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Abstract

This thesis addresses reconstruction problems arising in the determination of an ob-
ject from a set of noisy silhouette projections. Examined in detail are the orthogonal
projection and reconstruction of smooth, convex surfaces from curvature informa-
tion, and the mathematically related problem of estimating ellipsoids from projec-
tions. These two problems share a common underlying algebraic structure in their
involvement of a positive semi-definite (PSD) symmetric matrix. A linear mapping
between symmetric matrices is defined which captures the projection structure. The
nature of the PSD constraint is illuminated and exploited to develop PSD-constrained
matrix estimation algorithms. Extensions to symmetric matrices with arbitrary in-
terval matrix bounds of the form X < X < X are provided. The resulting matrix
estimates provide a complete solution to the original ellipsoid and curvature recon-
struction problems. The inclusion of a dynamic relationship is straightforward, and
is demonstrated for the case of ellipsoids. The techniques developed are applicable to
other linear symmetric matrix problems.

Consistency and smoothness of reconstructions based on discrete support hyper-
plane measurements are also investigated. Such support measurements arise from
1-dimensional projections of objects. The classical theory of surfaces and support
functions is extended to the discrete, general dimensional case, enabling the devel-
opment of a linear, local consistency test for a set of support measurements. The
close tie between consistency and curvature is exploited to develop various discrete
definitions of surface curvature for use as measures of smoothness. Global definitions
of smoothness based on the isoperimetric inequality are also provided.

This thesis contributes to the field of reconstruction from projections by extend-
ing and clarifying previous work on the planar case, by providing computationally
attractive solutions to certain problems, and by suggesting new approaches to exist-
ing issues.

Thesis Supervisor: George C. Verghese
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Overview

This thesis addresses certain reconstruction problems arising in the determination of
an object from a set of noisy shadow projections. Shadow projections appear in such
disciplines as geophysics, medicine, oceanography, robotics, and computer graphics,
arising when information about only the boundary or support of a projected object
is used as an observation. In addition to problems that are directly shadow based,
many practical situations are modeled as such out of convenience or necessity. This
is particularly true in situations of high noise or limited information, resulting in
projection observations which are effectively shadows. Finally, for many fundamen-
tally non-shadow problems, a preliminary step of object boundary estimation using
shadow information can greatly aid the achievement of the final reconstruction goal.

In this thesis we are primarily interested in the relationship between the algebraic
and geometric structure of certain problems arising from the shadow projection of
objects. We expose and exploit such underlying algebraic structure to: 1) unify and
extend existing reconstruction results; 2) provide concise solution characterizations
for these problems; 3) develop algebraic constraints reflecting fundamental geometric
object properties; and 4) suggest natural, geometrically constrained reconstruction
algorithms.

Three related problems are treated in detail. The first of these involves the orthog-
onal projection and reconstruction of smooth, convex hypersurfaces from curvature
information. This problem mainly centers around the local properties of a surface and
its projections, but also relates to global issues of overall shape. The second prob-

lem we examine arises from the mathematically related task of estimating ellipsoids

17



18 CHAPTER 1. INTRODUCTION

from their projections. Ellipsoids are shapes commonly used in many applications
to capture basic properties of object geometry, such as orientation and eccentricity.
This problem and the previous one share a common underlying algebraic structure in
that both involve a defining positive semi-definite (PSD) symmetric matrix, resulting
in our examination of these algebraic objects. OQur third problem concerns the con-
sistency and smoothness of reconstructions based on discrete support measurements.
One-dimensional shadow projections of objects yield such support measurements.
In particular, we examine the reconstruction of ellipsoids from such observations.
Throughout this work we concentrate on object boundary reconstruction, as distinct
from those disciplines attempting to discern information (such as density variations)
about the interior of an object.

This chapter is organized as follows. In the next section we discuss shadow pro-
jections and their relation to this work. The specific contributions of this thesis are

discussed in Section 1.3. Section 1.4 gives a summary of the organization of the thesis.

1.2 Shadow Projections and Object Support

The relationship between objects and their shadows or orthogonal projections is of
interest in a variety of disciplines and applications, including computer graphics, low
dose tomography, and robotics. Some applications are concerned with the forward
problem of determining the shadow of an object on a surface, given the shape of the
object. This is the goal, for example, in image synthesis for computer graphics [1, 2]
and automatic drawing generation for a part [3, 4]. Other applications are concerned
with the inverse problem of recovering the boundary shape of an object from a series of
its projections. This recovery can be direct or indirect. The projections can be used to
directly reconstruct a shape approximating the underlying generating one, as is done
in medical applications, or we can use our observations in a recognition framework
to choose one from among a set of candidate objects, thus indirectly recovering the
shape, as is done for target recognition tasks [5, 6, 7]. Our primary interest is in the
direct reconstruction framework, though our results may be used for the recognition
problem as well.

The generation of the shadow observations considered here comes about in differ-
ent ways. Aside from directly obtained shadow images, projection data often contains
little more information than the outline of the object of interest [7]. This is true in cer-

tain instances of non-destructive testing, in low-dose transmission X-ray tomographic
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Projection 1
Figure 1-1: Illustration of a projection measurement.

images [8, 9], in certain robotic applications involving spatial probing or grasping, and
in noisy range images (10, 11, 6, 5], to name a few. In all these cases the structure
of the observed data is effectively reduced to a projected outline. Even when this is
not the case, some applications attempting to reconstruct the interior of an object
benefit from a preliminary sfep of boundary extraction and reconstruction using only
such outline information. This approach has proven particularly helpful in reflection
tomography from laser range data [12] and has also been used in the case of low dose
tomography [8]. Mathematically, these shadow observations can be obtained through
a number of projection geometries, including orthogonal projection, perspective pro-
jection, and spherical projection [13, 14, 15]. Unless otherwise stated, in this thesis
we will mean an orthogonal shadow projection, as illustrated in Figure 1-1, when we
refer to a projection.

Once such a set of observations is obtained, it can be used in different ways to
constrain object shape. Sometimes observations are used in a simple and straight-
forward manner (16, 17], where each shadow is used to find a bounding volume for
the object and the combination of all such bounds forms an approximation to the
object. Often, however, the projections are used in conjunction with a model of the
object [9, 8, 18] or a representation in some transformed space [15, 19, 20], such as the
Gaussian sphere. These models and representations are chosen for their convenience
when working with projection information, and because they provide simple relation-
ships between the object in question and its projections. It is this latter approach
that we take, using projection observations together with certain object models and

representations.
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One such representational tool that is used is a map of an object to the Gaussian
sphere [21]. The Gaussian sphere is a unit sphere where each point on the sphere
corresponds to points of an object with the same surface normal orientation. Thus a
polyhedron is represented by a finite set of points on the Gaussian sphere. This map
to the Gaussian sphere is often combined with a map of some corresponding object
property, such as distance to the face for the case of polyhedra. In [7] this additional
mapping was done using local curvature information. For convex surfaces, it is a
classical result of differential geometry [22, 23, 24] that this curvature information for
all normal orientations uniquely determines the surface shape to within translation.
Such a representation thus uses the local curvature information to capture global
surface properties.

Another approach to reconstruction from projections is provided by methods that
make direct use of a geometric object model. The object is parameterized directly
by a relatively small number of embedded unknown parameters. The work in [9, 25]
on tomographic density reconstruction under conditions of low signal-to-noise ratio
is representative of this approach. This work (for the planar case) used an ellipti-
cal model to capture object center, radius, eccentricity, and orientation. For many
problems, such general object information is all that is required and the generation
of a detailed image, as is generally done for conventional medical tomography, is not
necessary. The advantage of this approach for the tomographic problem is that one
can expect to do better at estimating only a few parameters then at estimating the
65,000 pixels that typically exist in an image. The approach also has demonstrated
itself to be extremely robust in the presence of modeling errors [9].

The geometric modeling approach in [9, 25] has been expanded upon in the works
of Bresler and Macovski [26, 18] and in the work of Prince [8]. The first of these
used collections of cylinders to model blood vessels in digital subtraction angiogra-
phy. These cylinders each have an elliptical cross section and their spatial evolution
is modeled by a dynamic equation in the parameters of the planar ellipses. In pro-
jection, each cross section resulted in a 1-dimensional observation of both density
and extent. The work in [8] extended the geometric modeling formalism through
the incorporation of prior knowledge. In particular, one part of the work used an
elliptical model to capture prior shape information regarding object eccentricity and
orientation. Another part was concerned with the consistency and smoothness of the
reconstructed boundary. This work was confined to planar problems.

For convex objects, the ones of primary interest here, projection observations are
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equivalent to information about object extent in particular directions. This distance
to an object’s tangent hyperplane of a given direction is termed its support value in
that direction. Each such observation tells us something about where the object can
and cannot be. Consider the example in Figure 1-1. Given just projections 1 and
2 we know that the object must be contained in the shaded region, the projections
defining the extent of the object in particular directions. Clearly projection 3 cannot
be arbitrary if it is to be consistent with the other two. For example it cannot be
outside the shaded region. Thus the three projections and the support values that
they imply must satisfy a consistency constraint. Such questions for a continuous set
of measurements have a classical origin [27]. In [8] the corresponding problem for the
discrete planar case was examined, and a linear constraint provided for consistency of
support samples at equal angles. One goal of the treatment in [8] was to reconstruct
an optimal consistent set of measurements for use in other reconstruction tasks. This
work was given a distributional interpretation in [12]. Again, the work in [8, 12] is

limited to the planar case.

1.3 Contributions

This thesis makes contributions in several areas. One is our unification and extension
of existing planar or low dimensional results to a general setting. Often these results
had existed only for the planar case and our extensions to the 3-dimensional case
are immediately useful. The curvature results of Chapter 4 and support consistency
results of Chapter 6 are examples of such results. Further, existing shadow based pro-
jection approaches have, at best, confined themselves to objects in three dimensions
and shadows in two dimensions. We can imagine, however, situations where such re-
strictions might be restrictive and a more general formulation could be required. Any
reconstruction problem involving a 3-dimensional object that evolves in time, such
as imaging of the beating heart [28, pp. 275], is inherently 4-dimensional. Indeed,
much work related to the Radon transform is already done in such a general dimen-
sional setting [29, 30]. The general settings in which we treat our problems serve both
to directly address this weakness of earlier work and to provide a unification of the
present planar work in the area.

A second area of contribution is given by our solution characterizations. We
provide concise solutions to the problems of curvature and ellipsoid reconstruction

from projections. The existence of these solutions depends on the rank properties of
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a certain matrix and is thus simple to check. The corresponding solutions to these
problems are related to linear matrix equations. Qur linear formalism allows simple
computation of the solutions to a given problem. These linear models are also suitable
for recursive implementation and constrained reconstruction.

A third area of contribution is to the problem of constrained shape reconstruc-
tions. Our development in Chapter 3 provides novel, geometrically based algorithms
for constrained matrix reconstruction under arbitrary matrix interval bounds, includ-
ing eigenvalue bounds. These matrix algorithms and their constraints may in turn be
used to reflect the geometric properties of objects in the corresponding surface recon-
struction problems. In particular, the prescription of a range of allowed boundaries
for the ellipsoid reconstruction problem and the prescription of a family of allowed
surface shapes for the curvature reconstruction problem fall into this category. Also,
in Chapter 6 a local linear consistency constraint for a set of support measurements
is provided for the 3- and higher-dimensional case. Such a linear constraint is eas-
ily incorporated into existing support based reconstruction algorithms. Finally, our
development of simple measures of discrete curvature and smoothness in the same
chapter allows the incorporation of smoothness constraints in support based recon-

structions of 3-dimensional objects.

1.4 Organization

This thesis is organized as follows. In Chapter 2 we introduce a particular class of
linear projection mappings between symmetric matrices, together with an isometric
isomorphism of this problem to a convenient vector space setting. The definition of
this mapping is motivated by the problems of curvature and ellipsoid reconstruction
that we investigate. Following this treatment of matrix projections, in Chapter 3 we
examine the inverse problem of reconstructing a symmetric matrix from one or more
of its projection mappings. The material in these two chapters is common to much
of the subsequent work. Chapter 4 examines the relationship between the surfaces
of smooth, strictly convex objects and the surfaces of their orthogonal projections,
or shadows. This problem is algebraically related to the matrix issues of the first
two chapters. In Chapter 5 we treat the problem of projecting and reconstructing
an ellipsoid. A common underlying algebraic structure between this problem and
the problem of curvature based reconstruction relates these issues to the problem of

symmetric matrix estimation treated earlier in Chapter 2. In particular, we examine
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the case of 1-dimensional projections of ellipsoids, yielding support sample observa-
tions. Chapter 6 develops these notions more fully by examining the consistency
and smoothness of reconstructions based on a discrete set of support samples. In

Chapter 7 we suggest promising directions and problems for further work. Chapter 8

summarizes our results.
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Chapter 2

Symmetric Matrices: Properties

and Projections

2.1 Introduction

In this chapter we introduce a particular class of linear projection mappings between
symmetric matrices. The definition of this mapping is motivated by the applications
in which we are interested, and thus comes from physical considerations, as we de-
scribe below. The material to be presented in this chapter is common to much of the
subsequent development and knowledge of these results will serve us well.

The problems concerning symmetric matrices treated in this chapter appear in
many different guises in physical problems. For example, we show in Chapter 4 that
the relationship between the curvature of a convex surface and the curvature of the
boundary of its orthogonal projection is determined by the behavior of a certain sym-
metric matrix under a corresponding symmetric projection mapping. In Chapter 5 we
show how the problem of projecting and estimating (static and dynamic) ellipsoids
may also be treated as one of these problems in symmetric matrix projection and
estimation. Another problem fitting this framework is the determination of the (sym-
metric) conductivity matrix of a network from voltage probes [31]. At the root of all
these problems lies an underlying, desired symmetric matrix, of which we have partial
information through certain projection observations. We mention these physical ties
as they evolve here, but save deeper treatment for the appropriate chapter.

We start by defining a notion of symmetric projection mapping for symmetric

matrices that is central to our work. The definition of this mapping is motivated by
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the applications which were mentioned above, and thus derives from physical consid-
erations. Different formalisms for relating a matrix and its projection are presented
and critiqued, resulting in our choice of a particular isometric isomorphism as begin
most useful.

For many of the problems involving a symmetric matrix to be physically mean-
ingful, the underlying matrices are required to be positive semi-definite. The ellipse
and curvature problems mentioned above are two of these. As a consequence, we
next examine the nature of this constraint on the set of symmetric matrices in the
context of the different formalisms above. The set of PSD matrices forms a convex
cone, but one that is not finitely generated. Aspects of the geometry of this cone are
examined, and in particular, finite approximations to it are developed yielding linear
constraints. Such constriants are useful for estimation algorithms, are are treated in
the Chapter 3.

Finally, we note that the methods and formalisms developed in this chapter are
actually applicable to a much wider class of problems than just the estimation of a
symmetric matrix from a series of our specially defined symmetric projection map-
pings. The formalism we develop to handle our particular linear symmetric matrix
problem is actually a convenient way to solve many linear problems involving a matrix
argument. Further, the insight we develop into the nature of the positive semi-definite
constraint may be extended to arbitrary eigenvalue bounds. In combination with the
results of Chapter 3 we thus have a way of solving many matrix problems that are
linear in their matrix argument. As our primary interest is in our particular symmet-
ric case, we pursue that line of development and point out the necessary extensions

to this wider class of problems along the way.

2.2 Projection Mapping

In this section our notion of the projection mapping of a symmetric matrix is made
precise and its use motivated. Two examples suffice here to create the tie both
between our applications and their underlying symmetric matrices and with the par-
ticular notion of projection that we use. More detail on the specific applications is
presented in later chapters.

To start, consider the relationship between the curvature of a convex surface and
that of the boundary of its projection, alluded to above. This situation is sketched in

Figure 2-1. We may take the curvature of a surface at a point to be the symmetric
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Figure 2-1: Curvature projection

Hessian matrix H of a local height function at the point. The Hessian is the matrix
of second partial derivatives of a function. If the Hessian matrix of the orthogonal
projection of the surface at a point is given by H, then we show in Chapter 4 that
the relationship between this projected curvature and the curvature of the surface at

the point’s preimage is given by the equation:
H-! = STH'S (2.1)

for some S which is determined by the projection. Thus under orthogonal projection,
the symmetric matrices H=! and H-! are related by the quadratic form (2.1).

In another vein, consider the orthogonal projection of an ellipsoid. We may rep-
resent the ellipsoid by a symmetric matrix, since for any symmetric positive semi-
definite matrix E, the set {z|zTu < vuTEu, V|u| = 1} defines an ellipsoid. We
may thus use E to define the ellipsoid. Projecting this ellipsoid orthogonally onto a
subspace yields another lower dimensional ellipsoid, which we may similarly represent
within the subspace by E. The original ellipsoid and its projection are again related
by the equation:

E=STES (2.2)

where again the matrix S is a function of the projection subspace only.
The above examples should suffice to give a feel for how our physical problems
are related to the theoretical issues of this chapter. The forms of the above equations

motivate the following definition of projection mapping for symmetric matrices:

Definition 1 (Symmetric Projection Mapping) Given a symmetric n x n ma-
triz X and a general n x m matriz A (m < n) we define the symmetric projection
mapping of X by A to be the matriz:

Y =4Tx4A (2.3)
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Thus Y itself is a (m X m) symmetric matrix. For convenience, we often refer to ¥ as
simply a projection of X. Note that this mapping represents a true projection only if
the columns of A are orthonormal. We are mainly interested in the case when m < n
and the matrix Y is smaller than X, the mapping representing a loss of information.
Most of our results are easily extended to the case where n < m.

Note that the entries of Y are linear functions of the entries of X, thus the oper-
ation (2.3) represents a linear transformation of the entries of X. As such, a matrix
representation of this operator must exist. Such equivalent representations of the

operation in (2.3) will be very useful in the sequel and are examined next.

2.2.1 Equivalent Representations
Kronecker Approach

One way that has been used to represent the operator (2.3) is through the use of
the Kronecker and vec operators [32, 33, 34, 35]. Given two matrices, A and B, the
Kronecker product of A and B (notation A ® B) is defined to be the matrix formed
by all products of entries of A with B, so that A ® B = [a;;B]. For a matrix A,
the vec of A, notation vec(A) is the vector formed by stacking the columns of A one
above the other with the first column at the top and the last at the bottom. With

this notation it is straightforward to show that we may rewrite (2.3) as:
vec(Y) = (AT ® AT)vec(X) (2.4)

where (AT ® AT) is an m? x n? matrix, vec(Y) is a m? vector, and vec(X) is an n?
vector of the elements of X (recall A is m x n). This form of (2.3) confirms the linear
nature of the relationship. Unfortunately, while the vector vec(X) has n? entries, the
corresponding matrix X, being symmetric, has only n(rn+1)/2 independent elements.
Not all the elements of vec(X) are independent as there is hidden structure in the
vector vec(X). The same thing can be said of both vec(Y) and (AT ® AT), making
work with this form difficult.

One way around the above difficulties is to use the symmetry condition to reduce
the dimension of the vectors on the left and right hand sides of (2.4) from the original
m? and n’ elements to only the independent m(m + 1)/2 and n(n + 1)/2 elements,
respectively. This reduction is done by combining certain redundant rows and columns
of the matrix (AT ® AT) and eliminating certain entries of vec(X) and vec(Y). This
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approach has been taken by Magnus et. al [33] and others [32, 34|, who define an n(n+
1)/2 x n? elimination or deletion matrix L so that Lvec(X) is sans the supradiagonal
elements of X (which have been eliminated by the action of L). For example, for

n = 3 L has following form:

100
010 0 0
L=001010 (2.5)
0 0
00 1
0 0 00 1

Other operators of this type are defined, such as an inverse operator for L, termed
the dilation matrix D, essentially a certain left inverse of L. Using these auxiliary
matrices, the equation (2.4) may be compressed to contain only the essential elements
of X and Y. The relationship between X and Y may then be investigated, using the
resulting matrices and the properties of the compression and dilation operators. In
fact, the authors of [33] give an extensive treatment of pertinent properties of these
operators and their applications with this approach in mind. Unfortunately, even this
treatment is far from transparent, and the relationship of the resulting matrices are

hard to discern [36]. This observation leads us to develop other ways of coping with

(2.3).

2.2.2 The Symmetric Vector Space S

We overcome the above difficulties by embedding the problem in a natural way in
the vector space of symmetric matrices. In this space, each symmetric matrix is a
vector and the mapping (2.3) has a matrix representation. Unlike (2.4), however, this
matrix does not have structural redundancies because the entries of the vectors now
each represent an independent direction in the space.

The set of n x n symmetric matrices together with the inner product (4,B) =
tr(ATB) defines an n(n + 1)/2-dimensional Euclidean vector space which we de-
note by S, (note that this inner product induces the Frobenius norm on a ma-
trix (A, A)/? = ||A||r). Suppose the set of symmetric matrices { M{" |1 < /¢ <
n(n + 1)/2, (M,-("),MJ(")),, = &,} = {M{™} is an orthonormal basis for this space.

Each n x n symmetric matrix can be represented with respect to this basis by a vector
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in R™"*+1)/2 and conversely, each vector in R™"+1)/2 specifies a matrix obtained as the
weighted sum of the basis elements { M}'} where the weights are contained in the vec-
tor. A suitable standard basis is given in Appendix 2-A along with the 2 x 2 case as an
example. We represent this mapping from the symmetric subset of R**™ to R™"+1)/2
by the notation # = Epp}(X). For notational convenience, we henceforth suppress
the dependence of =(-) on the particular chosen basis {M}}. Now if a = E(A) and
b = Z(B), then (A4, B)_ = aTb. Since the representation of each symmetric matrix

given by z = Z(X) is also unique we have the following result:

Result 1 (Isometric Isomorphism) The mapping between a symmetric matriz X
and the vector of its representation z given by Z=(-) is an isometric isomorphism

between the set of symmetric n X n matrices and RM*+1/2,

If z is the vector in S, corresponding to X and y is the vector in S,, corresponding

to Y, then we may represent the projection mapping between X and Y given in (2.3)
by the following linear equation:

y = Az (2.6)

where the elements of the matrix A are given by (A);; = ( M{™, AT MJ(") A)m. Note
that y now has m(m + 1)/2 elements and z has n(n + 1)/2, as desired. Since we use

the relationship between A and A repeatedly we define it formally:

Definition 2 (The mapping I') Given the n X m matriz A, and the orthonormal
symmetric bases {Ml(")} and {M,F"')} we define the mapping T' from A to the m(m +
1)/2 x n(n + 1)/2 matriz A, where (A);; = (M{™, AT M{™ A),,. We denote this
mapping by the notation A = I'(A) or A 2 A. ThusT is a map from R™™ into
RIm(m+1)/2]x[n(n+1)/2]

Thus A is a matrix representation of the projection mapping AT(.)A with respect to
the symmetric bases {M{™} and {M{™}.

The formulation of Equation 2.6 is straightforward to use and the relationship
between the variables is more transparent. For example, |Y — ATX A||r = ||y — Az]|,
thus manipulations and minimizations done in S, have direct connections to quantities
in the original space. Some useful properties of T' are presented in Appendix 2-B. We
note here that many properties of A carry over to A under T', e.g. if A is a projector
(so A= AT and AA = A) then so is A. Such properties will be of use later.
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Extensions

Conceptually, the vector space representation provided by (2.6) may be developed
for any linear function of a matrix argument. In general, if a linear matrix operator
is given by ¥ = L(X), then we may always represent this operator in the form
of (2.6), where the entries of A are now given by (A);; = (Mi(m),ﬁ(MJ(")))m, and
{M}")}, {MI-("')} are any orthonormal bases for the domain and range, respectively.
There always exists a matrix representation of a linear operator and the mapping
to A as defined here is one general way to find it. The definition of T' then is no
more than the definition of the linear operator (2.3) with respect to given (arbitrary)
sets of bases for the symmetric spaces. Since we may phrase many of our results in
terms of the matrix representation A, they are applicable to the entire class of linear
matrix problems (e.g. those of the form ¥ = ATXB,Y = ATX + XB, etc. with
general A, B, X, and Y) as well as for (2.3). Later we consider the solution of (2.6)
with certain eigenvalue constraints on the symmetric matrix represented by z. From
the above arguments, these algorithms and results are also directly applicable to the
larger class of linear problems involving a symmetric X. More limited extensions of
these constrained problems also appear possible to the case of non-symmetric X. As
our primary interest is in the symmetric case given by (2.3), we focus on this class of
problems.

Note that the Kronecker formulation (2.4) gives another matrix representation of
the operator. This operator is not induced by an arbitrary choice of bases however,
but rather implies its own basis. In fact for our inner product, the corresponding basis
on X implied by (2.4) is comprised of matrices which are all zeros except for a single
1 in some entry. These basis elements, while orthonormal, do not form an orthogonal

decomposition of the space of matrices into symmetric and skew-symmetric parts.

2.3 Positive Semi-Definite Matrices

All of the above discussion concerned the projection mapping of general symmetric
matrices. Many physical problems fitting into the symmetric matrix projection and
reconstruction framework however require on physical grounds that the underlying
matrix be positive semi-definite. Positive semi-definite symmetric matrices and their
properties are important in a wide variety of fields such as control theory, physics,
and network theory, where they appear in such connections as Lyapunov equations,

stability analyses, and covariance estimates. These reasons lead us to study the set of

& DN AT & EeEAk———————i— s s i aes 1 ox  n oy e



32 CHAPTER 2. SYMMETRIC MATRICES: PROJECTIONS

positive semi-definite symmetric matrices. To this end, we first study the geometry
of the PSD set and then examine some useful approximations to this PSD set. In
Section 3.3 we use these insights to solve least-squares problems subject to a PSD
constraint on the solution.

A symmetric matrix X is said to be positive semi-definite and denoted X > 0
if all its (necessarily real) eigenvalues are non-negative. Similar definitions hold for
positive definite, negative definite and negative semi-definite, but we concentrate on
the positive semi-definite case. We denote the set of n x n positive semi-definite
matrices by PSD,, and the subset of n x n positive semi-definite matrices of rank r by
PSD("). In the vector space of symmetric matrices S in which we have been working,
the matrix X is represented by a vector. The entries of this vector are just linear
combinations of the entries of the original matrix X. It is therefore more convenient
to use a condition that is not phrased in terms of the spectrum of the matrix but
directly in terms of the matrix elements themselves. Such well known equivalent

conditions are given in the following (see e.g. [37, 38]).

Result 2 (PSD conditions) The following statements concerning X = XT are
equivalent:

1. X >0.
2. uTXu>0,Vulu=1.
3. The principal minors of X are non-negative.

Of special interest to us is the cases when X is 2 x 2 and 3 x 3. These cases arise
in the modeling of 2- and 3-dimensional objects respectively. Applying the conditions
above to these cases yields the following constraints on the entries of a matrix for it

to be positive semi-definite:

Corollary 1 If X = XT = [X,;] is 2 x 2 then X is positive semi-definite if and only

X1 20
X > 0
XuXs— X2, > 0

If X is 3 X 3 then X is positive semi-definite if and only if the above conditions hold
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Figure 2-2: Set of PSD 2 x 2 matrices X

and

X3 =2 0

X11Xss — Xiy > 0

Xo2Xss— X2 > 0

X11X22 X33 + 2X1:X13X03 — X11 X35 — X2 X035 — X3 X, > 0

Now, since the set of symmetric matrices is isomorphic to R*t1)/2 through Z(-), we
may use (2) of Result 2 to obtain the following equivalent characterization of the PSD
set directly in the space S:

Lemma 1 (PSD Isometry) The PSD set is isomorphic to the following subset of
Rr(n+1)/2,

{=le"p > 0, Vu € E(PSDV)} (2.7)

where PSDY) is the set of rank-1 PSD matrices and Z(-) is the mapping from a

symmetric matriz to the vector of coefficients of its representation.

The lemma follows from the identity u"Xu = (X, uuT) = 2Ty, where u = Z(uuT).
For the 2 x 2 case we give a sketch of the set of positive semi-definite matrices
(PSD;) in the parameter space of the matrix entries (X1, X2, X22) in Figure 2-2 to
display the set involved. The set is obviously convex and cone shaped. Recall that
the relationship between the entries (X;1, X12, X32) and the elements of the vector
z = Z(X) is linear, so a similar image of the PSD set holds in the space S. In fact,
for our standard basis given in Appendix 2-A z = [X1; V2Xi, X33]T. For the 3 x 3
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case the set PSD; already resides in a 6-dimensional space and is nearly impossible
to visualize! These sets turn out to have interesting structure, however, particularly
in the vector space S.

We now examine the general structure of the PSD set. Insights and intuitions
into the properties of the set are given together with useful characterizations. These
insights and characterizations are then used to develop (polyhedral) approximations
to the PSD set. These approximations in turn are used in the sequel for the solution
of constrained optimization problems. We start with the general properties of the
PSD set next.

2.3.1 The Set of PSD Matrices: General Properties

The general geometric properties of the set PSD,, of n x n positive semi-definite
matrices is reviewed here. We start with some general observations, then apply the
general theory of cones and convex sets to the case at hand to obtain more detailed
characterizations of the set.

First note that the PSD set is convex, since the sum of any two PSD matrices is
again PSD. It is also a closed set [39]. Using the principal minor condition above, we
see that the overall order of the polynomial representing the boundary in the space of
the entries (and thus in the space S) is the same as the size of the underlying matrix,
n, and that this polynomial is homogeneous. Further, since the principal minors
involve the determinants of symmetric submatrices of the elements, the conditions
can be seen to always be linear in each of the diagonal elements X;; and quadratic in
the off-diagonal elements X;;, ¢ < j. The linearity in the diagonal matrix elements
means that the bounds on these elements are one-sided: as we increase X;; from —oo
to +o0o with the other elements fixed we only cross the positive semi-definite boundary
once. It is also true that if a matrix is already positive semi-definite, then increasing
its diagonal elements does not destroy this property. Thus, as can be verifed in the
2 x 2 example, the PSD set is open in these directions. Since the conditions for
positive semi-definiteness are quadratic in each of the off-diagonal elements, as these
elements are taken from —oo to +oo (with the other elements fixed), the positive
definite boundary is crossed twice in general. Indeed, since the set is convex, this
is the maximum number times we may cross the boundary through such monotonic
perturbations. This behavior can be seen in the sketch for the 2 x 2 case above.
We use these observations later in approximating the set of positive semi-definite

matrices.
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PSD,, is a Cone

We now review the properties of the PSD set as a cone. We use results and definitions
from the theory of cones [39, 40, 41, 42]. A subset K of a finite dimensional vector
space is said to be a convex cone if and only if z,y € K, a,0 > 0 implies that
az + By € K, where o and 3 are scalars. We can see that the set of positive semi-
definite matrices forms a convex cone, since the non-negative sum of any two PSD
matrices is again a PSD matrix. A cone is said to be pointedif KN(—K) = {0}. Now
if X is a PSD matrix then —X will be positive semi-definite if and only if X is the
zero matrix, so the PSD cone is pointed. A cone is termed full if the interior of K is
nonempty. Since the interior of the PSD cone is comprised of the (non-empty) set of
positive definite matrices, the PSD cone is full. For a cone K, if span(K) equals the
underlying space then K is termed reproducing. Since the span of PSD matrices is the
set of symmetric matrices, PSD,, is reproducing. The dual cone K* of K is defined
to be K* = {z|(z,y) > 0,Vy € K}. A cone is termed self dual when K = K*. It can
be shown [43] that the real PSD cone is self-dual (if we consider the set of hermitian
matrices over the complex field this is not true however). Finally a cone is termed
polyhedral if it can be represented as the set of all non-negative linear combinations
of a finite set of elements. Since no such finite set of generators exists for the set of
positive semi-definite matrices, the PSD cone is not polyhedral. This is unfortunate
because of its implications for the solution of constrained optimization problems. We

say more about this later.

Symmetries of PSD Cone

The central direction of the PSD cone is the identity matrix and there exist certain
symmetries around it. Following [44], the inner product (A4, B), allows us to define

the cosine of the angle between two matrices by

(4, B)
A, B) = —D 20
«os(4 B) = 1B

A matrix’s position in the cone can be thought of as depending on its angle with

respect to the central identity direction. We have the following result:

Result 3 (Tarazaga [44]) Given a symmetric positive semi-definite matriz X :

cos _ _Ir(X)
XD = Xevm
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< 4=
n
where 7 is the rank of X. FEquality holds when the non-zero eigenvalues of X are

equal.

Thus, as the rank of a PSD matrix decreases its (maximum) angle with respect to the
identity increases. The rank-1 matrices are the farthest from the identity; forming
the fixed angle arccos(1/4/n) with respect to it. |

Since the angle of a matrix in the PSD cone with respect to the central direction of
the identity is apparently a parameter of importance, we seek a way of manipulating
it. This ability is will be useful when we generate approximations to the PSD cone
later. The following result gives a way of changing the angle of a matrix with respect
to the identity that aids in this effort.

Result 4 (Angle change) If X is an arbitrary symmetric matriz (# I) and « is a
scalar then cos(X — al,I) is a monotonically decreasing function of . That is, the

angle between X — ol and I is a monotonically increasing function of a.

The proof is in Appendix 2-C. By choosing o properly we may set this angle to
whatever we desire. What is more important is that this function is monotonic.
Since the angle of a matrix with respect to the identity matrix is determined by
Tr(X)/(| X ||F+/n), the angle does not uniquely specify the matrix. In general there
exist matrices of higher and lower rank with the same angle. What is useful to us
is that for a given starting matrix it provides us with a way to change its position

relative to the identity in a controlled way.

Support Hyperplanes

We characterize the support hyperplanes and halfspaces of the PSD cone next. A
hyperplane is an (n — 1)-dimensional affine subspace of an n-dimensional space [45].
Analytically, a hyperplane H(N,d) is the set of points H(N,d) = {X|(X,N) = d}
for some N and scalar d. The vector N is the normal to the hyperplane and d
is the distance of the hyperplane from the origin. The set of points HS (N,d) =
{X|(X,N) > d} is the closed halfspace defined by the hyperplane M. Note that, by
convention, we are associating a halfspace with the hyperplane whose normal points
into the halfspace. A closed halfspace 1S is a (proper) support halfspace of a closed
set K if K C HS and HN K # 0, where H is the hyperplane associated with HS. A
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hyperplane H is a (proper) support hyperplane of a closed set K if HN K # ( but
HNriK =, where ri denotes the relative interior of a set [45], i.e. the interior in the
span of its elements. Analytically then, a hyperplane is a support hyperplane of K if
(Y,N) > dforall Y € K with equality for some V.

With these definitions we now characterize the support hyperplanes of the PSD

cone. These hyperplanes are equivalently defined by their corresponding allowable
pairs (N, d).

Result 5 (Support hyperplanes) The support hyperplanes H(N,d) and correspond-
ing support halfspaces of the PSD cone are precisely those with d = 0 and with a
normal N which itself is a PSD matriz. Further, when N corresponds to a positive

definite matriz the associated hyperplane only supports the PSD cone at the origin.

The proof is in Appendix 2-D. Perhaps surprisingly then, the normals to the support
hyperplanes of the PSD cone are members of the cone themselves. Further, the
normals of the non-trivial hyperplanes (those supporting the cone at some place other
than its point) lie on the cone’s boundary, since they are associated with the PSD
matrices of rank less than n. This result can actually be seen to be a consequence of

the cone being self dual. The situation is illustrated for the n = 2 case in Figure 2-3.

Now a convex set K with non-empty interior is smooth at a boundary point p if
p belongs to no more than one support hyperplane of K [46, 47]. Clearly, the PSD
cone is not smooth at its tip, which belongs to all the support hyperplanes. Perhaps
surprising however is the following result:

Result 8 (Smooth points) The only boundary points at which the cone of n x n

PSD matrices is smooth are those corresponding to rank-(n — 1) PSD matrices.

The proof of this result is given in Appendix 2-E. Note, in particular, that only for the
n = 2 case is the surface of the PSD cone smooth (except for its tip, of course), since
in this case alone the entire boundary is composed of matrices of rank (n — 1) = 1.
This case is also the only one we can visualize. For all other cases, for example the
set of 3 x 3 PSD matrices, the boundary is not smooth. This non-smoothness is
apparently responsible for the difficulty that has been noted in doing optimization
over this set [48]. '
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Figure 2-3: Illustration of support hyperplanes

Exterior Representation

It is a result of convex set theory that a non-empty closed convex set can be obtained
as the intersection of its support halfspaces [45]. This prescription yields an “exterior”
representation of any convex set and specifically of the PSD cone. Combining Result 5

and this representation we obtain the following characterization of the PSD set:

PSD,, = N HS(N,0)
neyr_, PSDY

Unfortunately, the cardinality of the set of (normalized) PSD matrices is infinite,
implying that there is an infinite number of support hyperplanes to the full PSD
cone (via the normals). From Result 5 we may even throw out those hyperplanes
with positive definite normals as being redundant (since they only support the cone
at its tip, the origin), but we are still left with an infinite number of semi-definite
matrices as normals. Actually, not even all the semi-definite normals are needed to
characterize the PSD set. We have the following result:
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Result 7 (PSD characterization) Let 1 <r < n be fized, then

PSD,= () HMS(N,0)
NePSD)

The proof is in Appendix 2-F. Only the singular PSD normals of fixed rank are
therefore actually needed to describe the PSD cone. In particular, we may describe
the cone using only the set of rank-1 normals. This is the smallest such set, in the
sense that it has the smallest dimension, n. This observation immediately gives the

following corollary.
Corollary 2

PSD,= () HS(N,0)
NePSDV

Interestingly we may obtain this corollary directly from the classical result given as
condition (2) of Result 2. Analytically, this result is just a restatement of Lemma 1
in the original space, but the interpretation is completely different.

Even though we have reduced the set of support hyperplanes required to describe
the PSD cone to only those with rank-1 PSD normals, an infinite number of them is
still needed for an exact characterization of the cone. With a finite such support set,
however, we may approzimate the PSD cone “from the outside” by using the resulting
halfspaces to generate a polyhedral bound for the set. This approach is a useful one,

and we discuss it in more detail later.

Rank-1 Normal Geometry

Since the rank-1 PSD matrices appear to be central to representing the PSD cone,
their geometry is now briefly discussed. We saw above that the rank-1 PSD matrices
are also normals to the support hyperplanes of the PSD set. We know that these
matrices are on the boundary of the PSD cone, but what else can we say about

them? Our central result is the following.
Result 8 (Rank-1 geometry) The rank-1 PSD matrices of unit norm are con-
1

lie on an (n? + n — 2)/2 ball of radius \/(n — 1)/n centered at 1/n1.

tained in the hyperplane 'H(VI-;;I ’T)' Further, in this hyperplane, these matrices

Note that this hyperplane is an (n — 1)(n + 2)/2-dimensional affine subspace. The
proof is in Appendix 2-G.
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Figure 2-4: Iustration of Rank-1 matrix geometry

Any rank-1 PSD matrix of unit norm can be written as uu”, where u is a unit
n-vector. Since these vectors « have a smooth parameterization on the unit ball in
R™, we see that the unit rank 1 PSD matrices must actually be contained on an
(n — 1)-dimensional manifold. From the above result, this manifold is apparently not
flat, i.e. confined to an (n — 1)-dimensional affine subspace. We note that we have
not detected any of the above special structure for the rank » > 1 PSD matrix case.

As an example of the above observations, consider the n = 2 case. This case is
shown in Figure 2-4 in the vector space S. Here the coordinates are [X;; v/2Xq5 Xa5]T.
In this case the rank-1 matrices correspond to the boundary of the PSD cone. From
the result, the points corresponding to the unit rank-1 matrices are constrained to lie
in a hyperplane. For this case the containing hyperplane is simply the plane shown
in the figure. The result also says these points will lie on a ball in this hyperplane
of radius \/iﬁ This ball is the circle drawn on the plane in the figure. Finally, we
know the points are confined to a 1-D manifold. This manifold coincides with the
circle in this case. Note that for the n = 2 case this manifold is flat. For the case
n = 3, the underlying space is 6-dimensional, so we cannot even draw it. For this
case, the hyperplane would be 5-dimensional, the ball surface 4-dimensional, and the

manifold 2-dimensional. This illustrates the difficulty in working with these sets even
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for the physically motivated case of 3 x 3 matrices.

Facial Structure

The facial structure of a convex set (and a cone) is an important determiner of its
geometry [49], and we examine this structure for the PSD cone next. The general
theory is reviewed and then applied to the case of the PSD cone. Our review is based
on [45, 40, 39]. Let K be a closed convex set. A convex subset F' of K is called a
face if z,y € K and (z + y) € F imply z € F. The subsets @ and K are both faces
of K called the improper faces. All other faces are called proper faces. The following
theorem confirms our intuitive notion of what a face should be:

Theorem 1 ([45]) If F is a face of a closed convez set K in R%, with F # K, then
FcCrbK.

where rb K denotes the relative boundary of K. This theorem shows that the faces
of a set are extreme subsets of the set associated with its boundary. What is more,

these subsets form natural building blocks for the set. We have the following result:

Theorem 2 ([45]) Let K be a closed convez set in R%. For each x € K there is a
unique face F of K such that z € ri F.

where, again, ri F' denotes the relative interior of F'. In particular, the proper faces
of K can have no points in ri K, the interior of the set itself.

With the above intuition, we now give the following characterization of the faces
of the PSD cone from [39]:

Theorem 3 ([39]) Every face of the PSD cone is of the form:
Fs={X € PSD,| XV L S,i=1,...,n}

where S is a subspace of R* and X() denotes the i-th column of X. Conversely, given
a subspace S C R", Fs is a face of the PSD cone.

From this result we can see that each face of the cone of n x n PSD matrices is
isomorphic to the cone of r x 7 PSD matrices for some 0 < r < n [39]. Thus, the
proper faces (and boundary) of the PSD cone are composed of those elements of
the PSD set that are of less than full rank. This implies that the faces of the PSD
cone must have dimension r(r + 1)/2 for some 0 < r < n. Not all dimensions are

represented!
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There are certain special faces of a convex set. First we discuss those classes
depending on the dimension of the face. One such special type of face is termed a
facet. The facets of a convex set K are the faces of K with dimension 1 less than
the dimension of K (and are thus like hyperplanes). This definition of facets extends
our intuitive notion of the faces of a polyhedron. From the previous theorem and the
arguments following it, is interesting to note that the PSD cone has no facets!

Another special type of face is termed an extreme ray. These faces are the 1-
dimensional faces, and extend our notion of an edge. As an equivalent characterization
of these faces, note that a ray of a convex cone is extreme if it can be deleted from
the cone with the resulting cone remaining convex [38]. A point of an extreme ray
is termed an eztremal. It is a result of cone theory that a convex cone is the convex
hull of its extreme rays [40]. For the PSD cone, the extremals are precisely the rank-1
matrices [39, 38]. Thus (as we know from linear algebra) every positive semi-definite
matrix can be obtained as a convex combination of rank-1 PSD matrices. This yields
an “interior” representation of the cone [45], dual to the exterior one given above.

Now a cone in an n-dimensional vector space is termed polyhedral if it has a finite
set of extreme rays [40]. Unfortunately, since the cardinality of the set of rank-1 PSD
matrices is infinite, an infinite number of them is needed to characterize the full PSD
cone, so it is not polyhedral, as mentioned before. Again, we may approximate the
cone, this time from the “inside,” by using a finite set of extremals. We discuss such
ideas later. It is interesting to note that we may obtain the PSD cone from the rank-
1 matrices in two completely different ways: via an interior representation using a
convex combination of rank-1 PSD matrices or from an exterior representation, using
the halfspaces generated by rank-1 matrix normals.

Finally, the zero-dimensional faces are termed the eztreme points of a convex set.
Note that an extreme point is a face while an extremal is just a point on an extreme
ray, and thus not necessarily a face. From the definition of a face it follows that
a cone has no (proper) extreme points. Specifically, the PSD cone has no proper
extreme points. To see this, consider a cone and any (non-zero) point X in it. Now
X = X/2 4 X/2, and X/2 is in the cone but clearly X # X/2, so X cannot be
a (zero-dimensional) face. The extreme points of a set coincide with our notion of
vertices. The problem is that cones, being unbounded, are not compact. In fact, we

have the following result:

Theorem 4 ([47]) If K is a non-empty compact set in R? then K has at least one

ezireme point.
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Figure 2-5: Schematic view of PSD cone

Even further, for a compact convex set we have the following result, known in different
guises as Minkowski’s Theorem [45] or the Krein-Milman Theorem [47]:

Theorem 5 ([47]) If K is a compact convez set in R® then K is the convez hull of

its extreme points.

Exposed Faces

To finish our consideration of the facial structure of the PSD cone, we examine a
special group of faces of a set termed the ezposed faces. A face F of a closed convex
set K is a (proper) exposed face if F = H N K for some (proper) support hyperplane
H. A point X € K is called an ezposed pointif {X} is an exposed face. The exposed
faces are thus closely connected with the support hyperplanes of a cone. The exposed
points are also extreme points. The PSD set therefore has none. As to the exposed

faces, we have the following result:
Result 9 (Exposed faces) Every proper face of the PSD cone is ezposed.

The proof is in Appendix 2-H. In summary, we give an overall schematic sense of the
PSD cone in Figure 2-5.

2.4 Approximating the PSD Cone

While the cone of positive semi-definite matrices has much structure, it poses several
challenges for optimization. The cone is not polyhedral, i.e. finitely generated, or

even smooth (except for the n = 2 case) and the positive semi-definite conditions
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are quite non-linear in the matrix elements. This non-linearity makes their incor-
poration into estimation algorithms difficult, generally requiring iterative non-linear
approaches [8]. We now consider approximations to the PSD cone with the aim of
remaining within the linear estimation framework that is developed in the next chap-
ter. We seek conditions leading to linear or quadratic inequality constraints which
may be easily combined with (3.6) to yield a linear least-squares problem subject to
the derived linear or quadratic constraints. Such problems have been widely studied
and efficient finitely terminating algorithms exist for their solution. We are also inter-
ested in iterative techniques using extensions of existing approaches or exploiting the
special structure of the PSD cone we have exposed above. We begin by demonstrat-
ing the existence of arbitrarily close polyhedral approximations to the cone. With
this theoretical basis established, we proceed to develop both interior and exterior

approximations to the cone.

2.4.1 Existence of Approximations

Here we demonstrate the existence of approximating polyhedrons to the PSD cone.
We accomplish this by truncating or capping the PSD cone to obtain a compact set
that is adequate for our purposes. We may then invoke approximation results of
convex set theory to achieve the desired existence statement.

It is a result of convex set theory [47] that for compact convex sets, there exist

polyhedral approximations that approach them arbitrarily closely. Formally

Theorem 8 ([47]) If K is a compact convez body in R", then for each € > 0 there

ezists a convex polyhedron P such that
PCKCP

where

P, = ﬂ B(p,¢€)
pEP

and B(p, €) is the ball of radius € centered at p.

The PSD cone is already convex and closed, and by “capping” the cone we can obtain
a bounded set. Using our knowledge of the geometry of the PSD cone, we accomplish
this capping simply by intersecting the PSD cone with the halfspace that has —1

as its normal. This matches our intuitive notion of capping the cone. Analytically
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we consider the set PSD,(d) = PSD,, N HS(—I/n,d), where d is the distance of the
bounding hyperplane from the origin. We have the following result:

Result 10 (Capped cone) The capped cone PSD,(d) = PSD, N HS(—1/n,d) is a

compact set.

The proof is given in Appendix 2-I. This result coupled with the previous theo-
rem yields the following corollary on the existence of polyhedral approximations to
PSD,.(d).

Corollary 3 (Polyhedral Approximations) The capped cone PSD,.(d) may be
approzimated arbitrarily closely by a polyhedron.

Clearly the sets P'§D,.(d) monotonically nest as a function of d, the distance of the
capping hyperplane from the origin. For any real PSD problem the solution will
always lie within some know maximum range. Thus we may always choose d large
enough so that the solution confined to PSD,(d) will be the same as the solution

confined to PSD,,. Thus capping the cone is conceptually not a real limitation.

2.4.2 Exterior Approximations

Exterior approximations of the PSD cone are presented here. By an exterior approxi-
mation we mean a set that contains the PSD cone, and is thus “exterior” to the PSD
set. Later we consider interior approximations of the PSD cone, which are wholly
contained within the PSD set. The approximations considered here are character-
ized by the fact that there exist elements of the approximating set that are not PSD

matrices.

Finite Support

We start by using the observations of Section 2.3.1. Perhaps the simplest exterior
approximation to the PSD set (or any convex set for that matter) is obtained by
considering the intersection of a finite set of its support half-spaces HS(V;,0) where
N; € PSD,. Coupling this observation with our insights into the geometry of the
PSD cone yields the following lemma:

Lemma 2 Given a finite set {N;} of (unit) PSD normals with N; € PSD,, the

associated external approzimating set

Ext= (] HS(N,0)

Ne{N;}
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satisfies

Ext O PSD,

Further if Exty, is the set associated with {N;}k, then
{Ni}z ) {Ni}] — Swtz Q E:ctl

Finally, since the PSD set is ezactly obtained when {N;} = PSDf: ), we have for each
1 <r <n that
ﬂ Ext), = PSD,
(N PSDY)

Thus the more PSD normals that are used the better the approximation. We also
know that the normals corresponding to positive definite matrices support the PSD
cone only at its point at the origin and are thus redundant. It is more efficient in
general to choose PSD normals of rank less than n for our approximations.

This class of approximations is convenient for constrained optimization, and leads
to linear inequality constraints. To see this fact, let n; = Z(V;) be the representation
of the matrix normals V; with respect to the basis {M,} and similarly let z = Z(X).
The constraint that X € €zt is then equivalent to the linear inequality constraint
[n1|nz| -+ - |ng]Tx > 0. Thus any optimization problem with a solution constrained to

lie in £zt is equivalent to a problem in S, that is constrained by linear inequalities.

