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ABSTRACT 
Food 3D printing enables the creation of customized food 
structures based on a person’s individual needs. In this paper, 
we explore the use of food 3D printing to create perceptual 
illusions for controlling the level of perceived satiety given a 
defined amount of calories. We present FoodFab, a system that 
allows users to control their food intake through modifying a 
food’s internal structure via two 3D printing parameters: infill 
pattern and infill density. In two experiments with a total of 
30 participants, we studied the effect of these parameters on 
users’ chewing time that is known to affect people’s feeling 
of satiety. Our results show that we can indeed modify the 
chewing time by varying infill pattern and density, and thus 
control perceived satiety. Based on the results, we propose two 
computational models and integrate them into a user interface 
that simplifies the creation of personalized food structures. 

Author Keywords 
personal fabrication; food perception; food-interaction design; 
food 3D printer; fabrication techniques. 

CCS Concepts 
•Human-centered computing → Human computer inter-
action (HCI); Interaction design; 

INTRODUCTION 
Over the last decades, 3D printers have started to move out of 
the realm of printing with plastic filament, resins, and metal 
powders [15, 31] and are now also being used for fabricating 
objects from edible materials [1, 21]. Today, 3D food print-
ers are already in use in a variety of contexts from high-end 
restaurants that create new types of recipes (FoodInk [35, 44]) 
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Figure 1. FoodFab is a system that modifies a person’s perceived satiety 
given a defined amount of calorie intake. It accomplishes this by creating 
food structures of different chewing times, which can be accomplished 
by varying 3D printing parameters, such as infill pattern and infill den-
sity. (a) Users input the type of food and level of hungriness, (b) FoodFab 
retrieves the required chewing time and matching infill parameters, and 
(c) 3D prints the food. (d) All cookies have the same calorie amount, but 
different chewing times caused by variations in infill. 

to elderly care homes that use food 3D printing to reshape un-
appealing mashed food into more appealing shapes [52]. 3D 
food printers are thus quickly becoming part of the ongoing 
revolution of the future of computing and food [23, 28, 29], 
and can make a difference in the way we eat, which is gaining 
more and more attention in light of global challenges around 
obesity and other eating related disorders [2, 51, 50, 48]. 

Recently, food perception researches have started to investi-
gate how to change peoples’ perception of satiety by modify-
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ing different perceptual cues. Visual cues, for instance, play an 
important role: When a piece of food is cut into strips rather 
than cubes, people perceive it as more filling since it takes up 
more volume on the plate [46]. Similarly, haptic cues, such as 
an increased biting force and the resulting longer chewing time 
affect people’s feeling of satiety. For instance, people consume 
less food when eating hard food compared to soft food [53]. 
Other features of food and food presentation, such as plate 
size and lighting, have been studied in cross-modal correspon-
dence research [36], further extending our understanding of 
perceptual cues and illusions related to food intake. 

Within HCI, we see a growing effort to implement such per-
ceptual cues digitally by overlaying content onto the food 
using augmented reality (AR) and actuated devices. Narumi 
et al. [25] showed that by visually overlaying a scaled image 
of food, seen through AR glasses, users perceive the food 
differently, i.e., believe the actual food changed in size. Sim-
ilarly, haptic cues induced by vibration motors on the user’s 
teeth [14] and electrodes attached to the user’s tongue allow to 
simulate different food textures and flavors [33]. While these 
approaches deliver effective illusions, they require users to 
wear extra hardware and are less practical when used at home 
since users see the plain food before it is augmented. With the 
proliferation of food 3D printing technology, the creation of 
computationally-controlled food perceptions cues is no longer 
limited to the digital realm but can be tied back to the phys-
ical modification of food, which was originally used in food 
perception research. To investigate a first set of computation-
ally controllable food 3D printing parameters, we hypothesize 
that changing the infill of a piece of food affects the chewing 
time, which has been shown to correlate with human satiety 
perception [11]. 

To evaluate the effect of infill, we setup a food 3D printer 
and fabricated pieces of food with varying infill patterns and 
infill densities. We tested our assumptions in two independent 
experiments with a total of 30 participants, in which we mea-
sured participant’s chewing time using an electromyography 
sensor (EMS) and the perceived level of satiety using a self-
report questionnaire. The results from both experiments show 
that changes in infill have a significant effect on chewing time 
and resulting perceived satiety. 

Building on the data from the experiments, we develop two 
computational models, one for each 3D printing parameter 
(i.e., infill pattern and infill density). The models output the 
value of the printing parameter based on a person’s desired 
increase in satiety. We then use these computational models to 
build an end-to-end system, called FoodFab, which simplifies 
the process of creating customized food structures (Figure 1). 

In summary, our contribution is threefold: First, we use food 
3D printing techniques to physically modify food, extending 
prior work on digital augmentation for creating perceptual 
illusions. Second, we run two experiments with food of vary-
ing infill patterns and infill densities to evaluate the effect of 
these printing parameters on the user’s chewing time and per-
ceived satiety. Third, we propose two computational models 
embedded in an end-to-end system that generate 3D printing 
parameters based on a desired increase in satiety. 

RELATED WORK 
In this section we review relevant related work with a particu-
larly focus on existing insights from food perception research, 
prior attempts to digitally augment food to create perceptual 
illusions, and opportunities for food fabrication. 

