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ABSTRACT

We propose a generalized, modular, closed-loop system for objective assessment of human visual parameters.
Our system presents periodical visual stimuli to the patient’s field of view and analyses the consequent evoked
brain potentials elicited in the occipital lobe and recorded through EEG. The analysis of the monitored EEG
data is performed in an end-to-end fashion by a convolutional neural network (CNN). We propose a novel CNN
architecture for EEG signal analysis that can be trained utilizing the benefits of multi-task learning. The closed-
loop attribute of our system allows for a real-time adaptation of the subsequent stimuli to further examine a
potentially damaged area or increase the granularity of the exploration. Interchangeability is provided in terms
of software modules, stimulus type, visual hardware, EEG acquisition device and EEG electrodes. Initially, the
system is designed to monitor visual field loss originating from glaucoma or damage to the optic nerve using a
virtual reality (VR) headset for the stimuli presentation. The modular architecture of our system paves the way
for the assessment and monitoring of other neuro-visual functions.

Keywords: Neuroscience, Brain-Computer-Interface, EEG, Ophthalmology, Deep Learning, Convolutional Neu-
ral Networks, System Design

1. INTRODUCTION

Visual perception is a particularly interesting research area in neuroscience.1–3 The correct functioning of vision
is crucial for many everyday tasks. We use it to recognize our surroundings and to identify and interact with our
environment. However, several conditions can limit vision. Examples for problems with the optical apparatus
are myopia, hyperopia, and presbyopia. These can usually be overcome with the help of a personalized vision
aid. It is often more severe if the cause of vision impairment is neurological in nature. These cannot be easily
corrected and therefore have a high impact on the quality of life.4–6 In addition to brain tumors in the region
of the optic nerve or occipital lobe, common diseases are glaucoma, age-related macular degeneration (AMD),
and diabetic retinopathy. The most significant risk to get one of these neurodegenerative diseases is old age.
Due to demographic change, the number of neurological eye diseases is, therefore, continually increasing.7 The
restoration of the retina or parts of it is an active field of research. To date, however, there is no successful method
for recovering from neurological vision loss.8 Therefore, the ophthalmological assessment of visual parameters is
of utmost importance. Current therapies, therefore, focus on stopping the progression of vision decline. Visual
field loss is often slow and gradual. Those affected only recognize it late, which is why it is advisable to examine
the neuro-visual field regularly.9

Several procedures in Ophthalmology, such as the assessment of visual acuity and visual field, have in common
that they tend to take much time. Moreover, they are subjective and require the patient to understand the test
and be cooperative.

In this paper, we want to present a system approach for utilizing an EEG-based brain-computer-interface
(BCI) to objectively measure neurological responses of the visual cortex to retinal stimulation. The recorded
signals are analyzed in real-time using a convolutional neural network (CNN). Our purpose is to outline a
combination of state of the art EEGs, displays, and deep learning methods into a closed-loop system. An

Invited Paper

Neurophotonics, edited by Francesco Saverio Pavone, Laurent Cognet,
Thomas Kuner, Proc. of SPIE Vol. 11360, 1136008 · © 2020 SPIE

CCC code: 0277-786X/20/$21 · doi: 10.1117/12.2554417

Proc. of SPIE Vol. 11360  1136008-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 Aug 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



exemplary setup of this system is depicted in Figure 1. Furthermore, we want to present a use-case study of the
proposed system in the form of visual field testing (perimetry).

Figure 1: An exemplary measurement setup in the lab. EEG signals are recording using a set of electrodes
positioned over the visual cortex while stimuli are displayed on a VR headset. Currently, the system sup-
ports checkerboard stimuli for the generation of SSVEPs. Parameters like the temporal and spatial stimulation
frequency of the checkerboard and its position and size can be configured.

