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Abstract— This paper presents a reactive controller for pla-
nar manipulation tasks that leverages machine learning to
achieve real-time performance. The approach is based on a
Model Predictive Control (MPC) formulation, where the goal
is to find an optimal sequence of robot motions to achieve a
desired object motion. Due to the multiple contact modes as-
sociated with frictional interactions, the resulting optimization
program suffers from combinatorial complexity when tasked
with determining the optimal sequence of modes.

To overcome this difficulty, we formulate the search for the
optimal mode sequences offline, separately from the search
for optimal control inputs online. Using tools from machine
learning, this leads to a convex hybrid MPC program that can
be solved in real-time. We validate our algorithm on a planar
manipulation experimental setup where results show that the
convex hybrid MPC formulation with learned modes achieves
good closed-loop performance on a trajectory tracking problem.

I. INTRODUCTION

While humans naturally make use of sensing and feedback
when manipulating objects, robot manipulators tradition-
ally execute actions relying on open-loop control strategies.
Given the uncertainty associated with frictional contact in-
teractions [1], [2] and the inherent inaccuracies of contact
models [3], [4], the use of feedback can play an important
role to address model uncertainty. The long term goal of
this work is to endow robots with real-time decision making
capabilities to enable reactive manipulation.

This paper focuses on planar manipulation tasks where
the physical interactions between manipulator, object, and
environment can be modeled from first principles, using
rigid body dynamics and Coulomb’s frictional law. A major
challenge concerning feedback controller design for systems
involving contact interactions is the presence of hybridness
and underactuation [5]. Hybridness refers to the fact that
frictional interactions between manipulator and object ex-
hibit different contact modes (e.g. contact/separation, stick-
ing/sliding, etc), while underactuation is a result of the
limited set of forces and torques that can be transmitted
by the robot to the object through frictional interactions.
Figure 1 shows an animation of a hybrid manipulation task
that exploits multiple contact modalities.

This paper’s main contribution is twofold. First, we present
a controller design formulation that can be used to manip-
ulate an object on a flat surface. The approach presented
in this paper generalizes to multiple contact interactions

This work was supported by NSF award [IIS-1637753] through the
National Robotics Initiative.

Fig. 1: Animation of a hybrid manipulation task. The hand
can interact with the book using one or many contact
configurations and by exploiting different contact modalities,
namely separation, sticking, and sliding. Figure adapted from
[5].

between manipulator and object and for tracking trajectories
in the plane. Second, we introduce a method to determine
an effective contact mode sequence that leads to a convex
hybrid Model Predictive Control (MPC) formulation. Due to
the hybridness associated with frictional interactions, hybrid
MPC formulations suffer from a combinatorial expansion due
to unknown future contact interactions modes. To overcome
this difficulty, we formulate the search for optimal modes
separately from the search for optimal control inputs, by
leveraging machine learning methods to select mode se-
quences from prior experience. Once the mode sequences
are selected, the control problem reduces to solving a convex
quadratic program, which can be achieved at very high
frequency.

II. RELATED WORK

The mechanics of planar pushing manipulation tasks were
first described by [6]. [7] introduced the concept of the limit
surface, a useful geometric representation which maps the
applied frictional forces on an object to its instantaneous
velocity. Under the assumption of quasi-static interactions,
the limit surface has been successfully used in simulation [6],
planning [8], state estimation [9], and feedback control [5],
[10], [11] applications. Due to the high computational costs
associated with building a true limit surface, [12] proposed
an ellipsoidal approximation which yields invertible models
from force to motion. Recently, [13] exploited the convex
properties of the limit surface to develop an efficient data-
driven algorithm for its construction from contact interac-
tions.

There is an ongoing effort to find planning frameworks
that can effectively handle the underactuation and hybrid-
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ness associated with contact models. [14] used sampled-
based planning algorithms to plan robot motions for in-hand
manipulation tasks. [15] developed a nonlinear trajectory
optimization framework that includes frictional forces as
decision variables within a nonlinear program and makes
use of complementary constraints to encode the different
contact interaction modes of the system. Another approach
that shows promise is based on Differential Dynamic Pro-
gramming (DDP), which iteratively approximates locally-
quadratic models of the dynamics and cost functions to find
a locally optimal path. Most approaches in this line rely
on approximating discontinuous dynamics with continuous
relaxations. [16] used penalty methods to smooth contact
models while [17] modeled the discontinuous dynamics of
the system with mixture models.