Food Perception and Perceptual Illusions 
Research in psychology and sensory science have identified 
many cues that can change a user’s perception of food. For 
instance, increasing the chroma of a cake increases its per-
ceived sweetness [18, 27], white wine that is colored red 
causes an illusion of red wine, and when regular tuna is over-
laid with white stripes it is perceived as the more satisfying 
fatty tuna [30]. Besides color and texture changes, perceptual 
illusions can also be caused by the shape of the food [6], its 
arrangement on the plates [46], the shape of bowls and glasses 
[32], and the environment lighting (e.g., candles can increase 
the duration of a meal and consequently the food intake [22]). 

Besides appearance cues, chewing patterns (i.e., jaw move-
ment, chewing force, and chewing time) are identified as 
an important feature influencing eating behavior. Horio et 
al. [12] found that the texture of food influences chewing 
and ultimately influences the perceived fullness. Similarly, 
Hogenkamp et al. [11] found that eating slowly and thus 
chewing more affects the perceived fullness since the chew-
ing time increases. In addition, Zijlstra et al. [53] showed 
that smaller biting sizes can cause a longer chewing time and 
more satiation. Taken together, those works suggest a rich 
design space for HCI, exploiting emerging technologies in cre-
ating perceptual cues to guide the mind into healthier eating 
behaviors. 

Digitally Augmenting Food Perception Cues 
In recent years, there is an increased interest in implementing 
perceptual illusions into computer-controlled systems. HCI 
researchers, for instance, used AR to digitally enhance food: 
MetaCookie [26] changes the perceived taste of a plain cookie 
by overlaying colors that represent different flavors. In other 
words, the user believes in eating a chocolate cookie although 
in reality it is a plain cookie. In another case, Augmented Per-
ception of Satiety [25] increased the apparent size of cookies 
by overlaying a scaled image of the cookie together with an 
adjusted rendering of the user’s hand. 

To adjust users’ fluid intake, Illusion Cup [40] and Chang-
ing Drinking Behavior [41] visually overlay modified sizes 
of drinking containers. Similarly, Sakurai et al. [34] resize 
virtual dishes to make the amount of food appear larger. Fi-
nally, Fujimoto et al. [7] digitally modify the color appearance 
of food using projection-based AR to make the food appear 
more appealing. Rather than augmenting the food visually, 
researchers have also investigated how to augment the user’s 
mouth via haptic sensations: Iwata et al. [14], for instance, use 
vibration motors on the user’s teeth and electrodes attached 
to the user’s tongue to simulate different food textures. Pre-
vious work also used sensors to detect chewing sounds and 
then amplified the sound during the eating process to create 
the illusion of a stronger biting force [19, 38]. In addition, 
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Figure 2. FoodFab takes as input (a) daily calorie consumption, the type of food for the meal (ingredient, food 3D model), and the user’s hungriness 
level. It then (b) computes the allowable calorie intake for the meal, and based on this (c) the allowable amount of ingredient, and then scales the model 
accordingly. (d) Based on the user’s desired increase in satiety, FoodFab looks up the correlated chewing time, and retrieves the 3D printing parameter 
that produces that amount of chewing (either infill pattern type or specific infill density). It then (e) applies the 3D printing parameter to the model, (f) 
scales the model if needed, and then fabricates it using a food 3D printer. 

previous work showed how to modify the user’s satiety level 
through virtual weight sensation [10]. 

While the above efforts provide promising examples for digi-
tally augmented food perceptions, the main drawback is the 
requirement of attachments which makes them less applicable 
for day-to-day eating scenarios. 

Advances in Food Fabrication 
Early research in food 3D printing focused on the unique 
aspects of using computer-controlled fabrication to prepare 
meals. For instance, Laser Cooking [8] used a laser cutter to 
locally roast food in specific locations, which is not feasible 
using a regular pan. Similarly, Liu et al. [20] used a 3D printer 
to create internal food structures that are hard to create by 
hand. Digital Gastronomy [24] and Digital Konditorei [55] 
investigate how to create new taste sensation by 3D printing, 
milling, laser cutting, or molding ingredients into custom food 
structures. Since the field is growing quickly, Sun et al. [39] 
and Godoi et al. [9] provide a review of benefits and drawbacks 
for various food fabrication devices. 

Recently, researchers have also started to use food 3D printers 
to motivate behavior change. For instance, TastyBeats [17] 
translates physical activity data into food treats to encourage 
reflection about the activity. We build on this work but take a 
different angle, motivated by the need to support people with 
their food intake. Prior research has shown that thoughts about 
restrained eating make food cues even more appealing [37]. 
Hence, we aim to influence users’ food intake in a less obtru-
sive and more implicit way through modifying the structure of 
the food that is being 3D printed. 

FOODFAB OVERVIEW 
We introduce FoodFab, a food 3D printing system that sup-
ports users in controlling their food intake. FoodFab induces 
varying levels of satiety by creating food structures of different 

chewing times but with the same amount of calories. To ac-
complish this, FoodFab modifies two 3D printing parameters: 
the infill pattern and the infill density. In the following sec-
tions, we present a detailed overview of the system structure 
and discuss the underlying fabrication techniques. 

FoodFab System Structure 
As can be seen in Figure 2a, FoodFab takes as input: (1) the 
type of food the user would like to consume (e.g. cookies) and 
(2) a rating of the user’s current hungriness level (e.g., 35/100). 
It also queries (3) the user’s average daily calorie use from a fit-
ness tracker (e.g., 2000 calories)-alternatively, this information 
can also be added manually to the user’s profile). 