2. RELATED WORK

The subjective nature of most of the current gold standard ophthalmological tests has brought many researchers
to explore other methods that involve objective measurements only. The approach of assessing visual defects
through the monitoring of brain signals has indeed been one of them. The most common method to implement
this concept is by stimulating the visual field of the subject and measuring brain responses elicited by the
stimuli, the so-called visual evoked potentials (VEP).10–12 Exploiting this characteristic of the human neuro-visual
pathway, researchers have been able to explore the objective assessment of visual field defects13,14 and specifically
of glaucoma.15–18 Not only have they been used to evaluate visual defects, but also to study the topography of the
VEP properties across the visual field19 and to investigate the VEP and visual acuity maturation of children.20,21

When the visual stimuli is presented to the subject’s retina in a periodic manner, the evoked brain potentials
reach a steady-state where they oscillate at the same rate as the visual stimuli, and they receive the name of
steady-state visual evoked potential (SSVEP).22–24 SSVEPs show high SNR and therefore are widely used to
build BCIs25 and they have also been exploited to evaluate the effective field of view in glaucoma patients26

and even to monitor the visual pathway function of patients undergoing neurosurgery.27 A comparison study
of the different visual evoked potential-based methods to assess visual acuity has also been conducted.28 As far
as the visual stimulation hardware is concerned, there has been a recent interest in using virtual reality (VR)
headsets for the implementation of BCIs.29,30 As opposed to classic 2D displays, the controlled visual field
angles, closed environment and portability of VR systems have also attracted researchers to use this technology
for the assessment of glaucomatous visual field defects.31

The recent eruption of deep learning techniques to process and extract features from time-series data has also
impacted the BCI community. Deep learning has allowed to increase the speed of BCIs32 and convolutional neural
networks (CNN) in particular have also been explored in this field.33,34 More specifically, CNNs have indeed
been used to enhance the detection and classification of SSVEPs,35–38 to characterize the nature of SSVEPs39

and even to extract EEG-based biometric information through SSVEP.40
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3. CONCEPT

The aim of the proposed modular system is to carry out SSVEP-based BCI experiments in a closed-loop fashion.
Therefore, the system needs to support four main features:

• An easy way to specify stimuli or series of stimuli to be rendered.

• Software components to render the specified stimuli.

• Means to receive recorded data in real-time from an EEG.

• A way to perform real-time inference of machine learning models.

We chose Qt to develop a graphical user interface (GUI). The GUI allows for an easy specification of the desired
stimulation parameters. Additionally, CSV files were chosen as a means to specify a series of stimuli in an easily
configurable format. For the display of different stimuli, the need for a graphics engine arises. We chose the
Unity game development engine as it supports cross-platform development. Furthermore, it enables the use of
VR, conventional monitors and projector-based systems, all integrated into the same software framework. As a
means of receiving data from the EEG recording device, the Lab Streaming Layer (LSL) protocol was chosen.
EEG equipment generally supports this kind of data streaming either by vendor software or by software included
in the LSL distribution. Even if a specific EEG equipment would not support LSL, it can be implemented in an
intermediate component translating the data. After the consideration of other systems,41 we tested our system
with a Neuroelectrics Enobio 8 channel EEG42 with reusable and disposable gel electrodes, and passive dry
electrodes. Exploiting the modular architecture of our system, we have tested our concept on high refresh rate
consumer LCD monitors, laser projectors, and OLED based VR headsets. Further development would allow for
the use of mobile devices as well. However, depending on the use-case and the visual assessment test desired,
some displaying hardware will be more appropriate than others.

To reduce motion artifacts, we designed an adjustable chinrest that can be 3D printed. The source files can
be found here: https://github.com/MetisVidere/ChinRest. The chinrest can be used in combination with a
VR headset, which was the visual stimuli display chosen for our proof of concept. The chinrest may also be used
to mount a simple phoropter, enabling the use of different lenses during the experiment.

Figure 2: System overview. The subject is placed in front of a display device that is presenting visual stimuli.
EEG signals are recorded and transmitted to the local processing unit, capable of running a trained model in
real-time. The data is also stored, so it can be used for training new models offline.
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4. IMPLEMENTATION

The software can be used for two main functionalities. The first is for experimentation and data collection,
whereas the second is for closed-loop applications. For the experimentation workflow, the experimenter enters
parameters specifying the desired visual stimulus, either by selecting them on the GUI or by defining them in the
CSV protocol file. Those parameters are read in by the Backend. They are then used to generate corresponding
visual stimuli through a simultaneously running Graphics Engine (in our case: Unity). Meanwhile, the brain
signals of the subject are recorded by an EEG device and streamed to the computer. On the computer, this data
stream is collected by third-party software from the EEG supplier (in our case: Enobio’s NIC2). Whenever a
new stimulus is presented, a marker in the form of an integer number is created and sent to the external EEG
software via the Lab Streaming Layer (LSL). Here, the marker is synchronized with the EEG data, allowing to
reconstruct which periods of the EEG data correspond to a specific visual stimulus. Finally, the EEG data and
the synchronized markers are stored on the hard drive for subsequent analysis and/or training of deep learning
models. At the same time, the EEG data, along with the markers, are streamed to the Backend using LSL
streams. There, they can be evaluated in real-time by a neural network model using an abstract interface and a
compiled version of the deep learning framework (in our case: Google TensorFlow). The results of this analysis
are then displayed on the GUI and can be used by the Backend to generate further stimuli in a closed-loop
fashion. An overview of the system is provided in Figure 2. A more detailed depiction, showing the individual
components of the software implementation is given in Figure 3.