The application of model-based feedback control to con-
tact rich tasks has been limited to a small number of
applications [11], [18], [19]. The control strategies presented
in the aforementioned papers are applied to systems with an
a priori knowledge of the contact mode sequencing. In [5], a
feedback controller design is presented for the pusher-slider
system using a Model Predictive Control framework, where
a set of contact mode schedules are chosen such that they
span a number of dynamic behaviors likely to occur. This
method has been shown to work experimentally but requires
heuristic methods in order to design candidate contact mode
schedules. This paper aims to eliminate the need for contact
mode enumeration based on human intuition by developing
an algorithm that systematically selects contact modes se-
quences.

III. NOMENCLATURE

The notation used in the paper is described below:

• H: Convex set representing the limit surface.
• w = [ fx fy τ]T: Applied wrench on the object resolved

in the body frame.
• t= [vx vy ω]T: Object twist resolved in the body frame.
• Jc: Jacobian matrix associated with the contact point c

resolved in the body frame.
• N = [nT

1 . . . nT
C ]

T: Matrix of object normal vectors at
contact points resolved in body frame.

• D = [dT
1 . . . dT

C ]
T: Matrix of object tangent vectors at

contact points resolved in body frame.
• fn = [ fn,1 . . . fn,C]

T: Vector of applied normal forces at
contact points resolved in body frame.

• ft = [ ft,1 . . . ft,C]T: Vector of applied tangential forces
at contact points resolved in body frame.

• φφφ = [φ1 . . . φC]
T: Vector of relative angles of pusher

relative to body frame.
• x = [x y θ φφφ

T]T: System state vector.
• uc = [ fn,c ft,c φ̇c]

T: Vector of control inputs at contact
point c.

• u f = [fTn fTt ]T: Vector of commanded reaction forces.
• uφ = φ̇φφ : Vector of commanded angular velocities.
• u = [uT

f uT
φ
]T: Control input.

IV. PLANAR PUSHING MODEL

This section introduces the motion model for planar ma-
nipulation tasks that is general to an arbitrary number of
contact points and arbitrary object shapes. We adapt the
modeling of planar pushing interactions from [20] that we
briefly summarize below. All contacts in this work assume
Coulomb friction interactions [21], uniform pressure distri-
bution, and quasi-static interactions, where the inertial forces
of the object are negligible.

A. Motion Model

The limit surface is a geometric representation that de-
scribes the relationship between the applied force on an
object and its instantaneous velocity. In this paper, we use
the ellipsoidal approximation to the limit surface [12], [20]
due its simplicity and invertibility properties. The ellipsoidal
limit surface can be expressed in convex quadratic form as
H(w)= 1

2 wTAw. By the principle of maximal dissipation [7],
the object twist is perpendicular to the limit surface for a
given wrench

t = ∇∇∇H(w) = Aw, (1)

where the applied frictional wrench is

w =
C

∑
c=1

JTc (nc fn,c +dc ft,c) . (2)

Consider the planar manipulation task with multiple con-
tact points shown in Fig. 2. The unconstrained motion
equations of the system can be expressed as

ẋ = f(x,u) =
[

Rt
uφ

]
, R =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 , (3)

assuming that all points maintain contact with the sliding
object.

(x, y, θ)

fn,1

ft,1

fn,2

ft,2

φ1

φ2

Fig. 2: Free body diagram of a sliding object with c = 2
contact points.

B. Frictional Constraints

The motion equations in (3) do not enforce that the
reaction forces between manipulator and sliding object are
feasible. To ensure that the motion equations are associ-
ated with physically reasonable behavior, we must impose
constraints on the control input u, ensuring that the motion
model obeys contact interactions laws. Due to the hybrid
nature of contact, the physical constraints that dictate the
magnitude and direction of the frictional forces vary with



the contact interaction mode. In accordance with Coulomb’s
frictional law, the following constraints on the inputs must
always be satisfied independently of the contact mode:

Fig. 3: Friction cone constraint.
The applied force must remain
within the blue shaded region.