Tessellations

The question remains of how to best choose the hyperplanes, or equivalently the
normals to the hyperplanes, of the approximating set. From our previous work with
the support hyperplanes of the PSD set above, we know that the smallest such group
of hyperplane normals we may work with to obtain the PSD cone corresponds to the
set of rank-1 PSD normals. Let us restrict our attention to approximating sets £zt
obtained from such sets of rank-1 normals {N;}. Now any unit rank-1 PSD matrix
N may be written as N = vuT, with « € R a unit vector. Note that v and —u yield
the same matrix N. Apart from this reflection, each unit rank-1 matrix is associated
with a unique vector on the unit n-hemisphere, corresponding to the eigenvector of
its non-zero eigenvalue. Conversely, any group of vectors on the unit n-hemisphere
can be seen to generate a set of rank-1 unit PSD matrices. This observation yields

the following result.
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Result 11 (Support Tessellation) Any tessellation of the unit n-hemisphere with

vertices u; induces an exterior approzimation of PSD set as

Ext= () HS(N,0)

Ne{uul}

Thus we may easily generate approximations to the PSD cone by simply choosing sets
of points on the half n-sphere. Further, if N; = u;uf then cos(NV;, N;) = cos(u;, u;)?,
so uniform spacing of the vectors u; leads to uniform spacing of the normals V;. An
example for the n = 2 case is given in Figure 2-6. In (a) the PSD cone is shown
together with an external approximation £zt using 4 faces. To the right is shown the
intersection of the respective boundaries with the hyperplane H(I/n,1). Note that
we need at least n(n+1)/2 hyperplanes, and thus vectors u;, if the intersection of the
approximation with the hyperplane is to be a closed polyhedron. In (b) are shown

the unit vectors u; associated with £xt.

Closeness Measure: Angle Bounds

We now give some insight and bounds on how good a particular external approxima-
tion of the form given in Result 11 is. Since the PSD cone and the approximation are
both unbounded, the maximum distance between points in the approximation and
those in the PSD cone is unbounded.

We take as our closeness measure the minimum value over the PSD cone of the
maximum of the cosine of the angle between points of the approximation and those
of the PSD cone. We maximize over points in the approximation and minimize over
points in the PSD cone. Suppose F is an edge of the polyhedral cone £zt. The angles
of points in the approximation with any point of the PSD cone will have a maximum
at some such edge. The cosine of the minimum achieved over all PSD points of this
maximum angle is then our measure. This angle is shown in Figure 2-7 as § and
captures a notion of the difference between the approximation and the PSD cone.

Let us focus on an approximation edge E such as that shown in the figure. Given
a unit edge matrix E of the approximation with at least one positive eigenvalue, the

cosine of the minimum angle of this edge with the PSD set is given by:

max cos(X, E) = Y. M(E)
X€PSDy M{B)>0
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Figure 2-6: Exterior approximation example for n = 2

where );( E) are the eigenvalues of E. This expression is derived in Appendix 2-J. In
practice, we would then find the minimum of this cosine value over the set of active
approximation edges. The above cosine is larger, and hence the angle smaller and
the approximation better, the closer E is to a PSD matrix (recall that if E is a unit
matrix, then ¥; A?(E) = 1). This matches our intuition.

Such an edge is obtained as the intersection of n{n + 1)/2 — 1 of the support
halfspaces. Specifically, for a given set of halfspaces {HS (N;,0)}, E is obtained as
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Figure 2-7: Measure of difference between approximation and PSD cone

the solution of the set of equations:
(NyE)=0, i=1,2...n(n+1)/2—1

with 3; A2(E) = 1. Thus finding an edge F from the normals V; is essentially a
problem in finding an element of a nullspace. As a result the detailed relationship
between the N; and E is difficult to make explicit. Still, we can see that when the N;

are close to each other, the resulting F will be close to a PSD matrix.

2.4.3 Interior Approximations

Now we consider interior approximations of the PSD cone. By interior, we mean
that the approximating sets are contained completely within the PSD cone. We start
by using the observations of Section 2.3.1, that the PSD set is convex and one-sided
along the directions corresponding to the diagonal elements of the matrix. These
properties comprise the generic structure of the PSD set. Following this treatment,

we use more of the special structure of the PSD cone.

Convex Polyhedrons

Since the PSD set is a convex set, perhaps the simplest interior approximation to the
set is to use a convex polyhedron whose vertices are contained within the set. The
convex combination [45] of any finite set of PSD matrices yields such a polyhedron.

Given a finite set of such “vertex” matrices V; € PSD,, the corresponding interior
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approximating set Znt based on them is given by:

q q
Int = {ZaiVil Zai =1, s > 0}
i=1 =1

This class of approximations is again convenient for constrained optimization, leading
once more to an inequality constraint on a certain transformed estimate. To see this
fact, let v; = Z(V;) be the representation of the vertex matrices V; with respect to
the basis {M,} and similarly let # = =(X). The constraint that X € Int is then
equivalent to the statement that X = Y°7_, z,;V; for some &; > 0 with > %, = 1. In
terms of ¢ we have that

z = [va]ve| -+ - |v ]2 (2.8)

where Z = [%|Zz|---|Z,]T and ||Z|l; = 1 with Z confined to the first orthant. Thus
in any optimization problem we may change variables using (2.8), then solve the
resulting problem for # with the following inequality constraint:

I @,
1 1 .. 1 |z>] 1
1 -1 ... -1 1

The first block of the constraint assures that Z is confined to the first orthant (Z; > 0)
and the second block forces " |Z;| = ||Z||1 = 1. Hence any optimization problem with
a solution constrained to lie in Znt can be transformed into an equivalent linear
inequality constrained problem on Z. We note that (with considerably more effort)
we may also phrase this directly as a halfspace intersection problem in terms of z.
To do this we must find the facets of the polytope induced by the vertex matrices
Vi, and their associated normals. When n = 2 this operation is not too difficult but
even for the n = 3 case (where the space is 6 dimensional), finding these facets is not

trivial.

Coordinate Boxes.

Of course there are certain special polyhedrons we may consider which simplify the
constraint set. For example, we can consider boxes oriented along the coordinate axes
of the basis elements { M,}. For the standard basis we present in Appendix 2-A these

directions correspond to perturbations of the individual matrix entries X;;. These
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sets are of the form
{X | Xi; < Xij < X

Such a box defines a set of interval matrices. The notion of interval matrix considered
here is defined directly in terms of the elements of the matrix X;;. In Chapter 3 we
consider another notion of interval matrix based on the PSD definition, where X > X
means (X — X) is a PSD matrix. Interval matrices have been studied with regard
to their stability properties [50, 51, 52, 53, 54] but not, to our knowledge, for their
properties of positive semi-definiteness. A set of (symmetric) interval matrices, being
a box, will be in the PSD set if and only if its vertices are PSD matrices. This follows
from the discussion so far. Further, however, since the boundary of the PSD set is
one sided along directions corresponding to the diagonal elements, we actually do not
need to check those vertices involving X;;. Equivalently, we may let X;; — oo and
the box will remain in the PSD set. Thus we lose no generality in considering boxes
of the form:

Int = {X | Xy < Xij <Xijyi#7, Xu < Xii} (2.9)

This interval box will be in PSD,, if and only if the 2("~1)/2 elements of the set:
{X | Xij = X4y, or Xij=Xij,1# 7, Xu=Xy

are in PSD,,. These corners comprise the set of significant or binding corners.

Once such a box as (2.9), contained in the PSD set, has been defined, we would
like to use it in optimization problems. Because of the special orientation of the box,
finding the induced facets and their normals is straightforward. The set of support
halfspaces HS(N,d) to (2.9) is given by (N, d) pairs of the form:

0 00
010 1
N, = 000 , dp = X;;
1
0 1/vV/2 0 1
1/v2 0 0| g
N, = 0 0 0 y dp = \/ilij iFE]
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0 -1/v/2 0 i
-1/v2 0 0 J
Ny = 0 0 0 y e = —v2X,; i#£7

z J
If welet ¢ = Z(X) be the representation of the matrix X with respect to our standard

basis { M}, then the constraint that X is contained in the set (2.9) is equivalent to

a simple linear inequality constraint. For the n = 2 case this constraint is given by:

X1
I V2X,,
— |z 2
0 -1 0 X
- 2)(12

where X,; and X;; are the boundaries of the set. For the n = 3 case the constraint

becomes:

X1
V2X,,
V2X1,

Xo,
2> \/2-2(_23

X33

—v2X13

| 2X23 i

0 -1 0 0 0 O

The higher order cases are similar. Thus any optimization problem with a solution
constrained to lie in (2.9) is isomorphic to a linear inequality constrained problem.
For the n = 2 case we show what the approximating region looks like in Figure 2-8

for a generic choice of X;; and X;;.

Extreme Ray Approximation

As mentioned in our discussion of the facial structure of the PSD cone, we can obtain
PSD,, as the positive linear combination of the (infinite) set of extreme rays of the

cone. These are the PSD rank-1 matrices. A straightforward interior approximation
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X

Figure 2-8: Interval approximation example for n = 2

then is to use the positive linear combination of a finite subset of these rank-1 matrices.
This approach can be viewed as the dual of the approximation using a finite set of
support hyperplanes, which we discussed above. We again choose a finite set of
extreme rays R; € PSDS) , but rather than using them as normals to hyperplanes we
directly generate an interior approximation Znt based on them. Formally we have

the following lemma:

Lemma 3 (Extreme Ray Approximation) Given a finite set {R;} of (unit) PSD
rays with R; € PSD&I), the associated internal approzimating set

g
Int = X|X::ZaiR,-, a; >0
=1

satisfies
Int C PSD,

Further, if Int, is the set associated with { R;}i, then

{R,’}z D) {Ri}l = Intz 2 Int1
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Finally, since the PSD set is ezactly obtained when {R;} = PSDXY), we have that

U Int, = PSD,
{RG}EQPSDS:)

Thus, the more extreme rays we use in an interior approximation, the better the
approximation will be, in general.

Again, this class of approximations is convenient for constrained optimization,
leading to positivity constraints on a linearly transformed problem. To see this prop-
erty, let r; = Z(R;) be the representation of the extreme ray R; with respect to the
basis {M,} and similarly let z = =(X). The constraint of the lemma that X € Int
is then equivalent to the statement that

z = [ry|ra| -+ |rglZ (2.10)

where now Z = [Z1|%,| - -+ |Z,|T and Z is confined to the first orthant. This formulation
is much like (2.8), except here there is no constraint on the norm of #. In any
optimization problem using this approximation, we may thus change variables using
(2.10), then solve the resulting problem for Z under a nonnegativity condition. In a
least squares formulation, this results in a non-negative least squares (NNLS) problem
for which finitely terminating algorithms exist [55]. As before, we note that we may
also phrase these constraints directly as a halfspace intersection problem in terms of

z (again with considerably more effort) .

Tessellations

As in the external representation case, the rank-1 unit PSD rays R may be written

as R = uuT

, with v € R™ a unit vector. Thus, any group of vectors on the unit
n-hemisphere can be seen to generate a set of rank-1 unit PSD extreme rays. This

observation yields the following result, dual to Result 11.

Result 12 Any tessellation of the unit n-hemisphere with vertices u; induces an in-

terior approzimation of the PSD set as

q
Int= {XlX:Za,-uiug‘, (s 5 20}

i=1
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Figure 2-9: Extreme ray approximation example for n = 2

We may easily generate interior approximations to the PSD cone by simply choosing
sets of points on the half n-sphere. Again, if R, — u;uf then cos(R;, R;) = cos(u;, u;)?,
and uniform spacing of the vectors u; leads to uniform spacing of the rays R;. An
example for the n = 2 cage s given in Figure 2.9, Ip (2) the PSD cone is shown

H(I/n,1). Note that we need at least n(n +1)/2 rays, and thus vectors u4, if the
intersection of the approximation with this hyperplane is to be 5 closed polyhedron.
In (b) are shown the unjt vectors u; associated with the R;.
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Gersgorin Polyhedral Cone

Here we present a seemingly unrelated interior approximation derived from the Gers-
gorin Theorem. This purely algebraic result yields a simple and finite set of sufficient
conditions for positive semi-definiteness of a matrix. We interpret the resulting ap-
proximation in the context presented above, showing how to view it as the intersection
of a finite set of half-spaces, The theorem itself provides a simple bound on the lo-
cation of the eigenvalues of a matrix in terms of an inequality based on the diagonal
elements and the row sums of the matrix. Thus the approximation is actually based
on the eigenvalue condition for positive semi-definiteness of a symmetric matrix. The

underlying eigenvalue theorem is given by:

Theorem 7 (Gersgorin) If X = [X;;] is an n X n matriz then every eigenvalue of
X lies in at least one of the disks

{Zl'Z-—X,;,;lSZ'X,’j” i=1,2,...,n.
' j:l
J#i
The theorem states that the eigenvalues of X are contained in the union of the disks
centered on the diagonal elements and with radius equal to the respective (absolute
value) row sums. The column sums can also be used. This leads us to a particularly
simple, if combinatorial, sufficient condition for the positive semi-definiteness of a

matrix. Specifically, a symmetric matrix will be positive definite if it satisfies

X > Xl i=12,...,n.
=1
k#3j
The subset of the space of symmetric matrices that satisfies this condition can be
obtained as the intersection of a set of half spaces, thus producing a polyhedral
approximation to the PSD cone. Since the condition is only sufficient, this polyhedral
cone must be contained wholly within the PSD cone. This approximation gives us

the following result:

Result 13 (Gersgorin Polyhedral Cone) Consider the polyhedral cone defined by

Int = n HS(N,O)
Ne{Ng;}



2.4. APPROXIMATING THE PSD CONE 57

12

Figure 2-10: Gersgorin polyhedral cone for n = 2

where the set of “Gerigorin normals” {Ng;} is composed of all n x n matrices of the

form

o O

+1
+1 +1 2 +1 +1 +1 +1
Ng; = — +1
+1
O 11 O

+1

L - E

where the 2 is one of the diagonal elements and the sign pattern of the +1 terms is

arbitrary (consistent with symmetry). This cone is contained in the PSD cone.

The resulting approximation is a cone defined by n2("~1) halfspace intersections. For
the n = 2 case only 4 hyperplanes or tests are obtained while for the n = 3 case there
are 12 inequalities to satisfy. Figure 2-10 illustrates the polyhedral approximation for
the n = 2 case. This figure is similar to Figure 2-8, only here the approximation is
generated using hyperplanes rather than extreme rays. Also, here there is no freedom
in the choice of the shape. The approximating cone is fixed by the theorem.

As with the previous approximations to the PSD cone we have presented, the

polyhedral cone given in Result 13 is convenient for constrained optimization, since
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H(N ;- a1,0)

H(N ,- 01,0)

N;-ol

Figure 2-11: Illustration of perturbing hyperplane normals

it involves linear inequality constraints on the entries of the matrix. To see this fact,
let ng; = Z(Ng;) be the representation of the matrix normals Ng; with respect to the
basis {M,} and similarly let # = Z(X). The constraint that X € Znt of Result 13
is then equivalent to the linear inequality constraint [ng;|nga|---|ng,]Tz > 0. Thus
any optimization problem with a solution constrained to lie in Znt is equivalent to a

linear inequality constrained problem in S,,.

Interior Approximations from Exterior Ones

We now show how to turn the exterior approximations of Lemma 2 into interior
approximations. We accomplish this feat with the help of Result 4. Given an exterior
approximation formed using a set of PSD rank-1 normals, we use this result to move
the normals of the given (support) hyperplanes uniformly away from the central
direction of the identity, with the effect of shrinking the associated polyhedral cone.
With enough such shrinking the resulting cone will be completely contained in the
PSD cone. This idea is illustrated in Figure 2-11.

We restrict our attention to the case of rank-1 normals, though the extension to

the general case should be straightforward. Consider the family of approximating sets

F(t), t €[0,1), defined as follows:

F)= 1 HSN,0)

Ne{Ni(t)}
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where {N;(t)} is a set of ¢ normals and for each 1 <: < ¢
Ni(t) = wul — ai($)I

with u; € R™ of unit 2 norm and ;(t) is a smooth strictly monotonic function
of ¢t with a;(0) = 0 and o;(1) = 1/n. These sets can be seen to actually be a
family of approximating polyhedral cones with F(0) equal to an exterior finite support
hyperplane approximation. As ¢ increases the exterior set closes, eventually becoming
an interior approximation. As an example of the functions a;(t) we might choose, we
could pick a;(t) = t/n to achieve uniform shrinking. We have the following result for
the above family F(t), with cone™(-) representing the positive cone of the elements

of the argument:

Result 14 For any family of polyhedral cones F(t), t € [0,1), defined as above, if
conet{N;(0)} is full and its interior contains I (I € int conet{N;(0)}) then the
following hold:

1. F(0) > PSD,.
2. f(t1)3.7:(t2) ifOSt1<t2<1

3. [ F(t) = cone™(I) C PSD,.

tefo,1]

4. There exists a unique minimum t* (and a corresponding a*) such that F(t*) C
PSD,.

The proof of Result 14 is in Appendix 2-K. Note that the requirement that the
positive cone of the set {V;(0)} is full implies that the number ¢ of hyperplanes
of the approximation is at least as large as the dimension of the space n(n + 1)/2.
The requirement that the central PSD direction I is in the interior of this cone is
necessary to achieve part 4 of the result. The condition assures that the intersection of
the approximation’s bounding hyperplanes with the hyperplane H(I/n,1) is a closed
bounded region. Part 3 essentially says that the approximations converge to the
identity direction.

These results provide a way of generating arbitrary interior or exterior approxi-
mations to the PSD cone. Any tessellation of the unit half-sphere induces an exterior
approximation which we may then convert to an interior approximation (or anything

in between) via the above procedure. Consider the n = 2 case again with uniformly
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X
22

12 @)

Unit 2-sphere. \‘

(b)
Figure 2-12: Regular polyhedral cones.

spaced normals N;(0), corresponding to uniformly spaced vectors u; on the half cir-
cle. The resulting interior cones have regular polyhedrons for their cross sections. An
example with 8 faces is shown in Figure 2-12. In (a) the PSD cone is shown together
with the approximations corresponding to the initial (@ = 0) and final (a = a*)
values of a(t) while in (b) the corresponding vectors u; are shown. We can calculate
the minimum a* given the N;(0) (equivalently the u;) for this n = 2 case. If g is the
number of faces of the regular approximation, then the minimum o required of each
facet (they are the same by symmetry) to take the exterior support-based approxi-

mation to an interior approximation is given by a* = (1 —cos(7/q))/2. A log-log plot
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Figure 2-13: o* vs ¢

of a* vs q is given in Figure 2-13 for interest.

In general, finding o* for a particular problem requires the equivalent of numerical
root finding. For a given a we can find the edge matrices of the resulting polyhedral
approximation and test if they are all positive semi-definite or not. Finding a* then
reduces to finding the “zero crossing” of this function, i.e. the transition of the edge set
from indefinite to all positive semi-definite. As the dimension of the problem grows,
the problem of finding the edges becomes prohibitive. For example, when n = 3 with
g normals, there are ,Cs potential intersections to check. If ¢ = 20 this results in
over 15,000 combinations to check. For an optimization problem with a fixed choice
of {N;(0)} we would only have to perform this operation once, of course, and the
approximation would then be determined using only the 20 faces and the determined
value of a*. For any a the resulting polyhedral cone leads to a set of linear inequality
constraints for inclusion in the set. This form of constraint is once more convenient

for optimization.
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2.4.4 Summary

In summary, our goal was to find simple approximations to the conditions imposed by
the constraint of positive semi-definiteness of a symmetric matrix. We have presented
a number of different such approximations to the PSD cone, both algebraically and
geometrically based. One group of approximations yields exterior approximations to
the PSD cone, and includes the PSD cone in their interior along with other non-PSD
elements. Another group is contained wholly within the PSD cone itself, producing
interior approximations. We have also shown how to convert exterior approximations
based on support hyperplanes to interior approximations, establishing the connection
between the two in the process. A range of approximations exists between these two
extremes, of course, with sets that are neither contained in nor contain the PSD set.
Our investigation of the PSD cone has served to illuminate and unify these different
approaches to approximating the PSD cone within a natural geometric framework
using the structure of the PSD cone itself.

All of the approximations discussed above have in common the property that they
are finite representations and that they lead, either directly or indirectly through a
transformation, to a set of linear inequality constraints on the elements of the under-
lying matrix. Geometrically, these approximations yield finitely generated polyhedral
or polyhedral cone sets in the space of the matrix entries. As we see in Chapter 3,

this is convenient for purposes of optimization.

2.5 Conclusions

In this chapter we have examined a particular physically motivated symmetric pro-
jection mapping. We began by introducing the symmetric projection mapping in
(2.3). The existence the of an isometric isomorphism between this mapping and
an equivalent convenient linear matrix formulation was shown. This isomorphism
greatly simplified certain aspects of the problem and appears to be an useful tool in
approaching these problems.

Many of the problems using a symmetric matrix in which we are interested actually
require a positive semi-definite matrix. Motivated by estimation problems requiring
such a constraint, in Section 2.3 the geometry of the PSD cone was investigated. We
provided a complete characterization of the support hyperplanes of the PSD cone,
leading to a minimal support halfspace based representation of the cone. In addition

we exposed the non-smooth nature of the PSD cone, and provided characterizations
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of various other elements of its facial and extremal structure. These insights enabled
a unified view of the overall geometry of the PSD cone and allowing us to generate
approximating sets to the cone next.

Approximations to the PSD cone which were both contained in and contained
the PSD cone were developed. These approximations all shared the common charac-
teristic that they were defined at some level by a set of linear inequality constraints
on the elements of the underlying matrix. These approximations included boxes ori-
ented along the coordinate directions, Ger$gorin polyhedral cones, external support
halfspace cones, and interior extreme ray sets. A procedure was also presented to
smoothly convert any support based exterior approximation into an interior approx-
imation, generating a family of approximations in the process. Two complementary
ways that tessellations of the unit half-sphere induce approximations of the PSD set,
one exterior and one interior, were provided. These results are put to use in Chapter 3

to develop constrained matrix reconstruction.
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2-A  Symmetric space properties

Consider the vector space S,, induced on the set of n x n symmetric matrices by the
inner product {4, B) = Tr(ATB). Here we gather some results pertaining to this
space and work through some examples. We define the standard basis on S, to be
{M™ |1 <€ <n(n+1)/2} where

E'CT+C'ET . . . . (2'11)
=N ifl=i2n+1-49)/2-nt+j 1<e1<jsn

Ml(n):{eie%‘ e=(i-1)2n+2-9)/241 i=l...n

and e; is the i-th standard basis vector composed of all zeros except for a 1 in the

t-th location.

Example

Both to fix notions and for its later utility, we work through the case when m =1
and n = 2 (often corresponding to the case of a 1-dimensional projection of a 2-
dimensional object). In equation (2.3), this means X is 2 x 2, Y a scalar, and A a

9-vector. For this case, our standard symmetric basis consists of the following three

. |10 N B S VAVE w |10
N I P e B

If the ij-th entry of X is X;;, and the i-th entry of A is a;, then we have the following:

elements:

Y = ATXA
X X2 a3
= la1 as]
X12 Xaz az
= alXi1 + 20102 X102 + a2 Xss
Now with respect to our standard basis, for z we obtain

Xn
E(X) =T = \/§X12
Xa2
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To obtain A we apply the mapping T of Definition 2 yielding:
A=T(4A) = [ a? V2aia; ]

Being a scalar, the representation of Y is just Y itself. It is easy to verify for this

case that

-~

Y = Azx.

2-B Properties of the mapping I
Consider the mapping I' relating (2.4) to (2.3) defined as in Chapter 2 by:
A A (2.12)

where A;; = (Mi(m),AT M}")A)m. We will now prove the following relationships
between A and A = I'(A).

Result 15 Given the matriz A, if A is the image of A under T, so that A AN A,
then the following relations hold:

For square A:

A idempotent = A idempotent (2.13)

A orthogonal == A orthogonal (2.14)

Ay =AT — A, =AT (2.15)

A symmetric = A symmetric (2.16)

A projector =—> A projector (2.17)

ATv; = vy = Aby; = o)y (2.18)

For non-square A:

ATA=1 — AAT =1 (2.19)

ATy, = pio; = fi",-j = f1;;63; (2.20)

where ¥;; is the representation of (v;vT + vv]) with respect to {Ml(m)}, Xij = M),
v; and p; are the left and right singular vectors associated with the singular value
o; of A, i; is the representation of (viv] + v;ul) with respect to (MM}, fli; is the

representation of (pip] + p;ul) with respect to {M{™Y and 6;; = 005 for 1 < i <
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j<n.

Note that the relations in (2.18) and (2.20) provide the relationship between the
eigenstructure or singular structure of A and A. The eigenstructure relationship given
aboveis known (in a less compact form) from considerations of the Kronecker product

[35] but we have not seen the corresponding singular structure relationship.

Proof: To show (2.13) note that if A is idempotent then, for any X, ATATXAA =
ATXA. Now if B = ATXA then b = Az as defined above. But B = ATXA =
ATATXAA = ATBA,so b= Abor Az = AAz, and (2.13) is proved.

To show (2.14), note that A orthogonal implies orthonormal columns. Now using

the definitions above, the inner product of column ¢ and column j of A is given by:

(ATMIMA,ATMPA) = TH(ATM™M AAT MM 4)
= Tr(ATMM MM A)
= Tr(M"M M)
= (M, M),
= 6 (2.21)

We now prove relationship (2.15). Let A Ty A; and AT 55 A,. We need to
show that f.ll‘.j = fizj,.. We have:

Ay, = (MM, ATMMA),
= Tr(MM™ATM™ A)
= Tr(AM™MATM™)
= (AM{™ AT, M™),
= (MM, AM(™AT),
= Ay,

where the third equality follows from Tr(PQ) = Tr(QP). Now (2.16) follows from
(2.15), since if A T A then AT 1, AT, but A = AT so A = AT. Finally, property
(2.17) now follows from (2.13) and (2.16) and the fact that if A is a projector, then
by definition A4 = A and AT = A.

To show (2.18) we use the fact that the symmetric matrix represented by Az is
simply obtained as AT X A, where X is the matrix represented by the vector z. Thus
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the matrix represented by A#; is just,

AT(‘U{U;-P + vjv'-T)A = A,-Ajv,-vf + )«j)\ivjviT
= )«i)\j(vivf + v_,-v,;‘r)

= :\,-J-(v,'v;‘-" + v;vf)

1

Now, by definition, the representation of (v;v] + v;v) with respect to {M{™} s
¥i;, so combining these pieces we have shown that Ad;; = 9;;);; for 1 <i < 57 < .
Relation (2.20) is shown similarly to (2.18).

To show (2.19), first note that each row of A is the representation of a symmetric
matrix of the form ng(AiAf + A;AT), for 1 <1 < j < m, where 4; is column 7 of A

and
o 1 ifi=j
Y1 1/v/2 otherwise

Thus the inner product of two rows of A is given by:

1 fi=%kand 7=/

0 otherwise

CijCre Tr((A,A;‘r + AJAtT)(AkAZ‘ + AZA:]E)) = {

But i = k and j = £ only when the two rows are the same. Thus AAT = I, as desired.
All relations are now shown. O

2-C Proof of Result 4

We show here that f(a) = cos(X — a,I) is a monotonically decreasing function of a.
We do this by showing that df /da is always negative. We have that

fla) = cos(X —a,I)

T X —al)
X — alllry/n
Tr(X) — an

Jen? — 2anTr(X) +n| X%
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Now the derivative of this last expression with réspect to a is

df(@) _ ~(Tr(X)? +n|lX]3)
doa = X ol

Since the denominator of this expression is always non-negative and the terms in the

numerator are similarly non-negative, this shows that f(a) < 0 for all a.

2-D Proof of Result 5

A hyperplane H(N,d) is a support hyperplane of PSD,, if and only if the following

two conditions are satisfied:

Y

d (2.22)
d (2.23)

VX € PSD, (N,X)
3X € PSD, (N, X)

First we show that d = 0 for any support hyperplane of PSD,,. First suppose there
is a support hyperplane with d # 0. Let X, € PSD,, be such that condition (2.23)
is satisfied for this hyperplane. Now, eXj is also a PSD matrix for all ¢ > 0, and
(N,eXo) = ed. Aslong as d # 0, we may always choose an € > 0 so €Xp is a PSD
matrix yet (2.24) is violated, regardless of the sign of d. Thus we must have d = 0.
Now we shall show that the normals N of the support hyperplanes of the PSD
cone are themselves PSD matrices. For any symmetric matrix normal N, we may

write N as:
q
N = Z A,‘ u,-ui-r
=1

where ); are the ¢ non-zero eigenvalues of IV and u; are the corresponding eigenvectors.

Since (uuT, X) = uT Xu we have that
q
(N, X) =" Xul Xu,
i=1

Combining this observation with the fact that d = 0, the conditions that a hyperplane

must satisfy to be a support hyperplane become:

q
VX e€PSD, > MulXu;>0 (2.24)

=1
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q
X €PSD, > Xiul Xu;=0 (2.25)

=1

where as above, u;, A; are the eigenvector/value pairs for the associated normal V.
Now (2.24) is only satisfied for all PSD X if A; > 0 (if any A; < 0 consider the
PSD matrix u;u}). Thus every supporting hyperplane normal corresponds to a PSD
matrix.

Next we demonstrate that every PSD matrix is the normal of some supporting
hyperplane of the cone. We only have to show that (2.24) and (2.25) are satisfied.
If N is a PSD matrix, then ); > 0, thus (2.24) is trivially satisfied. Consider two
cases. If NV is semi-definite so at least one A\; = 0, then (2.25) is satisfied for any
X = Y oyu;ul, where the sum is over indicies coresponding to the zero eigenvalues of
N and a; > 0. If N is positive definite, so that all \; > 0, then the only PSD matrix
satisfying (2.25) is the null matrix. Thus for this case the PSD cone is supported only

at its point at the origin.

2-E Proof of Result 6

A boundary point is smooth if and only if it belongs to only one support hyperplane.
For the PSD matrix X, let r = rank(X). We may write any rank 7 PSD matrix X as

r
X Z:EE:Aiuiu?
=1

where ufu; = §(1,7) and A > 0. Now the support hyperplanes of the PSD cone are
H(N,0), where N € PSD,. Since V itself is a (unit) PSD matrix we may write it as

N = Z vj'v;‘-r
j=1

where vfv; = §(3,7) and 1 < ¢ < n. Let us now characterize all the support hyper-
planes to which a given X could belong by characterizing the corresponding set of v;.
A hyperplane will contain X if and only if

0 = (N,X)

Tr Z i i (0T (i)

i=1j=1

il
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= LY ufuf
i=1j=1
Since A; > 0, this can only be if v; L u; for all 7, ;. Let U be the space spanned by the
u;. Let U+ be the orthogonal complement of U, so dim(#+) = (n —r). The condition
for the inclusion of X in a hyperplane is then that v; € &*. In addition, since the v;
are orthonormal, they must form an orthonormal basis for &{*.

Let {uj} be an othonormal basis for «*. When 7 = rank(X) = (n — 1) then
dim(Ut) = (n —r) = 1 and thus there is only a single v; = uiT that satisfies
the condition v; € U*+. Thus the only supporting hyperplane containing X has the
normal N = wujui?. In particular, only a single such hyperplane exists. When
r = rank(X) < (n — 1), however, then dim(i1) = (n —r) > 1. Thus more than a
single choice exists for N. For example the normals N; = ujuiT and N; = ugus?
both contain X. In fact any convex combination of N; and N, also contains X. Thus

the result is proved.

2-F Proof of Result 7

We prove the result by showing that for a fixed 1 <7 <n
X € PSD, <= (X,N)>0, VNePSD™

Now let u;, A; be the eigenvector/eigenvalue pairs of N. Since (X, w;uf) = uF Xu;, an

equivalent statement is the following;:
X ePSD, < Y X\ulXu; >0, Vu; € R*, A; >0 (2.26)
i=1

Clearly, if X is a PSD matrix, then the right hand side is true. To show the converse
we prove the contrapositive; that X ¢ PSD,, implies the right hand side is false. For
any symmetric X we may write:

n
— vouT
X =2 pjvsv;
i=1

where p;,v; are the eigenvalue/eigenvector pairs of X. We assume that the eigenvec-

tors are normalized and that the eigenvalues are ordered so that p; < p;.... Assume
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X is not positive semi-definite so that p; < 0. Suppose in (2.26) that we choose
u; =v;fori=1,...,7. Then

=1

Z i u;?rX'u,,- = z; As 'lej viT(vivf)vi
i= i=

= Mp1+ Z Aipi

1=2

A1p1 + Z il pil

1=2

IN

where ); > 0. Now if we choose

Al > Zi:Z IA’lpi' > 0
lp1]

then expression above is negative, since p; is negative. We have therefore constructed
an N = ¥7_, \;v;oT which is positive semi-definite of rank r with (X, N) < 0 and the

contrapositive is proved.

2-G  Proof of Result 8

By definition X € H(I/y/n,1/4/n) means that (X,I/y/n) = 1/4/n. If X is a unit

rank-1 matrix, then X = uuT for some unit v € R*. Now

(XaI/\/H> = <uuT1I)

uTu

§§|H§|H

so the first part of the result is shown.
To show the second part we must show that || X — I/n||% = (n — 1)/n, when
X = uuT for some unit vector v € R". Now

luw® — I/n||%

Tr [(uuT — I/n)(uu” — I/n)]
Tr [uu,T —(2/n)wul + I/nz]
= (n—2)/n +1/n
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= (n—-1)/n

and the result is shown.

2-H Proof of Result 9

Suppose § is arbitrary but fixed. We show that the face associated with S can be
obtained as the intersection of a hyperplane and the PSD set and is thus exposed.
First recall that the proper faces of the PSD cone are of the form:

{x157x =0}

for some S = [s1]32]..s;], 1 < 7 < (n — 1), where the columns s; of S form an

orthonormal basis for an r-dimensional subspace § of R*. We may parameterize any
X in the PSD set as:

q
X = Z Ai uiu?
i=1

where A; > 0,1 < ¢ < n and u; € R", with u; L U;. Now applying this parameteri-

zation to the face associated with 5 we obtain for the face:
q
{X | STZAi uiu:?r = 0}
=1
or equivalently

q
{X| ZAg(sfui)ui =0,1<j5< r}
i=1

Since the u; are orthogonal, this can only be if u; L s;. Thus the face associated with

S is given by the set:
q
Fs = {X = Z/\.L u,-u,-T|/\,; > 0, u,-J_sj, V’L,]}
=1

Now consider the hyperplane H(SS57,0). We shall show that the intersection of
this hyperplane and the PSD set yields the set Fs. Now the set H(SST,0)NPSD,, is
given by the following:

{X1(557,X) =0, X € PSD,,}
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Using the parameterization of elements of the PSD set given above, this becomes

9
{X =Y Xwul [(SST,X) =0, X >0, u,-eR“}

=1

or equivalently

9 r g
{X = Z’\i 'u,,uir' ZZ/\,- (sfu,—)z =0,X>0,u; € Rn} .

=1 j=1li=1

Again, this can only be if u; 1 s;. Thus, the intersection of H(SS57,0) and the PSD

set is given by:

q
H(SST,O)HPSD,, = {X = 2)\, u,—ufl)\i > 0, u,-J_.sJ- V'l,,]}

=1

But this is just Fs. Since the subspace S was arbitrary, the result is proved.

2-1 Proof of Result 10

Here we shall prove that the capped PSD cone PSD,(d) = PSD,, N HS(—I/n,d) is
a compact set. We do this by showing that the set is bounded. Since the resulting
set is closed and bounded it is compact. Our goal is to show that ||X||% is finite,
where X € PSD,, and X € HS(—1I/n,d). Note that X € HS(—1/n,d) is equivalent

to Tr(X) < nd. For a symmetric matrix

X7 =D
=1

where A; > 0 are the eigenvalues of X. Now we have
Tr(X) =) XA <nd
i=1

Thus

SO
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Thus .
X117 = >_ A < (nd)?

=1

and the result is shown.

2-J Angle Bounds on External Approximation

For a given edge of an external approximation, here we find a bound on the maximum
of the cosine of the angle between this edge and the PSD cone. If E is a (unit) edge
vector, then clearly the PSD matrix Xg whose angle is smallest with E is given by
the closest PSD matrix to E. As we show in equation (3.13), this matrix is obtained

as

XE= E A,-(E)v,-'vér

Xi(E)>0
where );(E) are the eigenvalues of E and v; are the associated eigenvectors. Now for

the cosine of the angle between Xg and E we obtain:

Tr(E,XE)
|1 E||< || Xellr
Tr[(Cai(myz0 Mivivol )(; Ajv0T)]
\/E,\.-(E)Zo A?

- [y »
) Y i(B)20

which is the desired expression.

cos(E, Xg)

2-K Proof of Result 14

Part 1

Part 1 of the result follows easily from the definition of the family F(¢) and Result 11.

Part 2

To show part 2 we shall need two lemmas. The first lemma shows that the hypothesis
that I € int conet{N;(t)}|:=0 holds for any ¢. This lemma is then used to prove the

second lemma, which shows that all elements of F(t) form an acute angle with the
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identity for all ¢ € [0,1).

Lemma 4 For the normals N;(t) defined in Result 14, I is in the interior of the
positive cone of {N;(t)} for allt € [0,1).

Proof of lemma: By hypothesis, I is in the interior of the positive cone of {IV;(0)},
thus we may write I as I = 37, ¢;(0)V;(0) with ¢;(0) > 0. Futher, ¥, ci(0) = n

" <I Ecz(ﬂ > Zcz(ﬂ ) Tr (wins) —Eq

Now Nj(t) = Ni(0) — a;(t)I so N;(0) = N;(t) + a;(t)I. Substituting in the sum for I
and rearranging terms we have that I = Y7, ¢;(¢)Vi(t) where

ci(O)
=1 (t)ci(0)

Now 1/n > a(t) > 0 for 1 > ¢t > 0, thus for the denominator we have that

ci(t) = 1

i a;(t)ei(0) > 1 — ZCZ(O

J.'__.l

Hence ¢;(t) > 0 for each 7, and I can be written as a positive linear combination of
the N;(t) for all 0 <t < 1. Note that when all the functions «;(t) = a(t) then

q

doealt) = #a(t)

1=1

This proves the first lemma.
The second lemma shows the elements of F(t¢) form an acute angle with the
identity for any t € [0,1).

Lemma 5 For any X € F(t), t € [0,1), (X,I) >0 (i.e. Tr(X)>0).

Proof of lemma: From the first lemma, for any ¢ in the above range we may write

I =37 ,c(t)Ni(t), with ¢;(t) > 0. Thus:

(X, 1) = <X,Zq:c, (£)Ni(t) > ic,(t)X (t)).

1 =1
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Since X € F(t) we have that (X, N;(t)) > 0 for each i. If follows that (X,I) > 0.
To show strict inequality we proceed as follows. The interior of conet{N;(¢)} is
non-empty by hypothesis, so the set {/V;(¢)} must span the underlying space. This
observation implies that (X, N;(¢)) = 0 for all ¢ if and only if X = 0, which it is
not. Taken together, these observations imply that at least one term (X, N;(t)) in
the above sum must be greater than zero. Since ¢;(t) > 0, the lemma is shown.

To prove the main result, let X € F(¢;), then for each ¢

(X, Ni(0) — a(tz)I) 2 0

or

(X, Ni(0)) > a(tz)(X,I) > afts)(X, )

where the last inequality follows from the fact that a(t;) > a(¢;) and (X,I) > 0 for
any X € F(t) by the second lemma. Thus

(X, Ni(0) — a(t2)I) > 0

and X € int F(¢;). Since this holds for any X € F(t;), we have shown that F(¢;) 2
F(tz2). To show F(t1) D F(t,), we show X' € F(t;) such that X' & F(¢2).
To this end, consider X' € F(t;) such that for some ¢

(X', Ni(t1)) = 0
i.e. X' lies on the boundary of F(t;). Since Ni(t;) = Ni(0) — a(t1)I we have that
(X', N:(0)) = a(t:)(X', 1)
Now

(X', Ni(0) — a(tx)I) = (X', Ni(0)) — aft2)(X", 1)
= ot (X', I) — a(t:)(X',I)
= (aft) — aft2)) (X', 1)
< 0

thus X' cannot be an element of F(¢;) and we have shown part 2.

O
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Part 3

To show part 3 we show that conet(I) CN F(¢) and conet(I) DN F(¢). First we
¢ t
show that I CN F(¢). For each t € [0,1], F(t) consists of the points X such that
t

(X, N:(0) — a(t)I) > 0.
When X = I we have
(I, Ni(0) — a(t)I) = (I, Ni0)) — na(t) > (I, N;(0)) —1 = 0.

Since each set F(t) is a cone containing I, conet(I) € F(t) for each t € [0,1]. Also,
because conet(I) is in each set, it is in their intersection.
Now we shall show that conet(I) DN F(t). Suppose there is an element Y of
t

N F(t) not in cone*(I). We may decompose Y as Y = kI + X with X L I, X # 0,
t
and k£ > 0. Since Y €N F(t) we must have:

t

(N:i(2),Y) = (N:(0) — a(t)[,kI + X) >0
for each 7, and ¢ € [0,1]. Now

(Ni(0) — a()1, kI + X) = KTr(N:(0)) — nk a(t) + (N:i(0), X) — a(t)(I, X)
= k(l — na(t)) + (Ni(O),X).

We can show that the second term is negative for some ¢. Since I is in the positive

cone of the {NV;(0)} we may write I = ¥ ¢; N;(0) with ¢; > 0. Hence
0= <I1X> = Zci <-Ni(0)’X>

Since the ¢; > 0, there must be at least one N;(0) = N;,(0) such that (V,,(0), X) < 0.

From above then
(Niy(£),Y) |e=1 = k(1 — na(1)) + (Ni(0),X) = (N;(0), X) < 0.

This is a contradiction. Thus there can be no Y € F(t) with Y ¢ cone*(I) so
t
conet(I) DN F(t). Together we have that conet(I) =N F(¢).
t t
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Part 4 Part 4 follows from parts 2 and 3.



Chapter 3

Symmetric Matrices:

Reconstruction

3.1 Introduction

In this chapter we examine the inverse problem of reconstructing a symmetric matrix
X given one or more projection mapping observations of the form Y = AT X A, where
A and Y are assumed known. The forward part of this problem was discussed in
Chapter 2. We initially investigate unconstrained reconstructions, with no conditions
imposed on the estimated symmetric matrix X. First some results are provided
on the single observation case. We then proceed to give necessary and sufficient
conditions for solution of the general case together with a complete characterization
of these solutions. We rely extensively on the isometric isomorphism developed in the
previous chapter in this endevor.

To be physically meaningful many problems involving symmetric matrices require
these matrices to be positive semi-definite. The ellipsoid and curvature problems
mentioned above are two of these. For this reason, reconstructions within the class of
positive semi-definite (PSD) matrices are treated next. The geometry of the PSD cone
examined in Chapter 2, and in particular, the finite approximations to it developed
there, are used to yield linearly constrainted minimization problems and straightfor-
ward geometrically motivated estimation algorithms. We close the chapter by showing
how to extend the PSD constrained reconstructions to the case of arbitrary interval

madtrix constraints.

79
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3.2 General Symmetric Matrix Reconstruction

Chapter 2 introduced the forward problem of relating an observation Y to a matrix X
through observations of the form ¥ = ATX A. Now we consider the inverse problem,
of determining X (or a set of X), given knowledge of ¥ and A. In our physical
problems this problem often corresponds to making some (projection) observation of
an object and having knowledge of the underlying observation geometry, respectively.
This combination of assumptions defines a class of inverse problems of interest to us.

We begin with the case of a single observation and give necessary and sufficient
conditions for the existence of a solution to the equation (2.3). Assuming such so-
lutions exist, the set of X solving (2.3) is also characterized in a number of concise
ways. Next the multiple observation case is considered, where we wish to determine
X given a number of observations of the form (2.3). Again necessary and sufficient
conditions are given for solution existence and a concise characterization of the so-
lution set is provided. We conclude by considering some issues arising in the more
realistic situation of solving for X given an inconsistent set of observations. Some

recursive approaches to this task are presented at the end.

3.2.1 Single Observation

The case of a single observation of the form (2.3) is considered here. We give necessary
and sufficient conditions for a solution to exist and characterize the set of solutions.
We do this from a number of different perspectives. These solutions serve to motivate
our use of the symmetric vector space approach introduced above for the solution of
such problems. To fix notation, let Ra(A) = {y|y = Az, z € domain of A} denote
the range of the matrix or function argument and Nu(A) = {z |0 = Az} denote the

kernel or nullspace.

Kronecker Form

Certainly one way to characterize the solutions of (2.3) is through the use of the
Kronecker form equation (2.4). It is clear that a solution to (2.4) will exist if and
only if vec(Y') € Ra(AT ® AT) (the column space of AT ® AT). If this is satisfied, the
set of vectors z satisfying vec(Y') = (AT ® A7)z is of the form:

z = (AT @ AT)* vec(Y) + z (3.1)
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where ()t denotes the (unique) Moore-Penrose inverse of the argument and zyy;, is
any vector in Nu(AT ® AT). When m < n and A is full rank (a common situation)
we are assured that vec(Y) € Ra(AT ® AT) for any Y [37] and at least one solution
will exist. Not all of the solutions x in (3.1) will have the proper form of vec(X)
imposed by the symmetry condition on X, so we must reduce the solution set above
to contain only these. It is now far from clear just what this remaining set consists
of.

The solution taken by Magnus and others [32, 33, 37] is to use the elimination and
dilation matrices as described above to reduce the size of the problem and eliminate
redundancies. Conditions may then be phrased in terms of the resulting reduced vector
Lvec(Y) and matrix L(AT @ AT)D, where L and D respectively are the elimination
and dilation matrices described above. The set of solutions under the above conditions
are then given by:

Lvec(X) = [L(AT ® AT)D]" Lvec(Y) (3.2)

where again (-)* denotes Moore-Penrose inverse. Details on the operators L, D, and
the approach itself may be found in [33]. While computationally tractable, the con-
nection between solvability conditions on these transformed matrices and the implied

conditions on the original matrices is not very transparent.

Symmetric Vector Space

The above difficulties lead us to consider solutions to the problem in the vector space
Sn of symmetric matrices. The pertinent equation is given by (2.6). The following

result follows directly from this equation:

Result 16 (Single observation solution) Suppose y is the representation of Y in
the basis {Mt(”)} and A is the image of A under T'. A solution to (2.3) will exist if
and only if the vector y € Ra(A), In this case, the solutions are of the form:

c=A"y+znm (3.3)

where A is the Moore-Penrose inverse of A and zu is any vector in Nu(A).

In particular, a solution will always exist when m < n and A is full rank, in which case
At = AT(AAT)‘I. Since there is a one-to-one relationship between the vectors z, y
and elements of the set of symmetric matrices, it is clear that no additional conditions

on them are necessary. Further the structure we have imposed on the space S and its



82 CHAPTER 3. SYMMETRIC MATRICES: RECONSTRUCTION

elements allow us insights into the nature of the result. For example, if {Mt(")} is a
symmetric basis for S,, then the columns of A are the representations of the matrices
ATM{™ A in the basis {Mt("')}. Thus for a solution to exist, we must be able to write
Y as a linear combination of the matrices AT M{™ A, for some basis {M{}. Further,
the weights of each linear combination directly yield the representation of a solution
matrix X in the original space. For example, when n = 2 so X is 2 x 2, solutions to
(2.3) will exist if and only if:

10 0 1/v2

1/v/2 o
B 10 0 1/v2 00
o fii L e 1))

for some values of [a;, as, as]. Conversely, the set of all such triples represents a 2 x 2

00

Y = alAT
1

A+ az AT A

A+02AT[

matrix solving the equation.

Further, we can see that the dimension of the space of solutions is given by the
dimension of the null space of the matrix A. Since the columns of A are as given
above, it is straightforward to show that if A is full rank with m < n this dimension
is equal to n(n 4+ 1)/2 — m(m + 1)/2.

Singular Value Decomposition

We examine one final way that to characterize the solution of (2.3), through the use
of the singular value decomposition (SVD) of AT. This type of approach, utilizing the
generalized singular value decomposition (GSVD), has recently been used to study
the solutions of the equation BXA = C where only X is symmetric [36]. For our
case where B = AT we specialize the approach by using the SVD instead of the more
general GSVD. To this end suppose m < n and the SVD of AT is given by:

*wo]

AT = U
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where ¥ is the 7 x r diagonal matrix containing the r non-zero singular values of A4,

r = rank(A). Let

X X2 Xis r
Xsz Xzz ng m-—-7T
VIxXv = X% XL Xgs n—m

r m—-7r n—m

Yiu Yo,

UTYU 1
Yo Ya

- then we have the following result:

Result 17 Equation (2.3) with m < n has a (symmetric) solution if and only if
Y]z =0 and 1’22 =0.

In that case it has the general solution:

X=V

ZYal Xa | o
XT  Xp

where X, is an arbitrary v x (n —r) matriz and Xp is an arbitrary (n —7) x (n — )

symmetric malriz.

The proof of this result is in Appendix 3-A. Note in particular that the dimension of
the solution space is (n —r)(n 4 r +1)/2 and that when A is full rank so that r = m
this reduces to n(n +1)/2 — m(m + 1)/2, just the difference between the number of
unknowns and the number of equations as stated earlier.

Consider some special cases. First, when A is an n-vector (so m = 1), the solution
space is of dimension n(n + 1)/2 — 1. Since the co-dimension is one, this defines a
hyper-surface in the space S, specifically a hyper-plane. At the other extreme, when
Ais n x n (still full rank) so m = n, the solution space is of dimension zero, a point.
Thus if a solution exists it must be unique. Finally, if m = n — 1, so A is “slightly”

smaller than X, then the dimension of the solution space will be n, the size of X.
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3.2.2 Multiple Observations

We now consider the case of primary interest to us: determining a symmetric matrix
X from a series of observations Y; of the form (2.3). First we examine this problem
directly in the original space and then we provide a simple solution in the space of
symmetric matrices that forms the basis of our results in sections to follow. We seek

to solve the following problem:

Problem 1 (Symmetric matrix recovery) Determine an nXxn symmetric matriz
X given A; and Y; such that:

Y;=ATXA;, 1<i<gq (3.4)

where each Y; is an m; X m; symmetric matriz and each A; is an n; X m; general

maitriz.