Compute Allowable Calorie Intake for the Meal: FoodFab 
splits the amount of daily calories the user is allowed to con-
sume over a set of daily meals (e.g., 30% for each main course: 
breakfast, lunch, dinner, and 5% for a morning and afternoon 
snack; values customizable in the UI). Based on the time of the 
day, FoodFab then retrieves the meal type and corresponding 
calorie percentage, and computes the allowable calorie for the 
meal for the particular user (Figure 2b). For our user, who is 
having a cookie as an afternoon snack and wants to reduce 
daily calorie intake by 200 calories, the allowable calories are 
(2000cal - 200cal) × 5% = 90 cal. 

Compute Amount of Ingredient Given Allowable Calories: 
Next, FoodFab computes the amount of ingredient that can be 
used to stay within the allowable calories. Since cookie dough 
comes at 10cal/g and the user has 90cal available, the user can 
consume 9g (Figure 2c). 

Scale the Food 3D Model to Match Ingredient Amount: Food-
Fab next scales the 3D model of the food to a size at which 
it requires only the allowed amount of ingredient (assuming 
solid infill in this processing step). In our case, in which 
the original cookie 3D model required 11g to print but the 



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

user can only consume 9g, FoodFab scales the model to 82% 
(Figure 2c). 

Compute Necessary Increase in Satiety: Based on the user’s 
hungriness level, FoodFab next computes the required increase 
in satiety. Assuming the user is currently slightly hungry 
(35% hungry) and would like to be full (0% hungry), the 
required increase in satiety is 35%. 

Compute Chewing Time Required for Satiety Increase: Next, 
FoodFab takes the desired increase in satiety and retrieves the 
correlated chewing time from our computational models that 
we created based on the data from our experiments (Figure 2d). 
In our case, an increase in satiety of 35% correlates with a 
chewing time of 32 seconds. 

Retrieve 3D Print Parameters for Required Chewing Time: 
Since a specific chewing time is achieved by a specific value of 
3D printing parameter, FoodFab next uses our computational 
models to retrieve either an infill pattern or an infill density that 
causes the required amount of chewing for the given 3D model. 
In our case, a chewing time of 32 seconds corresponds to an 
infill density of 61% (Figure 2e). 

Apply 3D Printing Parameters to Food 3D Model: FoodFab 
next applies the 3D printing parameters to the 3D model that 
was previously scaled to match the allowable calorie intake and 
corresponding amount of ingredient. When decreasing infill 
density, the increased sparsity of the food’s interior allows the 
model to be scaled up and to appear larger for the same amount 
of calories. As shown in Figure 2f, a 61% infill density, for 
instance, causes FoodFab to scale the 3D model by 3mm in 
x/y. 

Slice and 3D Print: FoodFab then slices the 3D model and 
sends the resulting ’.gcode’ file to the 3D printer. The final 
food structure has a chewing time that leads to the desired 
increase in satiety while not exceeding the calorie amount 
previously specified. 

Note that there are limits to how much we can modify satiety. 
As we will detail later in the experiments section, for a food 
of similar shape and cal/g, we can modify a user’s perception 
of satiety within a range of 17 − 21% for infill pattern and 
32 − 44% for infill density. Thus, taking infill density as an 
example and a hungriness level of 100%, users would have to 
eat 3.1 cookie with the least satiety inducing infill density but 
only 2.3 cookies for the most satiety inducing infill density 
(100% satiety = 3.1 cookies x 32% satiety increase vs. 2.3 
cookies x 44% satiety increase). Given that one cookie in 
our experiments has 150 calories, this is a calorie saving of 
70.4cal or 25.8% while resulting in the same user reported 
satiety level (70.4cal calorie saving = 272.80cal (3.1 cookies x 
88cal) - 202.40cal (2.3 cookies x 88cal)). However, it is not 
possible to induce the same satiety level by consuming less 
calories than this given the user’s choice of food. 

The above five-step process illustrates the main principles 
underlying the FoodFab system and how it translates desired 
input and output parameters into the fabrication of food. Next, 
we describe our choice of 3D printing parameters in detail. 

Figure 3. Varying infill patterns: (a) Honeycomb infill, (b) Hilbert infill, 
and (c) Rectilinear infill. 

Figure 4. Varying infill density, which also varies size: (a) 70% infill 
(25x25mm), (b) 55% infill (35x35x5mm) and (c) 39% infill (40x40mm). 
All cookies are printed with 5mm height. 

3D Printing Parameters: Infill Pattern & Infill Density 
We chose to modify infill for two reasons: (1) variations in in-
fill vary the mechanical strength of the printed food structures, 
which likely causes changes in chewing pattern and time, and 
(2) variations in infill are not visible from the outside. 

Mechanical Strength: It is well known that infill affects the 
mechanical properties of 3D printed objects and thus in the 
case of 3D printed food structures may lead to different chew-
ing patterns and chewing times and consequently different 
levels of perceived satiety. For instance, it has been shown that 
for the infill pattern parameter the ‘honeycomb’ infill allows 
objects to withstand strong forces from all directions whereas 
the ‘rectilinear’ infill pattern can only withstand forces from 
specific directions [13, 42]. Similarly, it has been shown 
that higher infill percentages correspond to higher mechanical 
strength of 3D printed objects [5]. 

Not Visible from the Outside: In addition, since varying infill 
parameters only affects the internal structure of the food, these 
structural variations are not visible when the food is viewed 
on the plate. Since the infill volume is enclosed by solid top 
and bottom layers, users cannot tell by looking at the food that 
the food differs inside. 