4.1 Backend

The Backend implements the task of interconnecting the GUI with the Graphics Engine and the external EEG
software. Parameters for the next visual stimulus, coming from the GUI or from CSV protocol files, are parsed
and passed to the Graphics Engine. Simultaneously, feedback referencing the displayed stimuli is received from
the Graphics Engine. This feedback, in turn, is used to generate time synchronized markers, which are sent to
the external EEG software through the Lab Streaming Layer. Depending on the application, the Backend also
initiates the real-time processing of the received EEG data through the Deep Learning Interface. Subsequently,
closed-loop generation of new stimuli based on the results of this processing can be executed.

There are three components in charge of interconnecting the modules: a Controller, connecting GUI and
Backend; a segment of shared memory, to communicate between Backend and Graphics Engine; and an inter-
face towards the Deep Learning framework. They are designed to enable communication between the major
components while keeping those components exchangeable.

To avoid data loss or a lack of responsiveness, all described tasks need to be fulfilled simultaneously. Thus, the
Backend was designed as a multithreaded application. It comprises four threads of execution. Each of the threads
fulfills one unique role, and they are synchronized by a set of mutexes and queues. To combine inputs from both
the GUI and from a CSV protocol, a queue is used as an input interface. Pushing of stimulation parameters
into this queue is provided over a public function call. This call guarantees threadsafe access by using a mutex
as an access guard for the queue. When calling the function, the mutex is locked, and the command is pushed
into the queue. Then, an internal semaphore is used to signal the availability of new commands to the threads.
The four threads then perform their specific tasks as detailed in the following paragraphs:

Main Management Thread
This thread is responsible for processing all incoming commands from GUI and protocol files and sending them
to the Graphics Engine over the Shared Memory module. It waits for the semaphore to indicate the arrival
of new commands. Then, it acquires a lock on the queue mutex to accomplish threadsafe access to the queue.
Subsequently, it reads all commands from this queue, forwards them into a thread-internal queue, and releases
the lock on the mutex. Finally, the new commands from the internal queue are sequentially parsed and their
stimulus parameters are sent to the Graphics Engine.

Protocol Reader Thread
This thread is responsible for reading and parsing commands from a CSV protocol file. Each line is parsed into
an encapsulating structure by internal parsing functions. Then, this structure is pushed into the queue.
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Figure 3: The software system includes several components, of which the Backend forms the core. Stimulation
parameters are given over a GUI or parsed from csv protocol files. Real-time inference of neural networks
is performed using an abstract interface layer. Communication with the EEG is performed through the Lab
Streaming Layer to acquire data and set markers. Stimuli generation is done with a Graphics Engine addressed
over a segment of shared memory.

Feedback From Graphics Engine Thread
This thread reads feedback placed in the shared memory from the Graphics Engine and generates markers from
this feedback, which are then sent to the external EEG application via LSL. Internally, the thread uses a blocking
call to go into a waiting state until new feedback is available on the Shared Memory Segment (as signaled by an
increment in the respective semaphore). In this case, the call returns and the thread is reawakened. A reference
label contained in the feedback is extracted and pushed as a marker value into the LSL stream, transmitting it
to the external EEG application. After that, the next blocking call is performed and the thread again enters a
waiting state until new feedback is available.

Closed Loop Thread
This thread continuously pulls samples from the incoming LSL Stream, thereby receiving EEG Data and syn-
chronized labels from the external EEG application. The data is collected and rearranged into an input structure
for the currently used neural network. Then, network inference is performed and the results are sent to the GUI
over the Controller. Additionally, the thread can generate commands for new stimuli based on the inferred
results and push them into the queue.