Kronecker Approach

Again we may use the Kronecker approach to understanding Problem 1, by stacking
up the observations vec(Y;) on the left and pulling out vec(X) on the right. This

leads to the equation:

vec(Y;) AT @ AT
vec(Y: AT @ AT -

(. 2) = |2 vec(X) = A vec(X)
we(v) | AT AT

Conditions for uniqueness and existence of solutions may now be phrased in terms
of the (gm?) x (n?) matrix A above. This approach, or variants of it using elimina-
tion/dilation matrices, can be used, but is not transparent or convenient, due to the

special symmetric structure of concern to us.

Symmetric Vector Space

Instead of the above, we work in the vector space S, of n X n symmetric matrices. In

this space we may write each equation Y; = A:er A; as:

-~

yi=Aix 1<1<gq
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where y; is the representation of Y; with respect to a basis {Mt(m)}, z is the repre-
sentation of X with respect to a basis {Mt(")}, and A, is again the image of A; under
the map I'. We may now stack up the observations to yield the overall equation:

N Ay
Y2 A,
= - T
Yq fiq
or

where y, A, and z are defined in the natural way. The following characterization of

the solutions of Problem 1 is now straightforward:

Result 18 (Symmetric Recovery Condition) Problem ! has a solution if and
only if y € Ra(A). In this case, the solutions are of the form:

t=Aty +zp,

where At is the Moore-Penrose inverse of A and Ty, is any vector in Nu(A). Fur-
ther, a unique solution ezists if and only if rank (A) = n(n + 1)/2, in which case the
solution is just ¢ = Aty = (ATA)"'AT (and Nu(A) =0).

Symmetric LLSE Problem In practice we encounter the more common case
where Problem 1 has no solution at all because the observations Y; are inconsis-
tent. For practical reasons this is the situation of primary concern to us, reflecting
the use of noisy measurements. When this is the case we abandon the search for
exact solutions and instead seek a best approximate solution to the set (3.4). This

yields the following linear least squares error problem:

Problem 2 (LLSE matrix reconstruction) Determine the n X n symmetric ma-

tric Xiisg of minimum norm that solves the following linear least squares error

(LLSE) problem:
(3.6)

2
F

q
min Z |

X
=1

where each Y; is an m; X m; symmetric matriz and each A; is an n; x m; real matriz.

Y: - ATX A




86 CHAPTER 3. SYMMETRIC MATRICES: RECONSTRUCTION

Since ||Y; — ATX Ai||r = |ly: — Aiz||; for an orthonormal symmetric basis, finding the
X that produces the least F-norm error is equivalent to finding the z = = sg that

minimizes the following 2-norm error:
ly — Azll3. (3.7)

The value of the minimum is the same. Note that || - || is the Frobenius norm and
I - ||2 is the usual Euclidean norm. The solution of the transformed problem is well

known:

Result 19 (LLSE Solution) The LLSE solution zy1sg of Problem 2 is given by

TLLSE = A+}’

where A and y are defined above and At denotes the pseudo-inverse of A.

In the typical case where A has full column rank, this reduces to:

g -1/4
TLLSE = (Z Ag‘fii) (Z x‘iiyi)
i=1 i=1
which is the unique solution. Otherwise, the expression Aty yields the minimizing
solution of least norm. Note that in the case of consistent observations, the minimum
above is identically zero. ‘ ‘ ‘
In terms of the original matrix space we show in Appendix 3-B that the solutions

Xviuse of Problem 2 must satisfy the following normal equations:

i AAT Xpisg A AT = iAiYiA:ir
i=1 i=1
Sometimes this characterization of the set of solutions can be useful.

Again, the solution provided by Result 19 is applicable to any set of matrix obser-
vations that is linear in the matrix argument ¥; = £;(X). In this case entry jk of the
matrix A; is given by (4A;);x = (M}m),ﬂ,-(M,E")) )m, where {M;}; and {My} are bases
for the i-th range and the domain respectively of the i-th operator. The vectors y;
and z are then the representations of the ¢-th observation and the unknown matrix

argument, respectively.
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3.2.3 Projection Parameter Space Reconstruction

We now consider an interesting method for reconstruction which involves working
directly with a convenient parameterization of the projections. The underlying idea
is as follows. For a fixed X, our projection mapping observations Y; are (noisy)
samples of a continuous function Y = ATXA of the mapping matrices A. Each
fixed X defines a different such function of the matrix A, corresponding to a valid
set of potential (noise-free) observations. Rather than trying to directly identify the
symmetric matrix X from samples of one of these functions, we may instead use the
samples to first reconstruct a valid observation function Y. By proper choice of a
parameterization for the matrices A this step can be greatly simplified. The resulting
function of A is then used to identify the underlying matrix X. This approach
is reminiscent of the method of projection onto convex sets [56, 57, 58] and the
general class of algorithms using iteration between spaces [59, 8|, which simultaneously
estimate any missing projections along with object parameters. These methods work
in both the object space and the projection space. The approach is examined here
because of its relationship and importance to physical problems involving support
function observations. Such themes are developed further in Chapter 5.

We have completely developed the approach only for the case when m = 1 and
n = 2, corresponding to scalar observations and a 2 x 2 X. Let the 2-vector A be a
unit vector, so the corresponding projection is orthogonal. This case corresponds to
reconstructing an ellipse from observations of its (squared) support function. Since
A is a unit vector we may parameterize it by the angle 6 so that A = [cos(8) sin(8)]7.

For a given X the resulting continuous observation function Y (6) then becomes:

(X1 +X22) \/(Xu —ng)z ( 1 ( 2X4, ))
g) = (21T A2 A~ Az 2 _ __ otz
Y(9) ( 5 + 5 + X%, cos (26 — tan X Xa

where X;; are the entries of X and the dependence of the estimate on # is made
explicit. This expression is of the form:

Y(8) = B1 + B2 cos(20 + 3s) | (3.8)

where

X1+ X
g, = 2u 22

P i ree et a e e e
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<- Observations

Figure 3-1: Projection parameter space situation.

8, = \/(Xu;Xzz)z + X2, (3.9)

= —tan! (—)
s X11 — Xo

In the projection space, the function Y(6) traces out an offset phase-shifted cosine,
as illustrated in Figure 3-1. In the situation of Problem 2 we would observe a finite

number of noise corrupted points Y;(6;) of this curve, as shown. The fact that

q q
Xmi}?T Z ||Y, — A?XA,”F = minz IY, — Y(0)|
= =1 i .

=1

allows us to proceed by carrying out the minimization on the right. Rather than
directly reconstructing the matrix X, as in the minimization on the left, we first
reconstruct the best fitting function Y(#) in the projection space, then extract the
elements of the matrix X;; from the parameters of this function using the relation-

ships:

X1 = B+ P 605(33)
X2 = B1—Ps COS(ﬂa) (3-10)
X1z = -0 Siﬂ(ﬂs)
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Note that we may also express (3.8) as a linear function of a different set of variables

as follows:
Y(8) = B + B cos(28) + PB5sin(26)

which is linear in the parameters 3;, G2, and 33. The problem is then another LLSE
problem. The formulation of (3.8) is actually easier to work with when we introduce
positivity constraints into the problem.

For the n = 3 case (33 matrices) with 1-dimensional observations, the unit vector
A requires two parameters to characterize, since A(6, ¢) is actually a parameterization
of the unit sphere. For the standard latitude and longitude parameterization of the
unit sphere, the resulting function Y (4, ¢) becomes a harmonic surface of order one in
one of the variables and order two in the other variable. Unfortunately, this function
is not separable in a nice way in these variables. The appropriate expressions are

provided in Appendix 3-C. We have not used these higher order expressions to date.

3.2.4 Recursive Approaches

We may also use the formulation of (3.7) to implement a recursive solution to Prob-
lem 2. Because of the structure of (3.7) such a solution is just a recursive least squares
formulation with the state vector being the estimate & of the symmetric matrix rep-
resented by = (for an appropriate choice of initial condition). These equations are
given by:

B = &p_1+ Ki (yk - fiki‘k_x) (3.11)
K, = Q;IA{R;,

- P -~ -1 -~
i o= Rl - R AT (R + AR AT) T AR,

where &, is the representation of the LLSE estimate of the matrix X using observa-
tions up to time k, y; is the representation of the observation Y, A is the image
of the matrix A, under I, and the R, are optional weighting matrices reflecting our

confidence in observation k. The solution to (3.11) minimizes the quantity:

q -~ -~
25 Qoo + Y (yk — Ardr—1)” Ri(ye — Ardr—1)

i=1

For the unweighted LLSE case R) = I. Stochastic interpretations result if the weight-

ing matrices Ry are chosen to be observation error covariance matrices [60].

B
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This recursive formulation, while introduced for the case of estimating a static
matrix X, suggests another interpretation. Since the estimate changes from step to
step, we have created a dynamic symmetric matrix in the estimates X;. Further, we
can imagine that rather than the target matrix X being static as above, it evolves
according to some dynamical equation. Such a situation models the evolution of an
ellipsoid in Chapter 5. We defer further discussion until that chapter.

3.3 PSD Reconstruction

As discussed in Section 2.3, many physical problems fitting into the symmetric matrix
reconstruction framework that we have been considering require that the underly-
ing matrix be positive semi-definite. This requirement is necessary, for example, in
the case of curvature representation of convex surfaces (where the semi-definiteness
reflects the convexity of the surface) and for ellipsoid representation (where semi-
definiteness of the underlying matrix ensures the object is an ellipsoid). We study
both problems in more detail later. Such considerations lead us to study the recon-
struction of positive semi-definite (PSD) symmetric matrices in this section. We use
the insights that we have developed into the PSD cone and our approximations of it
to suggest ways to solve least-squares problems subject to a PSD constraint on the

solution. Specifically, we are concerned with the following variant of Problem 2:

Problem 3 (PSD matrix reconstruction) Determine the n x n symmetric PSD

matriz Xpsp of minimum norm that solves the following linear least squares error

(LLSE) problem:
9

min Z

=xT
X=XT>0 i

(3.12)

2
F

Y — ATX A

where each Y; is an m; x m; symmetric matriz and each A; is an n; X m; real matriz.

First we show that our work on the unconstrained least-squares problem presented in
Section 3.2 is useful as it stands for many practical cases. If our observations (the
projection mappings Y;) arose from an underlying physical process involving a PSD
matrix, then with noise-free observations, this is exactly the matrix the methods
discussed previously would recover. We show that when the deviations from this
assumption are small, in a sense to be made precise, the solution will be close to
the original unperturbed PSD solution. Thus, for many problems no alterations are

needed to the unconstrained approaches. This will not always be the case however,
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and then it becomes necessary to incorporate the PSD constraint directly into the
reconstruction process in some way.

For this situation, we use the insights into and approximations of the PSD cone
that we have developed to yield straightforward constrained optimization problems.
We use polyhedral approximations to the PSD set, which in turn lead to linear con-
straints on the elements of a matrix. These linear constraints may then be incor-
porated into the least squares formulation developed above to yield straightforward
constrained optimization problems. Finally we use our insight into the PSD cone to
present some iterative and gradient based approaches to this problem that exploit

the structure of the problem to improve on the approximate solutions.

3.3.1 Small Noise Case

The solution developed in Result 19 has no constraint to guarantee the positive semi-
definiteness of the solution Xypsg. Still, in many instances, the observations are
“good enough” that the underlying positive semi-definite nature of the solution is
maintained. In particular, if we hypothesize an underlying matrix which is positive
semi-definite (from physical considerations perhaps), and if our observations in (2.3)
were perfect, we would recover precisely the original PSD matrix. In the more realistic
case that the observations are noisy and inconsistent, we may think of this noise as
a perturbation to the above perfect situation. From continuity considerations, we
would expect that if this perturbation or noise in the ideal set of observations were
small enough, the solution obtained by Result 19 would still be positive semi-definite.

We make these notions precise in the following.

Result 20 (Sensitivity bounds) Suppose that the'symmetric matrices X* and X*+

86X are the unique solutions to:

9
X* = argmin Z|

=1

q
X*+6X = agmin . ”(Y;* +68Y)— ATX A,
=1

2
F

Y — AT XAl

2
F
where A; is n X m and full rank. Then:

q
Tmax(6X) < oin(A)\| D [16Yi]E

=1
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where A = [AT|AT]|... |ATIT, A; = T(A;) (see (3.5)).
Further, if X* is positive definite and

q
T (A)y 2 I¥ilE < Amin(X7)

=1
then X*+6X, the LLSE solution of the perturbed problem, will also be positive definite.
Here Amin(+) denotes the minimum eigenvalue of its argument and Omin(*) and omax(+)

denotes the minimum and mazimum singular value of the argument, respectively.

The proof of this result is in Appendix 3-D. The result says that if our observation
geometry is good, as reflected in a large value of gps(A), if the noise is small, as
reflected in small values of ||§Y;||r, and if the underlying true matrix X* is not close
to singular, s0 Apin(X*) is large, then the solution provided by Result 19 will still
yield a PSD matrix. Small values of Omin(A) can reflect near linear dependence of
observations, large values of ||§Y;||r result from noisy observations, and small values
of Amin(X™*) can reflect extremes of the underlying physical objects. For an ellipsoid,
a small value of Apin(X*) might reflect an ellipse which is almost degenerate, while
for the case of surface curvature representation, such small values can occur at points
of high curvature.

In spite of the above arguments, there may be situations when, due to noisy
observations, the LLSE solution is not positive semi-definite. Such a situation can
arise even when all our observations themselves are positive semi-definite, as the
following example shows. If A; = [0 1]T, 4, = 711=0[3 17, Ay = 715[1 ~1]%, and
Y1 =10, Y; = .1, Y3 = 4.5 then clearly the observations are all positive, yet Xppsg =
diag[—1 10], is an indefinite diagonal matrix. This possibility is easy to see in the
planar case. As discussed in Section 3.2.3, we may view this case as trying to find the
best fitting cosine from noisy observations of points on the curve. These observations
may certainly be positive yet the best fitting cosine may not always be, as shown
in Figure 3-1. Because of such difficulties we consider constraints and procedures to

ensure a positive semi-definite solution to (3.12) next.

3.3.2 Non-Iterative Techniques

In this section we consider non-iterative techniques for finding a solution to the PSD
constrained least squares problem. These methods yield an approximation to the true
minimizing PSD matrix which solves Problem 3.
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Nearest PSD Matrix

The simplest approach we might take to approximating the solution to Problem 3,
would be to find the closest matrix X,.o, in the PSD set to the solution Xpisg of
the unconstrained Problem 2. Algebraically, the nearest PSD matrix [Z]F5P to an

arbitrary symmetric matrix Z is given by
[2]7°P =argmin || X - Z||%
X€EPSD,

and corresponds to projecting Z onto the PSD cone. If \;(Z) are the eigenvalues of

Z and v; are the corresponding eigenvectors, then it is straightforward to show that

[Z]PP = 3 Xi(Z) vl (3.13)
Xi(Z)>0

Thus, for the present case we would obtain Xyear = [X1Lsg]FSP from Xppsg by setting
its negative eigenvalues to zero. While this solution is not optimal, it is easy to
compute, and as such may be used to convert any estimate which is not positive
semi-definite into a PSD estimate. We may also use such an estimate to obtain a
starting value for other methods.

Note that, in general, Xpcar # Xpsp, so this solution is just an approximation
to the true solution. The projection onto the PSD cone to obtain the minimizing
PSD constrained solution may be decomposed into two orthogonal projections, one
corresponding to the determination of the unconstrained LLSE solution, as shown in

Figure 3-2. As a result we have that

AT(X - Xuise) A

|2
F

9
XPSD =arg min Z |
XePSDn ;1

while X e, is given by

Xnear =arg min || X — Xprsel|%
Xe n
These two expressions are not the same, in general. What we want to do is to project
the image of the LLSE estimate in the column space of the transformation (Azprsg
in the figure) onto the image of the constraint set. This is not the same as projecting
the LLSE estimate directly onto the constraint set. In the original space the PSD

constraint is straightforward to specify but the minimization is difficult (due to the
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Figure 3-2: Geometry of solution determination.

presence of A) while in the range space of the transformation the minimization is just

a projection onto the image of the PSD constraint, but this transformed constraint
set is now difficult to specify.

Approximate Reconstruction

Here we consider a different approach to the constrained reconstruction problem,
using the approximations of the PSD cone developed above. Instead of requiring
the solution to be a PSD matrix, we impose the constraint that the solution X535
lie in one of the approximating sets developed in Section 2.4. In other words, we

solve exactly the following perturbed problem, whose solution approximately solves
Problem 3:

Problem 4 (Approximate PSD Matrix Reconstruction) Determine the n x n
symmetric matriz X of minimum norm that solves the following constrained linear
least square error (LLSE) problem:

q
min 3" [|¥; - ATXA (3.14)
XePSD;, ;=1

where PSD, is a set approzimating the PSD set and each Y; is an m; X m; symmetric
matriz and each A; is an n; X m; real matriz.
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The type of PSD cone approximation PSD,, used obviously has a direct bearing on
the properties of the resulting solution. For example, using a finite support approx-
imation as found in Lemma 2 allows solutions that are not positive semi-definite.
Such properties should be obvious from the nature of the approximating sets and our
discussion of them.

Note that the constraints imposed by any of the static approximations PSD,, that
we developed in Section 2.4 can be separated into just two groups for optimization
purposes. If z = Z(X) is the representation of the symmetric matrix X with respect
to some symmetric basis {M,}, then the condition that X € PSD, for any of the
approximating sets developed above can be expressed in one of the two following

forms:

1. Linear inequality constraint on z:

Ez > f

2. Linear ineqﬁality constraint on a linearly transformed variable Z:

Gz
f

T

Ez

Vv

The first group yields linear inequality constraints directly in terms of the elements of
the problem = while the second group yields linear inequality constraints in terms of
the elements of a linearly transformed variable Z. The different approximating sets,
their type, and the corresponding values of the variables E, f, and G are presented in
Appendix 3-E. More detail on the respective approximations may be obtained from
the section discussing that approximation.

If y; = Z(Y;) is the representation of the symmetric matrix ¥; with respect to
some symmetric basis {M.}, y = [y7|yT|--- |yT]7, and A = [A]|A]|---|AT])T, where

A; = I'(A;), then Problem 4 may always be written in one of following two forms

: _ 2
pin. [ly — Azl

or

: =112
pin ly — AGZ||;
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for some E, f, and perhaps G depending on the underlying approximating set. Both
of these forms are least squares problems with linear inequality constraints, which
are readily solved. Later we present some numerical comparisons between estimates

based on these methods and those of other methods.

3.3.3 Iterative Methods

We next examine methods that are iterative in nature and not finitely terminating. In
contrast to the above approach of exactly solving a perturbed problem, these methods
attempt to approximately solve the exact Problem 3. First we treat methods not
directly using a gradient of the cost function. In the section after that, we examine

approaches that do incorporate such gradient information.

Successive Halfspaces

In Section 2.3.1 we discussed representing the PSD cone through its supporting half-
spaces. This approach yielded an exterior representation of the cone. We further
showed that only the halfspaces with normals corresponding to rank one matrices
were needed. Unfortunately, to fully represent the PSD cone required an infinite set
of these halfspaces. As a result, we considered approximating the set by using a finite
number of these supporting halfspaces in Section 2.4.2. The estimate based on any
such static approximation may, in general, be indefinite. Note, however, that when A
is of full column rank, if the resulting estimate based on such an external approximat-
ing set happens to be positive semi-definite, then it must also be the unique optimal
solution to the PSD constrained Problem 3 (recall that A = [AT|A]]|...|AT]7, with
A; = T(A;)). This property is simply a consequence of the inclusion of the PSD set
in any external approximating set. If the minimizing solution over the larger set is a
PSD matrix then, clearly, restricting the solution to be a PSD matrix will not increase
the cost.

The interesting case is when, for a given approximating set, the solution of Prob-
lem 4 lies near the set boundary. If the solution is near the center of the set (and is
hence PSD), then from the above argument we are done anyway. As we add more
support halfspaces the approximation to the PSD cone should get better, but how
should we choose which support halfspaces to add? Clearly, adding support halfs-
paces on the side of the cone opposite the current solution is inefficient, since these

constraints will not be binding. We investigate this question and develop an algorithm
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for choosing halfspaces guaranteed to converge to the solution of Problem 3.
As we said, when the solution to Problem 4 is PSD we have found the optimal
solution, so we consider the case of indefinite solutions. Any symmetric matrix X

can be written as the following weighted sum of rank 1 matrices:
X = E /\,"U,"Ut-T
=1

where 7 is the rank of the matrix, v; are the eigenvectors, and ); are the associ-
ated eigenvalues. Now consider the constraint imposed by the support halfspace
HS(vivF,0) for some i. This constraint is given by

(viol, X) >0

or, equivalently

r

vIXv; = vf Zz\jv,-'vf v;
i=1
A >0

where the last equality follows from the fact that the eigenvectors of a symmetric
matrix are mutually orthogonal. Thus adding the constraint corresponding to the
halfspace HS(v;v],0) is the same as requiring that all matrices of the corresponding
set with the eigenvector v; have a non-negative corresponding eigenvalue!

This insight suggests the following approach. First solve Problem.4 with a given
external approximating set. Then look at the eigenvalues of the corresponding so-
lution X (k) and add to the current approximating set those halfspaces with rank-1
normals corresponding to the eigenvectors of the negative roots. At the next stage
then, either these roots must be non-negative or the eigenvectors must have changed.
One way of viewing this idea is as follows. Using a set of support halfspaces, we form
a good approximation to the PSD cone boundary locally to the solution of Problem 3.
The solution to the approximate problem at any stage tells us the part of the PSD
cone that is important to approximate well. This reasoning gives us the following

algorithm for finding a solution to Problem 3 .
Algorithm 1 (Successive Halfspace)

Step 1) Choose an initial ezternal approzimating set of hyperplane normals {N;}o.
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Set k = 0.

Step 2) Solve Problem j with the approzimating set PSD,(k) = (| HS(N,0) to
Ne{Ni}e
obtain X (k).

Step 3) Find the negative eigenvalues \; and corresponding eigenvectors v; of X(k).
If there are none, the solution is optimal: STOP.

Step 4) Update the approzimating set {N;} by adding halfspaces with rank-1 nor-
mals corresponding to the negative eigenvalues: {Ni}er1 = {Ni}te U{vjvT} for
Xj < 0, thus PSDn(k + 1) = PSD,(k) N\'HS (v;07,0).

Step 5) Goto Step 2).

We make some observations about the steps of the algorithm. For Step 1) any poly-
hedral external approximating set P%n(k) defined by a group of linear inequality
constraints, one for each bounding halfspace, can be used. Thus, Step 2) requires
the solution of an LLSE problem subject to these linear inequality constraints. This
problem, known as problem LSI [55], is straightforward to solve: For Step 3) the
eigenanalysis of an n X n matrix is required, which is also straightforward to perform.
Further, it is reasonable to expect that as the iteration proceeds, and the solution
converges, we could simply update the previous eigenanalysis using, for example, first
order perturbation expressions for the eigenvalues and eigenvectors or one step of a
Rayleigh-quotient iteration [61]. Finally, Step 4) essentially reduces to appending
additional rows to the constraint matrix of the linear inequalities (Ez > f). The
point to note is that the constraint set (and thus this matrix) grows linearly with the
iteration count.

Note that the algorithm is, in general, non-terminating. Further, the estimate
at any finite stage of the algorithm X(k) will, in general, be indefinite since the
constraint set P%n(k) will always form an ezternal approximation to the PSD set
for any finite number of steps and thus contain elements outside the PSD set. We may
easily terminate the algorithm after a finite number of steps, for example, when the
change between iterations falls below some threshold, then project the corresponding
(indefinite) iterate X (k) onto the PSD cone (by finding the nearest PSD matrix to
X(k) as described in (3.13) of Section 3.3.2) to obtain a final PSD estimate. The
error introduced by this final projection is small if X (k) is near the optimal solution
(as reflected in the diminishing size of the updates).
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We have the following result concerning the convergence of Algorithm 1.

Result 21 (Hyperplane Algorithm Convergence) If A is of full column rank,

then Algorithm 1 converges monotonically to the unique solution to Problem 3.

The proof is in Appendix 3-F. Numerical examples are discussed in detail later. In
practice it appears that when n = 2 just 20 or so iterations are sufficient to provide

convergence (often far less).

Finite Successive Hyperplanes

In Algorithm 1 the constraint set grows linearly with the iteration count. It would
obviously be better if this could be avoided. Heuristically, if the algorithm has pro-
ceeded for some time and the iterates X (k) have settled down toward some value,
it might be reasonable to expect that the constraints from the distant past are no
longer necessary. Essentially, we would argue that the most recent support halfs-
pace constraints effectively capture the salient parts of the local PSD cone geometry.
Rather than keep all of the constraints in Algorithm 1 we would only retain the nconst
most recent ones. As the iteration proceeds these ngons halfspaces should form a
progressively better approximation to the local structure of the cone at the solution.
Of course, with too few constraints we would not expect to retain enough of the local
information either.

Currently, we have no results on the minimum value of n o required for conver-
gence of a given problem. For typical problems an acceptable value seems to be in the
range of 10 ~ 20. When this number is chosen too small, the iterations converge for
a time, then, as some critical constraints are removed from the set, the iterate jumps
back to something near a previous value, corresponding to lower cost (recall the cost
should be increasing) and repeats this cycle of irregular (almost chaotic) oscillation.
For certain problems the convergence phase can proceed for quite some time (to the
eye even to completion) before this divergence is observed. One possibility to prevent
this behavior is to stop the iteration if the residual stops decreasing monotonically or
to change the number of constraints retained 7ncons; to a larger number on the fly. For
example, we could delete constraints as long as the residual is decreasing and retain

them if the residual starts to increase.
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Unconstrained Square-Root Iteration

Next we consider methods explicitly using the cost function of Problem 4 and its
gradient. Recall that the cost function C(X) is given by:

q
o(x) =Y |- ATx A

1=

Perhaps the simplest thing to do is to work with a square root of the matrix X.
A square root of a symmetric positive semi-definite matrix X is any matrix R such
that X = RTR. Conversely, for any real matrix R, the matrix RT R is guaranteed
to be positive semi-definite. Unfortunately for a given X the corresponding R is
not unique. Still, we may search for any R such that the corresponding X = RTR
minimizes C(X). This approach yields the following equivalent form of Problem 3 in
terms of the square root matrix R and the cost C'(R):

Problem 5 (Square Root PSD Matrix Reconstruction) Determine an n X n

real general matriz Ropr that solves the following unconstrained linear least squares

error (LLSE) problem:

q
min 3 [V; - AT RTR A (3.15)

=1

where each Y; is an m; x m; symmetric matriz and each A; is an n; X m; real matriz.

Note that Problem 5 is now an unconstrained optimization problem in terms of a gen-
eral matrix and that the solution of Problem 3 is given by Xpsp = R5prRopr. Thus
we have transformed the constrained optimization problem into an unconstrained
problem involving a general matrix. We may therefore immediately use any proce-
dure for finding unconstrained minima. One example would be the readily available
Nelder-Mead Simplex Algorithm [62], which numerically descends the cost surface.
Unfortunately, this algorithm makes no use of the special structure of the problem,
and is very slow. By using analytic gradient information we may considerably speed
up convergence. Note that the solution square-root Ropr will not be unique but the

corresponding symmetric matrix Xpsp = RSpy Ropr will be.

Unconstrained Steepest Descent

One approach we may take is to perform an (unconstrained) steepest descent [63] on
the cost function C(R) to find a solution to Problem 5. To do this we require an
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analytic expression for the gradient VC(R) of C(R). This quantity is evaluated in
Appendix 3-G and is given by

q
VC(R) = —4R) A: (Y: — ATRRA;) AT. (3.16)

i=1
With the gradient we may define the following algorithm:
Algorithm 2 (Steepest Descent on R)
Step 1) Choose an initial square root R(0). Set k = 0.
Step 2) Evaluate VC(R(k)).
Step 3) Set R(k + .1) = R(k) — yVC(R(k)).
Step 4) Goto 2).

One way of choosing the initial value for Step 1) is to use a square root of the PSD
estimate X, ... based on the unconstrained LLSFE estimate. We have left the choice
of the stepsize v in Step 3) open.

Instead of using a constant stepsize v in Step 3) of the algorithm we could use
a stepsize that leads to the largest possible reduction in the size of C' at any stage
[63]. We would choose 9, = v in Step 3) to minimize the cost at the next step of
the algorithm. That is, to minimize C(R(k) — yVC(R(k))). This is a 1-dimensional
minimization that must be performed at each iteration. Many authors reserve the
term steepest descent for algorithms employing this choice of v at each iteration
[64, 65, 66]. For our particular problem the search for the minimizing v, reduces to
finding a root of a cubic. The necessary calculations and coefficients of the appropriate
cubic in terms of the elements of the problem are provided in Appendix 3-G. This
choice of 7, often yields the fastest convergence of Algorithm 2.

We have the following result concerning the convergence of Algorithm 2 with the

above stepsize selection rule.

Result 22 (Convergence of Algorithm 2) In Algorithm 2 if A is of full column
rank and . is chosen to minimize C'(R(k) — yVC(R(k))) at each iteration

lim VC (R(k)) = 0

and the algorithm is guaranteed to converge.
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The proof is in Appendix 3-G. Unfortunately, the cost function C(R) is not convex
in R and thus while we know that Algorithm 2 will converge, we cannot guarantee
that the limit point is a global minimum of C(R). Next we investigate a constrained
gradient method which does have such optimality guarantees. Note that for a general
square root R there are also almost twice as many variables to find vs finding the

entries of a symmetric matrix.

Constrained Gradient Projection

We now examine a different approach. Rather than searching for an unconstrained
square root we directly search for a solution to the constrained problem using the
cost C(X). The simplest approach we might take is to use the gradient projection
algorithm [63]. This algorithm is much like the steepest descent algorithm. We make
an update along the gradient direction, but since an update of this type could take
us outside the constraint set, we take the additional step of projecting back into the
set at every iteration. This projection operation simply corresponds to finding the
nearest PSD matrix to the current estimate and is given by equation (3.13). Recall
that this projection is done by setting the negative eigenvalues to zero and is denoted
by [-]PSP.

As before we need the gradient VC(X), this time directly with respect to X. This

expression is evaluated in Appendix 3-G and is given by:

q
VO(X)=-2) A (Y — ATX A;) AT (3.17)

i=1
With this gradient we may define the following algorithm:
Algorithm .3 (Gr;ldient Projection on X)
Step 1) Choose an initial guess X(0). Set k = 0.
Step 2) Evaluate VC(X(k)).
Step 3) Take a step: W(k) = X(k) — yVC(X(k)).

Step 4) Project back onto the PSD set to obtain the next iterate: X(k + 1) =
(W (k)]FSP.

Step 5) Goto 2).
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We may once again choose the initial value X(0) to be the PSD estimate X,... based
on the unconstrained LLSE estimate. Again, there is the issue of the choice of
stepsize v in Step 3). The next convergence result provides a bound on its value.

We have the following result concerning the convergence of Algorithm 2.

Result 23 (Convergence of Algorithm 3) In Algorithm 3 if A has full column
rank and 0 < v < 2/a, where
=02 (A)

max

and if X* is a limit point of the sequence {X(k)} generated by the algorithm, then
X" is the unique minimizer of C(X) over the PSD cone. Further if v is chosen small
enough, the sequence {X(k)} converges to X* geometrically.

Here A is as defined previously and opex(A) denotes the maximum singular value of
A. The proof is in Appendix 3-G.

Again, an alternative to using a constant stepsize in Step 3) is to use, at each
iteration, the stepsize that leads to the largest possible reduction in the cost C. That
is, at each iteration we would choose 7 to minimize C(X(k) —yVC(X(k))). For the

present problem this 1-dimensional minimization may be carried out analytically to

yield for the optimal ~,:

1 VoW
" T [ ATVC (R AT

This quantity appears difficult to compute but since VC(k) is now a symmetric
matrix we may find an equivalent expression in the symmetric vector space which is
perhaps more transparent. If we define Vc(k) = Z(VC(k)) as the tepresentation of
this symmetric matrix, and define A as in (3.5), then ~, is simply given by:

o = LIV
2 AVe(k)}

As mentioned above, this choice of v, often yields the fastest convergence of Algo-

rithm 3, at the expense of the additional computation of Y.

Projection Parameter Space Approach

Here we examine a specialized algorithm for the n = 2 and m = 1 case of 2x2 matrices

and 1-dimensional observations. This algorithm utilizes the projection space approach
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discussed in Section 3.2.3. Recall that for this case when A;(6;) = [cos(6;) sin(6;)]T

our scalar observations become

Yi(6:) = B1 + B2 cos(26; + fs)

where
g - Xu __‘2* Koz (3.18)
o= (2 ) (3.19)
fBs = —tan™? <%) (3.20)

See Figure 3-1. Originally, we were not concerned with imposing a positive semi-
definite constraint on the solution. By definition, X is positive semi-definite if and
only if the reconstructed function ¥(8) > 0 for all 4. Recovering a (2x2) positive semi-
definite X from 1-D observations of Y (6;) is thus equivalent to solving the following
projection space problem:

g

Jmin DY = 8+ s con(2h+ ) (3.21)
where we are given the Y; and #; and must find the parameters 3,, B2, B3. In the
projection space then, we wish to reconstruct a nonnegative cosine given noisy ob-
servations of points along the the cosine. As given above, the problem has linear
constraints but nonlinear cost. We may also write this problem as one with nonlinear

constraints and a linear cost, but the present form is actually easier to work with.
If we knew the value of §;, solving (3.21) for the minimizing value of f; and
B2 would be easy. Conversely, given §; and (3; we can easily find corresponding

minimizing B3 since

B1 + B2 cos(20; + B3) = B1 + B2 cos(26;) cos(B3) — B2 sin(28;) sin(Fs).

Each of these steps is a constrained least-squares problem. This alternation forms
the basis of our projection space PSD reconstruction algorithm for the n = 2 case.

Algorithm 4 (PSD Projection Space)
Step 1) Choose an initial guess X(0) and find 55(0) from (3.20). Set k = 0.
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Step 2) Solve the following linearly constrained LLSE problem for B1(k+1), B2(k+1):

Y—M(k)[gl]

2

=arg min
B12>282>0

Ba(k + 1)

2

_[ﬂl(k+1)]

2

where Y = [Y1|Yz| -« |Y,]T, and the matriz M(k) is given by

1 cos(26, + B3(k))]
M(k) = 1 cos(26, -l- Ba(k))]

1 cos(26, + Bs(k))]
Step 3) Solve the following quadratically constrained LLSE problem for z*:

z* =arg min ”Y — N(k)z”:

llzl|=1
where Y = [Y — By(k 4 1)]/B2(k + 1), and the matriz N(k) is given by

cos(26,) —sin(26,)]
N(K) = cos(.202) —s1n€292)]

cos(20,) —sin(26,))

Stepb 4) Solve for B3(k + 1) = Lz = arctan(z2/z).
Step 5) Form X(k + 1) using (3.10).
Step 6) Goto Step 2).

This can be seen to be a coordinate descent (nonlinear Gauss-Seidel) algorithm [63] for
fitting a positive cosine to data. In step 2) we hold the phase constant and minimize
over the amplitude and constant offset. In step 3) we hold the amplitude and offset
constant and optimize over just the phase shift. Because of the constraints imposed
at each step, the iterates X (k) are assured of being PSD matrices. Since the cost can
only decrease from iteration to iteration and it is bounded below, it must converge.
Unfortunately, since the cost is not convex in the §;, it is difficult to prove that the

algorithm will always converge to the minimizer of Problem 3. Experience has shown
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superior convergence properties in practice however.

Comments

Here we offer some comments about the various algorithms. We discuss their require-
ments and properties, possible extensions, and connections to other work.

The successive hyperplane algorithm 1 requires the repeated solution of a least
squares problem with linear inequality constraints, termed problem LSI [55]. At
each stage, however the major part of the constraint set has remained unchanged, as
we have simply added additional constraints to the set. It seems that there should
be some way to use our solution to the previous problem to help our solution to the
augmented problem. This observation raises the question as to whether some recursive
form of solution to problem LSI could be developed, at least in terms of the constraint
set. As this step of our algorithm becomes the most computationally burdensome
(due to its increasing dimension), such a recursive formulation would greatly speed up
computation. We could simply update our solution as more constraints are generated.

Another algorithm that we investigated avoided using explicit gradient informa-
tion (like the successive halfspace algorithm) and involved a successive rotation of
the coordinate frame to attempt to iteratively diagonalize the solution. In the trans-
formed diagonal space, the PSD constraint becomes a trivial one. Unfortunately,
we did not have much success with the approach. It is interesting for its use of the
underlying geometry, however, and so we have included it as Appendix 3-H.

The gradient based methods of Algorithms 2 and 3, being steepest descent al-
gorithms, suffer from the poor terminal convergence rates that are typical of such
approaches [63, 65, 66, 64]. This does not seem to be too much of a problem for the
n = 2 case but does appear bothersome when n = 3. We have made little effort to
optimize the algorithms from this standpoint. Rather our goal has been to illustrate
the possibility of exploiting the special structure of the problem in the estimation of
a PSD symmetric matrix. More efficient variants of these methods, even using the
given expressions for the gradients, undoubtedly exist. For example, we have made
no attempt to make use of curvature information, as would be provided by V2(C.

Little other work presently exists on solving problems with a semi-definite con-
straint on the solution, such as we have considered in Problem 3.12. The paper by

Fletcher [48] is one such work in this vein. The primary interest in [48], however, is
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on solving problems of the form

maximize ||v]|1, ve R
subject to S — diag(v;) > 0,
v, _>_ 0

where diag denotes the diagonal matrix of the argument. The algorithm of the paper
is a gradient based one, but not very intuitive from a geometric standpoint; and it
has proved difficult to understand and apply.

Another paper with similar interests is by Allwright [67], and is more closely

aligned to the present work. The interest in [67] is on solving a problem of the form:

min |[|[F - XG 3.22
Lmin |[F— XGlr (3.22)
where F and G are general matrices. Again, the approach taken has also proved
difficult to understand because not much interpretation is provided for the various
steps prescribed in the algorithm. It appears that the author of [67] does not impose
the PSD constraint in the original space, but instead transforms the problem to a
space where the minimization is straightforward but the PSD constraint is mapped to
an equivalent warped constraint set, much as was discussed in connection with Fig-
ure 3-2. He uses the vec(X) formalism and a sort of elimination matrix to transform
(3.22) to an equivalent vector problem given by

min__|ju — k|

ke F(PSD)
where u and k are transformed variables and F(PSD) is some transformation of the
PSD set. It is difficult to discern exactly how the PSD constraints are applied in the

problem, as there are a number of layers of transformations and auxiliary variables.

3.4 Extensions

3.4.1 Interval Matrix Constraints

In this section we briefly consider how to generalize the results we have presented in
this chapter to include a broader class of matrices than those with the PSD property.

We demonstrate that most of the insights, representations, and algorithms presented
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are easily extendible to sets of symmetric matrices lying in a prescribed interval.

Consider the set of symmetric matrices defined by:

S

— (XX > X > X} (3.23)

where by the inequalities X > X and X > X we mean that the matrices (X — X)
and (X — X)) are PSD matrices. We term such a set, whose elements are constrained
to lie in a specified matrix interval, a set of interval matrices. For the elements X of
the PSD set we had the condition that T Xu > 0, V uTu = 1. Here, a matrix X is a

member of a set of interval matrices X in the sense we have defined if and only if
wWIXu>ulXu>uTXu, Vulu=1

We may now immediately use our development of Section 2.3, particularly Sec-
tion 2.3.1, to obtain the following characterization of a symmetric interval matrix
set:

X= ﬂ HS(N’ (N,l))ﬂHS(—N,—(N,TD (3'24)

NepsDY
IN||p=1

We can see that this set is just the intersection of two cones, each a copy of the PSD
cone. The first cone N HS(N, (N, X)) is just the PSD cone shifted by the vector X.
The second cone NHS(—N, —(N, X)) is a flipped version of the PSD cone translated

to the point X. Thus the overall set is the intersection of two offset cones.

Eigenvalue Interval Set

For example, suppose we choose the bounding matrices X and X so that X = AI and
X = M, with X and ) as nonnegative scalars. The elements of the corresponding set of
matrices X are constrained to have eigenvalues A;(X) in the interval X > X;(X) > A.
We term such a set an eigenvalue interval set, notation EIG. For this case it follows
that (N,X) = X and (N, X) = ) and the translations are along the direction I. The

overall set EIG is illustrated for the n = 2 case in Figure 3-3, where we have cut away

part of the boundary to reveal the interior.

Note that for this n = 2 case the intersection of the two cones represents the set of
matrices with one eigenvalue at the maximum value and one at the minimum value.
Since there are only two eigenvalues for this case, the resulting circle represents the set

of 2 X 2 matrices with prescribed eigenvalues. In particular, notice that these circles
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‘Xll NHS(-N,-A) I

- X
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NHS(N.A)
J2x
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Figure 3-3: Illustration of eigenvalue interval set, n = 2.

must be concentric as seen along the identity I direction. The matrices with greater
extremes in their eigenvalues lie on circles farther out from the identity direction than
those whose eigenvalues are closer together. In fact, the set of matrices with a given
difference between their eigenvalues lie on the surface of a cylinder of a fixed radius

with the identity matrix I along the central axis.

Constrained Resonstruction

An interesting problem is the reconstruction of symmetric matrices under interval

constraints of the form given in (3.23). In particular consider the following problem:

Problem 6 (Interval Matrix Reconstruction) Determine the n X n symmetric

matric X5 that solves the following constrained linear least square error (LLSE) prob-

lem:

mig 3 i - 474
£ 4=1

2
F

where each Y; is an m; X m; symmetric matriz, each A; is an n; X m; real matriz,
and X is a set of interval matrices as defined in (3.23) or (3.24).

The characterization of (3.24) enables us to apply the set approximation insights
developed in Section 3.3.2 to this interval matrix case. For example, we may develop

external approximations as in Lemma 2 by replacing the halfspaces HS(V;,0) used
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there with the sets HS(N;, (N;, X)) N HS(—N;, —(N;, X)). Once the limits X and
X are fixed these sets are completely determined by their associated set of normals
{N}. Note that the resulting approximations are still defined by a group of linear
inequality constraints, as before. Let i denote such an approximating set. We have
a particular interest in generalizing the iterative halfspace algorithm of Section 3.3.3.

Such an extension is provided in the following:
Algorithm 5 (Interval Matrix Successive Halfspace)

Step 1) Choose an initial ezternal approzimating set of unit rank 1 hyperplane nor-
mals {N;}o, thus defining X,. Set k = 0.

Step 2) Solve the following to obtain X(k):

q
X(k) =argmin Y

XEZk =1

2
F

i - AT X A;

where

X.= () HS(N,(N,X))NHS(-N,—(N,X))
Ne{N;}x

Step 3) For the lower bound, find all eigenvalues )\; and corresponding eigenvectors

v; Of [X(k) — _.X_] such that AJ S 0.

Step 4) For the upper bound, find all eigenvalues ); and corresponding eigenvectors
7; of [X — X (k)] such that X; < 0. If there are no ); or X; the solution is
optimal: STOP.

Step 5) Update the approzimating set Ek by augmenting the associated set { N}

with rank 1 normals corresponding to the forbidden eigenvectors found in Steps

3) and 4): {N:}kt1 = {Ni}e U{Q,&JT} U{-ﬁﬁ’?}-
Step 8) Goto Step 2).

Similar types of convergence arguments can be made for this algorithm as for the
original successive halfspace algorithm. As for that algorithm, the present one also
keeps adding halfspaces needed to build up a successively better local approximation
to the set X.
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Eigenvalue Interval Algorithm

In the case of an eigenvalue interval constraint set EIG, we may also adapt the gradient
projection Algorithm 3.17 to solve Problem 6. Instead of projecting back onto the
PSD set, as we did before, we project onto the eigenvalue interval set EIG at each
iteration. Given an arbitrary symmetric matrix Z, the nearest matrix [Z]E in the

Frobenius norm to the set EIG is given by:

[Z]mz Z A,(Z) viviT + Z A’U,"vir + Z X’Uivér (3.25)
X2X:(Z)>A Xi(Z)<A 2 (Z)>X

where );(Z) are the eigenvalues of Z and v; are the corresponding eigenvectors.
Thus [Z]EI€ is obtained from Z simply setting any eigenvalues of Z which are out-
side of the required range to the nearest limit. Now notice that the cost function
O(X) = L, [¥i - 47X 4,

derived earlier are applicable here. With these observations we have the following

2
- has remained the same, so the expressions for VC'(X)

generalization of the PSD gradient projection algorithm:
Algorithm 6 (Eigenvalue; Interval Gradient Projection)
Step 1) Choose an initial guess X(0). Set k = 0.

Step 2) Evaluate VC(X(k)).

Step 3) Take a step. W(k) = X(k) —yVC(X(k)).

Step 4) Project back onto the PSD set to obtain the next iterate. X(k + 1) =
(W (k) B,

Step 5) Goto 2).

The corresponding projection algorithm for the general matrix interval constraint set

X requires a simple expression for the projection onto the set X, similar to (3.25).

Summary

In summary, these extensions to our work allow us to apply constrained symmet-
ric matrix reconstruction to a much larger class of problems. We may now easily
consider problems of the form (2) involving a symmetric matrix with interval ma-
trix constraints. Such constraints might reflect prior physical information regarding

the object under consideration. For example, in the ellipsoid reconstruction problem
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we consider, such interval constraints directly reflect inner and outer bounds on the
shape of the ellipsoid. We may thus incorporate prior knowledge regarding the inner
and outer limits to the desired ellipsoid directly into the reconstruction process. We

postpone further discussion of these ideas until Chapter 5.

3.4.2 Other Linear Problems

As discussed at the end of Section 2.2, since we may represent any linear operator
Y = L(X) in the form y = Az and since the PSD approximations and constraints we
have developed are linear functions of the representation z, most of our algorithms and
approximations are immediately applicable to the larger class of these linear problems
involving a symmetric matrix X. Only the direct form of the cost minimization and
gradient expressions for the gradient algorithms 2, 3, and 6 need to be changed. The
expression of these algorithms in the symmetric vector space S is already in terms of
the matrix representation A of the linear operator £(-) and thus once the appropriate
matrix representation of the operator £(X) is found, these expressions are directly
applicable. In short, any linear problem with a symmetric matrix argument may be
treated using the results of this chapter, e.g. problems of the form Y; = AT X B;,
Y; = ATX + XB;, etc.

With slightly more work, nonlinear problems in X can also benefit from the in-
sights of this chapter. For example, consider the halfspace Algorithm 1. We could
replace Step 2) with the minimization of any cost function (:"(X ) (possibily nonlin-
ear) subject to the applied linear inequality constraints. If solving this new linearly
constrained problem is practicable as a replacement for Step 2), then the modified
algorithm gives a simple way of minimizing C'(X) over the set of PSD matrices. The
only requirement is to be able to solve the minimization subject to a series of linear
constraints. Very often this can be done. Naturally, matrix interval variants are
also possible, resulting in constrained reconstructions in which the solution matrix is

contained in a given interval.

3.5 Numerical Experiments

In this section we provide some numerical experiments illustrating the approximations
and reconstruction techniques developed above. We start by introducing the example

data sets. Next a brief demonstration of the non-iterative external and internal
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X Ay A, As; A,
2.125 1.875 1 0 0.707 0.707
1.875 2.125 0 1 0.707 —0.707
Eigenvalues of X | Y} Y, Y3 Y, i
4, 1/4 3.049 | 0.311 | 4.035 —1.558 ||

Figure 3-4: Data of Example 1.

approximate reconstructions of Problem 4 is given. These approximations use the
sets developed in Sections 2.4.2 and 2.4.3. We show how increasing the number
of faces in the approximating set improves the estimate. Then we demonstrate the
iterative algorithms developed in Section 3.3.3. Finally we conclude by demonstrating

iterative extensions to constrained eigenvalue interval matrix reconstruction.

3.5.1 Examples

We consider two examples, both of them with n = 2 and m = 1 corresponding to a 2 x
2 matrix with scalar observations. We use this case because of its ease of visualization.
The results we have shown (with the exception of the projection space reconstruction
method) hold for arbitrary combinations of dimensions. An easy and a hard example
are used for comparison. Both problems use the same underlying matrix, but differ in
the geometry of their observations. The first example uses well spaced observations
of both eigen-axes while the second has nearly dependent observations of the smaller
eigen-axis. In both cases we have added zero mean Gaussian noise of variance 1

(notation N(0,1)) to the observations, so that our observations were obtained as

Y; = ATX A; + W;, where W; ~ N(0,1).

Example 1

The first example that we use is an example of an “easy” problem. By this we
mean that the geometry of the observations is well spaced and there are redundant
observations. In Figure 3-4 we give the numerical particulars of this example. Notice
in particular that, due to noise, observation Y} is negative even though the eigenvalues
of X are positive. This observation was along the smaller eigen-direction of the matrix.

In Figure 3-5 we show the projection subspaces together with the eigen-directions and
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- -: Eigendirections, --: Projection Directions
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Figure 3-5: Geometry of Example 1.

with their lengths scaled according to the corresponding eigenvalues. As can be seen,

the matrix is quite eccentric: one eigenvalue is much larger than the other.