Based on the desired properties of infill, we chose two different 
infill parameters for our studies. 

Infill Pattern: Infill patterns, such as honeycomb, rectilinear, 
and Hilbert, change how the infill path is laid out (Figure 3). 
Since the path of each infill pattern requires approximately 
the same amount of ingredient, varying infill pattern does not 
affect the size of the input 3D model. 

Infill Density: Infill density determines how sparse the model 
is on its interior (Figure 4). Since lower infill densities require 
less ingredient, the model can be enlarged to use the remaining 
ingredient for the rest of the geometry. This is especially 
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Figure 6. Different ingredients for 3D printing food structures: (a) 
cookie dough, (b) avocado puree, (c) pork puree and (d) ganache. 

desirable, since large food sizes have been shown to lead to an 
increase in perceived satiety. 

We will next report on two experiments with 30 participants 
total to investigate the effect of infill parameters on chewing 
time and perceived satiety. 

USER STUDY 
We conducted two independent experiments to investigate the 
influence of the two 3D printing parameters–infill pattern and 
infill density–on the chewing time and the user’s perceived 
satiety. We first describe the 3D printing hardware and food 
ingredients used for the experiments, and then detail the ex-
periment procedure and outcomes. 

3D Printing Hardware 
All food structures printed for the experiments were fabricated 
on the food 3D printer called 3DbyFlow that is shown in 
Figure 5. The 3DbyFlow printer allows accurate printing and 
fabrication of food with different internal structures, necessary 
to deploy different infill patterns and densities. Based on our 
experience with the 3D printer, food structures printed from 
the same 3D model (i.e., printed from the same ingredient 
amount) have an error rate of ±0.10g, which we determined 
by weighting the 3D printed food structure using a standard 
weight scale (SHIMADZU ELB300). 

Ingredient Choice for 3D Printed Food 
Using the 3DbyFlow printer, we tested different ingredients for 
creating 3D printed food structures. We focused on ingredients 
that have been previously used in food 3D printing research 
[4, 16, 17, 49] including cookie dough, avocado, pork puree, 
and ganache (see Figure 6). 

Since our experiments rely on internal structures of a specific 
pattern and density, we found that ingredients with the follow-
ing properties work best for our approach: (1) form a sturdy 
structure at room temperature, (2) if post-processing (cooking, 

Ingredients Nozzle Size 
(per 30 cc) (diameter) 

Cookie 
Dough 

salt-free butter 
liquid egg 
cake flour 
sugar 

4g 
10 12g 

24g 
10g 

1.2mm 

Avocado avocado 
lemon juice 

50g 
1.5g 

1.6mm 

Pork 
Puree 

salt-free butter 
(removed fat and fiber) 
salt pepper 

4g 

1.5g 

1.2mm 

Ganache liquid cream (40%) 15g 1.2mm 
dark chocolate (40%) 30g 

Table 1. Food ingredients for 1 syringe (30 cc) and required nozzle 
diameter for food 3D printing. 

baking) is required, the food keeps the same shape, size, and 
internal structure. 

Table 1 shows how we prepared each ingredient to create a 
printable paste. The ratios were determined experimentally by 
repeatedly printing the ingredient and observing the resulting 
stability of the food structure. 

Sturdy Structure at Room Temperature: We found that cookie 
dough, avocado, and pork puree result in a sturdy food struc-
ture at room temperature even when sparse infill is used. 
Ganache, however, was too liquid to maintain its structure 
even when prepared at room temperature (25◦C). 

Post-Processing to maintain Shape, Size, and Internal Struc-
ture: We found that from all ingredients, 3D models printed 
from cookie dough best kept their shape, size, and internal 
structure after baking (average error from 3D model ±0.5mm). 
This was especially the case when the proportion of flour 
was raised. Pork puree had a larger variation after cooking. 
Although avocado did not require any post-processing, the 
phenols contained in avocado caused it to oxidize quickly, 
which reduced its visually appeal. Since reduced visual appeal 
may affect the experiment results, we removed it from the 
selection. 

Overall, we found that cookie dough performed best from all 
ingredients. Using it as the experimental ingredient is also in 
line with prior work that used cookies as an experimental food 
item (in AR: MetaCookie [26] and Augmented Perception of 
Satiety [25], and in food perception: Turner et al. [43]). 

Preparation and Printing Process 
To prepare the cookie dough for 3D printing, we blended all 
ingredients as shown in Table 1 until the cookie dough was 
evenly-mixed. We then filled the dough into a syringe (NORD-
SON EFD 7012134, 30cc Syringe Barrels) and removed air 
bubbles resulting from the transfer process by placing the 
dough inside a vacuum chamber (BACOENG 3 Gallon Vac-
uum Chamber Kit) for 5 minutes. Our 3D printing nozzle for 
printing the cookie dough has a diameter of 1.2mm (NORD-
SON 7018100 Tips; 16GA TT .047" Grey). We had previously 
experimented with different nozzle sizes 0.8 to 1.6mm and 



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

EMG 
sensor

cookiewater

questionnaires

participant

Figure 7. Experimental design. Participants were asked to sit at a table 
with the printed cookies and a glass of water. We attached an EMG sen-
sor to participant’s masticatory muscle to record the chewing time and 
participants recorded perceived satiety by answering a questionnaire on 
a laptop at the table. 

found that nozzles larger than 1.2mm created large printing 
error while smaller nozzles did not properly extrude the dough. 