4.2 Graphical User Interface

This module allows the user to control the system. All parameters of the stimuli can be adjusted manually
or executed from a selected protocol file. The currently used GUI was designed using Qt. To keep GUI and
Backend separable, and exchangeable, we used the Model-View-Controller pattern.43 The Controller acts as an
intermediate component between Backend and GUI. Its purpose is to deliver information sent from the GUI
through a signal-based mechanism to the Backend by public method calls and vice versa. This enables the
exchangeability of the GUI, for example, if another GUI should be used on phone screens in the future.

4.3 Graphics Engine

This component is designed to render the visual stimuli on the current stimulation device, be it a monitor or
a VR headset. It is implemented as an external application, written in C#, making use of the Unity game
engine. Unity Applications are partitioned into scenes, which form logical sub-units of the application. The
current system is supporting two scenes: the Positional SSVEP Scene and the Sweep VEP Scene. All stimuli
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Figure 4: Top row: Screenshots from the Positional SSVEP Scene, displaying a stimulus of size (10◦, 10◦) at
positions (6◦, 6◦), (-16◦, -6◦) and (0◦, 0◦) from left to right in a VR screen. Bottom row: Screenshots from the
Sweep VEP Scene, showing an exemplary progression of spatial frequencies.

were designed as Unity shaders. In addition to these scenes, the class Parameter Manager, was designed for
communication with the Backend via a Shared Memory handle. With this handle, the Graphics Engine is able
to communicate with the Backend almost as if they were a single application.

Positional SSVEP Scene
Functionally, the scene offers the possibility to display an SSVEP stimulus, whose position (in terms of visual
angle relative to the subject), size (in terms of visual angle), flickering frequency and number of squares in
the checkerboard can be specified by the experimenter. The stimulus can be configured as a reversal or as a
pattern-onset stimulus. To support experiments like perimetry-testing, an optional fixation target, in the form
of a red cross or a red dot, can be displayed in the center of the visual field. Additionally, the experimenter can
stimulate both eyes or select one eye of interest specifically.

Sweep VEP Scene
This scene was designed to display sweep VEP stimuli (a sequential variation of the spatial frequency of an
SSVEP). It is intended to be used in experiments regarding the objective estimation of visual acuity. The scene
displays a screen-wide checkerboard stimulus with adjustable frequency, number of checkers and the possibility
to choose between reversal or pattern-onset stimulation. Again, fixation targets in the form of a red dot or cross
can be displayed if desired. Exemplary screenshots of both scenes can be seen in Figure 4.

Parameter Manager
The Parameter Manager is a class designed to fetch new stimulus parameters from the Shared Memory module
and generate feedback in response to those parameters. The feedback is inherently important as for correct
labels; the Backend needs to know what is currently presented through the graphics engine. Additionally,
the Parameter Manager offers an interface through which objects from all scenes have access to the current
stimulation parameters without having to access the Shared Memory segment themselves. The class is designed
following a singleton design pattern.43 Additionally, to adjusting stimuli parameters and providing feedback to
Backend, the Parameter Manager is starting and stopping individual scenes on demand from the Backend.
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4.4 Shared Memory Communication Handle

For the communication between the Graphics Engine (C#) and the Backend (C++), a common interface was
designed. The interface is written in C++ and distributed in the form of a dynamic-link library (DLL), whose
functions can be imported and called from both C# and C++ code. The widely used C++ Boost library was
used for the implementation of this interprocess Shared Memory Communication Handle and the respective in-
terprocess semaphores. Within the shared memory segment, two structures reside: one containing information
about the currently desired stimulation parameters, and the other containing feedback information from Unity.
Feedback hereby includes a label designated to the stimulation parameters chosen, indicating to which stimulus
the feedback responds, and a timestamp, for synchronization, indicating when this stimulus was rendered.

5. EEG DATA PROCESSING

5.1 State of the Art: The Canonical Correlation Analysis (CCA)

For the classification of SSVEPs, the stimulus frequency fst and its harmonics need to be identified from the
EEG signals recorded from the visual cortex. A robust approach for SSVEP detection is based on canonical
correlation analysis (CCA). Initially proposed in 1936,44 it was used the first time for SSVEP analysis in 2006.45

The principal idea is to use the EEG signal channels X ∈ RC×N as a first set of variables. Furthermore, one
creates a reference signal Y ∈ R2Nh×N containing sine and cosine waves at the stimulus frequency and its
harmonics:

Y =



sin (2πfst)
cos (2πfst)

sin (2 · 2πfst)
cos (2 · 2πfst)

...
sin (Nh · 2πfst)
cos (Nh · 2πfst)