C0 :

{
fn,c ≥ 0,
| ft,c| ≥ µp fn,c,

(4)

implying the pusher can only exert a compressive force on
the object and that the net frictional force applied on the
object remains within the bounds of the friction cone in
Fig. 3. In addition, we must enforce constraints that depend
on the contact interaction mode.

Sticking When the pusher is sticking relative to the object,
the tangential velocity is stationary, as in Fig. 4(a)

C1 : φ̇c = 0. (5)

Sliding Left When the pusher is sliding left relative to
the object, the tangential velocity is strictly positive and the
frictional force must remain on the right hand side of the
friction cone, as in Fig. 4(b)

C2 :

{
φ̇c > 0,

ft,c = µp fn,c.
(6)

Sliding Right When the pusher is sliding right relative to
the object, the tangential velocity is strictly negative and the
frictional force is constrained to remain on the left hand side
of the friction cone, as in Fig. 4(c)

C3 :

{
φ̇c < 0,
ft,c =−µp fn,c.

(7)

(a) Sticking. The
relative velocity be-
tween the pusher
and object is zero.

(b) Sliding left.
The frictional force
lies on the lower
boundary of the
friction cone.

(c) Sliding right.
The frictional force
lies on the upper
boundary of the
friction cone.

Fig. 4: Mode dependent constraints following Coulomb’s
frictional interaction law.

V. HYBRID MODEL-PREDICTIVE CONTROL

This section presents a controller design framework for
planar manipulation tasks. The proposed controller aims to
stabilize the motion of a given object about a nominal tra-
jectory. The approach presented follows a Model Predictive

Control (MPC) formulation where the goal is to determine
a sequence of control inputs over a receding horizon to
minimize the error between the manipulated object and
its desired motion. Due to the hybridness associated with
Coulomb’s frictional law, the optimization program takes the
form of a mixed-integer quadratic program (MIQP).

Optimization Problem MPC (MIQP): Given current error
state x̄0 and nominal trajectory (x?i , u?

i ), solve

min
x̄i, ūi, zi

x̄TNQN x̄N +
N−1

∑
i=0

(
x̄Ti+1Qx̄i+1 + ūT

i Rūi + zTi Wzi

)
subject to x̄i+1 = x̄i +h [Aix̄i +Biūi] ,

ūc,i ∈ C0,

ūc,i ∈ C1 if c is sticking (i.e., z1c,i = 1),
ūc,i ∈ C2 if c is sliding left (i.e., z2c,i = 1),
ūc,i ∈ C3 if c is sliding right (i.e., z3c,i = 1),
z1c,i + z2c,i + z3c,i = 1,

(8)

with x̄i = xi−x?i , ūi = ui−u?
i , and zi = [z1c,i,z2c,i,z3c,i]

T. The
terms Q, QN , R, and W denote weight matrices associated
with the error state, final error state, control input, and
contact modes, respectively. We constrain the search to the
linearized dynamics of the system and the contact constraints
presented in sections IV, where Ai =

∂ f
∂x |x?i ,u?i and Bi =

∂ f
∂u |x?i ,u?i .

t0 tN

m1 m2 mM

t1 . . .

. . .

Error states

Control inputs

Contact modes

Fig. 5: Hybrid MPC framework. A sequence of control inputs
is computed that will drive the predicted states to the ref-
erence trajectory while simultaneously finding the schedule
of optimal hybrid mode transitions m = {m1, . . . ,mM}. The
control input ū0 +u?

0 is applied to the system.

We introduce integer variables into the optimization pro-
gram to denote the hybrid mode that is active at time step
i. The integer variables z1c,i, z2c,i, and z3c,i ∈ {0,1}, denote
sticking, sliding left, and sliding right for contact point c,
respectively, where the integer variable takes the value of 1
if a contact mode is active and 0 otherwise. We enforce that
the sum of integers values must be unity at each time step
to ensure that only one mode can be active at a time.