Before printing, we attached baking paper to the top of the 
printer glass plate (see Figure 5), which we use later to move 
the printed cookie from the printer to the oven. 

For the experiments, we printed square shaped cookies with ei-
ther different infill patterns (experiment 1) or densities (exper-
iment 2). All cookies were baked in the oven at 150◦C-180◦C, 
with top and bottom heat, for 15-30 minutes, depending on the 
size of cookie. 

We measured the size and weight of each cookie after baking 
using a standard weight scale (SHIMADZU ELB300) to verify 
that cookies had the expected weight and size (within an error 
of ±0.10g and ±1.00mm). Baked cookies with larger error 
were removed prior to the experiment. 

Data Collection 
In both experiments users ate different types of cookies that 
varied along the parameter space of the 3D printing parameter. 
We measured users’ chewing time and perceived satiety using 
a combination of EMG and questionnaires. 

Measuring Chewing Time (EMG): To measure chewing time, 
we used an electromyography (EMG) sensor (Tokyo Devices 
IWS940-DEV) attached to the masticatory muscle of the user’s 
jaw (Figure 7). EMG allows for more accurate measurements 
than having participants manually start/stop a timer and also 
has the added benefit that it keeps users’ hands free for eat-
ing [19]. We later use the data points from the chewing time 
as input for the computational models that compute the 3D 
printing parameters. 

Measuring Perceived Satiety (Questionnaire): To measure 
user’s perceived satiety, we adapted the questionnaire used in 
prior work [25] and used the questions: “How hungry are you 
now?” and “How full are you now?”. We used the magnitude 
estimation method [3] in which participants rate their hunger 
and fullness between 0% (‘not hungry at all’ or ‘not full at all’) 
to 100% (‘extremely hungry’ or ‘extremely full’). Participants’ 
ratings were recorded using an on-screen questionnaire to in-

Cookie #1 Cookie #2 Cookie #3 

Infill density 25% 25% 25% 

Infill pattern Honeycomb Hilbert Rectilinear 

Weight (g) 15.09 15.05 15.01 

Size (mm) 30× 30 30 × 30 30 × 30 

Pattern diagram 

Table 2. Fabrication parameters of the three types cookies in Experi-
ment 1. The height was fixed at 5mm (7 printed layers). 

vestigate the correlation between chewing time and perceived 
satiety (combining objective and subjective measures). The 
questionnaire was completed before and after eating cookie. 

Room Setup 
The experiments were conducted in a quiet, private room at a 
set light illumination of 500 lux. In the middle of the room, we 
setup a table on which we placed the cookies, a cup of water, 
and a computer for answering the questionnaire. Participants 
were asked to sit comfortable on a chair at the table. 

In the following section, we provide details for each of the two 
experiments. For both experiments, ethics approval from the 
Local University Ethics committee was obtained, and written 
consent collected from participants. 

EXPERIMENT 1: Effect of Infill Pattern on Chewing Time 
and Perceived Satiety 
In the first experiment, we fabricated cookies with different 
types of infill patterns to investigate their effect on users’ chew-
ing time and perceived satiety. 

Experimental Design 
The experiment followed a within-subjects design with three 
experimental conditions, i.e., three cookie types with varying 
infill patterns and with the same physical weight (15g, ±0.10g 
error) and thus the same calories (1g cookie dough = 10cal, 
150cal ±1cal). Figure 3 shows an overview of all three cookies 
and Table 2 summarizes their respective measurements and 
parameters. Cookie #1 was printed with the honeycomb infill 
pattern, cookie #2 with the Hilbert infill pattern, and cookie #3 
with the rectilinear infill pattern, all at 25% infill. Each cookie 
across all types had a fixed height of 5mm, which it equal to 7 
printed layers in our setup. In addition, we gave participants 
a solid reference cookie as one would obtain from traditional 
cooking to provide a normal reference representing common 
experience. The reference cookie was of the same size but had 
a solid infill (100%) and thus a different weight (22.45g) and 
calorie amount (224.50cal). The data for the reference cookies 
is included in the supplementary material. 

Based on the mechanical properties of cookie #1-#3, we hy-
pothesized that the honeycomb infill pattern creates the longest 
chewing time and highest perceived satiety because honey-
comb creates the most robust structure, followed by the Hilbert 
pattern and rectilinear pattern last. The reference cookie can-
not be included in the comparison since it is made from a 
larger ingredient amount and thus contains more calories. 

Paper 294 Page 6
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Figure 8. Infill Pattern: Average chewing time for eating one cookie 
(averaged signal across all participants). 

Procedure 
Participants took part in a total of four sessions, each lasting an 
average of 10 minutes from pre- to post-questionnaire. Each 
session took place on a different day to reduce effects from 
overly long chewing time. In each session participants were 
presented with one of the four types of cookies (one of the 
infill patterns or the solid reference cookie). We randomized 
the order of the cookie types between participants using the 
Latin Square design [47] to avoid order bias. 

Before each session, participants were asked to fill out the 
questionnaire to measure their perceived satiety. Then, partici-
pants were presented with 10 cookies of the specific type they 
were assigned to for the session. Participants were asked to eat 
as many of the 10 cookies as they wanted. After eating each 
cookie, we asked them to rate their perceived satiety again 
using the same questionnaire. 