, n =

1

Ts
,

2

Ts
, . . . ,

N

Ts
, (1)

where C is the number of EEG channels, N is the number of samples, Nh is the number of harmonics and Ts is
the EEG sampling frequency. In this way, CCA generates a vector of canonical correlations with vector length
of min {C, 2Nh}: ρ =

(
ρ1, ρ2, . . . , ρmin{C,2Nh}

)
. The Euclidean norm of this correlation vector

‖ρ‖ =

√√√√min{C,2Nh}∑
i=1

ρ2i (2)

is suitable to use as a feature for the classification of SSVEP signals.46 A comparison between the CCA and the
Fourier spectrum is illustrated in figure 5 for an EEG signal with 7.5 Hz stimulus. From the results in figure 5a,
we can conclude that the CCA is a powerful and appropriate technique to analyze and classify the presence of
known SSVEP features, which is, however, influenced by signal artifacts like blinking.
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analysis
window

(a) SSVEP peaks are visible at 7.5Hz and its harmonics in
the Fourier power spectrum. For a good signal in the analysis
window, the CCA value is respectively high.

analysis
window

(b) The power of SSVEP peaks is negligible compared to
other signal components in the Fourier power spectrum. The
CCA value is considerably decreased due to the blinking ar-
tifact.

Figure 5: The figures show the Fourier power spectrum and canonical correlation value of the EEG signal at the
time of the red analysis window with a length of 2 s. During the blue window a 7.5 Hz stimulus was presented.

5.2 Deep Learning Approach

Over recent years, the interest in applying deep neural networks to process EEG signals steadily increased.36,47

This is due to their ability to handle signal abnormalities and artifacts as they use multiple levels of abstraction
in comparison to traditional techniques. Moreover, it is suggested that deep neural networks are able to do
correct classifications even in noisy conditions.48

Deep convolutional neural networks (CNNs) have been reliably used in many applications, especially when
involving images. However, EEG signals have quite different characteristics in comparison to an image. In
contrast to a static 2D image with large spatial dimensions, EEG signals have a large temporal dimension and
they are obtained from the 3D scalp surface with rather small spatial resolution. However, features in a multi-
channel EEG signal have a significant dependence on adjacent values, which is analogous to images or videos.
Therefore, CNNs can also be applied for the classification of EEG signals. As non-task-relevant sources affect
the EEG signal significantly, they usually have a low signal-to-noise ratio. Thus, we are exploring the use of
convolutional neural network deep learning techniques for EEG signal analysis.
Since EEG signals are highly stochastic in nature,49 the convergence of the learning process is difficult due to
many local minima. Therefore, we increased the batch size during training to avoid local minima at the beginning
and to smooth the feature surface in the feature space for regularization.50 Spatial filtering over EEG channels
was employed to eliminate stochastic noise. Furthermore, it enables the weighting of electrodes and, therefore,
can enhance channels containing more information than others.51 Due to these reasons, we proposed the input
of the neural network to resemble the spatial arrangement of the electrode positions on the scalp. A schematic
of this is presented in figure 6.

When working with deep learning algorithms, the size of the dataset has a huge influence on the training
results. To artificially increase the size of our dataset, we augmented it by cropping the signal records into
overlapping time slices. This generates a larger amount of input samples. It also forces the convolutional neural
network to learn the SSVEP frequency components, present in all crops independently from artifacts or signal
abnormalities it could otherwise use to overfit the training data.52,53
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Figure 6: The channel dimensions of the EEG are projected to a 2D plane resembling an image. The temporal
dimension of the signal is presented as a 3rd dimension. Using 3D convolution filters, one is able to extract
common signal morphology for further processing.

In contrast to images, EEG signals are challenging to find online in large, annotated databases. Therefore we
had to use the available data efficiently. Especially for small training sets, neural network approaches tend to
overfit. This can be prevented using different regularizers. For this purpose, we used L2, dropout, and batch
normalization. Additionally, we used Multi-Task Learning.54 This is a form of regularization by which the
network learns to work abstractly in the encoder part to solve several related tasks using joint training. In
our case, we classify whether the signal is pathologically relevant and simultaneously perform a CCA regression
(compare figure 7). We can describe the combined loss function as

LMulti = α1LCla + α2LCCA, (3)

with LCla being the classification and LCCA being the CCA regression loss. The αn multiplicator describes the
weighting of the individual losses towards the combined Multi-Task loss LMulti.