Example 2

The second example we use is an example of a harder problem. The underlying matrix
is the same as that in Example 1, but only the minimal number of observations are
used and the geometry of the observations is such that two projections are nearly
redundant. In Figure 3-6 we give the numerical particulars of Example 2. Notice
that views 2 and 3 are nearly the same and are aligned with the small eigenvalue.
Again, due to noise, observation Y, is negative even though the eigenvalues of X are
positive. This observation was along the smaller eigen-direction of the matrix. In
Figure 3-7 we show the projection subspaces together with the eigen-directions with

their lengths scaled to the corresponding eigenvalues.
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X Ay A, Aj

2.125 1.875 1 0.707 0.8
1.875 2.125 0 —0.707 —0.6

" Eigenvalues of X | Y} Y, Y,
| 4, 1/4 2.854 | —2.127 0.051

Figure 3-6: Data of Example 2.

- -: Eigendirections, -: Projection Directions
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Figure 3-7: Geometry of Example 2.
3.5.2 Non-Iterative Approximations and Reconstructions

Here we demonstrate some of the non-iterative interior and exterior approximations
and reconstructions developed in Sections 2.4.2 and 2.4.3. In Figure 3-8 we show
the estimates and cost generated for Example 1 by the unconstrained LLSE solution
X1Lsg, the minimum cost PSD solution Xpsp, the nearest PSD matrix to the LLSE
solution Xpear, and the Gersgorin polyhedral cone solution. In Figure 3-9 are the
same estimates for Example 2.

Note in both cases that the unconstrained LLSE solution is not positive semi-
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Approximation Estimate X Eigenvalues | Cost O(X )
Oncmeaned | [ oo wion | 4579, —vosa| 005
Gomened || 1300 1137 | | A0 | ssu
Vs [aam 20 ] a0 | oo
GonepsD | 1 r7ig | | 3798 0208 | es

Figure 3-8: Comparison of different estimates for Example 1.

Approximation Estimate X » Eigenvalues | Cost C'(X)
| v | EE T
oot | | 2610 paea | | S0 | 4w
Votise || oo o || o | s
G5 | | samn aot] | swmo | a0

Figure 3-9: Comparison of different estimates for Example 2.

definite, even though the underlying matrix is, due to the noise in the observations.
Also, note that the cost C'(X) is not comparable between Examples 1 and 2. Recall
that the cost is just the sum of the residuals squared. The cost of the unconstrained
solution in Example 2 is 0 because we have just the minimum number of views to

uniquely determine a solution, so the residual will be 0 for this case.
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Uniform Polyhedral Cones

Here we examine approximations based on uniform polyhedral cones, as shown in
Figures 2-6 and 2-12. We demonstrate both the exterior approximations based on
Result 11 and the corresponding interior sets, based on Result 14. Recall that these
latter sets are obtained from the former exterior ones by moving the support halfspaces
inward toward the central direction of the cone. In all cases we move them by the
minimum amount necessary to obtain an interior approximation (corresponding to
choosing ¢t = t* in Result 14). Since we use a uniform spacing of the halfspaces, or
equivalently from Result 11, a uniform tessellation of the unit circle, the only free
parameter is the number of faces of the approximation. First we show the exterior
approximations and then the corresponding interior approximations for each example.

In Figure 3-10 we have the exterior approximations for Example 1, while Fig-
ure 3-11 shows the corresponding interior approximations for this case. Note that the
interior approximation with 4 faces corresponds to a rotated Gerigorin polyhedron;
both have 4 faces. Figure 3-12 shows the external polyhedral cone results for Ex-
ample 2 while Figure 3-13 shows the corresponding internal approximations for this
example.

The exterior approximations approach the optimal PSD constrained cost from
below (since the exterior constraint sets are larger than the PSD set) while the cor-
responding interior approximations approach this cost from above. In Figure 3-14
we plot both these costs verses the number of facets in the approximation for Exam-
ple 2. Note the oscillations in the cost. This effect is due to the fact that one edge
of the polyhedral cone is always fixed, so that as more faces are added, the points of
contact of the approximation with the boundary of the PSD set will effectively sweep
along the PSD cone boundary. Since the optimal PSD constrained solution is on the
boundary, at those (internal or external) face combinations where the contact points
happen to match the PSD solution point the cost will drop or rise to its minimum
constrained value. The curves do not cross this line. In Figure 3-15 we have plotted
the difference in these interior and exterior costs, which shows clearly the fact that
the difference between the interior and exterior approximations tends to zero from

above as the number of faces increases.
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External Polyghedral Cones

1;“1;‘:::: Estimate X | Eigenvalues |Cost C(X)
3 igzg }fﬁ; 4.028, —0.011| 3.811
4 H;g; ;ggz 4.251, —0.441| 2.579
6 [fgig iigg 4.679, 0 3.812
8 Lfggi i?gé 4125, —0.163 | 3.215
10 ‘;’gg‘;’ é;ggj 4.048, —0.047 |  3.709

Figure 3-10: Comparison of external polyhedral cone estimates for Example 1.

Internal Polyhedral Cones

ONqulf; l:::: Estimate X Eigenvalues | Cost C'(X)
3 3332 22‘;27 3.004, 0.971| 10.237
4 i’gg; éggg 3.906, 0.011 | 5.177
6 f;gg igzg 4.679, 0 5.133
8 fg;g igig 4.017, 0 3.893
10 i’gzg iggg 3.979, 0.049 |  4.150

Figure 3-11: Corresponding internal polyhedral cone estimates for Example 1.
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External Polyhedral Cones

ONquI,I; ]Z:: Estimate X Eigenvalues | Cost C/(X)
3 riigg i‘;gg 8.055, —0.947 |  2.404
4 rgf‘;"é g;g 6.243, —0.011| 4.526
6 rg:ggg gg‘ég 6.610, —0.475 | 2.925
8 Lgﬁé §§$§ 6.243, —0.011 | 4.526
10 g?g‘;’ g;g;J 6.061, —0.152 | 3.919

Figure 3-12: Comparison of external polyhedral cone estimates for Example 2.

Internal Polyhedral Cones

Z.ug ]2:: Estimate X Eigenvalues | Cost C (X )
3 gé‘zz ggg‘; 8.507, 0 7.809
4 gggi 8§§§ 2.615, 0 7.082
6 gggi ;ggi 5.702, 0 4.530
8 iggg }Igg 3.860, 0 |  5.347
10 Zggi ;gg} 5.702, 0 4.530

Figure 3-13: Corresponding internal polyhedral cone estimates for Example 2.
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8 T T T T T

\ Interior --
' Exterior -

Cost C(X)
¥ ]

0 5 10 15 20 25 30

N

Number of faces

Figure 3-14: Comparison of exterior and interior costs for Example 2.
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Figure 3-15: Difference between interior and exterior costs for Example 2.
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Figure 3-16: Successive halfspace algorithm applied to Example 2.

3.5.3 Iterative reconstructions

Now we consider the iterative methods of reconstruction presented in Section 3.3.3.
All these methods attempt to find a solution to the PSD constrained Problem 3. We
only show results for Example 2, as they are illustrative of the performance of the
algorithms.

Successive Halfspace

In Figure 3-16 is shown the operation of the successive halfspace method of Algo-
rithm 1. We have displayed both the change (first order difference) in the elements
in the symmetric space and their evolution along the top row. On the bottom left
the cost of the estimate at each iteration is displayed along with the minimum cost
of the optimal PSD constrained solution. On the bottom right is shown the result-
ing PSD set approximation from a similar vantage point to that given on the right

of Figure 2-6a'. The displayed lines are the intersection of the successive bounding

1The first coordinate axis in the plot of Figure 3-16 is along the positive X, axis, so that this
view is from the origin looking out along the positive I direction
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Figure 3-17: Unconstrained gradient descent algorithm applied to Example 2.

hyperplanes with the hyperplane H(I,a), for a fixed scalar a. As can be seen, the
algorithm is building an approximation of the PSD cone at only a single place. Since
the algorithm approximates the PSD cone from the outside, the cost rises to meet the
minimum PSD constrained cost from below. The final estimate after 10 iterations is
given by:
' [ 2.851 2.876 ]
2.876 2.900

The eigenvalues of X are given by 0 and 5.75, so that the algorithm has indeed
produced a PSD estimate.

Unconstrained Steepest Descent on a Square Root

In Figure 3-17 we show the output of the unconstrained steepest descent method of
Algorithm 2, which uses a square root of the matrix. Here we have used the variable
stepsize rule, whereby we choose the stepsize at each iteration to minimize the cost
at that iteration. Again, both the change (first order difference) in the elements in

the symmetric space and their evolution are displayed along the top row. Notice
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Figure 3-18: Gradient projection algorithm applied to Example 2.

that after 10 iterations the elements are still moving towards their final values. On
the bottom left the cost of the estimate at each iteration is displayed along with the
minimum cost of the optimal PSD constrained solution. On the bottom right is the

stepsize chosen at each iteration. After 10 iterations the estimate is given by:

5 _ | 2856 2.823
2.823 2.792

The eigenvalues of X are given by 0 and 5.647 so the matrix is again PSD.

Gradient Projection on X

In Figure 3-18 we show the gradient projection method of Algorithm 3. We have again
used the variable stepsize rule, choosing the stepsize at each iteration to minimize the
cost at that iteration. Again, both the change (first order difference) in the elements
in the symmetric space and their evolution is displayed along the top row. Notice
that after 10 iterations the elements are still moving towards their final values. On

the bottom left the cost of the estimate at each iteration is displayed along with the
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Figure 3-19: Sine fitting algorithm applied to Example 2.

minimum cost of the optimal PSD constrained solution. On the bottom right is the

stepsize chosen at each iteration. After 10 iterations the estimate is given by:

% 2.418 1.908
| 1.908 1.505

The eigenvalues of this estimate are given by 0 and 3.923 so the estimate is again a
PSD matrix. By construction, the two gradient based algorithms produce estimates
which are PSD matrices at every iteration, unlike the successive halfspace method of
Algorithm 1.

Projection Parameter Space

In Figure 3-19 we show the positive sine fitting parameter space approach of Algo-
rithm 4. In the top left corner the evolution of the projection space parameters of

the sinusoid gy, (2, and 3 are shown. Recall that in the noise free case

Y}(O,—) = ﬂl + ﬂz 005(20,; + ,83)
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Notice that 3, and B, are the same, since the cosine touches the # axis. In the top
right corner is shown the corresponding evolution of the original symmetric space
matrix elements. The bottom left corner shows the cost of the estimate at each
iteration, along with the minimum cost of the optimal PSD constrained solution. On
the bottom right we have shown the resulting positive cosine fit as a solid line, the
true underlying cosine as a broken line, the corresponding noisy observations as circles
(o), and the observations that would have been obtained with no noise (= ATX A)
as crosses (x). Even though the noise free observations are positive, the addition of
noise has resulted in a large negative value. After 10 iterations the estimate is given
by:
% [2.851 2.855 ]
2.855 2.859

The eigenvalues of this estimate are given by 0 and 5.71 so that the estimate X is
indeed a PSD matrix.

Interval Matrix Constrained Reconstruction

For interest, we now demonstrate the effect of including matrix interval constraints in
the reconstruction process. Suppose that we had prior information that the underlying
matrix X lay in the range X > X > X, where the bounds X and X are given by:

<= 3 3 X = .46 .16
3 6 16 .13

It can be verified that the true X is indeed in this range. Using this constraint in the
interval matrix successive halfspace method of Algorithm 5 yields the results shown
in' Figure 3-20. Again, both the change (first order difference) in the elements in the
symmetric space and their evolution are displayed along the top row. On the bottom
left the cost at each iteration is shown. On the bottom right is again shown the
resulting PSD set approximation from a similar vantage point to that given on the
right of Figure 2-6a. There are now two cones being approximated, corresponding to
the upper and lower bound. The circle in the bottom right of Figure 3-20 corresponds
to the tip of the upper bound cone. The dotted lines are the corresponding bounding
hyperplanes for this cone chosen by the algorithm. Similarly, the cross corresponds to
the tip of the lower bound cone and the solid lines the associated hyperplanes for this

cone. Since the upper and lower bounds X and X are not along the I direction (which



126 CHAPTER 3. SYMMETRIC MATRICES: RECONSTRUCTION
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Figure 3-20: Successive halfspace interval algorithm applied to Example 2.

is going into the figure), the tips are shifted from the origin. After 10 iterations we

obtain for the estimate:

4 _ | 2845 2.585
" | 2.585 2.595 |

The eigenvalues of this matrix are .132 and 5.31, so the estimate is certainly a PSD
matrix.

Note that the final cost for this estimate is higher than for the reconstructions
that are only PSD constrained, as expected. However, if we examine the percentage

reconstruction error, defined by:

Percentage Error = 100
[ Xerue |

where Xiye is the true underlying symmetric matrix, we find that PSD constrained
reconstruction has about a 20% error while the bounded eigenvalue reconstruction
has only about a 10% error. Thus, not surprisingly, we actually do a better job
of reconstructing the underlying generating matrix with the incorporation of prior

information through constraints.
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3.6 Conclusions

In this chapter we have examined the inverse problem of reconstructing a symmet-
ric matrix X given one or more projection mapping observations ¥ = ATXA. A
complete solution to the unconstrained Problem 2, both for the consistent and the
inconsistent cases was provided. The approach used involved the isomorphism defined
in Chapter 2. The nature of this isomorphism assured the symmetry of all solutions
and the vector space structure enabled us to use the insights and results of linear
algebra. In addition to the above formalism, an interpretation and solution of the
problem for the n = 2 case directly in the space of projections was given.

Next the issue of PSD constrained reconstruction was introduced. We showed
how to couple the approximations of the PSD set developed in Chapter 2 with the
unconstrained minimization problem above to yield constrained PSD symmetric re-
constructions. First we used our PSD set approximations in a static, non-iterative
way to provide approximations to the true minimizing PSD solution to our problem.
The PSD approximations, defined as they were by sets of linear inequality constraints,
yielded simple linearly constrained LLSE problems (problem LSI).

Iterative methods to solve this PSD constrained problem were then examined. A
series of new algorithms was presented for this purpose. The successive halfspace
algorithm used our understanding of the geometry of the PSD cone in a novel way
to yield an algorithm assured of converging. Gradient based algorithms were also
developed. The framework we used for imposing positive semi-definite constraints on
the reconstructed solution was also extended to add arbitrary eigenvalue bounds to
the answer, relating our class of problems to an even broader class. We concluded
by presenting some numerical experiments demonstrating the approximations and

algorithms developed throughout this chapter.
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3-A Proof of Result 17

Necessity: If a solution of (2.3) exists, then, using the definitions in Chapter 2,
with straightforward substitutions we may show that ATX A =Y is equivalent to:

Y Y
Y; Yo

[ 2XuX 0 ] (3.26)

0 0

Clearly we must have Y;; = 0 and Y7, = 0 for a solution to exist.

Sufficiency Since equation (2.3) is equivalent to (3.26), then (2.3) is consistent if
(3.26) is. Now by inspection, (3.26) is consistent under the hypotheses of the result.

Finally, by construction we can see that the given set of solutions satifies (2.3).

3-B Derivation of normal equations

Here we will derive the equivalent normal equations for Problem 2 in the original

space of symmetric matrices S. Recall, we are trying to solve the following problem:

2
F

Y; — A;r’XA,-I

q
min E
i=1

x=xT

q
= min Y Tr((¥i - ATXA)T(Y; - ATXA)))

=xT “
X=X" i1

q
= min Y Tr(Y7Y - ATXAY; - VAT XA + ATX A AT X A)

—xT “
x=xT ;=]

Now the solution of this equation must be a stationary point, so all solutions X must
satisfy 0C(X)/0X|g = 0 where C(X) is the expression above. This gives:

q
8C(X)/ox = Y (—2A,-Y,-AiT+2AiAfXA,-Af)

i=1

Or equivalently:

q q
S AATXAAT = Y AvAT =Y (3.27)

=1 =1
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where we signify that the right hand side is completely determined by giving it the
symbol Y. Thus we seek symmetric solutions of (3.27) given the symmetric matrix
Y and the matrices A;. This is the direct formulation of the problem in the orignal
space, and (3.27) serves as the normal equations.
Note that when the A; have orthonormal columns (and thus are also of full rank),

(3.27) becomes:

iﬂXﬂ=imE£

i=1 i=1
where P, is a projector [37] onto the subspace spanned by the columns of A;. Further,
if the A; themselves are such projectors, so that A4;AT = A;, then this becomes:

q 7
SAXA =Y AYAT
i=1 i=1
and in addition, if the observations Y; are “noise free” (i.e. the Y; are actually con-
tained in the subspaces defined by A; and the mapping A;(-) = A7(.)A), then we get
the simple expression:

q q
Y A4 =Y,
1=1

=1

3-C Projection Space Expressions

Here we provide expressions for the n = 3, m = 1 projection space case corresponding
to reconstruction of 3 X 3 matrices from 1-dimensional observations. We will also show
how to apply the current results to the case of any set of 1-dimensional projections
confined to a plane (2-dimensional subspace).

For the case under consideration A(#,¢) is a unit 3-vector, thus A is of the form:

sin(@) cos(g)
A(f,¢) = | sin(8)sin(¢)
cos(8)

where we have chosen a longitude/co-latitude parameterization of the unit sphere, as
shown in Figure 3-21. For a given X = [X;] the resulting observations Y (4, $) are
then of the form:

Y(0,6) = [c1+ czcos(29) + c3sin(24)] + [cs — 3 cos(2¢) — c3 sin(2¢)] sin(26)
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Ax3

X

1
Figure 3-21: Parameterization of unit sphere.

+ [c5 sin(@) + cg cos()] cos(26)
= [e1 + ¢4 c0s(28)] + ce sin(26) cos(P) + c5 sin(28) sin(¢)
+ [c2(1 — cos(28))] cos(2¢) + [c3(1 — cos(28))] sin(2¢).

We have shown two factorizations of the result to show that the function is a harmonic

surface with one harmonic in § and two harmonics in ¢. The coeflicients are given

by:

a1 = (X + Xo2 +2X53)/4
C2 = (Xu - Xzz)/4

ez = Xi2/2

ca = (—Xu— Xa2 +2X353)/4
s = Xo3

g = Xia.

Planar Projections

We show here that we may generalize the results for the n = 2 case in a different way.
The 1-dimensional projections considered above had no constraints on them. If we
constrain our 1-dimensional projections to lie in a plane (a 2-dimensional subspace)
then the situation for any n (matrix size) is equivalent to the n = 2 case. Note that

we cannot completely recover the matrix X from such information (though we can
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recover its projection onto the plane), but the equivalence is interesting.

To see the equivalence, suppose the 2 columns of V span the plane of interest.

Then any projection matrix A in this plane may be written as

A) =V

cos(8) ]
sin(6)

for some 6. The corresponding projection observation Y(#) is then given by

cos(6)

V() = [ cos(®) sin(o) VTxv| T

cos(f) ]

] _ [ cos(8) sin(6) ]X [ sin(6)

where X = VTXV is 2 x 2. But this is the same as the n = 2 case.

3-D Proof of Result 20

We will use the projection space formalism to show that for small enough perturba-
tions the LLSE solution of (3.7) will still remain positive definite. First we need the
following result:

Lemma 6 (LS Sensitivity [61]) Suppose z* and z* + 6z satisfy:

*

z* = argmin|Az — b|2

z* +éz = argmin| Az — b+ &b

where A is m X n, m > n with full rank, and &b is an m-vector and §z is an n-vector.

Then the following is true:
162]12 < oin(A)]|6y]l2
where omin(A) is the minimum singular value of A.
Proof If z* + §z is the minimum norm solution of min||Az — b+ §b||, then it must

satisfy:
z* + bz = AY (b + 6b)
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where A% is the Moore-Penrose psudeo-inverse of A. But since z* is the solution of

the unperturbed problem min||Az — b||; we know that * = A*b. Thus we have
bz = A*6b

Using the definition of the psuedo-inverse in [61, pg. 243] and the definition of the

matrix 2-norm we obtain:

6]l < | AT I2ll8y]l.
= max(A7)|6y]l2
= onin(A)[6Y]2

and the result is shown. O
Now, by hypothesis, in the symmetric vector space S, we have that:

¢* = argmin|y* — Az}

'+ 6 = argmin|y*® + 8y — Az}

where z* is the representation of X*in S, A = [AT|AT|...]T is the matrix composed of
the equivalent vector space images of the A; under the map I, and y* = [y:T|y3T|.. .7
is the vector composed of the representations of the Y;*, and similar definitions hold
for the perturbed vectors y* + éy and z* + 6§z. Now since the A; are full rank and
the solutions are the unique minimum norm solutions we know that A is full rank.

Thus we may apply Lemma 6 to obtain:
16zl2 < onin(A)8¥ |2 (3.28)

But using the definitions of y and the relationship between the original and symmetric

space norms we obtain for the last term:
2 < 2
loyllz = > llowllz
i=1

q
= > lleYillF

i=1
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where 5y,- is the representation of §Y; with respect to a symmetric basis. Thus
g
63112 = 4| >_ lI6Yi]I%
=1

162]la = (16X
2 [[6X]lz = omex(8.X)

Similarly

Combining these with (3.28) yields the desired result:

(6 < «\ 2 1Yz

The second part of the result follows from the fact that given two matrices M, N
with M non-singular, if omin(M) > omax(N) then M + N will be non-singular. Also
for a symmetric matrix X with nonnegative eigenvalues o(X) = M X).

3-E Classification of PSD Approximations

We present a summary in Figure 3-22 of the different approximations to the PSD
cone we have presented. The name of the approximation refers to the subsection on
approximating the PSD cone that discussed that particular approximation. The type

refers to one of the following two approximating types discussed in Section 3.3.2:

1. Linear inequality constraint on z:

Ez>f

2. Linear inequality constraint on a linearly transformed variable z:
r = Gz

Ex > f

As it is difficult to write the general formulas for the case of coordinate boxes, we

have shown the n = 3 case only. Recall that n; = Z(N;) with N; a support hy-
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Name Type E f G
(Int/Ext)
Finite 1 (Ext) [nafng| - |ng] 0 —
Support 1%z ?
I [ O ]
Convex —~
2 (Int) 1 1 1 1 [v1lva] - -« |vg)
Polyhedron 1 1 ~1 | 1
[ X1 ]
VIX,,
I \/5113
Coordinate — Xa9
Box 1 (Int) - VEX g4 —
(n=3 Case) 0 1] -1 0 [1] 0 &3
[\] 0 0 1] -1 1]
-ViX1,
-V2Xy3
| —VZX23 |
Extr
R:yme 2 (Int) I 0 [ralral -~ |rg)
Gersgorin ‘
By L(nt) | [ngilngsl - Ing,)T 0 —
Interior T
Exterior 1 [n1(t)|na(t)] - - - [ng(t)] 0 —

Figure 3-22: Summary of different non-iterative approximations to PSD,,.

perplane normal, v; = E(V;), with V; a polhedron vertex, r;, = Z(R;), with R; an
extreme ray, ng; = =(Ng;), with Ng; a Gersgorin normal, and n;(t) = E(N;(t)), with
Ni(t) the perturbed normal N(0) — a(t)I. The scalars X;; and X;; are the entry
bounds of the entry interval matrix set. More detail may be found under the separate

approximations.

3-F Proof of Result 21

We start with an observation. When A is of full rank, the solutions of Problem 3 and
Problem 4 for any convex approximating set are unique. These properties follow from
convexity of the cost function (equivalent to the Euclidean norm), the approximating
sets, and the PSD set, see [63, Prop. A.35(g)].

We consider two cases. First, if Algorithm 1 produces a PSD matrix at some

iteration then we are done, since, as argued previously, any PSD solution must be the
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the unique LLSE solution to Problem 3. Also, if a PSD matrix is produced at any
iteration, (including the first) it is a fixed point of the algorithm (since no additional
constraints will be added to the approximating set PSD, (k) set in this case).

Now suppose a PSD matrix is not produced at some stage of the algorithm. At any
stage of the algorithm with indefinite iterate X (k) we add a constraint that prohibits
this solution at the next stage of the algorithm. Since this solution was the unique
minimum cost solution at that stage and since the set of possible solutions is strictly
smaller at each stage, it is clear that the cost must strictly increase at each stage that
there is a non-zero change in the estimate (i.e. at each stage that X (k) is indefinite).
Futher this cost is bounded above by the minimum cost corresponding to the solution
of Problem 3. Thus the cost and the sequence X (k) must converge (since the change
in the iterates must converge to zero). Now from the structure of the algorithm, the
updates converge to zero if and only if the iterates converge to a PSD matrix. But
as we have argued, a PSD solution to Problem 4 with an external approximating set

must be the unique solution to Problem 3.

3-G Evaluation of Gradients and Other Quanti-

ties

3-G.1 Gradient of C(R)

Here we find the gradient VC(R) of C(R). Recall, the gradient is defined as VC(R) =
O0C(R)/0R. Now

q

C(R) = >

=

q9
= Y Tr[(¥ - ATRTRA)(Y: — ATR'RA)]

=1

Y; — ATRTRA,

2
F

q
= 3 Tr(Y? - ATR'RAY; - Y;ATRRA; + ATRTRAATR'RA;) .
i=1
Using the properties of matrix differentiation [21] and the trace we obtain for a general

R:

dC(R)

9
7 Y —2(ATRT)T(AY:)T — 2(Y;ATRT)T AT + 4RA; AT RTRA AT

i=1
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q9
= —4RY A (Y: - ATR'RA;) AT

=1

Finally, if we were to restrict R to be a symmetric square root, the effect of the off
diagonal terms of R on the resulting gradient would have to be doubled, since they
appear twice in R. As a result, the gradient VC(R,,....) for the case of a symmetric
R is given by:

VC(Riymm) = VCT(R,..) + VCO(R,..) — diagVC(R,..)

where VC(R,..) is the expression for the gradient of a general R given above and
diagM is a matrix composed of the diagonal of M. Note that VC(R,,nn) is symmetric

so the symmetry of R is maintained in a gradient descent algorithm.

3-G.2 Proof of Result 22

Our result will follow from Theorem 2.1.6 of (66] if we can show that C(R) possesses
the following the following properties:

(i) C(R) > 0 for every R.
(ii) C(R) is continuously differentiable and the level sets
{R|C(R) < a}
are bounded for any finite a.

Now C(R) is always positive and is continuously differentiable so all we need to show
is the boundedness of the level sets.
To show property (ii), consider the level set C(R) < K. Recall

q

cm) =3

1=

Y. - AT XA, = |Az(R) -yl

2
F

where the second form is the cost in the symmetric vector space representation and
z(R) is the representation of X = RTR. Now

|Az(R) -yl > |Az(R)> — [lyll2-
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Thus

|Az(R) —yll2 +[l¥ll: = VO(R)+ Iyl
| Az(8)]|2

2
2 Omin(A)|z(R)|2

where omin(A) is the minimum singular value of A. Since ||y||;, the observation, is
bounded by assumption, C(R) < a, and omin(A) is nonzero (because A is of full
rank), we have that ||z(R)||; and hence ||X(R)|r = ||RTR|r is bounded. Since
|RTR||r > ||RTR||z = ||R]|3 we have shown that R is bounded.

3-G.3 Finding 7 to Minimize C(R(k) — YVC(R(k)))

In this section we find 4 to minimize C(R(k) —yVC(R(k))), yielding a variable step-
size rule in Algorithm 2 that often yields the fastest convergence. For notational
convenience we will suppress all reference to k and henceforth assume that all quan-
tities are evaluated at iteration k. We will also supress the dependence of C'(R) and

VC(R) on R where no confusion will occur. Now

q

C(R-7V0C) = 3

i=1

q
- E|
i=1

Y,— AT [B - VO [B - VO A,

2
E; +vF, + 7*G; .

where the coefficient matrices are defined as follows:

E; = Y, — ATRTRA,;
F, = AT (VCTR+RTVC) 4
G = —ATVCTVCA,.

Taking the partial derivative of C' with respect to v and setting it equal to 0 we

obtain:

dC(R -V C)/0y =
q
3 2B, F) + 27 (IFE +2(B:, G) + 64 (F, Gi) + 49°) Galfs = 0.

=1
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Thus we seek the roots of the cubic equation

Po+ 17+ P +piy® =0 (3.29)

where

q
Po = Z(EHF)
=1
q
no= 2 (IFIF+2(B, )
q
P2 = E (FiaGi)
1=1
q
ps = Z G:ll%-

.
II

We shall now show how to evaluate the coefficients p; by working in the symmetric
space S using the isomorphism E. As before, define A = [AT|AT|... |,/-ig"]T, with
A; = T(A), y = [yT|97]-- -[yT], with y; = E(Y;), and ¢ = Z(BTB) (the current
estimate). Now define the new vectors r = E(VCTR 4 RTVC), as the representation
of the symmetric matrix VCTR+ RTV(C, and s = E(VCTVC) as the representation

of the symmetric matrix VCTVC'. With these quantities the coefficients p; are given
by:

po = rTAT(y — Az)

p = |Ar):— 23TAT(y — Az)
p2 = —3rTATAs
ps = 2||As|;

In summary, to find the minimizing v, the cubic (3.29) must be solved for its minimum
root at each iteration of the algorithm. The coefficients of the cubic are given by the
pi above. Note that the quantites A and y do not change from iteration to iteration
and that the quantity y — Az is the residual at the current iteration.
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3-G.4 Gradient of C(X)

Here we find the gradient VC(X) of C(X). Now

) - -l

1=

= ‘i Tr[(¥: — ATXA)(Y: — AT X A)]

=1

Y: - ATX A

q
= Y Tr (Y2 - ATXAY: - VAT X A + ATXAATX A)) .
i=1

Using the properties of matrix differentiation and the trace we obtain:

aC(X)
ax

q
_ S A(AX)T - (VATY b A(AATXA)T 1 (ATXAATYT AT
i=1

= 2 Xq: A; (Y — ATX 4;) AT,
i=1
We may easily obtain this result another way by considering the equivalent expression
in the symmetric space. To this end, let ¢ = Z(X) be the representation of X,
Ve(k) = E(VC(k)) be the representation of the gradient, and A and y be defined
as in (3.5). With this notation C(X) = ||y — Az||} and V¢(k) = 0C(z)/8z. This is
simply Ve(k) = —2AT(y — Az). This expression can be seen to be equivalent to the
representation of the symmetric matrix VC(k) provided by the first approach.

3-G.5 Proof of Result 23

To prove convergence we invoke results from [63]. The application of these results
depends on C(X) satisfying certain properties: we must show strong convexity of
C(X) and Lipschitz continuity of VC(X). To make this task easier we shall work in

the space of symmetric matrices. Recall that:

. 2
Yi— ATX A, =y — Ac|l}

0x) =Y

1=1

where z is the representation of X in S, A = [AT|AT|.-.]T is the matrix composed of

the images of the A; under the map ', and y* = [y7|yT|---]T is the vector composed
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of the representations of the Y; (y; = Z(Y:)). From above we have that

VCO(X) = —2_quA,- (Y — ATXA;) AT

=1

and in the vector space of symmetric matrices, the representation of this symmetric

matrix is simply given by

Ve(z) = —2AT(y — Az).

Strong Convexity of C(X)

To show strong convexity of C'(X) we must show that there exists some a > 0 such
that
(VO(X) - VC(X2)), (X1 — Xa)) 2 of| X1 — Xal7 ¥ Xy, X

Equivalently, we must show that
(Ve(z1) — Ve(za)) (21 — 22) > |y — 2|2 Vg, 22
Now

(Ve(z:) — Ve(z3))T (21— 22) = (21 — z2)TATA (21 — x,)
— A - )2

> ol (A)|lzy — 22|}

and we have shown strong convexity with a = 02, (A).

Lipschitz Continuity of VC(X)

To show Lipschitz continuity of VC(X) we must show that there exists a constant 3
such that
[VC(X1) = VO(X)p < B X1 — Xallr -V X1, Xo.

Equivalently, we must show that

[Ve(z1) = Ve(zo)ll, < Bllr — zall V21, 2,
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Now

[Ve(ey) — Ve(zs)|l, = [[AT(Az; — Az,)|,
S alzl'lax(A)Ilwl - 552”2

where omex(A) is the largest singular value of A. Thus we have shown Lipschitz
continuity of VC(X) with 8 = o2

ax"

Convergence

With the properties of C'(X) we have shown above Algorithm 3, our convergence
result is essentially contained in Propositions 3.4 and 3.5 of [63].

3-G.6 Finding 7 to Minimize C(X (k) — yVC(X (k)))

Here we find the minimizing v to C(X (k) — yVC(X(k))). Computing v this way at
each iteration yields a variable step size selection rule which often yields faster con-
vergence of the algorithm than simply using a constant stepsize. For convenience we
will suppress the reference to the iteration k and functional dependence of quantities

on X where it will cause no confusion. Now

C(X -9V0) = }23

i=1

= |ly - Az -7Ve)|;

Y — AT (X —9V0) Al

where A, y, Ve, and z are as defined above. Using the second expression, it is
straightforward to show that the value of v which minimizes C(X — vV (') is given
by
VAT (y — Ax)
T AV

But, from above we have that Ve = —2AT(y — Az), thus

L Ivelp
2 TAVe(A)T}
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Using the definition of A, the mapping I'(4;), and the equivalence of a Frobenius

norm of a symmetric matrix and the 2-norm of its representation, we obtain:

R S /(0]
" S ATV (R ATTE

where all these quantities are to be evaluated at iteration k.

3-H Successive Rotation

Here we discuss an iterative approach which does not appear to work very well in
practice, yet is interesting in its use of the geometry of the problem. Consider that
any symmetric matrix X may be decomposed as X = UAUT where U is unitary
and A is a diagonal matrix of the eigenvalues. We can consider that in observing
the symmetric matrix X we are observing the diagonal matrix A in a rotated set of
coordinates, with the rotation prdvided by U. In our rotated set of coordinates it
is difficult to tell if X is positive semi-definite or not. But if somehow we knew the
proper underlying rotation, then by applying the inverse rotation we could easily tell
if the matrix was a member of the PSD set, as the resulting diagonal would have to
be non-negative. With this insight, the idea of the algorithm is this: At step k we
estimate the rotation U(k) corresponding the desired underlying optimal solution to
Problem 3. With this rotation, we rotate coordinates, transforming the geometry as
given by A;. Then in this transformed set of coordinates, we solve Problem 4 with
some approximate constraint PSD,(k) on the solution. Thus we solve the transformed
problem:

D* =arg min i'

DEPSDa(k) i=1

Y: — ATUT (k)DU (k) A; (3.30)

2
P

The resulting matrix estimate is then used to update the rotation rotation estimate.
Note that if the matrix U corresponds to the true underlying solution, and if PSD,, =
PSD,, then the solution D* of (3.30) should be a diagonal matrix. Formally the
algorithm is given by the following

Algorithm 7 (Successive Rotation)
Step 1) Make initial guess for the unitary (rotation) matriz U(0). Set k = 0.

Step 2) Pick the constraint set PSD, (k).



3-H. SUCCESSIVE ROTATION 143

Step 3) Solve the transformed problem (3.30) for D*(k) using U(k).
Step 4) Find the neat estimate as X(k + 1) = U(k)D*(k)U(k)T.

Step 5) Perform an eigenanalysis on X(k + 1) to obtain U(k + 1) as X(k + 1) =
U(k+1)AU(k +1)T.

Step 8) Goto Step 2).

We could choose a variety of constraint sets PSD,(k) for Step 2), including static
constraints. For example, we could choose the (external) static constraint that the
diagonal elements must be positive. This is easy to implement, but might allow an
indefinite matrix fixed point. Another possibility is to choose one of the static ap-
proximations discussed earlier. For example, we could choose the Gersgorin polygonal
cone.

The above constraint set examples have been static. To help convergence we could
try varying P—ST),,(k') from step to step. One approach we have tried is to apply a
congruence transformation to the matrix D, essentially warping the constraint set.

That is, rather than solving (3.30) in Step 3), we would solve the transformed problem:

g
D* =arg min Z

DePSDn(k) i=1

Y: — ATUT (k)QTDQU (k) A;:

2
7

where @ is an invertible matrix. The congruence tranformation preserves the inertia
of a matrix, thus this transformation would not change the positive semi-definiteness
of any solution. This transformation may be viewed equivalently as warping the
constraint set. The transformation must then be “undone” in Step 4) so that X (k +
1) = U(k)QTD*(k)Q~*U(k)T. The effect of this scheme seems to be inconsistent,
depending on the combination of the specific Q) used coupled with the particulars of
the problem under consideration.

We know that for convergence we would like to use a constraint set with constraints
that match the exact ones for a diagonal matrix. In other words, we desire a constraint
set whose intersection with the subspace corresponding to X;; = 0, ¢ # j matches
that of the PSD set. If a constraint set has this property, then we can see that the
true minimizing solution of Problem 3 will be a fixed point of the algorithm. The
Gersgorin polygon set is one such set that has this property. Unfortunately, even
with such a constraint set, while the algorithm will sometimes converge to the true

minimum, it also appears to often converge to nearby local minima. Perhaps this is

O S
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due to the nonsmooth nature of the eigenvalue constraint [48]. Thus, in its present
state the algorithm appears of limited practical use. The approach still appears to

be an interesting use of the underlying geometry of the problem.
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Chapter 4

Curvature of Surfaces and Their

Shadows

4.1 Introduction

In this chapter we examine the relationship between the n-dimensional surfaces of
smooth, strictly convex objects and the m-dimensional surfaces of their orthogonal
projections, or shadows. Qur main results concern the relationships between the
local properties of the surface at a point and those of its shadow. Specifically, we
show that the curvature Hessian of the projection at a boundary point is simply the
projection of the curvature at the point’s pre-image. This notion of projection which
is appropriate for the symmetric Hessian matrix is precisely that which we defined in
Chapter 2 for arbitrary symmetric matrices, and motivates our examination of that
problem. Using the results from Chapter 2 we present consise necessary and sufficient
conditions for solution of the inverse problem of determining the surface curvature at
a point, given the curvatures of a series of projections involving the point. These local
relationships are then combined with a curvature based object representation on the
Gaussian sphere to both construct the projection shadows of objects and to elucidate
the inverse problem of reconstructing global object shape from shadows. The results
presented here serve to illuminate and extend the work of Van Hove [7] for obtaining
the 2-dimensional shadow of an object in 3-dimensional space. We presented the
results of this chapter in [68].
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Figure 4-1: Problem definition.

Mathematical Preliminaries

We are concerned with the orthogonal projection of the n-dimensional surface O of an
object in (n + 1)-dimensional space onto an (m + 1)-dimensional projection subspace
P, to obtain a shadow with an m-dimensional surface, see Figure 4-1. A guide to
notation is presented in Appendix 4-A. In general, our attention is restricted to
smooth, strictly convex objects (termed “rotund” [46]). We represent the curvature
of the surface @ at a point p by the symmetric Hessian matrix at the point (notation
Ho(p)), i.e., by the matrix of second partial derivatives of the surface in some local
tangent-based coordinate system [69], as illustrated below.

The boundary of the shadow in the subspace P will be a “curve” (actually a
surface in P), which we label C. This lower dimensional surface, in turn, will be the
shadow of a “curve,” termed the contour generator (CG) [15, pp. 106], on the surface
O of the object. The points of the CG are thus precisely those that map to the
boundary C under projection. If p is such a point on the CG, we label its image in C
by p. In addition, we assume the dimension of P is at least 2, so that the curvature
of C is well defined

In our main result we relate Ho(p) to H¢(p). Specifically, in Section 4.2 we show
that He(5) = (STHg'(p)S)~!, where the columns of S form an orthonormal basis for a
subspace defined by P and the tangent space of O at p. This result serves to generalize
and unify existing work, such as that in [7]. It will also form a tie between the general
symmetric matrix projection and estimation problem we examined in Chapter 2 and

the following set of inverse problems. Specifically, after the treatment of the forward or
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projection problem, we will examine the inverse problem of determining the curvature
of a surface at a point from a series of projections involving the point. Necessary and
sufficient conditions are presented for recovering Hg'(p) from a series of observations
Hzl(P), 1 < i < g. These conditions will make use of our results in Chapter 2.

In Section 4.3 we combine these local results with a curvature based representation
to make a series of global statements. A formalism based on the work in [7] will be
given, allowing us to conveniently find the projection of an object onto an arbitrary
subspace. These relationships will serve to generalize and clarify the work in |7, 19] on
silhouette determination in two-dimensions. We subsequently address issues arising
in the inverse problem of overall recovery of object shape from shadows.

In Section 4.4 we pose some questions and raise some issues for future research.
We give a brief discussion there of an alternative curvature representation scheme

based on the Gaussian curvature rather than the Hessian.

4.2 Local Results

We show here that the curvature of the projection at a boundary point $ of the
shadow is precisely the projection of the curvature at the corresponding point p on the
contour generator of the object. We follow this local projection result with necessary
and sufficient conditions for the solution of the inverse problem of determining the

curvature of a surface at a point from a series of projections.

4.2.1 Projection of a Surface

The situation under consideration is depicted in Figure 4-2. Pick a coordinate frame in
the tangent hyperplane T at p and label the n coordinate directions by ;,7 = 1,...,n.
Complete this local frame by appending the local outward normal direction N(p) as
the (n 4 1)-st coordinate direction, g. Let (ti,ts,...,%,,y) be the scalar coordinates
of points with respect to this frame. Locally the surface is then representable as (the
Monge parameterization [23]) y = F(ty,...,t,). The curvature is taken to be the
symmetric Hessian matrix Ho(p) of second partial derivatives of F(¢) with respect to
these coordinates, i.e. the matrix whose ij-th entry is 8%y/8t;0t;.

For simplicity, we translate the projection subspace P parallel to itself to the point
of interest p, as illustrated. Denote by S the m-dimensional intersection of 7 and

the translated P, and let the m unit vectors §; define a coordinate frame for this
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Figure 4-2: Local situation

subspace of 7. Now, the m + 1 vectors {$;, N(p)} define a local coordinate frame in
the projection of O at . As above, let (z1,23,...,Zm,y) be the scalar coordinates of
points in the projection with respect to this frame. In the projection then, the curve
C is locally representable as y = f(zy,...,%,). The curvature of the shadow Hc(5) is
the Hessian of f(z) with respect to these coordinates. Finally, denote by S the n x m
matrix whose columns are the representations of the vectors {$;} with respect to the
coordinate frame {f,,...,i,} we have defined in 7 at p. The columns of S are thus

orthonormal. With this notation the main projection result is:

Result 24 (Curvature of Projection = Projection of Curvature)
The curvature Hessian of the orthogonal projection of a rotund surface at a boundary

point is precisely the orthogonal projection of the curvature Hessian of the surface at
the pre-image of this point: He(p) = (ST Hg'(p) S)1.

The proof of Result 24 is given as Appendix 4-B. Our formulation and proof are
done in a general setting, valid for any dimension, and thus represent an extension to
the work in [7]. We believe they are also considerably more transparent.

Result 24 is a local one, involving only the surface properties at a point. It estab-
lishes a relationship between the second order term of the Taylor series approximation
of the surface at p and the corresponding term for the projection. This simple re-
lationship will be of use in Section 4.3 to find the complete shadow of an object.
Note that this relationship is identical to (2.3) if we take A = 5, Y = H¢(p)~! and
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X = Hg'(p). Further, since the columns of S as we have defined it are orthonormal,
the orthogonal projection of the surface induces what we have defined to be an or-
thogonal projection of the symmetric matrix Hg'(p). This was one of our motivations

in defining the mapping I' as we did in Chapter 2.

4.2.2 The Inverse Problem — Curvature from Projections

The inverse problem of finding the curvature of a surface at a point from orthogonal
projections of the surface at the point will now be examined. From Result 24 and
our discussion following it, we see that the inverse problem may be viewed as the
determination of the n x n symmetric matrix Hp'(p) from a series of observations
of curvature of the form H;}(5) = ST Hg'(p) Si, where HZ'(p) is taken as the i-th
observation and S; is a known matrix whose orthonormal columns define the i-th
subspace of projection, as described above. Using the methods of Chapter 2 we
formulate this task as a standard linear estimation problem and present a simple
necessary and sufficient condition for its solvability in terms of a rank test on a
matrix derived from the set of S;. Further, we bring out certain implications of this
condition directly in terms of the projection subspaces P;.

For convenience in what follows, we take our observations to be G; = S; Hz /' (5) ST
rather than H;}(p). The latter can always be recovered from the former, since each
S; has full column rank. Again for simplicity, we let G denote Hy'(p), the inverse of
the Hessian of interest. Note that for strictly convex objects, the above inverses are

certain to exist. With this notation the inverse problem may be phrased as follows.

Problem 7 (Local Curvature from Projections) Determine the positive definite,

symmetric, n X n matriz G, given q quadratic-form observations of the type:
G,‘EP,'GP,‘ ISiSq (41)

where the P; are orthogonal projection matrices, i.e. are symmetric and satisfy P? =

P

In terms of the matrices {S;}, we have P; = S; ST. Since the columns of the known
n X m; matrix S; form an orthonormal basis for the subspace S;, P; is an orthogonal
projector (see e.g. [37] for a definition) onto this subspace and thus defines projection
1. This means our observations G; are invariant to the particular bases S; chosen for

the projection subspaces ;.
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This problem is precisely of the form treated in Chapter 2, particularly Section 3.3.
This problem will also appear in our consideration of the problem of reconstructing
an ellipsoid from its orthogonal projections as Problem 8. In particular we may use
our knowledge developed in Chapter 2 here. For example, we know by using the
Kronecker product ® and vec(-) operator defined there, that the problem is linear in
the elements of the target matrix G. This fact can be demonstrated by writing (4.1)
as:

vec(G;) = (P; ® P;) vec(G) (4.2)

As discussed in Chapter 2, the difficulty with this formulation is that the symmetry of
the observations G; and the target G is lost. While the vector vec(G) has n? elements,
only n(n +1)/2 of them are independent. We overcome this difficulty as in Chapter 2
by imbedding the problem in a natural way in the space of symmetric matrices. In
this space, the target matrix G is an unknown vector and an observation becomes

the orthogonal projection of this vector onto a certain subspace.

Representation in Space of Symmetric Matrices

Recall that the set of » X n symmetric matrices together with the inner product
(A,B) = t1(ATB) defines an n(n + 1)/2-dimensional Euclidean space, notation S
(where we have dropped the explicit mention of its dimension for convience). Recall
also that this inner product induces the Frobenius norm on a matrix (4,A)'/? =
||A||F. Following Chapter 2, let { M;|1 < £ < n(n+ 1)/2}.be an orthonormal basis
for the space S. Then both G' and G; may be represented as vectors with respect
to this basis, which we denote by v and g; respectively. By P; denote the matrix
relating v and g;. From Chapter 2 we know that P; is the image of P; under the map
T defined there. With these definitions, we may represent our original relation (4.1)
equivalently as:

gi=Piy (4.3)

where it is straightforward to show that (see Chapter 2 for more detail):

w = (G, M)
9, = (G‘iaﬂlk )
Pi,‘k = <Mj7PiMkPi>

for 1 <i<g¢q,1<jk<n(n+1)/2.
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From the properties of the map I' we know that since P; is a projector then P;
is an also an orthogonal projector. Further, we can see that this projection is onto
the subspace of S spanned by the matrices P,M;P;. Thus in the space S, the i-th
observation is the vector g; obtained as the projection of the (unknown) vector 4 onto
a subspace specified by P; (or equivalently S;).

We may now stack up all the observations (4.3) into a single vector to obtain the

following overall relation:

| | B
g2 P,
=" (4.4)
9q P,
50
g=Pn (4.5)

where g and P are defined in the obvious way. With this formulation, Problem 7
becomes: find the unknown vector 7y (representating the surface curvature) given the
(projected curvature) observations in g and the observation geometry specified by P.

We have thus phrased the problem as one in standard linear estimation.

Necessary and Sufficient Conditions for Solvability

As in Chapter 2, the formulation in (4.5) immediately allows us to characterize the
solutions of Problem 7. Specifically, a unique solution to the problem exists if and
only if the null space of the mapping in (4.5) is empty. This, in turn, is true if and only
if the matrix P has full column rank (= n(n+1)/2). Note that an overdetermined set
will be consistent since we have assumed no noise in our measurements. We phrase

this condition formally:

Result 25 (General Condition for Solvability) Problem 7 has a unigue solution
if and only if the matriz P defined in Equation 4.5 has rank equal to n(n+1)/2 (i.e.

full column rank). This solution, if it ezists, is given by
Y= PLg (4.6)

where PL is any left inverse of P, g is the vector of observations, and v is the
representation of G with respect to the basis { M,}.
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This result provides us with a way to test if a given series of projections, defined by
P; (and thus S;), is sufficient to determine G, or if others are needed. Later we present
some conditions phrased directly in terms of the subspaces P;. Note that in the noise
free case, the properties of the matrices P; imply that v = (XL, P;)™ (2L, ¢)-

In the noisy case, we may easily find the linear least squared error (LLSE) solution
to an inconsistent set of equations given in the form (4.5). If we choose PL = P+,
the Moore-Penrose inverse of P, the equation (4.6) will yield the LLSE solution to
Problem 7 (without the definiteness constraint). If the inconsistencies are so great
that the LLSE solution does not produce a solution corresponding to a positive semi-
definite matrix then we may use one of the approaches from Chapter 2 to find the
least squares solution subject to (4.5) and subject to a positive semi-definite con-
straint. Note that we may also implement these least squares solutions recursively
(via recursive linear least squares), updating our current estimate of the vector v
(and thus of the matrix G) as more observations become available. In this vein, we
might imagine using a recursive formulation to track the changing curvature of a

dynamically evolving object,.

Projection Space Conditions

In this section, some conditions for the reconstruction of G will be stated directly in
terms of the projection subspaces P;. These conditions are corollaries of Result 25
but, being phrased in terms of the subspaces of projection, do not require computation
of the matrix P. We give conditions for projections onto combinations of hyperplanes
and 2-dimensional subspaces (true planes, which are the smallest projection spaces
that yield shadows with well defined curvature).