Participants 
We recruited ten unpaid volunteers (7 males and 3 females, 
µ = 24 years, σ = 2.18 years) from a local university to par-
ticipate in the experiment. Before signing up as participants, 
they had to confirm that they had no food allergies or restric-
tions. Participants were instructed not to eat for at least four 
hours before taking part in the experiment in order to ensure 
that they had enough appetite. Participants were allowed to 
drink water after each cookie but not while eating the cookie 
to prevent any effect the water intake may cause. 

Results 
Chewing Time: Figure 9a shows the average chewing time 
for eating one cookie in each of the three different conditions. 
All participants finished 10 cookies without leftovers. We 
found that the longest chewing time was elicited by cookie #1 
(Honeycomb, 84.2s), followed by cookie #2 (Hilbert, 72.2s) 
and cookie #3 (Rectilinear, 61.6s). We applied a one-way 
analysis of variance (ANOVA) and found a significant effect of 
infill pattern (F(4,29) = 4.75, p < 0.05). The post-hoc analy-
sis using Bonferroni showed a significant difference between 
cookie #1 and cookie #2, cookie #2 and cookie #3 (p < 0.05), 
and cookie #1 and cookie #3 (p < 0.01). Figure 8 shows the 
measured chewing time in each condition. 
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Figure 9. Infill Pattern: (a) Average chewing time, and (b) average 
increase in perceived satiety (computed from the questionnaire results 
before and after experiment) for one cookie. 

Perceived Satiety: Figure 9b shows the average increase in 
perceived satiety, i.e. the difference in how hungry participants 
rated themselves via the pre- and post-questionnaires before 
and after eating each cookie in each condition. The question-
naire results indicate that participants felt less hungry after 
eating cookie #1 (21.30% average increase in satiety), com-
pared to cookie #2 (19.51% average increase in satiety) and 
cookie #3 (17.13% average increase in satiety). We applied 
a one-way ANOVA to the questionnaire results (i.e., average 
score between pre- and post-questionnaire). However, we did 
not find any significant effect of perceived satiety among the 
conditions (F(4,29) = 7.35, p = 0.79). 

Based on the results, we conclude that we can indeed control 
chewing time and perceived satiety by varying the infill pattern. 
While we cannot find a significant difference of perceived 
satiety among the infill patterns, the results indicate a different 
average among all conditions. 

EXPERIMENT 2: Effect of Infill Density on Chewing Time 
and Perceived Satiety 
Following the same procedure as in experiment 1, we de-
signed a second experiment to investigate the effect of different 
infill densities on chewing time and perceived satiety. Since 
we had to choose one infill pattern to be able to control this 
variable, we selected ‘honeycomb’. For future work additional 
experiments are needed to complement the information of the 
other infill patterns with their respective infill densities as well. 

Experimental Design 
The experiment followed the same design with three experi-
mental conditions, however, this time the three cookie types 
had varying infill densities. 

As mentioned earlier, printing cookies using the same amount 
of ingredient (to keep the calories the same) but varying the 
infill density results in a change of cookie sizes. Figure 4 
shows the three printed cookie types and Table 3 shows their 
respective measurements and parameters. 

Cookie #1 was printed with 39% infill (40x40mm), cookie #2 
with the 55% infill (35x35mm) and cookie #3 with 70% infill 
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Cookie #1 Cookie #2 Cookie #3 

Infill density 39% 55% 70% 

Infill pattern Honeycomb Honeycomb Honeycomb 

Weight (g) 10.31 10.31 10.33 

Size (mm) 40 × 40 35 × 35 25× 25 

Table 3. Fabrication details of the three types cookies in Experiment 2. 
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Figure 10. Infill Densities: (a) Average chewing time, and (b) average 
increase in perceived satiety (computed from the questionnaire results 
before and after experiment) for one cookie. 

(25x25mm). Each cookie had a fixed height of 5mm, which is 
equal to 7 printed layers in our setup. In addition, participants 
were given the solid reference cookie again in one of the four 
sessions. 

Participants 
We recruited twenty unpaid volunteers (14 males and 6 fe-
males, µ = 24 years, σ = 2.41 years). Out of the twenty 
participants, ten had participated in experiment 1 but we did 
not observe any difference in their data when compared to the 
other participants. 

Results 
Chewing Time: Figure 10a shows the average chewing time 
for eating one cookie in each of the three conditions. All 
participants finished 10 cookies without leftovers. We found 
the longest chewing time was elicited by cookie #1 (lowest 
infill / largest size, 45.30s), followed by cookie #2 (medium 
infill / medium size, 36.35s), and cookie #3 (largest infill 
/ smallest size, 26.0s). We applied a one-way ANOVA and 
found a significant effect of infill density (F(4,29) = 22.10, 
p < 0.01). The post-hoc analysis using Bonferroni showed a 
significant difference among different infill densities (p < 0.05) 
except between cookie #1 and cookie #2. 

Perceived Satiety: Figure 10b shows the average increase in 
perceived satiety, i.e. the difference in how hungry partici-
pants rated themselves via the pre- and post-questionnaires 
before and after eating each cookie in each condition. The 
questionnaire results indicate that participants felt least hungry 
after eating cookie #1 (lowest infill / largest size, 43.8% aver-
age increase in satiety), followed by cookie #2 (medium infill 

/ medium size, 38% average increase in satiety) and cookie 
#3 (largest infill / smallest size, 31.75% average increase in 
satiety). We applied a one-way ANOVA to the questionnaire re-
sults (i.e., average score between pre- and post-questionnaire) 
and found a significant effect of infill density on perceived 
satiety (F(4,29) = 17.086, p < 0.01). The post-hoc analysis 
using Bonferroni showed a significant difference among each 
pair of different infill densities (p < 0.05). 