To maximize the performance of our neural network structures, we used the Bayesian optimization process.55

In each optimization cycle, a neuronal network with new hyperparameters is initialized and trained using the
training set. The hyperparameters of the consecutive run are selected based on the performance on the validation
set. The general structure of the hyperparameter optimization workflow is presented in Figure 8.
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Dropout [dropout_prop = 0.129]
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Conv3D [kernel_size = (1, 1, 5), strides = (1,1,1), filters  = 16]
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Figure 7: Structure of the CNN used in the multi-task learning process. EEG Data is processed through a series
of convolutional layers, followed by MaxPooling, BatchNorm, Activation and Dropout layers. The resulting
features are concatenated with the input indicating the stimuli position. After a series of dense layers, both a
classification (healthy/pathological) and a regression of the CCA are computed.
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Figure 8: The general flowchart for hyperparameter optimization. In each optimization cycle, new hyperparam-
eters are calculated by the optimizer. A neural network with the iterated hyperparameters is built and trained
on the training set and evaluated on the validation set. Based on the performance on the validation set, the
hyperparameters are updated for the next training cycle.

Proc. of SPIE Vol. 11360  1136008-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 Aug 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 9: The figure shows the chosen electrode placement on the international 10/10 system. We used seven
electrodes for the detection of signals over the visual cortex. In addition there are the ground and reference
electrodes. We placed the ground electrode on the ear, to reduce biosignal activity. The optional reference
electrode is usually placed onto the location of Fz to remove irrelevant frontal brain activities from the signal.

6. EXPERIMENT SETUP

In this chapter, we want to present a use case for the proposed system. We collected EEG data from 15 individuals
using our proposed system. The data was collected at the Massachusetts Institute of Technology, USA, and at
the Karlsruhe Institute of Technology, Germany.

6.1 EEG Setup

We considered dry electrodes during trials, but although the system setup time was drastically improved, we
struggled with a bad signal to noise ratio. Thus, for the recordings described here, we are using standard wet
electrodes, which provided a better signal to noise ratio. When positioning the electrodes on the head, it is
important to consider the later application. We aim to quantify the functionally of vision. Therefore, we placed
the electrodes over the occipital lobe. Figure 9 shows the electrode setup used in our experiments. We chose Fz

as the reference electrode in compliance with the current ISCEV standard for clinical visual evoked potentials.56

Furthermore, we utilized the chinrest presented in Chapter 3 to position the patient in a comfortable way in
order to minimize artifacts.

As 0.3–3 % of the human population carry the risk of photosensitive epilepsy,57 there are official guidelines
for its prevention.58 As stimulation frequency, we chose 7.5 Hz as it lies outside the highly epilepsy provocative
range of frequencies between 15–25 Hz.

6.2 Study Protocol

Initially, we asked the subjects if they had neurological conditions like Epilepsy, as well as whether they have
had any eye or visual pathway infections in the past. We only proceeded to record when there was no risk
involved. Furthermore, the participants were told that they could quit at any time without stating any reasons.
One measurement routine has a duration of about 2 minutes. We performed five (one without mask and four
with the masks presented in section 6.4) of those measurements for the monocular case and the binocular case
for each subject respectively. The electrode placement was as described in Figure 9. Furthermore, we used a
chin rest like the one shown in Figure 1.
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Figure 10: On the left side, all used stimulus positions for data collection are presented. In the experiment,
we tested one time without any overlay mask, followed by tests with each of the four vision impairment masks
displayed on the right.

6.3 The Stimulus

In order to assess the overall measurement quality, we use a 10-second recording of the individual with eyes
closed to record the corresponding alpha waves. Subsequently, we performed the measurements with stimuli and
a fixation target present. The tested positions are displayed in Figure 10 on the left. Close peripheral stimuli
were centered on visual angles of (6◦, 6◦) while far peripherals were centered on (6◦, 16◦) or (16◦, 6 degree),
respectively. All stimuli had a width an height of 10◦of visual angle. We chose pattern-onset stimuli at 7.5 Hz
with a size of 10 degrees. Each stimulus was presented for 7 seconds on and 3 seconds off. The pattern had a
checkerboard size of 1 degree. We chose this relatively large grating size due to the decreasing visual acuity in
the periphery and to compensate for the spherical aberration effects of the lenses used in VR-devices in the far
periphery.