In [7, page 185] the result is given that for objects in three-dimensions (n = 2),
a minimum of three projections onto planes is required to recover the curvature at a
point. We show here that a generalization of this result to higher dimensions is that
projections onto two hyperplanes and onto a single additional 2-dimensional plane are

required to find the curvature at a point. The result is:

Corollary 4 (Hyperplanes + 1) Projection onto at least two hyperplanes and a
single 2-dimensional subspace (plane) is necessary to uniquely recover G. These pro-
Jections will be sufficient provided the 2-dimensional subspace is not contained in

either hyperplane.

This group constitutes a minimal set of observations to recover G, in the sense that any



4.3. GLOBAL STATEMENTS 153

other non-trivial set will increase either the number of observations or the dimension
of the observations. We outline the proof in Appendix 4-C.

Now consider the case where the projection subspaces P; are restricted to be
hyperplanes. Applying Corollary 4 to this case, where the 2-dimensional subspace
referred to there is contained in a third hyperplane, yields the following:

Corollary 5 (Hyperplanes) If the projection subspaces P; are restricted to be hy-
perplanes, then at least three such projections are necessary to uniquely recover G,

and three will be sufficient provided the hyperplanes are distinct.

Other statements of this kind, combining Result 25 with different, specific combina-

tions of projection subspace dimensions, are of course possible.

4.3 Global Statements

The local curvature relationships of Result 24 and Result 25, presented in the previ-
ous section, will now be combined with a curvature based representation of objects
on an enhanced Gaussian sphere to make global statements about shadow determi-
nation and shape reconstruction. From the description in the introduction, it can be
seen that finding the contour generator, and hence the projection of an object is, in
general, a difficult task. In what follows, a formalism will be given that allows the
projection of an object onto an arbitrary subspace to be found in a convenient fashion.
This formalism serves to generalize and clarify the work in [7, 19] on 2-dimensional
shadow determination. Following this solution to the forward problem, we will use the
enhanced Gauss representation and Result 25 to make statements about the inverse

problem of object reconstruction from shadows.

4.3.1 Projection of O onto P

Consider the projection of the object surface O onto the subspace P to obtain the
region bounded by the curve C. This situation is shown as link (1) in Figure 4-3. The
poihts p of O can be separated into two types with respect to the projection onto
P: those that project to interior points and those that project to boundary points C.
The first type correspond to points within the object’s shadow while the second type
correspond to points on the object’s contour generator (CG). These latter points are
precisely those points p of O where the normal N(p) is parallel to the subspace of
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Figure 4-3: Projection and mapping relations

projection P. The curve C may thus be found by first identifying the CG through
the normal condition, then projecting this curve onto P.

As can be seen, the CG and thus the curve C are not simple to find. In spite of
this, we may show that the projection C inherits certain properties from the object
surface O. Specifically, if the object surface O is smooth and strictly convex, it is not
difficult to show that C will also be. This provides us an easier, indirect way to find
the projection.

4.3.2 The Enhanced Gauss Images £"(0) and £™((C)

With the insights above, we consider a representation of the object better suited
to the task of projection than the standard point set or functional one. Such a
representation is found in an enhanced Gauss map of the object to the n-dimensional
Gaussian sphere. The Gaussian sphere is a unit sphere with each point on the sphere
corresponding to points of an object with the same surface normal orientation. The
points corresponding to the contour generator are thus easily found on the Gaussian
sphere: they lie on the great circle set obtained by the intersection of the Gaussian
sphere and the subspace P [7, 70, pp. 536]. This enhanced Gauss mapping operation
is shown as link (2) in Figure 4-3, and is a generalization of that presented in [19].
We define the enhanced Gauss map formally as follows:



4.3. GLOBAL STATEMENTS 155

Definition 3 (Enhanced Gauss Map — £"(s)) The

n-dimensional enhanced Gauss map of an object O (notation E*(O)) is the com-
position of the standard Gauss map [71] with a map of each object surface point p
to the pair {Ho(p), L(p)}, where Ho(p) is the Hessian of the surface at p in local
coordinates, and L(p) is the transformation from the global coordinate system to this

local coordinate system in the tangent hyperplane at p.

It can be shown that for a rotund hypersurface @ in R™*! with the associated
enhanced Gauss image £"(0), the image £"(0) (via the curvature) determines O up
to a translation [22, 23, 24]. Thus we may equivalently work with the enhanced Gauss
image of an object as with the object itself. We note that while the object is uniquely
defined by its enhanced Gauss image, inverting the image to recover the object is
not trivial. In principle, this inversion can always be performed, given suitable initial
conditions, but it is only recently that both iterative and closed-form algorithms have
been proposed for this problem (21, 72, 7].

Since the boundary C inherits its rotundness from O, we may also consider an
equivalent representation for C in terms of its m-dimensional enhanced Gauss image
E™(C). As in the case of the object surface @, this representation determines C up
to a translation. This tie is shown as link (3) in Figure 4-3.

4.3.3 Obtaining £™(C) from £™(O)

In this section, a direct tie is made between £7(Q0) and £™(C), the enhanced Gauss
representations for O and C respectively. The image £™(C) depends on the local
curvature information of C at each point, which in turn depends only on the local
surface shape of O at points along the contour generator. Since our representations
are curvature based, we may thus go directly from £7(O) to £™(C) without explicitly
finding the contour generator or the curve C. The required local relationship between
the object surface curvature and the projected surface curvature at a point is provided
precisely in our Result 24. By isolating this observation we have focused on the
essential element of the generalization.

To obtain £™(C) from £™(O) we thus need only to project the Hessians of points
on the contour generator onto P. These points, as mentioned earlier, are easily found
from £7(O) as the intersection of £7(Q) and P. All that remains is to define the new
transformation to local coordinates in the projection L($), which is straightforward.

Pick a global coordinate frame for the projection contained in the subspace P. Let
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the columns of II be the representation of these global projection axes with respect
to the original global coordinate system, so the columns of II form an orthonormal
basis for P in global coordinates. The transformation from this set of axes in the
projection to the local set at 5, given by {8:, N(p)} and defined in Section 4.2.1, is
then given by L(5):

L(p) = L(p) I (4.7)

where S is defined in Section 4.2.1.

We thus have the following two-step procedure to go directly from E™M(O) to E™(C);
this procedure is a generalization of the method in [7], in that it holds for any com-
bination of object and projection dimension.

Procedure 1 (£%(0) to £m(C))

Step 1) Identify the points of O on the contour generator by intersecting E™(O) with
the subspace P.

Step 2) Use Result 24 to project the curvature information Ho(p) onto P at points
P along the great circle set obtained in 1). Find the new transformation L(p)
from global to local coordinates in the projection using (4.7).

This is a slicing operation followed by a series of local projections of curvature. Note
that the method just uses knowledge of E"(O) and P to obtain £™(C), so we may
work entirely in the domain of the enhanced Gauss representation. This step is shown
as link (4) in Figure 4-3. This final tie completes all the links in Figure 4-3 relating

the various objects and representations.

4.3.4 The Inverse Problem and the Gauss Map

We will now examine the object reconstruction problem in terms of the enhanced
Gauss representation for (0. In this framework, to determine O (within transla-
tion) we need to determine the curvature at each surface point, as discussed in Sec-
tion 4.2.2. Each projection or shadow provides information about the surface along
an m-dimensional great circle set of the Gaussian sphere representation, defined by

the intersection of the Gaussian sphere with the projection subspace P. Multiple
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Figure 4-4: A point on two contour generators

projections of a point p correspond to places on the Gaussian sphere where these
great circle sets intersect. For example, if the point p of an object in R® were on the
contour generator of two different projections, then it would lie in the intersection of
two distinct great circles on the Gauss map of the object, as shown in Figure 4-4.

With this insight, we see that recovering the shape of an object may be viewed
as a series of local curvature reconstructions at each point of the object. We view
each projection as its great circle set on the Gaussian sphere. The conditions in
Section 4.2.2, specifically Result 25, imply a minimum number of projections involving
a given point that are required to find the local surface curvature there. This, in
turn, is equivalent to a condition on the number of intersections of great circle sets
at the point. Specifically, for uniform projection dimension, to determine the Hessian
at p we must have enough distinct great circles intersect at the image of p on the
Gaussian sphere so that P in (4.6) is invertible. For example, we saw that three
distinct hyperplane projections at a point were necessary and sufficient for curvature
recovery.

Consider the case of projection onto 3 general hyperplanes. This is the largest,
non-trivial, projection dimension possible, and is thus a “best” case in that it yields
the most information for each projection. From Corollary 5 and generic intersection
counting arguments, it is straightforward to show that three such projections will
yield two (n — 3)-dimensional sets of points on the n-dimensional surface (@ of the
object, with enough information to recover the curvature. In general, there will also be
six (n — 2)-dimensional sets of points with two hyperplanes worth of information and
three (n —1)-dimensional sets of points with one hyperplane worth of information. For
example, in R® where n = 2, this implies that projections onto three planes generically

yields no points on the Gaussian sphere with three great circle intersections, six points
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Figure 4-5: A point near the intersection of a number of projections

on the Gaussian sphere where two great circles intersect, and three 1-dimensional sets
of the great circles themselves. This generic situation is depicted in Figure 4-5.

For a finite number of projections, it can thus be seen that those points with the
required number of intersections will be relatively sparse. In fact, we can see that
each new projection only constrains an additional finite number of (n — 3)-dimensional
sets of points on the n-dimensional surface. In general, we will have to use nearby or
interpolated projection data, as for the point p in Figure 4-5. In this case, we might
use the inconsistent information from nearby projections together with a least squares
solution to the local problem in (4.5) to estimate a value for the point. This raises
the issue of the first order relationship between the orientation of the great circle sets
and the corresponding conditioning of the matrix P. It appears desirable to have the

great circle sets intersect in angles as large as possible.

4.4 Questions

We pose some questions and raise some issues for future research. One issue is raised
by the insight in Section 4.3.4 above. Rather than randomly taking projections of an
object, we can use the Gaussian sphere to plan a series of views that will lead to the
maximum number of intersections and coverage of the sphere. What is the best way
to spread the information over the whole sphere, given only a finite number of views?
And how can the information from near-intersections best be used, since in general
there will be many points with strictly less than the necessary number of intersections.
As discussed in [7], using global restrictions on object shape, e.g. continuity, to derive
the object from a finite set of surface curvatures gives rise to sampling questions on

the Gaussian sphere and some type of surface Nyquist criterion.
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In the above sections, we have represented the surface curvature by the Hessian
matrix of the height function in some local coordinate system. This matrix is not the
only way we may represent surface curvature. It can be shown that a rotund surfaceis
actually determined (to within a tra.nslatioh) by just the determinant of the Hessian
given for all normal orientations (see, for example [22, Vol. 5, pp. 304-305]). This
determinant is termed the Gaussian curvature (notation X) and is invariant with
respect to changes in the system of local coordinates. The scalar function K(p) thus
determines O (to a translation), and the function remains scalar regardless of the
dimension of the space. This function defined on the Gaussian sphere (and hence a
function of normal orientation) is called the extended Gaussian sphere and has been
studied by Horn and others [20].

The use of the Gaussian curvature K as a representation of curvature in our
enhanced Gauss mapping thus appears attractive. The key lies in the relationship
between det[Ho(p)] and det[H¢(p)], or more generally between the eigenvalues of a
symmetric, definite H and those of (STH-15)-!, where S has orthonormal columns
(since He(7) = [STHg!(p)S]™).

Define S+ so that the matrix [$§]|S!] is orthogonal. Then the following simple
relationship between the Gaussian curvature of the surface and that of its projection

exists:

Gaussian curvature of surface
= det(H)
= det (STHT'S) ™ o det (S7HSY)
_ (Gaussi'a,n .curvature) . (Gaussan’ curvature (?f s{ice)
of projection perpendicular to projection

The relation is developed in Appendix 4-D. The 3-dimensional case of the result
recently appeared in [73], but while it seems straightforward enough, we have not
seen reference to it elsewhere. Indeed, a similar observation was in [73].

The relationship between the two Gaussian curvatures thus involves the extra
term det(S1"HS1), arising from the Gaussian curvature of a curve obtained as a
slice of the surface perpendicular to the projection defined by S. The problem is
how to obtain this extra term given only the Gaussian curvature over the Gaussian
sphere and the projection geometry? If we restrict our attention to a point p on the

object, all we have is the single number K(p). This single number in isolation gives no
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directional information, and thus no way of distinguishing between projections onto
different subspaces. It seems impossible to produce a local result (as in (24)) given
only knowledge of X(p) and P. We must somehow take into account surrounding in-
formation from the surface, perhaps looking at how the Gaussian curvature changes
along the contour generator, or perpendicular to it. By looking at the Gaussian cur-
vature of points perpendicular to the CG perhaps we could ‘divide out’ the curvature

information in that direction. We leave these as questions for future work.

4.5 Conclusions

In summary, in this chapter we have generalized and clarified results on the relation-
ship between local surface curvature of an object and that of its orthogonal projec-
tion. In addition to the forward or projection problem, we have given necessary and
sufficient conditions for solution of the inverse or curvature reconstruction problem.
These conditions, in turn, allowed the formulation of statements directly in terms
of the projection subspaces. In Chapter 5 the same underlying algebraic structure
shown for local surface curvature projection is shown to exist between an ellipsoid
and its projections. The above local considerations were then used to generalize to
arbitrary dimensions the representation and projection scheme found in (7, 19]. Our
setting and solution, in addition to clarifying existing work, also suggest directions
for fruitful future investigation on problems such as reconstruction from finite and

misaligned projections.
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4-A Notation

n Dimension of object surface.

m Dimension of shadow surface.

(@) n-dimensional object surface.

P (P:) (m + 1)-dimensional ((m; + 1)-dimensional) projection subspace.
Ho(p) The Hessian of O at p in local coordinates.

C Boundary of projection of O in P.

CG The contour generator. The curve on O whose image is C.
p Point on the CG of O.

P Image of pin C.

He(p) The Hessian of C at p in local coordinates.

T Tangent hyperplane to O at p.

{1, tn} Local coordinate directions at p in 7.

N(p),9 Unit outward normal to O at p.

~

(t1y.+stnyy)  Coordinates of points with respect to the frame {f,,..,tn, 9}
F(t1,.,tn)  Local representation of O as y = F(t4,..,t,).

S (8) Subspace of intersection between 7 and P (P;).
{.S',} Set of coordinate vectors for S.

{S;,N(p)}  Set of vectors defining a coordinate frame in P at p.

(%1,.3Tm,y) Coordinates of points with respect to the frame {5y, .., S, N(p)}.
f(z1,..,2n) Local representation of C as y = f(z1,..,Zm).

S (S;) nxm (m;) matrix with columns representations of {$;} in frame {fy, .., %,}.
G The n x n target matrix Hg'(p).

G; The i-th observation, P; G P;.

P, Projector onto projection subspace i, P, = S;S7F.

() The inner product defined on the space S. (4, B) = tr( AT B).

S The space of symmetric n x n matrices with inner product (-,-).
{M,} Orthonormal symmetric basis for S.

v Representation of G in basis {M,}.

P; Image of P; under the mapping I' of Chapter 2

gi Representation of G; in basis {M,}

g The overall observation vector: [gy, .., g4]7.

P The overall projection matrix: [P,|P,]|..|P,]T.

L(p) Transformation to local coordinates (ty,..,t,,y) at p.

L(p) Transformation to local coordinates (z1,..,Zm,y) at $ in the projection.
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Translated

F(x,z):F(u,v)

Figure 4-6: Local coordinate system configuration

4-B Proof of Result 24

In this appendix, we shall prove Result 24 relating the curvature of a projection to
the curvature of the original surface: He(p) = (ST Hg'(p) §)1.

The curvature we are discussing here is the Hessian of the surface or curve at
a point in some local coordinate system. Recall, that the Hessian is defined as the
matrix of second order partial derivatives of the surface, and may be viewed as gen-
erating a second order approximation to the surface at the point. In what follows, we
shall assume we are working at a point p on the surface of an object and henceforth
suppress any mention of that fact to simplify notation (e.g. all partial derivatives
are assumed to be evaluated at p). We also assume all surfaces are oriented by their
outward normal.

4-B.1 Curvature of the Projection

Assume we are at a point p on the surface that will map to a boundary point of the
projection (so p is a point of the contour generator). Also assume that there is a
local coordinate system at p oriented in the following way (see Figure 4-6). As in
Section 4.2.1, § points along the local normal N(p) and the set of m vectors {#;} lies
in a subspace parallel to the subspace of projection. We complete the set with n —m

vectors {%;}, which lie in a perpendicular subspace. Let y,z, and z, respectively,
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be vectors of coordinates along these axes. With this choice, we will be pProjecting
along the z direction onto the -y plane (the {#;} and § set of axes together spanning
the space of projection). We term these coordinates ‘projection coordinates’. In this
coordinate system we may represent the surface by the function y = F(z,z). Now
the boundary of the Projection in these coordinates is defined by the set of equations:

y = F(m)z) (4.8)

F,o= 0 (4.9)

where letter subscripts denote vectors or matrices of partial derivatives (for example
ﬁ'z = [quﬁ'z ",an_m
Yxo derived subject to the constraints (4.8) and (4.9) is He($), which it is our goal to
find.

Start by taking the first partial derivative of (4.8) with respect to z, Applying the

2" ] - a row vector). The matrix of second partial derivatives

chain rule, this gives:

ym = Fm + Fzzm (4.10)
where z, is the (Jacobian) matrix of partial derivatives. Next, find the unconstrained
second partial derivative matrix Yoz using (4.10) and the chain rule.

Yze = F‘mm + szzm + (Fzm + Fzzzz) Zz + F'z (sz + zmzz:z:) (4-11)

Now from (4.9), F, = 0, and taking the partial of this equation with respect to z
we obtain:

Fzz+ﬁ‘zzzm:0

which gives:
zo = —F1F,, (4.12)

where F;! exists since the surface is strictly convex.

Applying (4.9) and (4.12) to (4.11), we get for the curvature of the projection:

y:z:z = Ly — Fzze_lez:c - (sz - FzzF_lﬁ'zm) F_l zx
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or
e P Foe = He(p) (4.13)

4-B.2 Projection of the Curvature

We shall now relate He(p) to Ho(p). Start by partitioning the set (t1,...,t,) of
general coordinates in 7, defined in Section 4.2.1, so that g = (¢1,...,t,) and v =
(tm+1y--+,tn). Schematically, we have the relationship between (z, z) and (u,v) shown
in Figure 4-6. Given these definitions, we may always make the following association

between these two sets of coordinates, by proper labeling:

[4]=v[%] (4.14)
where U = [§]S%] is orthogonal and the columns of S are the representations of
the {&;} axes in (u,v) coordinates. The columns of S thus span the space of the

projection in these coordinates. Now given the definition of F in Section 4.2.1, we

have the following relationship between F and F:

F(u,v) = F(e, z).

It is straightforward to show that the Hessians of F' and F' in the two coordinate

|

Now note that (see, for example, [74, pp. 539]):

systems are related by:

T

e

T z

] uT [ff;ﬁ f;ﬁ;] U (4.15)

-1

Foo — R FF ([I 10] [ Frn Fa:z ]_1 [_6_]) (4.16)
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Substituting (4.15) into the right hand side yields:

H m oala: Fu Fu17 o\

Frp— FouF7 Fy = (ST |2 2] S) (4.17)
By definition, the Hessian of O at p in the coordinate system (u,v) is:

Ho(p) = [ f;ﬁ" fvrf‘ ] : (4.18)

© v

Combining (4.13), (4.17), and (4.18) we obtain:
~ T y-1 -1
He(5) = (5™ Ha' () S) (4.19)

We have thus related He(f) to Ho(p) through the projection type operation given in
(4.19) and hence the result is proved. [ |

4-C  Outline of Proof of Corollary 4

The proof of Corollary 4 proceeds as follows. First, we consider just the two hyper-
planes defined by P, and P, and show that rank[P7,PI)T = n(n + 1)/2 — 1, just one
independent row short of the required number. We then show that a single additional
planar shadow, defined by Ps, adds this independent observation.

For the first part, note that the number of independent columns of P = [PT, PT|T
equals the number of independent matrices in the set { P,M;P;|i =1,2;5 =1,..., n(n+
1)/2}, where the {M;} are the elements of an orthonormal basis on S. Thus, showing
the first part of the proof may be reduced to a counting argument on the number of
independent matrices in the given set, {P,M;P;}.

We may, without loss of generality, align n — 1 of the local axes {t:} of T to lie
in Sy, say {f1,...,f,_1}. Since S; and S, will intersect in an (n — 2)-dimensional
subspace in 7, we may further align n — 2 of the above set of axes, say {t1y. . ytnaly
with this intersection space, again without loss of generality. This choice of alignment

for the local axes results in the following special form for the projectors P, = S, 8T
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and P, = $,57:
P1=[In0-1 8]’ P2=[In0—2 %]

where X is a 2 x 2, 1-dimensional orthogonal projector with X, # 0. We couple
these observations about the form of P; and P, with a convenient choice of symmetric
basis M;. Specifically we chose the appropriately normalized set of matrices {exel +
ecel;k,d =1,...,n} where e is the k-th unit vector. The counting argument on the
set {P;M;P;} is now straightforward, but tedious.

To show the second part, we observe that P; = yyT for some unit n-vector y, with

Py # y and Poy # y. Thus PsM;P; = a yyT for some scalar o and we need only
show that yyT is independent of {P,M,P;|i = 1,2;5 =1,... yn(n +1)/2}. [

4-D Relationship between K, and Ko

Let U = [$|S*], where STS* = 0 and U is n x n. Thus U is orthogonal. Using simple
determinantal and matrix identities then yields the following:

Gaussian curvature of surface
= det(H)
= det(UTHU)
= det (siTHsl) .
det (STHS — STHS* (547H5*) ™ 547Hs)

Again, using a matrix identity, the second term can be rewritten as follows:

STHS — STHS* (S*"HS*) ™" SL7HS = ([I 0] (u7HY) ™ [ 0 ])_1

= (57H-1s)”

Thus we obtain the following simple relationship between the Gaussian curvature of

the surface and that of its projection:

Gaussian curvature of surface
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= det(H) = det(UTHU)
= det (STH'S) ™ o det (547 HSsH)

(Ga.ussian curva.ture) . (G‘aussan curvature of slice)
of projection perpendicular to projection
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Chapter 5

Ellipsoids

This chapter focuses on the projection and reconstruction of centered n-dimensional
ellipsoids. Ellipsoid reconstruction problems have appeared in the literature, both
directly and as bounding approximations. In [9] an ellipse is used as a simple param-
eterized model for objects in an attempt to recover their eccentricity and orientation
from low signal-to-noise ratio tomographic data. In other medical areas ellipsoids are
used to model both the shape and volume or area of anatomical parts, such as the
heart and spine [75, 76, 77]. In [78, 74] the state of a system is assumed confined
to an unknown n-dimensional ellipsoid and the goal is essentially to reconstruct this
ellipsoid from observations of its lower dimensional projections. In [79] a group of
closely spaced targets in space is observed through a number of passive sensors. The
cluster of targets is modeled as an ellipsoid and the observations as projections of
it over time. The desire is to find the evolution of the 3-dimensional shape of the
ellipsoid.

This problem of ellipsoid projection and reconstruction yields the second physical
example involving a symmetric matrix that we examine in detail, the first having
appeared in Chapter 4. Chapter 4 showed that a symmetric matrix is related to
object shape through local curvature properties. Here a symmetric matrix is used
to directly capture global shape information. We expose the common underlying
algebraic structure of these two problems in their involvement of a positive semi-
definite (PSD) symmetric matrix. The linear projection mapping between symmetric
matrices defined in Chapter 2 precisely captures this structure and the results and

algorithms of Chapter 3 again yield solutions to the projection and reconstruction

169
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problems.

Outline

In Section 5.1 we associate a centered ellipsoid with an underlying PSD symmetric
matrix. This symmetric matrix becomes our representation of the ellipsoid. In Sec-
tion 5.2 the connection between such an ellipsoid and its orthogonal projection is
examined. Qur definition of linear projection mapping given in Chapter 2 captures
this relationship. Next, the inverse problem of reconstructing a centered ellipsoid
from a series of its silhouette projections is treated. A concise characterization of the
solution to this problem is given, using the results of Chapter 3. The special case of
1-dimensional ellipsoid projections, resulting in support hyperplane observations, is
examined in Section 5.3.4. It is shown that for an ellipsoid, observations of support
measurements squared yield a particularly nice problem. In Section 5.4 the projection
and reconstruction of a dynamic ellipsoid is examined. Finally in Section 5.5 we show

some numerical experiments to illustrate the developments of the chapter.

5.1 Symmetric Matrices

Here we develop the tie between ellipsoids and PSD symmetric matrices. Any sym-
metric PSD matrix E represents an ellipsoid £ centered on the origin and comprising
the set of points given by:

{z|zTu < h(u) = VuTEu, VuTu =1, u,z € R”} (5.1)

Here h(u) = VuTEu is the support function of the ellipsoid, discussed in Chapter 6.
Conversely, for any ellipsoid € centered at the origin, a unique symmetric PSD matrix
can be found such that the description above characterizes the set of points of the
ellipsoid. Thus we can represent any ellipsoid £ by its corresponding PSD symmetric
matrix E. Note that the ellipsoid is degenerate (i.e. has zero extent) in directions
associated with vectors u in the nullspace of E. If E is positive definite, so its inverse

exists, then an equivalent definition of the ellipsoid is given by:

{z|zTE‘1z <1, ze€ R"} (5.2)
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Figure 5-1: Example of ellipse.

The algebraic properties of the symmetric matrix E are reflected in the geometric
properties of the corresponding ellipsoid £ in a natural way. If );, v; are eigenvalues
and eigenvectors of the matrix E, then the principal axes of the ellipsoid are in the
directions given by nu; and the corresponding semi-axes lengths are given by /};.
Thus going back and forth from an ellipsoid to its representation is a simple matter.
Further, any linear transformation to the coordinates of the ellipsoid £ as given by
Z = Lz is reflected by a change of the corresponding matrix E to a matrix Ey given
by [74]:

Er = LELT (5.3)

Such transformations include rotation and stretching. For example, consider the

ellipse shown by the solid lines in Figure 5-1. The corresponding symmetric matrix

e= 15 1]

The ellipse is aligned with the coordinate axes and has semi-axes of length 2 and 1. To

is given by:

obtain an ellipse rotated by ¢ degrees we need only to pick L to be the corresponding
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Figure 5-2: Problem definition.

rotation matrix

-] g )

—sin(¢@) cos

The matrix Ep corresponding to the rotated ellipse is given by (5.3). For our example
ellipse with ¢ = m/4 we obtain:

E, — |23 1.5
L=[15 1.5

This rotated ellipse is shown as the dotted lines in Figure 5-1. For convenience in
what follows we will often not distinguish between the ellipsoid £ and the matrix E
that represents it. In the following we restrict consideration to ellipsoids centered
at the origin. There is no loss of generality in this assumption since given a non-
centered ellipsoid we may always translate our coordinate system to the ellipsoid

origin, thereby recovering the centered case.

5.2 Projections

5.2.1 General Projections

We now consider the orthogonal projection of an n-dimensional ellipsoid £ onto an
m-dimensional subspace S to obtain an m-dimensional shadow object, see Figure 5-
2. This projected object will itself be an m-dimensional ellipsoid £s in the subspace
S. Let E be the n x n symmetric matrix representing £ and let Es denote the

corresponding m X m matrix representing the ellipsoid & in §. If § is a matrix
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whose m columns form an orthonormal basis for the projection subspace S, then we
may view the projection operation as a linear transformation of the coordinates of the
space. This transformation from the points of the original space z to their coordinates
in the projection % is given by the relation z = STz. Applying (5.3) we find that the
relationship between the original ellipsoid, specified by E, and its projection, specified
by Es in the subspace, is simply given by the equation:

Es = STES (5.4)

Algebraically, this is the same relationship as was found in Result 24 of Chap-
ter 4 between the curvature Hessian of a smooth surface at a point and that of its
projection. We examined such relations in Chapter 2. In particular, if we let X = E,
Y = Es, and A = § then the original ellipsoid and its projection are again related
through the linear projection mapping between symmetric matrices of Definition 1.
This observation forms a tie between our work in Chapters 2, 3, and 4, and again
motivates our detailed examination of the projection and reconstruction of symmetric
matrices.

Note that we could equivalently represent our projected ellipsoid £s by the matrix
Es = SEsST rather than Es. The latter can always be recovered from the former,
since § has full column rank. Whereas the m x m matrix Es represents a non-
degenerate ellipsoid with respect to the subspace S, the singular n x n matrix Eg
represents a degenerate ellipsoid (one with some axes of zero length) in the original
space. The advantage of this form is that the relationship .(5.4) between the ellipsoid

matrix and its projection then becomes:
Es = SES

where S = 55T is now a true projector onto the subspace S, i.e. is symmetric and
satisfies 52 = §. A consequence is that the projection Eg is invariant under the
particular basis S chosen for the projection subspace S. In what follows we will
continue to use the representation Es because of its more transparent connection to
support function information, yet all of our results may be phrased in terms of the
projections Eg. In fact, this dual approach is taken in Chapter 4, where support
information is not discussed.
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5.2.2 1-Dimensional Projections: Support Observations

The special case of 1-dimensional projections is examined here. Such projections are of
interest because of their relationship to support function information. The (reduced)
support function h(u) of an object is a scalar function of the direction specified by
the vector u. It gives a measure of the extent of an object in a particular direction.
A detailed discussion may be found in Chapter 6, particularly Definition 4. If the
subspace of projection S is 1-dimensional, then S is a unit vector and the resulting
orthogonal projection of an object is a line segment bounded by the support values
h(S) and h(—S5). Thus 1-dimensional shadows or projections correspond precisely to
a pair of support observations in opposite directions.

The 1-dimensional (scalar) projections Eg of the ellipsoid E have an interesting
and useful relationship to the support sample of the original ellipsoid in the direction
of the unit vector S. The projected ellipsoid is related to the original one through the
equation Eg = STES. But the right hand side of this equation is just the expression
for squared support function A%(S) of the ellipsoid £ in the direction S, as mentioned
above [74, pg. 538]. Thus we have that

Es = hE(S) (5.5)

Thus a close relationship exists between the representation Eg of the 1-dimensional
projections of an ellipsoid and the support values of the ellipsoid.

We can understand the result (5.5) geometrically. The line segment of the 1-
dimensional projection is itself a 1-dimensional ellipsoid, see Figure 5-3. Half the
length of the line segment is evidently the semi-axis length. From the algebraic
relationship between ellipsoids and the eigenvalues of their representing matrices dis-
cussed in Section 5.1, the scalar Eg, representing this projected ellipsoid, must there-
fore equal the semi-axis length squared. But this semi-axis length is also given by
hg(S), yielding the given relationship.

A consequence of the relationship given in (5.5) is that observations of the support
samples of an ellipsoid are equivalent to observations of the quantity Es for the 1-
dimensional projection case. This observation forms another tie between the results
of Chapter 6 and the present chapter. In Section 5.3.4 we develop support-based
reconstructions of ellipsoids which use these results. Conversely, our linear ellipsoid

estimates based on Eg will suggest convenient estimation schemes involving support
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Es '/ Semi-Axis of
Projection

Figure 5-3: Problem definition.

measurements. Naturally, even when the underlying object is not an ellipsoid we may
still make use of such methods to find the best fitting ellipsoid, yielding orientation

and eccentricity information about an object.

5.2.3 Symmetric Space

Here we use the results of Chapter 2 to represent the relationship between an ellip-
soid and its projection given in (5.4) by an equivalent vector equation. Recall from
Chapter 2 that the set of n X n symmetric matrices together with the inner product
(A, B) = tr(AT B) defines an n(n + 1)/2-dimensional Euclidean space S,.. Recall also
that this inner product induces the Frobenius norm on a matrix (4, A)Y/? = ||A||r.
Following Chapter 2, let ¢ = Z(E) and es = Z(Es) be the vector representations of
the matrices E and Eg with respect to the corresponding symmetric bases {M™} and
{M}m)}. The mapping Z(-) between a symmetric matrix X and its representation as
a vector = in a symmetric basis {M, t(")} was defined in Section 2.2. We may thus view
the vectors € and €5 as representing the ellipsoid and its projection, respectively.

By S denote the matrix relating ¢ and 5. From Chapter 2 we know that § is
given by the image of S under the map I'(-) of Definition 2. We may now represent
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our original relation (5.4) equivalently as:
€g = 5' € (56)
where it is straightforward to show that (see Chapter 2 for more detail):

(6).1' = (E’Mg(n))
(es)i = (Es,M™)
(8); = (M™, 5T MM s)

for1 <j<n(n+1)/2,1 <i< m(m+1)/2, where (-);; denotes the ¢j-th component
of the argument. In particular, note that for the case of 1-dimensional projections
m = 1 so that S is a row vector and, from the arguments of Section 5.2.2, the quantity
€s is a scalar equal to the support value squared h}(S) in the direction of the vector

S. The vector space relationship (5.6) between symmetric matrix representations is
the same one seen in (2.6) of Chapter 2 and in (4.3) of Chapter 4.

5.3 Reconstruction

5.3.1 Problem Formulation

In this section we consider the inverse problem of reconstructing an ellipsoid £ from
observations of a set of its possibly noisy orthogonal projections onto the subspaces
S;. From the discussion in Section 5.1, we may represent the desired ellipsoid by the
symmetric matrix E and its projections onto the subspaces S; by the corresponding
symmetric matrices Eg,. For convenience we refer to the projected matrices Eg, as
simply E;. If S; are matrices whose columns form an orthonormal basis for the sub-
space of projection S; (assumed known), then the relationship between the ellipsoid
matrix E and its projections E; is given by (5.4), yielding the following statement of

our problem:

T
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Problem 8 (Ellipsoid from Projections) Determine the nxn positive semi-definite,

symmetric matriz E, given q observations of the form
E; = STES; 1<i<gq
where the matrices S; have orthonormal columns.

This problem is fundamentally the same as the curvature reconstruction problem,
Problem 7 of Chapter 4, and the PSD symmetric matrix reconstruction problem,
Problem 3 of Chapter 3, treated earlier. We may thus use the techniques and results
developed for those problems here. In particular, we use the vector space relation

(5.6) to express each of the observations as
€; = S,'EI

where, as for (5.6), ¢ is the representation of the E, ¢; is the representation of E;, and
S; is the image of S; under the map I' of Chapter 2. Stacking up the observation

vectors ¢; into a single vector we obtain the following overall relation:

- S
£ L
=] B
q

or

e=S¢ ’ ' (5.7)

where e and S are defined in the natural way from the stacked observations. Thus,
without a semi-definiteness constraint on the reconstruction, Problem 8 is equivalent
to: find the unknown vector € representing the desired ellipsoid, given the observations
e and the geometry specified in S. This formulation is again a standard one in linear
estimation. In general the semi-definiteness constraint is needed however. Such issues
are discussed in more detail in the next section.

The reader should note that our assumed observations are the projected ellipsoids
s, or equivalently the matrices Es. Thus, the above formulation has an implicit step

of ellipsoid exiraction from the projections. Any noise in the observations thus man-
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ifests itself as noise in the parameters of the projected observed ellipsoid. For many
cases this assumption should not pose a significant difficulty. Much work exists, for
example, on extracting ellipses from projected planar data [80, 81, 82, 83, 84]. For
the case of 1-dimensional projections in particular, fitting the ellipse corresponds to
nothing more than extracting the region of support of a line segment, as discussed Sec-
tion 5.2.2. Finally, we may always view a projection of any dimensionality as a group
of (noisy) 1-dimensional projections instead of a single higher dimensional one, thus
reducing the problem to the 1-dimensional case. This insight essentially reduces the
observation problem to one of boundary point determination. In particular, we could
perform the preliminary step of extracting the observed ellipsoids from each projec-
tion by using this technique of fitting (lower dimensional) ellipsoids to 1-dimensional
support data. We could also directly use all the sets of 1-dimensional observations

from all projections simultaneously to directly estimate the desired ellipsoid.

5.3.2 Unconstrained Reconstruction

In this section we consider the solution of Problem 8 without a PSD constraint on
the solution. First we consider reconstruction from a consistent set of observations,
obviating the need for the PSD constraint. The formulation of (5.7) allows us to easily
characterize the unique solutions of Problem 8, as we did in Result 18. Formally we

have

Result 26 (Ellipse Solvability) Problem 8 has a unique solution if and only if the
matriz S of (5.7) has rank equal to n(n + 1)/2 (i.e. full column rank). This solution,
if it exists, is given by

e = Ste (5.8)

where ST is any left inverse of S, e is the vector of observations, and € is the repre-
sentation of the desired matriz E with respect to the basis {M{™} defined in (5.7).

Noisy Observations

In the case of a set of noisy observations, resulting in a corresponding set of inconsis-

tent equations of the form (5.7), we seek the unconstrained linear least squared error
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(LLSE) solution to the set. This estimate eppsg is obtained as the solution of
ELLSE =arg min ||e — SE”% (5.9)
€

The corresponding symmetric matrix Eppsg minimizes the quantity:

q
S |IE — STELLseSil|%

=1

This problem is the same as Problem 2 of Chapter 3 and the corresponding solution
is obtained by choosing ST = S*, the Moore-Penrose inverse of S, in Result 26. Thus
eLLsE = STe is the desired LLSE estimate without a semi-definiteness constraint on
the solution.

To generate an ellipsoid, the matrix E, represented by the vector ¢, must be posi-
tive semi-definite. The LLSE estimate given by ersg = S*e has no such constraint
to guarantee this PSD property of the solution. Note, however, that if a PSD matrix
is obtained as the LLSE estimate without such a constraint, then clearly it is also
the LLSE estimate subject to such a constraint. For many problems the observations
are clean enough that the PSD nature of the solution is maintained anyway. A pre-
cise statement of this condition was given in Result 20 of Section 3.3.1 in terms of
bounds on the allowed perturbations in the observations E; and the singular values
of the matrices S and E. We interpret these conditions in the context of our ellipsoid
problem here.

If the underlying matrix E is a PSD matrix, then Result 20 guarantees that the
LLSE estimate will also be PSD if the following condition is satisfied:

q
Uﬁn(s)\} D NI8Eil1% < Ammin(E)
=1

where A(-)min denotes the minimum eigenvalue value of the argument, opin(+) the
minimum singular value, and the E; are differences in the observations from their
noiseless values. We would like to have the quantities Apin(E) and 0min(S) large and
the quantity éE; small. The square root term is the easiest to interpret; it corresponds
to the overall noise in the observations. Recalling the tie between an ellipsoid £ and

the eigenvalues of the corresponding PSD symmetric matrix E, the term Apin(E) can
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be seen to be the length of the smallest semi-axis of the ellipsoid. This length might
be thought of as a measure of the closeness of the ellipsoid to degeneracy. Finally
the term .,in(S) reflects the nearness to singularity of the matrix S. If this quantity
is small, the columns of S are nearly dependent. Since S captures the observation
geometry, such a situation reflects the fact that our observations are nearly linearly
dependent, as might happen if we were to use a set of projections on subspaces very
close to each other (see e.g. [61] for more detail on the nearness of subspaces). In
summary, if the smallest aspect of the underlying ellipsoid is large relative to the noise
in the observations, and if our set of observations are well placed, we should be able
to use the unconstrained LLSE estimate without the necessity of a PSD constraint

on the solution. We demonstrate such unconstrained reconstructions in Section 3.2.

Recursive LLSE

Without the PSD constraint, the solution to (5.9) may easily be implemented recur-
sively. Such a recursive solution is just a recursive least squares formulation, with the
state vector of the estimator at time & being the estimate & of the symmetric matrix
represented by €. The relevant equations may be found in Section 3.2.4. Further, if
we (somewhat arbitrarily) model the noise in the observations Es as being Gaussian
random variables in each entry, then the linear relationship between the symmetric
observation matrix Eg and its representation €5 ensures that the the noise in the
elements of €5 will also be Gaussian processes (not independent in general). Thus it
is a straightforward matter to choose the gains of the recursive estimator to yield the

optimal minimum variance filter under such a stochastic interpretation of the noise.

5.3.3 Constrained Reconstruction

While in many instances the unconstrained LLSE solution presented in (5.9) is ad-
equate, there may be situations when, due to incomplete, noisy observations, this
estimate is not positive semi-definite. In addition, there may be situations where,
because of prior information, we wish to impose constraints on the reconstructed
ellipsoid in the form of bounds on its shape. Such bounds might reflect our knowl-
edge of the minimum or maximum breadth of an object we wish to estimate. We

investigate such constrained problems in this section.
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Figure 5-4: Illustration of interval matrix geometry.

Interval Matrix Constraints

Consider the requirement that the reconstructed ellipsoid matrix E lie in the matrix
interval given by E > E > E. By such matrix inequalities we mean that the matrices
(E — E) and (E — E) are positive semi-definite. In particular, a PSD constraint is
recovered if we choose E = 0 and E = oo - I. The algebraic problem of reconstructing
a symmetric matrix under such an interval constraint was discussed in Section 3.4,
where an algorithm yielding a solution to the problem was given. In the present
section we concentrate on the implications of these constraints in the context of our
ellipsoid problem.

Such an interval matrix constraint might reflect our knowledge that the underlying
ellipsoid lies between the two extreme ellipsoids specified by E and E. We know from
the discussion of Section 3.4 that in the space of the matrices E, the elements of the
interval set are contained in the intersection of two shifted PSD cones, as shown in
Figure 3-3. Geometrically, the constraints imposed by the inequality E > E > E on
the ellipsoid E are natural and easy to interpret. Specifically this condition is satisfied
for any ellipsoid contained in the outer extreme ellipsoid E and containing the inner
extreme ellipsoid E. We illustrate the planar case in Figure 5-4, where the allowed
area is the white region and some elements on the boundary of the interval set are
shown as ellipses touching the boundary of one extreme or the other.

This geometric interpretation follows from the definition of an ellipsoid given in
(5.2) and the positive definiteness of the quantities (E — E) and (E — E). Consider the
situation shown in Figure 5-5. If the interval conditions hold, then E > E and E > E.
But this is true if and only if E- > E-! and E-! > E " [38]. Hence, for any given
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Figure 5-5: Illustration of interval matrix geometry.

unit vector u, an ellipsoid E in the given interval satisfies

i 1 1 —d
uTE u uTE-lu
_ 1 . Ly

From the definition (5.2) the quantities d, d, and d are just the distances in the
direction u to the boundaries of the ellipsoids specified by E, E, and E, respectively, see
Figure 5-5. This argument also holds in the other direction, justifying our geometric

interpretation of the interval matrix condition.

Eigenvalue Constraints

Let us consider some special cases of the constraint set E > E > E. When the
extreme matrices are given by a scalar times the identity, so that E = of and E = &I,
the corresponding extreme ellipsoids become nested spheres. This case corresponds to
putting simple eigenvalue constraints on the reconstructed matrix E. Such constraints
are non-directional since they do not favor one ellipsoid orientation over another. This
is reflected in the central symmetry of the extreme ellipsoids. In particular, if @ = 0
and we let @ — oo we again recover the PSD constraint. Since the inner bound is just
the origin, note that the (degenerate) ellipsoids corresponding to such PSD matrices
may be little more than a line. As expected, these ellipsoids, containing the origin,




5.3. RECONSTRUCTION 183

exist at the boundary of the set, corresponding to singular matrices E.

Since the structure of the equations of Problem 8 is the same as that treated
in Chapter 3, the results and algorithms of Section 3.4 may be applied to obtain
the desired constrained LLSE estimates of the symmetric matrix E. In particular,
the interval constrained successive hyperplane algorithm will yield an iterative solu-
tion to the corresponding matrix interval constrained problem. Such estimates are

demonstrated in Section 5.5.

5.3.4 Support-Based Reconstruction

In this section we examine issues arising from a consideration of 1-dimensional pro-
jections. Such projections result in support sample observations in complementary
directions, as discussed in Section 5.2.2. We show how the consistency constraints
of Chapter 6 may be incorporated into our existing constrained reconstruction algo-
rithms to yield improved estimates in certain situations. We also study the special
case of planar ellipsoids (ellipses) and support observations. Using the projection
parameter space approach of Section 3.2.3 we suggest that working with the squared
support function is more natural in some ways than the support function itself.

Before proceeding, let us consider the interpretation of our cost function for this
1-dimensional case. From Section 5.5 we know that for the case of 1-dimensional
projections the quantity STES; corresponds to the squared support function h}(S;)
of E in the direction S;. Thus our LLSE cost function

(E: - STES) = i(E—hz 5:))°

1 i=1

M

7

is minimizing the sum of the squared difference between the observed support values
squared and our estimated support values squared. Geometrically, this quantity is
difficult to interpret in general. For the planar case the formula for the area of a

convex object in terms of its support function is given in (6.5) as

Area = % /0 " (? - (dh/d8y?) do

where h is the support function as a function of . The term f(dh/df)?df on the
right hand side of this expression is proportional to the perimeter of the object. Thus
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for the planar case our LLSE cost appears to be related to the area deviation between
estimate and observation. The extra square appearing in the 2-norm expression for
the LLSE would seem to suggest correspondingly much larger weighting on large de-
viations than a simple area deviation would yield, however. Note that the mazimum
deviation in support value between two objects (the co-norm of the difference) corre-
sponds to the Hausdorff metric between the objects, while the corresponding sum of
the absolute values of the support deviations (the 1-norm) corresponds the perimeter

deviation between the objects [85].

Use of Consistent Support

Because of the close ties between our observations and support samples, we can make
use of the support consistency results of Chapter 6. In particular, we may use a
two-step process of first estimating a consistent set of support measurements and
subsequently using these measurements as observations for the reconstruction of an
ellipsoid. Such a procedure can yield significantly different and improved estimates
over simply imposing a PSD constraint directly on the ellipsoid matrix, particularly
when noise levels are high. The reason appears to be that the process of first imposing
consistency on the observations functions as a sort of smoothing process, removing
some of the extreme variations in the observations. Note that by fitting an ellipsoid
to an inconsistent set of support measurements, we also obtain a corresponding set of
consistent support values as a consequence, i.e. those of the ellipsoid. Thus the PSD
constraint on the ellipsoid matrix E effectively imposes a consistency constraint on the
resulting reconstructed set of support values. Here we are imposing this consistency
differently.

The first step of estimating a consistent set of support measurements may be
simply phrased as a linear inequality constrained least squares problem. If we let the
vector h, = [hy|hy|- -+ |hy]T be the vector of noisy inconsistent support observations,

then the closest vector of consistent support samples h g i<t is given as

hconsist =arqghmin |h — b3 (5.10)

>0

where the constraint matrix @ is defined in (6.11) of Section 6.3.3. This problem is
straightforward to solve. Note that choosing the 1-norm in (5.10) makes this a linear

programming problem.
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We may then use the resulting consistent support values squared as our obser-
vation vector e to be input to a step of ellipsoid fitting. The solution to this step
is provided by the algorithms of Section 3.3.3, particularly Algorithm 1. When the
noise is large enough to cause inconsistency in the support measurements, this two-
step procedure has the advantage of performing a preliminary smoothing on the data.
In this way the effect of extreme values are mitigated.

We do not have any optimality results for this procedure, but may make several
points. Consider a stochastic interpretation of the problem. If our observations are
of the form h? + 7;, where 7; are independent identically distributed Gaussian noise
samples, then the direct solution of Problem 8 without the additional step of consistent
support estimation is the maximum likelihood estimate of E. In reality, however, our
observations are more likely to be of the form (h; + 7;)?, which are then squared to
yield the input to our estimation algorithms. In this case the direct procedure is no
longer optimal (though it may still be reasonable). In fact, it is now biased, due to
the squaring operation. Thus the imposition of consistency may indeed improve the
estimate in this case. _

Further, even in the event that the direct solution is optimal (it is always the
least square solution), it minimizes a cost criterion based on the matriz E. Such
optimal reconstructions in terms of E may not always yield geometrically pleasing
shapes to the eye. In general, the set of consistent support values will define a non-
empty polyhedron. Fitting an ellipsoid to such a nonempty shape usually yields a
corresponding nonempty ellipsoid (corresponding to a positive-definite matrix E). The
singular matrix that may arise from a direct PSD-constrained reconstruction on the
raw data yields a degenerate ellipsoid (in the planar case only a line). We illustrate

these points in numerical experiments in Section 5.5.1.

Projection Parameter Space

Finally we examine the special case of 1-dimensional projections of planar objects. In
particular we use the projection parameter space approach of Section 3.2.3 together
with our squared support observations to note certain nice properties of the squared
support function.

When our observations are 1-dimensional and the ellipsoid is planar (an ellipse),
we may express our projection matrices S as unit vectors parameterized by angle

in the plane, S(6) = [cos(f), sin(#)]T. For a given ellipse E our squared support
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Figure 5-6: Ellipse parameters.

observations may then be expressed as:

h*(8) = B1 + B2 cos(28 + B3s) (5.11)

where h(f) is the support value in the direction # and the 3; are constants depending
on the underlying ellipse E. In particular, if (E);; is the ij-th entry of E then these
constants are found using the results of Section 3.2.3 to be:

(E)11 + (E)22
g = Pt

b = \] (B O (e,

fo = st 28 )

Suppose the axis lengths of the ellipse are given by a and b and its orientation with
respect to the first coordinate axis is given by the angle ¢, as shown in Figure 5-6.
The first term G, giving the average of the cosine, is half the trace of the matrix E.
Since the eigenvalues of E are the semi-axes lengths squared, this term is given by
B1 = (a® +b%)/2 and may be thought of a measure of overall size of the ellipse. After
some algebra, the second term [, expressing the range of the cosine, may similarly
be written as G, = (a® — b?)/2 and thus provides a measure of the elongation of
the ellipse. The last term, specifying the phase of the cosine, may be shown to be
B3 = —2¢, twice the orientation of the ellipse. In this framework the constraint of
positive semi-definiteness is reflected in the fact the cosine in (5.11) must always be
positive, i.e. that |G;] < 3.
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Since the support function h(f) is a periodic function of § we may represent it as
the Fourier series:

h(0) = ag + i [ack cos(kf) + a,p sin(kf)]

k=1

The first few terms of this series for h(#) have natural geometric interpretations. If
only the constant term oq is nonzero, the corresponding boundary is just a circle
centered at the origin. The first order terms define the Steiner point or center of
the object, and are zero for a centered object such as our ellipse. Unfortunately,
objects containing only the constant and second order terms, while yielding ellipse-
like shapes, are not exactly ellipses and have no direct simple interpretation in terms
of orientation, eccentricity or other quantities. In addition, centered convex objects
having only the constant and second order terms in their support function expansions
will have a maximum length-to-width ratio of two [9, pg. 230]. This situation does
not appear to change much with the addition of higher order coefficients coeflicients
either. '

Returning to the formula (5.11) for the support function squared, note that it
involves only two terms. For a centered object, therefore, (5.11) shows that it is
the coeflicients of the Fourier series for the support function squared that have the
desired conic producing property. In particular, the constant and second order terms
‘together precisely define an ellipse, directly giving size, orientation, and eccentricity
information. Further, there is no restriction on the eccentricity of the corresponding
ellipse, as for a truncated Fourier series of the support function. This observation
suggests that it is the support function squared that may be most useful for gross
shape extraction and modeling. Specifically, if the center of an object is known or can
be estimated (say from the Steiner point), then extracting the constant and second
order terms from the Fourier series for the support function squared yields the best
fitting ellipse to the boundary data in the sense we have been discussing. This is just
another way of solving Problem 8 in the case of 1-dimensional observations. Note that
Algorithm 4 of Section 3.3.3 is based on this sine fitting formalism (though not Fourier
based) for the planar case and seems to perform well in constrained reconstruction
simulations.