To speed up computation, it is often practical to constraint
adjacent time steps within a prediction horizon to have the
same contact mode. This is shown in Fig. 5, where the ag-
glomerated mode sequence m = {m1, . . . ,mM} is introduced,
with mm ∈ {1,2,3} denoting sticking, sliding left, and sliding



right.

VI. OFFLINE MODE SCHEDULE LEARNING

We can visualize the feedback control architecture pro-
posed in Section V in block diagram form in Fig. 6. Due
to the non-convex nature of integer variables in Eq. (8),
the solution time is typically slow and not appropriate for
high bandwidth feedback control applications. In an effort to
increase the control bandwidth, we aim to offload as much
of the computational costs offline as possible. To accomplish
this, we present a novel formulation that separates the search
for the mode schedule selection from the optimal control
sequence.

MPC
Plant

x⋆ x̄ ū

u⋆

u x+

−

+
+

(MIQP)

Fig. 6: Block diagram of hybrid controller design described
in Eq. (8). The resulting MPC controller design is a non-
convex mixed-integer quadratic program.

Consider the controller design architecture proposed in
Figure 7. Suppose that given the state error x̄, we had access
to an oracle function that returned an effective mode schedule
m = {m1,m2, . . . ,mN} to be enforced during the prediction
horizon. Although we do not have direct access to a real-

Plant
x? x̄ ū

u?

u x+

−

+
+

m

MPC

Classifier
model

(learned modes)

Fig. 7: Block diagram of hybrid controller design with
learned mode schedule classifier. The resulting MPC con-
troller design is a convex quadratic program.

time function that determines the optimal mode schedule,
we can query the mixed-integer MPC program as much as
desired offline to find optimal mode sequences given error
state inputs. This formulation lends itself well to a supervised
learning setting, where the objective is to train a classifier
model that can select an effective mode schedule given the
error state. We present the learning framework used to design
the classifier model shown in Fig. 8. Using the hybrid MPC
(MIQP) formulation presented in Eq. (8), we generate a
dataset of E training example {x̄e,me}, where me represents
the mode schedule associated with the eth datapoint. The
purpose of the machine learning algorithm is to train a
candidate classifier model that minimizes the cross-entropy
error function of the labelled training set. This new hybrid
control architecture leads to a convex optimization program

with a prescribed mode sequence and is referred to as MPC
(learned modes).

Optimization Problem MPC (learned modes): Given cur-
rent error state x̄0, nominal trajectory (x?i , u?

i ), and mode
schedule m, solve

min
x̄i, ūi

x̄TNQN x̄N +
N−1

∑
i=0

(
x̄Ti+1Qx̄i+1 + ūT

i Rūi

)
subject to x̄i+1 = x̄i +h [Aix̄i +Biūi] ,

ūc,i ∈ C0,

ūc,i ∈ C1 if c is sticking,
ūc,i ∈ C2 if c is sliding left,
ūc,i ∈ C3 if c is sliding right.

The main attraction of this approach is to convert a
non-convex mixed-integer quadratic program into a convex
quadratic program that can be solved in real-time.

Random State
Error Generator

MPC (MIQP)

Training Examples Learning Algorithm

x̄e

me

D : {x̄1,m1, . . . , x̄E,mE}

Classifier modelx̄

Training

Prediction

m

Fig. 8: Supervised learning framework for mode schedule
selection. A dataset of E labelled datapoints is generated
using the the MPC (MIQP) formulation. From the training
examples, a classifier is trained to return the mode schedule
based on the state error vector.

VII. RESULTS

In this section, we implement the controller design pre-
sented in Section V along with the planar pushing model
described in Section IV-A on a planar pushing experimental
setup. Videos of the experiments can be found at https:
//youtu.be/bMMlkyue_ZU. In both of the experiments
considered in this section, we parametrize the classifier
model introduced in Fig. 7 with a neural network with the
properties summarized in Table 1.