6.4 Simulated Vision Defects

As this is a pre-clinical study, we were limited to healthy individuals for our tests. We used a post-processing
filter framework to simulate vision defects. For this task, we used a software framework we introduced in 201859

and clinically evaluated in 2019.60 We applied some modifications to obtain four post-processing masks for this
study. Pictograms of the used masks are presented in Figure 10 on the right. Field defects like those can appear
because of severe problems with perception due to glaucoma or damage to the optic nerve.61–63

7. RESULTS

In the following chapter, we are showcasing the use-case of perimetry using our proposed system. We want
to perform the signal processing using convolutional neural networks and compare the results to a CCA-based
threshold approach. For the deep learning approach, we utilized the QUA3CK machine learning development
process.64
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7.1 Question

With this study, we wanted to implement a convolutional neural network for objective monitoring of visual
perception in central, near-peripheral, and far-peripheral vision. The aim was to objectively distinguish between
’healthy vision’ and ’pathologically relevant vision loss’. We defined the latter to be present if a filter mask
occluded more than 50 % of the stimulus. The dataset for this task was recorded as outlined in Chapter 6. To
increase both the amount of available data and the challenge rating (CR) of this task, slices consisting of only
2.5 s of the recorded 7 s periods were used for each classification.

7.2 Understanding the Data

For this experiment, we collected EEG data from a total of 15 subjects. Of these, ten were measured at the
Karlsruhe Institute of Technology and five at the Massachusetts Institute of Technology. Subject age ranged
from 22 to 33 years (mean age: 26.5 years, σ = 3.2 years). 20 % of the subjects were female. Whilst analyzing
the data, it was noticeable that female subjects had stronger SSVEP responses in comparison with most males,
as has been found by other research as well.65 For the binocular case, we collected 15 × 5 × 13 = 975 seven-
second stimulus-snippets at different locations, either with or without a visual impairment overlay mask present.
Monocular data was collected for almost all participants and filter masks as well, further increasing the size of
the data library. With a step size of 536 ms, we obtain a total of 9 sample-snippets per seven-second interval.
This rendered a total of 8775 samples in the data set for the binocular case. After data acquisition, the initial
step was to perform a train, test, validation split. Four subjects were randomly selected for the test set. For
validation, we picked three subjects from the remaining data. Due to the used impairment masks shown in figure
10, we collected more data for the healthy case than for the pathological case, leading to a slight imbalance in
the dataset. Therefore we had to weigh the data accordingly during training. For testing, we used a balanced
sub-sample of the recorded test data.

7.3 Algorithm and Optimization process

We chose to use the Multi-Net proposed in Figure 7. EEG signals and the position of the stimulus were presented
to the network as input data. Position was encoded as a tuple consisting of the distance to the center and the
visual quadrant in which the stimulus was positioned. Despite the common standardization of the input data,
no further preprocessing was applied and the network was trained in an end-to-end fashion. The outputs of
the Multi-Net are the classification in healthy or impaired vision and a regression of the euclidean norm of the
calculated CCA vector of the input data. We chose to use the CCA value as an auxiliary output for the network
as a means of regularization (see Chapter 5). This regularization by multitask-learning was intended to support
the network in finding features that generalize well to unseen data. Finally, we used a Bayesian hyperparameter
optimization process based on the python library scikit-optimize to find a well-suited set of hyperparameters for
the training, again in order to generalize well to unseen data. We optimized for dropout probability, weighting
of α1 to α2 (compare equation 3), initial learning rate, L2 regularization in the convolutional layers and the
amount of neurons in the fully connected layers.

7.4 Conclude and Compare

In this section, we will compare the CNN-based results with a CCA-threshold-based state of the art algorithm.
For the estimation of the threshold, we used a combination of the training and validation set. Thresholds were
defined for nine stimulation positions individually. As the test dataset was imbalanced towards healthy cases, we
used a random subset of those for testing and performed the test five times. The means and standard deviations of
the resulting accuracies on the test set are presented in Table 1, whereas Figure 11 shows a graphical comparison.

Both algorithms performed best on central stimuli (position 1) while having a decreased performance on
peripheral stimuli (positions 2-5). For far peripheral stimuli (6-9), accuracies were slightly above random choice.
Notably, there is a difference in accuracy between the monocular case and the binocular case: SSVEPs are harder
to detect in the monocular case for both the CCA and the CNN approach.