The expressions corresponding to (5.11) for the squared support function of a

3-dimensional ellipsoid with projections parameterized by spherical coordinates are
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given in Appendix 3-C. For this case, a harmonic surface in the spherical coordinates
results. While the structure of these formulas is not as nice as for the planar case,
the series is still finite. Thus, as with the planar case, we may find the 2-dimensional
Fourier series of the squared support function of an arbitrary centered object and

extract only those terms corresponding to the nonzero coefficients for the ellipsoid.

5.4 Dynamic Issues

In this section we treat the problem of generating and estimating a dynamically evolv-
ing ellipsoid. These issues are a direct extension of our work on the static case in
Section 5.1. We demonstrate a particular symmetric evolution equation and show
how we may tailor the characteristics of the ellipsoid evolution through choice of the
dynamic matrix. Our previous results allow us to easily represent this evolution in a
standard state space form. Because of the symmetry of the matrices, a square root
implementation is also possible. Following this examination of the generation prob-
lem, we treat the inverse problem of estimating a dynamic ellipsoid from observations
of its projections. Of particular interest is the case of 1-dimensional projections, cor-
responding to observations of the squared support function. Such dynamic ellipsoid
problems appear in regard to tracking beating hearts in a series of images, following

moving clouds of particles [78], or tracking cells.

5.4.1 Generation

We may animate an ellipsoid by imposing a dynamic relationship on its set of parame-
ters. In particular, evolution of the elements of the matrix E will yield a corresponding
dynamically evolving ellipsoid. We need only ensure that the resulting series of ma-
trices E(k) remain symmetric and positive semi-definite. We thus seek an evolution
structure on E(k) that is simple to implement and yields interesting dynamical be-

havior, yet maintains symmetry and hopefully positive semi-definiteness.
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Dynamic Model

Because of its simplicity, we use the following dynamic model to illustrate the evolu-

tion of ellipsoids, with our projection relation (5.4) for observations:

Y. = C{E(k)Ck + Wi

where the driving matrix B and the observation noise matrix W), are assumed sym-
metric to maintain symmetry of the matrix state E(k). Positive semi-definiteness
of E(k) is assured if E(0) is positive semi-definite and the matrices B are also. To
produce independent noise in the entries of Y, we will make the (independent) entries
of W; independent, zero-mean Gaussian random processes. If By is also interpre-
tated as a noise term we may choose its (independent) entries to also be independent
zero-mean Gaussian random processes. In this case, if the noise is small, positive
semi-definiteness of E(k) will be likely, but difficult to guarantee. Another possibility
is to generate By as the square of a random matrix, By = BF B, with B, random.
This approach will assure that By remains PSD, but the entries of E(k) are now not
simple functions of a random variable, as they involve products between terms. Simi-
lar arguments hold for the matrices W), as well. In what follows we assume that B, is
a known deterministic input matrix. Note that other, more general linear models for
the evolution of E(k) are possible. We use (5.12) for its simplicity, but the algorithms
and results of this section hold for more general linear models.

Because the form of both the dynamic and observation equation in (5.12) are
identical to (5.4), we may immediately express them as the following equivalent vector
equation using the relationship (5.6):

e(k+1) Are(k) + by, (5.13)
Ye = ékE(k) + wy

where the vectors e(k), y&, bk, and w;, are the representations of the corresponding
matrices in (5.12) in a symmetric basis, while Ay, and ), are matrix representations
of the operators A7(-)Ax and CF(-)Cj in the symmetric space, obtained under the
map I given in Definition 2. Thus, instead of the direct equations (5.12), we may
equivalently generate the matrices E(k) using the standard state space equations of
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(5.13). Note that the entries of b, and w, are linear combinations of the respective
entries of By, and W,.

The form (5.13) is convenient because of the great amount of existing work on
such equations. In particular, the observability and controllability of the underlying
ellipsoid E follows immediately from the properties of the matrices A, and C}, together
with standard results of linear system theory [86]. An example of the tie between such
algebraic properties and the geometric properties of the underlying ellipsoid problem

will be seen below when we consider a particular class of dynamic matrices Ay.

Square-Root Implementation

Finally, in addition to the above two approaches, we may exploit the symmetry in
the problem to obtain a square root algorithm for evolution. Such algorithms are
used because of their speed and numerical reliability in certain applications. Let
E(k) = ET(k)E(k) and B = BEB).. Using the singular value decomposition (SVD)

we may write:
[ @Ak] Uk [Ak]vk (5.14)

where the right hand side is obtained from an SVD of the left hand side. We may
then define E(k + 1) = A, VT since

E(k+1) = ET(k+1E(k+1) _
— [ ATET | B |ULUT [ E(%)kf‘k ]
= ATE(k)Ax + By

which is the desired relationship.

This form of dynamic update thus requires an SVD of the matrix (5.14). If the
dimension n of the underlying space of the ellipsoid is large and the ellipsoid itself is
degenerate, corresponding to a large matrix with zero singular values, this procedure
could save computations. For our applications however, it seems primarily of academic
interest. A useful by-product of these computations is that the axes of the ellipsoid
are easily found as the columns of the matrix VTA~!, where the inverse of A is easy

to compute since A is diagonal.
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Shaping Parameters

Here we investigate how certain choices of the dynamic matrices in (5.12) affect
the shape of the corresponding ellipsoid. Geometrically we may think of changing
the ellipsoid by applying scaling, stretching, and rotation transformations to the
underlying coordinate system. For ease of visualization we consider the planar case,
though the same arguments hold for arbitrary dimension. We may express such a

transformation of coordinates as follows:

=[5 w8 L6 ] (515

The transformation magnifies an object by a factor of ¢, stretches it in the z; direction

IS

by @ and shrinks it in the z, direction by 1/a, and rotates it by the angle ¢. This
transformation was used in (9] to capture a rich class of object profiles. In particular,
it was used in the estimation of object size, eccentricity, and orientation.

The effect on an ellipsoid of applying such a transformation to the coordinate
system is given in (5.3). In particular, we may impose this class of transformations

dynamically if we choose our matrices A; as follows:

T N [

Different choices of the parameters of these Ay will result in the application of the
corresponding transformation to the ellipse at time point k. The class of dynamic
matrices defined by (5.16) is not completely general (stretching along axes other than
the coordinate axes is not allowed) but it does capture a large class of transformations.
For example, suppose we used an Ay, with a = 1, t = 1, and ¢}, = 7/8. The resulting
ellipse will not change its shape but only rotate by 7/8 radians every step. We show
every second step of such a simulation, yielding a tumbling ellipse in Figure 5-7.
We may easily extend the class by adding other transformations. For example, by
adding another rotation we may impose stretching/compression along arbitrary axes.
The generalization to higher dimensions is also straightforward, with the scaling term
replaced by a multiple of the identity, the stretching term becoming a diagonal matrix
of determinant 1, and the rotation becoming an orthogonal matrix.

An interesting subclass of these transformations is obtained by considering only

those that preserve the volume of the ellipse. In cell tracking applications such a
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Figure 5-7: Rotating ellipse.

constraint might reflect incompressibility or conservation of mass of a cell undergoing
deformational forces in a particular direction. Since the volume of an ellipsoid is a
constant times the square root of the determinant of its defining matrix E [46], any
transformation preserving the determinant of E achieves the desired goal. For the class
of dynamic matrices under consideration, this restriction corresponds to requiring that
the scaling term ¢ be set to 1. An example of such a case with a = 3/4, ¢ = /8, and
t = 1 is given in Figure 5-8, where we have shown every second step of the sequence.
This choice corresponds to compressing along the first coordinate axis by a factor of
3/4 and stretching along the second coordinate axes by 4/3 in addition to rotation
by 7/8 at each step (The envelope of ellipses traced out in this fashion itself appears
to be an ellipse!).

5.4.2 Estimation

In this section we consider the problem of estimating the state of a dynamically
evolving ellipsoid. First we recast this problem in terms of the formulation given

in (5.7), obtaining a batch method of solution. The inclusion of constraints for this
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Figure 5-8: Deforming ellipse.

case is straightforward from our work so far. We briefly point out the possibility of

recursive solutions to this problem.

Batch Methods

Certainly one way of solving the problem of estimating the state of the ellipsoid
in (5.12) is to stack up our observations using the form of the equations given in
(5.7), lumping the dynamics and input into the output matrices and observations,
respectively. .Doing this operation yields a batch formulation of the problem. In

particular, we obtain the following equivalent linear equation for the initial state:

7 = Ae(0) + W (5.17)
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where the matrices ¥ and A are given by:

140
A=| CA4 (5.18)

yr C.',. (b,-_1 + Ar—lbr—2 4+ 4 (J‘ir_1 .- 'I‘il)bo)

and the observation noise vector w is given by:

W

To find a unique initial state E(0), and thus solution to (5.12), requires that the
matrix A given in (5.18) have full column rank. In this case, the unconstrained LLSE
estimate of the initial ellipsoid state is given by &(0)LLsg = A1y, where At is again
the Moore-Penrose inverse of A. The corresponding unconstrained LLSE estimate
at any other time is obtained by using this estimate of the initial state as an initial
condition to the equation (5.12) or (5.13).

Since €(0) represents a symmetric matrix, to obtain constrained estimates of the
initial state we need only combine the constrained reconstruction methods of Sec-
tion 5.3.3 or 3.3 with the normal equations associated with (5.17). Constrained re-
constructions at other times may be found by simply shifting the time origin in (5.17).

The solutions of such problems are straightforward given our previous development.

Observability

The existence of a unique solution to (5.17) (or a time shifted version of it if our
interest is at other than k = 0) required full rank of the matrix A in (5.18). This
matrix will be recognized as the observability matrix of the linear dynamical system
given by (5.12). Thus our rank requirement for solution of (5.17) is really nothing
more than a statement of observability of the corresponding dynamical system. Such




5.4. DYNAMIC ISSUES 195

observability is straightforward to check for a given problem using (5.18) and often
reflects geometric properties of the problem.

For example, suppose our lower dimensional views are fixed so that ¢, = C
(non-square) and that we choose the dynamic matrices A in (5.16) such that ¢ = 0
and a = 0, corresponding to uniform shrinking of the ellipsoid with no rotation or
stretching. The corresponding matrix of (5.13) then becomes A, = tI, where I is the

identity. The above observability matrix for this case is given by

H.xQ'

tZ

- &

tr-1¢

which is clearly rank deficient. Thus we cannot reconstruct an ellipsoid which is
uniformly shrinking from a single fixed lower dimensional viewpoint. The problem
geometrically is that we get no information about the ellipsoid perpendicular to the
projection subspace. The presence of a rotation or stretching term would yield such

information as would changing our view by allowing C = C,.

Recursive Approaches

A batch method of estimating a dynamic ellipsoid was provided by the formulation of
(5.17). We may also implement this least squares solution recursively. The equations

for this dynamic case are given by:

Prediction Step
E(k+1k) = Apé(klk)+ By
Popp = AP AY
Update Step

&(klk)

e(klk — 1) + Ki [yi — Cué(klk — 1)]
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Py = [I - KkC'k] Prje—1
=T [~ T -1
K, = Prpe—1C, [CkPkUe—le + Rk]

where R; is the weight placed on observation k. In particular, £(k|k) in the above

recursive formulas minimizes the quantity:
T k! - T ~
&5 Podo + Y |vi — Cié(klk)] R: [ys — Ciz(k|k)]
i=1

where Py = Py|_; is the uncertainty in the initial estimate. For the unweighted LLSE
case Ry = I. To downweight the initial guess, P, should be chosen large. Stochastic
interpretations result if the weighting matrices R; are chosen to be the observation
error covariance matrices [60]. For example, under the assumption of independent
Gaussian noise for the entries of Wj, and hence wy, these formulas yield the Kalman
filter for the system (5.13), resulting in the the maximum likelihood estimate of the
initial ellipsoid E(0).

The above recursion yields a solution to the unconstrained problem. We know of
no optimal recursive solution to the constrained problem of estimating a PSD initial
matrix for the system in (5.12). Recall that if the unconstrained estimate is positive
semi-definite, then it must also be the optimal PSD constrained estimate. Of course,
we may take the ad hoc approach of projecting the unconstrained LLSE estimate onto
the constraint set when such an estimate is desired. Such a procedure is suboptimal

but may yield reasonable results for some cases.

5.5 Experiments

In this section we present the results of several simulations to demonstrate the im-
portant features of the different reconstruction schemes. We limit ourselves to pla-
nar examples and 1-dimensional support observations here for ease of visualization,
though the demonstrated procedures and methods demonstrated are valid in arbitrary
dimensions.

First we examine the case of reconstructing a static ellipse from a series of its
noisy projections. We compare unconstrained to matrix-interval-constrained recon-

structions, showing how the addition of constraints, reflecting prior knowledge, may
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aid a reconstruction. In particular, we examine how such algebraic constraints may
manifest themselves geometrically. The special case of eigenvalue constraints, includ-
ing PSD constraints, is also examined. The results of Chapter 6 are then applied to
impose consistency on our support-based measurements. We demonstrate the two-
step process described in Section 5.3.4 of first estimating a consistent set of support
measurements and subsequently using these measurements as observations for the
reconstruction of an ellipse. Such a procedure may yield significantly different and
improved estimates, compared to simply imposing a PSD constraint directly on the
ellipse matrix, particularly when noise levels are high.

Next we examine the reconstruction of dynamic ellipses. We restrict consideration
to the class of dynamic matrices defined in (5.16). Typical elements from this class are
demonstrated, showing their effect on size and shape change parameters. We then
show reconstructions demonstrating how knowledge of the evolution of an ellipse
allows us to reconstruct it from knowledge of only a single spatial projection over

time.

Assumptions

In the numerical experiments of this section it is assumed that the center of the ellipse
is known, as throughout this chapter. For convenience all examples use 2-dimensional
ellipsoids (ellipses) and 1-dimensional projections. As discussed in Section 5.2.2,
such ellipse projections are synonymous with support measurements, our projections
being the squared support measurements. Thus we are effectively demonstrating the
reconstruction of ellipses from noisy support data.

Our constrained and unconstrained estimates developed in Section 5.3 for 1-
dimensional support measurements are based on observations of the noisy squared
support data, h% + 5, with  as some sort of noise. In spite of this, our illustrations
of these methods throughout this section will be based on models generated using
the more physically realistic situation of directly observing the noisy support val-
ues, h + 7, where 7 is a zero mean Gaussian noise process of intensity o (notation
n ~ N(0,0?)). The input to our estimation schemes then becomes (k+7)%. Our LLSE
reconstructions will, of course, still yield estimates ~ which minimize Y3[h2 — (h + 7)?]
but these estimates will now be biased and hence suboptimal. In particular, these
reconstructions will no longer correspond to the maximum likelihood estimates of h.
Good reconstructions are still provided by these methods, however, illustrating their

robustness to such violations of the underlying model assumptions.
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Figure 5-9: Underlying ellipse.
5.5.1 Static Ellipse Reconstruction

The underlying ellipse used throughout this section is shown in Figure 5-9. Its semi-
axes are of lengths 1 and 2, with the major axis inclined at 7/4 radians to the first

coordinate axis. The corresponding matrix E is given by:

3 ] (5.19)

Small-Noise Case

First we take 10 equally spaced support samples of the ellipse in Figure 5-9 and
add N(0,.25) independent Gaussian noise samples to these points. The resulting
observations are shown together with the underlying ellipse in Figure 5-10. Since the
axis lengths are 2 and 1, the noise level is relatively small in this example.

In Figure 5-11 three different reconstructions are shown. In the upper left of the
figure the unconstrained LLSE solution obtain by using (5.8) is shown. The upper
right shows the corresponding PSD constrained reconstruction. This reconstruction
is identical to that obtained without the PSD constraint, showing that for this small
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Figure 5-10: Noisy support data (N(0,.25) level noise).

noise case the PSD constraints were not active. The bottom right plot shows inner and
outer bounds of an interval-constrained reconstruction. The constraints are arbitrary
and only meant to show how such constraints may be included. The corresponding
reconstruction is shown in the lower left hand corner. This estimate appears to be
the best, demonstrating the effectiveness of correct prior information. If we had no
directional information as to the orientation of the ellipse we could replace the ellipse
bounds by circles, with no such inherent directional bias. Such circular constraints

correspond to eigenvalue constraints on the reconstructed matrix.

High Noise Case

Now we repeat the experiment, but with a higher noise level in our observations, this
time adding N(0,4) independent Gaussian noise samples to the support observations.
In Figure 5-12 the resulting noisy support data are shown. The noise level is quite
high this time, being on the order of axis lengths. In particular there appear to be
one or two outliers in the group.

In Figure 5-13 the same three reconstructions provided before are shown. In the

upper left of the figure the unconstrained LLSE solution is displayed. The estimated

- e I T i = T e s - o m. o m e e
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Figure 5-11: Reconstructions.

matrix for this example is not positive semi-definite, having eigenvalues at —1.8 and
12.2. The corresponding figure really does not make sense to draw and certainly
does not resemble an ellipse. The curve that is displayed is actually a hyperbola (a
different conic section), obtained because we used the ellipse definition given in (5.2) to
produce these plots. The upper right plot shows the corresponding PSD-constrained
reconstruction. This time the PSD reconstruction yields the degenerate ellipse given
by a line, corresponding to the fact that the “negative axis” corresponding to the
negative eigenvalue was set to zero. While yielding a PSD matrix, the effect is not
particularly appealing geometrically. Again, the bottom right plot shows inner and
outer bounds of the same interval constrained reconstruction. The corresponding

reconstruction is shown in the lower left hand corner. Again, this estimate appears
to be the best.

Consistent Support

Here we demonstrate the reconstruction of consistent measurements, as described in
Chapter 6 as well as their use in the two step reconstruction process described in

Section 5.3.4. First, in Figure 5-14 we show the closest consistent support vector to

R L L L B y— T
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Figure 5-12: Noisy support data (N(0,4) level noise).

the noisy support data shown in Figure 5-10. This consistent support vector is the
solution of the problem (5.10) of Section 5.3.3. Such issues of support consistency
are discussed in more detail in Chapter 6. Finding this consistent support data
corresponds to the first step of the 2 step scheme suggested in Section 5.3.4. Note that
the consistent reconstruction of the support data has several points where multiple
support lines intersect, showing that this support vector is on the boundary of the
consistent set. This interpretation follows from the intersection arguments discussed
Section 6.3.

The above consistent support data is now used to generate an ellipse estimate.
This unconstrained LLSE estimate based on the consistent data is shown in Figure 5-
15. Since the noise is low for this case, there does not appear to be much difference
between this estimate and the earlier unconstrained estimate based on the noisy data
and shown in the upper left of Figure 5-11.

Next we examine the high noise case shown in Figure 5-12. The equivalent con-
sistent support vector to for this data is shown in Figure 5-16. Compared to the raw
inconsistent data in Figure 5-12 the effect of imposing consistency is quite noticeable.

In particular the extreme points have been greatly mitigated.
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Figure 5-13: Reconstructions.
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Figure 5-14: Consistent support vector for data in Figure 5-10.
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Figure 5-15: Unconstrained LLSE estimate based on consistent data of Figure 5-14.
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Figure 5-16: Consistent support vector for data in Figure 5-12.
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Figure 5-17: Unconstrained LLSE estimate based on consistent data of Figure 5-16.

Using this consistent data in an unconstrained LLSE ellipse reconstruction yields
the result shown in Figure 5-17. This consistent estimate is much better than the
corresponding unconstrained ellipse estimate using the raw data (shown in the upper
left of Figure 5-13), or even the PSD constrained estimate (shown in the upper right
of Figure 5-13). Thus, for this high-noise case, the potential value of using consis-
tency of the support data in addition to direct constraints on the ellipsoid itself is
demonstrated.

5.5.2 Dynamic Ellipse Reconstruction

In this section we consider dynamic ellipse reconstruction form noisy support data.
The generation of such an ellipse was discussed in Section 5.4.1, where a particu-
lar class of dynamic matrices was defined and demonstrated. For this example we
have chosen a constant dynamic matrix A, = 4 with the parameters defined in Sec-
tion 5.4.1 chosen as t = .8, @ = .9, and ¢ = 7/15. We use a periodic driving term
B in (5.12). This drive is shown in Figure 5-18 through half of its cycle. The corre-

sponding ellipse state for this choice of drive and dynamic matrix is shown for every
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Figure 5-18: Driving term for the dynamic ellipse.

third time point in Figure 5-19. One can imagine similar constructions to model a
beating heart, for example.

At each time point the ellipse is projected onto the first coordinate axis, giving
a corresponding output matrix in equation (5.12) of Cx = [1 0]T. From these
projections, the support is obtained and N(0, 1) noise is added to it, as for the static
cases discussed above. Then, using this noisy support data, the original ellipse is
reconstructed using recursive least squares with an initial condition given by the
matrix E in (5.19). This reconstruction is shown in Figure 5-20. As can be seen
from the figure, despite measurements which are quite noisy the estimate tracks the
dynamic ellipse after about 7 time steps.

Note that for 1-dimensional fixed projections of a dynamic object, consistency at
a given point in time is imposed by default (since there is only a single projection).
Thus the 2-step procedure involving consistent support reconstruction illustrated in
Figures 5-15 and 5-17 of the previous section appears to be inapplicable in the current
setting. Over the entire time sequence, however, we might consider combining the
evolution dynamics with the consistent support constraints of Chapter 6 to generalize

the 2 step procedure we proposed for the static case. For example, if the dynamics
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Figure 5-19: Ellipse state.
Observations = h + 1*N(0,1)
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Figure 5-20: Dynamic reconstruction of ellipse of Figure5-19.
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Ak = A+.2*N(0,1), Bk = B + .2¥N(0,1)
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Figure 5-21: Reconstruction of dynamic ellipse with imperfect knowledge of dynamics
and drive

imposed by Aj are just a rotation, then there is an equivalent formulation of the
dynamic problem as a static one involving multiple views of a fixed ellipsoid (the
initial ellipsoid state). This situation is precisely the case used for the 2 step procedure
treated earlier. We may thus impose consistency on the equivalent observations and
then use these consistent observations to reconstruct the ellipsoid. An interesting
question is how to interpert such a procedure in terms of the original problem and
how we may implement it recursively. Since the consistency problem is a linear
inequality constrained least squares problem (LSI), such issues seem related to the
development of a recursive LSI procedure. In the case of more general dynamics,
it seems that the corresponding projections of the static problem will not be simple
orthogonal projections anymore.

In the above example we assume that we have perfect knowledge of the dynamics
and drive and the reconstruction seemed quite good. For interest, in Figure 5-21
we show the effect of adding N(0,.04) noise to our assumed dynamic matrix and
drive terms during the reconstruction. This case shows what the effect of imperfect

knowledge of the dynamics and drive is on the reconstruction. This noise level is on
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the order of these terms, yet the reconstruction is not unduly effected. Apparently
the reconstruction is quite robust to such deviations from assumptions. We leave

further analysis of these problems for future work.



Chapter 6

Support Measurements:

Consistency and Curvature

6.1 Overview

In this chapter we shall investigate some problems and issues arising in the use of
support sample observations for the reconstruction of geometric objects. Support
samples result from measurements of the extent of an object or set in a particu-
lar direction u, as shown in Figure 6-1. Such measurements arise in many ways in
image reconstruction problems. In Chapter 4 we examined shadow based problems
involving the silhouette of an object. A silhouette may be viewed as a set of support
observations [8, 7], where the directions of observations u are confined to a particu-
lar subspace, as illustrated in Figure 6-2a. One-dimensional shadows or projections
correspond precisely to a pair of support observations in opposite directions. In the
realm of robotics, these support type measurements can arise from repeated grasps or
probes by a gripper, as shown in Figure 6-2b. Finally, in low dose tomography the line
integral observations may yield little more than shadow information (8], thus fitting
into the silhouette framework above. Even when this is not the case, a preliminary
step of projection support extraction coupled with object boundary estimation may
be useful or desirable [9, 8]. This approach has proven particularly helpful in reflec-

tion tomography from laser range data [12]. These problems all share the common

209
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}

Support Line

——

Figure 6-1: Illustration of a support measurement.

(a)

Figure 6-2: Applications of support measurements.

goal of set reconstruction from support measurements [87, 88, 89]. Besides being of
general interest to computational geometers, set reconstruction from support data is

also fundamental to robot vision [21] and chemical component analysis [89, 90, 91].

Outline

The work in the present chapter follows that of [9, 8]. The study of possibly noisy,
and thus inconsistent, support measurements and the development of the underlying



6.1. OVERVIEW 211

Figure 6-3: Illustration of inconsistent, noisy support measurements.

mathematics and geometry for use in constrained optimization problems is focused on.
The continuous case of the support function and its properties is examined first. The
conditions for a function to be a support function are reviewed in a general setting.
An apparently little known such result for the planar case due to Rademacher and
based on a determinantal inequality (which is also of a classical nature) is presented
and a generalization developed.

After examining the continuous function case, the discrete problem arising from
the sampling of a support function is treated. Such sampling appears because of
the inherently discrete nature of support measurements in the applications under
consideration. Due to the presence of noise, a group of such discrete observations
may not, in general, be consistent, i.e. there might be no object that could have all
the observations as support measurements. Such a situation is shown in Figure 6-3,
where support measurements h;, hy, and h; are mutually consistent but h4 is not.
No object could have all these lines as support measurements. The possibility of such
inconsistent observations leads to the examination of what constraints are required
on a discrete set of support observations for consistency. The explicit statement
of such constraints allows their use in estimation and optimization algorithms. For
example, we might wish to find the set of consistent support values that is in some
sense closest to the given observations. This work is an extension and generalization
of the approach taken in [8], where the planar case was treated.

In addition to the above required constraints, we may wish to add additional
constraints to regularize a problem or improve its qualitatively properties. An impor-
tant constraint is smoothness. Intuitively, smoothness is related to the curvature of

the object. A close connection exists between the constraints for validity of support
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measurements and the curvature of a surface. Our insights and knowledge of these
constraints are used to develop support based curvature notions. Since our mea-
surements are necessarily discrete, our goal is to directly develop discrete versions of
these quantities. Finally, in contrast to this fundamentally local approach, we develop

global measures of smoothness based of the classical isoperimetric inequality.

6.2 Support Functions: The Continuous Case

In this section the properties of support functions are examined. The conditions for a
function to be a support function are reviewed in a general setting, with a presenta-
tion of classical results and formal definitions. An apparently little known result due
to Rademacher for the planar case is given. This result, based on a determinantal
inequality, is interpreted geometrically as a global set of tests for comsistency. An
extension of this planar result to the general dimensional case is presented. The im-
plications of such a set of tests for both planar and 3-dimensional objects is examined.
These classically based results and our interpretation of them is used in the sequel to
guide our examination, interpretation, and treatment of both the planar and three

and higher dimensional conditions for discrete support sample consistency.

6.2.1 Support Function Definition and Properties

As discussed in the introduction, the (reduced) support function of an object may be
thought of as the measure of extent of the object in a particular direction, as shown
in Figure 6-1. For a given set, it is thus a scalar function of direction and hence a map
from R" to R. Formally, the support function of an object is given by the following
definition:

Definition 4 (Support Function) The support function H(v) of an object O C
R™ is given by:

H(v) = supzTv
z€0

where the vector v € R". The reduced support function A(v) is given by

h(v) = H(v/|lv]))
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and represents the distance from the origin of the corresponding supporting hyperplane

to O in direction v.

Thus we see that it is actually the reduced support function that we obtain from
physical measurements. Note that H(v) is easily obtained from h(v) due to the
positive homogeneity of H(v) to be discussed shortly (H(Av) = AH(v) where X > 0).

In fact, the support function is determined by its values on the unit sphere ||v|| = 1.

Relation to Object Boundary

From the definition of the support function, every point z of O must satisfy the
inequalities

eTv < H(v) Vo

which together define the convez hull of the object. This relationship follows from
the fact that the object (J must be contained in the intersection of the support
halfspaces HS(—u,—h(u)), v a unit vector. Thus the (reduced) support function
forms a complete representation of the convex hull of an object, and if the object
is convex, then of the object itself. Since only the convex hull of an object may be
recovered from support information, we really lose no generality in restricting our
attention to convex objects.

A particularly simple relationship exists between the points on the boundary of
a strictly convex object O (one where each support hyperplane has only one point in
common with @) and its support function H(v). In this case, the support function
H(v) will be differentiable and the coordinates of the point p on the boundary of O
at which the support hyperplane with exterior normal v is tangent to the object are

given by [92, 93, 94]
- 0H(v)
Pi= 6’Ui )

Here p; is the i-th coordinate of the boundary point and v; is the ¢-th coordinate
of the vector in the direction of the surface normal at the point. This formula may
be rewritten more compactly as p = VH(v). It should be noted that H(v) can be
differentiable even if O is not smooth [46]. An example of such a case is given in

Figure 6-4, where the object is strictly convex but not smooth at the point p.
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p

Figure 6-4: Illustration of non-smooth convex object with differentiable support func-
tion.

6.2.2 Relation to Curvature

Not surprisingly, the support function of a convex object has a close relationship to
the object’s curvature, see e.g. [92, 27]. Such results are collected here for future
use in definitions of discrete curvature based on support samples. Some notation is
needed to proceed. Suppose the second partial derivatives of the support function
H(v) of an object O exist on the unit ball. Let [H;;(v)] denote the Hessian matrix
(38] of second partial derivatives of H(v) (H;;(v) = 82H(v)/8v;0v;). Further, let R,
k=1,...,(n—1) be the principal radii of curvature [71] of the boundary of O at the
point p(N') with unit outward normal N. In Chapter 4 the curvature of a surface was
represented by the Hessian matrix Ho(p) of a height function in some local coordinate
system. The eigenvalues of this matrix are the principal curvatures of the surface at
p and their reciprocals are the principal radii of curvature.

With these definitions, the principal radii of curvature at p(V) satisfy the equation
|[Hij(N)]— ReI| = 0, i.e. they are also eigenvalues of the support based Hessian matrix
[Hij(N)]. From homogeneity, R = 0 is always a trivial root of this equation so it is
the remaining (n — 1) roots that are of interest. Equivalently to the above, the Ry
are roots of the polynomial

R — Di{(H(N))R" 2 4+ Dy(H(N)R" 2 + -+ (=1)""'D,_,(H(N))

where Dy(H(v)) denotes the sum of all principal minors of order ¢ of the matrix
[Hi;(v)]. From this equation it follows that D,(H(v)) is the ¢-th elementary symmetric
function of the Rj. In particular, we have that

Dn_1(H) = RyR,...R,_; = 1/K(p)
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where K(p) is the Gaussian curvature of O at p. Also:
Dy(H(N))=Hiy(N)+ -+ Hyo(N) =Ry + -+ Roy

where Ry +---+ R,_; is the reciprocal of (n — 1) times the mean curvature at p. Note
that for the strictly convex objects of concern here p identifies a unique N and vice
versa. The implications and specializations for the 2-dimensional case are examined

next.

The 2-Dimensional Case

For the 2-dimensional case (n — 1) = 1 and we have that
Dn_1(H) = Dy(H) = Hi(N) + Ha(N) = 1/K(p) (6.1)

which is the reciprocal of thé curvature of O at p. Recall that this relation only holds
at points of O where the second derivatives of H(v) exist. In the planar case D,_;(H)
and D;(H) are the same since the Gaussian and mean curvatures are the same.

We may obtain an equivalent, perhaps more familiar, expression by parameterizing
the unit normal N by angle §. Making this substitution above yields, in terms of 4,

1/K(60) = hee(8) + h(0) (6.2)
where hgg is the second derivative of the (reduced) support function with respect to

0, the normal orientation. For example, for an ellipse oriented along the coordinate

axes with semi-axis lengths ¢ and b, the support function is given by

h(8) = \/a? cos?(8) + b2 sin?(6)

Applying (6.2) yields K(8) = h*(8)/a?b?. Interestingly, since the area of the ellipse is
equal to wab, this expression is inversely proportional to the area squared.

Since the curvature of the surface of a convex object must always be positive it is
clear that a necessary condition for a function to be a support function is that (6.2)

be positive for all values of the argument and that the function be periodic. It can



216 CHAPTER 6. SUPPORT MEASUREMENTS

also be proved that these conditions are sufficient for a function h(8) or H(v) (with
unit v) to be the support function of a plane convex object [95]. Note that these
conditions are not completely general since they require that the underlying function
possess a second derivative. We shall have more to say about the requirements on a

support function later.

The 3-Dimensional Case

Now we examine the curvature relationships for the 3-dimensional case. For D;, the

sum of the principle radii, we obtain:
D\(H) = Hyy + Hy, + Hys = Ry + R,

where, recall, Ry are the principal radii of curvature of @. Now, for the 3-dimensional
case (n — 1) = 2 so D, is the product of the principle radii and is given by:

_ Hy (N le N Hzg N H23 N H 1 N H13 N
Do(H) = HzigN; szEN; )+ H23§N3 HssEN; '+ HilgN; HssEN; ‘
- RiR, = 1/K(N)

where, as before, H;;(v) denotes the second partial derivative of H(v) with respect
to the elements v; and v; of its argument v. This expression yields the inverse of the
Gaussian curvature of O at p. As an example, consider the ellipsoid oriented along
the coordinate axes with semi-axes of length a, b, and, c. The support function H(N)

of the ellipsoid is given by

2

H(N):JNT[%
0

oo

0
0 | N.

c?

Applying the formula for D,(H) yields the result that (V) = H*(N)/a2b%c2.
Similarly to the planar case, we may parameterize the set of unit normals NV in

R? by the two spherical coordinates angles # and ¢, as shown in Figure 6-5. Making

this substitution in D,(H) above yields an expression analogous to (6.2) and which

we have not seen before for the inverse of the Gaussian curvature as a function of the
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Figure 6-5: Unit normal parameterization.

normal coordinates (6, ¢):
1/K(8,8) = (b + heo) (hgg csc?(8) + hq cot(6) + k) — csc*(6) (has — hg cot(6))’

where the reduced support function A(6,$) now depends on # and ¢ and subscripts

indicate partial differentiation. Similarly, for twice the mean curvature we obtain:
R, 4+ Ry =2h + h¢,¢ CSCZ(G) + hg COt(o) + hge

These continuous expressions will be of use in our development of discrete definitions

of curvature in Section 6.4.

6.2.3 Relation to Area and Volume

Classically, the previous relationships between the support function and curvature of
an object were used in formulas pertaining to area and volume [27]. Some of these
relationships between an object’s surface area and volume are now collected here. We
have a special interest in the 2- and 3-dimensional cases. Discrete versions of these
formulas will be used later in the development of discrete, global notions of object

smoothness.
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In general, the surface measure (area) of a convex object O is given by

Surface Area =/ ldu.’ = l/ ¢ dw
a kK T Ja

where K is the Gaussian curvature of the object, {} denotes the unit sphere, dw is
the corresponding area element, and ¢ is the cross sectional measure (area) of the
projection of O onto the hyperplane through the origin with specified normal. The
last equality above is Cauchy’s formula for the area of the surface O as the average
< ¢ > of the projections of O.

For the n-dimensional volume of O we have [27, 94]:
1+ H
Volume = — / = d 6.3
olume = — [ - dw (6.3)

where X(N) =1/D,,_,(H) is the Gaussian curvature.

The 2-Dimensional case

The planar case is examined next. The following formulas appear in Minkowski’s
work [27]. We use the reduced support function h(#) parameterized by the normal

angle 0. By specializing to a strictly convex object in the plane, one can show that:

27 2m
Perimeter = / h(0)df = %/ (h(0) + h(—0))dd =7 < B > (6.4)
0 0
where < B > is the average breadth or 1-dimensional projection of the object. By
substituting into the general equation for volume, one obtains the planar area enclosed

by the convex object:

]_ 2m 1 2
Area = -/ h(h+ hog) d8 = —/ (h? - h3) do (6.5)
2 Jo 2 Jo

where subscripts denote differentiation with respect to the argument. The last equal-
ity follow from an application of Green’s Theorem [27].
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The 3-Dimensional case

In the 3-dimensional case one obtains for the surface area (see e.g. [27, 92])

Area = / (h2 — %(hi csc?(8) + h3)> dw
a

where (2 is the unit sphere, and dw is the corresponding area element.
For the 3-dimensional case, we may substitute the expression for K in terms of

the polar coordinates § and ¢ presented earlier, obtaining:

Volﬁme =

% [ 1+ o) (csc?(8)has + ho cot(8) + ) = hcsc*(8) (hag — h cot(6))" du

6.2.4 Characterization of Support Functions

A natural question is which functions H(v) could be support functions of a convex
body. Indeed, the problem is classical and the answer is provided by the following

result, again classical:

Result 27 (Support Function Conditions) A function H(v) is the support func-
tion of a convez object if and only if it is defined for all vectors v and has the following

properties:

1. H(0) =0.

2. H(av) = aH(v) for a > 0.

3. Hv+w) < H(v) + H(w), Yv,w € R™.

A proof was given by Minkowski for the 3-dimensional case with other refinements
provided by Rademacher and others (see e.g. [27]). Thus, only positively homoge-
neous, convex functions are support functions and vice versa. It is condition 3 of
subadditivity that is the interesting one, as we shall see later. Note that these con-
ditions are global, in the sense that they must hold for all vectors v and w and thus
involve values of the support function over its entire range. In Result 28 we show

that it is possible to reduce condition 3 to a series of local tests.
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Determinantal Condition for the Planar Case

Rademacher has shown that it is possible in the 2-dimensional case to replace the
subadditivity condition 3 of Result 27 by a determinantal condition on H(v) over
unit vectors. In particular, he showed that under conditions 1 and 2 of Result 27,

condition 3 holds if and only if

H(u,) ui 1 ui
H(uy) u 1 w3 [>20
’ ngag uz 1 ug‘

for all unit vectors u;, uy, and uz [27, 96]. Note that there is no requirement on the
differentiability of H(v). Using the definition of the reduced support function h(v),

this condition is also equivalent to:

h Tlj1 «F
hflfl% Z; 1 Z; >0 (6.6)
h(us) wuz || 1 ug

for all unit vectors u;, uz, and uz. Thus we now have a condition directly in terms
of physically measured quantities. This condition is of interest for its interpretation.

Using a determinantal equality, (6.6) may be rewritten as

B(u:) (ug [ i Z; ]'1 [ /}:%Z;; ] - h(us)) >0 (6.7)

where (3(u;) can be shown to be a non-negative scalar that depends on the u;. The
term in parentheses in (6.7), which we shall call p, is the signed distance from the
support line with normal uz to the intersection of the support lines with normals u,
and u,, see Figure 6-6.

In the plane then, the determinantal condition (6.7), and thus condition 3 of
Result 27, requires that support functions satisfy an intuitive notion of consistency
(as illustrated in Figure 6-3) for all triples of samples of the function. This intuition
provides a geometric condition for a function to be a support function in the plane,
but it is still a global condition, in the sense that all possible combinations of samples

must be checked. An equivalent local result is given in Result 30.
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Figure 6-6: Illustration of 2-dimensional determinantal condition.
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Figure 6-7: Difference between 2- and 3-dimensional situation.

Higher Dimensions

We now turn our attention to finding an equivalent of the determinantal inequality
condition (6.6) for the higher dimensional case. Unfortunately, in three and higher
dimensions the exactly analogous condition (i.e. validity of such a determinant in-
equality for all vectors u;) has been shown by Rademacher to be satisfied only by
the support functions of balls [96]. We identify the difficulty in directly extending
this result and present a natural generalization of condition (6.6) that is valid for all
dimensions. The result appears to be new.

The difference between the two and higher dimensional cases is that in the plane,
given three vectors, one vector can always be written as the convex combination of
the other two, as shown in Figure 6-7a where w is in the positive cone of u and v.
In higher dimensions this is not necessarily true, as illustrated by the combination

of normals in (b) of the same figure. If we consider the geometric interpretation of
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the test, it seems reasonable to suppose that by restricting our attention to groups of
vectors for which this cone condition is satisfied, we might obtain the desired result.
This is precisely what we do, yielding the following new result:

Result 28 (General Inequality Condition) A function H(v) is the support func-
tion of a convez object if and only if it is defined for all v and has the following
properties:

1. H(0) = 0.
2'. H(av) = aH(v) for a > 0.

3'. The following determinantal inequality is satisfied for all (n + 1)-tuples of unit

vectors u; with one in the full positive cone of the others:
H(u) of u
H(us) u;r 1 uz'
H(un41) “11-:+1 1 u£+1

In a finite dimensional space a cone is said to be full if it cannot be contained in a
proper subspace. The proof of the result is in Appendix 6-A. As before, there is no
requirement on the differentiability of H(v).

Since condition 3' of Result 28 uses only unit vectors, it is equivalent to the
following condition on the reduced support function of H(v):

' >0 (6.8)
h(tng1) ugyy {11 iy,
for all unit vectors u; with one in the full positive cone of the others. Note that our

condition also recovers the planar case. Assume u,,; is in the positive cone of the

remaining {u;}. By using the same determinantal equality as before, we may rewrite

(6.8) as
i
B(us) | ul,, u .:uz — h(tpgs) | >0

-1
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Figure 6-8: Illustration of 3-dimensional determinantal condition.

where again the scalar function 3(u;) is non-negative. The second term may be
naturally interpreted as the signed distance p, positive in the direction of u,y1, from
the support hyperplane with normal 4,41 to the point determined by the intersection
of the hyperplanes with normals given by u;, 1 = 1,...,n, as shown for the n = 3
case in Figure 6-8.

Condition 3' of our Result 28 thus generalizes our intuition of the planar case to
arbitrary dimensions. As in the planar case, this condition is still a global one, in the
sense that all (n + 1)-tuples of vectors satisfying a positive cone condition must be
checked. In the following sections Result 28 is used to develop a connection between
the conditions that characterize a support function and the consistency of a given set
of support samples. This section concludes our examination of the classical support
function results. Next we turn our attention to the discrete case of a sampled support

function.

6.3 Consistency of Support Samples

In this section the discrete case arising from the sampling of a support function is
focused on. Due to the presence of noise, a group of such discrete observations will
not, in general, be consistent, i.e. there might be no object that could have all the
observations as support measurements. To be precise, we term a set of support
samples consistent if there exists a valid support function whose values at the sample

points match the given set. An example of such a situation was given in Figure 6-3.
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As a result of such potential difficulties with noisy support measurements, our main
interest is solving the following problem, phrased in terms of the reduced support

function:

Problem 9 (Support Consistency) Given a set of samples {h;} in directions {u;},
determine if there ezists a valid support function h(v) such that h(u;) = h;.

One obvious approach we could take is to attempt to explicitly find offending hyper-
planes, such as A4 in Figure 6-3. We show that this problem is equivalent to finding
non-binding constraints in a linear programming (LP) problem. It turns out that this
task is computationally expensive, essentially necessitating the solution of a dual LP
problem itself. Tractable probabilistic approaches exist however, and are presented.
While partially overcoming the problem, these approaches are unattractive for use in
constrained optimization.

As a result, the explicit search for the offending support values is abandoned,
and instead tests or constraints are developed which simply tell of the ezistence of
inconsistency. This approach is actually preferable since it does not attempt to assign
the inconsistency to any particular measurement. Different optimizations are free to
use the conditions as a constraint in the reconstruction of a consistent set as they
see fit. Such a constraint was developed for the case of planar objects with support
line observations at equal angles in [8]. This work on the 2-dimensional problem is
review and linked with our classical results on support functions. The test in [8] is
reinterpreted as a series of local constraints on the support observations. The notion
of the locality for this planar case is trivially imposed by the monotonic ordering of
the corresponding support line angles.

The previous 2-dimensional development is then extended to observations at arbi-
trary angles and in arbitrary dimensions, resulting from the use of support hyperplane
samples. A corresponding local consistency constraint for the general case involving
the support hyperplane measurements is developed. Defining the notion of locality
of the support hyperplanes is more complicated for the general case, as there is no
natural way of ordering the higher dimensional support sample observations as there
was for the 2-dimensional case. The key is a certain generalization of the notion of
nearest neighbor utilizing a simple positive cone condition on the respective support

sample normals.
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6.3.1 Finding Non-Binding Constraints

Certainly one approach we could take to testing for consistency of a set of support
values {h;(u;)} is to attempt to explicitly find those support hyperplanes which are
inconsistent. This idea is illustrated in Figure 6-3, where hy, hs, and hj are consistent
with the shown object (and thus with the corresponding support function of the
object), while h4 is inconsistent with any object. Note that we implicitly have to
know what the “interior” of the set is, i.e. where the object is supposed to be. We
assume that our support observations are directed, in the sense that we know which

side of them the underlying object is on.

Direct Computation

Essentially what we are doing when we say that h4 is inconsistent is implicitly in-
tersecting the directed halfspaces provided by the h; to obtain a convex polyhedral
region and then attempting to identify those hyperplanes that do not contribute to
this region. This problem arises in connection with linear programming (LP). In the
LP context the intersection region described above corresponds to the feasible region
and the hyperplanes arise from the linear inequality constraints of the optimization
problem. The desire is to eliminate redundancies in the constraint set. Such redun-
dancies appear in the form of inequalities which can never be binding. The motivation
in the LP case is to reduce the computational burden in solving a problem and the
potential benefits are enough that some form of (suboptimal) preprocessing is often
done in practice. Even then, the study of such problems from the point of view of
the individual constraints is relatively young, starting in the early sixties [97, 98].

Much of the work in the area is devoted to characterizations of redundant and non-
redundant constraining hyperplanes (consistent and inconsistent in our framework).
The following lemma is one of the original such examples (see e.g. [99]). We phrase
it in our framework.

Lemma 7 (Turnover Lemma [98]) The support sample pair (uk,hy) is inconsis-
tent in the set {(u;, hi)} if and only if the following system of inequalities has no
solution

!

uiz < hiy, 1#£k

upx > hy

ey
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This lemma shows that a redundant constraint is related to the feasibility of an LP
problem. Other results along these lines attempt to identify which variables in an LP
problem are “permanently basic,” (that is, are retained in the simplex tableau and
hence binding [100]) or to solve an equivalent dual problem [101].

Unfortunately, using such characterizations to explicitly find redundant bounding
hyperplanes in practice demands the solution of other related LP problems. In fact,
the testing of each hyperplane requires the solution of a separate LP problem [99],
in general (n + 1) LP problems need to be solved to check all the hyperplanes. Un-
fortunately, as stated in [99, pg. 69] for the LP problem, “there are no deterministic
methods to identify nonbinding constraints without finding the optimal solution to
the problem.” In short, the associated computational burden is large enough that

other, heuristic approaches are commonly used as preprocessors for LP problems.

Hit-and-Run Approaches

As an alternative to exhaustively identifying the redundant constraints these methods
work by attempting to identify the non-redundant bounding hyperplanes. These
approaches are probabilistic, in the sense that they attempt to identify all the active
constraints in the limit of some process [99]. These approaches work as follows. A
random set of interior points is found and a search is carried out from each of these
points in a random direction. The constraint first encountered in the random direction
(and its opposite) are identified as being nonredundant and a new point interior point
is generated. The different methods mainly differ in how they generate the sequence of
random directions. For example, in the hypersphere directions method, the directions
are generated from a uniform distribution on the hypersphere, while in the coordinate
directions method they are chosen uniformly from the coordinate direction vectors
and their negatives. In both these cases, the next interior point is chosen randomly
along the line connecting the current boundary intersection points. These methods
are referred to as hit-and-run algorithms, see e.g. [99, 102].

It has been shown that both the above mentioned algorithms generate a sequence
of points that has a limiting distribution which is uniform over the interior of the
underlying polytope. These results imply that both of these methods identify each
nonredundant constraint with probability one as the number of tests goes to infinity.
The utility of these approaches is the speed with which they may be implemented. An
important question, of course, is when to terminate the procedure, since in general

the true number of binding constraints is not known apriori. In [102] an optimal
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Bayesian stopping criterion for these type of approaches is found. The algorithms
may be terminated when the optimal Bayesian estimate of the number of undiscovered
nonredundant constraints is 0. Such an approach appears to work well in practice.
Despite their interest and obvious relation to the issues of this chapter, there are
several problems in applying the approaches of this section in our setting. Firstly,
the redundant hyperplanes are only implicitly (since the hit-and-run methods find
the non-redundant ones) or numerically identified. This means that we cannot conve-
niently incorporate such conditions into a constrained reconstruction setting. There
is also a fundamental bias in the orientation of attempting to find inconsistent hyper-
planes, in that all the error is assumed to lie in the inconsistent support measurements,
with the other, “consistent” measurements assumed perfect [8]. It is much easier just
to test for consistency of the entire set rather than to try assigning the inconsistency
to a particular measurement. Next we consider such tests, suitable for optimization
and straightforward to implement. The results presented next may even prove useful

in the original LP problem we considered here.