Thus, given these results, we conclude that we can indeed 
modify chewing time and perceived satiety by varying the 
infill density. 

COMPUTATIONAL MODEL 
Based on the results from the two experiments, we conclude 
that we can modify the chewing time by modifying a food’s 
internal structure via 3D printing parameters, such as infill pat-
tern and infill density, and that the chewing time is correlated 
with the perceived satiety. 

To make our experimental results applicable in the context of 
creating food structures of a desired chewing time, we create 
two computational models, one for each of the 3D printing 
parameters infill pattern and infill density. 

Each model consists of two parts: (1) a mapping of perceived 
satiety to chewing time, and (2) a mapping of chewing time to 
3D printing parameter, i.e. a specific infill pattern type or infill 
density percentage. Note that these computational models 
are meant as an illustration of the potential applications that 
FoodFab will enable, i.e. they only work for a food 3D model 
of the same initial dimensions as used in the experiment. 

Infill Pattern: Discrete Selection 
Mapping Perceived Satiety to Chewing Time: Prior work [11] 
has shown that chewing time has a correlation with perceived 
satiety, which was also confirmed by our experiments (i.e., 
the longer participants chewed, the higher they rated their 
perceived satiety afterwards, with significant effects for infill 
density and correlated increased averages for infill pattern). 
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Figure 11. Infill Pattern Lookup Chart (created from results from Ex-
periment 1): (a) for a desired satiety level, look up the chewing time. (b) 
For a required chewing time, find the matching infill pattern parameter. 

To show this effect in one graph, we summarize the data 
on chewing time and perceived satiety in Figure 11a with 
perceived satiety on one axis and chewing time on the other. 
We then fit a linear graph resulting in the following formula: 
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chewing time t = 0.18 * perceived satiety increase + 5.96. 
Thus, once users indicated their hungriness level (i.e., current 
perceived satiety level), we can determine the required increase 
in satiety, and then compute the necessary chewing time. For 
example, an increase in satiety of 20% requires a chewing 
time of 76s when infill pattern variation is used (76s = 0.18 * 
20% + 5.96). 

Chewing Time to Infill Pattern Type: Next, we can use the 
required chewing time to select an infill pattern that creates 
this chewing time from Figure 11b. Since infill pattern is 
a discrete value, we discretize the continuous space while 
minimizing error. Continuing the previous example, if the 
user needs to chew 76s, the hilbert infill pattern matches the 
chewing time most closely. 

Maximum Increase in Satiety and Chewing Time: As can be 
seen in Figure 11a/b, using infill pattern we can modify a 
user’s perception of satiety within a range of 17 − 22% and 
the chewing time from 61 seconds to 84 seconds. 

Infill Density: Continuous Interpolation 
Perceived Satiety to Chewing Time: Similarly, we can sum-
marize the data for infill density as shown in Figure 12a with 
perceived satiety on one axis and chewing time on the other. 
We then fit a linear graph resulting in the following formula: 
chewing time t = 0.62 * perceived satiety increase + 15.47. 
Thus, once users indicated their hungriness level (current per-
ceived satiety), we can calculate the required increase in satiety 
and then compute the required chewing time. For instance, as 
mentioned in Figure 2d, a desired increase in satiety of 35% 
requires a chewing time of 37.17s when infill density variation 
is used (37.17s = 0.62 × 35 + 15.47). 
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Figure 12. Infill Density Lookup Chart (created from results from Ex-
periment 2): (a) for a desired satiety level, look up the chewing time. (b) 
For a required chewing time, find the matching infill density parameter. 

Chewing Time to Infill Density Percentage: Next, we retrieve 
the infill density that creates the required chewing time (Fig-
ure 12b). To create a formula that computes the matching 
infill density, we applied regression estimation using a linear 
function (R2 = 0.793, p < 0.01) that interpolates between 
the different densities. As result, we obtain the following 
equation: 

Tchew = −0.62 × Din f ill + 69.88 

where Tchew represents the chewing time and Din f ill represents 
the infill density. Entering 32s for chewing time into this 
equation, results in an infill density of 61% (Figure2e). 

Scaling the Model: After determining the desired infill den-
sity, we can scale up the model to enlarge the surface area. 
Given our predefined shapes (square cookies), we obtain the 
following formula: 

Area = (−0.39 × Din f ill + 55.27)2 

Thus, given the infill density of 61%, our model will be scaled 
by a factor of 0.95 (area for infill density 100% = 30mm2, 

2area for infill density 61% = 31.48mm2, 30mm2/31.48mm = 
0.95). This is also shown in Figure 2f. 

Maximum Increase in Satiety and Chewing Time: As can be 
seen in Figure 12a/b, using infill density we can modify a 
user’s perception of satiety within a range of 31 − 45% and 
the chewing time from 26 seconds to 46 seconds. 

USER INTERFACE 
Our computational models allow us to create the user inter-
face that is conceptually shown in Figure 2 and implemented 
as a plugin to the 3D editor Rhino as shown in Figure 13. 

As explained at the beginning of the paper, it takes as input 
a user’s selection from a list of foods, a level of hunger, and 
the daily calorie use. Note that, the daily calories use is either 
automatically retrieved from a user’s fitness tracker or prede-
fined in the user’s profile. The system then outputs a set of 
3D printing parameters and “.gcode” file for 3D printing that 
create the required chewing time. 