In general, the differences between the state of the art CCA algorithm and the CNN approach are pretty
narrow. Difference between mean CNN accuracy over all stimulus positions and mean CCA accuracy is -1.75%
in the binocular case and +0.07% in the monocular case.
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Figure 11: Left plot: Classification accuracies on the test set for the binocular case. Right plot: Accuracies on
the monocular test case. Results are partitioned based on the stimulus’ position. The shaded area shows the
standard deviation over five test runs.

Position CNN (Bi) CCA (Bi) CNN (Mono) CCA (Mono)

Center (1) 88.1 (σ = 2.1) 89.4 (σ = 4.1) 79.3 (σ = 3.0) 78.5 (σ = 4.8)
Top right (2) 63.19 (σ = 1.0) 65.42 (σ = 1.8) 66.5 (σ = 1.8) 66.9 (σ = 1.2)
Top left (3) 81.5 (σ = 0.7) 77.5 (σ = 2.2) 61.7 (σ = 1.5) 65.7 (σ = 0.9)

Bottom left (4) 68.3 (σ = 3.2) 74.2 (σ = 2.9) 67.4 (σ = 2.5) 70.4 (σ = 5.1)
Bottom right (5) 71.4 (σ = 1.6) 79.7 (σ = 2.3) 74.3 (σ = 1.5) 73.7 (σ = 2.8)
Far top right (6) 49.5 (σ = 0.6) 50.1 (σ = 1.1) 52.6 (σ = 0.8) 51.5 (σ = 0.6)
Far top left (7) 57.1 (σ = 0.9) 57.4 (σ = 1.7) 57.4 (σ = 1.0) 49.0 (σ = 1.7)

Far bottom left (8) 54.9 (σ = 1.9) 57.2 (σ = 2.2) 58.1 (σ = 2.4) 58.7 (σ = 1.9)
Far bottom right (9) 56.1 (σ = 1.8) 55.0 (σ = 1.0) 52.3 (σ = 0.7) 54.5 (σ = 1.2)

Table 1: Comparison of mean accuracies reached with a CNN and CCA approach.

7.5 Knowledge Transfer

The CNN was able to classify the unseen test data with comparable accuracy to the CCA. Thus, we assume
that the CNN was not only able to learn a transformation from the time into the frequency domain with a focus
on the stimulated frequencies over multiple channels, but furthermore was able to learn which thresholds are
considered healthy and which are pathologic for individual stimulus positions.

Investigating why the CNN was not able to outperform the CCA based classification, two possible reasons
come to mind. Firstly, it might be the case that the EEG data during SSVEP stimulation contains no relevant
features other than the elicited harmonics of the stimulation frequency. Thus, both CNN and CCA would rely
on the same set of basic features and their performance should be equal. Another hypothesis might be that the
EEG signal does contain features despite the harmonics, but that these features are not present in all subjects
or vary across subjects so that a larger dataset would be needed in order to identify the relationships between
these features and the desired classification outcome. From the current results, we can only conclude that our
CNN based approach is not finding features serving classification better than a state of the art CCA approach.

One approach to further increase the performance of the CNN might thus be found in increasing the size
of the dataset. Furthermore, more complex stimulation patterns, which, for example, make use of nonlinear
electrophysiologic processes in the human visual system,66 may favor a CNN approach in the future.
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8. CONCLUSION AND OUTLOOK

In this paper, we presented a generalized, modular, closed-loop system approach towards the objective assessment
of neuro-visual function. We showcased that such a system has to fulfill a multitude of requirements in order to
work well within a machine learning research environment. There is the need to define and display stimuli and
sequences of such in various displaying technologies. It needs to connect and synchronize EEG and labels in order
to collect data for the learning process. Moreover, it needs the means to perform inferences with trained machine
learning models to run in a closed-loop fashion. We proposed an implementation serving those requirements and
carried out a use-case study aiming towards objective visual field testing. A Multi-Task CNN for the classification
of pathological and healthy cases was trained and we compared the results against a CCA-threshold algorithm
baseline. Despite the comparably small dataset used for training, the CNN-based approach could indeed perform
on the same level like the state of the art threshold-based CCA approach.

As this study used only the data of 15 individuals, we assume that a machine learning model trained on a
larger dataset would likely outperform our presented solution. For future implementations one major goal is to
implement high frequency stimulus embedding analog to ’Sublime’29 in an attempt to further improve patient
comfort. We hope that our work can contribute to EEG classification and objective measurement of the neuro-
visual function using machine learning. We see great potential for brain-computer-interface-based automatic
assessments in ophthalmology in the future.
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