A. Case Study A: Single Point Pushing

First, we investigate the performance of the controller
design in Fig. 7 on a planar manipulation system where the
goal is to track a 2d trajectory in the shape of an 8 shaped
trajectory defined by two circles of radii 0.15 meters at a
constant velocity of v = 0.05 [m/s]. We build the classifier

https://youtu.be/bMMlkyue_ZU
https://youtu.be/bMMlkyue_ZU


TABLE I: Experiment parameters.

Property Symbol Value
Coefficient of friction (pusher-slider) µp 0.3
Coefficient of friction (slider-table) µg 0.35
Mass of slider (experiment A), kg m 0.827
Object radius (experiment A), m r 0.045
Mass of slider (experiment B), kg m 0.827
Object side length (experiment B), m a 0.09
Line pusher width (experiment B), m d 0.03

Fig. 9: Experimental setup for point pusher.

model following the learning framework displayed in Fig. 8,
where the training examples are generated using the MPC
(MIQP) program presented in Eq. (8). We parametrize the

Fig. 10: Accuracy results of the neural network predictions
on a validation set of 58815 labelled data points. We evaluate
the performance on each mode separately, as defined in
Fig. 5.

classifier using a neural network, as detailed in Table 1.
The physical properties of the circular object along with
the frictional properties of the system are in Table 2. The
controller design parameters used in the numerical simula-
tions are h = 0.3 seconds, N = 35, Q = 10 diag{3,3,0.1,0},
QN = 2000 diag{3,3,0.1,0}, and R = 0.5 diag{1,1,0.01}.
The prediction horizon is split into 8 parts during which
the contact modes are held constant. The number of time
steps associated with each contact mode section mm is
{1,5,5,5,5,5,5,4} with the associated contact mode weight
matrix W = 0.1 diag{0,3,1,1,1,0,0,0}.

Figure 10 shows the prediction accuracy of the neural
network trained on 117630 labelled data points on a val-
idation set of 58815 labelled data points both generated
using sampling the error state from a normal distribution
with standard deviation [0.03 0.03 .4 0.025]. We evaluate the

TABLE II: Neural network parameters.

Property Value
Number of hidden layers 3
Neurons in hidden layer 1 32
Neurons in hidden layer 2 50
Neurons in hidden layer 3 50
Activation functions ReLu
Output layer Softmax
Loss function Cross entropy

(a) Optimal contact mode (MIQP). (b) Classifier prediction.

Fig. 11: Optimal contact mode for the first time step as
a function of initial state errors in x and y while holding
θ = 5 [deg] and φ = 0 [deg]. The classifier model captures
the important trends of the MPC (MIQP) optimal mode
solutions.

performance on each mode individually, as defined in Fig. 5.
Figure 11 compares the optimal contact mode associated

with the first time step of the MPC (MIQP) with the predic-
tion made by the classifier. The contact modes are generated
as a function of initial state errors in x and y while holding
θ and φ constant at 5 degrees. The regions shown in green,
yellow, and blue denote the regions where the options actions
are sliding left, sliding right, or sticking. From the figure,
we notice that the optimal contact modes are separated into
distinct region, thus justifying the search for contact mode as
a classification problem and facilitating the learning process.
We notice that the classifier model succeed in capturing the
important trends of the MPC (MIQP) solutions.

Figure 12(a) depicts the robotic point pusher pushing the
square object about a 8 track without any external pertur-
bations for 7 consecutive laps. The black line represents
the desired trajectory and the blue lines track the center
of mass of the object. Although there is a small steady-
state error, the controller succeeds in tracking the desired
trajectory with accuracy. Figure 12(b) depicts the robotic
point pusher pushing the square object about a 8 track with
external perturbations for a single lap. The controller quickly
succeeds in eliminating the perturbation and returning to the
desired trajectory. The novel convex MPC formulation with
learned modes achieves good closed-loop performance and
permits a much higher bandwidth (250 Hz) than the non-
convex MPC (MIQP) formulation (20 Hz).



(a) Tracking of the 8 track for 7 consecutive laps. The black line
represents the desired trajectory and the blue lines track the center of
mass of the object.