Figure 13. User Interface implemented in the 3D editor Rhino 3D that 
automatically selects 3D printing parameters. 

DISCUSSION 
Throughout this paper, we contributed a first exploration of 
how food 3D printing can be used to physically modify food. 
Thus, we extend prior work that digitally augmented food and, 
most notably, remove the need for wearing attachments by 
using 3D printers to computationally-control different param-
eters concerning the food structure. In the next section, we 
discuss extensions of our work for food perception research, 
detail current limitations of our approach, and outline opportu-
nities for future work. 

Extensions for Food Perception Research 
In this paper, we focused on two specific 3D printing parame-
ters, i.e., infill patterns and infill density, and showed that food 
3D printing cannot only be used to create novel types of taste 
structures as was the focus of prior work, but also has impor-
tant implications for modifying food intake. As mentioned 
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previously, food 3D printing modifies the food structures phys-
ically, which is closer to the process originally used in food 
perception research. Thus, by building onto our work that 
explored a first set of printing parameters and demonstrated 
how to embed the results into an end-to-end food fabrication 
pipeline, food perception researcher can add to the space of 
available perceptual illusions, further enhancing the parameter 
space for computer-controlled food fabrication. In addition, by 
automating the generation of computationally modified food, 
our work facilitates follow up research on cross-modal cues, 
such as effects that are caused by grasping or seeing the food. 
Further research is needed to integrate different cues into one 
such coherent model. 

Limitations 
In our work, the experiments were run on one specific type of 
food and thus the resulting data points result in computational 
models that can only be used for food structures of the same 
characteristics. Further work across additional ingredients and 
food shapes is needed before the results can be generalized 
for larger classes of food types. In addition, our work only 
investigated two printing parameters, i.e., infill patterns and 
infill density, but other parameters, such as the number of 
shells and number of top and bottom layers may also influence 
the chewing time. Furthermore, while the food structures in 
this paper were chosen to maintain their shape during printing 
even when infill is varied, it is more difficult to vary infill when 
printing structures have steep overhangs or are large in size. 
Finally, while we hope that our work may help in reducing 
overeating, additional experiments are needed to evaluate if 
people who overeat can reliably rate their own satiety levels. 

Opportunities of FoodFab 
While food 3D printing is still a new research topic, the ex-
tended interest in food computing [28] and a first deployment 
and use of food 3D printers in restaurants [44] point towards 
a future in which people will make use of such personalized 
automated meals. Below, we describe three usage scenarios 
where our approach can be useful. 

Integration with Daily Meal Preparation: Food 3D printers 
that emerge on the consumer market tend to offer a list of 
recipes linked on the manufacturer website where a user can 
buy the ingredients as prefilled food capsules in supermar-
kets. FoodFab can be integrated into this emerging ecosystem 
around food 3D printers by using computational models to per-
sonalize the recipes offered to consumers to help them manage 
their food intake. 

Decreasing Food Size Over Time: People who overeat tend 
to have an attraction to large portion sizes to which they get 
accustomed over time [34]. Thus, to a person who overeats, a 
regularly sized meal may seem small in comparison. A future 
avenue for FoodFab would be to investigate if small changes 
in meal size over time can get users accustomed to regularly 
sized portions. As we have previously shown, we can modify 
the size of a piece of food by changing the infill density while 
keeping calories constant. 

Culinary chefs: We envision that in restaurants, Chefs will not 
only customize a user’s meal based on allergies and other food 

restrictions, but will take calorie constraints into account as 
well. By being able to modify the food’s size without adding 
calories, Chefs will be able to prepare meals of equal sized 
portions for people that are sharing a dinner experience in a 
group. Note that we see our work in line with the Digital 
Gastronomy paradigm [54], in which the chef and the fabri-
cation device work hand-in-hand in the creative process of 
preparing a meal, i.e. the chef is not replaced by a machine 
but the manual practice of the chef is enhanced with digital 
capabilities. 

50 cal

Figure 14. Extension to other fabrication methods, such as laser cutting: 
Both cups have the same amount of ham cut into different shapes to 
achieve different apparent sizes. 
Extending to other Fabrication Methods: Finally, our idea of 
realizing food perception tricks goes beyond 3D printing and 
can also be applied to other fabrication processes. Figure 14 
shows how we use laser cutting to chop food to increase the 
apparent size. Compared to 3D printing, laser cutting has the 
benefit that it works with ingredients other than pastes. For 
instance, laser cutters are able to process materials, such as 
crackers and ham. However, on the flip side, laser cutting is 
limited in that it cannot cut through thick shapes and due to 
the heat employed can burn or melt a piece of food. 

CONCLUSION 
In this paper, we demonstrated how to use personal fabrica-
tion devices to create food perception illusions. Rather than 
digitally augmenting food, we showed how to use food 3D 
printing to physically integrate perceptual cues. 

We investigated how by changing infill parameters of a piece 
of food, we were able to modify the chewing time and cor-
related perceived satiety while maintaining the same amount 
of ingredient and thus calories. We incorporate the results 
from our experiments into two computational models, which 
estimate the 3D printing parameters for a required chewing 
time and desired satiety level. For future work, we plan to 
collaborate with food perception researchers to evaluate the 
effectiveness of structural and composition changes and to 
study long-term habituation effects, such as those outlined by 
Velasco et al. [45]. 
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