6.3.2 Identifying Consistency

Here attention is turned to overall tests for consistency of a set of support samples
solving Problem 9. Such a test for consistency actually exists in Result 28. We
need only apply it to the given support samples h; (with a certain positive cone
constraint) to see if they are consistent. Such an application yields the following

corollary of Result 28.

Corollary 8 (Discrete Consistency) Given a set of support samples h; with as-
sociated unit normals u; € R™, suppose that each of the u; is contained in the full
positive cone of at least one n-tuple of the remaining normals. In this case, the set 6f
samples is consistent if and only if condition 3' of Result 28 is satisfied by the samples
of the set.

If there is a valid support function with the given samples then these samples will
certainly satisfy condition 3'. Conversely, if the samples satisfy condition 3’ then
the polyhedron obtained by intersecting the corresponding halfspaces yields a valid
support function whose samples match with the given samples.

The hypotheses of the corollary may even be weakened a little to extend the

discrete result to a wider class of problems. Since in the discrete case we do not
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Figure 6-9: Illustration of the necessity of an addition condition.

have access to samples at all orientations, to produce a consistency test we need a
condition to ensure that the consistency of each sample is checked. Such a condition
was provided in the corollary by the requirement that every normal be in the full
positive cone of at least one n-tuple of the remaining normals. In this way the
positive cone test of 3' is assured of checking all the samples. One way of viewing
such a condition is that we require that support samples be taken with a certain
minimum of uniformity and number. For the planar case of [8] such a constraint was
effectively imposed by having at least three samples every 7 radians, for a minimum
of 5 samples total. A situation not satisfying this condition, which might certainly
arise in practice, is shown in Figure 6-9, where none of the u; is in the positive cone
of the others. Since none of these normals is in the positive cone of a set, there is
nothing to which we may apply the determinant test 3’ of Result 28!

The problem is that, in reality, to mimic Result 27 we should be checking all cone
inclusions, both positive and negative. Because of the convexity of the underlying
object, however, when the support sample normals are close enough together check-
ing only the positive cone cases suffices, as shown by the corollary. In particular,
this is the situation for the continuous support function condition of Result 28. As
a consequence, instead of constraining the sampling, as discussed above, we could
expand the test over both positive and negative cone inclusions. In fact, to reduce
the number of tests we could use the following compromise. First, all samples with
normals in the positive cone of some n-tuple would be checked as before. Then, if
there were any remaining samples whose normals were not in the positive cone of some
set, these samples would be checked with respect to all groups in which they were in
the negative cone, with the inequality of the test in 3’ now reversed. Finally, if there

were normals which were not in the positive or negative cone of any set, then testing
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them would be irrelevant anyway (consider the planar case with two samples at right
angles to each other). While these ideas provide a clean way to apply the discrete
test to any situation (including that of simplices as pictured in the Figure 6-9), for
most practical cases, where the original positive cone restriction is satisfied anyway,
this process unnecessarily increases the complexity of the process. For this reason,
in the present work we concentrate on the former approach of assuming that every
normal is in the full positive cone of at least one n-tuple other normals.

While the inequality tests resulting from Corollary 6 are convenient, in that they
are simple linear functions of the support measurements k;, the procedure is prob-
lematic in that all positive cone combinations must be checked for consistency. The
number of such tests grows combinatorially with the number of observations. For
example, in the planar case with support values equally spaced in angle, if m is the
number of observations then the number of tests grows as m?/8. This growth becomes
worse in higher dimensions because of the increased number of degrees of freedom.
As a result we seek a local test, utilizing only local support information in its applica-
tion. This approach may be viewed as a discrete version of the curvature constraint
discussed in connection with (6.2) (though it does not require differentiability of the
underlying support function).

Local Tests: The 2-Dimensional Case

In the plane we may parameterize unit vectors u; by their angle 6 so that u; =
[cos(8;), sin(a,-)]T. Suppose the §; are chosen so that 8,,, — 0, < w/2, with 6,,, > 0,.
Applying Corollary 6 to this planar case, we obtain the following consistency condition
for a set of support samples which must hold for all ordered triples (8;,8;,6), where

the normal associated with 6; is in the positive cone of the other two normals:

[Sin(AokJ‘) — sin(Aok,- + AOJ-,-) + Sin(Aaj,r)] X
[ sin(AGkJ-) —sin(Aij —+ AG,-,-) sin(AG,-,—) ] [ h::_l ] Z 0 (69)
+1

1

where Af;; = 0; — 6; is the angular difference between normal j and normal .

The test associated with (6.9) is not a local test since all triples must be checked,
not just adjacent ones. Such a local test was given in [8] for the planar, equal-
angle case (but its significance as a local test was not brought out by Prince). If

h = [hy,hy -+, k)T is the vector of support samples (termed the support vector [8]),
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then a constraint on h was given as @h > 0 where the matrix () may be written as

sec(_Alo)/Z SCC(—AIO)/Z sec(gﬂ)/2 SCC(Al)a)/Z
0 sec(A8)/2 -1 :
9= : 0 sec(Af)/2 0 (6010)
0 : sec(Af)/2
| sec(Af)/2 0 0 -1 ]

and A@ > 0 is the uniform angle increment between sample normals. From the
circulant structure of ) we may interpret this as a local test, since in each row only
adjacent support samples are involved. In fact each row of Qh > 0 is a test between

neighboring samples of the form
hii 1
[ sin(Af) —sin(2A8) sin(Af) ] [ f’:i ] > 0.
i1

Comparing this expression with the expression in (6.9) applied to the planar, equally
spaced normal case (where the first term is always positive), we see that the result in
(8] serves to localize the global condition of Result 28. Geometrically, this test is just
the one presented in Figure 6-6, only applied locally (and for the equal angle case).
Thus we have the observation that, in the plane, if a set of equal-angle samples are
consistent locally (among adjacent triples) then they are consistent globally (over all
groupings). .
Note that in contrast to the approaches discussed in Section 6.3.1, this type of
test does not identify which constraints are inconsistent. To see this, consider the
situation shown in Figure 6-10, where the intersections of the adjacent support lines
used in the local tests are shown as the points p; and the object is assumed contained
in the shaded region. The support measurements with normals wu,, us, ug, would
fail the local test at point p,, since the line associated with u; is behind p, (in the
direction given by u3). While this failure does confirm the existence of inconsistency,
note that the set of samples associated with w;, uy, and us, would pass their local
test at p;. The distance from the u, support line to p; is positive in the direction
given by u, so the local test is satisfied. Thus, while the sample with normal u, is

also inconsistent, it is not identified by the local tests.
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Figure 6-11: Graphical representation scheme for normal relationships.

6.3.3 Local Tests: The General Case

The above planar local test is now extended to the general case of arbitrary dimension
and arbitrary normal direction. These extensions serve to unify the material on sup-
port consistency presented thus far. The key to this generalization is the observation
from the planar case that the structure of the local and global tests is the same, the
only difference being that one is applied locally and the other globally. The general-
ization thus reduces to showing that local consistency implies global consistency.

A result is first given that allows satisfaction of the determinant test (6.8) over
given sub-domains of the Gaussian sphere to be extended to satisfaction over a larger
domain. We term this result a consistency merging result. Before presenting the result
we provide a geometrical description of it. To this end, consider the situation shown in

Figure 6-11 for the 3-dimensional case. The normals to support planes are mapped to



232 CHAPTER 6. SUPPORT MEASUREMENTS

Figure 6-12: Illustration of meaning of Result 29.

points representing their tips on the Gaussian sphere, as shown. A spherical triangle
connects these points on the Gaussian sphere. We represent this spherical triangle by
a corresponding planar triangle. Any point in the positive cone of the vertex normals
is a point in the triangle and vice versa. For example, in Figure 6-11 u4 is in the
positive cone of u;, us, and us.

With this scheme, the result in three dimensions is illustrated in Figure 6-12.
Here uq is in the positive cone of {uy,us,us} and conversely us is in the positive
cone of {uy,u3z,us}. In three dimensions, the result states that, given the above
inclusions, if {u;,u3,us,us} form a consistent set and {uj,us,us,us} form a consis-
tent set then {u;,us,us,uq} also form a consistent set (and by symmetry so does
{u1,uz,us,us}). Thus, consistency over the smaller triangles implies consistency over
the larger triangle. In the higher dimensional cases the triangle of Figure 6-12 be-
comes an (n — 1)-dimensional simplez and the interior triangles sub-simplices. The

full result is as follows:

Result 29 (Consistency Merging) Given a set of (n+2) support samples h; with

associated unit normals u;, suppose u,y; € conet{uy,..., un_1,Unt2} and Upyz €
conet{ug,...,Upn, Uns1}, and that both these cones are full. If both the sets of support
samples {h1,...,hn_1,hnt1, hny2} and {hay ..., hny hny1, hnya} are consistent then so

are the enlarged sets {hy,...,hpyhny1} and {h1,... hn,hny2}-

In the above, conet denotes the positive cone of a set and by consistency of a set
we mean satisfaction of the determinantal inequality (6.8) by the set. The proof
of this result is in Appendix 6-B. Notice that under the conditions of the result
Uns1 € conet{uy,...,u,} and u,q2 € conet{uy,..., u,}.

To proceed with the generalization of the planar local result, a suitable notion

of “local” needs to be defined for the general case, or, in the context of Result 29,
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Figure 6-13: Illustration of a local family

we need to know the minimal domain over which consistency must be satisfied. In
the planar case this definition of locality was straightforward, depending on normal
ordering. In higher dimensions, however, the situation is not so clear. Adjacent
faces do not necessarily correspond to nearest normals anymore. A natural notion of
locality is suggested both by condition 3’ of Result 28 and by Result 29 with their
emphasis on a positive cone condition on the unit normals. Given a normal, we define

what we mean to be “local” to that normal in the following®:

Definition 5 (Local Family) Given a set of m distinct vectors {u;} in R* and a
member from this set uy, we define the local family LF,, with respect to this member
to be the set of all distinct (n + 1)-tuples of vectors {u;} from the original set with the
property that u, is one element and the remaining n vectors contain u;, and only u;

in their full positive cone.

Thus, the local family corresponding to the member ui is a set of (n + 1)-tuples,
containing uj and with the property that the only element of the set contained in
their positive cone is the generating element u;. In terms of the paradigm of Figure 6-
11, a local family is the set of all (spherical) triangles (simplices in higher dimensions)
containing the given normal u; but no others, as shown in Figure 6-13. In contrast
to the planar case, where there was just a single local neighbor to test, this notion
of locality implies a family of tests at each normal, one for each (n + 1)-tuple in the

local family.

Local Constraint

With these ideas of locality defined we are prepared to present a result generalizing
and extending the previous planar condition showing that local consistency and global

consistency are equivalent.

LThis idea of a local family was suggested by Sanjeev Kulkarni.
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Result 30 (Local Consistency <> Global Consistency) Given a set of sup-
port samples {h;} with associated unit normals {u;} in R", suppose that each element
of the set uy, is in the full positive cone of at least one n-tuple of the remaining u; (so
no local family is empty). Then the overall set of samples is consistent if and only
if for each normal uy, all elements of the local family LF,, are consistent. In other
words, the overall set is consistent if and only if all elements of all local families are

consistent.

Again, consistency of a set means satisfaction of (6.8). Thus, we have shown that a set
is globally consistent if and only if it is locally consistent, where locality is defined in
the sense of the local family of a normal. The proof of the result is in Appendix 6-C.

Note that each of the tests in Result 30 is linear in the support samples h;. As a

result, given a specific set of m samples, we may write the corresponding test as
Qh>0 (6.11)

where h is again the support vector composed of the stacked samples ; and @ is an
m X m sparse matrix guaranteed to have only n + 1 non-zero entries in each row. The
matrix @ is thus the generalization to higher dimensions of the matrix @ given for
the planar case in (6.10). Since the definition of the local families depends only on
the sample normals u; and not on the support samples themselves, Q depends only
on the normals u;. Consequently, once these directions are fixed the matrix Q may
be precomputed and applied to many different sets of measurements.

This form of constraint is particularly convenient for constrained support recon-
struction. For example, suppose that we are given a set of noisy support observations
in the vector y and that we wish to reconstruct the least square error estimate of
h from these observations subject to consistency. The resulting problem combines
(6.11) with a least squares criteria to yield the following linear inequality constrained
least squares problem, which is straightforward to solve:

arg min |h — y||,
hQ>0

This model of known u; but noisy h; is reasonable for many problems, particularly
medical tomography problems, where the user may exercise great control over the

orientation of the data acquisition. The situation is obviously more complicated if
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we consider the, perhaps more realistic situation, of noisy measurements h; coupled
with imperfectly known geometry u;. Such situations arise in geophysical problems
and target tracking [12].

As an example of the savings involved in using a local test instead of the general
global result of Corollary 6, we consider the situation presented by the icosahedron
in 3 space. The icosahedron, with 20 faces, is the completely regular polyhedron with
the largest number of equally spaced faces and thus normals. Applying Corollary 6 to
this case with 20 normals would yield a total of 1620 tests of the type (6.8). In other
words, the support vector would have 20 elements and the corresponding matrix @
of the matrix inequality would be 1620 x 20. In contrast, using the local test given
by Result 30 results in only 320 inequality tests, or a 320 X 20 matrix Q. This is still
large, but over a factor of 5 better than before.

Identifying the local tests in practice is laborious but straightforward. For each
sample normal u) one may exhaustively test all possible remaining n-tuples to see if us
is in the resulting positive cone. We may test if uy is in the positive cone of a given
n-tuple by checking the coefficients of the vector [uq|us--- |un) 1wy for positivity,
where the columns of the matrix [u;|ug| - [un] are composed of the vectors of the
n-tuple. As discussed above, this need only be done once for a given set of sample

directions.

6.4 Discrete Curvature Concepts

In this section, discrete concepts of surface curvature are examined. Our aim is to
develop discrete measures of object smoothness for inclusion in a constrained polyhe-
dral, support based reconstruction. One approach taken is to perform this analysis
locally, by minimizing the maximum curvature value over the object surface. This
operation produces smooth objects by preventing the points of high curvature asso-
ciated with roughness. The close connection between support consistency and local
surface curvature shown in section 6.2.2 is exploited to develop discrete, support based
notions of surface curvature. The above smoothness constraint may then be phrased
in terms of the minimum value of the discrete curvature allowed in the reconstructed
object. Such an approach was taken for the planar case in [8). Both this planar case

as well as the 3-dimensional one are examined here.
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Figure 6-14: Polygonal object resulting from support samples.
6.4.1 Planar Case

In this section discrete notions of curvature for the planar case are examined. A
definition of discrete curvature was presented in [8] based on the planar support
consistency tests given earlier. Both this definition and some alternative ones are
presented. Limiting analyses of these different curvature ideas are given which suggest
the desirability of our formulations over the previous work. With this background,
the 3-dimensional case is treated.

Equal Angles

The curvature K of the boundary of a planar object may be defined as the rate of

change of the normal angle with respect to arc length along the boundary

where 8 is the angle of the boundary normal and f is the boundary measure of the
object. In the discrete case, the set of support samples defines a polygonal region,
formed by intersecting the directed support halfspaces. Consider the section of such
a region shown in Figure 6-14. We can see that, roughly speaking, in going from
u;_1 to u; the normal has gone through an angle change of Af; = 6; — 6;_, over the
length of the face f;. Using this reasoning, the ¢-th discrete curvature value K,(2) was
defined in (8] for the planar case as:

A#;
fi

Ki(?) = . (6.12)
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where the subscript 1 is used to distinguish this definition of discrete curvature from
others to be proposed. If p; is the ¢-th entry of the vector Qh that arises in the planar,
equal-angle inequality test defined in Section 6.3.2, where ) was defined in (6.10),
then one can show that

Ka(i) = Ad t;n(AG).

Pi
Geometrically, p; was defined in Figure 6-6 as the distance from a support line to the
intersection point of its neighbors. Thus, the curvature XC;(z) is related to the support
vector h. In fact, analysis in [103] shows that this definition of ;() converges to the
true planar curvature expression (hgg + h)~! as Af goes to zero. In [8] only the equal
angle case was considered. We now examine the properties of this curvature estimate

under the more general condition of different A6;.

Convergence Analysis

To investigate the convergence properties of different definitions of curvature, they
will be applied to a general parabola centered on the origin and aligned with the
coordinate axes. Since the surface of any smooth, convex region may be locally
modeled to second order as a parabola, limiting properties obtained on centered
parabolas will match those of any smooth surface to second order. Since curvature is
a second order property, no generality is lost by restricting our attention to such an
analysis. This use of a second order Taylor representation of a surface as a quadratic
function is the same technique we used in Chapter 4 for our curvature analysis. For
the planar case the parabolic function z = 1gz? is used, as illustrated in Figure 6-15
along with representative support samples. The curvature of this boundary at the
origin (the location of the k-th sample and the assumed point of interest) is given by
Kirue = 9.

Limiting properties of K;(i). First, the curvature definition K,(7) of (6.12) is
applied to the quadratic boundary at the origin, see Figure 6-16. In Appendix 6-D.1

we show that

2g9A8;
tan(Aﬂi) + tan(Aﬂ,—_H)

’Cl(z) =
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Figure 6-16: Definition 1 of discrete curvature, K;.

Let Af;y; = a/A#b; so that the scalar & measures the relative rate of convergence of

the two angles. Now in the limit as Af; goes to zero we obtain

1
im Ky(i) = 2g——.
Am Ka(i) = 297 T
Thus the correct curvature is obtained only in the case that a = 1, that is, when the
convergence rates are equal. In particular, this equal convergence rate is true for the
equal angle case investigated in [103]. In general, however, unless we can assure this

equality in the limit, the definition K;(z) will give erroneous results.
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Figure 6-17: Definition 2 of discrete curvature, XC,.

Definition K;3(7). The limiting problems seen above lead us to consider a different
definition of discrete curvature. The previous definition was skewed to one side of the
face. To correct this situation a face centered approach is considered, as illustrated in
Figure 6-17. Here a derived “normal” is defined at each vertex which is the average
of the adjacent face normals, (u; + u;_1)/2 and (w41 + u;)/2. The change in these
derived vertex normals is then taken as the normal change associated with a face.
This resulting angle change may be shown to be just the average of the adjacent
angle changes (A#f; + Af;,1)/2. The resulting definition of curvature is then given by

Af; + Af; 44

’Cz(l) = 2f,

The limiting curvature is now examined. Again, applying the definition of K, to the

quadratic boundary, we show in Appendix 6-D.2 that for this case one obtains:

9(Ab; + Abiy)

Ky(i) = tan(A6;) + tan(A6;,4)

Again letting Af;,; = aA#¥;, so the scalar & measures the relative rate of convergence

of the two adjacent angles, we obtain in the limit as A#f; goes to zero:

lim K,(i) = g.

A6; -0
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Figure 6-18: Definition 3 of discrete curvature, 3.

This expression is independent of a, the relative rate of convergence of the two
angles. The definition KC5(¢) should thus be more robust to the details of how our
discrete, support based representation of an object approaches the underlying object.
In general we would expect the curvature measure K5(z) to be better behaved than
the previous definition XC;(z). With this success, we try another definition, actually
the dual of the present definition K,(7).

Definition K3(i). The dual formulation to that used for K,(¢) is now examined.
Whereas the definition KC»(2) was a face centered definition, a vertez centered definition
is now considered, as shown in Figure 6-18. Instead of averaging the turning angles
and combining this average with the given face length as we did above, here the face
lengths are averaged and combined with the angle change at a single vertex. The

resulting definition of curvature is given by:

, 2A0;
Kali) = fioi+ fi

To analyze the limiting properties of this definition the definition X3 is again applied
to a quadratic boundary. In Appendix 6-D.3 we show that for this case the discrete




6.4. DISCRETE CURVATURE CONCEPTS 241

curvature 1s:

4 arctan (4—15 ::;z_';-;l-l)
(Zipr — mi)\/(gzwiz +1) + (2 - mi—z)v (g%, +1)

where the z; are the  coordinates of the points of tangency, as shown in the figure.

We work with the x; for this case because of the difficulty of writing these expressions
in terms of the A#,. Note that we now have a second order expression in the sample
values, in the sense that support values up to two points away are involved. This
involvement is necessary to establish the lengths of the segments f; and f;_;.

For convergence analysis let the different # coordinates be related as follows:

ziy1 = zi/a 0<a<l
i, = =Pz 0<p
iy = miafy 0<y<1L

With these relationships, it is shown in Appendix 6-D.3 that as z; goes to zero we

obtain for the limiting curvature the value

. i day(B +1)
lim K5(7) = .
21230 3(1) gaﬁ'y +af+ay+y

The proper curvature value of g is obtained if and only if

dy(B+1)
afytef+ay+y

This expression defines a family of correct convergence routes, and it thus lies between
the situation presented by the definitions of Ky(z) and K,(¢). In particular, one
possible choice of the convergence parameters satisfying this constraint is § = 1 and
a = v = 1/3. With this choice z;_; and z; approach the origin at equal rates from
either side, and the outermost points are a factor of three farther away then the inner

ones.
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Figure 6-19: Definition 4 of discrete curvature, Kj.

Definition K4(i). The previous definitions of discrete curvature were primarily ge-
ometric in origin, based on direct formulations of the normal change per unit or
arc length. Here an algebraic approach is examined. Recall that the curvature of
a smooth planar object was given in terms of its support function in (6.2) by the

expression

K(8) = [heo(8) + R(6)]

where hgg was the second derivative of the (reduced) support function with respect to
6. The present idea then is to use a second difference approximation to the term hgg
to obtain a discrete analog to this formula. The resulting discrete curvature definition

then becomes: .

h —
k+1 — 2he + he_s the

A s1 A0

Ki(2) =

We now apply this definition to the parabolic boundary to study its limiting behavior
(see Figure 6-19). In Appendix 6-D.4 we show that the resulting curvature is given
by the expression:

2gAG;AB;1 cos(A8;) cos(Abi4n)

Ka(i) = cos(Ad;) sin?(Af;11) + cos(Ab;y1) sin®(AF;) .
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Setting A#;,, = aA#b; and letting Af; approach 0, we obtain for the limiting curvature

As for the definition Ky(7), the proper curvature is obtained in the limit if and only
if a =1.

Our convergence analyses are meant to be illustrative of the potential problems
with certain intuitive notions of discrete curvature. In particular for the equal angle
case treated in 8] many different definitions of curvature yield correct limiting results,
while in the general angle case one must be more careful. This is particularly trou-
blesome for the 3-dimensional case. In three and higher dimensions the only regular
tessellations of the sphere are the Platonic solids (or their generalizations [104]. The
most finely tessellated of these, the icosahedron, has only 20 faces. In general then,
for the higher dimensional cases it is impossible to achieve complete regularity in the

limit, and so we desire curvature definitions that do not require it.

6.4.2 3-Dimensional Case

One approach we may take in the higher dimensional case is to couple the planar
results of Section 6.4.1 together with the standard definition of planar normal cur-
vature [71] to immediately develop discrete definitions of surface curvature. Such
an approach yields an eztrinsic definition of curvature. A discrete intrinsic notion
of (Gaussian) curvature is also developed. Since explicit limiting analyses for the
3-dimensional cases appears much more complicated than for the planar case, we

confine ourselves here to general remarks.

Planar Extensions: Extrinsic Curvature

Unlike the planar situation, in the 3-dimensional case there are multiple notions of
surface curvature. One approach to capturing the curvature of a surface is to examine
the properties of curves on the object’s surface. In particular, the normal curvature
of a surface at a point p is defined as the curvature of the planar curve obtained as
the intersection of a plane containing the surface normal at p with the object, see
Figure 6-20. This curvature is clearly a periodic function of the orientation of the

intersecting plane about the normal. For a smooth convex object there are only two
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Figure 6-20: Illustration of normal curvature.

stationary points in the resulting curvature value as the plane is turned around the
normal. These values correspond to special orientations of the plane which are at
right angles to each other. The resulting maximum and minimum values of curvature
are termed the principal curvatures of the surface and the corresponding directions of
the intersecting plane the principal directions [T1]. The principal radii of curvature
R, were discussed earlier in connection with the support function. These values are
just the reciprocals of the principal curvatures.

The principal curvatures and directions so defined appear in different definitions
of surface curvature. The two principal values themselves are often used as a measure
of how much the surface curves in certain directions. In fact, we may obtain the plane
curvature for any orientation of the intersecting plane in Figure 6-20 from knowledge
of only the principle directions and curvatures (a result known as Euler Theorem [73]).
These values thus completely characterize the curvature of the surface at p. Further,
knowledge of these values is equivalent to knowledge of the Hessian of the surface
at p and, as we discussed in Chapter 4, completely characterizes a convex surface
if it is known at all points (at least to within translation). Often scalar functions
of the principal values are used to obtain a scalar measure of the surface curvature,
with the associated directional information discarded. A common function is the
average of the principal curvatures, termed the mean curvature. These definitions of
surface curvature are extrinsic, in that they depend on the embedding of the object
in the underlying space. For example, these definitions give different values for the
curvature of a cylinder and a plane, surfaces that cannot be distinguished from local

measurements alone.
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Figure 6-21: THustration of discrete planar curvature.

The above notions of surface curvature directly depend on planar definitions of
curvature through the use of the intersecting plane. In the same way, any of the pla-
nar definitions of discrete curvature may be immediately coupled with an intersecting
plane to develop a corresponding discrete definition of surface curvature. The inter-
section of such a plane, containing the surface normal of a face, with the polyhedral
object resulting from a set of (consistent) support measurements will result in a plane
polygonal curve, as illustrated in Figure 6-21. A planar definition of discrete curva-
ture applied to this polygonal curve yields a discrete normal curvature. The overall
maximum and minimum of the values of this curvature obtained as the plane rotates
around the surface normal may then be taken as definitions of the discrete principal
curvatures. In this operation we take the surface normal to be at the center of each
face. An interesting question is the relationship between these (perhaps multiple)
maxima and minima and the underlying polyhedron. For example, a regular cube
will have two maxima, corresponding to orientations of the plane perpendicular to
each edge, and a two minima, corresponding to orientations of the plane along each
diagonal.

This definition of discrete surface curvature is well defined if the corresponding
definition of discrete planar curvature is. The discrete plane curvatures will converge
to their true values as the polyhedral approximation approaches the underlying shape
if and only if the planar definitions also have this property. In particular, functions
of the principle curvatures, such as the mean curvature, also approach their correct
values as the discrete planar curvatures approach their individual correct values. As
a result, our analysis of the planar case is of direct use for these definitions of surface

curvatures.
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Figure 6-22: Mean curvature vector.

We mention another discrete definition of the extrinsic mean curvature which does
not depend on the above planar arguments. Suppose e;; is the directed edge between
faces of a polyhedron with unit normals «; and u;, where the orientation of the edge is
induced by the normals, as shown in Figure 6-22. In [105] the mean curvature vector
is then defined to be .

¢ X (Ui = uj)

where X denotes cross product. Now e;; and (u; — u;) are perpendicular so the
magnitude of this vector is the edge length times half the length of the vector between
the adjacent face normals (which is at most 2 since the normals are unit vectors).
Since the vertex positions are linear functions of the support vector h, so is the edge
vector e;;. As a result the edge lengths (squared) are a quadratic function of the
support vector h. Finally, note that this definition of curvature does not reduce to

any of the planar definitions when applied to polygons.

Direct Methods: Intrinsic Curvature

Direct definitions of curvature for the 3-dimensional case are now examined. These
definitions are extensions of, but do not use, the planar concepts of Section 6.4.1.
In the previous section, a natural discrete version of the extrinsic normal curvature
of a surface was developed. Such a definition may also be used to define discrete
versions of such functions of the principal curvatures as the mean curvature. Here we
aim to extend the intrinsic concept of the Gaussian curvature to the discrete case.
Geometrically, the Gaussian curvature K is the limiting ratio of an area patch dw
on the Gaussian sphere (the unit sphere) and the corresponding infinitesimal area
element df on the object, as shown in Figure 6-23. Thus the Gaussian curvature at
a surface point with normal N is given by K(N) = dw/df. Note that, as mentioned
previously, the Gaussian curvature may also be obtained algebraically as the product

of the principle curvatures, yielding another route to its definition than the one taken
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Figure 6-23: Illustration of Gaussian curvature.

here.

The Gaussian curvature is an intrinsic property of the surface, measuring the
deviation of the surface locally from flatness. This means that only surface points
that can be disguised by local measurements will have different Gaussian curvatures,
in contrast to the case for the mean curvature (an extrinsic measure). For example, a
plane and a cylinder both have zero Gaussian curvature, since locally they appear the
same, yet their mean curvature at any point is different. In other words, the value of
the Gaussian curvature does not depend on the embedding of the surface. Note that
K is a scalar function, and hence a non-directional measure.

In contrast to the concepts of curvature discussed in the previous section then, the
Gaussian curvature may be defined directly from geometrical considerations, without
resorting to planar concepts. A discrete version of the prescription given in Figure 6-
23 and by the formula (V) = dw/df is used. As in the planar case, we may center
our definition at either a face or a vertex. Recall that in the planar case, the face
centered definition seemed to be better behaved and so the equivalent face centered
definition is presented first.

Intuitively, all the curvature in the discrete, polyhedral object representations
under consideration is contained in the object’s vertices. Each such vertex corresponds
to a solid angle on the Gaussian sphere and conversely, all the area of Gaussian sphere
is mapped to the vertices. In contrast, on the object, all the area is restricted to
the faces, which correspond to mere points on the Gaussian sphere. For a discrete
approximation we must devise a way to spread the curvature at the vertices over
the area of the surface in a reasonable way, so that in the end the total curvature is
distributed over the total surface area. This is the same approach as taken for our

planar definitions.
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Figure 6-24: Tllustration of definition Ks(z).

Definition Ks(z). For the face centered definition, the area f; of each face is left
alone and the cone of normals at each vertex is apportioned to the adjacent faces, see
Figure 6-24. This approach is a generalization of the idea behind the planar definition
K2(7), and reduces to that definition for a planar object. We proceed by assigning
to each vertex a normal which is the average of all the face normals adjacent to this
vertex. The curvature area associated with face 7, Aw;, is then defined to be the area
of the spherical polygon (solid angle) on the Gaussian sphere corresponding to these
derived vertex normals, as shown. The discrete (Gaussian) curvature is then defined

as

Aw;
fi

Geometrically, this operation is equivalent to evenly dividing the solid angle of cur-

Ks(i) =

vature at a vertex equally between the adjacent faces.

Definition Kg(¢). For completeness a vertex centered definition, dual to the above,
is presented here. In contrast to the above approach, the cone of normals at a vertex
is now left alone and the area of the adjacent faces is divided up, see Figure 6-25.
Such an approach is a generalization of the idea behind the planar vertex centered
definition K3(%), and again reduces to this definition for planar objects. To be precise,
the curvature area associated to a vertex, Aw; is now defined to be the area of the
spherical polygon (solid angle) on the Gaussian sphere corresponding to the cone of
normals at the vertex. To obtain the corresponding object surface area, the area of
each face is now apportioned to its adjacent vertices by a uniform central tessellation.
This tessellation is achieved by connecting the area centroid of a face with the center
of each of its sides and assigning to a given vertex those segments touching it, as

shown. The overall object surface area associated with the i-th vertex normal cone

W ey e came e et mwesmes mod  wemr aamans s+ 6 n m ewew g mnemm me e e s
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Figure 6-25: Illustration of curvature definition Kq(z).

f; is then the sum of these surface area pieces from each face. The resulting discrete

(Gaussian) curvature is then defined as

Geometrically, this curvature definition is equivalent to evenly dividing the area of the
faces among the adjacent vertices. Since any face may be triangulated by joining pairs
of its vertices, we may assume that all faces are triangular without loss of generality.
The facial tessellation required to find f; then splits each face into three parts of equal
area, each adjacent to a vertex. As a result, the derived object surface area f; is just

1/3 of the sum of the areas of all the faces adjacent to vertex :

— 1

f i § Z fJ’
Adjacent
to vertex i

where f; is the area of face j. This calculation is a simple averaging operation dual
to the averaging of the normals in the definition of K5(4).

An important descriptor associated with each vertex is the spherical deficit, which
is the difference between the circumference of a unit circle in the plane (27) and the
circumference of a unit circle on the object. For a polyhedron this quantity is given
at a vertex by

Spherical Deficit = 2 — ) ;

Adjacent
to vertex i

where Y~ 1; is the sum of the face angles at the vertex, as shown in Figure 6-26 [106,
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Figure 6-26: Relation between spherical deficit and normal cone.

pg. 128]. Since the solid angle of the normals at a vertex Aw; is equal to the spherical
deficit at the vertex [106], the curvature Kg(2) is just the ratio of the spherical deficit
at a vertex to 1/3 of the total area of the surrounding faces f;:

2r — 2 Adjacent ";[’_1

’C 1) = to vertex i . 613
6( ) %E Adjacent fj ( )

to vertex

The formula (6.13) also appears in the book Difference Geometry (in German)
[107, pg. 13]. Unfortunately, [107], which develops differential geometry from the
discrete difference standpoint, is not available in translation and further, [73, pg.
231] warns the reader against numerous typos in the work! The polyhedral object
treated in [107] is obtained from an underlying surface by a uniform triangulation
in parameter space. If the radius vector to a surface point p is given as a function
of two parameters r,s by p(r,s), then samples are taken at the points r = 7 & i€
and s = so £ je for all integers ¢,j, where p(ro, s9) is assumed the point of interest.
The resulting surface samples form the vertices of the polyhedron. In [107] the claim
appears to be made that as ¢ — 0 the discrete curvature measure defined by Ke
approaches the Gaussian curvature at p(rq, so). From commentsin [73] it also appears
that the formula (6.13) can also be phrased in terms of the dihedral angles between
the faces.

To understand the similarities and differences of the situation in [107] with ours we
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Figure 6-27: Polygonal approximation of [107].

consider the planar case. In Figure 6-27 is shown the triangulation of [107] applied to
the quadratic surface we had used for studying planar limiting arguments. Applying
the prescription of Xg to this planar case results in a discrete curvature at p(ro, so)
given by K3 = 2A8;/(f; + fi—1). It is straightforward to show that as ¢ — 0 the
discrete curvature 2A8;/(f; + fi—1) — g, the proper value. The corresponding vertex
based definition, K3 for support samples, shown in Figure 6-18, does not approach
the correct limiting value except for certain special cases.

These differences seem to result from the different forms of the underlying mea-
surements. Since in [107] the vertices lie on the object surface, these points form
natural focal points for discrete definitions. In contrast, for our support based case it
is the faces that touch the surface (at unknown points) and seem to be the natural fo-
cus. The two types of sampling seem to be duals of one another, with faces replacing
vertices. For convex objects the surface triangulation yields a polyhedral set which is
contained within the object while the support based data yields one which contains
the object. It seems reasonable that the properties of the various approximations are
also dual. For example, as we saw above the vertex centered definition of curvature
appears to behave well for a surface triangulation while the face centered definition
appears better for the support based polyhedron. We leave further development of

such ideas for future work.
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Consistency

The Gauss-Bonnet theorem of differential geometry states that for any closed compact

object surface O the curvature function must satisfy the relation [71]:

Kdf =2nx (6.14)
80

where df is the area element of the surface and x is the Euler-Poincaré characteristic
of the object. The Euler-Poincaré characteristic of all connected compact surfaces
homeomorphic to a sphere (as are all those under consideration here) is x = 2. Thus
a valid curvature function of a surface must satisfy this constraint.

Now for any polyhedron it can be shown that [106]:

Z ¢]‘ = 27|'X.

Entire
Polyhedron

From this expression it is easy to see that the discrete version of (6.14) is always
satisfied by Ke(2) since

Z’CG(i)?i = }: P; = 27X,

Entire

Polyhedron

Thus Kg(:) has the nice property of consistency with the constraint (6.14) of the
continuous case (for an appropriately defined area element).

From the definition of K5(2) and the fact that the solid angle of the normals at a
vertex Aw; is equal to the spherical deficit at the vertex, it is straightforward to show
that

SR(ifi= Y Awi= 3 9=

Entire Entire

Polyhedron Polyhedron

and so Ks(¢) also is consistent (6.14) (again, for an appropriately defined area ele-
ment). Note that in demonstrating the consistency of both Ks(¢) and K¢(z) we chose

the corresponding area element conveniently, in one case choosing f; and in the other

fi

It is difficult to say whether the planar based surface curvature definitions have
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Figure 6-28: Square grid of sample points.

this property in general. If the planar discrete curvature functions converge to the un-
derlying surface curvature in the limit, then certainly the surface curvature measures

will also be consistent in the limit.

Algebraic Approaches

Some algebraic approaches to obtaining discrete definitions of surface curvature are
examined here. These definitions arise primarily from algebraic concerns, in contrast
to the geometrically based definitions above. These methods appear less promising

than the above, but are included for completeness.

Finite Differences One approach is to discretize the corresponding continuous
formula directly using finite difference approximations, as was done for /C4. Recall
that the continuous expression for the curvature was given in terms of the spherical
angular coordinates 6, ¢, and the (reduced) support function k(6, ¢) by:

1/K(0,¢) = (h + hes) (h¢¢ cscz(ﬂ) + hg cot(8) + h.) — csc?(0) (hog — hy cot(f)))2

Suppose, for simplicity, that the support samples are taken on a square grid, uniform
in both # and ¢, as shown in Figure 6-28. Let the regular spacing between the
neighboring 6 and ¢ points be given by A and h,; = h(;,¢;). At grid point i,5 we
may now make the following substitutions for the continuous elements of the equation
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to define a discrete curvature value at the point [108]:

ho~ hij
ho ~ (hit1,; — hic1;)/20
hg ~ (hijr — hij1)/24
hoo ~ (hit1,; — 2hij + hio1j)/A°
hog ~ (hijrr — 2hij + hij 1)/ A |
hog ~ (Riyrger — hivrgor + hicgion — hicyin)/(24)°

The trigonometric functions are assumed to be evaluated at § = #;. The resulting
discrete equation is not linear in the samples k; ; due to terms involving the product of
samples. These products arise in the 3-dimensional case because of the interaction of
the spherical coordinates 6 and ¢, a difficulty with any parameterization of the sphere
which does not exist for the planar case. As a consequence, the formula obtained in
the above procedure does not seem to simplify much and is certainly less intuitive
geometrically than the previous discrete definitions.

Other finite difference transformations of continuous equations may also be done,
including extensions to irregular sampling grids, a more realistic assumption in prac-
tice. A wealth of literature exists on the general area of finite difference approxima-
tions and solutions of continuous partial differential equations, and a deeper treatment
of the subject is beyond the scope of this work. The reader is referred to e.g. [108, 109]

for more detail on these approaches.

Fitting Quadrics Another approach to extracting curvature information from a
discrete set of measurements is discussed in [73, pg. 321]. An osculating (best fitting)
quadric of the form z = [z y]H[z y]T is fit to the set of measurements in local
coordinates, as shown in Figure 6-29. The symmetric matrix H defining this quadric
in local tangential coordinates is the Hessian or the second second fundamental form
of the surface {71, 73]. As we discussed in Chapter 4 the Gaussian curvature is given
by its determinant and the principal curvatures and directions by its eigenvalues and
vectors. Thus finding this matrix effectively gives curvature information about the
surface.

In the present setting the samples are provided by normal/support value pairs

(hiyu;), where u; is the unit normal associated with sample h;. Given such samples
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Figure 6-29: Quadratic fit to samples.

of the above quadric, the follow relationship holds:

[ - Ohi_l ]Ui — [ T; Yi ]H [ g: ] (6.15)

where (z;,y;) are the =,y coordinates of the point of tangency of the support plane.
Since these points of tangency (which are not given by support samples) and the
parameters of the quadratic must be estimated, the resulting problem is nonlinear,
involving the product of linear terms in the curvature parameters and quadratic terms
in the tangency points. The approach thus seems ill suited to the present setting,
and our focus instead has been to work directly with the support measurements in
developing definitions of boundary curvature. Such potential difficulties were noted
in [73], but for the opposite situation where the tangency points are known but the
normals are unknown, resulting in a bilinear problem.

If both the normal samples u; and the tangency points (z;,y;) are somehow known,
then finding H above reduces to the linear problem treated in Chapter 3, and all the
techniques developed there may be used. This situation of known tangency points
is the one treated in [73], where both surface samples (z;,yi,z) and normals are
obtained from direct sampling of the surface through a triangulation. It appears
from comments in [73] that the linear equations obtained from a surface triangulation
were solved symbolically in the German book [107], discussed in connection with the
definition of Ks.
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6.4.3 Use in Optimization

The curvature definitions considered in this section have all represented local prop-
erties of the surface. As a measure of smoothness, it is the maximum value of such
a curvature function over the surface that is important. To find the smoothest es-
timated support vector h for a given set of observations we might imagine finding
the consistent support vector whose maximum curvature value is minimized. This
formulation has several difficulties, however. The solution to the problem as stated
is unbounded, since for a given shape a uniform increase in object size reduces the
curvature at all points. The difficulty is that curvature directly depends on object
scale. This situation may be partially remedied through the requirement that the
estimate h come from a predefined bounded set B. Such an approach was taken in
[8], through the imposition of a bounded noise model. Even with this addition, note
that the solution does not depend on our observations hgs.

To include the data in the problem we may use a cost function which combines
both the distance of our estimate h from the observations together with the maximum
curvature of the estimate, max K(i). For example, we could find a support vector
estimate as the solution to:

Y

h = arg min [(1 — a)|lh — hoyl|2 + amaxlC(z')]
Ggh>o0,heB ¢

where the constraint @h > 0 imposes consistency on the estimate, KC(7) is the :-th
discrete curvature value from any of the discrete definitions above, and 0 < a < 1
is a parameter which allows a tradeoff between smoothness and adherence to data.
Note that K(7) is a function of the support vector h. When a = 0 the closest
consistent support vector in the set B is produced as the estimate, with no concern
for smoothness of the estimate. At the other extreme, as a — 1 the data matters less
and less, and the curvature of the estimate becomes the primary concern.

This estimate still has the undesirable property that it depends on the prior choice
of the bounding set B. One solution to this difficulty is to remove the set constraint
B and then perform the optimization over support vectors of a fixed size, for example
by requiring that h have unit norm. The optimal size of the vector could then be
estimated jointly or in a separate step. This approach was taken for the planar case
in [8], where effectively the 1-norm of the support vector was held constant. This

quantity is proportional to the circumference of the object in the planar case. In the
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next section we examine notions of smoothness which do not depend on the local

properties of the object.

6.5 Global Smoothness Concepts

In contrast to the above curvature-based paradigm, a global measure of smoothness
is developed in this section. The classic isoperimetric inequality is used to define a
discrete measure of overall object smoothness. This measure indicates the deviation
of an object from a sphere, which is in some sense the smoothest object of a given
volume. The measure has the desirable property that it is independent of object scale.

Notions of smoothness based on curvature properties are inherently local, depend-
ing on point properties of the surface. Obtaining such curvature information at all
points simply to impose a smoothness condition is potentially inefficient. Often, we
do not care about the details of the distribution of this curvature. A reconstruction
using an overall measure of smoothness would then be sufficient. Such a measure
is provided by an isoperimetric ratio, which gives a measure of the deviation of an
object from a sphere (or circle), the object of minimal surface area for a given volume,

and hence the smoothest in this sense.

6.5.1 The Planar Isoperimetric Inequality

It is well known that in the plane, the circle has the smallest circumference of all

regions of given area. This statement is reflected in the classic isoperimetric inequality
(Perimeter)? > 4m(Area) (6.16)

where equality holds only in the case of a circle [110]. In the plane, then, we may

think of trying to minimize a measure of roughness of a surface as provided by:

_ (Perimeter)?

R= (Area)

which we term the isoperimetric ratio. Such a quantity measures the distance of an

object from a circle and achieves its minimum only for a circle. In contrast to the
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curvature, R is independent of scale. There is no tendency to enlarge an object in
the above minimization process as there is in attempting to minimize the maximum
curvature point.

As an alternative to R, we could also use the quantity
R = (Perimeter)? — 4m(Area) > 0

termed the isoperimetric deficit, as a measure of roughness. This quantity is used
in [111] in the study of stability of geometric inequalities. The same ideas apply to
either of these definitions. In some cases one might be preferable over the other for
reasons of computational tractability. In particular, the application of these measures

to discrete polyhedral objects are different in their sensitivity to scaling.

6.5.2 The General Case

A result similar to (6.16) exists in higher dimensions. For a convex body in R™ the

following inequality holds:

where f is the surface area ((n — 1)-dimensional volume) of the surface of the object,
v is its volume, and w, and k, are the area and volume of the n-dimensional unit
ball, respectively. The last equality follows from the fact that w, = nk,. This
generalization is originally due to Minkowski, and may be shown to be a consequence
of the Brunn-Minkowski theorem (see e.g. [27]). The inequality only holds for convex
bodies in the higher dimensional case, apparently because, unlike the planar case, in
higher dimensions the convex hull of an arbitrary body can actually have a larger
value of surface area than the original object [27]. The equivalent generalization of
R is naturally given by
R=f"—n"ko" ! >0.
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6.5.3 Polyhedra

The above isoperimetric inequalities are in terms of the volume and surface area of the
object of interest. Since the objects under consideration, arising from discrete support
samples, are polyhedral, simple formulas for the area and volume of polyhedra are
needed to proceed. Versions of the continuous formulas presented in Section 6.2.3 are
given here for the discrete case of convex polygons and polyhedra. Let f;(u;) be the
area ((n — 1)-dimensional volume) of the face with unit normal u;. In the plane the
fi are the lengths of the sides of the polygon, while for the 3-dimensional case, the f;
are the areas of the faces of a polyhedron. As usual, let H(u;) = h; be the support
value of the polytope in direction u;, the distance of the i-th face from the origin. We
assume there are m faces.

With this notation, we have for the surface area of a polyhedron:

Surface Area = f = Z fi

i=1

The n-dimensional volume of the polytope is given by the discrete version of (6.3)
(27, 92]:
1 m
Volume = v = — Z h; f;
i=1
In the planar case the surface area becomes the perimeter of the polygon and the
n-dimensional volume becomes the enclosed area. For the 3-dimensional case the
quantities are indeed the surface area and volume respectively.
Substituting these values into the smoothness formulas above, the general isoperi-

metric ratio R = f*/v™~! then becomes for polyhedra:

R - (CE h) i
(2xm hifi)”

and the corresponding expression for the isoperimetric deficit is given by:

R = (i fi) — Nkip (i hifi)
=1

=1

where, again, n is the dimension of the space, k; is the support value associated with
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'Figure 6-30: Calculation of f;.

face ¢, f; is the area (or length) of face ¢, and &, is the volume (or area) of the
n-dimensional unit ball.

As it stands, the expression R applied to a polyhedra is minimized for a zero size
object (one with h = 0), reﬂecting a size dependence. In particular for a fixed object
shape, R grows as ||h||2. In the continuous case the lower bound of zero was achieved
for any sphere, regardless of size. The problem is that for convex polyhedra of given
(nonzero) volume, the sphere of the same volume always has a strictly lower deficit,
namely zero. Thus for polyhedra the deficit R is positive for polyhedra of positive
volume and achieves zero only when the polyhedral volume is also. A simple solution
to the scale problem for the polyhedral case is to normalize the quantity R by the
size of the support vector, given by its squared norm Y7, h:

7o (T )" — nen (T hifi)"

m 2
1=1 hi

The 2-Dimensional Case

Here we apply the formulas for R and R to the planar, arbitrary angle case to
illustrate their use. The inverse of the measure R (but without this interpretation)
was used for the planar equal angle case in [8] to eliminate the growth tendency of
curvature minimization.

For the arbitrary angle case it is straightforward to show that the i-th face length
fi is given by the linear function (see Figure 6-30):
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h
fi= 1 __sin(AG; 4064, 1 Bt
L sin(A6;) sin(A6;) sin(Af; 4, sin A0i+1i h"
i+1

where, recall, Af; = 8; — 8,_,. Note that this expression is very much like a row of Q
in the support consistency constraint (6.11), differing only in positive scaling. Thus
we may interpret the consistency constraint Qh > 0 as a statement that the facial

lengths must be non-negative f; > 0.

We may combine the above individual relationships for the facial lengths to write:
f=Fh (6.17)

where f = [fy, fa,+++, fm|T is the vector of face lengths, h is the support vector, and

F is the symmetric matrix

[ _sin(A8; +A6, 1 0 — ]
sin(A#é; ) sin( A8, sin{A6;) sin(A6; )
1 . sin(Af;+A6) 1 0
sin( A6, sin(A6; ) sin{Ad;) sin(Af3)
0 1 _ sin(A6;+ A6y
F= sin(Af3) sin(A6; )sin( A6,
: 0 L 0
sin(Afg)
: ce —1_
0 . sin(Afm)
1 0 . ___sin(A6; 4+ Abm
L sin(AGli sin( A6, ) sin(A6n,)

In the case of equal A#;, the matrix is circulant. Substituting the relationship (6.17)

into the expression for the isoperimetric ratio R yields:

o _ 2hTFWFh
~ T hTFh

where W is an n X n matrix of ones. In the case that the angle increment is uniform
this expression may be simplified slightly.

‘The equivalent expression for the normalized isoperimetric deficit R is given by

7 _ W (FWEF—2nF)h
- hTh

Thus 7R is just a quadratic form in the support vector h.
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Minimization

Minimization of R is a variational problem with interesting and natural geometrical
interpretations. The minimum of R is found from the solutions of the following

generalized eigenvalue problem:
2FW Fu = AFu. (6.18)

If A, u; are the eigenvalue/eignvector pairs of this problem, then the minimum value
of R is given by the minimum positive eigenvalue (since we know the quantity must
be positive for a polygon of finite area) and this minimum is achieved for the cor-
responding eigenvector. The problem (6.18) has only one nonzero eigenvalue, which
must correspond to the minimizing value. Let e be the vector of n ones, so that
W = eeT. It is straightforward to show that u = e is the eigenvector of (6.18) corre-
sponding to the positive eigenvalue 1/2e” Fe, so that e must be a minimizing support
vector.