(b) Tracking of the 8 track with external perturbations for a single laps.
The black line represents the desired trajectory and the hand represents
the locations and directions in which the perturbations were applied.

Fig. 12: Point pusher. Closed-loop implementation of the MPC (learned modes) controller, where the goal is to push a square
object about a 8 shaped trajectory.

(a) Tracking of the 8 track for 7 consecutive laps. The black line
represents the desired trajectory and the blue lines track the center of
mass of the object.

(b) Tracking of the 8 track with external perturbations for a single laps.
The black line represents the desired trajectory and the hand represents
the locations and directions in which the perturbations were applied.

Fig. 13: Line pusher. Closed-loop implementation of the MPC (learned modes) controller, where the goal is to push a square
object about a 8 shaped trajectory.

B. Case Study B: Pushing with Line Contact

Fig. 14: Experimental setup for line pusher.

The experimental setup for the planar manipulation task
with a line pusher is shown in Fig. 14. The trajectory tracking

task is shown in Fig. 13, where the goal is to track a 2d
trajectory in the shape of an 8 shaped trajectory defined
by two circles of radii 0.15 meters at a constant velocity
of v = 0.05 [m/s]. We model the line pusher as 2 contact
points that are constrained to move as a rigid-body, with
the position of the center point of pusher denoted as pc and
state vector defined by x = [x y θ pc]

T. Following a similar
approach to that described in Section VII-A, we train a
classifier model using 79410 labelled data points to predict
the optimal mode schedule based on the error state of the
system. The neural network properties used to parametrize
the classifier model and the physical properties are related in
Table 1 and 2, respectively. The controller design parameters
are h = 0.3 seconds, N = 35, Q = 10 diag{1,1,1,0.1},
QN = 2000 diag{1,1,1,0.1}, and R = diag{1,1,1,1,0.01}.
We split the prediction horizon into 8 parts during which
the contact modes are held constant. The number of time



steps associated with each contact mode section mm is
{1,5,5,5,5,5,5,4} with the associated weight matrix W =
0.1 diag{0,3,1,1,1,0,0,0}.

Figure 13(a) depicts the robotic line pusher pushing the
square object about a 8 track without any external pertur-
bations for 7 consecutive laps. The black line represents
the desired trajectory and the blue lines track the center of
mass of the object. The steady-state error is less prominent
than in the point pusher case, as the line pusher is a more
stable system with additional control authority. Figure 12(b)
depicts the robotic point pusher pushing the square object
about a 8 track with external perturbations for a single lap.
Each time a perturbation is encountered, the pusher reacts
to reduce the error by following a fast sliding motion to
stabilize the object and then push it back towards the desired
trajectory using a sticking phase. The novel MPC (learned
modes) controller performs comparably to the MPC (MIQP)
formulation and succeeds in tracking the desired trajectory
while having significantly faster control bandwidth (200 Hz
vs. 15 Hz).

VIII. CONCLUSION

This paper presents a methodology for feedback controller
design of hybrid dynamical systems. The control formulation
is based on a model predictive control approach, where
the hybridness and underactuation associated with contact
are explicitly enforced as constraints within a mixed-integer
optimization program.

In order to enable real-time implementation, we address
the combinatorial complexity resulting from the hybrid
expansion of contact modes by separating the search for
optimal mode schedules (offline) from the search for optimal
control inputs (online). This is made possible by formulating
the contact mode selection as a supervised learning problem.
This approach enables us to train a classifier model offline
by harnessing the solutions returned by the mixed-integer
optimization program and building a dataset of optimal mode
schedules.

We validate the controller design methodology on a planar
manipulation experimental setup, where it is shown that the
proposed convex formulation controller achieves comparable
performance as its non-convex alternative, while obtaining
a 10 fold improvement in the control bandwidth. Most
importantly, in contrast to mixed-integer MPC control formu-
lations, the online component of the hybrid MPC formulation
with learned modes has the potential to extend to more com-
plex dynamical systems with additional contact interactions,
as its associated convex program can be efficiently computed
in real-time.
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