which the full scattering matrix was computed, with
a Gaussian smearing of σ = 2.5(2)cm−1, at a temperature of
300 K.

The 200-nm-diameter silicon nanoparticle, used in val-
idating the formalism, was discretized into 6364 vertices
and 35781 linear tetrahedra, with an average volume of
116 ± 38 nm3. Similarly the silicon-germanium heterostruc-
ture, of dimensions 1000 × 500 × 500 nm, was discretized
into 15474 vertices (729 of which were shared at the inter-
face) and 76179 linear tetrahedra, with an average volume of
3281 ± 142nm3.

In both calculations the constant source injections con-
sisted of thermal phonons at temperatures higher than the
equilibrium lattice. In particular, in the silicon nanoparticle

we injected Bose-Einstein distributed phonons where the
temperature, T , varied as a Gaussian with an amplitude of
125 K and a standard deviation of 15 nm (i.e., the phononic
temperature at the nanoparticle origin was 425 K, decreasing
to a constant value of 300 K roughly 50 nm away from the
origin). Similarly, the constant source injection for the silicon-
germanium heterostructure consisted of thermal phonons at
400 K at the right surface of the silicon. We use diffuse
boundary conditions with the vacuum boundary; i.e., a phonon
hitting the boundary scatters back to an energy-conserving
state (enforced by the density of states) with 50% probability
and it is lost otherwise.

In interpreting the nonequilibrium phonon distributions as
a local temperature, we solve for the temperature at which the
first moment of the distribution (energy density) agrees with
that of a Bose-Einstein distribution:∑

μ

h̄ωμnμ =
∑

μ

h̄ωμn̄μ =
∑

μ

h̄ωμ

(
e

h̄ωμ

KBT − 1
)−1

. (D1)
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