Now it is straightforward to show that the matrix F is singular and that the

following two vectors are in its nullspace:

[ cos(f1) cos(;) --- cos(b,,) ]
[ sin(#,) sin(6,) --- sin(6,) |

Vectors in the nullspace correspond to translations of the object [8]. Now adding
any vector hAnun from this nullspace to the vector e does not change the value of R.
This makes geometrical sense, since translating an object does not change its area or
perimeter. For a given set of sample directions then, the support vectors ae + Anu,
for any positive scalar a, thus corresponds to the smoothest objects in the sense under
consideration. Geometrically these are just support vectors from shifted circles.

The minimization of R yields similar results. The expression for R is a Rayleigh
quotient and the minimum is found from the solutions of the corresponding eigenvalue
problem:

(FWF =27 F)u = Mu. (6.19)

If X;, u; are the eigenvalue/eigenvector pairs of this problem, then, as above, the

minimum value of R is given by the minimum positive eigenvalue of (6.19) (since
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again we know the quantity must be positive) and this minimum is achieved for
the corresponding eigenvector. The problem (6.19) now has more than one nonzero
eigenvalue, but again it is straightforward to show that © = e, the vector of ones, is an
eigenvector with corresponding eigenvalue 27 /eT Fe. Again, this vector corresponds
to a support vector with samples from a circle. The support vectors ae + hnyn, for
any positive a, still correspond to the smoothest objects for the measure R.

To find R and R in the 3-dimensional case the quantity f;, the area of a triangular
face, must be found. If the sides of such a triangle are of length @, b, and ¢ then the
corresponding area is given by 1/41/2a2b% + 2b2¢? + 2a%c? — a* — b* — c*. Since the

vertices of the face are a linear function of the support values, the squared lengths a2,

b?, and c¢? are quadratic functions of h, and so will f; be. Numerically finding these

values is straightforward if the neighbor structure of the faces is known.

6.5.4 Use in Optimization

In an optimization problem we can imagine using a cost function which combines
both the distance of our estimate from the observations and the degree of roughness
of the estimate, as provided by the measures of this section, R or R. For example we

could find a support vector estimate h as the solution of:

h =arg min [(1 - a)|[h — ho||3 + R (h)] (6.20)
gh>o

where h,ps is the observed noisy support vector, the constraint Qh > 0 imposes
consistency on the estimate, and 0 < a < 1 is a parameter which allows a tradeoff
between adherence to data and smoothness. Note that if @ = 1 there is no unique
minimum to the problem, since scalar multiples of a support vector have the same
cost. As o approaches 1, however, we would expect the resulting estimate to approach
the unique polyhedron surrounding a sphere which is closest to the observations in
average support deviation. This is indeed what is observed in practice.

To illustrate these points for the planar case, we show such a family of estimates
from noisy support data in Figure 6-31. In the upper left of the figure the noisy
inconsistent support data is displayed. The upper right shows the closest consistent
estimated support vector, corresponding to the solution of (6.20) with a = 0. The

reconstructed support vector for this choice of a produces an oblong object. In the
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5 Noisy data 5 Consisten't estimate
o+ . o+ a
0 5 0 5
alpha=0
5 Smoothest estimate 5 Family ot: estimates

0 5 0 5
alpha =.999 a=[0.5 .7 .8 .9.95 .99 .999]

Figure 6-31: Family of support reconstructions.

bottom left is the support reconstruction corresponding to letting @ — 1 in (6.20),
yielding the smoothest estimate from this data. The eccentricity in the reconstruction
has been removed and the samples surround a circle. Finally, in the bottom right
hand corner of Figure 6-31 a family of reconstructions is shown for various values of a
between the extremes of 0 and 1. The extreme reconstruction corresponding to a = 0
is shown as dashed lines and that for & — 1 is given by solid lines. Other members
of the family are shown as dotted lines. The values of a used for the reconstructions

are given along the bottom of the plot.

6.6 Summary and Comments

In this chapter we have investigated issues arising from the use of discrete support
measurements (or samples) in the reconstruction of objects. We began with a review
and summary of classical results and relations involving the support functions of
objects. The insight developed here formed the basis of our extensions to the discrete

case. One such classical result due to Rademacher was generalized from the planar
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case to the case of arbitrary dimensions. We then used this result to extend the
planar, equal-angle support sample consistency results of [8] to this general setting.
This generalization also used our interpretation of the planar results of [8] as a series
of local consistency tests, a notion which we carried to the higher dimensional case.

The requiremeﬁts imposed by a smoothness constraint were then considered. First
we approached this constraint locally by analyzing and developing different notions of
support-based discrete curvature. One group of curvature definitions were extensions
of our planar results while an additional group were based directly on the geometric
definition of Gaussian curvature. Convergence analysis of these definitions was given,
suggesting the desirability of some over others. Their use in optimization was also
briefly discussed.

In contrast to the above inherently local concept of smoothness based on sur-
face curvature, we also presented global notions of smoothness based on the classical
isoperimetric inequality. These definitions measure the deviation of an object from
a sphere, the smoothest object in some sense. Our discrete definitions measure the
deviation of the resulting polyhedron from a sphere and are minimized for polyhedra
surrounding a sphere. For a fixed number of faces and orientations, such a polyhedron
is the smoothest in this sense. These notions of smoothness were also conveniently
expressed in terms of the support samples and area of the discrete object. An example
of support reconstruction incorporating such a measure was given.

Many of the different curvature and smoothness notions presented in this chapter
rely on the surface area (or boundary length in the planar case) f; of the polygonal
representation obtained from a given set of support measurements. While using the
surface area of such polyhedral models can be tricky in general, yielding strange
limiting results, our use of the area should be insensitive to such problems. To
demonstrate the potential difficulty, consider the triangulated cylinder of unit height
shown in Figure 6-32 from [73]. The cylinder is triangulated by dividing its height
into k equal parts and its circumference into £ equal parts to yield a total of 2k{

triangles. The overall area f., of the triangulated surface is given in [73, pg. 597| as:

feyr =24 sin(vr/l)\/l + 4k? sin* (7 /2¢).

Now the limiting area depends strongly on how the triangulation is refined. Suppose
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Figure 6-32: Triangulated cylinder.

we let k£ = £°, then we obtain the following limits:

27 s=1
klim fey1 = { 27y /1 + 72 /4 s§=2
- Does not exist s =3

Thus the triangulated area does not seem a particularly robust measure of the actual
area of the cylinder. It is pdinted out in [73] that the area of the cylinder is the limes
inferior of the triangulated area, and thus forms a lower bound for it.

What this argument seems to indicate is that we should be careful about expecting
to extract true values of the surface curvature from any of the discrete definitions. On
the other hand this should not pose a serious problem in using such discrete quantities

as a smoothness measure, since the goal is to obtain a relative indication of curvature.
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6-A Proof of Result 28

To prove the result we need only show that condition 3' of Result 28 implies and is
implied by condition 3 of Result 27. Without loss of generality we may assume in
what follows that u,.; is in the positive cone of the remaining ;. If this is not the
case, we need only interchange rows in 3’ and relabel. Such operations do not change
the sign of the left hand side because the row exchanges will take place in both the
determinant terms. Since wn4; is in the positive cone of {;}, 7 = 1,...,n, we may

write it as the following linear combination:

Ung1 = (|-« |un] [ El ] (6.21)

Qn
with 0 S a; S 1.

We shall repeatedly use the following result, which we state as a lemma:

Lemma 8 Suppose that the unit vector u,y, is in the full positive cone of the set
{wi}, i =1,...,n. Then the following equality holds for some B(u;) > 0:

H(’U;]) ui' 1 ui ui -1 nglg
H(u U 1 u U H(u
H ( 2) : i : . 2 = ﬂ(ui) U£+1 : 2 : 2 - H(un+1)
H(uny1) u£+1 1 UZH ul H(u,)
(6.22)

Proof of lemma: Apply the following determinantal identity to each term of the
left hand side above:

A B\_|ap-caB

¢ D |=14lD- |

Doing this and equating terms above shows that the scalar 3 is given by:
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Now the first term of 3 is clearly nonnegative. Substituting the expression (6.21) for
ui41 into the second term shows that it is equal to (X7, a; — 1). Since %p4 is a unit
vector we have:

n n
1 = uppall =) i +2 ) elajuiy;
i=1 =1
i
n n n 2
< D42} wej= (Zai)
i=1 i,j=1 i=1
i

so that 3" a; > 1. Thus this term is nonnegative also and the lemma is shown.
Now we show that 3 implies 3'. Combining (6.22) of the lemma above with (6.21)
we obtain:

H(ul) ui u} n n
(D) - 53 aw)

H(un+1) u£+1 1 u£+1

with A(u;) > 0. Since the subadditivity condition 3 holds, H(o;u;+aju;) < H(aiu;)+
H(aju;) and we have that

H(u,) ui 1 ui
SI-I(uz) Y2 1 “ = B(w) (E H(aju;) — H (E ai“i))
H(un+1) '-“Z+1 1 :“;I;+1 i -
>0

and thus condition 3 implies condition 3'.

Now we show that condition 3’ implies condition 3. Given arbitrary vectors v
and w, we will show that if 3’ is satisfied then H(v + w) < H(v) + H(w). If v is
a scalar multiple of w this is trivially true from condition 2 or 2'. Assume such is
not the case. In condition 3’ let u; = v/||v||, vz = w/||w|| and choose the remaining
u;, ¢ = 3,...,n arbitrarily to span the subspace perpendicular to v and w. Let

Unt1 = (v + w)/|lv + w||, so that u,;q is a unit vector in the full positive cone of the
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u;. Then we have that:

v+w

T+
[ <
€

Unpr = [ W1 Uz cr U

Now by condition 3' and (6.22) of the lemma it follows that

ui - g?ﬂlg
u Ugy
u£+1 : 2 : - H(un+1) 2 0
'U/?: H(un)
for unit vectors u;, with u,;; in the positive cone of {u;}, 7 = 1,...,n. Substituting

the expressions above for the u; and u,,; we obtain

ui ui: - HEuI;
. - H =
: v + wl|

["%E!.Ju_" ui'w 0 .- 0][:

ol ()l () (e s
o+l \llwll) ~ llv+wl ™ \]wl [[o 4 wl|

Equivalently, using condition 2,

1

—||v T (H(v) + H(w) — H(v + w)) > 0.

Thus
H(v+w) < H(v) + H(w)

and the converse is shown. Together these implications prove the result.
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6-B Proof of Result 29

We show that under the hypotheses of the result the enlarged set {h1,...,hn,hni1}
is consistent. Consistency of the set {hy,...,hn, hnt2} then follows by symmetry. We
know that u,; € conet{uy,...,un_1,Un42} and u,i» € conet{uy, ..., Un,uns1}, thus

we may write uny; and u,y; as the following linear combinations:

ay
(23
Unt1 = [ul Uy -+ Up_1 un] +an+2un+2 (623)
A1
0
0
Qs
Uz = [ w2 ug oo Un | [ V| Enptngs (6.24)
On

where 0 < a; <1 and 0 <'& < 1. Note that a, and @; are 0. We may eliminate

Un+o from the above two expressions to obtain the following equivalent expression for

Un+t1:
o
1 02 + Q2042
Unyr = '1'—__ [ Uy U2 -+ Up—1 Up ] (625)
— an+1an+2 Q1 :+. an_lan+2
ApQny2

where @, 10n42 < 1 since u,41 and un4o are distinct by assumption.
Using (6.8) and Lemma 8, consistency of the set {h1,...,hn_1,nt1,Ansa} implies
that the following inequality is satisfied:

ko,
-T .
u£+1 [ Up Uz +rr Un-1 Uny2 ] . - hn+1 Z 0
hn—l
hn+2

Substitution of (6.23) for u,4 into this inequality and rearrangement yields

[an az -+« any 0 =1 azp2 |h2>0 (6.26)
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where h = [h1,hs, -+, hny hng1, hngs]T is the support vector. Similarly, using (6.8)
and Lemma 8 together with (6.24), consistency of the set {hs,...,hn, hny1,Ans2}
yields the following inequality:

[0 a; as -+ @& @Gpy1 —1]h2>0 (6.27)

Thus, (6.26) and (6.27) are satisfied by assumption.
To show consistency of the samples {h1,...,hn,hat11} we have to show that the

following expression is nonnegative

hl 'U-T u
hz }‘ 1 uz'

: P P
hopr tnpy (|1 upgy

Applying Lemma 8 again and substituting for .4, from (6.25) shows that this ex-

pression is equivalent to

g

m [ o1 (a2 + A20ny2) (a3 + dzanyz) -

(an—l + C_!11—1(11'L+2) C_tnan+2 (dn+1an+2 - 1) 0 ]h (628)

where = B(u;) is a nonnegative scalar depending on the u;. We may equivalently

write this as

(23] _0
B : s
T . .
1 — h Qp_1 + an+2
— On41Qny2 O
—1 J dml-l
QAny2 —1

which will be recognized as a linear combination of the left hand sides of (6.26) and
(6.27). Now the terms 3/(1 — @n410n42) and a,;» are nonnegative so (6.28) is equal
to a nonnegative linear combination of (6.26) and (6.27), which are also nonnegative.
Consequently, (6.28) must also be nonnegative and we have demonstrated consistency
of the set {hq,...,hn,hny1}. The result is thus shown.
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Figure 6-33: Illustration of geometry on Gaussian sphere.

6-C Proof of Result 30

That global consistency implies local consistency follows easily, for if a set is globally
consistent then by definition the inequality (6.8) is satisfied for all unit vectors in the
full positive cone of an n-tuple of other normals.

To show that local sample consistency implies global sample consistency we want
to show that for every sample normal in the full positive cone of n other sample nor-
mals, these support samples and normals satisfy the determinantal inequality (6.8).
To this end, consider an arbitrary support sample ; and its associated unit normal
uj, in the positive cone of some (possibility non-local) n-tuple of other sample nor-
mals. On the surface of the n-dimensional Gaussian spheroid this unit vector (in
the positive cone of n other unit vectors) is a point inside an (n — 1)-dimensional
spherical simplex (generalization of a spherical triangle), as described in association
with Figure 6-11 for the 3-dimensional case. Points in this simplex are points in the
positive cone of the vectors at the vertices of the simplex, as is u4 in the figure.

If the point associated with u; is isolated in the simplex it is consistent by hypoth-
esis, since it is the only vector in the positive cone of the vertex normals, and hence
part of a local family. Suppose instead that there is another point in the simplex with
it, say u, as shown in the leftmost illustration of Figure 6-33 for the 3-dimensional
case. Each of these two interior points in combination with the n original bounding
points tessellates the original simplex into n disjoint subsimplicies. The two interior

points u; and u, are thus each contained in a subsimplex formed from the other inte-
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rior point and n — 1 of the original boundary points. This geometry is shown in the
leftmost frame of the figure as two dotted triangles.

Now by the merging result, Result 29, if we can show that the samples u; and
uj, are consistent on these smaller subregions then we have shown that they are
consistent on the entire region, as desired. Thus we have reduced the problem from
showing consistency over the original region to showing consistency over two smaller
subregions. This process is shown in the middle illustration of the figure, where we
have split the original test into two subtests. We may now repeat the above arguments
on each of the subregions, attempting to show the consistency of each. We thus have

the following finitely terminating recursive construction:

Show an arbitrary (n + 1)-tuple is consistent:
1. If it is isolated in its cone, consistency is shown by hypothesis.
2. If it is not isolated:

(a) Pick another point in the cone.
(b) Form two smaller subregions.

(c) Show consistency of each subregion.

We keep proceeding in this way until a subregion is found where the interior point
is isolated (corresponding to the normal being the only vector in the positive come
of its bounding set) and consistency is satisfied by hypothesis. In Figure 6-33 we
show the next step of this procedure on the right, where we have assumed that the
subregion containing w; is isolated (so the we have reached a leaf of the tree) but the
one containing u; contains another point, u, and hence must itself be broken into two
subregions.

Since at each stage of this procedure another point (sample normal) is removed
from the original finite set and since the subregions are nonincreasing at each stage,
we must eventually reach the situation where a sample normal is isolated in its sim-
plex and therefore consistent. We may then travel back up the tree we have implicitly
created to show consistency of the original normal with respect to the original bound-
ary points. Since the normal and surrounding cone we chose were arbitrary, we have
shown the result.
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6-D Derivation of Curvature Limits

In this appendix we derive the various limiting expressions for the different curvature

expressions of section 6.4.

6-D.1 Definition X,

Refering to Figure 6-16 we find that

Ti41 — Ti-1 _ tan(AH,-) + tan(AOiH)

fi= 5 2%

where the second equality follows from the fact that z,,; = tan(A6;y,)/g and z;_; =
—tan(A#;)/g. Thus we obtain for K;(z):

"WETRT T tan(A6) + tan(Afigg)

Now for convergence analysis let Af;;; = aA#f; so that the scalar a measures the
realtive rate of convergence of the two angles. Letting A#; go to zero yields for the
limiting curvature:

. - : zg | 1
h — h = -
Ao K1(3) A6 0 sec?(Af;) + asec?(aAd;) % l1+a

Thus the proper curvature is obtained only if & = 1 so that convergence is uniform.

6-D.2 Definition I,

Using the expression derived in the previous section for f; and in definition of K, we

obtain

Ko = AG; + Ay g(Al; + Ab;1q)
2= 2f;  tan(A#;) + tan(Ab; 1)

Again for convergence analysis let Af;;; = aAd; for a scalar a measuring the realtive

rate of convergence of the two angles. Letting Af; go to zero yields for the limiting
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Figure 6-34: Finding f; for K;.

curvature:

lim Ki(i) = lim g(1+0)
AG;—0

26;-0 sec?(Ab;) + asec?(aAd;) =9

Thus in this case the proper curvature is obtained for any a, i.e. for any relative

convergence of Af; and A#f;4,.

6-D.3 Definition /C;

First we shall find A#d; in terms of the ;. The unit normal u; is given by

1

up = ———Iga;, - 1"
Veizi+1

and similarly for u;_;. Since cos(Ad;) = ul ,u;, we obtain for A9,

Af; = arctan M .
g’zziq + 1

Now to find f; consider Figure 6-34. The point of intersection of support line : — 1
and i is given by [(zi_1 + #;)/2,9%;_17:/2]T. Thus we obtain for the partial lengths
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{; and ¢, indicated in the figure

.. 2

6 = (%) [t~ 1
. — o\ 2

6, = (wz_w) Jarz? — 1.

The length f; is given by the sum of these two components. Performing a similar
proceedure for f;_; yields:

L — 2
fo= (-'Bl+12$z-1) 22?1

e m, 2
fr = (BT

Now applying the definition of X3(i) we obtain:

4 arctan (4——15 :‘;:‘;;1)
(-’Bi+1 — wi)\/ (921’3 + 1) + (wi — T;_3) (9233;2-1 + 1)

where we have expressed the curvature as a function of the z coordinates of the

Ks(z) =

tangency points to the curve z;_,, z;_;, ;, ;4.
This time for the convergence analysis we work with the z coordinates of the
tangency points. Let the following relationships exist between the different z coordi-

nates:

ariy; = x; 0<a<l
r,, = —fz; 08 »
YTiiz = iy 059 <1

so that the relative places of the = coordinates is maintained. Substituting these
expressions for z; into the formula for K3(i) and letting z; go to zero we obtain for

the limiting curvature:

: : doy(B +1)
lim X = .
Jim, Ka(?) YaBy + aB + v +7
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Az

Figure 6-35: Finding h;;; for K,.

For this value to equal the underlying value of g we require

4oy(B + 1) B
afy+af+oay+y

6-D.4 Definition K,

First we shall find the support values h,_; and hy,; as a function of angle increments
A@; and Af;,. Note that because of the location of the origin the support value A;
is 0. Refer to Figure 6-35 in what follows. From simple geometry we have that:

tan(Ab;41) = gzis1

and that

h,’+1 = % sin(AGi.H).

Combining these two we obtain for h;;:

Sinz(AGH_l)
2g cos(Ab;41)

hi+1 =
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Similarly we get for hy_; the expression

B - sin?( A#;)
17 2g cos(A;)

Now combining these two expressions with h; = 0 in the definition of K4(¢) and
simplifying the result yields the following expression for curvature of the parabola at

the origin:

29A0;A0; 41 cos(AF;) cos(Ab;41)

Ka(i) = cos(Ab;) sin®(Ab;41) + cos(Ab;41)sin?(AG;)

For convergence analysis let Af;;; = aA#;. Substituting this relationship into the
curvature expression K4(¢) above and letting Af; go to 0 we obtain for the limiting
curvature: 9
. . a
A]-O}.'IEO Ka(i) = I 11
where two applications of L’hopital’s rule are required to yield the above expression.

This limiting value will equal the underlying value of g if and only if a = 1.



Chapter 7

Further Work

In this chapter we present some ideas and problems that seem like fruitful avenues
for future work. First we discuss ideas closely related to the body of this thesis and
the issues raised therein. Then some problems more distantly linked to the present
work will be presented. Partial results for these problems are provided to illustrate

potential methods and to encourage their further examination.

7.1 Thesis Related Work

In this section we present some problems for further consideration which are directly
related to the work presented in this thesis. Throughout this thesis we have called
attention to many such issues as they arose. Here we collect some of these and suggest

some new ones. We examine these problems chapter by chapter.

7.1.1 Symmetric Matrices

One open area for work from Chapter 2 concerns our approximations of the PSD
cone in Section 2.4. Further development of measures to determine the distance
of an approximating set from the exact PSD cone is needed. In Section 2.4.2 we
provided one such measure based on the angle between certain extreme elements of
the approximation and the PSD set. This measure was only valid for support based

exterior approximations. A convenient way to compare all PSD set approximations

279
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would be valuable. Part of the problem is that the PSD set is not compact so that
set measures like the Hausdorff measure are infinite. An associated extension involves
relating the approximating sets and the reconstructions based on them. It would be
desirable to be able to bound the maximum error of an estimate based on a particular
PSD approximation. This task is harder than the previous one of simply comparing
the distance of set approximations from the PSD set.

Another area for exploration is the relationship between our problems and results
and the work on M-matrices. A real matrix is termed an M-matrix if it has negative
off-diagonal elements and all its principal minors are positive [112]. Symmetric M-
matrices are positive definite. Thus symmetric M-matrices are valid representations
of both curvature and ellipsoids. Conversely, our techniques for estimation of a PSD
matrix may be of use in problems involving M-matrices.

Finally, a host of other problems appear to fit within the framework developed
in this chapter. For example, the inverse conductivity problem of determining the
symmetric conductance matrix of a network from a series of current or voltage probes
results in an equation that seems to be in the form the projection mapping (2.3). The
medical imaging method of electrophoresis, whereby voltage probes at the body’s

surface are used to determine resistivity distribution, fits this mold also.

7.1.2 Matrix Reconstruction

One possible way to extend the results of Chapter 3 is to use our constrained symmet-
ric matrix reconstruction algorithms to perform constrained reconstruction of more
general matrices. For example, using a Cartesian decomposition we may write any
matrix X as X = X,ymm + Xekew, Where Xoymm = (X + XT)/2 is the symmetric part
and Xgew = (X — X7T)/2 is the skew-symmetric part. From Rayleigh quotient argu-
ments the real part of the eigenvalues of X are bounded by the (real) eigenvalues of
Xsymm and the imaginary part of the eigenvalues of X are bounded by the eigenvalues
of Xeew. We might desire to estimate a matrix with bounds on the real parts of its
eigenvalues. This could be done by separately estimating its symmetric and skew-
symmetric parts. The reconstruction of the symmetric part could then make use of
the constrained algorithms of Chapter 3. It is unclear exactly how to incorporate
constraints on the skew-symmetric part for the case of real matrices. For matrices
over the complex field, an isomorphism exists between what are termed Hermitian

and skew-Hermitian matrices. Such bounded eigenvalue problems are of wide interest
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in many fields, particularly as they pertain to stability.

Another potential area for investigation is raised by the successive halfspace algo-
rithm of Section 3.3.3. This algorithm solves a specially structured, linear inequality
constrained, least squares problem (LSI) at each stage. While the constraint set grows
from iteration to iteration, the previous constraints at a given stage remain unchanged.
Thus some sort of recursive form of LSI would be highly desirable. While it seems a
if there should be some way to use previous solutions to aid the current estimate, this
could be a very hard problem. One general difficulty is that as more constraints are
added some may no longer be binding, and as we discussed in Section 6.3.1, deter-
mining which constraints are binding essentially requires solving the problem. Our
particular problem has special structure however. Since the constraints correspond
to support halfspaces of a convex cone and they are all different, they must all be
binding from geometric considerations (they will of course not all be active however).
Perhaps a recursive form of LSI may be found for this special case.

Another way to reduce the computational burden of the successive halfspace ap-
proach of Algorithm 1 is to replace the eigenanalysis at each iteration by approximate
expressions. In the limit, we may assume that the estimate does not change much
from iteration to iteration. As a result we could use first order perturbation ex-
pressions for the eigenvalues and eigenvectors and treat the change in the estimate
from iteration to iteration as a perturbation. Since the algorithm seems to converge
quickly, we would expect such an approach to work well. The computational savings

would be especially great on larger problems

7.1.3 Curvature

Certainly one area for investigation from Chapter 4 is suggested by the Gaussian
sphere interpretation of the curvature-based global shape reconstruction problem dis-
cussed in Section 4.3.4. Specially, the question is how to best use the limited infor-
mation obtained from any finite set of projections to reconstruct an overall shape.
There would seem to be a relationship between the smoothness of the surface and the
corresponding need for samples. For example, if we knew the object was a sphere (the
smoothest of objects is some sense) then the determination of surface curvature at a
single point is all that is necessary to recover the shape. In general, we would expect
that smoother objects would require fewer curvature samples to be uniquely deter-

mined. Such issues seem related to some type of surface curvature Nyquist criterion.

C wmms v merwe o h men e e et e e mee v e s v s 1 eemme
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The challenge is to make such notions precise.

7.1.4 Ellipsoids

There are a number of interesting directions to proceed in from the work of Chap-

ter 5. One important extension involves the application of our results to non-centered

ellipsoids. We may of course simply translate the coordinate system to obtain results

in the case of simple shifts of the elements. More difficult is the extension of the el- .
lipsoidal bounds, corresponding to an interval matrix set, to the case of non-centered

bounding ellipsoids with different centers. This case does not directly correspond to

an interval matrix set any more due to the differing shifts in the centers.

Another interesting area involves the dynamic formalism of Section 5.5.2. Further
investigation of robustness issues pertaining to such dynamically oriented reconstruc-
tions are needed. Related to this is the application of the consistency results of
Chapter 6 to this dynamic setting. Such an application was demonstrated for the
static case through the use of a 2-step reconstruction approach, with support consis-
tency imposed in the first step. Similar approaches should be possible for the dynamic
case, presumably with good results for the high noise case. We briefly discussed such
issues in Section 5.5.2.

Finally, our dynamic work in this chapter assumed knowledge of the system. An
interesting problem is raised by the possibility of identifying the dynamic system
based on the observations. The topic of system identification has received much
attention in general and our linear formulation should be amenable to the methods

generally used there.

7.1.5 Support Measurements

In Chapter 6, we presented many different discrete curvature definitions for both
the 2- and 3-dimensional cases. An interesting questions, relating to our work in
Chapter 4 on curvature-based reconstruction, is whether discrete curvature-based re-
construction notions can be defined which recover the continuous case in the limit.
Such an endeavor would involve relating existing work on reconstruction of polyhe-
dral shapes from projections to the discrete curvature definitions of Section 6.4. For
example, consider a vertex on the contour generator of a projected polyhedron in

3-dimensions. Because the projection of a polyhedron results in a contour generator
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which is along the edges of the polyhedron, we would expect a certain “threshold” be-
havior to the shadow as we rotate the polyhedron about this vertex. At certain points
in the rotation some edges will enter the contour generators and others will leave. At
first, reconstruction of the shape of a vertex would seem to require projections in-
volving all the edges incident at the vertex. The minimum number of projections for
reconstruction would then depend on the number on faces at the vertex. But this
cannot be if we are to match the limiting requirement of only 3 planar projections
for a smooth object. How do we reconcile this continuous limit with the polyhedral

situation?

7.2 Structure from Motion

The body of this thesis was concerned with the reconstruction of continuous objects
from their projections. Ellipsoids and smooth surfaces were examined in detail. In
this section, we consider some issues in the reconstruction of points sets from their
projections. For a rigid point set, such problems are classically known as structure-
from-motion problems [113, 114, 115|. This term follows from pioneering work of
Ullman, who proved that the 3-dimensional relationship of four rigidly connected,
non-coplanar points (a simplex) can be uniquely determined from three independent
but unknown orthogonal projections of the points [115]. The “motion” in the name
comes from the assumption that between these views the object moves in some un-
known way, providing a different aspect in each view. Note that this is equivalent to
fixing the object and moving the camera to different (and unknown) spots for each
view. Thus, the “motion” in the title is interchangeable with the phrase “different,
unknown, views.”

 To our knowledge, results for Ullman’s type of problem are restricted to re-
constructing 3-dimensional objects from planar (2-dimensional) projections or 2-
dimensional objects from scalar (1-dimensional) observations. Further, the arguments
and proofs are very case-specific. Ullman actually used straightforward substitution to
solve a set of generic observations for a general object [115]. Little insight is thereby
provided for the general case of higher dimensions, more feature points, etc. Fi-
nally, trigonometric relations are often used in the formulations (for the projections),
yielding nonlinear equations in the problem parameters. This is algorithmically incon-

venient when developing solution schemes. In this section we introduce a formalism
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Figure 7-1: Object and view geometry

that permits us to view this problem as one in bilinear matrix estimation. This has
not been done, to our knowledge, and offers potential advantages in its easy extension
to arbitrary dimension and data set size, its amenability to iterative solution, and its

compact separation and representation of information.

7.2.1 Fixed Object Interpretation

The situation we examine is shown schematically in Figure 7-1. Figure 7-1. An
(initially rigid) object is observed in orthogonal projection. An object (assumed for
now to be rigid) is observed in orthogonal projection. We first take the viewpoint
that the object or point set P is fixed with one point at the origin and it is the
views that move from image to image. An equivalent interpretation, which will be
treated later, is that the viewpoint is fixed and the object moves. We may assume
that one point of the object is fixed at the origin, since this does not change its
structure. Let the columns of the n x m; matrix S; form an orthonormal basis for the
projection subspace S;. Here n is the dimension of the space and m; is the dimension
of projection subspace i. For example, if the object, and hence the original space,
is 3-dimensional and the observations are projections onto planes (2-dimensional), S;
will be 3 x 2 matrix whose columns span the plane of subspace i. Note that ST S; = I.

Now let the j-th token or object point be represented by an n vector from the
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origin, p;. The i-th view or observation o;; of the j-th object point is then just
5¥p; = oi; (7.1)

where o;; is m; x 1. Note that o;; is just a set of lengths or coordinates with respect to
the (unknown) basis S;. The matrix S; contains all the viewpoint information while o;;
contains just the observed quantities and no viewpoint information. This formulation
conveniently separates the known or observed quantities from the unknown ones.
Combining terms, define the entire set of k object points (which define the object) as
P so that

P = [p1lpa| - |px] (7.2)

The i-th observation of the entire set of object points is then
STP = [oi1]oiz| - - o] = O; (7.3)
Combining the separate views, we obtain an overall view matrix S as
S = [$1/S2] -+ 15,]

Since we are viewing a rigid object, an additional constraint between the different S;
exists. This constraint can be seen as a requirement for the view coordinate systems
to have the same handedness. Formally, view subspaces of the same dimension must
be obtainable from one another just by rotations with no reflections. An equivalent
requirement is that the transformation between these coordinate systems be repre-
sented by orthogonal matrices with determinant +1 [46, page 21]. Note also that in
general, S will not have full column rank.

The overall set of object-view relationships can now be written as

o (7.4)
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$7(qlg - 1) = OP~B(q)

Y

S(qlq) = block orthonormalized version of S(qlg—1)

4

P(g+1) =S8T"(qlg)0

Figure 7-2: Algorithm for Ullman problem

or

sTP =0 (7.5)

where the columns of the blocks S; are orthonormal and represent coordinate systems
with the same handedness. Note that the arrangement (7.4) allows any combination
of viewing subspace dimensions. For example, we can have a projection of the ob ject
onto a plane (S; = 3 x 2) combined with a projection onto a line (S, = 3 x 1) in the
same problem.

For this formulation of the structure-from-motion problem, we are given the matrix
O, and the structure on S (i.e. that the columns of the blocks S; are orthonormal
and right handed) and asked to find both S and P. Note that we may arbitrarily
pick S; since the global reference is arbitrary. If S or P is given, the problem is
linear in the other quantity. Thus (7.5) with the given constraints defines a bilinear
matriz estimation problem. Further note that the formulation easily incorporates
arbitrary numbers of points and views and is not biased toward either the viewpoint
information or the object information.

Such bilinear estimation problems have been studied for a variety of applications,
such as the work in [90] on chemical component analysis. One straightforward iter-
ative scheme for solving (7.5) is diagramed in Figure 7-2. First a guess is made for
the object P(0), then this guess is used to estimate the viewpoints $(1/0) using a
right inverse of P as §7(1/0) = OP~%. Note that for a right inverse of P to exist we
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must have the number of points greater than or equal to the dimension of the space,
so k > n. This condition is satisfied for any space-filling object, such as a simplex.
Now the orthonormal constraints on the columns of S; are imposed (in some as yet
unspecified fashion) to obtain S(1|1). A new estimate of P(1) is now generated using
a left inverse of ST(1|1) as P(1) = §77"(1|1)O and the cycle repeats. The left inverse
of ST only exists if the total view space dimensions equal or exceed the dimension
of the space, so 3j_; m; > n. For example, if the space is 3-dimensional, we require
one 3-dimensional view or one 2-dimensional view and one 1-dimensional view or
two 2-dimensional views, etc. With this iterative type approach, an estimate may
be easily updated when new information (observations) become available by simply
using the current guess as a starting point for iterations with the new information.
Preliminary experience with this algorithm suggests it works well, converging for all
examples tried.

7.2.2 Fixed View Interpretation

In the above work we assumed that the object was fixed (and rigid), and it was
the viewpoints that moved. If all the subspaces of projection are the same dimension
(m; = m), then the alternate interpretation of a single, known viewpoint and a moving
(rigid) object is equivalent. Again we assume (without loss of generality) that one
point of the object is fixed at the origin. Let the columns of S form an orthonormal
basis for the fixed view space and let the columns of P, represent the object at its i-th
viewing. For the rigid object we have assumed, the distance between the different
object points will be constant so only rotations of the set are allowed. This fact
constrains the P;. Specifically, the matrix taking P; to P; must be orthonormal of

determinant +1. Now the observation of the object at view ¢ will be:
STP, = O; (7.6)
so the overall set of object-view relationships can be written:

sT[P, P, --- P, |=[0; Oy --- O,] (7.7)
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where the P; are related as described above by orthogonal transformations of deter-
minant +1. Equation (7.7) is the equivalent of (7.4) but now the viewpoint is taken
as fixed and it is the object that moves between views.
We now examine this in more detail. Suppose T} is the transformation (a rotation)
taking P; to P;;1 so that
Pi+1 =T,P; (78)

with T} is an orthonormal matrix of determinant +1. Define P = Po. Let T} =
1%, T.. Combining (7.7) with (7.8) we then obtain

STT, 0,
T 0
S .Tz P — :2 (79)
STT, O,
We may also write (7.9) in the equivalent form
ST[,P TP .. T.P|=[0:1 O --- O] (7.10)

From these equations we can now see the relationship between our two interpretations.
If the transformations T} are lumped with the object P, then the case of a single fixed
viewpoint and a moving object is produced. If, instead, we pair the transformations
with the prototype projection subspace ST, the case of multiple views of a single
fixed object is obtained. In this case the transformation between subspace ¢ and
subspace i + 1 is given by TT. Note that given O we can only determine the relative
orientations of the different elements in the problem, and not their absolute location.
For this reason we may arbitrarily assign 77 and S, which corresponds to choosing
a particular global orientation for the problem. Even then the solution is still only

unique up to a reflection due to the nature of orthogonal projection [115].

7.2.3 Dynamic Element

Even though these problems fall under the heading of structure-from-motion ap-
proaches, they really depend very little on a dynamic element. The formulation of
(7.7) and (7.8) gives us a precise notion of this. From (7.8) we see that sequential

positions of the object are linked by an unknown rotation. We can go a step further
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and view (7.8) and (7.7) as a dynamic evolution/observation pair. The form of these

equations is:

Pi+1 = A;P; ) (7.11)
Y, = CP,
where, for the structure-from-motion problem, A; = T, an orthogonal matrix of

determinant +1, C' = ST, and Y; = O;.

Looking at the problem this way suggests other possibilities. For example, if we
knew A; in (7.11) (as we might if the rigid object were rotating at a known constant
angular velocity), the problem reduces to one of straightforward state estimation.
The state of the dynamic system (7.11) now represents an evolving object, however.
As another possibility, consider the case when the A; are not restricted to be rotation
matrices. The dynamic equation (7.11) then models the case of identifying a non-rigid
object from orthogonal projections. All the object points evolve the same way and
any structure on A; restricts this common evolution. We might even consider adding
an input to (7.11) to drive the object motion, perhaps using this ability to identify
the system [116].

7.2.4 Tomography

The formulation of (7.5) assumed that we knew the correspondence between point
of the object and their projections. We may also use (7.5) to better understand a
tomography like problem for point sets lacking this correspondence. In a tomography
setting, P, the object, is still desired, but now we are given S and the columns of
the Oj, but with the order of these columns unknown a priori. This absence of
column order results from the lack of object point correspondence in the tomography
problem — we do not know which projection belongs to which point. Once the order
of the columns is known (fixing the point correspondences), solving for P is easy.
We may view this situation as a hypothesis testing problem with each hypothesis
corresponding to a different arrangement of the columns of the O;, and thus to a
different possible set of point correspondences. The arrangement with the smallest
residual is the best choice.

An iterative and recursive scheme for solving the point tomography problem above

using the formulation of (7.5) again suggests itself. First, the columns of O, may be
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assigned arbitrarily since the point labeling is not unique. Now at any stage in the
estimation process there will be a best choice of column ordering. As new information
(observations) become available, in the form of more blocks S5; and O; there is no
reason to change the order of the columns of the previously obtained O;. Simply vary
the ordering of the columns of the new observation. This greatly reduces the number
of potential combinations to be checked. Also the scheme is recursive, combining the

current best guess with the new data as it arrives.

7.2.5 Summary

In summary, the way of viewing the structure-from-motion reconstruction problem
presented in this section offers a number of advantages over existing formulations.
First, it nicely separates object, viewpoint, and observation information. The formu-
lations (7.9) and (7.10) are more neutral with respect to whether the object or the
views are being determined. This neutrality makes is easy to use the same equation
to investigate the effects of increasing both the number of points observed and the
number of views of those points. Second, this formulation exhibits a bilinear form
readily amenable to iterative approaches, such as those proposed above. The goal
here is to estimate the object and/or viewpoints well and not to achieve abstract suf-
ficiency results as many efforts in the area do. Finally, extension to any combination
of object and observation dimension and number is straightforward, giving a unified

view of the general case.

7.3 Spherical Harmonics/Fourier Descriptors

The objects considered in the thesis have all been convex. One desired extension
is to a less restrictive class of shapes. One such class of shapes that still possesses
much structure is provided by star-shaped sets. A set is star-shaped with respect to
a center c if, for each point p of the set, the segment c-p is also in the set, as shown
in Figure 7-3. Such sets are a generalization of convex sets, where both p and c are
allowed to be general elements of the set. We may represent star-shaped sets by a
radius vector v from ¢ to the set boundary as a function of direction on the unit
sphere. For the planar case illustrated in Figure 7-3, for example, we would obtain

7(#). Since the function 7(8) is periodic in # we may expand r(6) as a Fourier series
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Figure 7-3: Illustration of a star-shaped set.

in 8 as follows: -
r(0) = a0 + Y [ai cos(i8) + B sin(i6)] (7.12)
i=1
Such a series is a representation of the boundary of the set as a sum of harmonic
functions. In the higher dimensional case these functions are termed spherical har-
monics, forming an orthonormal set of basis functions on the sphere in the same way
the harmonics of sine and cosine do for the circle. The series coeflicients a; and g;
are termed the Fourier descriptors of the curve. The smoothness of a curve depends
on the relative size of the different coefficients, smoother curves being produced by
the lower order coefficients. For example, if only the coefficient g is present, a circle
is produced. A series with only ag, a;, and [, will only have a single bump and so
forth. Such results follow easily from the more familiar results for the Fourier series
of time signals.

Spherical harmonics and Fourier descriptors have been used for object recognition
and classification [117, 118], for shape representation [119, 120], and for boundary
filtering and analysis, particularly for biomedical applications [121, 122, 123]. In
most of these schemes, the object boundary is assumed extracted in a separate step
and is then converted to a finite harmonic representation for further processing. An
interesting question is how we might directly use models of the form (7.12) for object
reconstruction tasks.

Suppose we have access to values of the radius function r at a fixed set of m
directions §;. In addition to the above applications where a boundary is explicitly
extracted, such data might arise directly from range probes of an object at different
orientations, or perhaps in a robotic setting from tactile probes. Consider a finite

representation of the form (7.12) with ¢ terms. We may collect the Fourier descriptor
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coefficients in a vector as follows:
X=law a § .. o g,]
Then each such sample 7, = 7(0) must be of the form:
m=[1 cos(4) sin(f) .. cos(qfi) sin(g8y) | x (7.13)
We may staék up these observations in the following observation vector:
r=[7r 7y ... Ty ]T

The overall set observations r are now related to the coefficients in z by the equation:

r=Cx (7.14)
where the matrix ¢ is given by:
1 cos(#;) sin 61) .. cos q01) sin(qd,
o 1 cos(#,) sin &, cos(gf,) sin(g#,
1 cos(d,,) sin(f,,,) - cos(q#,,) sin(q#f,,)

Solvability of the equation (7.14) depends on rank of the matrix C, yielding a straight-
forward solution characterization. More interesting is the fact that we may implement
the LLSE solution to this equation recursively, due to the linear form of the observa-
tion equation (7.13) for a fixed set of directions. Such an approach obviates the need
for inversion of the matrix C. In a higher dimensiona)l case with many radius samples,
this matrix may be quite large. Preliminary experience with such algorithms appear
Promising,

We can further imagine letting the descriptors x of the shape evolve according to
a dynamical equation of the form:

Xet1 = Ax,
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Such an evolution would yield a corresponding dynamic object described by r(8,t).

With the addition of an observation equation, a linear state estimation problem is

obtained:

X411 = Ax,
r(0,t) = c(8)x;

where ¢(8) is given by:
c(0)=[1 cos(f) sin(f) --- cos(gf) sin(qf) ]

We can imagine using such a formulation to estimate the shape of an evolving non-

convez object over time. We leave further development for future work.
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Chapter 8

Summary and Conclusions

In this thesis, we have contributed to the area of reconstruction from projections by
our unification and extension of existing results, our concise characterization of the so-
lutions to certain algebraic and geometric problems, and development of constrained
reconstruction methodologies. Two specific physical problems were examined in de-
tail. The projection and reconstruction of smooth, convex surfaces from curvature
information, and the mathematically related problem of estimating ellipsoids from
projections. In examining these problems, a common algebraic framework involving
PSD symmetric matrices was identified, and led us to an extensive examination of
this mapping and its properties in the space of symmetric matrices. Constrained
solution of the algebraic problem of estimating a PSD matrix led to corresponding
solutions to the physical problems. The incorporation of a dynamic element into this
framework was straightforward, yielding a dynamic shape estimation problem. The
tie between 1-dimensional shadow projections and support hyperplane observations
led to a consideration of the consistency and smoothness of support-based reconstruc-
tions for use in constrained support-based reconstructions. Such reconstructions were
demonstrated for the case of an ellipse.

In Chapter 2, projection mapping between symmetric matrices which captured
the common algebraic framework of the curvature and ellipsoid problems was defined.
An isometric isomorphism between this matrix projection mapping and an equivalent
standard linear estimation form was provided. This isomorphism was based on a
mapping of the problem to the space of symmetric matrices. This approach is sim-

pler and more intuitive than many currently in use to solve such problems. Since
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the symmetric matrices involved in the underlying physical problems of curvature
and ellipsoid projection were required to be positive semi-definite, we next investi-
gated the geometry of the set of PSD matrices. Various new results concerning the
structure of this set were given. In particular, a representation of the PSD set in
terms of a minimal set of its support halfspaces was provided. The normals to these
halfspaces corresponded to rank-1 symmetric matrices. These insights were used to
provide simple polyhedral approximations to the PSD set. Because the approxima-
tions were polyhedral, corresponding to a set of linear inequality constraints, they
were convenient for inclusion in constrained optimization. In particular, we showed
how tessellations of the unit sphere induced both interior and exterior polyhedral
approximations to the PSD cone. A variety of other approximations were provided,
including a procedure of obtaining a family of sets between support-based exterior
and interior approximating sets. All these approximations shared the simple linear
constraint property.

In Chapter 3 the inverse problem of estimating a symmetric matrix from a series
of its projection mappings was considered. The isometric isomorphism of Chapter 2
was used to provide a complete solution to this problem without a PSD constraint.
This unconstrained solution will remain valid for small enough perturbations in a con-
sistent set of observations. This notion was made precise and an explicit condition
provided under which a constraint is not needed. As a PSD constraint is required in
the general case, constrained reconstructions were examined next. The polyhedral ap-
proximations to the PSD set of Chapter 2 were used to approximate PSD-constrained
reconstructions. A novel iterative algorithm was then provided based on the rank-1
support halfspace characterization of the PSD set of Chapter 2. This algorithm, which
is guaranteed to converge, successively approximates the boundary of the cone at the
solution. In addition to this algorithm, other gradient-based iterative algorithms
solving the problem were provided. The PSD-constrained matrix reconstruction al-
gorithm were then extended to the case of arbitrary matrix interval constraints of the
form X < X < X. Numerical experiments were provided demonstrating the various
reconstruction schemes. The results of both this chapter and Chapter 2 have gen-
eral usefulness outside of the narrow considerations of the mapping defined in (2.3).
The techniques developed there may be applied to the broad class of linear problems
involving symmetric matrix.

In Chapter 4 the first of our two physical problems was treated. The relationship

between the n-dimensional surfaces of smooth, strictly convex objects and the m-
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dimensional surfaces of their orthogonal projections, or shadows, was examined. The
main results were local in nature, relating the curvature of a projection at a point to
that of the generating surface. In particular, the relationship between the symmetric
curvature Hessians of the projection at a point and the surface at the point’s preimage
was shown to be precisely given by the projection mapping defined in Chapter 2. This
enabled us to use the results of Chapter 3 to give a complete characterization of the
inverse problem of determining surface curvature from a series of projections. The
required PSD constraint on the reconstructed Hessian was also easily handled using
the constrained algorithms developed there. These local results were then related
to global issues arising from the reconstruction of an entire surface from a set of
projections based on curvature information.

Chapter 5 examined the problem of ellipsoid projection and reconstruction. We
represented an ellipsoid by the symmetric PSD matrix of its quadratic form. The
relationship of an ellipsoid to its projections induced a relationship between these
corresponding symmetric matrices that was precisely captured by the matrix map-
ping of Chapter 2. This quadratic mapping between symmetric matrices was also
the same one relating the curvature Hessian and its projections in Chapter 4. The
results of Chapter 3 again provided a complete solution characterization to the prob-
lem of reconstructing an ellipsoid from a series of consistent projections. A solution
for the case of noisy inconsistent projections was provided by the PSD-constrained
algorithms of Chapter 3. In addition, the interval matrix constrained algorithms
of that chapter provided the ability to impose natural geometric constraints on the
reconstructed ellipsoid in terms of inner and outer shape bounds. A dynamic equa-
tion on the ellipsoid matrices was then incorporated to yield a class of estimation
problems involving a dynamically evolving ellipsoid. We demonstrated how proper
choice of the dynamical matrices allowed direct access to geometric properties of dy-
namic ellipsoid evolution. The special case of 1-dimensional projections, resulting
in observations of the squared support function, was emphasized. In particular, the
constrained reconstruction of both static and dynamic ellipses from a series of noisy
support measurements was demonstrated through a series of numerical experiments.
Here we showed the potential value of prior support consistency in the reconstruction
of ellipsoids.

Chapter 6 continued this support oriented theme through an examination of issues
arising in support-based reconstructions. In particular, the consistency of support

sample sets and the smoothness of the corresponding reconstructions were explored.
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Such support measurements arise from 1-dimensional projections of objects, as men-
tioned above. A classical result due to Rademacher which characterized support
functions in the plane was extended to a general dimensional discrete setting. This
extended result was in turn used to develop a local consistency test for a discrete set
of support measurements that was valid for arbitrary dimensions and sample orienta-
tions. This result generalized the planar, uniform-angle consistency results of [8]. We
went on to use our insights from this endeavor to develop and analyze support based
discrete notions of curvature for both the 2-dimensional and 3-dimensional cases. Fi-
nally, we proposed global measures of smoothness based on the classical isoperimetric
inequality. The use of this measure in a smoothness-weighted support reconstruction
was demonstrated through a numerical experiment.

The results of thesis have contributed to the growing area of geometric, model-
based reconstruction from projections, aiding the effort to broaden its applicability to
higher dimensions and more general situations. Our investigation of the fundamental
underlying algebraic structure of some of these problems has enabled this extension.
Our formulations of these results are themselves straightforward and general. The
potential use of these results for the 3-dimensional case in particular seems potentially

useful and interesting.
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